WorldWideScience

Sample records for carbon therapy facility

  1. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  2. Profile of European proton and carbon ion therapy centers assessed by the EORTC facility questionnaire.

    Science.gov (United States)

    Weber, Damien C; Abrunhosa-Branquinho, André; Bolsi, Alessandra; Kacperek, Andrzej; Dendale, Rémi; Geismar, Dirk; Bachtiary, Barbara; Hall, Annika; Heufelder, Jens; Herfarth, Klaus; Debus, Jürgen; Amichetti, Maurizio; Krause, Mechthild; Orecchia, Roberto; Vondracek, Vladimir; Thariat, Juliette; Kajdrowicz, Tomasz; Nilsson, Kristina; Grau, Cai

    2017-08-01

    We performed a survey using the modified EORTC Facility questionnaire (pFQ) to evaluate the human, technical and organizational resources of particle centers in Europe. The modified pFQ consisted of 235 questions distributed in 11 sections accessible on line on an EORTC server. Fifteen centers from 8 countries completed the pFQ between May 2015 and December 2015. The average number of patients treated per year and per particle center was 221 (range, 40-557). The majority (66.7%) of centers had pencil beam or raster scanning capability. Four (27%) centers were dedicated to eye treatment only. An increase in the patients-health professional FTE ratio was observed for eye tumor only centers when compared to other centers. All centers treated routinely chordomas/chondrosarcomas, brain tumors and sarcomas but rarely breast cancer. The majority of centers treated pediatric cases with particles. Only a minority of the queried institutions treated non-static targets. As the number of particle centers coming online will increase, the experience with this treatment modality will rise in Europe. Children can currently be treated in these facilities in a majority of cases. The majority of these centers provide state of the art particle beam therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Proton beam therapy facility

    International Nuclear Information System (INIS)

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  4. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  5. Carbon Fiber Technology Facility (CFTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  6. Carbon Ion Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Herrmann, Rochus

    On the importance of choice of target size for selective boosting of hypoxic tumor subvolumina in carbon ion therapy Purpose: Functional imaging methods in radiotherapy are maturing and can to some extent uncover radio resistant structures found within a tumour entity. Selective boost of identified...... effect. All cell lines investigated here did not reach an OER of 1, even for the smaller structures, which may indicate that the achievable dose average LET of carbon ions is too low, and heavier ions than carbon may be considered for functional LET-painting....

  7. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  8. Radiation therapy facilities in the United States

    International Nuclear Information System (INIS)

    Ballas, Leslie K.; Elkin, Elena B.; Schrag, Deborah; Minsky, Bruce D.; Bach, Peter B.

    2006-01-01

    Purpose: About half of all cancer patients in the United States receive radiation therapy as a part of their cancer treatment. Little is known, however, about the facilities that currently deliver external beam radiation. Our goal was to construct a comprehensive database of all radiation therapy facilities in the United States that can be used for future health services research in radiation oncology. Methods and Materials: From each state's health department we obtained a list of all facilities that have a linear accelerator or provide radiation therapy. We merged these state lists with information from the American Hospital Association (AHA), as well as 2 organizations that audit the accuracy of radiation machines: the Radiologic Physics Center (RPC) and Radiation Dosimetry Services (RDS). The comprehensive database included all unique facilities listed in 1 or more of the 4 sources. Results: We identified 2,246 radiation therapy facilities operating in the United States as of 2004-2005. Of these, 448 (20%) facilities were identified through state health department records alone and were not listed in any other data source. Conclusions: Determining the location of the 2,246 radiation facilities in the United States is a first step in providing important information to radiation oncologists and policymakers concerned with access to radiation therapy services, the distribution of health care resources, and the quality of cancer care

  9. Radionuclide therapy practice and facilities in Europe

    International Nuclear Information System (INIS)

    Hoefnagel, C.A.; Clarke, S.E.M.; Fischer, M.; Chatal, J.F.; Lewington, V.J.; Nilsson, S.; Troncone, L.; Vieira, M.R.

    1999-01-01

    Using a questionnaire the EANM Task Group Radionuclide Therapy in 1993 collected data on the current practice of radionuclide therapy in European countries. Subsequently, at the request of the EANM Executive Committee, the EANM Radionuclide Therapy Committee has made an inventory of the distribution of facilities for radionuclide therapy and undertaken an assessment of the total number of patients treated throughout Europe and of the types of treatment provides, with the aim of supporting the development of policy to adjust the available capacity to the needs by the year 2000. For this purpose, a second, more detailed questionnaire was sent out the members and national advisors of the Committee (see below), who gathered the data for each country that was a member of the EANM at the time. It is concluded that a wide bariation in therapy practice exists across Europe, particularly in the utilisation of radionuclide therapy, the requirement and availability of proper isolation facilities and the background training of those undertaking therapy. More uniform guidelines and legislation are required, although changes in legislation may have a significant impact in some countries. Although there is wide variation in the therapies used in each country, one the whole it appears that there is an underutilisation of nuclear medicine as a therapeutic modality. A rapidly increasing role may be expected, in particular for oncological indications requiring high-dose radionuclide treatment. Therefore there is an urgent need for a greater number of isolation beds in dedicated centers throughout Europe

  10. Treatment facilities, human resource development, and future prospect of particle beam therapy

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi

    2015-01-01

    The number of particle beam therapy facilities is increasing globally. Among the countries practicing particle beam therapy, Japan is one of the leading countries in the field with four operating carbon-ion therapy facilities and ten operating proton therapy facilities. With the increasing number of particle beam therapy facilities, the human resource development is becoming extremely important, and there has been many such efforts including the Gunma University Program for Cultivating Global Leaders in Heavy Ion Therapeutics and Engineering, which aimed to educate and train the radiation oncologists, medical physicists, accelerator engineers, and radiation biologists to become global leaders in the field of particle beam therapy. In the future, the benefit and effectiveness of particle beam therapy should be discussed and elucidated objectively in a framework of comprehensive cancer care. (author)

  11. Development of cancer therapy facility of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Jin; Hwang, S. Y.; Kim, M. J. and others

    2000-04-01

    Facilities of the research and clinical treatments of neutron capture therapy using HANARO are developed, and they are ready to install. They are BNCT irradiation facility and prompt gamma neutron activatiion analysis facility. Since every horizontal neutron facility of HANARO is long and narrow tangential beam tube, it is analysed that sufficient epithermal neutrons for the BNCT cannot be obtained but sufficient thermal neutrons can be obtained by a filter composed of silicon and bismuth single crystals. Since the thermal neutron penetaration increases significantly when the crystals are cooled, a filter cooled by liquid nitrogen is developed. So as to avoid interference with the reactor operation, a water shutter is developed. The irradiation room is designed for the temporary surgical operation as well. Handling tools to remove activated beam port plug and to install water shutter and filter are developed. The basic structure of the irradiation room is already installed and most of other parts are ready to install. Since no free beam port is available for the prompt gamma neutron activation analysis, a method obtaining almost pure thermal neutrons by the vertical diffraction of extra beam for the polarized neutron spectrometer is developed. This method is confirmed by analysis and experiments to give high enough neutron beam. Equipment and devices are provided to install this facility.

  12. Development of cancer therapy facility of HANARO

    International Nuclear Information System (INIS)

    Jun, Byung Jin; Hwang, S. Y.; Kim, M. J. and others

    2000-04-01

    Facilities of the research and clinical treatments of neutron capture therapy using HANARO are developed, and they are ready to install. They are BNCT irradiation facility and prompt gamma neutron activatiion analysis facility. Since every horizontal neutron facility of HANARO is long and narrow tangential beam tube, it is analysed that sufficient epithermal neutrons for the BNCT cannot be obtained but sufficient thermal neutrons can be obtained by a filter composed of silicon and bismuth single crystals. Since the thermal neutron penetaration increases significantly when the crystals are cooled, a filter cooled by liquid nitrogen is developed. So as to avoid interference with the reactor operation, a water shutter is developed. The irradiation room is designed for the temporary surgical operation as well. Handling tools to remove activated beam port plug and to install water shutter and filter are developed. The basic structure of the irradiation room is already installed and most of other parts are ready to install. Since no free beam port is available for the prompt gamma neutron activation analysis, a method obtaining almost pure thermal neutrons by the vertical diffraction of extra beam for the polarized neutron spectrometer is developed. This method is confirmed by analysis and experiments to give high enough neutron beam. Equipment and devices are provided to install this facility

  13. Australian proton therapy facilities - status report

    International Nuclear Information System (INIS)

    Bleasel, S.; Jackson, M.

    2000-01-01

    may be funded by a combination of Private Enterprise and Government. This presentation describes the steps taken to date and the proposed 'road map' for the future. Physicists are invited to consider how they would use such a facility. In partnership with Mitsubishi and Toshiba, Hitachi built the rotating gantries for the proton facility at the National Cancer Centre in Kashiwa, Japan. Subsequently, they built the scientific/medical proton facility at Wakasa Bay in Japan. In March 2000 Hitachi will commission a facility at Tsukuba University Hospital dedicated to proton therapy and related basic research

  14. Carbon dioxide neutral, integrated biofuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2010-12-15

    Algae are efficient biocatalysts for both capture and conversion of carbon dioxide in the environment. In earlier work, we have optimized the ability of Chlorella vulgaris to rapidly capture CO{sub 2} from man-made emission sources by varying environmental growth conditions and bioreactor design. Here we demonstrate that a coupled biodiesel-bioethanol facility, using yeast to produce ethanol and photosynthetic algae to produce biodiesel, can result in an integrated, economical, large-scale process for biofuel production. Each bioreactor acts as an electrode for a coupled complete microbial fuel cell system; the integrated cultures produce electricity that is consumed as an energy source within the process. Finally, both the produced yeast and spent algae biomass can be used as added value byproducts in the feed or food industries. Using cost and revenue estimations, an IRR of up to 25% is calculated using a 5 year project lifespan. (author)

  15. General considerations for neutron capture therapy at a reactor facility

    International Nuclear Information System (INIS)

    Binney, S.E.

    2001-01-01

    In addition to neutron beam intensity and quality, there are also a number of other significant criteria related to a nuclear reactor that contribute to a successful neutron capture therapy (NCT) facility. These criteria are classified into four main categories: Nuclear design factors, facility management and operations factors, facility resources, and non-technical factors. Important factors to consider are given for each of these categories. In addition to an adequate neutron beam intensity and quality, key requirements for a successful neutron capture therapy facility include necessary finances to construct or convert a facility for NCT, a capable medical staff to perform the NCT, and the administrative support for the facility. The absence of any one of these four factors seriously jeopardizes the overall probability of success of the facility. Thus nuclear reactor facility management considering becoming involved in neutron capture therapy, should it be proven clinically successful, should take all these factors into consideration. (author)

  16. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    CERN Document Server

    Shornikov, A.

    2016-01-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  17. Microdosimetric investigations at the fast neutron therapy facility at Fermilab

    International Nuclear Information System (INIS)

    Langen, K.M.

    1997-01-01

    Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e., oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 ± 0.04 was determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e * and R, with field size and depth in tissue. Maximal variation in e * and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated

  18. Diketopyrrolopyrrole-based carbon dots for photodynamic therapy.

    Science.gov (United States)

    He, Haozhe; Zheng, Xiaohua; Liu, Shi; Zheng, Min; Xie, Zhigang; Wang, Yong; Yu, Meng; Shuai, Xintao

    2018-06-01

    The development of a simple and straightforward strategy to synthesize multifunctional carbon dots for photodynamic therapy (PDT) has been an emerging focus. In this work, diketopyrrolopyrrole-based fluorescent carbon dots (DPP CDs) were designed and synthesized through a facile one-pot hydrothermal method by using diketopyrrolopyrrole (DPP) and chitosan (CTS) as raw materials. DPP CDs not only maintained the ability of DPP to generate singlet oxygen (1O2) but also have excellent hydrophilic properties and outstanding biocompatibility. In vitro and in vivo experiments demonstrated that DPP CDs greatly inhibited the growth of tumor cells under laser irradiation (540 nm). This study highlights the potential of the rational design of CDs for efficient cancer therapy.

  19. Heavy ion facility for radiation therapy

    International Nuclear Information System (INIS)

    Leemann, C.; Alonso, J.; Clark, D.; Grunder, H.; Hoyer, E.; Lou, K.; Staples, J.; Voelker, F.

    1977-03-01

    The accelerator requirements of particle radiation therapy are reviewed and a preliminary design of a heavy ion synchrotron for hospital installation is presented. Beam delivery systems and multi-treatment room arrangements are outlined

  20. Carbon Fiber Manufacturing Facility Siting and Policy Considerations: International Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Samuel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-21

    Carbon fiber is increasingly used in a wide variety of applications due largely to its superior material properties such as high strength-to-weight ratio. The current global carbon fiber manufacturing industry is predominately located in China, Europe, Japan, and the United States. The carbon fiber market is expected to expand significantly through 2024 and to require additional manufacturing capacity to meet demand. Carbon fiber manufacturing facilities can offer significant economic development and employment opportunities as exemplified by the $1 billion investment and 500 jobs expected at a new Toray plant in Moore, South Carolina. Though the market is expected to expand, it is unclear where new manufacturing facilities will locate to meet demand. This uncertainty stems from the lack of research evaluating how different nations with significant carbon fiber manufacturing capacity compare as it relates to certain manufacturing facility siting factors such as costs of labor and energy as well as policy directed at supporting carbon fiber development, domestic deployment, and exports. This report fills these gaps by evaluating the top carbon fiber manufacturing countries, including China, European Union countries, Japan, Mexico, South Korea, Taiwan, and the United States. The report documents how the United States compares to these countries based on a range of manufacturing siting considerations and existing policies related to carbon fiber. It concludes with a discussion of various policy options the United States could adopt to both (1) increase the competitiveness of the United States as it relates to attracting new carbon fiber manufacturing and (2) foster broader end-use markets for deployment.

  1. Integrated biofuel facility, with carbon dioxide consumption and power generation

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering

    2009-07-01

    This presentation provided details of an economical design for a large-scale integrated biofuel facility for coupled production of bioethanol and biodiesel, with carbon dioxide capture and power generation. Several designs were suggested for both batch and continuous culture operations, taking into account all costs and revenues associated with the complete plant integration. The microalgae species Chlorella vulgaris was cultivated in a novel photobioreactor (PBR) in order to consume industrial carbon dioxide (CO{sub 2}). This photosynthetic culture can also act as a biocathode in a microbial fuel cell (MFC), which when coupled to a typical yeast anodic half cell, results in a complete biological MFC. The photosynthetic MFC produces electricity as well as valuable biomass and by-products. The use of this novel photosynthetic microalgae cathodic half cell in an integrated biofuel facility was discussed. A series of novel PBRs for continuous operation can be integrated into a large-scale bioethanol facility, where the PBRs serve as cathodic half cells and are coupled to the existing yeast fermentation tanks which act as anodic half cells. These coupled MFCs generate electricity for use within the biofuel facility. The microalgae growth provides oil for biodiesel production, in addition to the bioethanol from the yeast fermentation. The photosynthetic cultivation in the cathodic PBR also requires carbon dioxide, resulting in consumption of carbon dioxide from bioethanol production. The paper also discussed the effect of plant design on net present worth and internal rate of return. tabs., figs.

  2. Health physics considerations at a neutron therapy facility cyclotron

    International Nuclear Information System (INIS)

    Kleck, J.H.; Krueger, D.J.; Mc Laughlin, J.E.; Smathers, J.B.

    1987-01-01

    The U.C.L.A. Neutron Therapy Facility (NTF) is one of four such facilities in the United States currently involved in NCI sponsored trials of neutron therapy and reflects the present interest in the use of high energy neutron beams for treating certain types of human cancers. The NTF houses a CP-45 negative ion cyclotron which accelerates a 46 MeV proton beam for production of neutrons from a beryllium target. In addition to patient treatment, the NTF is involved in the production of positron emitting radioisotopes for diagnostic use in Positron Emission Tomography (PET). The activation of therapy treatment collimators, positron and neutron target systems, and a high and rapidly varying external radiation environment in a clinical setting have contributed to the need for a comprehensive radiation control program in which patient care is balanced with the maintenance of occupational exposures to ALARA levels

  3. The Role of Oxygen Therapies in Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Suleyman Metin

    2011-08-01

    Full Text Available Due to climate and socio-economic issues in Turkey, the incidence of carbon monoxide (CO poisoning is high, especially in winter. Clinical manifestations may vary depending on the type of CO source, concentration and duration of exposure. The symptoms of CO poisoning predominantly manifest in lots of organs and systems with high oxygen utilization, especially the brain and the heart. The primary aim in oxygen therapy is to eliminate CO and to reduce its toxic effects. In this context, normobaric and hyperbaric oxygen therapy are used to achieve these goals. Normobaric oxygen (NBO treatment is an easily accessible and relatively not expensive modality, where hyperbaric oxygen (HBO therapy requires specific equipment, certified staff and is available only in some centers. Additionally, HBO treatment has several additional advantages over NBO treatment. Despite its benefits, it is compulsory to search for some criteria in selecting patients to be treated because of the limited availability and access of hyperbaric facilities. For an effective evaluation and an optimal treatment, advanced education of the healthcare professionals on the use of oxygen delivery modalities in the management of CO poisoning is imperative. In this review, it has been aimed to outline the significance of oxygen treatment modalities and to determine patient selection criteria for HBO treatment in the management of CO poisoning which continues to be an important threat to community health care. [TAF Prev Med Bull 2011; 10(4.000: 487-494

  4. The Swedish facility for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Skoeld, K.; Capala, J. [Studsvik Medical AB (Sweden); Kierkegaard, J.; Haakansson, R. [Studsvik Nuclear AB (Sweden); Gudowska, I. [Karolinska Institute (Sweden)

    2000-10-01

    A BNCT (Boron Neutron Capture Therapy) facility has been constructed at the R2-0 reactor at Studsvik, Sweden. R2-0 is a 1 MW, open core, pool reactor. The reactor core is suspended on a movable tower and can be positioned anywhere in the pool. The BNCT facility includes two adjacent, parallel filter/moderator configurations and the reactor core is positioned in front of any of them as appropriate. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range and with an extended collimator for convenient patient positioning. The other beam has been designed for radiobiological research and is equipped with a heavy water moderator and a large irradiation cavity with a uniform field of thermal neutrons. (author)

  5. The Swedish facility for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Skoeld, K.; Capala, J.; Kierkegaard, J.; Haakansson, R.; Gudowska, I.

    2000-01-01

    A BNCT (Boron Neutron Capture Therapy) facility has been constructed at the R2-0 reactor at Studsvik, Sweden. R2-0 is a 1 MW, open core, pool reactor. The reactor core is suspended on a movable tower and can be positioned anywhere in the pool. The BNCT facility includes two adjacent, parallel filter/moderator configurations and the reactor core is positioned in front of any of them as appropriate. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range and with an extended collimator for convenient patient positioning. The other beam has been designed for radiobiological research and is equipped with a heavy water moderator and a large irradiation cavity with a uniform field of thermal neutrons. (author)

  6. Periorbital area rejuvenation using carbon dioxide therapy.

    Science.gov (United States)

    Paolo, Fioramonti; Nefer, Fallico; Paola, Parisi; Nicolò, Scuderi

    2012-09-01

    Different conservative and surgical approaches are used for periorbital region rejuvenation, but none of them is effective in the treatment of the medial third of the lower eyelid. The present study is designed to assess the effectiveness of carboxytherapy in the treatment of wrinkles on the median and medial region of the lower eyelid and dark circles around the eyes. From January 2008 to December 2010, 90 patients with moderate to severe periorbital wrinkles and/or dark circles underwent subcutaneous injections of CO(2) once a week for 7 weeks. Patients were assessed before and 2 months after the treatment through photographic documentation and the compilation of visual analog scales. At the end of the study period, patients reported a reduction of facial fine lines and wrinkles as well as a decrease in periorbital hyperpigmentation. A few side effects were observed but they were all transient and did not require discontinuation of treatment. Carbon dioxide therapy results as an effective noninvasive modality for the rejuvenation of the periorbital area. © 2012 Wiley Periodicals, Inc.

  7. Ion chambers compliance results of Brazilian radiation therapy facilities.

    Science.gov (United States)

    Joana, G; Salata, C; Leal, P; Vasconcelos, R; Couto, N do; Teixeira, F C; Soares, A D; Santini, E S; Gonçalves, M

    2018-03-01

    The Brazilian Nuclear Energy Commission (cnen) has been making a constant effort to keep up to date with international standards and national needs to strengthen the status of radiological protection of the country. The guidelines related to radiation therapy facilities have been revised in the last five years in order to take into consideration the most relevant aspects of the growing technology as well as to mitigate the accidents or incidents observed in practice. Hence, clinical dosimeters have gained special importance in this matter. In the present work, we discuss the effectiveness of regulation and inspections to the enforcement of instrument calibration accuracy for the improvement of patient dosimetry and quality control. As a result, we observed that the number of calibrated instruments, mainly well chambers, is increasing each year. The same behavior is observed for instruments employed in technologically advanced radiation treatments such as intensity modulated radiotherapy, volumetric therapy and stereotatic radiosurgery. We ascribe this behavior to the new regulation.

  8. Facile synthesis of carbon dots with superior sensing ability

    Science.gov (United States)

    Jin, Lin; Li, Jingguo; Liu, Liyun; Wang, Zhenling; Zhang, Xingcai

    2018-04-01

    Carbon dots (CDs) have various applications in biomedical and environmental field, such as bio-imaging, bio-sensing and heavy metal detection. In this study, a novel class of CDs were synthesized using a one-step hydrothermal method. The fabricated CDs displayed stable photoluminescence, good water solubility, and photo stability. Moreover, the functional groups (carboxylic acid moieties and hydroxyls) on the surface of the obtained CDs enable it with superior sensing ability (e.g., very low detectable concentration for Pb2+: 5 nmol/L). With superior detection sensitivity, excellent fluorescent properties and facile fabrication method, the as-obtained CDs can find practical applications as cost-effective and sensitive chemo-sensors in water and food safety field.

  9. Opening and construction of facilities in succession for particle beam therapy of cancer

    International Nuclear Information System (INIS)

    Nakano, Takashi; Yamamoto, Kazutaka; Hishikawa, Yoshio; Totoki, Tadahide; Hoshino, Junichi; Aoki, Takashi; Yoshiyuki, Takeshi; Hirabayashi, Masayuki; Nakamura, Fumito

    2011-01-01

    This feature article describes the current state of practical particle beam therapy of cancer, its future prospect, recent opening/construction of its facilities and manufacturers' view with following 9 topics presented by relevant experts. Gunma University (topic 1) started the carbon ion therapy from Mar., 2010, and has treated more than 100 cancer patients to aim the treatment of about 600 patients/year after several years. Fukui Prefectural Hospital Proton Therapy Center (topic 2) started from this March with proton beams for patients with its therapeutic standard, in cooperation with insurance companies and hotels for patients' convenience. Medipolis Proton Therapy and Research Center (Kagoshima Pref.) (topic 3) started this year with proton beams for 13 patients hitherto with reference protocol of Hyogo Ion Beam Medical Center. A new stereotactic irradiation system of proton beams for breast cancer has been developed. Construction of Saga Heavy Ion Medical Accelerator in Tosu (Saga Pref.) (topic 4) began this year to be completed in 2013. Aizawa Hospital (Nagano Pref.) (topic 5) plans to introduce the small-sized proton accelerator-gantry system (Sumitomo Heavy Ind., Ltd.) aiming the practice in 2013. Association for Nuclear Technology in Medicine (topic 6) reports the trends of current and future construction inside/outside Japan. Manufacturers comment their respective business: high-speed scanning irradiation system, next generation handling system of patient and particle beam therapy information system by Toshiba (topic 7); designation of the whole heavy ion beam therapy system (with NIRS), proton beam (as in topic 5) and system of BNCT (boron neutron-capture therapy) (Kyoto Univ.) by Sumitomo Heavy Ind., Ltd. (topic 8); and small-size proton therapeutic machine with 4D tracing capability for patient's movement (Hokkaido Univ.) and with spot-scanning irradiation technique by Hitachi (topic 9). (author)

  10. The management of carbon-14 in Canadian nuclear facilities

    International Nuclear Information System (INIS)

    1995-07-01

    In Canada, Derived Emission Limits (DELs) for the release of radionuclides from nuclear facilities are set to ensure that the dose to a member of a critical group from one year's release does not exceed the limit on annual dose to a member of the public set by the Atomic Energy Control Regulations. The Advisory Committee on Radiological Protection (ACRP) has expressed concerns as to whether this procedure provides adequate protection to members of the public, including future generations, for certain radionuclides such as a carbon-14 ( 14 C), which can accumulate in the environment and which can be dispersed, through environmental processes, beyond the local region where the critical group is assumed to live. The ACRP subsequently established a Working Group to review the production, release, environmental levels, and waste management of 14 C arising in CANDU power reactors. The ACRP recommendations resulting from this review can be summarized as · Given the current levels of emissions from CANDU nuclear power stations resulting from the use of a carbon dioxide annulus gas and the limitations in the calculation and use of collective dose, the ACRP sees no need for and additional collective dose limit to be applied to these sources. · The AECB should require licensees of power reactors and waste management sites to provide an annual inventory of 14 C held within reactor buildings and waste management sites; to provide information on the stability of the ion exchange resins and their continuing ability to retain the 14 C; to demonstrate on an ongoing basis that releases of 14 C are maintained at a small fraction of the emission limits; and to report annually the critical group and local collective doses arising from releases of 14 C. 61 refs., 25 tabs., 4 figs

  11. [Cerebellar Infarction After Carbon Monoxide Poisoning and Hyperbaric Oxygen Therapy].

    Science.gov (United States)

    Wick, Matthias; Schneiker, André; Bele, Sylvia; Pawlik, Michael; Meyringer, Helmut; Graf, Bernhard; Wendl, Christina; Kieninger, Martin

    2017-06-01

    We report on a patient who developed a space-occupying cerebellar infarction with occlusive hydrocephalus after a poisoning with carbon monoxide with the intention to commit suicide. A neurosurgical and intensive care therapy were needed. The patient's survival without severe neurological deficits could be secured due to the early detection of the intracerebral lesions. Georg Thieme Verlag KG Stuttgart · New York.

  12. A preliminary Monte Carlo study for the treatment head of a carbon-ion radiotherapy facility using TOPAS

    Science.gov (United States)

    Liu, Hongdong; Zhang, Lian; Chen, Zhi; Liu, Xinguo; Dai, Zhongying; Li, Qiang; Xu, Xie George

    2017-09-01

    In medical physics it is desirable to have a Monte Carlo code that is less complex, reliable yet flexible for dose verification, optimization, and component design. TOPAS is a newly developed Monte Carlo simulation tool which combines extensive radiation physics libraries available in Geant4 code, easyto-use geometry and support for visualization. Although TOPAS has been widely tested and verified in simulations of proton therapy, there has been no reported application for carbon ion therapy. To evaluate the feasibility and accuracy of TOPAS simulations for carbon ion therapy, a licensed TOPAS code (version 3_0_p1) was used to carry out a dosimetric study of therapeutic carbon ions. Results of depth dose profile based on different physics models have been obtained and compared with the measurements. It is found that the G4QMD model is at least as accurate as the TOPAS default BIC physics model for carbon ions, but when the energy is increased to relatively high levels such as 400 MeV/u, the G4QMD model shows preferable performance. Also, simulations of special components used in the treatment head at the Institute of Modern Physics facility was conducted to investigate the Spread-Out dose distribution in water. The physical dose in water of SOBP was found to be consistent with the aim of the 6 cm ridge filter.

  13. Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products.

    Science.gov (United States)

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Wang, Tong; Fan, Mingde; Zhu, Jianxi; He, Hongping

    2012-12-15

    Hierarchically porous carbons were prepared using a facile preparation method in which diatomite was utilized as both template and catalyst. The porous structures of the carbon products and their formation mechanisms were investigated. The macroporosity and microporosity of the diatomite-templated carbons were derived from replication of diatom shell and structure-reconfiguration of the carbon film, respectively. The macroporosity of carbons was strongly dependent on the original morphology of the diatomite template. The macroporous structure composed of carbon plates connected by the pillar- and tube-like macropores resulted from the replication of the central and edge pores of the diatom shells with disk-shaped morphology, respectively. And another macroporous carbon tubes were also replicated from canoe-shaped diatom shells. The acidity of diatomite dramatically affected the porosity of the carbons, more acid sites of diatomite template resulted in higher surface area and pore volume of the carbon products. The diatomite-templated carbons exhibited higher adsorption capacity for methylene blue than the commercial activated carbon (CAC), although the specific surface area was much smaller than that of CAC, due to the hierarchical porosity of diatomite-templated carbons. And the carbons were readily reclaimed and regenerated. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Protontherapy versus carbon ion therapy advantages, disadvantages and similarities

    CERN Document Server

    d’Ávila Nunes, Marcos

    2015-01-01

    This book presents a comparison analysis of two cancer treatment therapies: carbon ion therapy and protontherapy. It is divided in 5 sections. The first ones gives the reader a brief history of Radiotherapy and types of radiation. In the second section, the techniques and equipments, including new ones in development such as Cyclinac , Laser and DWA, are described. The third section describes biophysical (such as stopping power and LET) and biological (such as RBE and OER) properties, the fundamental experiments and clinical area. The fourth section presents models and the fifth section compares both techniques, showing advantages and disadvantages of each, and their similarities.

  15. TU-G-BRCD-01: Will the High Cost of Proton Therapy Facilities Limit the Availability of Proton Therapy Treatment?

    Science.gov (United States)

    Maughan, R

    2012-06-01

    The potential dose distribution advantages associated with proton therapy, and particularly with pencil beam scanning (PBS) techniques, have lead to considerable interest in this modality in recent years. However, the large capital expenditure necessary for such a project requires careful financial consideration and business planning. The complexity of the beam delivery systems impacts the capital expenditure and the PBS only systems presently being advocated can reduce these costs. Also several manufacturers are considering "one-room" facilities as less expensive alternatives to multi-room facilities. This presentation includes a brief introduction to beam delivery options (passive scattering, uniform and modulated scanning) and some of the new technologies proposed for providing less expensive proton therapy systems. Based on current experience, data on proton therapy center start-up costs, running costs and the financial challenges associated with making this highly conformal therapy more widely available will be discussed. Issues associated with proton therapy implementation that are key to project success include strong project management, vendor cooperation and collaboration, staff recruitment and training. Time management during facility start up is a major concern, particularly in multi-room systems, where time must be shared between continuing vendor system validation, verification and acceptance testing, and user commissioning and patient treatments. The challenges associated with facility operation during this period and beyond are discussed, focusing on how standardization of process, downtime and smart scheduling can influence operational efficiency. 1. To understand the available choices for proton therapy facilities, the different beam delivery systems and the financial implications associated with these choices. 2. To understand the key elements necessary for successfully implementing a proton therapy program. 3. To understand the challenges

  16. Measurement of the tissue to A-150 tissue equivalent plastic kerma ratio at two p(66)Be neutron therapy facilities

    International Nuclear Information System (INIS)

    Langen, K M; Binns, P J; Schreuder, A N; Lennox, A J; Deluca, P M Jr.

    2003-01-01

    The ICRU tissue to A-150 tissue equivalent plastic kerma ratio is needed for neutron therapy dosimetry. The current ICRU protocol for neutron dosimetry recommends using a common conversion factor of 0.95 at all high-energy neutron therapy facilities. In an effort to determine facility specific ICRU tissue to A-150 plastic kerma ratios, an experimental approach was pursued. Four low pressure proportional counters that differed in wall materials (i.e. A-150, carbon, zirconium and zirconium-oxide) were used as dosimeters and integral kerma ratios were determined directly in the clinical beam. Measurements were performed at two p(66)Be facilities: iThemba LABS near Cape Town and Fermilab near Chicago. At the iThemba facility the clinical neutron beam is routinely filtered by a flattening and hardening filter combination. The influence of beam filtration on the kerma ratio was evaluated. Using two recent gas-to-wall dose conversion factor (r m,g value) evaluations a mean ICRU tissue to A-150 plastic kerma ratio of 0.93 ± 0.05 was determined for the clinical beam at iThemba LABS. The respective value for the Fermilab beam is 0.95 ± 0.05. The experimentally determined ICRU tissue to A-150 plastic kerma ratios for the two clinical beams are in agreement with theoretical evaluations. Beam filtration reduces the kerma ratio by 3 ± 2%

  17. The accelerator facility of the Heidelberg Ion-Beam Therapy Centre (HIT)

    Science.gov (United States)

    Peters, Andreas

    The following sections are included: * Introduction * Beam parameters * General layout of the HIT facility * The accelerator chain in detail * Operational aspects of a particle therapy facility * 24/7 accelerator operation at 335 days per year * Safety and regulatory aspects * Status and perspectives * References

  18. Comparative Risk Predictions of Second Cancers After Carbon-Ion Therapy Versus Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Eley, John G., E-mail: jeley@som.umaryland.edu [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Friedrich, Thomas [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Homann, Kenneth L.; Howell, Rebecca M. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Scholz, Michael; Durante, Marco [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Newhauser, Wayne D. [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana (United States); Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana (United States)

    2016-05-01

    Purpose: This work proposes a theoretical framework that enables comparative risk predictions for second cancer incidence after particle beam therapy for different ion species for individual patients, accounting for differences in relative biological effectiveness (RBE) for the competing processes of tumor initiation and cell inactivation. Our working hypothesis was that use of carbon-ion therapy instead of proton therapy would show a difference in the predicted risk of second cancer incidence in the breast for a sample of Hodgkin lymphoma (HL) patients. Methods and Materials: We generated biologic treatment plans and calculated relative predicted risks of second cancer in the breast by using two proposed methods: a full model derived from the linear quadratic model and a simpler linear-no-threshold model. Results: For our reference calculation, we found the predicted risk of breast cancer incidence for carbon-ion plans-to-proton plan ratio, , to be 0.75 ± 0.07 but not significantly smaller than 1 (P=.180). Conclusions: Our findings suggest that second cancer risks are, on average, comparable between proton therapy and carbon-ion therapy.

  19. Proton therapy detector studies under the experience gained at the CATANA facility

    International Nuclear Information System (INIS)

    Cuttone, G.; Cirrone, G.A.P.; Di Rosa, F.; Lojacono, P.A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I.V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M.G.; Salamone, V.; Valastro, L.M.

    2007-01-01

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy. In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility

  20. Proton therapy detector studies under the experience gained at the CATANA facility

    Energy Technology Data Exchange (ETDEWEB)

    Cuttone, G.; Cirrone, G.A.P.; Di Rosa, F. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Lojacono, P.A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Lo Nigro, S.; Marino, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Mongelli, V. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Patti, I.V. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Pittera, S. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Raffaele, L. [A.O.U. Policlinico, Universita degli Studi di Catania (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Russo, G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Sabini, M.G. [A.O. Cannizzaro, Catania (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Salamone, V.; Valastro, L.M. [A.O.U. Policlinico, Universita degli Studi di Catania (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy)

    2007-10-15

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy. In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.

  1. Proton therapy detector studies under the experience gained at the CATANA facility

    Science.gov (United States)

    Cuttone, G.; Cirrone, G. A. P.; Di Rosa, F.; Lojacono, P. A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I. V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M. G.; Salamone, V.; Valastro, L. M.

    2007-10-01

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy.In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.

  2. EUD-based biological optimization for carbon ion therapy

    International Nuclear Information System (INIS)

    Brüningk, Sarah C.; Kamp, Florian; Wilkens, Jan J.

    2015-01-01

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  3. The effect of carbon dioxide therapy on composite graft survival.

    Science.gov (United States)

    Durães, Eliana Ferreira Ribeiro; Durães, Leonardo de Castro; Carneiro, Fabiana Pirani; Lino, Ruy de Souza; Sousa, João Batista de

    2013-08-01

    To investigate the effect of carboxytherapy in auricular composite grafts in rabbits. An experimental study was conducted using 20 rabbits randomly assigned to a treatment group of carboxytherapy or a control group of saline solution. In each ear, a circular graft with 1.5 cm or 2 cm of diameter was amputated and reattached. Animals underwent carbon dioxide or saline injection four times during the experiment. We analyzed clinical evolution of the animals, grafts survival, histopathology features and histomorphometry of collagen. The treated group had a significantly lower weight gain (p=0.038). Histopathology was not significantly different between groups. There was an increase in amount of collagen in 2 cm grafts submitted to carbon dioxide therapy (p=0.003). Carboxytherapy didn't influence graft survival rate for 1.5 cm grafts or 2 cm grafts (p=0.567 and p=0.777, respectively). Carbon dioxide therapy increased the amount of collagen in 2 cm grafts. CO2 was not significantly different from saline infusion on composite grafts survival, but this study suggests that there is a mechanical effect caused by distension which favored graft survival.

  4. Photothermal therapy of cancer cells using magnetic carbon nanoparticles

    Science.gov (United States)

    Vardarajan, V.; Gu, L.; Kanneganti, A.; Mohanty, S. K.; Koymen, A. R.

    2011-03-01

    Photothermal therapy offers a solution for the destruction of cancer cells without significant collateral damage to otherwise healthy cells. Several attempts are underway in using carbon nanoparticles (CNPs) and nanotubes due to their excellent absorption properties in the near-infrared spectrum of biological window. However, minimizing the required number of injected nanoparticles, to ensure minimal cytotoxicity, is a major challenge. We report on the introduction of magnetic carbon nanoparticles (MCNPs) onto cancer cells, localizing them in a desired region by applying an external magnetic field and irradiating them with a near-infrared laser beam. The MCNPs were prepared in Benzene, using an electric plasma discharge, generated in the cavitation field of an ultrasonic horn. The CNPs were made ferromagnetic by use of Fe-electrodes to dope the CNPs, as confirmed by magnetometry. Transmission electron microscopy measurements showed the size distribution of these MCNPs to be in the range of 5-10 nm. For photothermal irradiation, a tunable continuous wave Ti: Sapphire laser beam was weakly focused on to the cell monolayer under an inverted fluorescence microscope. The response of different cell types to photothermal irradiation was investigated. Cell death in the presence of both MCNPs and laser beam was confirmed by morphological changes and propidium iodide fluorescence inclusion assay. The results of our study suggest that MCNP based photothermal therapy is a promising approach to remotely guide photothermal therapy.

  5. Facile synthesis and application of a carbon foam with large mesopores

    KAUST Repository

    Fu, Liling

    2013-01-01

    By combining elements of hard- and soft-templating, a facile synthesis method for carbon foams with large mesopores has been demonstrated. A commercial Pluronic surfactant was used as the structure-directing agent as well as the carbon precursor. No micelle swelling agent or post treatment is necessary to enlarge mesopores. As such this method requires fewer synthesis steps and is highly scalable. The as-synthesized meso-carbons showed potential applications in the fields of carbon oxide capture and lithium-sulfur batteries. © 2013 the Owner Societies.

  6. High Gradient Accelerating Structures for Carbon Therapy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Faillace, L.; Goel, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.; Plastun, A.; Savin, E.

    2016-05-01

    Carbon therapy is the most promising among techniques for cancer treatment, as it has demonstrated significant improvements in clinical efficiency and reduced toxicity profiles in multiple types of cancer through much better localization of dose to the tumor volume. RadiaBeam, in collaboration with Argonne National Laboratory, are developing an ultra-high gradient linear accelerator, Advanced Compact Carbon Ion Linac (ACCIL), for the delivery of ion-beams with end-energies up to 450 MeV/u for 12C6+ ions and 250 MeV for protons. In this paper, we present a thorough comparison of standing and travelling wave designs for high gradient S-Band accelerating structures operating with ions at varying velocities, relative to the speed of light, in the range 0.3-0.7. In this paper we will compare these types of accelerating structures in terms of RF, beam dynamics and thermo-mechanical performance.

  7. Examination of GyE system for HIMAC carbon therapy

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki; Matsufuji, Naruhiro; Miyamoto, Tadaaki; Mizoe, Junetsu; Kamada, Tadashi; Tsuji, Hiroshi; Kato, Hirotoshi; Baba, Masayuki; Tsujii, Hirohiko

    2006-01-01

    Purpose: A retrospective analysis was made to examine appropriateness in the estimation of the biologic effectiveness of carbon-ion radiotherapy using resultant data from clinical trials at the heavy-ion medical accelerator complex (HIMAC) at the National Institute of Radiological Sciences in Chiba, Japan. Methods and Materials: At HIMAC, relative biologic effectiveness (RBE) values of therapeutic carbon beams were determined based on experimental results of cell responses, on values expected with the linear-quadratic model, and based on experiences with neutron therapy. We use fixed RBE values independent of dose levels, although this apparently contradicts radiobiologic observations. Our RBE system depends only on LET of the heavy-ion radiation fields. With this RBE system, over 2,000 patients have been treated by carbon beams. With data from these patients, the local control rate of non-small-cell lung cancer was analyzed to verify the clinical RBE of the carbon beam. The local control rate was compared with rates published by groups from Gunma University and Massachusetts General Hospital. Using a simplified tumor control probability (TCP) model, clinical RBE values were obtained for different levels of TCP. Results: For the 50% level of the clinical TCP, the RBE values nearly coincide with those for in vitro human salivary gland cell survival at 10%. For the higher levels of clinical TCP, the RBE values approach closer to those adapted in clinical trials at HIMAC

  8. Selection of carbon beam therapy: biophysical models of carbon beam therapy.

    Science.gov (United States)

    Matsufuji, Naruhiro

    2018-03-01

    Variation in the relative biological effectiveness (RBE) within the irradiation field of a carbon beam makes carbon-ion radiotherapy unique and advantageous in delivering the therapeutic dose to a deep-seated tumor, while sparing surrounding normal tissues. However, it is crucial to consider the RBE, not only in designing the dose distribution during treatment planning, but also in analyzing the clinical response retrospectively. At the National Institute of Radiological Sciences, the RBE model was established based on the response of human salivary gland cells. The response was originally handled with a linear-quadratic model, and later with a microdosimetric kinetic model. Retrospective analysis with a tumor-control probability model of non-small cell cancer treatment revealed a steep dose response in the tumor, and that the RBE of the tumor was adequately estimated using the model. A commonly used normal tissue complication probability model has not yet fully been accountable for the variable RBE of carbon ions; however, analysis of rectum injury after prostate cancer treatment suggested a highly serial-organ structure for the rectum, and a steep dose response similar to that observed for tumors.

  9. A facile production of microporous carbon spheres and their electrochemical performance in EDLC

    Science.gov (United States)

    Xia, Xiaohong; Shi, Lei; Liu, Hongbo; Yang, Li; He, Yuede

    2012-03-01

    In the absence of activation process, we prepared a series of carbon particles from saccharine, in which hydrothermal carbonization method was used. These particles have spherical or near-spherical morphology, controllable monodisperse particle size from the analyses of SEM. Raman and XRD results show that they are nongraphitizable. The BET surface area of these carbon spherules is around 400-500 m2 g-1 and the microporosity is about 84%, suggesting that the carbon particles are rich in micropores. The electrochemical behaviors were characterized by means of galvanostatic charging/discharging, cycle voltammetry and impedance spectroscopy. The results show that the specific capacitance of sucrose-based carbon spherule reached 164 F g-1 in 30% KOH electrolyte and a high volumetric capacitance over 170 F cm-3 was obtained. These carbon spherules could be promising materials for EDLC according to their facile preparation way, low cost and high packing density.

  10. Control system specification for a cyclotron and neutron therapy facility

    International Nuclear Information System (INIS)

    Jacky, J.; Risler, R.; Kalet, I.; Wootton, P.; Barke, A.; Brossard, S.; Jackson, R.

    1991-01-01

    It is usually considered an essential element of good practice in engineering to produce a specification for a system before building it. However, it has been found to be quite difficult to produce useful specifications of large software systems. The authors have nearly completed a comprehensive specification for the computer control system of a cyclotron and treatment facility that provides particle beams for cancer treatments with fast neutrons, production of medical isotopes, and physics experiments. They describe the control system as thoroughly as is practical using standard technical English, supplemented by tables, diagrams, and some algebraic equations. This specification comprises over 300 single-spaced pages. A more precise and compact specification might be achieved by making greater use of formal mathematical notations instead of English. They have begun work on a formal specification of the system, using the Z and Petri net notations

  11. Strategic closed-loop facility location problem with carbon market trading

    DEFF Research Database (Denmark)

    Diabat, A.; Abdallah, T.; Al-Refaie, A.

    2013-01-01

    and recovery of products in a closed-loop configuration. Remanufacturing is the basis of profit-oriented reverse logistics in which recovered products are restored to a marketable condition in order to be resold to the primary or secondary market. In this paper, we introduce a multiechelon multicommodity...... facility location problem with a trading price of carbon emissions and a cost of procurement. The company might either incur costs if the carbon cap, normally assigned by regulatory agencies, is lower than the total emissions, or gain profit if the carbon cap is higher than the total emissions. A numerical...

  12. Dating of archaeological objects using Carbon-14 facilities

    International Nuclear Information System (INIS)

    Kamisah Hj Alias; Noraishah Othman; Nasasni Nasrol

    2004-01-01

    Dating is the key to organising all archaeological evidence. Furthermore, the development of dating methods, whether traditional or scientific, illustrates the ingenuity and lateral thinking that make archaeological problem-solving such a fascinating exercise. The development of MINT radiocarbon dating procedures is reviewed. Basic principles and counting techniques are discussed. A sample is converted by chemical methods into a suitable form, such as carbon dioxide followed by the acetylene gas, and the benzene end-product is placed inside a proportional counter to measure the radioactivity of 14 C. Not until some years ago did absolute dates by radiocarbon dating become a reality for prehistoric archaeology in Malaysia where thermoluminescence and fission-track dating had begun to provide a locally applicable dating method some decades earlier. Applications of radiocarbon dating procedures in the fields of archaeology are also discussed. (Author)

  13. A facile route for graded conversion of carbon fabric to silicon ...

    Indian Academy of Sciences (India)

    70

    The XRD, SEM and EDS analysis confirm the formation of. SiC fibers with .... be obtained by a linear regression of the least-squares method. ..... The SiC fabric was prepared from carbon fabric using facile and simple HAPC method. The.

  14. CYCLONE. Neutron therapy facility at Louvain-la-Neuve

    International Nuclear Information System (INIS)

    Meulders, J.P.; Saedeleer, G. de; Winant, M.; Wambersie, A.

    1979-01-01

    The neutrontherapy program at Louvain-la-Neuve is carried out with the cyclotron CYCLONE of the Catholic University. This isochronous variable energy cyclotron, produced by CSF (Corbeville, France), accelerates different types of charged particles; in particular, deuterons can be accelerated at energies ranging from 13 to 50 MeV. Neutrons used for therapeutic applications are produced by bombarding a thick (10 mm) water cooled, Beryllium target with 50 MeV deuterons. A beam current of about 5 μA is used for patient treatments, which produces dose rates of about 0,5 Gy/min at a target-skin-distance (TSD) of 157 cm. The treatment room, and related medical facilities, are located one level below the main level of the cyclotron. This permits the use of a vertical therapeutic neutron beam by bending the deuteron beam at 90 0 . This vertical beam appears to be more adequate for positioning the majority of the patients. The collimation system consists of a fixed shielding and of a series of interchangeable inserts. The inserts are cylindrical in shape; their height is 80 cm and their external diameter 40 cm. The proximal part (50 cm) is a mixture of iron (equivalent thickness 22 cm) and epoxy, and the distal part (30 cm) is a mixture (50%) of borax and epoxy. The emphasis is made on the radioprotection conditions. A series of measurements made in the treatment room and in the entry maze have shown that their special configuration provides a satisfactory protection of the staff. (author)

  15. Geographic access to radiation therapy facilities and disparities of early-stage breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Yan Lin

    2018-05-01

    Full Text Available Few studies of breast cancer treatment have focused on the Northern Plains of the United States, an area with a high mastectomy rate. This study examined the association between geographic access to radiation therapy facilities and receipt of breast cancer treatments among early-stage breast cancer patients in South Dakota. Based on 4,209 early-stage breast cancer patients diagnosed between 2001 and 2012 in South Dakota, the study measured geographic proximity to radiation therapy facilities using the shortest travel time for patients to the closest radiation therapy facility. Two-level logistic regression models were used to estimate for early stage cases i the odds of mastectomy versus breast conserving surgery (BCS; ii the odds of not receiving radiation therapy after BCS versus receiving follow-up radiation therapy. Covariates included race/ethnicity, age at diagnosis, tumour grade, tumour sequence, year of diagnosis, census tract-level poverty rate and urban/rural residence. The spatial scan statistic method was used to identify geographic areas with significantly higher likelihood of experiencing mastectomy. The study found that geographic accessibility to radiation therapy facilities was negatively associated with the likelihood of receiving mastectomy after adjustment for other covariates, but not associated with radiation therapy use among patients receiving BCS. Compared with patients travelling less than 30 minutes to a radiation therapy facility, patients travelling more than 90 minutes were about 1.5 times more likely to receive mastectomy (odds ratio, 1.51; 95% confidence interval, 1.08-2.11 and patients travelling more than 120 minutes were 1.7 times more likely to receive mastectomy (odds ratio, 1.70; 95% confidence interval, 1.19-2.42. The study also identified a statistically significant cluster of patients receiving mastectomy who were located in south-eastern South Dakota, after adjustment for other factors. Because

  16. Facile Synthesis of Calcium Carbonate Nanoparticles from Cockle Shells

    Directory of Open Access Journals (Sweden)

    Kh. Nurul Islam

    2012-01-01

    Full Text Available A simple and low-cost method for the synthesis of calcium carbonate nanoparticles from cockle shells was described. Polymorphically, the synthesized nanoparticles were aragonites which are biocompatible and thus frequently used in the repair of fractured bone and development of advanced drug delivery systems, tissue scaffolds and anticarcinogenic drugs. The rod-shaped and pure aragonite particles of 30±5 nm in diameter were reproducibly synthesized when micron-sized cockle shells powders were mechanically stirred for 90 min at room temperature in presence of a nontoxic and nonhazardous biomineralization catalyst, dodecyl dimethyl betaine (BS-12. The findings were verified using a combination of analytical techniques such as variable pressure scanning electron microscopy (VPSEM, transmission electron microscopy (TEM, Fourier transmission infrared spectroscopy (FT-IR, X-ray diffraction spectroscopy (XRD, and energy dispersive X-ray analyser (EDX. The reproducibility and low cost of the method suggested that it could be used in industry for the large scale synthesis of aragonite nanoparticles from cockle shells, a low cost and easily available natural resource.

  17. Does Nursing Facility Use of Habilitation Therapy Improve Performance on Quality Measures?

    Science.gov (United States)

    Fitzler, Sandra; Raia, Paul; Buckley, Fredrick O; Wang, Mei

    2016-12-01

    The purpose of the project, Centers for Medicare & Medicaid Services (CMS) Innovation study, was to evaluate the impact on 12 quality measures including 10 Minimum Data Set (MDS) publicly reported measures and 2 nursing home process measures using habilitation therapy techniques and a behavior team to manage dementia-related behaviors. A prospective design was used to assess the changes in the measures. A total of 30 Massachusetts nursing homes participated in the project over a 12-month period. Project participation required the creation of an interdisciplinary behavior team, habilitation therapy training, facility visit by the program coordinator, attendance at bimonthly support and sharing calls, and monthly collection of process measure data. Participating facilities showed improvement in 9 of the 12 reported measures. Findings indicate potential quality improvement in having nursing homes learn habilitation therapy techniques and know how to use the interdisciplinary team to manage problem behaviors. © The Author(s) 2016.

  18. Analysis of touch used by occupational therapy practitioners in skilled nursing facilities.

    Science.gov (United States)

    Morris, Douglas; Henegar, J; Khanin, S; Oberle, G; Thacker, S

    2014-09-01

    Instrumental touch is identified as having purposeful physical contact in order to complete a task. Expressive touch is identified as warm, friendly physical contact and is not solely for performing a task. Expressive touch has been associated with improved client status, increased rapport and greater gains made during therapy. The purpose of the study was to observe the frequency of expressive and instrumental touch utilized by an occupational therapist during an occupational therapy session. Thirty-three occupational therapy professionals, including occupational therapists and occupational therapy assistants, employed at skilled nursing facilities in southwest Florida were observed. Data were collected on the Occupational Therapy Interaction Assessment. The results of the data analysis showed a positive relationship between the gender of the therapist and the frequency of expressive touch. The data also showed that a large majority of touches were instrumental touch and pertained to functional mobility. The results of the study can contribute to a better understanding of the holistic aspects of occupational therapy. By the use of more expressive touch, occupational therapy practitioners may have a positive, beneficial effect on both the client and the therapy process as a whole. Further research is needed to determine the effect an occupational therapy setting has on the frequency of instrumental and expressive touch. A larger sample size and a distinction between evaluation and treatment sessions would benefit future studies. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Clinical trial of cancer therapy with heavy ions at heavy ion research facility in lanzhou

    Science.gov (United States)

    Zhang, Hong

    With collaborative efforts of scientists from the Institute of Modern Physics (IMP), Chinese Academy of Sciences and hospitals in Gansu, initial clinical trial on cancer therapy with heavy ions has been successfully carried out in China. From November 2006 to December 2007, 51 patients with superficially-placed tumors were treated with carbon ions at Heavy Ion Research Facility in Lanzhou (HIRFL) within four beam time blocks of 6-11 days, collaborating with the General Hospital of Lanzhou Command and the Tumor Hospital of Gansu Province. Patients and Methods: There were 51 patients (31 males and 20 females) with superficially-placed tumors (squamous cell carcinoma of the skin, basal cell carcinoma of the skin, malignant skin melanoma, sarcoma, lymphoma, breast cancer, metastatic lymph nodes of carcinomas and other skin lesions). The tumors were less than 2.1 cm deep to the skin surface. All patients had histological confirmation of their tumors. Karnofsky Performance Scale (KPS) of all patients was more than 70. The majority of patients were with failures or recurrences of conventional therapies. Median age at the time of radiotherapy (RT) was 55.5 years (range 5-85 years). Patients were immobilized with a vacuum cushion or a head mask and irradiated by carbon ion beams with energy 80-100 MeV/u at spread-out Bragg peak field generated from HIRFL, with two and three-dimensional conformal irradiation methods. Target volume was defined by physical palpation [ultrasonography and Computerized tomography (CT), for some cases]. The clinical target volume (CTV) was defined as the gross total volume GTV with a 0.5-1.0cm margin axially. Field placement for radiation treatment planning was done based on the surface markings. RBE of 2.5-3 within the target volume, and 40-75 GyE with a weekly fractionation of 7 × 3-15 GyE/fraction were used in the trial. Patients had follow-up examinations performed 1 month after treatment, in 1 or 2 months for the first 6 months, and 3

  20. Carbon/proton therapy: A novel gantry design

    Directory of Open Access Journals (Sweden)

    D. Trbojevic

    2007-05-01

    Full Text Available A major expense and design challenge in carbon/proton cancer therapy machines are the isocentric gantries. The transport elements of the carbon/proton gantry are presently made of standard conducting dipoles. Because of their large weight, of the order of ∼100   tons, the total weight of the gantry with support structure is ∼600   tons. The novel gantry design that is described here is made of fixed field superconducting magnets, thus dramatically reducing magnet size and weight compared to conventional magnets. In addition, the magnetic field is constant throughout the whole energy region required for tumor treatment. Particles make very small orbit offsets, passing through the beam line. The beam line is built of combined-function dipoles such as a nonscaling fixed field alternating gradient (NS-FFAG structure. The very large momentum acceptance NS-FFAG comes from very strong focusing and very small dispersion. The NS-FFAG small magnets almost completely filled the beam line. They first make a quarter (or close to a quarter of an arc bending upward and an additional half of a circle beam line finishing so that the beam is pointed towards the patient. At the end of the gantry, additional magnets with a fast response are required to allow radial scanning and to provide the required position and spot size. The fixed field combined-function magnets for the carbon gantry could be made of superconducting magnets by using low temperature superconducting cable or by using high temperature superconductors.

  1. The CBS-The Most Cost Effective and High Performance Carbon Beam Source Dedicated for a New Generation Cancer Therapy

    CERN Document Server

    Kumada, Masayuki; Leivichev, E B; Parkhomchuk, Vasily; Podgorny, Fedor; Rastigeev, Sergey; Reva, Vladimir B; Skrinsky, Aleksander Nikolayevich; Vostrikov, Vladimir

    2005-01-01

    A Carbon ion beam is a superior tool to x-rays or a proton beam in both physical and biological doses in treating a cancer. A Carbon beam has an advantage in treating radiation resistant and deep-seated tumors. Its radiological effect is of a mitotic independent nature. These features improve hypofractionation, typically reducing the number of irradiations per patient from 35 to a few. It has been shown that a superior QOL(Quality Of Life) therapy is possible by a carbon beam.The only drawback is its high cost. Nevertheless, tens of Prefectures and organizations are eagerly considering the possibility of having a carbon ion therapy facility in Japan. Germany, Austria, Italy, China, Taiwan and Korea also desire to have one.A carbon beam accelerator of moderate cost is about 100 Million USD. With the "CBS" design philosophy, which will be described in this paper, the cost could be factor of 2 or 3 less, while improving its performance more than standard designs. Novel extraction techniques, a new approach to a ...

  2. Facile synthesis of highly aligned multiwalled carbon nanotubes from polymer precursors.

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. Y.; Xiao, Z.-L.; Wang, H. H.; Lin, X.-M.; Trasobares, S.; Cook, R. E.; Richard J. Daley Coll.; Northern Illinois Univ.; Univ. de Cadiz

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.

  3. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    Directory of Open Access Journals (Sweden)

    Catherine Y. Han

    2009-01-01

    Full Text Available We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.

  4. Animal-assisted interventions: A national survey of health and safety policies in hospitals, eldercare facilities, and therapy animal organizations.

    Science.gov (United States)

    Linder, Deborah E; Siebens, Hannah C; Mueller, Megan K; Gibbs, Debra M; Freeman, Lisa M

    2017-08-01

    Animal-assisted intervention (AAI) programs are increasing in popularity, but it is unknown to what extent therapy animal organizations that provide AAI and the hospitals and eldercare facilities they work with implement effective animal health and safety policies to ensure safety of both animals and humans. Our study objective was to survey hospitals, eldercare facilities, and therapy animal organizations on their AAI policies and procedures. A survey of United States hospitals, eldercare facilities, and therapy animal organizations was administered to assess existing health and safety policies related to AAI programs. Forty-five eldercare facilities, 45 hospitals, and 27 therapy animal organizations were surveyed. Health and safety policies varied widely and potentially compromised human and animal safety. For example, 70% of therapy animal organizations potentially put patients at risk by allowing therapy animals eating raw meat diets to visit facilities. In general, hospitals had stricter requirements than eldercare facilities. This information suggests that there are gaps between the policies of facilities and therapy animal organizations compared with recent guidelines for animal visitation in hospitals. Facilities with AAI programs need to review their policies to address recent AAI guidelines to ensure the safety of animals and humans involved. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  5. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    Science.gov (United States)

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  6. Facile Synthesis of Magnetic Mesoporous Hollow Carbon Microspheres for Rapid Capture of Low-Concentration Peptides

    OpenAIRE

    Cheng, Gong; Zhou, Ming-Da; Zheng, Si-Yang

    2014-01-01

    Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu g?1 at room temperature and a Brunauer?Emmett?Teller specific surface area of 48.8 m2 g?1 with an a...

  7. Superconducting ring magnets of the PIOTRON Pi-meson therapy facility at SIN

    Energy Technology Data Exchange (ETDEWEB)

    Maix, R K; Meyer, G; Roman, T; Horvath, I; Vecsey, G; Zellweger, J

    1982-01-01

    Negative Pi-mesons seem to be very promising for cancer therapy, because of their well defined penetration depth and their enhanced energy deposition in the absorption region. A prototype Pi-meson therapy facility, called PIOTRON, has been constructed at SIN, where also pion beams of sufficient intensity are available. The central part of this system are two ring magnets, consisting each of 60 superconducting flat coils, with the aid of which 60 pion beams can be guided around a heavy iron shield and focused on the patient. In this paper the fabrication and the initial operation of these magnets is discussed.

  8. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes.

    Science.gov (United States)

    Sobhani, Zahra; Behnam, Mohammad Ali; Emami, Farzin; Dehghanian, Amirreza; Jamhiri, Iman

    2017-01-01

    Photothermal therapy (PTT) is a therapeutic method in which photon energy is transformed into heat rapidly via different operations to extirpate cancer. Nanoparticles, such as carbon nanotubes (CNTs) have exceptional optical absorbance in visible and near infrared spectra. Therefore, they could be a good converter to induce hyperthermia in PTT technique. In our study, for improving the dispersibility of multiwalled CNTs in water, the CNTs were oxidized (O-CNTs) and then polyethylene glycol (PEG) was used for wrapping the surface of nanotubes. The formation of a thin layer of PEG around the nanotubes was confirmed through Fourier transform infrared, thermogravimetric analysis, and field emission scanning electron microscopy techniques. Results of thermogravimetric analysis showed that the amount of PEG component in the O-CNT-PEG was approximately 80% (w/w). Cell cytotoxicity study showed that O-CNT was less cytotoxic than pristine multiwalled nanotubes, and O-CNT-PEG had the lowest toxicity against HeLa and HepG2 cell lines. The effect of O-CNT-PEG in reduction of melanoma tumor size after PTT was evaluated. Cancerous mice were exposed to a continuous-wave near infrared laser diode (λ=808 nm, P =2 W and I =8 W/cm 2 ) for 10 minutes once in the period of the treatment. The average size of tumor in mice receiving O-CNT-PEG decreased sharply in comparison with those that received laser therapy alone. Results of animal studies indicate that O-CNT-PEG is a powerful candidate for eradicating solid tumors in PTT technique.

  9. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    KAUST Repository

    Wan, Shanhong

    2015-01-01

    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices. This journal is

  10. Neutron field characterization and dosimetry at the TRIUMF proton therapy facility

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: In 1972 the 500 MeV H' Cyclotron of the TRIUMF (Tri University Meson Factory) located in Vancouver, Canada became operational. Beside Meson Physics, high-energy protons of various energy and beam current levels from the TRIUMF Cyclotron are used for scientific research and biomedical applications. Recently, a 500 MeV proton beam from the cyclotron was used as the booster beam for the radioactive ion beam facility, ISAC (Isotope Separator Accelerator) and a second beam as primary irradiation source for the Proton Irradiation Facility (PIF). The major commercial applications of the PIF are the provision of high-energy proton beams for radiation hardness testing of electronic components used in space applications (NASA) and proton therapy of ocular tumors (British Columbia Proton Therapy Facility). The PIF vault was constructed within the main accelerator hall of the TRIUMF using stacks of large concrete blocks. An intense field of fast neutrons is produced during the interaction of high-energy proton beam with target materials, such as, beam stops, collimators and beam energy degraders. The leakage of such neutrons due to insufficient radiological shielding or through the shielding discontinuities may constitute a major share of the personnel radiation exposure of the radiation workers. The neutron energy distribution and dose equivalent near a lead beam stopper bombarded with 116 MeV and 65 MeV collimated proton beams at the Ocular Tumor irradiation facility were evaluated using a Bonner-Sphere Spectrometer and a REM counter respectively. The results were utilized to investigate efficacy of the existing radiological shielding of the PIF. This paper highlights experimental methods to analyze the high-energy accelerator produced neutron beam and basic guideline for the radiological shielding designs of irradiation vault of Proton Therapy facilities

  11. Assessment of Early Toxicity and Response in Patients Treated With Proton and Carbon Ion Therapy at the Heidelberg Ion Therapy Center Using the Raster Scanning Technique

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Stefan; Habermehl, Daniel; Nikoghosyan, Anna; Jensen, Alexandra [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Haberer, Thomas [Heidelberg Ion Therapy Center, Heidelberg (Germany); Jaekel, Oliver [Heidelberg Ion Therapy Center, Heidelberg (Germany); Department of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg (Germany); Muenter, Marc W.; Welzel, Thomas; Debus, Juergen [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Combs, Stephanie E., E-mail: Stephanie.Combs@med.uni-hedielberg.de [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany)

    2011-12-01

    Puropose: To asses early toxicity and response in 118 patients treated with scanned ion beams to validate the safety of intensity-controlled raster scanning at the Heidelberg Ion Therapy Center. Patients and Methods: Between November 2009 and June 2010, we treated 118 patients with proton and carbon ion radiotherapy (RT) using active beam delivery. The main indications included skull base chordomas and chondrosarcomas, salivary gland tumors, and gliomas. We evaluated early toxicity within 6 weeks after RT and the initial clinical and radiologic response for quality assurance in our new facility. Results: In all 118 patients, few side effects were observed, in particular, no high numbers of severe acute toxicity were found. In general, the patients treated with particle therapy alone showed only a few single side effects, mainly Radiation Therapy Oncology Group/Common Terminology Criteria grade 1. The most frequent side effects and cumulative incidence of single side effects were observed in the head-and-neck patients treated with particle therapy as a boost and photon intensity-modulated RT. The toxicities included common radiation-attributed reactions known from photon RT, including mucositis, dysphagia, and skin erythema. The most predominant imaging responses were observed in patients with high-grade gliomas and those with salivary gland tumors. For skull base tumors, imaging showed a stable tumor outline in most patients. Thirteen patients showed improvement of pre-existing clinical symptoms. Conclusions: Side effects related to particle treatment were rare, and the overall tolerability of the treatment was shown. The initial response was promising. The data have confirmed the safe delivery of carbon ions and protons at the newly opened Heidelberg facility.

  12. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Sobhani Z

    2017-06-01

    Full Text Available Zahra Sobhani,1,2 Mohammad Ali Behnam,3 Farzin Emami,3 Amirreza Dehghanian,4 Iman Jamhiri5 1Quality Control Department, Faculty of Pharmacy, 2Center for Nanotechnology in Drug Delivery, Faculty of Pharmacy, Shiraz University of Medical Sciences, 3Opto-Electronic Research Center, Electrical and Electronics Engineering Department, Shiraz University of Technology, 4Pathology Department, 5Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran Abstract: Photothermal therapy (PTT is a therapeutic method in which photon energy is transformed into heat rapidly via different operations to extirpate cancer. Nanoparticles, such as carbon nanotubes (CNTs have exceptional optical absorbance in visible and near infrared spectra. Therefore, they could be a good converter to induce hyperthermia in PTT technique. In our study, for improving the dispersibility of multiwalled CNTs in water, the CNTs were oxidized (O-CNTs and then polyethylene glycol (PEG was used for wrapping the surface of nanotubes. The formation of a thin layer of PEG around the nanotubes was confirmed through Fourier transform infrared, thermogravimetric analysis, and field emission scanning electron microscopy techniques. Results of thermogravimetric analysis showed that the amount of PEG component in the O-CNT-PEG was approximately 80% (w/w. Cell cytotoxicity study showed that O-CNT was less cytotoxic than pristine multiwalled nanotubes, and O-CNT-PEG had the lowest toxicity against HeLa and HepG2 cell lines. The effect of O-CNT-PEG in reduction of melanoma tumor size after PTT was evaluated. Cancerous mice were exposed to a continuous-wave near infrared laser diode (λ=808 nm, P=2 W and I=8 W/cm2 for 10 minutes once in the period of the treatment. The average size of tumor in mice receiving O-CNT-PEG decreased sharply in comparison with those that received laser therapy alone. Results of animal studies indicate that O-CNT-PEG is a powerful candidate for

  13. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  14. Two years of operating experience with the Seattle clinical neutron therapy facility

    International Nuclear Information System (INIS)

    Risler, R.; Brossard, S.; Eenmaa, J.; Kalet, I.; Wootton, P.

    1987-01-01

    After five years of planning, equipment acquisition, facility construction and beam testing the Seattle Clinical Neutron Therapy facility became operational in October 1984. In the past two years nearly 300 people have been treated in clinical trials. During this time 82 % of the planned treatment sessions were performed on schedule, 3 % had to be rescheduled for patient related reasons and 15 % because of equipment problems. The facility is at present running on a 5 days/week schedule: Three ten-hour treatment days, one maintenance day and one research day (radiobiology, therapy related physics). Short runs for short lived isotopes are done between patient treatments. The isocentric gantry, capable of 360 rotation is equipped with a variable collimator with 40 independent leaves. This collimation system allows the use of complex field shapes without the necessity of handling radioactive components like collimator inserts or blocks. It has turned out to be a very essential part for the efficient operation of the facility. Major causes for equipment downtime were associated with the control system, the beryllium target system, RF and magnet systems and the treatment gantry. (author)

  15. Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Akir, Sana [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Bizerte (Tunisia); Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopôle de Bordj Cedria, BP73, 8027, Soliman (Tunisia); Hamdi, Abderrahmane [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Bizerte (Tunisia); Laboratory of Semi-conductors, Nano-structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050, Hammam-Lif (Tunisia); Addad, Ahmed [UMET, UMR CNRS 8207, Université Lille 1, 59655 Villeneuve d' Ascq Cédex (France); Coffinier, Yannick [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Boukherroub, Rabah, E-mail: rabah.boukherroub@iemn.univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); and others

    2017-04-01

    Highlights: • C-ZnO nanocomposite was successfully prepared via a facile and eco-friendly process. • C-ZnO NPs have excellent photocatalytic activity for RhB dye degradation under visible light irradiation compared with literature. • The visible photocatalytic properties originate from injection e{sup −} in CB of ZnO from RhB. - Abstract: The present study describes a facile route for synthesis of carbon-ZnO nanocomposites (C-ZnO) via hydrothermal process in presence of glucose as carbon precursor. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) measurements. The results showed carbon uniformly coated on the surface of the ZnO nanoparticles to form the C-ZnO nanocomposites. Further investigation revealed that carbon could significantly protect ZnO NPs against the coalescence during high temperature treatment. The obtained C-ZnO nanocomposite showed excellent photocatalytic activity for the degradation of rhodamine B (RhB) under visible light irradiation, which was attributed to the repressed charge carrier recombination in the nanocomposite. Quenching experiments and photocurrent measurements revealed a photocatalytic mechanism occurring through photosensitization.

  16. Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids

    International Nuclear Information System (INIS)

    Gao Chao; Li Wenwen; Jin Yizheng; Kong Hao

    2006-01-01

    A facile and efficient aqueous phase-based strategy to synthesize carbon nanotube (CNT)/silver nanocrystal nanohybrids at room temperature is reported. In the presence of carboxyl group functionalized or poly(acrylic acid)- (PAA-) grafted CNTs, silver nanoparticles were in situ generated from AgNO 3 aqueous solution, without any additional reducing agent or irradiation treatment, and readily attached to the CNT convex surfaces, leading to the CNT/Ag nanohybrids. The produced silver nanoparticles were determined to be face-centred cubic silver nanocrystals by scanning transmission electron microscopy (STEM), electron diffraction (ED) and x-ray powder diffraction (XRD) analyses. Detailed experiments showed that this strategy can also be applied to different CNTs, including single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), multiwalled carbon nanotubes (MWNTs), and polymer-functionalized CNTs. The nanoparticle sizes can be controlled from 2 nm to 10-20 nm and the amount of metal deposited on CNT surfaces can be as high as 82 wt%. Furthermore, large-scale (10 g or more) CNT/Ag nanohybrids can be prepared via this approach without the decrease of efficiency and quality. This approach can also be extended to prepare Au single crystals by CNTs. The facile, efficient and large-scale availability of the nanohybrids makes their tremendous potential realizable and developable

  17. Design of radiation shielding for the proton therapy facility at the National Cancer Center in Korea

    International Nuclear Information System (INIS)

    Kim, J. W.; Kwon, J. W.; Lee, J.

    2005-01-01

    The design of radiation shielding was evaluated for a proton therapy facility being established at the National Cancer Center in Korea. The proton beam energy from a 230 MeV cyclotron is varied for therapy using a graphite target. This energy variation process produces high radiation and thus thick shielding walls surround the region. The evaluation was first carried out using analytical expressions at selected locations. Further detailed evaluations have been performed using the Monte Carlo method. Dose equivalent values were calculated to be compared with analytical results. The analytical method generally yielded more conservative values. With consideration of adequate occupancy factors annual dose equivalent rates are kept -1 in all areas. Construction of the building is expected to be completed near the end of 2004 and the installation of therapy equipments will begin a few months later. (authors)

  18. Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy.

    Science.gov (United States)

    Weng, Yangziwan; Guan, Shanyue; Lu, Heng; Meng, Xiangmin; Kaassis, Abdessamad Y; Ren, Xiaoxue; Qu, Xiaozhong; Sun, Chenghua; Xie, Zheng; Zhou, Shuyun

    2018-07-01

    It is a great challenge to develop multifunctional nanocarriers for cancer diagnosis and therapy. Herein, versatile CDs/ICG-uLDHs nanovehicles for triple-modal fluorescence/photoacoustic/two-photon bioimaging and effective photothermal therapy were prepared via a facile self-assembly of red emission carbon dots (CDs), indocyanine green (ICG) with the ultrathin layered double hydroxides (uLDHs). Due to the J-aggregates of ICG constructed in the self-assembly process, CDs/ICG-uLDHs was able to stabilize the photothermal agent ICG and enhanced its photothermal efficiency. Furthermore, the unique confinement effect of uLDHs has extended the fluorescence lifetime of CDs in favor of bioimaging. Considering the excellent in vitro and in vivo phototherapeutics and multimodal imaging effects, this work provides a promising platform for the construction of multifunctional theranostic nanocarrier system for the cancer treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities.

    Science.gov (United States)

    Zhu, Liang; Schade, Gunnar Wolfgang; Nielsen, Claus Jørgen

    2013-12-17

    We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.

  20. A beam optics study of the biomedical beam line at a proton therapy facility

    International Nuclear Information System (INIS)

    Yun, Chong Cheoul; Kim, Jong-Won

    2007-01-01

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam

  1. Primary study for boron neutron capture therapy uses the RSG-GAS beam tube facility

    International Nuclear Information System (INIS)

    Suroso

    2000-01-01

    The minimum epithermal neutron flux as one of the prerequisite of Boron Neutron Capture Therapy (BNCT) is 1.0 x 10 9 n/(cm 2 s) RSG-GAS have 6 beam tube facilities for neutron source, which is one of the beam tube S-2 has a possibility to utilization for BNCT facility. The totally flux neutron measurement in the front of S-2 beam tube is 1.8 x 10 7 n/(cm 2 s). The neutron flux measurement was less than for BNCT minimum prerequisite. Concerning to the flux neutron production in the reactor, which is reach to 2.5 x 10 14 n/(cm 2 s), there for the S-2 beam tube could be used beside collimator modification

  2. Corrosion life-time assessment of carbon steel and stainless alloys for geological disposal facility

    International Nuclear Information System (INIS)

    Kosaki, Akio; Komada, Hiroya

    1993-01-01

    The disposal facility for radioactive wastes requires long-term integrity. Metal is being considered for use as the engineered barrier which constructs the outer walls in such a facility, in order to prevent groundwater percolation. Thus, the most important problem for the integrity of the engineered barrier is corrosion by groundwater. There are two ways for using metal as an engineered barrier; one is as a structural material; and the other is as the inner-lining material of a concrete wall. This report discusses the corrosion lifetime assessment of carbon steel used as a structural and lining material, and stainless alloys, Type 304 steel and Titanium alloys used as lining materials. Corrosion potential and crevice corrosion are measured in the environment of neutral and alkalized water

  3. The neutron therapy facility at the University of Pennsylvania-Fox Chase Cancer Center

    International Nuclear Information System (INIS)

    Bloch, P.; Chu, J.; Larsen, R.

    1983-01-01

    The fusion of deuterium and tritium nuclei results in the formation of a helium-4 nucleus and a 14 MEV neutron. This reaction readily takes place when deuterium and tritium ions are accelerated to potentials between 150-200 kV. These energy ions can be obtained in a moderate size accelerator. A DT neutron facility has been installed in the radiation therapy department of the University of Pennsylvania Hospital-Fox Chase Cancer Center. The system is being commissioned in a hospital setting to test the efficacy of fast neutron radiotherapy

  4. BCI and FES Based Therapy for Stroke Rehabilitation Using VR Facilities

    Directory of Open Access Journals (Sweden)

    Robert Gabriel Lupu

    2018-01-01

    Full Text Available In recent years, the assistive technologies and stroke rehabilitation methods have been empowered by the use of virtual reality environments and the facilities offered by brain computer interface systems and functional electrical stimulators. In this paper, a therapy system for stroke rehabilitation based on these revolutionary techniques is presented. Using a virtual reality Oculus Rift device, the proposed system ushers the patient in a virtual scenario where a virtual therapist coordinates the exercises aimed at restoring brain function. The electrical stimulator helps the patient to perform rehabilitation exercises and the brain computer interface system and an electrooculography device are used to determine if the exercises are executed properly. Laboratory tests on healthy people led to system validation from technical point of view. The clinical tests are in progress, but the preliminary results of the clinical tests have highlighted the good satisfaction degree of patients, the quick accommodation with the proposed therapy, and rapid progress for each user rehabilitation.

  5. Comparison Between In-Beam and Offline Positron Emission Tomography Imaging of Proton and Carbon Ion Therapeutic Irradiation at Synchrotron- and Cyclotron-Based Facilities

    International Nuclear Information System (INIS)

    Parodi, Katia; Bortfeld, Thomas; Haberer, Thomas

    2008-01-01

    Purpose: The benefit of using dedicated in-beam positron emission tomography (PET) detectors in the treatment room instead of commercial tomographs nearby is an open question. This work quantitatively compares the measurable signal for in-beam and offline PET imaging, taking into account realistic acquisition strategies at different ion beam facilities. Both scenarios of pulsed and continuous irradiation from synchrotron and cyclotron accelerators are considered, because of their widespread use in most carbon ion and proton therapy centers. Methods and Materials: A mathematical framework is introduced to compare the time-dependent amount and spatial distribution of decays from irradiation-induced isotope production. The latter is calculated with Monte Carlo techniques for real proton treatments of head-and-neck and paraspinal tumors. Extrapolation to carbon ion irradiation is based on results of previous phantom experiments. Biologic clearance is modeled taking into account available data from previous animal and clinical studies. Results: Ratios between the amount of physical decays available for in-beam and offline detection range from 40% to 60% for cyclotron-based facilities, to 65% to 110% (carbon ions) and 94% to 166% (protons) at synchrotron-based facilities, and increase when including biologic clearance. Spatial distributions of decays during irradiation exhibit better correlation with the dose delivery and reduced influence of biologic processes. Conclusions: In-beam imaging can be advantageous for synchrotron-based facilities, provided that efficient PET systems enabling detection of isotope decays during beam extraction are implemented. For very short (<2 min) irradiation times at cyclotron-based facilities, a few minutes of acquisition time after the end of irradiation are needed for counting statistics, thus affecting patient throughput

  6. Facile Fabrication of 3D Hierarchically Porous Carbon Foam as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Yunfang Gao

    2018-04-01

    Full Text Available A hierarchically porous 3D starch-derived carbon foam (SCF with a high specific surface area (up to 1693 m2·g−1 was first prepared by a facile solvothermal treatment, in which Na2CO3 is used as both the template and activating agent. The hierarchically porous structure and high specific area endow the SCF with favorable electrochemical properties such as a high specific capacitance of 179.6 F·g−1 at 0.5 A·g−1 and a great rate capability and cycling stability, which suggest that the material can be a promising candidate for energy storage applications.

  7. Carbon dioxide therapy in the treatment of cellulite: an audit of clinical practice.

    Science.gov (United States)

    Lee, Georgia S K

    2010-04-01

    The clinical practice of using carbon dioxide therapy for localized adiposities was audited over a 4-year period. Patients receiving physical, dietary, or drug concurrent therapy were excluded from the audit. Original measurements in terms of mean +/- standard error of the mean (SEM) were compared with those obtained after five sessions. This series included 101 women who underwent abdominal therapy. Significant reduction (p carboxytherapy is safe and effective.

  8. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhang, Ligang; Chen, Xiufang; Guan, Jing; Jiang, Yijun; Hou, Tonggang; Mu, Xindong

    2013-01-01

    Graphical abstract: - Highlights: • P-doped g-C 3 N 4 has been prepared by a one-pot green synthetic approach. • The incorporation of P resulted in favorable textural and electronic properties. • Doping with P enhanced the visible-light photocatalytic activity of g-C 3 N 4 . • A postannealing treatment further enhanced the activity of P-doped g-C 3 N 4 . • Photogenerated holes were the main species responsible for the activity. - Abstract: Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C 3 N 4 , which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry

  9. Production of exotic, short lived carbon isotopes in ISOL-type facilities

    CERN Document Server

    Franberg, Hanna; Köster, Ulli; Ammann, Markus

    2008-01-01

    The beam intensities of short-lived carbon isotopes at Isotope Separation On-Line (ISOL) facilities have been limited in the past for technical reasons. The production of radioactive ion beams of carbon isotopes is currently of high interest for fundamental nuclear physics research. To produce radioactive ions a target station consisting of a target in a container connected to an ion source via a transfer line is commonly used. The target is heated to vaporize the product for transport. Carbon in elementary form is a very reactive element and react strongly with hot metal surfaces. Due to the strong chemisorption interaction, in the target and ion source unit, the atoms undergo significant retention on their way from the target to the ion source. Due to this the short lived isotopes decays and are lost leading to low ion yields. A first approach to tackle these limitations consists of incorporating the carbon atoms into less reactive molecules and to use materials for the target housing and the transfer line ...

  10. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    Science.gov (United States)

    Maunoury, L.; Delahaye, P.; Angot, J.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.; Lamy, T.

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  11. Facile Synthesis of Nitrogen-doped Carbon Quantum Dots for Bio-imaging

    Directory of Open Access Journals (Sweden)

    de Yro Persia Ada N.

    2016-01-01

    Full Text Available Carbon quantum dots (CQD with fascinating properties has gradually become a rising star as a new nanocarbon member due to its nonthreatening, abundant and inexpensive nature. This study reports on a facile preparation of fluorescent carbon quantum dots (CQD from iota Carrageenan. CQD from iota Carrageenan was produced by hydrothermal method with a quantum yield (QY of 16 to 20%. Doping the CQD with nitrogen by the addition of tetraethylene pentamine (TEPE produced CQD with a QY of 77%. FTIR data confirmed the formation of hydroxyl, carboxylic and carbonyl functional groups as confirmed by the ToFSIMS data due to the presence of nitrogen bonds on the N-CQD produced with TEPE. The CQD and N-CQD produced are crystalline with graphitic structures because of the presence of sp2 graphitic d line spacing with the sizes ranging from 2 to 10nm. To examine the feasibility of using the CQD as nanoprobe in practical applications, labelling and detection of E.coli was performed. The E.coli fluoresced proving CQD as an effective probe in bio imaging application. This study has successfully demonstrated a facile approach of producing CQD with significant high quantum yields to fluorescent CQD for bio imaging applications.

  12. Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, J.V., E-mail: jvrojas@vcu.edu [Mechanical and Nuclear Engineering Department, Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia, 23284 (United States); Toro-Gonzalez, M.; Molina-Higgins, M.C. [Mechanical and Nuclear Engineering Department, Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia, 23284 (United States); Castano, C.E., E-mail: cecastanolond@vcu.edu [Nanomaterials Core Characterization Facility, Chemical and Life Science Engineering Department, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia, 23284 (United States)

    2016-03-15

    Graphical abstract: - Highlights: • Facile radiolytic synthesis of Ru nanoparticles on graphene oxide and carbon nanotubes. • Homogeneously distributed Rh nanoparticles on supports are ∼2.5 nm in size. • Simultaneous reduction of graphene oxide and Ru ions occurs during the synthesis. • Ru-O bonds evidenced the interaction of the nanoparticles with the support. - Abstract: Ruthenium nanoparticles on pristine (MWCNT) and functionalized carbon nanotubes (f-MWCNT), and graphene oxide have been prepared through a facile, single step radiolytic method at room temperature, and ambient pressure. This synthesis process relies on the interaction of high energy gamma rays from a {sup 60}Co source with the water in the aqueous solutions containing the Ru precursor, leading to the generation of highly reducing species that further reduce the Ru metal ions to zero valence state. Transmission electron microscopy and X-Ray diffraction revealed that the nanoparticles were homogeneously distributed on the surface of the supports with an average size of ∼2.5 nm. X-ray Photoelectron spectroscopy analysis showed that the interaction of the Ru nanoparticles with the supports occurred through oxygenated functionalities, creating metal-oxygen bonds. This method demonstrates to be a simple and clean approach to produce well dispersed nanoparticles on the aforementioned supports without the need of any hazardous chemical.

  13. Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes

    International Nuclear Information System (INIS)

    Rojas, J.V.; Toro-Gonzalez, M.; Molina-Higgins, M.C.; Castano, C.E.

    2016-01-01

    Graphical abstract: - Highlights: • Facile radiolytic synthesis of Ru nanoparticles on graphene oxide and carbon nanotubes. • Homogeneously distributed Rh nanoparticles on supports are ∼2.5 nm in size. • Simultaneous reduction of graphene oxide and Ru ions occurs during the synthesis. • Ru-O bonds evidenced the interaction of the nanoparticles with the support. - Abstract: Ruthenium nanoparticles on pristine (MWCNT) and functionalized carbon nanotubes (f-MWCNT), and graphene oxide have been prepared through a facile, single step radiolytic method at room temperature, and ambient pressure. This synthesis process relies on the interaction of high energy gamma rays from a "6"0Co source with the water in the aqueous solutions containing the Ru precursor, leading to the generation of highly reducing species that further reduce the Ru metal ions to zero valence state. Transmission electron microscopy and X-Ray diffraction revealed that the nanoparticles were homogeneously distributed on the surface of the supports with an average size of ∼2.5 nm. X-ray Photoelectron spectroscopy analysis showed that the interaction of the Ru nanoparticles with the supports occurred through oxygenated functionalities, creating metal-oxygen bonds. This method demonstrates to be a simple and clean approach to produce well dispersed nanoparticles on the aforementioned supports without the need of any hazardous chemical.

  14. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics

    KAUST Repository

    Hola, Katerina; Zhang, Yu; Wang, Yu; Giannelis, Emmanuel P.; Zboril, Radek; Rogach, Andrey L.

    2014-01-01

    © 2014 Elsevier Ltd. All rights reserved. Carbon dots represent an emerging class of fluorescent materials and provide a broad application potential in various fields of biomedicine and optoelectronics. In this review, we introduce various synthetic strategies and basic photoluminescence properties of carbon dots, and then address their advanced in vitro and in vivo bioapplications including cell imaging, photoacoustic imaging, photodynamic therapy and targeted drug delivery. We further consider the applicability of carbon dots as components of light emitting diodes, which include carbon dot based electroluminescence, optical down-conversion, and hybrid plasmonic devices. The review concludes with an outlook towards future developments of these emerging light-emitting materials.

  15. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics

    KAUST Repository

    Hola, Katerina

    2014-10-01

    © 2014 Elsevier Ltd. All rights reserved. Carbon dots represent an emerging class of fluorescent materials and provide a broad application potential in various fields of biomedicine and optoelectronics. In this review, we introduce various synthetic strategies and basic photoluminescence properties of carbon dots, and then address their advanced in vitro and in vivo bioapplications including cell imaging, photoacoustic imaging, photodynamic therapy and targeted drug delivery. We further consider the applicability of carbon dots as components of light emitting diodes, which include carbon dot based electroluminescence, optical down-conversion, and hybrid plasmonic devices. The review concludes with an outlook towards future developments of these emerging light-emitting materials.

  16. The National Carbon Capture Center at the Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-12-30

    The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for

  17. Clinical investigation of 131I therapy combined with low-dose lithium carbonate for Graves disease

    International Nuclear Information System (INIS)

    Xu Haiqing; Wu Bian

    2006-01-01

    Objective: To investigate the clinical curative effects of 131 I therapy combined with low-dose lithium carbonate for Graves disease. Methods: Patients with Graves disease took lithium carbonate (250 mg, once per day) orally for 5 weeks. Then they were treated with 131 I (doses=3.15 MBq(80 uCi)/g, based on 60%-70% of the thyroid size). We kept track from 6 to 24 months (averaging 14 months) and classified the results into three: cured, improved or no effect. Results: After a single cycle of 131 I therapy combined with low-dose lithium carbonate, 106 patients with Graves disease were cured, 28 were improved and 8 saw no effects, respectively 74.6%, 19.7% and 5.6% among the 142 patients. We then treated 23 of them with another 131 I therapy (without lithium carbonate). 10 of such were cured (43.5%), 8 were improved (34.8%) and the other 5 saw no effects. Among all patients, hypothyroidism was observed from 25(17.6%), 6 months after the first 131 I therapy. Conclusions: Notable curative results were observed from 131 I therapy combined with low-dose lithium carbonate for Graves disease. Moreover, the dosage of 131 I was therefore decreased, which also lowered the toxicity response. (authors)

  18. On the cost-effectiveness of Carbon ion radiation therapy for skull base chordoma

    International Nuclear Information System (INIS)

    Jaekel, Oliver; Land, Beate; Combs, Stephanie Elisabeth; Schulz-Ertner, Daniela; Debus, Juergen

    2007-01-01

    Aim: The cost-effectiveness of Carbon ion radiotherapy (RT) for patients with skull base chordoma is analyzed. Materials and Methods: Primary treatment costs and costs for recurrent tumors are estimated. The costs for treatment of recurrent tumors were estimated using a sample of 10 patients presenting with recurrent chordoma at the base of skull at DKFZ. Using various scenarios for the local control rate and reimbursements of Carbon ion therapy the cost-effectiveness of ion therapy for these tumors is analyzed. Results: If local control rate for skull base chordoma achieved with carbon ion therapy exceeds 70.3%, the overall treatment costs for carbon RT are lower than for conventional RTI. The cost-effectiveness ratio for carbon RT is 2539 Euro per 1% increase in survival, or 7692 Euro per additional life year. Conclusion: Current results support the thesis that Carbon ion RT, although more expensive, is at least as cost-effective as advanced photon therapies for these patients. Ion RT, however, offers substantial benefits for the patients such as improved control rates and less severe side effects

  19. Study of the pyritized surfaces of the carbon steel components in heavy water production facilities

    International Nuclear Information System (INIS)

    Radulescu, Maria; Parvan, Ioana; Lucan, Dumitra; Fulger, Manuela; Dinu, Alice; Blanatui, A.

    1998-01-01

    The components used in the Girldler Sulfide (GS) process of heavy water production are made of carbon steel covered by iron sulfide layers of different compositions (mackinawite, troilite, pyrrhotite or pyrite) of variable thicknesses. The most protective layers which provide an acceptable corrosion resistance of the subjacent metal are the mixtures of pyrrhotite and pyrite. In the present work, the corrosion resistance of carbon steel samples covered by different types of sulfides was investigated by the following methods: X ray diffraction, metallography and electrochemical methods (potential-dynamical and electrochemical impedance). In order to carry out the electrochemical measurements in the same conditions as those of the operation of carbon steel components in D 2 O production facilities, the experiments were performed with Na 2 S solutions, at pH=4 - 13 and S 2- concentration value between 1 and 1000 mg/l. The dependence of corrosion rate kinetics on pH and S 2- concentration of the testing solution was investigated for sulfide covered samples comparatively with the uncovered ones. Corrosion rates determined gravimetrically were compared with those determined by electrochemical measurements. The uniformity and thickness of the sulfide layers were checked by metallographic methods. The composition of the sulfides formed in various environment conditions was established by X-ray diffraction. Reaction mechanisms specific for sulfide formation environments have been proposed. (authors)

  20. Effects of hydrogen on carbon steels at the Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1995-01-01

    Concern has been expressed that hydrogen produced by corrosion, radiolysis, and decomposition of the waste could cause embrittlement of the carbon steel waste tanks at Hanford. The concern centers on the supposition that the hydrogen evolved in many of the existing tanks might penetrate the steel wall of the tank and cause embrittlement that might lead to catastrophic failure. This document reviews literature on the effects of hydrogen on the carbon steel proposed for use in the Multi-Function Waste Tank Facility for the time periods before and during construction as well as for the operational life of the tanks. The document draws several conclusions about these effects. Molecular hydrogen is not a concern because it is not capable of entering the steel tank wall. Nascent hydrogen produced by corrosion reactions will not embrittle the steel because the mild steel used in tank construction is not hard enough to be susceptible to hydrogen stress cracking and the corrosion product hydrogen is not produced at a rate sufficient to cause either loss in tensile ductility or blistering. If the steel intended for use in the tanks is produced to current technology, fabricated in accordance with good construction practice, postweld heat treated, and operated within the operating limits defined, hydrogen will not adversely affect the carbon steel tanks during their 50-year design life. 26 refs

  1. Beamlines of the biomedical imaging and therapy facility at the Canadian light source-Part 1

    International Nuclear Information System (INIS)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2007-01-01

    The BioMedical Imaging and Therapy (BMIT) Facility will provide synchrotron-specific imaging and therapy capabilities. This paper describes one of the BMIT beamlines: the bend magnet (BM) beamline 05B1-1. It plays a complementary role to the insertion device (ID) beamline 051D-2 and allows either monochromatic or filtered white beam to be used in the experimental hutch. The monochromatic spectral range will span 8-40 keV, and the beam is more than 200 mm wide in the experimental hutch for imaging studies of small and medium-size animals (up to sheep size). The experimental hutch will have a positioning system that will allow imaging (computed tomography and planar imaging) as well as radiation therapy applications with both filtered white and monochromatic X-ray beams and will handle subjects up to 120 kg. Several different focal plane detectors (cameras) will be available with resolutions ranging from 10 to 150 μm

  2. What happens to patients on antiretroviral therapy who transfer out to another facility?

    Directory of Open Access Journals (Sweden)

    Joseph Kwong-Leung Yu

    Full Text Available BACKGROUND: Long term retention of patients on antiretroviral therapy (ART in Africa's rapidly expanding programmes is said to be 60% at 2 years. Many reports from African ART programmes make little mention of patients who are transferred out to another facility, yet Malawi's national figures show a transfer out of 9%. There is no published information about what happens to patients who transfer-out, but this is important because if they transfer-in and stay alive in these other facilities then national retention figures will be better than previously reported. METHODOLOGY/PRINCIPAL FINDINGS: Of all patients started on ART over a three year period in Mzuzu Central Hospital, North Region, Malawi, those who transferred out were identified from the ART register and master cards. Clinic staff attempted to trace these patients to determine whether they had transferred in to a new ART facility and their outcome status. There were 805 patients (19% of the total cohort who transferred out, of whom 737 (92% were traced as having transferred in to a new ART facility, with a median time of 1.3 months between transferring-out and transferring-in. Survival probability was superior and deaths were lower in the transfer-out patients compared with those who did not transfer. CONCLUSION/SIGNIFICANCE: In Mzuzu Central Hospital, patients who transfer-out constitute a large proportion of patients not retained on ART at their original clinic of registration. Good documentation of transfer-outs and transfer-ins are needed to keep track of national outcomes. Furthermore, the current practice of regarding transfer-outs as being double counted in national cohorts and subtracting this number from the total national registrations to get the number of new patients started on ART is correct.

  3. The effect of facility-based antiretroviral therapy programs on outpatient services in Kenya and Uganda.

    Science.gov (United States)

    Wollum, Alexandra; Dansereau, Emily; Fullman, Nancy; Achan, Jane; Bannon, Kelsey A; Burstein, Roy; Conner, Ruben O; DeCenso, Brendan; Gasasira, Anne; Haakenstad, Annie; Hanlon, Michael; Ikilezi, Gloria; Kisia, Caroline; Levine, Aubrey J; Masters, Samuel H; Njuguna, Pamela; Okiro, Emelda A; Odeny, Thomas A; Allen Roberts, D; Gakidou, Emmanuela; Duber, Herbert C

    2017-08-16

    Considerable debate exists concerning the effects of antiretroviral therapy (ART) service scale-up on non-HIV services and overall health system performance in sub-Saharan Africa. In this study, we examined whether ART services affected trends in non-ART outpatient department (OPD) visits in Kenya and Uganda. Using a nationally representative sample of health facilities in Kenya and Uganda, we estimated the effect of ART programs on OPD visits from 2007 to 2012. We modeled the annual percent change in non-ART OPD visits using hierarchical mixed-effects linear regressions, controlling for a range of facility characteristics. We used four different constructs of ART services to capture the different ways in which the presence, growth, overall, and relative size of ART programs may affect non-ART OPD services. Our final sample included 321 health facilities (140 in Kenya and 181 in Uganda). On average, OPD and ART visits increased steadily in Kenya and Uganda between 2007 and 2012. For facilities where ART services were not offered, the average annual increase in OPD visits was 4·2% in Kenya and 13·5% in Uganda. Among facilities that provided ART services, we found average annual OPD volume increases of 7·2% in Kenya and 5·6% in Uganda, with simultaneous annual increases of 13·7% and 12·5% in ART volumes. We did not find a statistically significant relationship between annual changes in OPD services and the presence, growth, overall, or relative size of ART services. However, in a subgroup analysis, we found that Ugandan hospitals that offered ART services had statistically significantly less growth in OPD visits than Ugandan hospitals that did not provide ART services. Our findings suggest that ART services in Kenya and Uganda did not have a statistically significant deleterious effects on OPD services between 2007 and 2012, although subgroup analyses indicate variation by facility type. Our findings are encouraging, particularly given recent recommendations

  4. Effect of exhaust emissions on carbon monoxide levels in employees working at indoor car wash facilities.

    Science.gov (United States)

    Topacoglu, H; Katsakoglou, S; Ipekci, A

    2014-01-01

    Exhaust emissions from motor vehicles threaten the environment and human health. Carbon monoxide (CO) poisoning, especially the use of exhaust gas CO in suicidal attempts is well known in the literature. Recently, indoor car wash facilities established in large shopping malls with closed parking, lots is a new risk area that exposes car wash employees to prolonged periods of high level CO emissions from cars. The aim of this study was to investigate how carboxyhemoglobin (COHb) blood levels of employees get affected in confined areas with relatively poor air circulation. Twenty male volunteers working in indoor parking car wash facilities were included in the study. Participants were informed about the aim of this study and their consent was obtained. Their pulse COHb levels were measured twice, at the beginning and at the end of the working day using Rad-57 pulse CO-oximeter device, allowing non-invasive measurement of COHb blood levels to compare the changes in their COHb levels before and after work. The mean age of the male volunteers was 29.8 ± 11.9 (range 18-55). While the mean COHb levels measured at the start of the working day was 2.1 ± 2.0 (range 0-9), it was increased to 5.2 ± 3.3 (range 1-15) at the end of work shift (Wilcoxon test, p car wash facility employees is directly impacted and gets elevated by motor vechile exhaust emissions. For the health of the employees at indoor parking car wash facilities, stricter precautions are needed and the government should not give permit to such operations.

  5. Preliminary investigations of Monte Carlo Simulations of neutron energy and LET spectra for fast neutron therapy facilities

    International Nuclear Information System (INIS)

    Kroc, T.K.

    2009-01-01

    No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality ptimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.

  6. Robotic-based carbon ion therapy and patient positioning in 6 degrees of freedom: setup accuracy of two standard immobilization devices used in carbon ion therapy and IMRT.

    Science.gov (United States)

    Jensen, Alexandra D; Winter, Marcus; Kuhn, Sabine P; Debus, Jürgen; Nairz, Olaf; Münter, Marc W

    2012-03-29

    To investigate repositioning accuracy in particle radiotherapy in 6 degrees of freedom (DOF) and intensity-modulated radiotherapy (IMRT, 3 DOF) for two immobilization devices (Scotchcast masks vs thermoplastic head masks) currently in use at our institution for fractionated radiation therapy in head and neck cancer patients. Position verifications in patients treated with carbon ion therapy and IMRT for head and neck malignancies were evaluated. Most patients received combined treatment regimen (IMRT plus carbon ion boost), immobilization was achieved with either Scotchcast or thermoplastic head masks. Position corrections in robotic-based carbon ion therapy allowing 6 DOF were compared to IMRT allowing corrections in 3 DOF for two standard immobilization devices. In total, 838 set-up controls of 38 patients were analyzed. Robotic-based position correction including correction of rotations was well tolerated and without discomfort. Standard deviations of translational components were between 0.5 and 0.8 mm for Scotchcast and 0.7 and 1.3 mm for thermoplastic masks in 6 DOF and 1.2-1.4 mm and 1.0-1.1 mm in 3 DOF respectively. Mean overall displacement vectors were between 2.1 mm (Scotchcast) and 2.9 mm (thermoplastic masks) in 6 DOF and 3.9-3.0 mm in 3 DOF respectively. Displacement vectors were lower when correction in 6 DOF was allowed as opposed to 3 DOF only, which was maintained at the traditional action level of >3 mm for position correction in the pre-on-board imaging era. Setup accuracy for both systems was within the expected range. Smaller shifts were required when 6 DOF were available for correction as opposed to 3 DOF. Where highest possible positioning accuracy is required, frequent image guidance is mandatory to achieve best possible plan delivery and maintenance of sharp gradients and optimal normal tissue sparing inherent in carbon ion therapy.

  7. Quality of antiretroviral therapy in public health facilities in Nigeria and perceptions of end users.

    Science.gov (United States)

    Chiegil, Robert J; Zungu, Lindiwe I; Jooste, Karien

    2014-04-01

    This paper describes perceptions of the end users on quality of antiretroviral therapy (ART) in public health facilities in Nigeria. Health care services in Nigeria face challenges of meeting end users' requirements and expectations for quality ART service provision. A qualitative design was followed. Unstructured focus group discussions were conducted with end users (n = 64) in six locations across the six geopolitical zones of Nigeria. The findings indicate that end users were satisfied with uninterrupted antiretroviral drug supplies, courtesy treatment, volunteerism of support group members and quality counselling services. End users expect effective collaboration between healthcare providers and support group members, to enhance the quality of life of people living with HIV. A best practice guideline for the provision of end user focused ART service provision was developed for nurse managers. © 2013 John Wiley & Sons Ltd.

  8. The Idaho Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program overview

    International Nuclear Information System (INIS)

    Dorn, R.V. III; Griebenow, M.L.; Ackermann, A.L.; Miller, L.G.; Miller, D.L.; Wheeler, F.J.; Bradshaw, K.M.; Wessol, D.E.; Harker, Y.D.; Nigg, D.W.; Randolph, P.D.; Bauer, W.F.; Gavin, P.R.; Richards, T.L.

    1992-01-01

    The Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program has been funded since 1988 to evaluate brain tumor treatment using Na 2 B 12 H 11 SH (borocaptate sodium or BSH) and epithermal neutrons. The PBF/BNCT Program pursues this goal as a comprehensive, multidisciplinary, multiorganizational endeavor applying modern program management techniques. The initial focus was to: (1) establish a representative large animal model and (2) develop the generic analytical and measurement capabilities require to control treatment repeatability and determine critical treatment parameters independent of tumor type and body location. This paper will identify the PBF/BNCT Program elements and summarize the status of some of the developed capabilities

  9. Radiation protection metrology at a high-energy neutron therapy facility

    International Nuclear Information System (INIS)

    Bonnett, D.E.; Sherwin, A.G.; More, B.R.

    1991-01-01

    A radiation protection survey has been carried out at a high-energy neutron therapy facility using a combination of different detectors and counters. Included in the survey were measurements with a tissue equivalent proportional counter (TEPC), a rem meter, a large volume ionisation chamber (LVI) and a Geiger counter. Dose equivalent rates, normalised to a proton beam current of 25 μA, of between 1 μSv.h -1 and 0.7 Sv.h -1 were recorded depending on the location. In general the results confirm the tendency of the rem meter to over-read in fields consisting mainly of low energy neutrons and illustrate the advantages of the diagnostic and gamma discriminating properties of the TEPC. The LVI-Geiger system was found to be the least favourable combination of dosemeters, substantially under-reading and being unable to estimate the neutron dose rate at levels below about 32 μGy.h -1 . (author)

  10. Carbon dioxide therapy and hyaluronic acid for cosmetic correction of the nasolabial folds.

    Science.gov (United States)

    Nisi, Giuseppe; Cuomo, Roberto; Brandi, Cesare; Grimaldi, Luca; Sisti, Andrea; D'Aniello, Carlo

    2016-06-01

    The main application of hyaluronic acid filling, in esthetic medicine, is the augmentation of soft tissues. The carbon dioxide therapy, instead, improves quality and elasticity of the dermis and increases the oxygen release to the tissue through an enhancing of the Bohr's effect. The aim of the study was to compare the efficacy, tolerability, and effect duration of hyaluronic acid fillers and the use of carbon dioxide therapy plus hyaluronic acid in the cosmetic correction of nasolabial folds. Forty healthy female patients received a blinded and randomized treatment on nasolabial folds (hyaluronic acid in group A and hyaluronic acid plus subcutaneous injections of carbon dioxide in group B) for cosmetic correction of the nasolabial folds. The results were evaluated by two blinded plastic surgeons after the implant (1 week, 4 and 6 months) using a 1-5 graduated scale (GAIS), and at the same time, each patient was asked to express her opinion about the cosmetic result. Any long-term adverse reaction was reported. The blinded evaluation at 4 and 6 months from the implant shows in all patients a maintenance of a good cosmetic result higher for the side treated with carbon dioxide therapy plus hyaluronic acid. At the control visit, 6 months after the treatment, the patients treated with hyaluronic acid plus carbon dioxide therapy maintain a satisfactory esthetic result while the nasolabial fold treated only with hyaluronic acid shows, in almost all patients, a come back to pretreatment appearance. © 2016 Wiley Periodicals, Inc.

  11. A facile method to align carbon nanotubes on polymeric membrane substrate

    Science.gov (United States)

    Zhao, Haiyang; Zhou, Zhijun; Dong, Hang; Zhang, Lin; Chen, Huanlin; Hou, Lian

    2013-01-01

    The alignment of carbon nanotubes (CNT) is the fundamental requirement to ensure their excellent functions but seems to be desolated in recent years. A facile method, hot-press combined with peel-off (HPPO), is introduced here, through which CNT can be successfully vertically aligned on the polymeric membrane substrate. Shear force and mechanical stretch are proposed to be the main forces to align the tubes perpendicular to the substrate surface during the peel-off process. The alignment of CNT keeps its orientation in a thin hybrid membrane by dip-coating cellulose acetate dope solution. It is expected that the stable alignment of CNT by HPPO would contribute to the realization of its potential applications. PMID:24326297

  12. Evolution of a beam dynamics model for the transport line in a proton therapy facility

    Science.gov (United States)

    Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.

    2017-12-01

    During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.

  13. Power Burst Reactor Facility as an epithermal neutron source for brain cancer therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.

    1986-01-01

    The Power Burst Facility (PBF) reactor is considered for modification to provide an intense, clean source of intermediate-energy (epithermal) neutrons desirable for clinical studies of neutron capture therapy (NCT) for malignant tumors. The modifications include partial replacement of the reflector, installation of a neutron-moderating, shifting region, additional shielding, and penetration of the present concrete shield with a collimating (and optionally) filtering region. The studies have indicated that the reactor, after these modifications, will be safely operable at full power (28 MW) within the acceptable limits of the plant protection systems. The neutron beam exiting from the collimator port is predicted to be of sufficient intensity (approx.10 10 neutrons/cm 2 -s) to provide therapeutic doses in very short irradiation times. The beam would be relatively free of undesirable fast neutrons, thermal neutrons and gamma rays. The calculated neutron energy spectrum and associated gamma rays in the beam were provided as input in simulation studies that used a computer model of a patient with a brain tumor to determine predicted dose rates to the tumor and healthy tissue. The results of this conceptual study indicate an intense, clean beam of epithermal neutrons for NCT clinical trials is attainable in the PBF facility with properly engineered design modifications. 9 refs., 11 figs., 3 tabs

  14. The national carbon capture center at the power systems development facility

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Three reporting period, efforts at the NCCC/PSDF focused on testing of pre-combustion CO2 capture and related processes; commissioning and initial testing at the post-combustion CO2 capture facilities; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  15. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-05-11

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Two reporting period, efforts at the PSDF/NCCC focused on new technology assessment and test planning; designing and constructing post-combustion CO2 capture facilities; testing of pre-combustion CO2 capture and related processes; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  16. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties

    International Nuclear Information System (INIS)

    Zhang Li; Ni, Qing-Qing; Natsuki, Toshiaki; Fu Yaqin

    2009-01-01

    In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe 3 O 4 ) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe 3 O 4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C=O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe 3 O 4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe 3 O 4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe 3 O 4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe 3 O 4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe 3 O 4 hybrids was discussed.

  17. The National Carbon Capture Center at the Power Systems Development Facility: Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The newly established NCCC will include multiple, adaptable test skids that will allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period One reporting period, efforts at the PSDF/NCCC focused on developing a screening process for testing consideration of new technologies; designing and constructing pre- and post-combustion CO2 capture facilities; developing sampling and analytical methods; expanding fuel flexibility of the Transport Gasification process; and operating the gasification process for technology research and for syngas generation to test syngas conditioning technologies.

  18. The Clatterbridge high-energy neutron therapy facility: specification and performance

    International Nuclear Information System (INIS)

    Bonnett, D.E.; Blake, S.W.; Shaw, J.E.; Bewley, D.K.

    1988-01-01

    A high energy neutron therapy facility has been installed at the Douglas Cyclotron Centre, Clatterbridge Hospital Merseyside, to extend M.R.C. clinical trials of fast neutrons. The neutron beam is produced by bombarding a beryllium target with 62 MeV protons. The target is isocentrically mounted with potential for 360 0 rotation, with a fully variable collimator, giving a range of rectilinear field sizes from 5 cm x 5 cm to 30 cm x 30 cm. Basic neutron beam data including output, field flatness, penumbra and depth-dose data have been measured. For a 10 cm x 10 cm field, 50% depth dose occurs at 16.2 cm in water and output is 1.63 cGy μ A -1 min -1 at maximum dose depth. Effectiveness of the target shielding and neutron-induced radioactivity in the treatment head were also measured. It is concluded that the equipment meets design specifications and fully satisfies criticisms of earlier neutron therapy equipment. A full radiation survey showed that radiation levels present no significant staff hazard. (UK)

  19. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    Science.gov (United States)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  20. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Science.gov (United States)

    Cao, Zeyuan; Wei, Bingqing

    2015-05-01

    Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni))/single-walled carbon nanotube (SWNT) macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  1. Facile synthesis and enhanced visible-light photocatalysis of graphitic carbon nitride composite semiconductors.

    Science.gov (United States)

    Li, Huiquan; Liu, Yuxing; Gao, Xing; Fu, Cong; Wang, Xinchen

    2015-04-13

    The semiconductor heterojunction has been an effective architecture to enhance photocatalytic activity by promoting photogenerated charge separation. Here, graphitic carbon nitride (CN) and B-modified graphitic carbon nitride (CNB) composite semiconductors were fabricated by a facile calcination process using cheap, sustainable, and easily available sodium tetraphenylboron and urea as precursors. The synthetic CN-CNB-25 semiconductor with a suitable CNB content showed the highest visible-light activity. Its degradation ratio for methyl orange and phenol was more than twice that of CN and CNB and its H2 evolution rate was ∼3.4 and ∼1.8 times higher than that of CN and CNB, respectively. It also displayed excellent stability and reusability. The enhanced activity of CN-CNB-25 was attributed predominantly to the efficient separation of photoinduced electrons and holes. This paper describes a visible-light-responsive CN composite semiconductor with great potential in environmental and energy applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Directory of Open Access Journals (Sweden)

    Zeyuan eCao

    2015-05-01

    Full Text Available Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni/single-walled carbon nanotube (SWNT macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  3. The effects of light therapy on depression and sleep disruption in older adults in a long-term care facility.

    Science.gov (United States)

    Wu, Mann-Chian; Sung, Huei-Chuan; Lee, Wen-Li; Smith, Graeme D

    2015-10-01

    This study aims to evaluate the effect of light therapy on depression and sleep disruption in older adults residing in a long-term care facility. Psychological morbidity is a problem commonly seen in older adults residing in long-term care facilities. Limited research has addressed the effect of light therapy on depression in this population. A quasi-experimental pretest and posttest design was used. Thirty-four participants in the experimental group received light therapy by sitting in front of a 10000-lux light box 30 min in the morning, three times a week for 4 weeks. Thirty-one participants in the control group received routine care without light therapy. Depression was measured by Geriatric Depression Scale-Short Form at baseline and week 4. After receiving 4 weeks of light therapy, the mean depression score in the experimental group decreased from 7.24 (SD3.42) at pretest to 5.91 (SD 3.40) at posttest, and had a significant reduction (t = 2.22, P = 0.03). However, there was no significant difference in depression score and sleep disruption between the experimental group and control group. Light therapy might have the potential to reduce depressive symptoms and sleep disruption and may be a viable intervention to improve mental health of older adults in the long-term care facilities. © 2014 Wiley Publishing Asia Pty Ltd.

  4. The effect of carbon dioxide therapy on composite graft survival

    OpenAIRE

    Durães, Eliana Ferreira Ribeiro; Durães, Leonardo de Castro; Carneiro, Fabiana Pirani; Lino Júnior, Ruy de Souza; Sousa, João Batista de

    2013-01-01

    PURPOSE: To investigate the effect of carboxytherapy in auricular composite grafts in rabbits. METHODS: An experimental study was conducted using 20 rabbits randomly assigned to a treatment group of carboxytherapy or a control group of saline solution. In each ear, a circular graft with 1.5 cm or 2 cm of diameter was amputated and reattached. Animals underwent carbon dioxide or saline injection four times during the experiment. We analyzed clinical evolution of the animals, grafts survival, h...

  5. MOSFET dosimetry of the radiation therapy microbeams at the European synchrotron radiation facility

    International Nuclear Information System (INIS)

    Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: We have developed an innovative on-line MOSFET readout system for use in the quality assurance of radiation treatment beams. Recently the system has found application in areas where excellent spatial resolution is also a requirement in the quality assurance process, for example IMRT, and microbeam radiation therapy. The excellent spatial resolution is achieved by using a quadruple RADFET TM chip in 'edge on' mode. In developing this approach we have found that the system can be utilised to determine any error in the beam profile measurements due to misalignment of RADFET with respect to the radiation beam or microbeam. Using this approach will ensure that the excellent spatial resolution of the RADFET used in 'edge-on' mode is fully utilised. In this work we report on dosimetry measurements performed at the microbeam radiation therapy beamline located at the European Synchrotron Radiation Facility. The synchrotron planar array microbeam with size 10-30 μm and pitch ∼200 μm has found an important application in microbeam radiation therapy (MRT) of brain tumours in infants for whom other kinds of radiotherapy are inadequate and/or unsafe. The radiation damage from an array of parallel microbeams correlates strongly with the range of peak-valley dose ratios (PVDR), ie, the range of the ratio of the absorbed dose to tissue directly in line with the mid-plane of the microbeam to that in the mid-plane between adjacent microbeams. Novel physical dosimetry of the microbeams using the online MOSFET reader system will be presented. Comparison of the experimental results with both GaF film measurements and Monte Carlo computer-simulated dosimetry are described here for selected points in the peak and valley regions of a microbeam-irradiated tissue phantom

  6. Facile synthesis of carbon/MoO 3 nanocomposites as stable battery anodes

    KAUST Repository

    Ding, Jiang

    2017-03-09

    Pristine MoO3 is a potential anode material for lithium-ion batteries (LIBs), due to its high specific capacity (1117 mA h g−1); it suffers, however, from poor cyclability, resulting from a low conductivity and large volume changes during lithiation/delithiation process. Here we adopt a facile two-step method in which pristine bulk MoO3 is first converted into MoO3 nanorods (MoO3 NR) through mechanical grinding, to buffer the continuous volume changes, and then coated with amorphous carbon through simple stirring and heating, to provide high electronic and ionic conductivities. Electrochemical tests reveal that the carbon-coated MoO3 nanorods (C-MoO3 NRs) exhibit outstanding specific capacity (856 mA h g−1 after 110 cycles at a current density of 0.1 C); remarkable cycle life, among the best reported for carbon-based MoO3 nanostructures (485 mA h g−1 after 300 cycles at 0.5 C and 373 mA h g−1 after 400 cycles at 0.75 C); and greatly improved capacity retention (up to 90.4% after various C-rates) compared to bulk MoO3. We confirm the versatility of the C-MoO3 NR anodes by preparing flexible batteries that display stable performance, even in bent state. This simple approach toward C-MoO3 NR anodes proceeds without rigorous chemical synthesis or extremely high temperatures, making it a scalable solution to prepare high-capacity anodes for next-generation LIBs.

  7. Overview of research and therapy facilities for radiobiological experimental work in particle therapy. Report from the European Particle Therapy Network radiobiology group.

    Science.gov (United States)

    Dosanjh, Manjit; Jones, Bleddyn; Pawelke, Jörg; Pruschy, Martin; Sørensen, Brita Singers

    2018-04-24

    Particle therapy (PT) as cancer treatment, using protons or heavier ions, can provide a more favorable dose distribution compared to X-rays. While the physical characteristics of particle radiation have been the aim of intense research, less focus has been placed on the actual biological responses arising from particle irradiation. One of the biggest challenges for proton radiobiology is the RBE, with an increasing concern that the clinically-applied generic RBE-value of 1.1 is an approximation, as RBE is a complex quantity, depending on both biological and physical parameters, such as dose, LET, cellular and tissue radiobiological characteristics, as well as the endpoints being studied. Most of the available RBE data derive from in vitro experiments, with very limited in vivo data available, especially in late-reacting tissues, which provide the main constraints and influence the quality of life endpoints in radiotherapy. There is a need for systematic, large-scale studies to thoroughly establish the biology of particle radiation in a number of different experimental models in order to refine biophysical mathematical models that can potentially be used to guide PT. The overall objective of the European Particle Therapy Network (EPTN) WP6 is to form a network of research and therapy facilities in order to coordinate and standardize the radiobiological experiments, to obtain more accurate predictive parameters than in the past. Coordinated research is required in order to obtain the most appropriate experimental data. The aim in this paper is to describe the available radiobiology infrastructure of the centers involved in EPTN WP6. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Brain Injury After Proton Therapy or Carbon Ion Therapy for Head-and-Neck Cancer and Skull Base Tumors

    International Nuclear Information System (INIS)

    Miyawaki, Daisuke; Murakami, Masao; Demizu, Yusuke; Sasaki, Ryohei; Niwa, Yasue; Terashima, Kazuki; Nishimura, Hideki; Hishikawa, Yoshio; Sugimura, Kazuro

    2009-01-01

    Purpose: To assess the incidence of early delayed or late morbidity of Brain after particle therapy for skull base tumors and head-and-neck cancers. Methods and Materials: Between May 2001 and December 2005, 59 patients with cancerous invasion of the skull base were treated with proton or carbon ion therapy at the Hyogo Ion Beam Medical Center. Adverse events were assessed according to the magnetic resonance imaging findings (late effects of normal tissue-subjective, objective, management, analytic [LENT-SOMA]) and symptoms (Common Terminology Criteria for Adverse Events [CTCAE], version 3.0). Dose-volume histograms were used to analyze the relationship between the dose and volume of the irradiated brain and the occurrence of brain injury. The median follow-up time was 33 months. Results: Of the 48 patients treated with proton therapy and 11 patients treated with carbon ion radiotherapy, 8 (17%) and 7 (64%), respectively, developed radiation-induced brain changes (RIBCs) on magnetic resonance imaging (LENT-SOMA Grade 1-3). Four patients (7%) had some clinical symptoms, such as vertigo and headache (CTCAE Grade 2) or epilepsy (CTCAE Grade 3). The actuarial occurrence rate of RIBCs at 2 and 3 years was 20% and 39%, respectively, with a significant difference in the incidence between the proton and carbon ion radiotherapy groups. The dose-volume histogram analyses revealed significant differences between Brain lobes with and without RIBCs in the actuarial volume of brain lobes receiving high doses. Conclusion: Particle therapies produced minimal symptomatic brain toxicities, but sequential evaluation with magnetic resonance imaging detected a greater incidence of RIBCs. Significant differences were observed in the irradiated brain volume between Brain lobes with and without RIBCs.

  9. Beamlines of the biomedical imaging and therapy facility at the Canadian light source - part 3

    Science.gov (United States)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1-4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6-9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20-100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to -7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT, described

  10. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    International Nuclear Information System (INIS)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2015-01-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  11. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    Energy Technology Data Exchange (ETDEWEB)

    Wysokinski, Tomasz W., E-mail: bmit@lightsource.ca [Canadian Light Source, Saskatoon, SK (Canada); Chapman, Dean [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Adams, Gregg [Western College of Veterinary Medicine, Saskatoon, SK (Canada); Renier, Michel [European Synchrotron Radiation Facility, Grenoble (France); Suortti, Pekka [Department of Physics, University of Helsinki (Finland); Thomlinson, William [Department of Physics, University of Saskatchewan, Saskatoon, SK (Canada)

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  12. Electron string ion sources for carbon ion cancer therapy accelerators

    Science.gov (United States)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  13. Facile integration of multiple magnetite nanoparticles for theranostics combining efficient MRI and thermal therapy

    Science.gov (United States)

    Huang, Guoming; Zhu, Xianglong; Li, Hui; Wang, Lirong; Chi, Xiaoqin; Chen, Jiahe; Wang, Xiaomin; Chen, Zhong; Gao, Jinhao

    2015-01-01

    Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned that such IO/GO-COOH nanocomposites combining efficient MRI and photothermal therapy hold great promise in theranostic applications.Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned

  14. Phosphate binding therapy in dialysis patients: focus on lanthanum carbonate

    Directory of Open Access Journals (Sweden)

    Ismail A Mohammed

    2008-11-01

    Full Text Available Ismail A Mohammed, Alastair J HutchisonManchester Institute of Nephrology and Transplantation, Manchester Royal Infirmary, Oxford Road, Manchester, UKAbstract: Hyperphosphatemia is an inevitable consequence of end stage chronic kidney disease and is present in the majority of dialysis patients. Recent observational data has associated hyperphosphatemia with increased cardiovascular mortality among dialysis patients. Dietary restriction of phosphate and current dialysis prescription practices are not enough to maintain serum phosphate levels within the recommended range so that the majority of dialysis patients require oral phosphate binders. Unfortunately, conventional phosphate binders are not reliably effective and are associated with a range of limitations and side effects. Aluminium-containing agents are highly efficient but no longer widely used because of well established and proven toxicity. Calcium based salts are inexpensive, effective and most widely used but there is now concern about their association with hypercalcemia and vascular calcification. Sevelamer hydrochloride is associated with fewer adverse effects, but a large pill burden and high cost are limiting factors to its wider use. In addition, the efficacy of sevelamer as a monotherapy in lowering phosphate to target levels in severe hyperphosphatemia remains debatable. Lanthanum carbonate is a promising new non-aluminium, calcium-free phosphate binder. Preclinical and clinical studies have demonstrated a good safety profile, and it appears well tolerated and effective in reducing phosphate levels in dialysis patients. Its identified adverse events are apparently mild to moderate in severity and mostly GI related. It appears to be effective as a monotherapy, with a reduced pill burden, but like sevelamer, it is significantly more expensive than calcium-based binders. Data on its safety profile over 6 years of treatment are now available.Keywords: hyperphosphatemia, lanthanum

  15. Development of digital reconstructed radiography software at new treatment facility for carbon-ion beam scanning of National Institute of Radiological Sciences.

    Science.gov (United States)

    Mori, Shinichiro; Inaniwa, Taku; Kumagai, Motoki; Kuwae, Tsunekazu; Matsuzaki, Yuka; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji

    2012-06-01

    To increase the accuracy of carbon ion beam scanning therapy, we have developed a graphical user interface-based digitally-reconstructed radiograph (DRR) software system for use in routine clinical practice at our center. The DRR software is used in particular scenarios in the new treatment facility to achieve the same level of geometrical accuracy at the treatment as at the imaging session. DRR calculation is implemented simply as the summation of CT image voxel values along the X-ray projection ray. Since we implemented graphics processing unit-based computation, the DRR images are calculated with a speed sufficient for the particular clinical practice requirements. Since high spatial resolution flat panel detector (FPD) images should be registered to the reference DRR images in patient setup process in any scenarios, the DRR images also needs higher spatial resolution close to that of FPD images. To overcome the limitation of the CT spatial resolution imposed by the CT voxel size, we applied image processing to improve the calculated DRR spatial resolution. The DRR software introduced here enabled patient positioning with sufficient accuracy for the implementation of carbon-ion beam scanning therapy at our center.

  16. Use of the Power Burst Facility for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Crocker, J.G.; Griebenow, M.L.; Leatham, J.

    1990-01-01

    A program is under development at the Idaho National Engineering Laboratory (INEL) that involves using the Power Burst Facility (PBF) for research into boron neutron capture therapy (BNCT). BNCT utilizes the ionizing energy from boron-neutron capture to stop reproduction of or destroy cells in cancerous tissue in a two-step process. The first step is to selectively concentrate a boron isotope within the tumor cell, that when activated by neutron capture emits highly ionizing, short range particles. The second step involves activation of the isotope only in the vicinity of the tumor with a narrow neutron beam. The ( 10 B[n, 4 He] 7 Li) reaction with thermal neutrons produces fission products with track lengths approximately equal to a cell diameter. The INEL program includes the modification of the PBF by the addition of a filter and treatment area. The filter will down-scatter high energy neutrons into the epithermal range and remove thermal neutrons and excessively damaging gamma components. The intense source of epithermal neutrons from PBF is considered necessary to achieve optimum therapy for deep-seated tumors with minimum damage to surface tissue. THe neutron filter conceptualized for PBF utilizes aluminum and heavy water to down-scatter neutrons into the proper energy range. Bismuth will be used for gamma shielding and cadmium will remove the thermal neutron contaminant from the beam. The INEL program leads to human clinical trials at PBF which are intended to prove that brain tumors can be successfully treated through noninvasive techniques. Further research into BNCT at PBF for other cancer types is also anticipated

  17. The National Carbon Capture Center at the Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mosser, Morgan [Southern Company Services, Inc., Wilsonville, AL (United States)

    2012-12-31

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During the calendar year 2012 portion of the Budget Period Four reporting period, efforts at the NCCC focused on testing of pre- and post-combustion CO2 capture processes and gasification support technologies. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of pre-combustion, testing was conducted on a new water-gas shift catalyst, a CO2 solvent, and gas separation membranes from four different technology developers, including two membrane systems incorporating major scale-ups. Post-combustion tests involved advanced solvents from three major developers, a gas separation membrane, and two different enzyme technologies. An advanced sensor for gasification operation was evaluated, operation with biomass co-feeding with coal under oxygen-blown conditions was achieved, and progress continued on refining several gasification support technologies.

  18. The National Carbon Capture Center at the Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-07-14

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO2 capture from coal-derived flue gas and syngas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived flue gas and syngas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development paths to commercialization. During the calendar year 2013 portion of the Budget Period Four reporting period, efforts at the NCCC focused on post-combustion CO2 capture, gasification, and pre-combustion CO2 capture technology testing. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of post-combustion, testing was conducted on an enzyme-based technology, advanced solvents from two major developers, and a gas separation membrane. During the year, the gasification process was operated for three test runs, supporting development of water-gas shift and COS hydrolysis catalysts, a mercury sorbent, and several gasification support technologies. Syngas produced during gasification operation was also used for pre-combustion capture technologies, including gas separation membranes from three different technology developers, a CO2 sorbent, and CO2 solvents.

  19. Electrophysiological Monitoring in Patients With Tumors of the Skull Base Treated by Carbon-12 Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carozzo, Simone [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Schardt, Dieter [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Narici, Livio [Department of Physics, University of Rome Tor Vergata, Rome (Italy); Combs, Stephanie E.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Sannita, Walter G., E-mail: wgs@dism.unige.it [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Department of Psychiatry, State University of New York, Stony Brook, New York (United States)

    2013-03-15

    Purpose: To report the results of short-term electrophysiologic monitoring of patients undergoing {sup 12}C therapy for the treatment of skull chordomas and chondrosarcomas unsuitable for radical surgery. Methods and Materials: Conventional electroencephalogram (EEG) and retinal and cortical electrophysiologic responses to contrast stimuli were recorded from 30 patients undergoing carbon ion radiation therapy, within a few hours before the first treatment and after completion of therapy. Methodologies and procedures were compliant with the guidelines of the International Federation for Clinical Neurophysiology and International Society for Clinical Electrophysiology of Vision. Results: At baseline, clinical signs were reported in 56.6% of subjects. Electrophysiologic test results were abnormal in 76.7% (EEG), 78.6% (cortical evoked potentials), and 92.8% (electroretinogram) of cases, without correlation with neurologic signs, tumor location, or therapy plan. Results on EEG, but not electroretinograms and cortical responses, were more often abnormal in patients with reported clinical signs. Abnormal EEG results and retinal/cortical responses improved after therapy in 40% (EEG), 62.5% (cortical potentials), and 70% (electroretinogram) of cases. Results on EEG worsened after therapy in one-third of patients whose recordings were normal at baseline. Conclusions: The percentages of subjects whose EEG results improved or worsened after therapy and the improvement of retinal/cortical responses in the majority of patients are indicative of a limited or negligible (and possibly transient) acute central nervous system toxicity of carbon ion therapy, with a significant beneficial effect on the visual pathways. Research on large samples would validate electrophysiologic procedures as a possible independent test for central nervous system toxicity and allow investigation of the correlation with clinical signs; repeated testing over time after therapy would demonstrate, and may

  20. Electron string ion sources for carbon ion cancer therapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Katagiri, K.; Noda, K. [National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  1. Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lei; Zhang, Anfeng [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Janik, Michael J. [EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Li, Keyan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Song, Chunshan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Guo, Xinwen, E-mail: guoxw@dlut.edu.cn [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2017-02-28

    Highlights: • Ordered mesoporous graphitic carbon nitrides with S{sub BET} = 279.3 m{sup 2}/g were prepared. • Enhanced photocatalytic activity and reusability were presented. • Improved S{sub BET} and charge carrier separation efficiency contribute to the activity. - Abstract: Ordered mesoporous graphitic carbon nitrides were prepared by directly condensing the uniform mixtures of melamine and KIT-6. After removal of the KIT-6 sacrificial template, the carbon nitrides were characterized with TEM, N{sub 2} physical adsorption, XRD, FT-IR, XPS, UV–vis and PL spectrometries, and tested for their RhB photocatalytic degradation activity. Together, these characterizations confirmed the as-prepared tunable mesoporous materials with enhanced charge separation efficiency and superior photocatalytic performance. Compared with a conventional bulk g-C{sub 3}N{sub 4}, ordered mesoporous g-C{sub 3}N{sub 4} exhibits a larger specific surface area of 279.3 m{sup 2}/g and a pore size distribution about 4.0 nm and 13.0 nm. Meanwhile, the reduced bandgap energy of 2.77 eV and lower photogenerated electron-hole pair recombination frequency were evidenced by UV–Vis and PL spectra. The RhB photocatalytic degradation activity maximizes with a mass ratio of KIT-6/melamine of 80% (KCN80), and the kinetic constant reaches 0.0760 min{sup −1} which is 16 times higher than that of the bulk sample. Reusability of KCN80 was demonstrated by a lack of evident deactivation after three consecutive reaction periods. The direct condensation of the KIT-6 and melamine mixture does not require pre-casting of the precursor into the pore system of the templates. Owing to its high product yield, improved S{sub BET}, reduced bandgap energy and limited charge recombination, the facile-prepared ordered mesoporous g-C{sub 3}N{sub 4} is a practical candidate for further modification.

  2. Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study

    International Nuclear Information System (INIS)

    Nikoghosyan, Anna V; Rauch, Geraldine; Münter, Marc W; Jensen, Alexandra D; Combs, Stephanie E; Kieser, Meinhard; Debus, Jürgen

    2010-01-01

    particle therapies, i.e. protons and carbon ions, directly at the same facility in connection with the treatment of low grade skull base chondrosarcomas. This trial is a phase III study to demonstrate that carbon ion radiotherapy (experimental treatment) is not relevantly inferior and at least as good as proton radiotherapy (standard treatment) with respect to 5 year LPFS in the treatment of chondrosarcomas. Additionally, we expect less toxicity in the carbon ion treatment arm. ClinicalTrials.gov identifier: NCT01182753

  3. Recurrence of vocal fold leukoplakia after carbon dioxide laser therapy.

    Science.gov (United States)

    Chen, Min; Chen, Jian; Cheng, Lei; Wu, Haitao

    2017-09-01

    This work aims to analyze the recurrence of vocal fold leukoplakia after carbon dioxide (CO 2 ) laser resection. In this retrospective study, all patients undergoing CO 2 laser resection of vocal fold leukoplakia were followed up for at least 2 years. Recurrence was diagnosed as any presence of leukoplakia in the vocal cord subsequent to previous successful complete resection. A total of 326 patients with complete resection of vocal fold leukoplakia and follow-up subsequent surveillance laryngoscopy were studied. The recurrence rate, the recurrence time, and risk factors were evaluated. Of these, 52 (16.0%) patients experienced recurrence with a mean follow-up time of 50.5 ± 15.4 months. The mean time to recurrence was 16.2 ± 14.1 months. Univariate analysis showed that the size of lesion (P vocal fold leukoplakia, long-term follow-up is required after CO 2 laser resection. In conclusion, the size of lesion combined with the pathological grade are important risk factors that predict vocal fold leukoplakia recurrence.

  4. Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties.

    Science.gov (United States)

    Zhang, Yue; He, Junhui

    2015-08-21

    A facile one-pot approach to prepare photoluminescent carbon dots (CDs) was developed through hydrothermal treatment of cysteine and citric acid. The obtained CDs show stable and bright blue emission with a quantum yield of 54% and an average lifetime of 11.61 ns. Moreover, the two-photon induced upconversion fluorescence of the CDs was observed and demonstrated. Interestingly, both down and up conversion fluorescence of the CDs show excitation-independent emission, which is quite different from most of the previously reported CDs. Ultrafast spectroscopy was also employed here to study the photoluminescence (PL) properties of the CDs. After characterization using various spectroscopic techniques, a unique PL mechanism for the as-prepared CDs' fluorescence was proposed accordingly. In addition, the influence of various metal ions on the CD fluorescence was examined and no quenching phenomena were observed. Meanwhile, gold nanoparticles (Au NPs) were found to be good quenchers of CD fluorescence and their quenching behavior was fitted to the Stern-Volmer equation. This provides new opportunities for fluorescence sensor designs and light energy conversion applications. Finally, the as-prepared CDs were inkjet-printed to form a desirable pattern, which is useful for fluorescent patterns, and anti-counterfeiting labeling.

  5. Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2017-06-01

    Full Text Available The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectronics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs via a one-pot reaction of citric acid with ethylenediamine at 150 °C under ambient air pressure. The resultant FCDs possess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluorescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes. Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics.

  6. The effects of lead on multi-function waste tank facility carbon steels

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    Work previously reported in the literature suggests the presence of lead in boiling caustic can crack carbon steel. Further, most of the single-shell tanks presumed to be leakers contain lead from past fuel reprocessing work. While the Multi-Function Waste Tank Facility will be operating at temperatures far below those in which cracking occurred and the waste will have other components including inhibitors, there is a possibility that the lead concentration in some of the waste will exceed that found earlier to cause cracking. Consequently it is recommended that tests be performed on simulated wastes to better define the solubility and to determine whether cracking under proposed operating conditions is a serious concern. However, the experimental evaluation does not need to be performed immediately. The waste believed to have the largest lead concentration, B-Farm, is not shown in the current processing schedule which goes to the year 2011. The wastes scheduled for processing have less than about one-tenth of one percent of the lead concentration found in B-Farm

  7. Methods and apparatus for measuring small leaks from carbon dioxide sequestration facilities

    Science.gov (United States)

    Nelson, Jr., David D.; Herndon, Scott C.

    2018-01-02

    In one embodiment, a CO.sub.2 leak detection instrument detects leaks from a site (e.g., a CO.sub.2 sequestration facility) using rapid concentration measurements of CO.sub.2, O.sub.2 and optionally water concentration that are achieved, for example, using laser spectroscopy (e.g. direct absorption laser spectroscopy). Water vapor in the sample gas may not be removed, or only partially removed. The sample gas may be collected using a multiplexed inlet assembly from a plurality of locations. CO.sub.2 and O.sub.2 concentrations may be corrected based on the water concentration. A resulting dataset of the CO.sub.2 and O.sub.2 concentrations is analyzed over time intervals to detect any changes in CO.sub.2 concentration that are not anti-correlated with O.sub.2 concentration, and to identify a potential CO.sub.2 leak in response thereto. The analysis may include determining eddy covariance flux measurements of sub-surface potential carbon.

  8. A study for the fabulously of introducing an acceleration mass spectrometer facility (ABMs) for carbon-14 applications

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Comsan, N.; Sadek, M.

    2004-01-01

    In this work a study was conducted to show the importance and feasibility of introducing an accelerating mass spectrometer facility for carbon-14 analysis in the environmental levels. The different applications of Carbon-14 (e.g. dating and identification of food additives of synthetic origin) are discussed. There are two methods for C- 14 measurements, beta decay counting and accelerator mass spectrometry (AMS). The beta decay method requires gram quantities of the sample carbon, compared to few milligram quantities in case of AMS method. The Central Lab. for Environmental Isotope Hydrology of the National Center for Nuclear Safety and Radiation Control has a Carbon-14 analysis facility based on beta decay counting using a liquid scintillation counter after sample preparation in the form of benzene through rather complicated chemical conversion steps. This strongly limits the capacity of the laboratory to about 100-150 samples per year. Also, the amount of sample required limits our expansion for some very important applications like dating of archaeological small samples and especially old bone samples which normally have a low concentration of organic compounds. These applications are only possible by using the AMS method. For some applications only AMS could be used e.g measuring C-14 in atmospheric gases such as methane and carbon dioxide is virtually impossible using decay counting but quite feasible with AMS. The importance of purchasing an AMS facility or upgrading the existing accelerator is discussed in view of the shortage of such a facility in Africa and the Middle East. Acquiring an AMS in Egypt will make it possible to accurately date the Egyptian antiquities and to act as a regional laboratory and to enter into new applications where the amount of sample is limiting

  9. A conceptual design of neutron tumor therapy reactor facility with a YAYOI based fast neutron source reactor

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroaki; An, Shigehiro.

    1983-01-01

    Fast neutron is known as one of useful radiations for radiation therapy of tumors. Boron neutron capture therapy (BNCT) of tumors which makes use of 10 B(n, α) 7 Li reaction of 10 B compounds selectively attached to tumor cells with thermal and intermediate neutrons is another way of neutron based radiation therapy which is, above all, attractive enough to kill tumor cells selectively sparing normal tissue. In Japan, BNCT has already been applied and leaned to be effective. After more than a decade operational experiences and the specific experiments designed for therapeutical purposes, in this paper, a conceptual design of a special neutron therapy reactor facility based on YAYOI - fast neutron source reactor of Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo - modified to provide an upward beam of fast and intermediate neutrons is presented. Emphasis is placed on the in-house nature of facility and on the coordinating capability of biological and physical researches as well as maintenances of the facility. (author)

  10. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  11. Research and design of pulsed switching power supply for deep tumor therapy facility with heavy ions accelerator in Lanzhou

    International Nuclear Information System (INIS)

    Shi Chunfeng; Zhao Jiang; Yan Hongbin; Wu Fengjun; Gao Daqing

    2012-01-01

    The pulsed switching power supply was developed for deep tumor therapy facility with heavy ions in cooler-storage-ring of the heavy ions research facility in Lanzhou (HIRFL-CSR). The control principle of the dual closed-loop scheme was described and the open-loop Bode diagrams were given. The results of simulation and prototype experiment show that the current error gets much smaller than that of the single closed-loop pulsed switching power supply. Moreover, the simulation and test results were analyzed, and the circuit configuration and dual closed-loop strategy selected are practicable. (authors)

  12. Research and design of scanning power supply for deep tumor therapy facility with heavy ions accelerator in Lanzhou

    International Nuclear Information System (INIS)

    Huang Yuzhen; Liu Yuntao; Chen Youxin; Gao Daqing; Zhang Shu; Gao Yalin

    2009-01-01

    This paper describes the technique targets and operation principle of the scanning power supply for the deep tumor therapy facility with heavy ions in Cooler-Storage-Ring of the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR). To ensure the specified accuracy of the current, the hysteresis loop control strategy was adopted, and tracking error was constrained in the specified tolerance. One prototype was designed and installed. And the simulation results and test results were listed in the paper. The results show that all the targets can meet the design requirements, and that the circuit configuration and hysteresis loop control strategy selected are practicable. (authors)

  13. A novel and facile synthesis approach for a porous carbon/graphene composite for high-performance supercapacitors.

    Science.gov (United States)

    Liu, Ting; Zhang, Xuesha; Liu, Kang; Liu, Yanyan; Liu, Mengjie; Wu, Wenyu; Gu, Yu; Zhang, Ruijun

    2018-03-02

    We propose a novel and facile synthesis approach to a porous carbon/graphene composite. Graphene is obtained from room-temperature expanded graphite (RTEG), not involving the use of graphite oxide (GO). Porous carbon is acquired by carbonization and KOH-activation of polyvinylpyrrolidone (PVP), which is used to exfoliate RTEG into graphene and inhibit the restacking of the resultant graphene in the present work. The prepared porous carbon/graphene composite has a high specific surface area (SSA) (3008 m 2 g -1 ) and a hierarchical micro- and meso- pore structure (dominant pores in the range of 1-5 nm). Electrochemical measurement demonstrates that the as-prepared porous carbon/graphene composite can deliver an outstanding specific capacitance of up to 340 F g -1 at 5 mV s -1 in 6 M KOH electrolyte. This specific capacitance is among the highest reported so far for porous carbon/graphene materials. Moreover, the prepared composite as an electrode material also exhibits excellent cycling stability (94.4% capacitance retention over 10 000 cycles). The as-fabricated symmetrical supercapacitor exhibits a high energy density of 10.9 W h kg -1 (based on total mass of electrode materials) and an outstanding energy density retention, even at high power density. Compared with conventional preparation routes for porous carbon/graphene composites, the present approach is significantly simple, convenient and cost-effective, which will make it more competent in the development of electrode materials for high-performance supercapacitors.

  14. Development of a Tandem-ElectroStatic-Quadrupole accelerator facility for Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Thatar Vento, V.; Levinas, P.; Bergueiro, J.; Burlon, A.A.; Di Paolo, H.; Kesque, J.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Minsky, D.M.; Estrada, L.; Hazarabedian, A.; Johann, F.; Suarez Sandin, J.C.; Castell, W.; Davidson, J.; Davidson, M.; Repetto, M.; Obligado, M.; Nery, J.P.; Huck, H.; Igarzabal, M.; Fernandez Salares, A.

    2008-01-01

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). An ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.4-2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.20-1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is one of the technologically simplest and cheapest solutions for optimized AB-BNCT. At present there is no BNCT facility in the world with the characteristics presented in this work. For the accelerator, results on its design, construction and beam transport calculations are discussed. Taking into account the peculiarities of the expected irradiation field, the project also considers a specific study of the treatment room. This study aims at the design of the treatment room emphasizing aspects related to patient, personnel and public radiation protection; dose monitoring; patient positioning and room construction. The design considers both thermal (for the treatment of shallow tumors) and epithermal (for deep-seated tumors) neutron beams entering the room through a port connected to the accelerator via a moderation and neutron beam shaping assembly. Preliminary results of dose calculations for the treatment room design, using the MCNP program, are presented

  15. Framework for the analysis of the low-carbon scenario 2020 to achieve the national carbon Emissions reduction target: Focused on educational facilities

    International Nuclear Information System (INIS)

    Koo, Choongwan; Kim, Hyunjoong; Hong, Taehoon

    2014-01-01

    Since the increase in greenhouse gas emissions has increased the global warming potential, an international agreement on carbon emissions reduction target (CERT) has been formulated in Kyoto Protocol (1997). This study aimed to develop a framework for the analysis of the low-carbon scenario 2020 to achieve the national CERT. To verify the feasibility of the proposed framework, educational facilities were used for a case study. This study was conducted in six steps: (i) selection of the target school; (ii) establishment of the reference model for the target school; (iii) energy consumption pattern analysis by target school; (iv) establishment of the energy retrofit model for the target school; (v) economic and environmental assessment through the life cycle cost and life cycle CO 2 analysis; and (vi) establishment of the low-carbon scenario in 2020 to achieve the national CERT. This study can help facility managers or policymakers establish the optimal retrofit strategy within the limited budget from a short-term perspective and the low-carbon scenario 2020 to achieve the national CERT from the long-term perspective. The proposed framework could be also applied to any other building type or country in the global environment

  16. SU-E-T-419: Workflow and FMEA in a New Proton Therapy (PT) Facility

    International Nuclear Information System (INIS)

    Cheng, C; Wessels, B; Hamilton, H; Difranco, T; Mansur, D

    2014-01-01

    Purpose: Workflow is an important component in the operational planning of a new proton facility. By integrating the concept of failure mode and effect analysis (FMEA) and traditional QA requirements, a workflow for a proton therapy treatment course is set up. This workflow serves as the blue print for the planning of computer hardware/software requirements and network flow. A slight modification of the workflow generates a process map(PM) for FMEA and the planning of QA program in PT. Methods: A flowchart is first developed outlining the sequence of processes involved in a PT treatment course. Each process consists of a number of sub-processes to encompass a broad scope of treatment and QA procedures. For each subprocess, the personnel involved, the equipment needed and the computer hardware/software as well as network requirements are defined by a team of clinical staff, administrators and IT personnel. Results: Eleven intermediate processes with a total of 70 sub-processes involved in a PT treatment course are identified. The number of sub-processes varies, ranging from 2-12. The sub-processes within each process are used for the operational planning. For example, in the CT-Sim process, there are 12 sub-processes: three involve data entry/retrieval from a record-and-verify system, two controlled by the CT computer, two require department/hospital network, and the other five are setup procedures. IT then decides the number of computers needed and the software and network requirement. By removing the traditional QA procedures from the workflow, a PM is generated for FMEA analysis to design a QA program for PT. Conclusion: Significant efforts are involved in the development of the workflow in a PT treatment course. Our hybrid model of combining FMEA and traditional QA program serves a duo purpose of efficient operational planning and designing of a QA program in PT

  17. Facile graft polystyrene onto multi-walled carbon nanotubes via in situ thermo-induced radical polymerization

    International Nuclear Information System (INIS)

    Liu Peng

    2009-01-01

    A facile procedure was developed for the grafting of polystyrene onto the surfaces of multi-walled carbon nanotubes (MWNTs) via the in situ thermo-induced bulk radical polymerization of styrene at the different polymerizing temperatures, in the presence of MWNTs without any initiator added. The grafting products were validated by the dispersibility, TEM, TGA, FT-IR, and Raman analysis. The TGA results also showed the lower polymerizing temperature was propitious to the free radical addition reactions.

  18. Carbon-Ion Radiation Therapy for Pelvic Recurrence of Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shigeru, E-mail: s_yamada@nirs.go.jp [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Kamada, Tadashi [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Ebner, Daniel K. [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Brown University Alpert Medical School, Providence, Rhode Island (United States); Shinoto, Makoto [Ion Beam Therapy Center, SAGA HIMAT Foundation, Saga (Japan); Terashima, Kotaro [Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Isozaki, Yuka; Yasuda, Shigeo; Makishima, Hirokazu; Tsuji, Hiroshi; Tsujii, Hirohiko [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Isozaki, Tetsuro; Endo, Satoshi [Graduate School of Medicine, Chiba University, Chiba (Japan); Takahashi, Keiichi [Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome, Tokyo (Japan); Sekimoto, Mitsugu [National Hospital Organization Osaka National Hospital, Osaka (Japan); Saito, Norio [National Cancer Center Hospital East, Kashiwa, Chiba (Japan); Matsubara, Hisahiro [Graduate School of Medicine, Chiba University, Chiba (Japan)

    2016-09-01

    Purpose: Investigation of the treatment potential of carbon-ion radiation therapy in pelvic recurrence of rectal cancer. Methods and Materials: A phase 1/2 dose escalation study was performed. One hundred eighty patients (186 lesions) with locally recurrent rectal cancer were treated with carbon-ion radiation therapy (CIRT) (phase 1/2: 37 and 143 patients, respectively). The relapse locations were 71 in the presacral region, 82 in the pelvic sidewalls, 28 in the perineum, and 5 near the colorectal anastomosis. A 16-fraction in 4 weeks dose regimen was used, with total dose ranging from 67.2 to 73.6 Gy(RBE); RBE-weighted absorbed dose: 4.2 to 4.6 Gy(RBE)/fraction. Results: During phase 1, the highest total dose, 73.6 Gy(RBE), resulted in no grade >3 acute reactions in the 13 patients treated at that dose. Dose escalation was halted at this level, and this dose was used for phase 2, with no other grade >3 acute reactions observed. At 5 years, the local control and survival rates at 73.6 Gy(RBE) were 88% (95% confidence interval [CI], 80%-93%) and 59% (95% CI, 50%-68%), respectively. Conclusion: Carbon-ion radiation therapy may be a safe and effective treatment option for locally recurrent rectal cancer and may serve as an alternative to surgery.

  19. Characteristics of neutron irradiation facility and dose estimation method for neutron capture therapy at Kyoto University research reactor institute

    International Nuclear Information System (INIS)

    Kobayashi, T.; Sakurai, Y.; Kanda, K.

    2001-01-01

    The neutron irradiation characteristics of the Heavy Water Neutron Irradiation Facility (HWNIF) at the Kyoto University Research Reactor Institute (KIJRRI) for boron neutron capture therapy (BNCT), is described. The present method of dose measurement and its evaluation at the KURRI, is explained. Especially, the special feature and noticeable matters were expounded for the BNCT with craniotomy, which has been applied at present only in Japan. (author)

  20. BEAM DYNAMICS STUDIES FOR A COMPACT CARBON ION LINAC FOR THERAPY

    Energy Technology Data Exchange (ETDEWEB)

    Plastun, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.

    2016-05-01

    Feasibility of an Advanced Compact Carbon Ion Linac (ACCIL) for hadron therapy is being studied at Argonne National Laboratory in collaboration with RadiaBeam Technologies. The 45-meter long linac is designed to deliver 109 carbon ions per second with variable energy from 45 MeV/u to 450 MeV/u. S-band structure provides the acceleration in this range. The carbon beam energy can be adjusted from pulse to pulse, making 3D tumor scanning straightforward and fast. Front end accelerating structures such as RFQ, DTL and coupled DTL are designed to operate at lower frequencies. The design of the linac was accompanied with extensive end-to-end beam dynamics studies which are presented in this paper.

  1. Performance of high-density-carbon (HDC) ablator implosion experiments on the National Ignition Facility (NIF)

    Science.gov (United States)

    MacKinnon, Andy

    2013-10-01

    A series of experiments on the National Ignition Facility (NIF) have been performed to measure high-density carbon (HDC) ablator performance for indirect drive inertial confinement fusion (ICF). HDC is a very promising ablator material; being 3x denser than plastic, it absorbs more hohlraum x-rays, leading to higher implosion efficiency. For the HDC experiments the NIF laser generated shaped laser pulses with peak power up to 410 TW and total energy of 1.3 MJ. Pulse shapes were designed to drive 2, 3 or 4 shocks in cryogenic layered implosions. The 2-shock pulse, with a designed fuel adiabat of ~3 is 6-7ns in duration, allowing use of near vacuum hohlraums, which greatly increases the coupling efficiency due to low backscatter losses. Excellent results were obtained for 2,3 and 4 shock pulses. In particular a deuterium-tritium gas filled HDC capsule driven by a 4-shock pulse in a gas-filled hohlraum produced a neutron yield of 1.6 × 1015, a record for a non-cryogenically layered capsule driven by a gas-filled hohlraum. The first 2-shock experiment used a vacuum hohlraum to drive a DD gas filled HDC capsule with a 6.5 ns, laser pulse. This hohlraum was 40% more efficient than the gas-filled counterpart used for 3 and 4 shock experiments, producing near 1D performance at 11 x convergence ratio, peak radiation temperature of 317 eV, 98% laser-hohlraum coupling, and DD neutron yield of 2.2e13, a record for a laser driven DD implosion. The HDC campaigns will be presented, including options for pushing towards the alpha dominated regime. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Azide photochemistry for facile modification of graphitic surfaces: preparation of DNA-coated carbon nanotubes for biosensing

    International Nuclear Information System (INIS)

    Moghaddam, Minoo J; Yang Wenrong; Bojarski, Barbara; Gengenbach, Thomas R; Gao Mei; Zareie, Hadi; McCall, Maxine J

    2012-01-01

    A facile, two-step method for chemically attaching single-stranded DNA to graphitic surfaces, represented here by carbon nanotubes, is reported. In the first step, an azide-containing compound, N-5-azido-nitrobenzoyloxy succinimide (ANB-NOS), is used to form photo-adducts on the graphitic surfaces in a solid-state photochemical reaction, resulting in active ester groups being oriented for the subsequent reactions. In the second step, pre-synthesized DNA strands bearing a terminal amine group are coupled in an aqueous solution with the active esters on the photo-adducts. The versatility of the method is demonstrated by attaching pre-synthesized DNA to surfaces of carbon nanotubes in two platforms—as vertically-aligned multi-walled carbon nanotubes on a solid support and as tangled single-walled carbon nanotubes in mats. The reaction products at various stages were characterized by x-ray photoelectron spectroscopy. Two different assays were used to check that the DNA strands attached to the carbon nanotubes were able to bind their partner strands with complementary base sequences. The first assay, using partner DNA strands tethered to gold nanoparticles, enabled the sites of DNA attachment to the carbon nanotubes to be identified in TEM images. The second assay, using radioactively labelled partner DNA strands, quantified the density of functional DNA strands attached to the carbon nanotubes. The diversity of potential applications for these DNA-modified carbon-nanotube platforms is exemplified here by the successful use of a DNA-modified single-walled carbon-nanotube mat as an electrode for the specific detection of metal ions. (paper)

  3. Facile preparation of porous carbon from coffee bean waste using low temperature solvothermal method

    Science.gov (United States)

    Baroroh, L. A. Al; Fitria, D.; Amal, M. I.; Wismogroho, A. S.; Widayatno, W. B.

    2018-03-01

    In this study, porous carbon made from coffee bean waste (CBW) was carbonized at 500 °C, 600 °C, and 700 °C to find effective temperature. It is verified from the IR spectrum that carbonization process at certain temperature can effectively break cellulose bonding and make aromatics functional group while preserving its carbon structure. The TG-DTA curve shows four stages of decomposition process and confirms most effective carbonization temperature. Activation process of as-carbonized CBW was carried out using solvothermal method in KOH and NH4OH steam environment at 200 °C with variation of 30%, 40%, and 50% solvothermal volume. Scanning electron micrographs reveals significant increase of porosity on the carbon surface and differences of structural pores between the variations. The results show the possible potential of utilizing low temperature-solvothermal method for nanoporous carbon material.

  4. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    International Nuclear Information System (INIS)

    Kushwaha, Swatantra Kumar Singh; Ghoshal, SauravI; Rai, Awani Kumar; Singh, Satyawan

    2013-01-01

    Carbon nanotubes (CNTs) were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field. (author)

  5. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    Directory of Open Access Journals (Sweden)

    Swatantra Kumar Singh Kushwaha

    2013-12-01

    Full Text Available Carbon nanotubes (CNTs were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field.

  6. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Swatantra Kumar Singh; Ghoshal, SauravI; Rai, Awani Kumar, E-mail: swatantrakushwaha@yahoo.co.in [Pranveer Singh Institute of Technology, Kanpur (India); Singh, Satyawan [Saroj Institute of Technology and Management, Lucknow (India)

    2013-10-15

    Carbon nanotubes (CNTs) were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field. (author)

  7. Facile template-directed synthesis of carbon-coated SnO2 nanotubes with enhanced Li-storage capabilities

    International Nuclear Information System (INIS)

    Zhu, Xiaoshu; Zhu, Jingyi; Yao, Yinan; Zhou, Yiming; Tang, Yawen; Wu, Ping

    2015-01-01

    Herein, a novel type of carbon-coated SnO 2 nanotubes has been designed and synthesized through a facile two-step hydrothermal approach by using ZnO nanorods as templates. During the synthetic route, SnO 2 nanocrystals and carbon layer have been uniformly deposited on the rod-like templates in sequence, meanwhile ZnO nanorods could be in situ dissolved owing to the generated alkaline and acidic environments during hydrothermal coating of SnO 2 nanocrystals and hydrothermal carbonization of glucose, respectively. When utilized as an anode material in lithium-ion batteries, the carbon-coated SnO 2 nanotubes manifests markedly enhanced Li-storage capabilities in terms of specific capacity and cycling stability in comparison with bare SnO 2 nanocrystals. - Graphical abstract: Display Omitted - Highlights: • C-coated SnO 2 nanotubes prepared via facile ZnO-nanorod-templated hydrothermal route. • Unique morphological and structural features toward lithium storage. • Enhanced Li-storage performance in terms of specific capacity and cycling stability

  8. Getting Ready for Ion-Beam Therapy Research in Austria - Building-up Research in Parallel with a Facility

    International Nuclear Information System (INIS)

    Georg, Dietmar; Knaeusl; Kuess, Peter; Fuchs, Hermann; Poetter, Richard; Schreiner, Thomas

    2015-01-01

    With participation in ion-beam projects funded nationally or by the European Commission (EC), ion-beam research activities were started at the Medical University of Vienna in parallel with the design and construction of the ion-beam center MedAustron in Wiener Neustadt, 50 km from the Austrian capital. The current medical radiation physics research activities that will be presented comprise: (1) Dose calculation and optimization: ion-beam centers focus mostly on proton and carbon-ion therapy. However, there are other ion species with great potential for clinical applications. Helium ions are currently under investigation from a theoretical physics and biology perspective. (2) Image guided and adaptive ion-beam therapy: organ motion and anatomic changes have a severe influence in ion-beam therapy since variations in heterogeneity along the beam path have a significant impact on the particle range. Ongoing research focuses on possibilities to account for temporal variations of the anatomy during radiotherapy. Both during and between fractions also considering temporal variations in tumor biology. Furthermore, research focuses on particle therapy positron emission tomography (PT-PET) verification and the detection of prompt gammas for on-line verification of ion-beam delivery. (3) Basic and applied dosimetry: an end-to-end procedure was designed and successfully tested in both scanned proton and carbon-ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. (Author)

  9. Carbon ion therapy for advanced sinonasal malignancies: feasibility and acute toxicity

    International Nuclear Information System (INIS)

    Jensen, Alexandra D; Nikoghosyan, Anna V; Ecker, Swantje; Ellerbrock, Malte; Debus, Jürgen; Münter, Marc W

    2011-01-01

    To evaluate feasibility and toxicity of carbon ion therapy for treatment of sinonasal malignancies. First site of treatment failure in malignant tumours of the paranasal sinuses and nasal cavity is mostly in-field, local control hence calls for dose escalation which has so far been hampered by accompanying acute and late toxicity. Raster-scanned carbon ion therapy offers the advantage of sharp dose gradients promising increased dose application without increase of side-effects. Twenty-nine patients with various sinonasal malignancies were treated from 11/2009 to 08/2010. Accompanying toxicity was evaluated according to CTCAE v.4.0. Tumor response was assessed according to RECIST. Seventeen patients received treatment as definitive RT, 9 for local relapse, 2 for re-irradiation. All patients had T4 tumours (median CTV1 129.5 cc, CTV2 395.8 cc), mostly originating from the maxillary sinus. Median dose was 73 GyE mostly in mixed beam technique as IMRT plus carbon ion boost. Median follow- up was 5.1 months [range: 2.4 - 10.1 months]. There were 7 cases with grade 3 toxicity (mucositis, dysphagia) but no other higher grade acute reactions; 6 patients developed grade 2 conjunctivits, no case of early visual impairment. Apart from alterations of taste, all symptoms had resolved at 8 weeks post RT. Overall radiological response rate was 50% (CR and PR). Carbon ion therapy is feasible; despite high doses, acute reactions were not increased and generally resolved within 8 weeks post radiotherapy. Treatment response is encouraging though follow-up is too short to estimate control rates or evaluate potential late effects. Controlled trials are warranted

  10. Comparison of Out-Of-Field Neutron Equivalent Doses in Scanning Carbon and Proton Therapies for Cranial Fields

    DEFF Research Database (Denmark)

    Athar, B.; Henker, K.; Jäkel, O.

    2010-01-01

    Purpose: The purpose of this analysis is to compare the secondary neutron lateral doses from scanning carbon and proton beam therapies. Method and Materials: We simulated secondary neutron doses for out-of-field organs in an 11-year old male patient. Scanned carbon and proton beams were simulated...

  11. The Practice of Electroconvulsive Therapy in US Correctional Facilities: A Nationwide Survey.

    Science.gov (United States)

    Surya, Sandarsh; McCall, W Vaughn; Iltis, Ana S; Rosenquist, Peter B; Hogan, Elizabeth

    2015-09-01

    There are little data regarding the practice of electroconvulsive therapy (ECT) in correctional settings in the United States. A survey was conducted to study the current practice of ECT in US prisons. We hypothesize that ECT is underutilized in the correctional setting. We also review the ethical aspects of using ECT for the treatment of mental illness in the prison population. A 12-question survey via a Survey Monkey link was emailed to chiefs of psychiatry, or the equivalent, of each state's department of corrections. We examined the frequency of Likert-type responses, tabulated individual comments for qualitative review, and grouped for comparison. Email contacts for chiefs of psychiatry, or the equivalent, for the department of corrections in 45 states (90%) were obtained and a survey link was sent. Thirty-one (68.9%) of 45 responded to the survey. Respondent estimates of the number of inmates with mental illness in 31 prison systems varied from less than 500 to more than 4500. Of these 31, 12 (38.7%) had more than 4500 inmates with mental illness. Four systems reported the use of ECT within the last 5 years. Of those, one reported use in the last 1 to 6 months, and 3 reported use in the last 2 to 5 years. Of these 4 prison systems, all felt that they had up to 10 patients who would benefit if ECT continued to be offered or became available in the future. None of these systems provided ECT within the prison. The inmates were referred to a local state psychiatric facility, a university hospital, or other institutions. The reasons for not using ECT as reported by the respondents are grouped under subheadings of stigma, ethical concerns, logistical concerns, and others. Considering the high prevalence of mental illness in prisons, one might expect a high prevalence of ECT responsive mental illness and, hence, provision of ECT to some prisoners with mental illness. However, our survey suggests that the use of ECT in prisons in the United States is low. Stigma

  12. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.

    Science.gov (United States)

    Wen, Liewei; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2016-01-01

    The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Economic and Environmental Evaluation of Flexible Integrated Gasification Polygeneration Facilities Equipped with Carbon Capture and Storage

    Science.gov (United States)

    Aitken, M.; Yelverton, W. H.; Dodder, R. S.; Loughlin, D. H.

    2014-12-01

    Among the diverse menu of technologies for reducing greenhouse gas (GHG) emissions, one option involves pairing carbon capture and storage (CCS) with the generation of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which a Fischer-Tropsch (FT) process reactor and combined cycle turbine produce liquid fuels and electricity, respectively. With low concentrations of sulfur and other contaminants, the synthetic fuels are expected to be cleaner than conventional crude oil products. And with CO2 as an inherent byproduct of the FT process, most of the GHG emissions can be eliminated by simply compressing the CO2 output stream for pipeline transport. In fact, the incorporation of CCS at such facilities can result in very low—or perhaps even negative—net GHG emissions, depending on the fraction of biomass as input and its CO2 signature. To examine the potential market penetration and environmental impact of coal and biomass to liquids and electricity (CBtLE), which encompasses various possible combinations of input and output parameters within the overall energy landscape, a system-wide analysis is performed using the MARKet ALlocation (MARKAL) model. With resource supplies, energy conversion technologies, end-use demands, costs, and pollutant emissions as user-defined inputs, MARKAL calculates—using linear programming techniques—the least-cost set of technologies that satisfy the specified demands subject to environmental and policy constraints. In this framework, the U.S. Environmental Protection Agency (EPA) has developed both national and regional databases to characterize assorted technologies in the industrial, commercial, residential, transportation, and generation sectors of the U.S. energy system. Here, the EPA MARKAL database is updated to include the costs and emission characteristics of CBtLE using figures from the literature. Nested sensitivity analysis is then

  14. Particles that fight cancer: the use of protons and carbon ions in cancer therapy

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Particles that fight cancer: the use of protons and carbon ions in cancer therapy Cancer is a major societal issue. A key challenge for cancer therapy is the complex and multifaceted nature of the disease, which calls for personalised treatment. Radiotherapy has been used to treat tumours for more than a century, and is still a staple in oncology: today, 50 % of cancer patients receive radiotherapy, half of them with curative intent. Hadrontherapy is one of the most technologically advanced methods of delivering radiation dose to the tumour while protecting surrounding healthy tissues. In addition, hadrontherapy can reach otherwise difficult to access deep-seated tumours and can be used for radio resistant tumours as in hypoxia. This year marks 60 years since the first patient was treated with protons in the US and 20 years since the use of carbon ions in Japan. Join us in learning about the journey of particle therapy in Japan and Europe, its challenges, clinical results and future prospects. Thursday 2...

  15. Cost-effectiveness of carbon ion radiation therapy for locally recurrent rectal cancer

    International Nuclear Information System (INIS)

    Mobaraki, A.; Ohno, Tatsuya; Sakurai, Hideyuki; Nakano, Takashi; Yamada Shigeru

    2010-01-01

    The aim of this study was to evaluate the cost-effectiveness of carbon ion radiotherapy compared with conventional multimodality therapy in the treatment of patients with locally recurrent rectal cancer. Direct costs for diagnosis, recurrent treatment, follow-up, visits, supportive therapy, complications, and admission were computed for each individual using a sample of 25 patients presenting with local recurrent rectal cancer at the National Institute of Radiological Science (NIRS) and Gunma University Hospital (GUH). Patients received only radical surgery for primary rectal adenocarcinoma and had isolated unresectable pelvic recurrence. Fourteen and 11 patients receiving treatment for the local recurrence between 2003 and 2005 were followed retrospectively at NIRS and GUH, respectively. Treatment was carried out with carbon ion radiotherapy (CIRT) alone at NIRS, while multimodality therapy including three-dimensional conformal radiotherapy, chemotherapy, and hyperthermia was performed at GUH. The 2-year overall survival rate was 85% and 55% for CIRT and multimodality treatment, respectively. The mean cost was 4803946 yen for the CIRT group and 4611100 yen for the multimodality treatment group. The incremental cost-effectiveness ratio for CIRT was 6428 yen per 1% increase in survival. The median duration of total hospitalization was 37 days for CIRT and 66 days for the multimodality treatment group. In conclusion, by calculating all direct costs, CIRT was found to be a potential cost effective treatment modality as compared to multimodality treatment for locally recurrent rectal cancer. (author)

  16. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, E. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)], E-mail: epozzi@cnea.gov.ar; Nigg, D.W. [Idaho National Laboratory, Idaho Falls (United States); Miller, M.; Thorp, S.I. [Instrumentation and Control Department, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Zarza, L.; Estryk, G. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Monti Hughes, A.; Molinari, A.J.; Garabalino, M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Quintana, J. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Trivillin, V.A.; Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)

    2009-07-15

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10{sup 9} n cm{sup -2} s{sup -1} and the fast neutron flux was 2.5x10{sup 6} n cm{sup -2} s{sup -1}, indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in {sup 6}Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  17. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    International Nuclear Information System (INIS)

    Pozzi, E.; Nigg, D.W.; Miller, M.; Thorp, S.I.; Heber, E.M.; Zarza, L.; Estryk, G.; Monti Hughes, A.; Molinari, A.J.; Garabalino, M.; Itoiz, M.E.; Aromando, R.F.; Quintana, J.; Trivillin, V.A.; Schwint, A.E.

    2009-01-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10 9 n cm -2 s -1 and the fast neutron flux was 2.5x10 6 n cm -2 s -1 , indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in 6 Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  18. A patient with squamous cell carcinoma developing as a secondary cancer after radiation therapy and carbon dioxide snow-freezing therapy

    International Nuclear Information System (INIS)

    Yoshida, Akihiro; Miki, Hirotoshi; Yokoyama, Toshiya; Katori, Nobutada

    2004-01-01

    We report on a 59-year-old male who developed skin cancer many years after receiving radiation therapy and carbon dioxide snow-freezing therapy. About 50 years ago, the patient underwent radiation therapy and carbon dioxide snow-freezing therapy for nevus of the Ota of the left buccal region, the orbital region, and the forehead (fractional dose and total dose unknown). About 6 months prior to evaluation at this hospital, the patient noted tumor growth on the skin in the areas previously treated, and protruding lesions were observed on the left buccal region, the orbital region, and the forehead. Histopathological examination showed squamous cell carcinoma. At surgery, protruding lesions and scar tissue were completely excised, and split-thickness skin graft was used in the areas of skin loss. After 2 years of follow-up, no local recurrence or metastasis has been observed. (author)

  19. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

    Directory of Open Access Journals (Sweden)

    Gaber Hashem Gaber Ahmed

    2016-05-01

    Full Text Available Carbonization of tomatoes at 240 °C using 30% (w/v NaOH as catalyst produced carbon onions (C-onions, while solely carbon dots (C-dots were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum, under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV–vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined.

  20. Delirium during the course of electroconvulsive therapy in a patient on lithium carbonate treatment.

    Science.gov (United States)

    Sadananda, Suneetha Karkada; Narayanaswamy, Janardhanan C; Srinivasaraju, Ravindra; Math, Suresh Bada

    2013-01-01

    The safety of concurrent mood stabilizers during the course of electroconvulsive therapy (ECT) is yet to be clearly established. Delirium with concurrent administration of ECT and lithium carbonate is described in this case report. A 30-year-old male with a past history of significant head injury developed delirium during the course of bitemporal ECT. The clinical picture and the details of the cognitive impairment have been discussed in the report with a focus on relationship between the lithium carbonate administration and the concurrent ECT. Patients with preexisting organic brain damage could be prone to develop the cognitive adverse effect while on a combination of lithium and ECT. Possible interactions between lithium and ECT need further systematic evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Carbon Ion Radiation Therapy for Unresectable Sacral Chordoma: An Analysis of 188 Cases

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Reiko, E-mail: r_imai@nirs.go.jp [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Kamada, Tadashi [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Araki, Nobuhito [Department of Orthopedic Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Abe, Satoshi; Iwamoto, Yukihide; Ozaki, Toshifumi; Kanehira, Chihiro; Kaya, Mitsunori; Takahashi, Kazuhisa; Chuman, Hirokazu; Tsujii, Hirohiko; Tsuneyoshi, Masazumi; Nishida, Yoshihiro; Hiraga, Hiroaki; Hiruma, Toru; Machinami, Rikuo; Matsumine, Akihiko; Matsumoto, Seiichi; Morioka, Hideo; Yamaguchi, Takehiko; and others

    2016-05-01

    Purpose: To evaluate the results of carbon ion radiation therapy administered to 188 patients with unresectable primary sacral chordomas. Patients and Methods: One hundred eighty-eight patients were treated with carbon ion radiation therapy at a single institute between 1996 and 2013 and retrospectively analyzed. The median age was 66 years. The highest proximal invasion reached past S2 level in 137 patients. The median clinical target volume was 345 cm{sup 3}. One hundred six patients received 67.2 gray equivalents (GyE)/16 fractions (fr), 74 patients received 70.4 GyE/16 fr, 7 patients received 73.6 GyE/16 fr, and 1 patient received 64.0 GyE/16 fr. Results: The median follow-up period was 62 months (range, 6.8-147.5 months). Seventy percent of patients were followed for 5 years or until death. The 5-year local control, overall survival, and disease-free survival rates were 77.2%, 81.1%, and 50.3%, respectively. Forty-one patients had a local recurrence. Sex, tumor volume, level of proximal invasion, and irradiated dose were unrelated to local control. There was grade 3 toxicity of the peripheral nerves in 6 patients and grade 4 toxicity of the skin in 2 patients. Ambulation remained in 97% of patients. Conclusions: Carbon ion radiation therapy was safe and effective for unresectable chordoma and provided good local control and survival while preserving ambulation.

  2. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.); Dorn, R.V. III.

    1990-09-01

    This monthly bulletin describes activities in the following project areas during this reporting period: supporting technology development, large animal model studies, neutron source and facility preparation, administration and common support, and PBF operations. (FI)

  3. Proton Radiation Therapy in the Hospital Environment: Conception, Development, and Operation of the Initial Hospital-Based Facility

    Science.gov (United States)

    Slater, James M.; Slater, Jerry D.; Wroe, Andrew J.

    The world's first hospital-based proton treatment center opened at Loma Linda University Medical Center in 1990, following two decades of development. Patients' needs were the driving force behind its conception, development, and execution; the primary needs were delivery of effective conformal doses of ionizing radiation and avoidance of normal tissue to the maximum extent possible. The facility includes a proton synchrotron and delivery system developed in collaboration with physicists and engineers at Fermi National Accelerator Laboratory and from other high-energy-physics laboratories worldwide. The system, operated and maintained by Loma Linda personnel, was designed to be safe, reliable, flexible in utilization, efficient in use, and upgradeable to meet demands of changing patient needs and advances in technology. Since the facility opened, nearly 14,000 adults and children have been treated for a wide range of cancers and other diseases. Ongoing research is expanding the applications of proton therapy, while reducing costs.

  4. A facile strategy to construct binder-free flexible carbonate composite anode at low temperature with high performances for lithium-ion batteries

    International Nuclear Information System (INIS)

    Shi, Shaojun; Zhang, Ming; Deng, Tingting; Wang, Ting; Yang, Gang

    2017-01-01

    Graphical abstract: The schematic illustration of the strategy for preparations and the mechanism for the stability of structure Display Omitted -- Highlights: •A facile strategy is applied to construct flexible carbonate composite anode. •Carbon nano-fiber matrix serves as fast charge channel and efficient buffer. •High specific capacity of 958 mAh g −1 at 100 mA g −1 is obtained. •After 200 cycles at 1 A g −1 , there is not obvious capacity decline. •The mechanism for stress release is further analyzed. -- Abstract: High temperature is usually necessary for carbon modification or electrospinning to obtain flexible anode with excellent conductivity and stability. However, due to the unstable instinct of carbonate, it’s hard to obtain carbonate when any of the synthesis process undergoes high temperature treatment. Thus, a facile strategy is applied to construct binder-free flexible carbonate composite anode at low temperature with high electrochemical performances. The carbon nano-fiber matrix is first synthesized through electrospinning followed by a facile solvothermal process to in-situ grow carbonate on carbon nano-fibers to form a well combinative flexible anode. The carbon nano-fiber matrix serves not only as a fast channel for charge transfer, but also as an efficient buffer to release the stress resulting from the hysteresis of lithiation for carbonate particles during repeated charge/discharge cycles. Owing to the synergistic effect of carbon nano-fiber and the carbonate, the flexible anode exhibits high specific capacity of 958 mAh g −1 . And after 200 cycles at 1 A g −1 , no obvious capacity decline. The reaction mechanism for stress release is also well analyzed to display the merit of our strategy. It is considered as one of the most promising way to get binder-free flexible carbonate anode with remarkable properties.

  5. Specific horticulture therapy guidelines in the landscaping of Cluj-Napoca hospital facilities – improving mental and behavioural healthcare

    Directory of Open Access Journals (Sweden)

    Hitter Timea

    2017-12-01

    Full Text Available In the beginning, nature was an irreplaceable environment for humans. The concept of horticulture therapy (HT denotes the use of ornamental plants to improve people’s health based on the connection between landscape architecture principles, design elements, and guidelines in healthcare facility gardens. In HT, people can improve and maintain health; so, gardens must provide only beneficial effects for users (patient, family, staff, testing design elements, which can be a scroll direction in garden, point of interest, connection with nature. This paper presents a case study analysis of the current landscape architecture standpoint: one of the Cluj-Napoca clinics, where HT can improve patients’ well-being.

  6. Neutron dose equivalent next to the target shield of a neutron therapy facility using an LET counter

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Kuchnir, F.T.

    1981-01-01

    The use of a spherical tissue-equivalent proportional counter for measurements of the lineal energy (y) and derivations of the linear energy transfer (LET) for fast neutrons has the advantage of giving distributions of dose and dose equivalent as functions of either LET or y. A measurement next to the target shielding of the neutron therapy facility at the University of Chicago Hospitals and Clinics (UCHC) is described, and the data processing is outlined. The distributions are presented and compared to those from measurements in the neutron beam. The average quality factors are presented

  7. How carbon-friendly is nuclear energy? A hybrid MRIO-LCA model of a Spanish facility.

    Science.gov (United States)

    Zafrilla, Jorge E; Cadarso, María-Ángeles; Monsalve, Fabio; de la Rúa, Cristina

    2014-12-16

    Spain faces the challenge of 80-95% greenhouse gas emissions reduction by 2050 (European Energy Roadmap). As a possible first step to fulfill this objective, this paper presents a two-level analysis. First, we estimate the carbon footprint of a hypothetical nuclear facility in Spain. Using a hybrid multiregional input-output model, to avoid truncation while diminishing sector aggregation problems and to improve environmental leakages estimations, we calculate the CO2 equivalent emissions associated with the different phases of the nuclear life-cycle--construction, fuel processing and operation and maintenance--taking into account the countries or regions where the emissions have been generated. Our results estimate a nuclear carbon footprint of 21.30 gCO2e/kWh, of which 89% comes from regions outside Spain. In some regions, the highest impacts are mostly direct (92%, 95%, and 92% of total carbon emissions in the U.S., France, and UK, respectively), meaning that these emissions are linked to the inputs directly required for nuclear energy production; in other regions, indirect emissions are higher (83% in China), which becomes relevant for policy measures. Second, through the analyses of different scenarios, we unravel and quantify how different assumptions that are often taken in the literature result in different carbon emissions.

  8. Facile Synthesis of Nitrogen and Oxygen Co-Doped Clews of Carbon Nanobelts for Supercapacitors with Excellent Rate Performance

    Directory of Open Access Journals (Sweden)

    Liang Yu

    2018-04-01

    Full Text Available Facile synthesis of carbon materials with high heteroatom content, large specific surface area (SSA and hierarchical porous structure is critical for energy storage applications. In this study, nitrogen and oxygen co-doped clews of carbon nanobelts (NCNBs with hierarchical porous structures are successfully prepared by a carbonization and subsequent activation by using ladder polymer of hydroquinone and formaldehyde (LPHF as the precursor and ammonia as the activating agent. The hierarchical porous structures and ultra-high SSA (up to 2994 m2 g−1 can effectively facilitate the exchange and transportation of electrons and ions. Moreover, suitable heteroatom content is believed to modify the wettability of the carbon material. The as-prepared activated NCNBs-60 (the NCNBs activated by ammonia at 950 °C for 60 min possess a high capacitance of 282 F g−1 at the current density of 0.25 A g−1, NCNBs-45 (the NCNBs are activated by ammonia at 950 °C for 45 min and show an excellent capacity retention of 50.2% when the current density increase from 0.25 to 150 A g−1. Moreover, the NCNBs-45 electrode exhibits superior electrochemical stability with 96.2% capacity retention after 10,000 cycles at 5.0 A g−1. The newly prepared NCNBs thus show great potential in the field of energy storage.

  9. The impact of the prospective payment system for skilled nursing facilities on therapy service provision: a transaction cost approach.

    Science.gov (United States)

    Zinn, Jacqueline S; Mor, Vincent; Intrator, Orna; Feng, Zhanlian; Angelelli, Joseph; Davis, Jullet A

    2003-12-01

    To examine skilled nursing facilities (SNFs) "make-or-buy" decisions with respect to rehabilitation therapy service provision in the 1990s, both before and after implementation of Medicare's Prospective Payment System (PPS) for SNFs. Longitudinal On-line Survey Certification and Reporting (OSCAR) data (1992-2001) on a sample of 10,241 freestanding urban SNFs. We estimated a longitudinal multinomial logistic regression model derived from transaction cost economic theory to predict the probability of the outcome in each of four service provision categories (all employed staff, all contract, mixed, and no services provided). Transaction frequency, uncertainty, and complexity result in greater control over therapy services through employment as opposed to outside contracting. For-profit status and chain affiliation were associated with greater control over therapy services. Following PPS, nursing homes acted to limit transaction costs by either exiting the rehabilitation market or exerting greater control over therapy services by managing rehabilitation services in-house. The financial incentives associated with changes in reimbursement methodology have implications that extend beyond the boundaries of the health care industry segment directly affected. Unintended quality and access consequences need to be carefully monitored by the Medicare program.

  10. Job-Related Stress in Forensic Interviewers of Children with Use of Therapy Dogs Compared with Facility Dogs or No Dogs.

    Science.gov (United States)

    Walsh, Diane; Yamamoto, Mariko; Willits, Neil H; Hart, Lynette A

    2018-01-01

    Sexually abused children providing essential testimony regarding crimes in forensic interviews now sometimes are provided facility dogs or therapy dogs for comfort. Facility dogs are extensively trained to work with forensic interviewers; when using therapy dogs in interviews, volunteers are the dog handlers. Interviews can impact child welfare workers' mental health causing secondary traumatic stress (STS). To investigate this stress, first data were gathered on stress retrospectively for when interviewers initially started the job prior to working with a dog, and then currently, from forensic interviewers using a facility dog, a therapy or pet dog, or no dog. These retrospective and secondary traumatic stress scale (STSS) data compared job stress among interviewers of children using: a certified, workplace facility dog ( n  = 16), a volunteer's trained therapy dog or the interviewer's pet dog ( n  = 13/3), or no dog ( n  = 198). Retrospective scores of therapy dog and no dog interviewers' stress were highest for the first interviewing year 1 and then declined. Extremely or very stressful retrospective scores differed among the three groups in year 1 ( p  therapy dog group as compared with the facility dog group ( p  therapy dog users than no dog users ( p  dog users more consistently used dogs during interviews and conducted more interviews than therapy/pet dog users; both groups favored using dogs. Interviewers currently working with therapy dogs accompanied by their volunteers reported they had experienced heightened stress when they began their jobs; their high stress levels still persisted, indicating lower inherent coping skills and perhaps greater empathy among interviewers who later self-selected to work with therapy dogs. Results reveal extreme avoidant stress for interviewers witnessing children who are suffering and their differing coping approaches.

  11. Tunable Luminescent Carbon Nanospheres with Well-Defined Nanoscale Chemistry for Synchronized Imaging and Therapy.

    Science.gov (United States)

    Mukherjee, Prabuddha; Misra, Santosh K; Gryka, Mark C; Chang, Huei-Huei; Tiwari, Saumya; Wilson, William L; Scott, John W; Bhargava, Rohit; Pan, Dipanjan

    2015-09-01

    In this work, we demonstrate the significance of defined surface chemistry in synthesizing luminescent carbon nanomaterials (LCN) with the capability to perform dual functions (i.e., diagnostic imaging and therapy). The surface chemistry of LCN has been tailored to achieve two different varieties: one that has a thermoresponsive polymer and aids in the controlled delivery of drugs, and the other that has fluorescence emission both in the visible and near-infrared (NIR) region and can be explored for advanced diagnostic modes. Although these particles are synthesized using simple, yet scalable hydrothermal methods, they exhibit remarkable stability, photoluminescence and biocompatibility. The photoluminescence properties of these materials are tunable through careful choice of surface-passivating agents and can be exploited for both visible and NIR imaging. Here the synthetic strategy demonstrates the possibility to incorporate a potent antimetastatic agent for inhibiting melanomas in vitro. Since both particles are Raman active, their dispersion on skin surface is reported with Raman imaging and utilizing photoluminescence, their depth penetration is analysed using fluorescence 3D imaging. Our results indicate a new generation of tunable carbon-based probes for diagnosis, therapy or both. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Quality of Life in Men Treated With Carbon Ion Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Wakatsuki, Masaru; Tsuji, Hiroshi; Ishikawa, Hitoshi; Yanagi, Takeshi; Kamada, Tadashi; Nakano, Takashi; Suzuki, Hiroyoshi; Akakura, Koichiro; Shimazaki, Jun; Tsujii, Hirohiko

    2008-01-01

    Purpose: To prospectively assess patient quality of life (QOL) after carbon ion radiotherapy (C-ion RT) for prostate cancer, using established questionnaires. Methods and Material: The subjects were 150 patients who underwent C-ion RT. Of these, 25 patients with low-risk prostate cancer received C-ion RT alone, whereas the remaining 125 patients with a high-risk tumor also received androgen deprivation therapy. Quality of life was assessed using the self-administered Functional Assessment of Cancer Therapy-Prostate (FACT-P) questionnaire in all patients three times. In addition, University of California-Los Angeles Prostate Cancer Index (UCLA-PCI) was conducted in the low-risk patients. Results: The FACT-General (FACT-G) and FACT-P scores at 12 months after treatment averaged over all 150 patients showed no significant change compared with those before C-ion RT. In FACT-P subscales, emotional well-being increased significantly just after and 12 months after treatment. In contrast, physical well-being (PWB) and social/family well-being (S/FWB) decreased significantly at 12 months, whereas the prostate cancer subscale (PCS) decreased significantly just after treatment. Average scores for FACT-G, FACT-P, PWB, S/FWB, and PCS for the 125 patients receiving hormone therapy showed substantial detrimental changes at 12 months. In contrast, those of the 25 low-risk patients who had no hormone therapy showed no significant change. Similarly no significant change in the average of the UCLA-PCI scores in the low-risk patients was seen at 12 months. Conclusions: Average QOL parameters reported by patients with localized prostate cancer treated with C-ion RT, in the absence of hormone therapy, showed no significant decrease 12 months after C-ion RT

  13. Facile synthesis of cellulose-based carbon with tunable N content for potential supercapacitor application.

    Science.gov (United States)

    Chen, Zehong; Peng, Xinwen; Zhang, Xiaoting; Jing, Shuangshuang; Zhong, Linxin; Sun, Runcang

    2017-08-15

    Producing hierarchical porous N-doped carbon from renewable biomass is an essential and sustainable way for future electrochemical energy storage. Herein we cost-efficiently synthesized N-doped porous carbon from renewable cellulose by using urea as a low-cost N source, without any activation process. The as-prepared N-doped porous carbon (N-doped PC) had a hierarchical porous structure with abundant macropores, mesopores and micropores. The doping N resulted in more disordered structure, and the doping N content in N-doped PC could be easily tunable (0.68-7.64%). The doping N functionalities could significantly improve the supercapacitance of porous carbon, and even a little amount of doping N (e.g. 0.68%) could remarkably improve the supercapacitance. The as-prepared N-doped PC with a specific surface area of 471.7m 2 g -1 exhibited a high specific capacitance of 193Fg -1 and a better rate capability, as well as an outstanding cycling stability with a capacitance retention of 107% after 5000 cycles. Moreover, the N-doped porous carbon had a high energy density of 17.1Whkg -1 at a power density of 400Wkg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Automated evaluation of setup errors in carbon ion therapy using PET: Feasibility study

    International Nuclear Information System (INIS)

    Kuess, Peter; Hopfgartner, Johannes; Georg, Dietmar; Helmbrecht, Stephan; Fiedler, Fine; Birkfellner, Wolfgang; Enghardt, Wolfgang

    2013-01-01

    Purpose: To investigate the possibility of detecting patient mispositioning in carbon-ion therapy with particle therapy positron emission tomography (PET) in an automated image registration based manner. Methods: Tumors in the head and neck (H and N), pelvic, lung, and brain region were investigated. Biologically optimized carbon ion treatment plans were created with TRiP98. From these treatment plans, the reference β + -activity distributions were calculated using a Monte Carlo simulation. Setup errors were simulated by shifting or rotating the computed tomography (CT). The expected β + activity was calculated for each plan with shifts. Finally, the reference particle therapy PET images were compared to the “shifted” β + -activity distribution simulations using the Pearson's correlation coefficient (PCC). To account for different PET monitoring options the inbeam PET was compared to three different inroom scenarios. Additionally, the dosimetric effects of the CT misalignments were investigated. Results: The automated PCC detection of patient mispositioning was possible in the investigated indications for cranio-caudal shifts of 4 mm and more, except for prostate tumors. In the rather homogeneous pelvic region, the generated β + -activity distribution of the reference and compared PET image were too much alike. Thus, setup errors in this region could not be detected. Regarding lung lesions the detection strongly depended on the exact tumor location: in the center of the lung tumor misalignments could be detected down to 2 mm shifts while resolving shifts of tumors close to the thoracic wall was more challenging. Rotational shifts in the H and N and lung region of +6° and more could be detected using inroom PET and partly using inbeam PET. Comparing inroom PET to inbeam PET no obvious trend was found. However, among the inroom scenarios a longer measurement time was found to be advantageous. Conclusions: This study scopes the use of various particle therapy

  15. Facile preparation of nitrogen-doped hierarchical porous carbon with high performance in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Kun [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Kong, Ling-Bin, E-mail: konglb@lut.cn [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Shen, Kui-Wen; Dai, Yan-Hua; Shi, Ming; Hu, Bing [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Luo, Yong-Chun; Kang, Long [School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China)

    2016-02-28

    Graphical abstract: Preparing and activating process of nitrogen-doped hierarchical porous carbon (NHPC). - Highlights: • The well-defined PAN-b-PMMA copolymer was synthesized by atom transfer radical polymerization with narrow molecular weight distribution. • Nitrogen-doped hierarchical porous structure (NHPC) was prepared through a simple carbonization procedure of PAN-b-PMMA precursor. • NHPC possessed hierarchical porous structure with high BET surface area of 257 m{sup 2} g{sup −1} and DFT mesopore size of 14.61 nm. • Effects of activation conditions on supercapacitive behavior were systematically studied. - Abstract: The nitrogen-doped hierarchical porous carbon (NHPC) material was successfully prepared through a simple carbonization procedure of well-defined diblock copolymer precursor containing nitrogen-enriched carbon source, i.e., polyacrylonitrile (PAN), and asacrificial block, i.e., polymethylmethacrylate (PMMA). PAN-b-PMMA diblock copolymer was synthesized by atom transfer radical polymeriation (ATRP) with narrow molecular weight distribution. The as-obtained NHPC possessed nitrogen-doped hierarchical porous structure with high BET surface area of 257 m{sup 2} g{sup −1} and Nonlocal density functional theory (NLDFT) mesopore size of 14.61 nm. Surface activated nitrogen-doped hierarchical porous carbon (A-NHPC) materials were obtained by subsequent surface activation with HNO{sub 3} solution. The effects of activation conditions on supercapacitive behavior were systematically studied, a maximum specific capacitance of 314 F g{sup −1} at a current density of 0.5 A g{sup −1} was achieved in 2 M KOH aqueous electrolyte. Simultaneously, it exhibited excellent rate capability of 67.8% capacitance retention as the current density increased from 0.5 to 20 A g{sup −1} and superior cycling performance of 90% capacitance retention after 10,000 cycles at the current density of 2 A g{sup −1}.

  16. Facile preparation of nitrogen-doped hierarchical porous carbon with high performance in supercapacitors

    International Nuclear Information System (INIS)

    Yan, Kun; Kong, Ling-Bin; Shen, Kui-Wen; Dai, Yan-Hua; Shi, Ming; Hu, Bing; Luo, Yong-Chun; Kang, Long

    2016-01-01

    Graphical abstract: Preparing and activating process of nitrogen-doped hierarchical porous carbon (NHPC). - Highlights: • The well-defined PAN-b-PMMA copolymer was synthesized by atom transfer radical polymerization with narrow molecular weight distribution. • Nitrogen-doped hierarchical porous structure (NHPC) was prepared through a simple carbonization procedure of PAN-b-PMMA precursor. • NHPC possessed hierarchical porous structure with high BET surface area of 257 m"2 g"−"1 and DFT mesopore size of 14.61 nm. • Effects of activation conditions on supercapacitive behavior were systematically studied. - Abstract: The nitrogen-doped hierarchical porous carbon (NHPC) material was successfully prepared through a simple carbonization procedure of well-defined diblock copolymer precursor containing nitrogen-enriched carbon source, i.e., polyacrylonitrile (PAN), and asacrificial block, i.e., polymethylmethacrylate (PMMA). PAN-b-PMMA diblock copolymer was synthesized by atom transfer radical polymeriation (ATRP) with narrow molecular weight distribution. The as-obtained NHPC possessed nitrogen-doped hierarchical porous structure with high BET surface area of 257 m"2 g"−"1 and Nonlocal density functional theory (NLDFT) mesopore size of 14.61 nm. Surface activated nitrogen-doped hierarchical porous carbon (A-NHPC) materials were obtained by subsequent surface activation with HNO_3 solution. The effects of activation conditions on supercapacitive behavior were systematically studied, a maximum specific capacitance of 314 F g"−"1 at a current density of 0.5 A g"−"1 was achieved in 2 M KOH aqueous electrolyte. Simultaneously, it exhibited excellent rate capability of 67.8% capacitance retention as the current density increased from 0.5 to 20 A g"−"1 and superior cycling performance of 90% capacitance retention after 10,000 cycles at the current density of 2 A g"−"1.

  17. The Educational Facilities Professional's Practical Guide to Reducing the Campus Carbon Footprint

    Science.gov (United States)

    Hignite, Karla

    2009-01-01

    As more institutions respond to the American College & University Presidents Climate Commitment, or are otherwise responsible for campus environmental stewardship, this implementation guide gives educational facilities professionals a practical framework for moving forward in their unique role within this process. The intent is to help facilities…

  18. In Search of the Economic Sustainability of Hadron Therapy: The Real Cost of Setting Up and Operating a Hadron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Vanderstraeten, Barbara, E-mail: barbara.vanderstraeten@uzgent.be [Department of Radiotherapy, Ghent University Hospital, Gent (Belgium); Verstraete, Jan [Department of Radiation Oncology, University Hospital Gasthuisberg, Leuven (Belgium); De Croock, Roger [Belgian Hadron Therapy Center Foundation, Brussels (Belgium); De Neve, Wilfried; Lievens, Yolande [Department of Radiotherapy, Ghent University Hospital, Gent (Belgium)

    2014-05-01

    Purpose: To determine the treatment cost and required reimbursement for a new hadron therapy facility, considering different technical solutions and financing methods. Methods and Materials: The 3 technical solutions analyzed are a carbon only (COC), proton only (POC), and combined (CC) center, each operating 2 treatment rooms and assumed to function at full capacity. A business model defines the required reimbursement and analyzes the financial implications of setting up a facility over time; activity-based costing (ABC) calculates the treatment costs per type of patient for a center in a steady state of operation. Both models compare a private, full-cost approach with public sponsoring, only taking into account operational costs. Results: Yearly operational costs range between €10.0M (M = million) for a publicly sponsored POC to €24.8M for a CC with private financing. Disregarding inflation, the average treatment cost calculated with ABC (COC: €29,450; POC: €46,342; CC: €46,443 for private financing; respectively €16,059, €28,296, and €23,956 for public sponsoring) is slightly lower than the required reimbursement based on the business model (between €51,200 in a privately funded POC and €18,400 in COC with public sponsoring). Reimbursement for privately financed centers is very sensitive to a delay in commissioning and to the interest rate. Higher throughput and hypofractionation have a positive impact on the treatment costs. Conclusions: Both calculation methods are valid and complementary. The financially most attractive option of a publicly sponsored COC should be balanced to the clinical necessities and the sociopolitical context.

  19. In Search of the Economic Sustainability of Hadron Therapy: The Real Cost of Setting Up and Operating a Hadron Facility

    International Nuclear Information System (INIS)

    Vanderstraeten, Barbara; Verstraete, Jan; De Croock, Roger; De Neve, Wilfried; Lievens, Yolande

    2014-01-01

    Purpose: To determine the treatment cost and required reimbursement for a new hadron therapy facility, considering different technical solutions and financing methods. Methods and Materials: The 3 technical solutions analyzed are a carbon only (COC), proton only (POC), and combined (CC) center, each operating 2 treatment rooms and assumed to function at full capacity. A business model defines the required reimbursement and analyzes the financial implications of setting up a facility over time; activity-based costing (ABC) calculates the treatment costs per type of patient for a center in a steady state of operation. Both models compare a private, full-cost approach with public sponsoring, only taking into account operational costs. Results: Yearly operational costs range between €10.0M (M = million) for a publicly sponsored POC to €24.8M for a CC with private financing. Disregarding inflation, the average treatment cost calculated with ABC (COC: €29,450; POC: €46,342; CC: €46,443 for private financing; respectively €16,059, €28,296, and €23,956 for public sponsoring) is slightly lower than the required reimbursement based on the business model (between €51,200 in a privately funded POC and €18,400 in COC with public sponsoring). Reimbursement for privately financed centers is very sensitive to a delay in commissioning and to the interest rate. Higher throughput and hypofractionation have a positive impact on the treatment costs. Conclusions: Both calculation methods are valid and complementary. The financially most attractive option of a publicly sponsored COC should be balanced to the clinical necessities and the sociopolitical context

  20. Attention Therapy Improves Reading Comprehension in Adjudicated Teens in a Residential Facility

    Science.gov (United States)

    Shelley-Tremblay, John; Langhinrichsen-Rohling, Jennifer; Eyer, Joshua

    2012-01-01

    This study quantified the influence of visual Attention Therapy (AT) on reading skills and Coherent Motion Threshold (CMT) in adjudicated teens with moderate reading disabilities (RD) residing in a residential alternative sentencing program. Forty-two students with below-average reading scores were identified using standardized reading…

  1. Facile synthesis of nanorod-type graphitic carbon nitride/Fe2O3 composite with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Wang, Jiangpeng; Li, Changqing; Cong, Jingkun; Liu, Ziwei; Zhang, Hanzhuo; Liang, Mei; Gao, Junkuo; Wang, Shunli; Yao, Juming

    2016-01-01

    Here we report a facile synthesis of nanorod-type graphitic carbon nitride/Fe 2 O 3 composite (Fe 2 O 3 -g-C 3 N 4 ) by using Fe-melamine supramolecular framework as precursor. The chemical and optical properties of the nanocomposites are well-characterized. The Fe 2 O 3 -g-C 3 N 4 nanocomposite demonstrated excellent photocatalytic activities under visible light due to the efficient utilization of sunlight and the construction of Z-scheme electron transfer pathway. The results indicated that it could be a promising approach for the preparation of efficient g-C 3 N 4 nanocomposites photocatalysts by using metal-melamine supramolecular framework as precursors. - Graphical abstract: Nanorod-type graphitic carbon nitride/Fe 2 O 3 composite (Fe 2 O 3 -g-C 3 N 4 ) was synthesized by using Fe-melamine supramolecular framework as precursor. The Fe 2 O 3 -g-C 3 N 4 nanocomposite demonstrated excellent photocatalytic activities under visible light. Display Omitted - Highlights: • Nanorod-type graphitic carbon nitride/Fe 2 O 3 composite (Fe 2 O 3 -g-C 3 N 4 ) was synthesized. • Fe 2 O 3 -g-C 3 N 4 showed strong optical absorption in the visible-light region. • The Fe 2 O 3 -g-C 3 N 4 nanocomposite demonstrated excellent photocatalytic activities.

  2. In-treatment tests for the monitoring of proton and carbon-ion therapy with a large area PET system at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, V., E-mail: valeria.rosso@pi.infn.it [Department of Physics, University of Pisa and INFN, Pisa (Italy); Battistoni, G. [INFN Sezione di Milano, Milano (Italy); Belcari, N.; Camarlinghi, N. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Ciocca, M. [Fondazione CNAO, Pavia (Italy); Collini, F. [Department of Physical Sciences, Earth and Environment, University of Siena and INFN, Pisa (Italy); Ferretti, S.; Kraan, A.C.; Lucenò, S. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Molinelli, S.; Pullia, M. [Fondazione CNAO, Pavia (Italy); Sportelli, G.; Zaccaro, E.; Del Guerra, A. [Department of Physics, University of Pisa and INFN, Pisa (Italy)

    2016-07-11

    One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly {sup 15}O and {sup 11}C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm{sup 2} and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.

  3. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    Science.gov (United States)

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm

  4. Efficient and facile fabrication of hierarchical carbon foams with abundant nanoscale pores for use in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Wei; Yang, Gui Jun; Yang, Tae Hyeon; Jung, Yong Ju [Dept. of Chemical Engineering, Korea University of Technology and Education (KOREATECH), Cheonan (Korea, Republic of); Liu, Shan Tang [School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan (China)

    2017-03-15

    Hierarchical carbon foams (HCFs) with micro-, meso-, and macropores were successfully synthesized via a two-step process: (1) polymerization in oil-in-water (O/W) emulsions without any hard templates and (2) carbonization at 850°C. With the aim of both enhancing the stability of the emulsion and forming a micro- and mesoporous structure during the carbonization process, potassium citrate was introduced in an aqueous solution of resorcinol and formaldehyde. A series of HCFs were fabricated by changing the mass ratio of potassium citrate to total carbon sources from 0.25 to 1.5. The effect of potassium citrate on the porous structure of HCFs was investigated through nitrogen sorption tests. The prepared HCFs exhibited well-developed porous structures of micro-, meso- and macropores and high surface areas. The structural characteristics of the HCFs, including pore size distribution, surface area, and porosity, were significantly dependent on the amount of potassium citrate. It was concluded that potassium citrate greatly contributed to the formation of carbon foams with nano-sized pore structures and high porosity. Interestingly, it was found that when the mass ratio of potassium citrate to total carbon sources was 0.5, the HCFs showed the highest specific surface area (⁓1360 m{sup 2}/g). Furthermore, the capacitive performances of the HCFs were evaluated in a 6.0 M KOH aqueous solution using typical electrochemical methods such as cyclic voltammetry and galvanostatic charge/discharge tests. The capacitance of the HCFs tended to increase with the increase in surface area. In particular, the HCFs with the highest surface area also exhibited excellent electrochemical properties (high capacitance of 224 F/g at 1.0 A/g, high rate capability of 191 F/g at 10.0 A/g). These features may be attributed to both the resulting interconnected pore structure that is easily accessible to ions and the high surface area. We believe that this synthesis strategy can be easily

  5. Effect of distance to radiation treatment facility on use of radiation therapy after mastectomy in elderly women

    International Nuclear Information System (INIS)

    Punglia, Rinaa S.; Weeks, Jane C.; Neville, Bridget A.; Earle, Craig C.

    2006-01-01

    Purpose: We sought to study the effect of distance to the nearest radiation treatment facility on the use of postmastectomy radiation therapy (PMRT) in elderly women. Methods and Materials: Using data from the linked Surveillance, Epidemiology, and End Results-Medicare (SEER-Medicare) database, we analyzed 19,787 women with Stage I or II breast cancer who received mastectomy as definitive surgery during 1991 to 1999. Multivariable logistic regression was used to investigate the association of distance with receipt of PMRT after adjusting for clinical and sociodemographic factors. Results: Overall 2,075 patients (10.5%) treated with mastectomy received PMRT. In addition to cancer and patient characteristics, in our primary analysis, increasing distance to the nearest radiation treatment facility was independently associated with a decreased likelihood of receiving PMRT (OR 0.996 per additional mile, p = 0.01). Secondary analyses revealed that the decline in PMRT use appeared at distances of more than 25 miles and was statistically significant for those patients living more than 75 miles from the nearest radiation facility (odds of receiving PMRT of 0.58 [95% CI 0.34-0.99] vs. living within 25 miles of such a facility). The effect of distance on PMRT appeared to be more pronounced with increasing patient age (>75 years). Variation in the effect of distance on radiation use between regions of the country and nodal status was also identified. Conclusions: Oncologists must be cognizant of the potential barrier to quality care that is posed by travel distance, especially for elderly patients; and policy makers should consider this fact in resource allocation decisions about radiation treatment centers

  6. Thermal and chemical analysis of carbon dioxide reforming of methane using the out-of-pile test facility

    International Nuclear Information System (INIS)

    Huang Ziyong; Ohashi, Hirofumi; Inagaki, Yoshiyuki

    2000-03-01

    In the Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of steam reforming of natural gas (its main composition is methane(CH 4 )) using nuclear heat (10 MW, 1178 K) supplied by the High Temperature Engineering Test Reactor (HTTR). Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the prototype. The out-of-pile test facility simulates key components downstream to an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 : 30 and has a hydrogen production capacity of 110 Nm 3 /h using an electric heater as a reactor substitute. The test facility is presently under construction. Reforming of natural gas with carbon dioxide CO 2 (CO 2 reforming) using the out-of-pile test facility is also being considered. In recent years, catalytic reforming of natural gas with CO 2 to synthesis gas (CO and H 2 ) has been proposed as one of the most promising technologies for utilization of those two greenhouse gases. Numerical analysis on heat and mass balance has practical significance in CO 2 reforming when the steam reforming process is adopted in the out-of-pile test. Numerical analysis of CO 2 reforming and reforming of natural gas with CO 2 and steam (CO 2 +H 2 O reforming) have been carried out using the mathematical model. Results such as the methane conversion rate, product gas composition, and the components temperature distribution considering the effects of helium gas temperature, reforming pressure, molar ratio of process gases and so on have been obtained in the numerical analysis. Heat and mass balance of the out-of-pile test facility considering chemical reactions are evaluated well. The methane conversation rates are about 0.36 and 0.35 which correspond to the equilibrium at 1085 and 1100 K for

  7. Thermal and chemical analysis of carbon dioxide reforming of methane using the out-of-pile test facility

    Energy Technology Data Exchange (ETDEWEB)

    Huang Ziyong [Institute of Nuclear Energy Technology, Tsinghua University (China); Ohashi, Hirofumi; Inagaki, Yoshiyuki [Department of Advanced Nuclear Heat Technology, Oarai Research Establishment, Japan Atomic Energy Research Institute, Oarai, Ibaraki (Japan)

    2000-03-01

    In the Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of steam reforming of natural gas (its main composition is methane(CH{sub 4})) using nuclear heat (10 MW, 1178 K) supplied by the High Temperature Engineering Test Reactor (HTTR). Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the prototype. The out-of-pile test facility simulates key components downstream to an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 : 30 and has a hydrogen production capacity of 110 Nm{sup 3}/h using an electric heater as a reactor substitute. The test facility is presently under construction. Reforming of natural gas with carbon dioxide CO{sub 2} (CO{sub 2} reforming) using the out-of-pile test facility is also being considered. In recent years, catalytic reforming of natural gas with CO{sub 2} to synthesis gas (CO and H{sub 2}) has been proposed as one of the most promising technologies for utilization of those two greenhouse gases. Numerical analysis on heat and mass balance has practical significance in CO{sub 2} reforming when the steam reforming process is adopted in the out-of-pile test. Numerical analysis of CO{sub 2} reforming and reforming of natural gas with CO{sub 2} and steam (CO{sub 2}+H{sub 2}O reforming) have been carried out using the mathematical model. Results such as the methane conversion rate, product gas composition, and the components temperature distribution considering the effects of helium gas temperature, reforming pressure, molar ratio of process gases and so on have been obtained in the numerical analysis. Heat and mass balance of the out-of-pile test facility considering chemical reactions are evaluated well. The methane conversation rates are about 0.36 and 0.35 which

  8. 13 Facile application de la RMN du carbone-13 à l'identification et à ...

    African Journals Online (AJOL)

    AKA BOKO

    de bois [13] en utilisant l'analyse directe avec RMN du carbone-13 assistée par ordinateur sans séparation préalable ont démontré la facilité et fiabilité de cette méthode éminemment non invasive. Dans une étude antérieure, nous avons appliqué cette méthodologie dans l'analyse qualitative et quantitative des sucres.

  9. Intramolecular oxidative deselenization of acylselenoureas: a facile synthesis of benzoxazole amides and carbonic anhydrase inhibitors.

    Science.gov (United States)

    Angeli, A; Peat, T S; Bartolucci, G; Nocentini, A; Supuran, C T; Carta, F

    2016-12-28

    A mild, efficient and one pot procedure to access benzoxazoles using easily accessible acylselenoureas as starting materials has been discovered. Mechanistic studies revealed a pH dependent intramolecular oxidative deselenization, with ring closure due to an intramolecular nucleophilic attack of a phenoxide ion. All the benzoxazoles herein reported possessed a primary sulfonamide zinc binding group and showed effective inhibitory action on the enzymes, carbonic anhydrases.

  10. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Castell, W.; Di Paolo, H.; Baldo, M.; Bergueiro, J.

    2011-01-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas.

  11. Biological dosimetry studies for boron neutron capture therapy at the RA-1 research reactor facility

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.; Castillo, Jorge

    2004-01-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminescent dosimeters to characterize the BNCT facility developed at the RA-1 research reactor operated by the National Atomic Energy Commission in Buenos Aires. Biological dosimetry was performed employing the hamster cheek pouch oral cancer model previously validated for BNCT studies by our group. Results indicate that the RA-1 neutron source produces useful dose rates for BNCT studies but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications. (author)

  12. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Facile synthesis of NiS anchored carbon nanofibers for high-performance supercapacitors

    Science.gov (United States)

    Xu, Jinling; Zhang, Li; Xu, Guancheng; Sun, Zhipeng; Zhang, Chi; Ma, Xin; Qi, Chunling; Zhang, Lu; Jia, Dianzeng

    2018-03-01

    Transition metal sulfide compounds with carbon materials are promising for high-performance supercapacitors. Carbon nanofibers (CNFs) wrapped with NiS nanoparticles were herein obtained through electrospinning and calcination. NiS nanoparticles in composite nanofibers are covered by a layer of graphitic carbon, which not only increase the conductivity but also provide active regions for nanoparticle growth to prevent aggregation. The CNFs-NiS electrode has high specific capacity of 177.1 mAh g-1 at 1 A g-1 (0.41 mAh cm-2 at a current density of 2.3 mA cm-2) and long-term cycling stability, with 88.7% capacitance retention after 5000 cycles. The excellent electrochemical activity may be attributed to the accessible specific surface, unique porous structure of CNFs and high specific capacitance of NiS. In addition, the asymmetric supercapacitor has an enhanced volumetric energy density of 13.32 mWh cm-3 at a volumetric power density of 180 mW cm-3 and high cycling stability, with 89.5% capacitance retention after 5000 cycles. It also successfully lights up a light-emitting diode. The CNFs-NiS composite has significant potential applications in supercapacitor.

  14. Photocatalytic degradation of organic contaminants under solar light using carbon dot/titanium dioxide nanohybrid, obtained through a facile approach

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, Deepshikha; Karak, Niranjan, E-mail: karakniranjan@gmail.com

    2016-07-15

    Highlights: • Nitrogen containing carbon dot and carbon dot/TiO{sub 2} nanohybrid (CD@TiO{sub 2}) are synthesized without any additional doping of passivating agent. • The photocatalytic efficacy of CD@TiO{sub 2} is found to be the best as compared to the bare TiO{sub 2}, CD and nanohybrid of TiO{sub 2} in presence of carbon dot. • Up-conversion luminescence of CD promotes the degradation activity of synthesized CD@TiO{sub 2} under visible light. • The hazardous contaminants like phenol, benzene and pesticide are efficiently degraded by CD@TiO{sub 2} under normal sunlight. - Abstract: In the present study, a novel, simple and green method was developed to synthesize highly luminescent nitrogen containing carbon dot (CD) using carbon resources like bio-based citric acid and glycerol in the presence of cost free cow urine. The as-synthesized CD showed exciting wavelength dependent down- and up-conversion flourescence properties. To utilize the advantage of up-conversion flourescence, a nanohybrid (CD@TiO{sub 2}) was synthesized from the above carbon resources and titanium butoxide through a facile one pot single step hydrothermal protocol. Nanomaterials like bare TiO{sub 2} and nanohybrid of TiO{sub 2} in presence of CD (CD/TiO{sub 2}) were also synthesized for comparison purpose. The optical properties and structural characteristics of the prepared CD, bare TiO{sub 2}, CD@TiO{sub 2} and CD/TiO{sub 2} were examined by Fourier transform infrared (FTIR), UV–vis and fluorescence spectroscopic, scanning electron microscopic (SEM), transmission electron microscopic (TEM) and X-ray diffraction (XRD) studies. The elemental compositions of bare CD and CD@TiO{sub 2} nanohybrid were obtained from EDX analyses. The poor crystalline nature and narrow distribution of spherical CD and anatase form of TiO{sub 2} were confirmed from XRD and TEM studies. Amongst the studied nanomaterials, CD@TiO{sub 2} exhibited the most promising photocatalytic degradation of organic

  15. Photocatalytic degradation of organic contaminants under solar light using carbon dot/titanium dioxide nanohybrid, obtained through a facile approach

    International Nuclear Information System (INIS)

    Hazarika, Deepshikha; Karak, Niranjan

    2016-01-01

    Highlights: • Nitrogen containing carbon dot and carbon dot/TiO 2 nanohybrid (CD@TiO 2 ) are synthesized without any additional doping of passivating agent. • The photocatalytic efficacy of CD@TiO 2 is found to be the best as compared to the bare TiO 2 , CD and nanohybrid of TiO 2 in presence of carbon dot. • Up-conversion luminescence of CD promotes the degradation activity of synthesized CD@TiO 2 under visible light. • The hazardous contaminants like phenol, benzene and pesticide are efficiently degraded by CD@TiO 2 under normal sunlight. - Abstract: In the present study, a novel, simple and green method was developed to synthesize highly luminescent nitrogen containing carbon dot (CD) using carbon resources like bio-based citric acid and glycerol in the presence of cost free cow urine. The as-synthesized CD showed exciting wavelength dependent down- and up-conversion flourescence properties. To utilize the advantage of up-conversion flourescence, a nanohybrid (CD@TiO 2 ) was synthesized from the above carbon resources and titanium butoxide through a facile one pot single step hydrothermal protocol. Nanomaterials like bare TiO 2 and nanohybrid of TiO 2 in presence of CD (CD/TiO 2 ) were also synthesized for comparison purpose. The optical properties and structural characteristics of the prepared CD, bare TiO 2 , CD@TiO 2 and CD/TiO 2 were examined by Fourier transform infrared (FTIR), UV–vis and fluorescence spectroscopic, scanning electron microscopic (SEM), transmission electron microscopic (TEM) and X-ray diffraction (XRD) studies. The elemental compositions of bare CD and CD@TiO 2 nanohybrid were obtained from EDX analyses. The poor crystalline nature and narrow distribution of spherical CD and anatase form of TiO 2 were confirmed from XRD and TEM studies. Amongst the studied nanomaterials, CD@TiO 2 exhibited the most promising photocatalytic degradation of organic pollutants like benzene and phenol as well as an anthrogenic pesticide under sunlight.

  16. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

    2007-11-01

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated.

  17. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

    Science.gov (United States)

    Millot, M.; Celliers, P. M.; Sterne, P. A.; Benedict, L. X.; Correa, A. A.; Hamel, S.; Ali, S. J.; Baker, K. L.; Berzak Hopkins, L. F.; Biener, J.; Collins, G. W.; Coppari, F.; Divol, L.; Fernandez-Panella, A.; Fratanduono, D. E.; Haan, S. W.; Le Pape, S.; Meezan, N. B.; Moore, A. S.; Moody, J. D.; Ralph, J. E.; Ross, J. S.; Rygg, J. R.; Thomas, C.; Turnbull, D. P.; Wild, C.; Eggert, J. H.

    2018-04-01

    Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shock velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.

  18. Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators

    Science.gov (United States)

    Clark, D. S.; Kritcher, A. L.; Yi, S. A.; Zylstra, A. B.; Haan, S. W.; Weber, C. R.

    2018-03-01

    Indirect drive implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] have now tested three different ablator materials: glow discharge polymer plastic, high density carbon, and beryllium. How do these different ablators compare in current and proposed implosion experiments on NIF? What are the relative advantages and disadvantages of each? This paper compares these different ablator options in capsule-only simulations of current NIF experiments and potential future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition on NIF.

  19. Dose impact of a carbon fiber couch for stereotactic body radiation therapy of lung tumors

    International Nuclear Information System (INIS)

    Tominaga, Hirofumi; Kanetake, Nagisa; Kawasaki, Keiichi; Iwashita, Yuki; Sakata, Junichi; Okuda, Tomoko; Araki, Fujio; Shimohigashi, Yoshinobu; Tomiyama, Yuki

    2013-01-01

    The aim of this study was to measure the dose attenuation caused by a carbon fiber radiation therapy table (Imaging Couch Top; ICT, BrainLab) and to evaluate the dosimetric impact of ICT during stereotactic body radiation therapy (SBRT) in lung tumors. The dose attenuation of ICT was measured using an ionization chamber and modeled by means of a treatment planning system (TPS). SBRT was planned with and without ICT in a lung tumor phantom and ten cases of clinical lung tumors. The results were analyzed from isocenter doses and a dose-volume histogram (DVH): D 95 , D mean , V 20 , V 5 , homogeneity index (HI), and conformity index (CI). The dose attenuation of the ICT modeled with TPS agreed to within ±1% of the actually measured values. The isocenter doses, D 95 and D mean with and without ICT showed differences of 4.1-5% for posterior single field and three fields in the phantom study, and differences of 0.6-2.4% for five fields and rotation in the phantom study and six fields in ten clinical cases. The dose impact of ICT was not significant for five or more fields in SBRT. It is thus possible to reduce the dose effect of ICT by modifying the beam angle and beam weight in the treatment plan. (author)

  20. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy

    Science.gov (United States)

    Neves, Luís F. F.; Krais, John J.; Van Rite, Brent D.; Ramesh, Rajagopal; Resasco, Daniel E.; Harrison, Roger G.

    2013-09-01

    This paper focuses on the targeting of single-walled carbon nanotubes (SWNTs) for the treatment of breast cancer with minimal side effects using photothermal therapy. The human protein annexin V (AV) binds specifically to anionic phospholipids expressed externally on the surface of tumour cells and endothelial cells that line the tumour vasculature. A 2 h incubation of the SWNT-AV conjugate with proliferating endothelial cells followed by washing and near-infrared (NIR) irradiation at a wavelength of 980 nm was enough to induce significant cell death; there was no significant cell death with irradiation or the conjugate alone. Administration of the same conjugate i.v. in BALB/c female mice with implanted 4T1 murine mammary at a dose of 0.8 mg SWNT kg-1 and followed one day later by NIR irradiation of the tumour at a wavelength of 980 nm led to complete disappearance of implanted 4T1 mouse mammary tumours for the majority of the animals by 11 days since the irradiation. The combination of the photothermal therapy with the immunoadjuvant cyclophosphamide resulted in increased survival. The in vivo results suggest the SWNT-AV/NIR treatment is a promising approach to treat breast cancer.

  1. Highly Selective Photothermal Therapy by a Phenoxylated-Dextran-Functionalized Smart Carbon Nanotube Platform.

    Science.gov (United States)

    Han, Seungmin; Kwon, Taeyun; Um, Jo-Eun; Haam, Seungjoo; Kim, Woo-Jae

    2016-05-01

    Near-infrared (NIR) photothermal therapy using biocompatible single-walled carbon nanotubes (SWNTs) is advantageous because as-produced SWNTs, without additional size control, both efficiently absorb NIR light and demonstrate high photothermal conversion efficiency. In addition, covalent attachment of receptor molecules to SWNTs can be used to specifically target infected cells. However, this technique interrupts SWNT optical properties and inevitably lowers photothermal conversion efficiency and thus remains major hurdle for SWNT applications. This paper presents a smart-targeting photothermal therapy platform for inflammatory disease using newly developed phenoxylated-dextran-functionalized SWNTs. Phenoxylated dextran is biocompatible and efficiently suspends SWNTs by noncovalent π-π stacking, thereby minimizing SWNT bundle formations and maintaining original SWNT optical properties. Furthermore, it selectively targets inflammatory macrophages by scavenger-receptor binding without any additional receptor molecules; therefore, its preparation is a simple one-step process. Herein, it is experimentally demonstrated that phenoxylated dextran-SWNTs (pD-SWNTs) are also biocompatible, selectively penetrate inflammatory macrophages over normal cells, and exhibit high photothermal conversion efficiency. Consequently, NIR laser-triggered macrophage treatment can be achieved with high accuracy by pD-SWNT without damaging receptor-free cells. These smart targeting materials can be a novel photothermal agent candidate for inflammatory disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Facile Synthesis of a Palladium-Doped Polyaniline-Modified Carbon Nanotube Composites for Supercapacitors

    Science.gov (United States)

    Giri, Soumen; Ghosh, Debasis; Malas, Asish; Das, Chapal Kumar

    2013-08-01

    Supercapacitors have evolved as the premier choice of the era for storing huge amounts of charge in the field of energy storage devices, but it is still necessary to enhance their performance to meet the increasing requirements of future systems. This could be achieved either through advancing the interfaces of the material at the nanoscale or by using novel material compositions. We report a high-performance material composition prepared by combining a transition metal (palladium)-doped conductive polymer with multiwalled carbon nanotubes (MWCNTs). MWCNTs/palladium-doped polyaniline (MWCNTs/Pd/PANI) composites and multiwalled carbon nanotube/polyaniline (MWCNTs/PANI) composites (for comparison) were prepared via in situ oxidative polymerization of aniline monomer. The reported composites were characterized by Fourier-transform infrared (FTIR), x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) studies. FESEM and TEM studies indicated the narrow size distribution of the π-conjugated polymer-protected palladium nanoparticles on the surface of the carbon nanotubes. All the electrochemical characterizations were executed using a three-electrode system in 1 M H2SO4 electrolyte. Cyclic voltammetry (CV) analysis was performed to observe the capacitive performance and redox behavior of the composites. The ion transfer behavior and cyclic stability of the composites were investigated by electrochemical impedance spectroscopy (EIS) analysis and cyclic charge-discharge (CCD) testing, respectively. The MWCNTs/Pd/PANI composite was found to exhibit an especially high specific capacitance value of 920 F/g at scan rate of 2 mV/s.

  3. Facile synthesis of B-type carbonated nanoapatite with tailored microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, Magdalena Lassinantti, E-mail: magdalena.gualtieri@unimore.it [Dipartimento Ingegneria “Enzo Ferrari”, Università degli studi di Modena e Reggio Emilia, I-41125 Modena (Italy); Romagnoli, Marcello, E-mail: marcello.romagnoli@unimore.it [Dipartimento Ingegneria “Enzo Ferrari”, Università degli studi di Modena e Reggio Emilia, I-41125 Modena (Italy); Hanuskova, Miriam, E-mail: Miriam.hanuskova@unimore.it [Dipartimento Ingegneria “Enzo Ferrari”, Università degli studi di Modena e Reggio Emilia, I-41125 Modena (Italy); Fabbri, Elena, E-mail: Elena.fabbri@unimore.it [Dipartimento Ingegneria “Enzo Ferrari”, Università degli studi di Modena e Reggio Emilia, I-41125 Modena (Italy); Gualtieri, Alessandro F., E-mail: Alessandro.gualtieri@unimore.it [Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Modena e Reggio Emilia, I-41121 Modena (Italy)

    2014-12-15

    Nanolime and a phosphate-based chelating agent were used to synthesize B-type carbonated apatite. Developed Rietveld refinement strategies allowed one to determine process yield, product crystallinity as well as structural (unit cell) and microstructural (size, strain) parameters. The effect of synthesis temperature (20–60 °C) as well as Ca/P ratio (1.5–2.5) and solid content (10–30 wt%) of the starting batch on these properties were investigated. FTIR, TEM and gas adsorption data provided supporting evidence. The process yield was 42–60 wt% and found to be governed by the Ca/P ratio. The purified products had high specific surface area (107–186 m{sup 2}/g) and crystallinity (76–97%). The unit cell parameters, correlated to the degree of structural carbonate, were sensitive to the Ca/P ratio. Instead, temperature governed the microstructural parameters. Less strained and larger crystals were obtained at higher temperatures. Long-term aging up to 6 months at 20 °C compensated for higher crystal growth kinetics at higher temperature. - Graphical abstract: Controlled synthesis of carbonated apatite at moderate temperatures using nanolime and sodiumhexametaphosphate as starting reagent. - Highlights: • Chemical synthesis of nano-sized apatite with tailored microstructure was performed. • Colloidal Ca(OH){sub 2} and a phosphorus-based chelating agents were used as reagents. • The method is simple and reproducible which facilitate industrial process scale-up. • Rietveld refinement strategies for product characterization were developed. • Rietveld analyses provided yield, microstructural and structure information.

  4. Facile synthesis of B-type carbonated nanoapatite with tailored microstructure

    International Nuclear Information System (INIS)

    Gualtieri, Magdalena Lassinantti; Romagnoli, Marcello; Hanuskova, Miriam; Fabbri, Elena; Gualtieri, Alessandro F.

    2014-01-01

    Nanolime and a phosphate-based chelating agent were used to synthesize B-type carbonated apatite. Developed Rietveld refinement strategies allowed one to determine process yield, product crystallinity as well as structural (unit cell) and microstructural (size, strain) parameters. The effect of synthesis temperature (20–60 °C) as well as Ca/P ratio (1.5–2.5) and solid content (10–30 wt%) of the starting batch on these properties were investigated. FTIR, TEM and gas adsorption data provided supporting evidence. The process yield was 42–60 wt% and found to be governed by the Ca/P ratio. The purified products had high specific surface area (107–186 m 2 /g) and crystallinity (76–97%). The unit cell parameters, correlated to the degree of structural carbonate, were sensitive to the Ca/P ratio. Instead, temperature governed the microstructural parameters. Less strained and larger crystals were obtained at higher temperatures. Long-term aging up to 6 months at 20 °C compensated for higher crystal growth kinetics at higher temperature. - Graphical abstract: Controlled synthesis of carbonated apatite at moderate temperatures using nanolime and sodiumhexametaphosphate as starting reagent. - Highlights: • Chemical synthesis of nano-sized apatite with tailored microstructure was performed. • Colloidal Ca(OH) 2 and a phosphorus-based chelating agents were used as reagents. • The method is simple and reproducible which facilitate industrial process scale-up. • Rietveld refinement strategies for product characterization were developed. • Rietveld analyses provided yield, microstructural and structure information

  5. A Facile and Mild Synthesis of Trisubstituted Allylic Sulfones from Morita-Baylis-Hillman Carbonates

    Directory of Open Access Journals (Sweden)

    Lin Jiang

    2015-05-01

    Full Text Available An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH carbonates with sodium sulfinates has been developed. Under the optimized reaction conditions, a series of trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%–99% with good to high selectivity (Z/E from 79:21 to >99:1. Compared with known synthetic methods, the current protocol features mild reaction temperature, high efficiency and easily available reagents.

  6. A facile and mild synthesis of trisubstituted allylic sulfones from Morita-Baylis-Hillman carbonates.

    Science.gov (United States)

    Jiang, Lin; Li, Yong-Gen; Zhou, Jiang-Feng; Chuan, Yong-Ming; Li, Hong-Li; Yuan, Ming-Long

    2015-05-07

    An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH) carbonates with sodium sulfinates has been developed. Under the optimized reaction conditions, a series of trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%-99%) with good to high selectivity (Z/E from 79:21 to >99:1). Compared with known synthetic methods, the current protocol features mild reaction temperature, high efficiency and easily available reagents.

  7. Facility for studying the effects of elevated carbon dioxide concentration and increased temperature on crops

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, D.W.; Mitchell, R.A.C.; Franklin, J.; Mitchell, V.J.; Driscoll, S.P.; Delgado, E. (Institute of Arable Crops Research, Harpenden (United Kingdom). Dept. of Biochemistry and Physiology)

    1993-06-01

    The requirements for the experimental study of the effects of global climate change conditions on plants are outlined. A semi-controlled plant growth facility is described which allows the study of elevated CO[sub 2] and temperature, and their interaction on the growth of plants under radiation and temperature conditions similar to the field. During an experiment on winter wheat (cv. Mercia), which ran from December 1990 through to August 1991, the facility maintained mean daytime CO[sub 2] concentrations of 363 and 692 cm[sup 3] m[sup -3] for targets of 350 and 700 cm[sup 3] m[sup 3] respectively. Temperatures were set to follow outside ambient or outside ambient +4[degree]C, and hourly means were within 0.5[degree]C of the target for 92% of the time for target temperatures greater than 6[degree]C. Total photosynthetically active radiation incident on the crop (solar radiation supplemented by artificial light with natural photoperiod) was 2% greater than the total measured outside over the same period.

  8. Organic carbon movement through two SWRO facilities from source water to pretreatment to product with relevance to membrane biofouling

    KAUST Repository

    Alshahri, Abdullah Hassan Mohammed

    2016-12-29

    The presence of algae, bacteria, various fractions of natural organic matter (NOM), and transparent exopolymer particles (TEP) in the raw water, after each pretreatment process and in the permeate and concentrate streams, were measured at two SWRO plants to assess biofouling potential. It was found that the most significant process controlling the concentration of algae, bacteria, and the biopolymer and humic substances was the intake type with the subsurface intake discharge showing significant reductions. The mixed media filtration process was marginally useful in removing some TOC and NOM, but had little effect on TEP removal. Some bacterial regrowth may be occurring in the cartridge filters, but the evidence is inconsistent. Significant quantities of the biopolymer and humic substance concentrations were found to be retained in the membranes, but the concentrations were significantly greater in the facility using an open-ocean intake. Bacteria and TEP were found in the permeate stream, which may document bacterial regrowth and TEP production downstream of the membrane process. Measurements of the organic carbon passage through SWRO facilities can be successfully used to evaluate pretreatment process effectiveness and to make SWRO plant operational improvements.

  9. Job-Related Stress in Forensic Interviewers of Children with Use of Therapy Dogs Compared with Facility Dogs or No Dogs

    Directory of Open Access Journals (Sweden)

    Diane Walsh

    2018-03-01

    Full Text Available Sexually abused children providing essential testimony regarding crimes in forensic interviews now sometimes are provided facility dogs or therapy dogs for comfort. Facility dogs are extensively trained to work with forensic interviewers; when using therapy dogs in interviews, volunteers are the dog handlers. Interviews can impact child welfare workers’ mental health causing secondary traumatic stress (STS. To investigate this stress, first data were gathered on stress retrospectively for when interviewers initially started the job prior to working with a dog, and then currently, from forensic interviewers using a facility dog, a therapy or pet dog, or no dog. These retrospective and secondary traumatic stress scale (STSS data compared job stress among interviewers of children using: a certified, workplace facility dog (n = 16, a volunteer’s trained therapy dog or the interviewer’s pet dog (n = 13/3, or no dog (n = 198. Retrospective scores of therapy dog and no dog interviewers’ stress were highest for the first interviewing year 1 and then declined. Extremely or very stressful retrospective scores differed among the three groups in year 1 (p < 0.038, and were significantly elevated for the therapy dog group as compared with the facility dog group (p < 0.035. All interviewing groups had elevated STSS scores; when compared with other healthcare groups that have been studied, sub-scores were especially high for Avoidance: a psychological coping mechanism to avoid dealing with a stressor. STSS scores differed among groups (p < 0.016, primarily due to Avoidance sub-scores (p < 0.009, reflecting higher Avoidance scores for therapy dog users than no dog users (p < 0.009. Facility dog users more consistently used dogs during interviews and conducted more interviews than therapy/pet dog users; both groups favored using dogs. Interviewers currently working with therapy dogs accompanied by their volunteers reported

  10. Facile synthesis of graphene oxide @ mesoporous carbon hybrid nanocomposites for lithium sulfur battery

    International Nuclear Information System (INIS)

    Bao, Weizhai; Zhang, Zhian; Chen, Wei; Zhou, Chengkun; Lai, Yanqing; Li, Jie

    2014-01-01

    Graphical abstract: - Highlights: • A novel design and synthesis of GO@Meso-C using GO@MOF-5 as precursor. • GO@Meso-C hybrid material as a host material was applied for sulfur cathode. • Electrochemical performances were improved in sulfur cathode using Go@Meso-C. - Abstract: We present a design and synthesis of a hierarchical architecture of graphene oxide @ mesoporous carbon (GO@Meso-C) using graphene oxide @ metal-organic framework hybrid materials (GO@MOF-5) as both the template and precursor. Active sulfur is encapsulated into the GO@Meso-C matrix prepared via carbonize GO@MOF-5 polyhedrons for high performance lithium sulfur battery. The initial and 100th cycle discharge capacity of GO@Meso-C/S sulfur cathode are as high as 1122 mAh g −1 and 820 mAh g −1 at a current rate of 0.2 C. The remarkably high special capacity and capacity retention rate indicate that the GO@Meso-C is a promising host material for the sulfur cathode in the lithium sulfur battery applications

  11. A facile synthesis of palladium nanoparticles supported on functional carbon nanotubes and its novel catalysis for ethanol electrooxidation.

    Science.gov (United States)

    Chen, Xiao-mei; Lin, Zhi-jie; Jia, Tian-tian; Cai, Zhi-min; Huang, Xiao-li; Jiang, Ya-qi; Chen, Xi; Chen, Guo-nan

    2009-09-14

    In this study, a novel material, palladium nanoparticles-carboxylic functional carbon nanotubes (PdNPs-CFCNTs), based on PdNPs supported on CFCNTs was synthesized by a facile spontaneous redox method. The material reveals high electrochemical activity and excellent catalytic characteristic for alcohol electrooxidation on a glassy carbon electrode (GCE) in an alkaline medium. The preparation mechanism was studied by the galvanic cell effect between PdCl(4)(2-) and functional defect sites on CFCNTs. Results from UV-visible absorption spectroscopy and electrochemical impedance spectroscopy revealed that the reduction of PdCl(4)(2-) to metallic Pd was successfully achieved. Morphologies of PdNPs supporting on CFCNTs (PdNPs-CFCNTs) were also characterized by transmission electron micrograph. PdNPs-CFCNTs with the best electrocatalytic characteristics were obtained under the condition as: the weight ratio of Pd to CFCNTs was kept at 2:1, the temperature was kept at 70 degrees C in the synthesis, and the scan rate of the applied potential was selected at 60 mV s(-1). The results indicate that PdNPs-CFCNTs could be a great potential material in direct ethanol fuel cells and ethanol sensors.

  12. Fluorescent carbon dots: facile synthesis at room temperature and its application for Fe{sup 2+} sensing

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Sai Jin; Chu, Zhao Jun; Zuo, Jun; Zhao, Xiao Jing; Huang, Cheng Zhi [East China University of Technology, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation (China); Zhang, Li, E-mail: zhangli8@ncu.edu.cn [Nanchang University, College of Chemistry (China)

    2017-02-15

    A new route for one-pot preparation of carbon dots (CDs) was developed at room temperature using PEG400 as both the carbon source and passitive agent. The new method possesses the advantages of facile, rapid, energy-saving, without any external stimulus and environment friendly. By changing the content of NaOH, the PEG400-CDs with blue-emitting, yellow-emitting, orange red-emitting and red-emitting were obtained, and the formation mechanism were carefully investigated. In addition, a sensitive fluorescence sensor were developed for Fe{sup 2+} detection based on PEG400-CDs since the fluorescence of PEG400-CDs could be enhanced by Fe{sup 2+}. It was found that there is a good linear relationship between the enhanced fluorescence and Fe{sup 2+} concentration in the range of 0.5 to 2.0 μmol·L{sup −1} with the detection limit of 6.0 × 10{sup −8} mol·L{sup −1}, and Fe{sup 2+} in water samples was also determined with high accuracy and repeatability.

  13. Soy flour-derived carbon dots: facile preparation, fluorescence enhancement, and sensitive Fe{sup 3+} detection

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Liyang; Xu, Qian [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China); Zheng, Xing [Bei Jing Sinen En-Tech Co., Ltd (China); Zhang, Weina; Zheng, Jingtang, E-mail: jtzheng03@163.com; Wu, Mingbo, E-mail: wumb@upc.edu.cn; Wu, Wenting, E-mail: wuwt@upc.edu.cn [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China)

    2016-08-15

    Soy flour-derived carbon quantum dots (C-dots) were successfully synthesized via a facile one-step hydrothermal approach. The as-prepared C-dots exhibit an average diameter of 2.5 nm and the crystalline lattices are consistent with graphitic carbons. Meanwhile, they show strong photoluminescence (quantum yield is 7.85 %), good water solubility, and high photostability. Importantly, structural defects of the C-dots were designed to obtain controllable fluorescence, which was achieved by changing the contents of N defects and O defects of C-dots. Our results indicate that N defects can more effectively enhance the fluorescence emission than O defects. As the preparation temperature increases, the N defects are fine-tuned by substituting for partial O defects, reducing nonradiative recombination and enhancing fluorescence intensity, which is further confirmed by surface passivation. Due to its fine photostability, high sensitivity, and good selectivity for Fe{sup 3+}, the as-prepared C-dots were used as fluorescence probes for detection of ferric ion. The detection limitation comes to 0.021 µM.

  14. A facile synthesis of palladium nanoparticles supported on functional carbon nanotubes and its novel catalysis for ethanol electrooxidation

    International Nuclear Information System (INIS)

    Chen Xiaomei; Lin Zhijie; Jia Tiantian; Cai Zhimin; Huang Xiaoli; Jiang Yaqi; Chen Xi; Chen Guonan

    2009-01-01

    In this study, a novel material, palladium nanoparticles-carboxylic functional carbon nanotubes (PdNPs-CFCNTs), based on PdNPs supported on CFCNTs was synthesized by a facile spontaneous redox method. The material reveals high electrochemical activity and excellent catalytic characteristic for alcohol electrooxidation on a glassy carbon electrode (GCE) in an alkaline medium. The preparation mechanism was studied by the galvanic cell effect between PdCl 4 2- and functional defect sites on CFCNTs. Results from UV-visible absorption spectroscopy and electrochemical impedance spectroscopy revealed that the reduction of PdCl 4 2- to metallic Pd was successfully achieved. Morphologies of PdNPs supporting on CFCNTs (PdNPs-CFCNTs) were also characterized by transmission electron micrograph. PdNPs-CFCNTs with the best electrocatalytic characteristics were obtained under the condition as: the weight ratio of Pd to CFCNTs was kept at 2:1, the temperature was kept at 70 o C in the synthesis, and the scan rate of the applied potential was selected at 60 mV s -1 . The results indicate that PdNPs-CFCNTs could be a great potential material in direct ethanol fuel cells and ethanol sensors.

  15. A facile synthesis of palladium nanoparticles supported on functional carbon nanotubes and its novel catalysis for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaomei; Lin Zhijie; Jia Tiantian; Cai Zhimin; Huang Xiaoli; Jiang Yaqi [Department of Chemistry and Key Laboratory of Analytical Sciences of the Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Chen Xi, E-mail: xichen@xmu.edu.cn [Department of Chemistry and Key Laboratory of Analytical Sciences of the Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Chen Guonan [Key Laboratory of Analysis and Detection Technology for Food Safety (Fuzhou University), Ministry of Education, Department of Chemistry, Fuzhou University, Fuzhou, Fujian, 350002 (China)

    2009-09-14

    In this study, a novel material, palladium nanoparticles-carboxylic functional carbon nanotubes (PdNPs-CFCNTs), based on PdNPs supported on CFCNTs was synthesized by a facile spontaneous redox method. The material reveals high electrochemical activity and excellent catalytic characteristic for alcohol electrooxidation on a glassy carbon electrode (GCE) in an alkaline medium. The preparation mechanism was studied by the galvanic cell effect between PdCl{sub 4}{sup 2-} and functional defect sites on CFCNTs. Results from UV-visible absorption spectroscopy and electrochemical impedance spectroscopy revealed that the reduction of PdCl{sub 4}{sup 2-} to metallic Pd was successfully achieved. Morphologies of PdNPs supporting on CFCNTs (PdNPs-CFCNTs) were also characterized by transmission electron micrograph. PdNPs-CFCNTs with the best electrocatalytic characteristics were obtained under the condition as: the weight ratio of Pd to CFCNTs was kept at 2:1, the temperature was kept at 70 {sup o}C in the synthesis, and the scan rate of the applied potential was selected at 60 mV s{sup -1}. The results indicate that PdNPs-CFCNTs could be a great potential material in direct ethanol fuel cells and ethanol sensors.

  16. Facile Fabrication of Composition-Tuned Ru-Ni Bimetallics in Ordered Mesoporous Carbon for Levulinic Acid Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Gao, Guang; Zhang, Xin; Li, Fuwei [ChinaU - Petroleum; (Chinese Aca. Sci.)

    2016-02-04

    Bimetallic catalysts are of great importance due to their unique catalytic properties. However, their conventional synthesis requires tedious multistep procedures and prolonged synthetic time, and the resulting bimetallics usually disperse unevenly and show poor stability. It is challenging to develop a facile and step-economic synthetic methodology for highly efficient bimetallic catalysts. In this study, we report an elegant metal complex-involved multicomponent assembly route to highly efficient Ru–Ni bimetallics in ordered mesoporous carbons (OMC). The fabrication of composition-tuned Ru–Ni bimetallics in OMC (RuxNi1–x–OMC, x = 0.5–0.9) was facilely realized via in situ construction of CTAB-directed cubic Ia3d chitosan-ruthenium–nickel–silica mesophase before pyrolysis and silica removal. The resulting RuxNi1–x–OMC materials are in-depth characterized with X-ray diffraction, N2 adsorption–desorption, transmission electron microscopy, infrared spectrum, and X-ray absorption fine structure. This facile fabrication method renders homogeneously dispersed Ru–Ni bimetallics embedded in the mesoporous carbonaceous framework and creates a highly active and stable Ru0.9Ni0.1–OMC catalyst for the hydrogenation of levulinic acid (LA) to prepare γ-valerolactone (GVL), a biomass-derived platform molecule with wide application in the preparation of renewable chemicals and liquid transportation fuels. A high TOF (>2000 h–1) was obtained, and the Ru0.9Ni0.1–OMC catalyst could be used at least 15 times without obvious loss of its catalytic performance.

  17. Delivery of electroconvulsive therapy in Canada: a first national survey report on usage, treatment practice, and facilities.

    Science.gov (United States)

    Martin, Barry A; Delva, Nicholas John; Graf, Peter; Gosselin, Caroline; Enns, Murray W; Gilron, Ian; Jewell, Mark; Lawson, James Stuart; Milev, Roumen; Patry, Simon; Chan, Peter K Y

    2015-06-01

    The aims of this study were to document electroconvulsive therapy use in Canada with respect to treatment facilities and caseloads based on a survey of practice (Canadian Electroconvulsive Therapy Survey/Enquete Canadienne Sur Les Electrochocs-CANECTS/ECANEC) and to consider these findings in the context of guideline recommendations. All 1273 registered hospitals in Canada were contacted, and 175 sites were identified as providing electroconvulsive therapy; these sites were invited to complete a comprehensive questionnaire. The survey period was calendar year 2006 or fiscal year 2006/2007. National usage rates were estimated from the responses. Sixty-one percent of the sites completed the questionnaire; a further 10% provided caseload data. Seventy were identified as general; 31, as university teaching; and 21, as provincial psychiatric/other single specialty (psychiatric) hospitals. Caseload volumes ranged from a mean of fewer than 2 to greater than 30 treatments per week. Estimated national usage during the 1-year survey period was 7340 to 8083 patients (2.32-2.56 per 10,000 population) and 66,791 to 67,424 treatments (2.11-2.13 per 1000 population). The diagnostic indications, admission status, and protocols for course end points are described. The usage rates are in keeping with earlier Canadian data and with those from other jurisdictions. The difficulty obtaining caseload data from individual hospitals is indicative of the need for standardized data collection to support both clinical research and quality assurance. The wide variation in protocols for number of treatments per course indicates a need for better informed clinical guidelines. The broad range of caseload volumes suggests the need to review the economies of scale in the field.

  18. Fluorescent carbon nanodots facilely extracted from Coca Cola for temperature sensing

    Science.gov (United States)

    Li, Feiming; Chen, Qiaoling; Cai, Zhixiong; Lin, Fangyuan; Xu, Wei; Wang, Yiru; Chen, Xi

    2017-12-01

    A novel method for the fabrication of carbon nanodots (CDs) is introduced: extracting CDs from the well-known soft drink Coca Cola via dialysis. The obtained CDs are of good monodispersity with a narrow size distribution (average diameter of 3.0 nm), good biocompatibility, high solubility (about 180 mg ml-1) and stable fluorescence even at a high salt concentration. Furthermore, they are sensitive to the temperature change with a linear relationship between the fluorescence intensity and temperature from 5 °C-95 °C. The CDs have been applied in high stable temperature sensing. This protocol is quite simple, green, cost-effective and technologically simple, which might be used for a range of applications including sensing, catalysts, drug and gene delivery, and so on.

  19. Microbial growth associated with granular activated carbon in a pilot water treatment facility.

    Science.gov (United States)

    Wilcox, D P; Chang, E; Dickson, K L; Johansson, K R

    1983-01-01

    The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC. PMID:6625567

  20. Mussel inspired polymerized P(TA-TETA) for facile functionalization of carbon nanotube

    Science.gov (United States)

    Si, Shuxian; Gao, Tingting; Wang, Junhao; Liu, Qinze; Zhou, Guowei

    2018-03-01

    This article describes a novel and effective approach for non-covalent modification of carbon nanotube (CNT) via the mussel inspired polymerization of tannic acid (TA) and triethylenetetramine (TETA) and subsequent surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photograph were used to study the successful preparation of polymer brush grafted CNT (CNT-P(TA-TETA)-PDMAEMA) composite as well as the pH-responsive behavior of the composite. Furthermore, by amine protonation and in situ reduction, gold nanoparticles were successfully uploaded and the catalytic property of CNT-P(TA-TETA)-PDMAEMA/Au was investigated. We believe that the surface functionalization strategy can be extended to graphene and other substrates, and the surface properties can be regulated by grafting polymer brushes with different functionalities.

  1. Monte Carlo Simulations of New 2D Ripple Filters for Particle Therapy Facilities

    DEFF Research Database (Denmark)

    Ringbæk, Toke Printz; Weber, Uli; Petersen, Jørgen B.B.

    2014-01-01

    ). At the Universitätsklinikum Gießen und Marburg, Germany, a new second generation RiFi has been developed with two-dimensional groove structures. In this work we evaluate this new RiFi design. Methods: The Monte Carlo (MC) code SHIELD-HIT12A is used to determine the RiFi- induced inhomogeneities in the dose distribution...... for various ion types, initial particle energies and distances from the RiFi to the phantom surface as well as in the depth of the phantom. The beam delivery and monitor system (BAMS) used at Marburg, the Heidelberg Ionentherapiezentrum (HIT), Universit ̈tsklinikum Heidelberg, Germany and the GSI...... Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany is modeled and simulated. To evaluate the PTV dose coverage performance of the new RiFi design, the heavy ion treatment planning system TRiP98 is used for dose optimization. SHIELD-HIT12A is used to prepare the facility-specific physical dose kernels...

  2. Job-Related Stress in Forensic Interviewers of Children with Use of Therapy Dogs Compared with Facility Dogs or No Dogs

    Science.gov (United States)

    Walsh, Diane; Yamamoto, Mariko; Willits, Neil H.; Hart, Lynette A.

    2018-01-01

    Sexually abused children providing essential testimony regarding crimes in forensic interviews now sometimes are provided facility dogs or therapy dogs for comfort. Facility dogs are extensively trained to work with forensic interviewers; when using therapy dogs in interviews, volunteers are the dog handlers. Interviews can impact child welfare workers’ mental health causing secondary traumatic stress (STS). To investigate this stress, first data were gathered on stress retrospectively for when interviewers initially started the job prior to working with a dog, and then currently, from forensic interviewers using a facility dog, a therapy or pet dog, or no dog. These retrospective and secondary traumatic stress scale (STSS) data compared job stress among interviewers of children using: a certified, workplace facility dog (n = 16), a volunteer’s trained therapy dog or the interviewer’s pet dog (n = 13/3), or no dog (n = 198). Retrospective scores of therapy dog and no dog interviewers’ stress were highest for the first interviewing year 1 and then declined. Extremely or very stressful retrospective scores differed among the three groups in year 1 (p pet dog users; both groups favored using dogs. Interviewers currently working with therapy dogs accompanied by their volunteers reported they had experienced heightened stress when they began their jobs; their high stress levels still persisted, indicating lower inherent coping skills and perhaps greater empathy among interviewers who later self-selected to work with therapy dogs. Results reveal extreme avoidant stress for interviewers witnessing children who are suffering and their differing coping approaches. PMID:29594160

  3. Table sugar as preparation and carbon coating reagent for facile synthesis and coating of rod-shaped MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Ahmed M., E-mail: ahmedh242@yahoo.co [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Abuzeid, Hanaa M. [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Nikolowski, Kristian; Ehrenberg, Helmut [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany)

    2010-05-14

    Rod-shaped {alpha}-MnO{sub 2} has been synthesized by a novel and facile wet chemical method using simple sugar and potassium permanganate. Redox reaction between KMnO{sub 4} and sucrose is carried out in an acidic medium. Acidic medium provides a reducing character to sucrose through its decomposition to elemental carbon. Carbon coating process was done using simple sugar also as a source for carbon in an absolute ethanol with heating the mixture of {alpha}-MnO{sub 2} and sugar at 350 {sup o}C for an hour in an ambient atmosphere. A single phase of cryptomelane-like phase MnO{sub 2} was observed from XRD patterns for bare and carbon coated samples. TGA analysis shows the presence of carbon layer through more weight loss percent of carbon coated sample in comparison with that of carbon free MnO{sub 2}. Both virgin and carbon coated MnO{sub 2} have high thermal stability due to high percent of K inside the tunnel determined from ICP analysis. Transmission Electron Microscope (TEM) showed a rod-shaped crystal for both the parent and carbon coated {alpha}-MnO{sub 2} and confirmed the presence of a thin film of carbon around MnO{sub 2} particles. Both XRD and TEM investigations show that the prepared powders are in nano-scale. Initial capacity of about 140 mAh/g was obtained for the parent and carbon coated samples. The results show also that carbon coating process improves the capacity retention and the efficiency of {alpha}-MnO{sub 2} in comparison with that carbon free sample.

  4. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Thatar Vento, V.; Bergueiro, J.; Cartelli, D.; Valda, A.A.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  5. A geographical assessment of vegetation carbon stocks and greenhouse gas emissions on potential microalgae-based biofuel facilities in the United States.

    Science.gov (United States)

    Quiroz Arita, Carlos; Yilmaz, Özge; Barlak, Semin; Catton, Kimberly B; Quinn, Jason C; Bradley, Thomas H

    2016-12-01

    The microalgae biofuels life cycle assessments (LCA) present in the literature have excluded the effects of direct land use change (DLUC) from facility construction under the assumption that DLUC effects are negligible. This study seeks to model the greenhouse gas (GHG) emissions of microalgae biofuels including DLUC by quantifying the CO 2 equivalence of carbon released to the atmosphere through the construction of microalgae facilities. The locations and types of biomass and Soil Organic Carbon that are disturbed through microalgae cultivation facility construction are quantified using geographical models of microalgae productivity potential including consideration of land availability. The results of this study demonstrate that previous LCA of microalgae to biofuel processes have overestimated GHG benefits of microalgae-based biofuels production by failing to include the effect of DLUC. Previous estimations of microalgae biofuel production potential have correspondingly overestimated the volume of biofuels that can be produced in compliance with U.S. environmental goals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Carbon Ion Radiation Therapy With Concurrent Gemcitabine for Patients With Locally Advanced Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shinoto, Makoto, E-mail: shinoto@saga-himat.jp [Hospital of Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Ion Beam Therapy Center, SAGA HIMAT Foundation, Tosu (Japan); Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Yamada, Shigeru [Hospital of Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Terashima, Kotaro [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Yasuda, Shigeo [Hospital of Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Shioyama, Yoshiyuki [Ion Beam Therapy Center, SAGA HIMAT Foundation, Tosu (Japan); Honda, Hiroshi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Kamada, Tadashi; Tsujii, Hirohiko [Hospital of Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Saisho, Hiromitsu [Department of Internal Medicine and Clinical Oncology, Kaken Hospital, Chemotherapy Research Institute, Chiba (Japan); Asano, Takehide; Yamaguchi, Taketo; Amano, Hodaka; Ishihara, Takeshi; Otsuka, Masayuki; Matsuda, Masamichi; Kainuma, Osamu; Funakoshi, Akihiro; Furuse, Junji; Nakagori, Toshio; Okusaka, Takuji; and others

    2016-05-01

    Purpose: To determine, in the setting of locally advanced pancreatic cancer, the maximum tolerated dose of carbon ion radiation therapy (C-ion RT) and gemcitabine dose delivered concurrently and to estimate local effect and survival. Methods and Materials: Eligibility included pathologic confirmation of pancreatic invasive ductal carcinomas and radiographically unresectable disease without metastasis. Concurrent gemcitabine was administered on days 1, 8, and 15, and the dose levels were escalated from 400 to 1000 mg/m{sup 2} under the starting dose level (43.2 GyE) of C-ion RT. The dose levels of C-ion RT were escalated from 43.2 to 55.2 GyE at 12 fractions under the fixed recommended gemcitabine dose determined. Results: Seventy-six patients were enrolled. Among the 72 treated patients, dose-limiting toxicity was observed in 3 patients: grade 3 infection in 1 patient and grade 4 neutropenia in 2 patients. Only 1 patient experienced a late grade 3 gastric ulcer and bleeding 10 months after C-ion RT. The recommended dose of gemcitabine with C-ion RT was found to be 1000 mg/m{sup 2}. The dose of C-ion RT with the full dose of gemcitabine (1000 mg/m{sup 2}) was safely increased to 55.2 GyE. The freedom from local progression rate was 83% at 2 years using the Response Evaluation Criteria in Solid Tumors. The 2-year overall survival rates in all patients and in the high-dose group with stage III (≥45.6 GyE) were 35% and 48%, respectively. Conclusions: Carbon ion RT with concurrent full-dose gemcitabine was well tolerated and effective in patients with unresectable locally advanced pancreatic cancer.

  7. The application of carbon nanotubes in target drug delivery systems for cancer therapies

    Science.gov (United States)

    Zhang, Wuxu; Zhang, Zhenzhong; Zhang, Yingge

    2011-10-01

    Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.

  8. High-density carbon ablator experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    MacKinnon, A. J., E-mail: mackinnon2@llnl.gov; Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2014-05-15

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 ± 20 km/s with no observed ablator mixing into the hot spot.

  9. Metal-Carbon Interactions on Reduced Graphene Oxide under Facile Thermal Treatment: Microbiological and Cell Assay

    Directory of Open Access Journals (Sweden)

    N. L. V. Carreño

    2017-01-01

    Full Text Available Silver-functionalized reduced graphene oxide (Ag-rGO nanosheets were prepared by single chemical and thermal processes, with very low concentration of silver. The resulting carbon framework consists of reduced graphene oxide (rGO sheets or 3D networks, decorated with anchored silver nanoparticles. The Ag-rGO nanosheets were dispersed into a polymer matrix and the composites evaluated for use as biological scaffolds. The rGO material in poly(dimethylsiloxane (PDMS has been tested for antimicrobial activity against Gram-positive Staphylococcus aureus (S. Aureus bacteria, after exposure times of 24 and 120 hours, as well as in the determination of cell viability on cultures of fibroblast cells (NIH/3T3. Using 1 mL of Ag-rGO in PDMS the antibacterial effectiveness against Staphylococcus aureus was limited, showing an increased amount of Colony Forming Units (CFU, after 24 hours of contact. In the cell viability assay, after 48 hours of contact, the group of 1 mL of Ag-rGO with PDMS was the only group that increased cell viability when compared to the control group. In this context, it is believed these behaviors are due to the increase in cell adhesion capacity promoted by the rGO. Thus, the Ag-rGO/PDMS hybrid nanocomposite films can be used as scaffolds for tissue engineering, as they limit antimicrobial activity.

  10. Sampling and monitoring of carbon-14 in gaseous effluents from nuclear facilities - a literature survey

    International Nuclear Information System (INIS)

    Snellman, M.

    1988-12-01

    C-14 compounds produced in the coolant may be released mainly together with off-gas and waste water from the coolant purification and treatment system. In reactors the release of C-14 will occur mainly in gaseous effluents and only a few percent in liquid effluents. Reported releases from BWRs range from 260 to 670 GBq/GW(e) x year and from 90 to 430 GBq/GW(e) x year for PWRs. At BWRs the condenser air ejector contributes the main inplant release pathway, whereas in PWRs the off-gas treatment vents are the main pathway for C-14 release. C-14 sampling methods depend generally on the C-14 being in the form of CO 2 . The off-gas discharges from BWRs are mainly in the form of CO 2 whereas in PWRs a major fraction of the released C-14 is in the form of hydrocarbons or carbon monoxide (generally 80-100%). Sampling systems in PWRs should therefore be equipped with a catalytic oxidizer to convert all C-14 to CO 2 before trapping. The purpose of this study is to provide information on the techniques available for sampling and monitoring C-14

  11. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy.

    Science.gov (United States)

    Bauer, J; Sommerer, F; Mairani, A; Unholtz, D; Farook, R; Handrack, J; Frey, K; Marcelos, T; Tessonnier, T; Ecker, S; Ackermann, B; Ellerbrock, M; Debus, J; Parodi, K

    2014-08-21

    Monte Carlo (MC) simulations of beam interaction and transport in matter are increasingly considered as essential tools to support several aspects of radiation therapy. Despite the vast application of MC to photon therapy and scattered proton therapy, clinical experience in scanned ion beam therapy is still scarce. This is especially the case for ions heavier than protons, which pose additional issues like nuclear fragmentation and varying biological effectiveness. In this work, we present the evaluation of a dedicated framework which has been developed at the Heidelberg Ion Beam Therapy Center to provide automated FLUKA MC simulations of clinical patient treatments with scanned proton and carbon ion beams. Investigations on the number of transported primaries and the dimension of the geometry and scoring grids have been performed for a representative class of patient cases in order to provide recommendations on the simulation settings, showing that recommendations derived from the experience in proton therapy cannot be directly translated to the case of carbon ion beams. The MC results with the optimized settings have been compared to the calculations of the analytical treatment planning system (TPS), showing that regardless of the consistency of the two systems (in terms of beam model in water and range calculation in different materials) relevant differences can be found in dosimetric quantities and range, especially in the case of heterogeneous and deep seated treatment sites depending on the ion beam species and energies, homogeneity of the traversed tissue and size of the treated volume. The analysis of typical TPS speed-up approximations highlighted effects which deserve accurate treatment, in contrast to adequate beam model simplifications for scanned ion beam therapy. In terms of biological dose calculations, the investigation of the mixed field components in realistic anatomical situations confirmed the findings of previous groups so far reported only in

  12. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities

    International Nuclear Information System (INIS)

    Fondevila, Damian; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Monica; Dosoretz, Bernardo

    2008-01-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (α max ) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining α max , which is a function of the thickness of the barrier (t E ) and the equilibrium tenth-value layer (TVL e ) of the shielding material for the nominal energy of the beam. It can be seen that α max increases for increasing TVL e (hence, beam energy) and decreases for increasing t E , with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation

  13. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities.

    Science.gov (United States)

    Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo

    2008-05-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.

  14. Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation.

    Science.gov (United States)

    Li, Yijun; Nie, Min; Wang, Qi

    2018-01-10

    Electromechanical sensors are indispensable components in functional devices and robotics application. However, the fabrication of the sensors still maintains a challenging issue that high percolation threshold and easy failure of conductive network are derived from uniaxial orientation of conductive fillers in practical melt processing. Herein, we reported a facile fabrication method to prepare a multiaxial low-density polyethylene (LDPE)/carbon fibers (CFs) tube with bidirectional controllable electrical conductivity and sensitive strain-responsive performance via rotation extrusion technology. The multidimensional helical flow is confirmed in the reverse rotation extrusion, and the CFs readily respond to the flow field leading to a multiaxial orientation in the LDPE matrix. In contrast to uniaxial LDPE/CF composites, which perform a "head to head" conjunction, multiaxial-orientated CF networks exhibit a unique multilayer structure in which the CFs with distinct orientation direction intersect in the interface, endowing the LDPE/CF composites with a low percolation threshold (15 wt %) to those of the uniaxial ones (∼35 wt %). The angles between two axes play a vital role in determining the density of the conductive networks in the interface, which is predominant in tuning the bending-responsive behaviors with a gauge factor range from 12.5 to 56.3 and the corresponding linear respond region from ∼15 to ∼1%. Such a superior performance of conductive LDPE/CF tube confirms that the design of multiaxial orientation paves a novel way to facile fabrication of advanced cost-effective CF-based smart materials, shedding light on promising applications such as smart materials and intelligent engineering monitoring.

  15. Photodynamic therapy in the cattle protozoan Tritrichomonas foetus cultivated on superhydrophilic carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Susane Moreira [Laboratory of Tissue and Cell Biology, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Pacheco-Soares, Cristina [Laboratory of Tissue and Cell Biology, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Laboratory of Dynamics of Cellular Compartments, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Marciano, Fernanda Roberta; Lobo, Anderson Oliveira [Laboratory of Biomedical Nanotechnology, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Soares da Silva, Newton, E-mail: nsoares@univap.br [Laboratory of Tissue and Cell Biology, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Laboratory of Dynamics of Cellular Compartments, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil)

    2014-03-01

    Superhydrophilic vertically aligned carbon nanotubes (VACNT-O{sub 2}) were used for the first time as scaffolds for photodynamic therapy (PDT) to induce inhibition of cell division in eukaryotic cells. VACNT-O{sub 2} scaffolds were produced on Ti substrates using plasma enhanced chemical vapor deposition technique and functionalized by oxygen plasma. Scanning electron microscopy (SEM) analysis was performed to characterize the surface changes of the protozoan and interaction with VACNT-O{sub 2}. Characterization of lipid and total protein expression was performed with protozoa that were or not treated with PDT. Quantification of protein was conducted using Qubit fluorometer and separated on a polyacrylamide gel. SEM analysis showed the release of lipid vesicles by protozoa after the PDT. These vesicles were characterized by the PKH26 fluorescent probe. The results demonstrated a greater amount of protein released after PDT than in the control. When analyzing the protein material in polyacrylamide gel, a significant protein expression of approximately 65 kDa was found. A model identified the programmed death of Tritrichomonas foetus after the PDT was also proposed. - Highlights: • VAMWCNT-O{sub 2} used for the first time as scaffolds for study in parasitic protozoan. • VAMWCNT-O{sub 2} films applied to understand spreading mechanisms of parasitic protozoan. • A release of a protein of approximately 65kDa of protozoan was also observed.

  16. Visible-light-driven dynamic cancer therapy and imaging using graphitic carbon nitride nanoparticles.

    Science.gov (United States)

    Heo, Nam Su; Lee, Sun Uk; Rethinasabapathy, Muruganantham; Lee, Eun Zoo; Cho, Hye-Jin; Oh, Seo Yeong; Choe, Sang Rak; Kim, Yeonho; Hong, Won G; Krishnan, Giribabu; Hong, Won Hi; Jeon, Tae-Joon; Jun, Young-Si; Kim, Hae Jin; Huh, Yun Suk

    2018-09-01

    Organic graphitic carbon nitride nanoparticles (NP-g-CN), less than 30 nm in size, were synthesized and evaluated for photodynamic therapy (PDT) and cell imaging applications. NP-g-CN particles were prepared through an intercalation process using a rod-like melamine-cyanuric acid adduct (MCA) as the molecular precursor and a eutectic mixture of LiCl-KCl (45:55 wt%) as the reaction medium for polycondensation. The nano-dimensional NP-g-CN penetrated the malignant tumor cells with minimal hindrance and effectively generated reactive oxygen species (ROS) under visible light irradiation, which could ablate cancer cells. When excited by visible light irradiation (λ > 420 nm), NP-g-CN introduced to HeLa and cos-7 cells generated a significant amount of ROS and killed the cancerous cells selectively. The cytotoxicity of NP-g-CN was manipulated by altering the light irradiation and the BP-g-CN caused more damage to the cancer cells than normal cells at low concentrations. As a potential non-toxic organic nanomaterial, the synthesized NP-g-CN are biocompatible with less cytotoxicity than toxic inorganic materials. The combined effects of the high efficacy of ROS generation under visible light irradiation, low toxicity, and bio-compatibility highlight the potential of NP-g-CN for PDT and imaging without further modification. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Photodynamic therapy in the cattle protozoan Tritrichomonas foetus cultivated on superhydrophilic carbon nanotube

    International Nuclear Information System (INIS)

    Machado, Susane Moreira; Pacheco-Soares, Cristina; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira; Soares da Silva, Newton

    2014-01-01

    Superhydrophilic vertically aligned carbon nanotubes (VACNT-O 2 ) were used for the first time as scaffolds for photodynamic therapy (PDT) to induce inhibition of cell division in eukaryotic cells. VACNT-O 2 scaffolds were produced on Ti substrates using plasma enhanced chemical vapor deposition technique and functionalized by oxygen plasma. Scanning electron microscopy (SEM) analysis was performed to characterize the surface changes of the protozoan and interaction with VACNT-O 2 . Characterization of lipid and total protein expression was performed with protozoa that were or not treated with PDT. Quantification of protein was conducted using Qubit fluorometer and separated on a polyacrylamide gel. SEM analysis showed the release of lipid vesicles by protozoa after the PDT. These vesicles were characterized by the PKH26 fluorescent probe. The results demonstrated a greater amount of protein released after PDT than in the control. When analyzing the protein material in polyacrylamide gel, a significant protein expression of approximately 65 kDa was found. A model identified the programmed death of Tritrichomonas foetus after the PDT was also proposed. - Highlights: • VAMWCNT-O 2 used for the first time as scaffolds for study in parasitic protozoan. • VAMWCNT-O 2 films applied to understand spreading mechanisms of parasitic protozoan. • A release of a protein of approximately 65kDa of protozoan was also observed

  18. Epithermal neutron beam design for neutron capture therapy at the Power Burst Facility and the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Parsons, D.K.; Rushton, B.L.; Nigg, D.W.

    1990-01-01

    Nuclear design studies have been performed for two reactor-based epithermal neutron beams for cancer treatment by neutron capture therapy (NCT). An intermediate-intensity epithermal beam has been designed and implemented at the Brookhaven Medical Research Reactor (BMRR). Measurements show that the BMRR design predictions for the principal characteristics of this beam are accurate. A canine program for research into the biological effects of NCT is now under way at BMRR. The design for a high-intensity epithermal beam with minimal contamination from undesirable radiation components has been finalized for the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. This design will be implemented when it is determined that human NCT trials are advisable. The PBF beam will exhibit approximately an order of magnitude improvement in absolute epithermal flux intensity over that available in the BMRR, and its angular distribution and spectral characteristics will be more advantageous for NCT. The combined effects of beam intensity, angular distribution, spectrum, and contaminant level allow the desired tumor radiation dose to be delivered in much shorter times than are possible with the currently available BMRR beam, with a significant reduction (factor of 3 to 5) in collateral dose due to beam contaminants

  19. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    International Nuclear Information System (INIS)

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros

    2009-01-01

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  20. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros [Center for Proton Therapy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2009-11-15

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  1. An accelerator-based Boron Neutron Capture Therapy (BNCT) facility based on the 7Li(p,n)7Be

    Science.gov (United States)

    Musacchio González, Elizabeth; Martín Hernández, Guido

    2017-09-01

    BNCT (Boron Neutron Capture Therapy) is a therapeutic modality used to irradiate tumors cells previously loaded with the stable isotope 10B, with thermal or epithermal neutrons. This technique is capable of delivering a high dose to the tumor cells while the healthy surrounding tissue receive a much lower dose depending on the 10B biodistribution. In this study, therapeutic gain and tumor dose per target power, as parameters to evaluate the treatment quality, were calculated. The common neutron-producing reaction 7Li(p,n)7Be for accelerator-based BNCT, having a reaction threshold of 1880.4 keV, was considered as the primary source of neutrons. Energies near the reaction threshold for deep-seated brain tumors were employed. These calculations were performed with the Monte Carlo N-Particle (MCNP) code. A simple but effective beam shaping assembly (BSA) was calculated producing a high therapeutic gain compared to previously proposed facilities with the same nuclear reaction.

  2. Facile Synthesis of Indium Sulfide/Flexible Electrospun Carbon Nanofiber for Enhanced Photocatalytic Efficiency and Its Application

    Directory of Open Access Journals (Sweden)

    Liu Han

    2017-01-01

    Full Text Available Heterojunction system has been proved as one of the best architectures for photocatalyst owing to extending specific surface area, expanding spectral response range, and increasing photoinduced charges generation, separation, and transmission, which can provide better light absorption range and higher reaction site. In this paper, Indium Sulfide/Flexible Electrospun Carbon Nanofiber (In2S3/CNF heterogeneous systems were synthesized by a facile one-pot hydrothermal method. The results from characterizations of SEM, TEM, XRD, Raman, and UV-visible diffuse reflectance spectroscopy displayed that flower-like In2S3 was deposited on the hair-like CNF template, forming a one-dimensional nanofibrous network heterojunction photocatalyst. And the newly prepared In2S3/CNF photocatalysts exhibit greatly enhanced photocatalytic activity compared to pure In2S3. In addition, the formation mechanism of the one-dimensional heterojunction In2S3/CNF photocatalyst is discussed and a promising approach to degrade Rhodamine B (RB in the photocatalytic process is processed.

  3. A facile self-assembly approach to prepare palladium/carbon nanotubes catalyst for the electro-oxidation of ethanol

    Science.gov (United States)

    Wen, Cuilian; Zhang, Xinyuan; Wei, Ying; Zhang, Teng; Chen, Changxin

    2018-02-01

    A facile self-assembly approach is reported to prepare palladium/carbon nanotubes (Pd/CNTs) catalyst for the electro-oxidation of ethanol. In this method, the Pd-oleate/CNTs was decomposed into the Pd/CNTs at an optimal temperature of 195 °C in air, in which no inert gas is needed for the thermal decomposition process due to the low temperature used and the decomposed products are also environmental friendly. The prepared Pd/CNTs catalyst has a high metallic Pd0 content and the Pd particles in the catalyst are disperse, uniform-sized with an average size of ˜2.1 nm, and evenly distributed on the CNTs. By employing our strategy, the problems including the exfoliation of the metal particles from the CNTs and the aggregation of the metal particles can be solved. Comparing with the commercial Pd/C one, the prepared Pd/CNTs catalyst exhibits a much higher electrochemical activity and stability for the electro-oxidation of ethanol in the direct ethanol fuel cells.

  4. Facile preparation of disposable immunosensor for Shigella flexneri based on multi-wall carbon nanotubes/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Guangying, E-mail: zhaogy-user@163.co [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, 149, Jiaogong Road, Hangzhou 310035, Zhejiang Province (China); Zhan Xuejia [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, 149, Jiaogong Road, Hangzhou 310035, Zhejiang Province (China)

    2010-02-28

    Based on multi-wall carbon nanotubes (MWCNT)/chitosan/horseradish peroxidase labeled antibodies to Shigella flexneri (HRP-anti-S. flexneri) biocomposite film on a screen-printed electrode (SPE) surface, a disposable immunosensor has been developed for the rapid detection of S. flexneri. The HRP-anti-S. flexneri can be entrapped into MWCNT/chitosan composite matrix without other cross-linking agent. Thionine and H{sub 2}O{sub 2} were used as the mediator and substrate, respectively. The surface morphologies of modified films were characterized by atomic force microscope (AFM). Cyclic voltammery (CV) was carried out to characterize the electrochemical properties of the immobilization of materials on the electrode surface and quantified S. flexneri. Due to the strong electrocatalytic properties of MWCNT and HRP toward H{sub 2}O{sub 2}, the response signal was significantly amplified. S. flexneri could be detected by the decrease of the reduction peak current before and after immunoreaction. Under optimal conditions, S. flexneri could be detected in the range of 10{sup 4} to 10{sup 10} cfu mL{sup -1}, with a detection limit of 2.3 x 10{sup 3} cfu mL{sup -1} (S/N = 3). Furthermore, the proposed immunosensor exhibited a satisfactory specificity, reproducibility, stability and accuracy, indicating that the proposed immunosensor has potential application for a facile, rapid and harmless immunoassay.

  5. Facile preparation of disposable immunosensor for Shigella flexneri based on multi-wall carbon nanotubes/chitosan composite

    International Nuclear Information System (INIS)

    Zhao Guangying; Zhan Xuejia

    2010-01-01

    Based on multi-wall carbon nanotubes (MWCNT)/chitosan/horseradish peroxidase labeled antibodies to Shigella flexneri (HRP-anti-S. flexneri) biocomposite film on a screen-printed electrode (SPE) surface, a disposable immunosensor has been developed for the rapid detection of S. flexneri. The HRP-anti-S. flexneri can be entrapped into MWCNT/chitosan composite matrix without other cross-linking agent. Thionine and H 2 O 2 were used as the mediator and substrate, respectively. The surface morphologies of modified films were characterized by atomic force microscope (AFM). Cyclic voltammery (CV) was carried out to characterize the electrochemical properties of the immobilization of materials on the electrode surface and quantified S. flexneri. Due to the strong electrocatalytic properties of MWCNT and HRP toward H 2 O 2 , the response signal was significantly amplified. S. flexneri could be detected by the decrease of the reduction peak current before and after immunoreaction. Under optimal conditions, S. flexneri could be detected in the range of 10 4 to 10 10 cfu mL -1 , with a detection limit of 2.3 x 10 3 cfu mL -1 (S/N = 3). Furthermore, the proposed immunosensor exhibited a satisfactory specificity, reproducibility, stability and accuracy, indicating that the proposed immunosensor has potential application for a facile, rapid and harmless immunoassay.

  6. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy

    OpenAIRE

    Misra, Santosh K.; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-01-01

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C3-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene ...

  7. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  8. Effects of carbon dioxide therapy on the healing of acute skin wounds induced on the back of rats

    Directory of Open Access Journals (Sweden)

    Maria Vitória Carmo Penhavel

    2013-05-01

    Full Text Available PURPOSE: To evaluate the healing effect of carbon dioxide therapy on skin wounds induced on the back of rats. METHODS: Sixteen rats underwent excision of a round dermal-epidermal dorsal skin flap of 2.5 cm in diameter. The animals were divided into two groups, as follows: carbon dioxide group - subcutaneous injections of carbon dioxide on the day of operation and at three, six and nine days postoperatively; control group - no postoperative wound treatment. Wounds were photographed on the day of operation and at six and 14 days postoperatively for analysis of wound area and major diameter. All animals were euthanized on day 14 after surgery. The dorsal skin and the underlying muscle layer containing the wound were resected for histopathological analysis. RESULTS: There was no statistically significant difference between groups in the percentage of wound closure, in histopathological findings, or in the reduction of wound area and major diameter at 14 days postoperatively. CONCLUSION: Under the experimental conditions in which this study was conducted, carbon dioxide therapy had no effects on the healing of acute skin wounds in rats.

  9. Facile preparation of carbon nanotubes-graphene hybrids and the effect of aspect ratio of carbon nanotubes on electrical and thermal properties of silicone rubber based composites

    Science.gov (United States)

    Zhao, Shizhen; Bai, Lu; Zheng, Junping

    2018-01-01

    Thermal exfoliation, as an effective and easily scalable method, was widely used to produce graphene (GE). In order to prevent the severe stacking of GE sheets after thermal exfoliation process, a facile technique was used to solve this problem through the barrier effect of carbon nanotubes (CNTs). Two kinds of CNTs with different aspect ratios (AR) were taken to prepare CNTs-GE hybrids using this technique, and then the effect of AR of CNTs (namely CNTs-L for low AR and CNTs-H for high AR) in the hybrids on the performance of silicone rubber (SR) composites was investigated. The results indicate that the presence of CNTs can effectively impede the stacking of GE sheets and the hybrids are dispersed uniformly in the SR matrix. With the addition of CNTs-GE hybrids, the resulted SR composites exhibit greatly improved electrical and thermal properties, especially for the composites filled with CNTs-H-GE hybrid. At the hybrids content of 3.0 wt%, the volume resistivity of CNTs-H-GE/SR composite is 5 × 104 Ω cm (about 10 orders of magnitude decrease compared with pure SR). And the thermal conductivity increases by 78% compared to the pure SR. But as for the CNTs-L-GE/SR composite, the corresponding values are 3 × 106 Ω cm and 59%, respectively. In terms of thermal stability, the CNTs-H-GE/SR composite containing 1.0 wt% hybrid exhibits the maximum improvement of initial degradation temperature (419 °C) compared with the CNTs-L-GE/SR composite (393 °C) and pure SR (365 °C).

  10. A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy

    International Nuclear Information System (INIS)

    Jung An, Su; Beak, Cheol-Ha; Lee, Kisung; Hyun Chung, Yong

    2013-01-01

    The application of hadrons such as carbon ions is being developed for the treatment of cancer. The effectiveness of such a technique is due to the eligibility of charged particles in delivering most of their energy near the end of the range, called the Bragg peak. However, accurate verification of dose delivery is required since misalignment of the hadron beam can cause serious damage to normal tissue. PET scanners can be utilized to track the carbon beam to the tumor by imaging the trail of the hadron-induced positron emitters in the irradiated volume. In this study, we designed and evaluated (through Monte Carlo simulations) an in-beam PET scanner for monitoring patient dose in carbon beam therapy. A C-shaped PET and a partial-ring PET were designed to avoid interference between the PET detectors and the therapeutic carbon beam delivery. Their performance was compared with that of a full-ring PET scanner. The C-shaped, partial-ring, and full-ring scanners consisted of 14, 12, and 16 detector modules, respectively, with a 30.2 cm inner diameter for brain imaging. Each detector module was composed of a 13×13 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals and four round 25.4 mm diameter PMTs. To estimate the production yield of positron emitters such as 10 C, 11 C, and 15 O, a cylindrical PMMA phantom (diameter, 20 cm; thickness, 20 cm) was irradiated with 170, 290, and 350 AMeV 12 C beams using the GATE code. Phantom images of the three types of scanner were evaluated by comparing the longitudinal profile of the positron emitters, measured along the carbon beam as it passed a simulated positron emitter distribution. The results demonstrated that the development of a C-shaped PET scanner to characterize carbon dose distribution for therapy planning is feasible.

  11. Particle therapy for mucosal melanoma of the head and neck. A single-institution retrospective comparison of proton and carbon ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Demizu, Y.; Fujii, O.; Terashima, K.; Mima, M.; Hashimoto, N.; Fuwa, N. [Hyogo Ion Beam Medical Center, Department of Radiology, Tatsuno, Hyogo (Japan); Niwa, Y. [Hyogo College of Medicine, Department of Radiology, Nishinomiya, Hyogo (Japan); Akagi, T. [Hyogo Ion Beam Medical Center, Department of Radiation Physics, Tatsuno, Hyogo (Japan); Daimon, T. [Hyogo College of Medicine, Department of Biostatistics, Nishinomiya, Hyogo (Japan); Murakami, M. [Dokkyo Medical University, Center for Radiation Oncology, Shimotsuga-gun, Tochigi (Japan)

    2014-02-15

    To retrospectively analyze treatment outcomes after particle therapy using protons or carbon ions for mucosal melanoma of the head and neck (HNMM) at the Hyogo Ion Beam Medical Center, as well as to compare proton therapy (PT) and carbon ion therapy (CIT). Data from 62 HNMM patients without metastasis, treated with PT or CIT between October 2003 and April 2011 were analyzed. Median patient age was 70.5 years (range 33-89 years). Of the total patients, 33 (53 %) had received PT and 29 (47 %) had undergone CIT. Protocols for 65 or 70.2 GyE in 26 fractions were used for both ion types. Median follow-up was 18.0 months (range 5.2-82.7 months). The 1-/2-year overall survival (OS) and local control (LC) rates were 93 %/61 % and 93 %/78 % for all patients, 91 %/44 % and 92 %/71 % for the PT patients and 96 %/62 % and 95 %/59 % for the CIT patients, respectively. No significant differences were observed between PT and CIT. Local recurrence was observed in 8 patients (PT: 5, CIT: 3) and 29 (PT: 18, CIT: 11) experienced distant metastases. Acute reactions were acceptable and all patients completed the planned radiotherapy. Regarding late toxicity, grade 3 or greater events were observed in 5 patients (PT: 3, CIT: 2), but no significant difference was observed between PT and CIT. Our single-institution retrospective analysis demonstrated that particle therapy for HNMM achieved good LC, but OS was unsatisfactory. There were no significant differences between PT and CIT in terms of either efficacy or toxicity. (orig.)

  12. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment

    Directory of Open Access Journals (Sweden)

    Shi J

    2013-07-01

    Full Text Available Jinjin Shi,* Rourou Ma,* Lei Wang, Jing Zhang, Ruiyuan Liu, Lulu Li, Yan Liu, Lin Hou, Xiaoyuan Yu, Jun Gao, Zhenzhong Zhang School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China*These authors contributed equally to this workAbstract: Carbon nanotubes (CNTs have shown great potential in both photothermal therapy and drug delivery. In this study, a CNT derivative, hyaluronic acid-derivatized CNTs (HA-CNTs with high aqueous solubility, neutral pH, and tumor-targeting activity, were synthesized and characterized, and then a new photodynamic therapy agent, hematoporphyrin monomethyl ether (HMME, was adsorbed onto the functionalized CNTs to develop HMME-HA-CNTs. Tumor growth inhibition was investigated both in vivo and in vitro by a combination of photothermal therapy and photodynamic therapy using HMME-HA-CNTs. The ability of HMME-HA-CNT nanoparticles to combine local specific photodynamic therapy with external near-infrared photothermal therapy significantly improved the therapeutic efficacy of cancer treatment. Compared with photodynamic therapy or photothermal therapy alone, the combined treatment demonstrated a synergistic effect, resulting in higher therapeutic efficacy without obvious toxic effects to normal organs. Overall, it was demonstrated that HMME-HA-CNTs could be successfully applied to photodynamic therapy and photothermal therapy simultaneously in future tumor therapy.Keywords: photodynamic therapy, photothermal therapy, HA-derivatized carbon nanotubes, tumor targeting, synergistic effect, hematoporphyrin monomethyl ether

  13. Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki; Abe, Takanori; Kubota, Yoshiki; Sakai, Makoto; Noda, Shin-ei; Ohno, Tatsuya; Nakano, Takashi

    2016-12-01

    Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated. Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be regarded

  14. Facile electrochemical pretreatment of multiwalled carbon nanotube - Polydimethylsiloxane paste electrode for enhanced detection of dopamine and uric acid

    Science.gov (United States)

    Buenaventura, Angelo Gabriel E.; Yago, Allan Christopher C.

    2018-05-01

    A facile electrochemical pretreatment via anodization was done on Carbon Paste Electrodes (CPEs) composed of Multiwalled Carbon Nanotubes (MWCNTs) and Polydimethylsiloxane (PDMS) binder to produce `anodized' CPEs (ACPE). Cyclic Voltammetry (CV) technique was used to anodize the CPEs. The anodization step, performed in various solutions (0.2 M NaOH(aq), 0.06 M BR Buffer at pH 7.0, and 0.2 M HNO3(aq)), were found to enhance the electrochemical properties of the ACPEs compared to non-anodized CPE. Electrochemical Impedance Spectroscopy (EIS) measurements revealed a significantly lower charge transfer resistance (Rct) for the ACPEs (4.01-6.25 kΩ) as compared to CPE (25.9 kΩ). Comparison of the reversibility analysis for Fe(CN)63-/4- redox couple showed that the ACPEs have peak current ratio (Ia/Ic) at range of 0.97-1.10 while 1.92 for the CPE; this result indicated better electrochemical reversible behaviors for Fe(CN)63-/4- redox couple using the ACPEs. CV Anodization process was further optimized by varying solution and CV parameters (i.e. pH, composition, number of cycles, and potential range), and the resulting optimized ACPE was used for enhanced detection of Dopamine (DA) and Uric Acid (UA) in the presence of excess Ascorbic Acid (AA). Employing Differential Pulse Voltammetry technique, enhanced voltammetric signal for DA and significant peak separation between DA and UA was obtained. The anodic peak currents for the oxidation of DA and UA appeared at 0.263V and 0.414 V, respectively, and it was observed to be linearly increasing with increasing concentrations of biomolecules (25-100 µM). The detection limit was determined to be 3.86 µM for DA and 5.61 µM for UA. This study showed a quick and cost-effective pretreatment for CPEs based on MWCNT-PDMS composite which lead to significant enhancement on its electrochemical properties.

  15. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    OpenAIRE

    Shaista Rafique; Rehana Sharif; Imran Rashid; Sheeba Ghani

    2016-01-01

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four pr...

  16. Designing a range modulator wheel to spread-out the Bragg peak for a passive proton therapy facility

    International Nuclear Information System (INIS)

    Jia, S. Bijan; Romano, F.; Cirrone, Giuseppe A.P.; Cuttone, G.; Hadizadeh, M.H.; Mowlavi, A.A.; Raffaele, L.

    2016-01-01

    In proton beam therapy, a Spread-Out Bragg peak (SOBP) is used to establish a uniform dose distribution in the target volume. In order to create a SOBP, several Bragg peaks of different ranges, corresponding to different entrance energies, with certain intensities (weights) should be combined each other. In a passive beam scattering system, the beam is usually extracted from a cyclotron at a constant energy throughout a treatment. Therefore, a SOBP is produced by a range modulator wheel, which is basically a rotating wheel with steps of variable thicknesses, or by using the ridge filters. In this study, we used the Geant4 toolkit to simulate a typical passive scattering beam line. In particular, the CATANA transport beam line of INFN Laboratori Nazionali del Sud (LNS) in Catania has been reproduced in this work. Some initial properties of the entrance beam have been checked by benchmarking simulations with experimental data. A class dedicated to the simulation of the wheel modulators has been implemented. It has been designed in order to be easily modified for simulating any desired modulator wheel and, hence, any suitable beam modulation. By using some auxiliary range-shifters, a set of pristine Bragg peaks was obtained from the simulations. A mathematical algorithm was developed, using the simulated pristine dose profiles as its input, to calculate the weight of each pristine peak, reproduce the SOBP, and finally generate a flat dose distribution. Therefore, once the designed modulator has been realized, it has been tested at CATANA facility, comparing the experimental data with the simulation results.

  17. Designing a range modulator wheel to spread-out the Bragg peak for a passive proton therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    Jia, S. Bijan [Physics Department, University of Bojnord, Bojnord (Iran, Islamic Republic of); Romano, F. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Cirrone, Giuseppe A.P. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Cuttone, G. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Hadizadeh, M.H. [Physics Department, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Mowlavi, A.A. [Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); ICTP, Associate Federation Scheme, Medical Physics Field, Trieste (Italy); Raffaele, L. [Azienda Ospedaliero-Universitaria “Policlinico – Vittorio Emanuele”, Catania (Italy)

    2016-01-11

    In proton beam therapy, a Spread-Out Bragg peak (SOBP) is used to establish a uniform dose distribution in the target volume. In order to create a SOBP, several Bragg peaks of different ranges, corresponding to different entrance energies, with certain intensities (weights) should be combined each other. In a passive beam scattering system, the beam is usually extracted from a cyclotron at a constant energy throughout a treatment. Therefore, a SOBP is produced by a range modulator wheel, which is basically a rotating wheel with steps of variable thicknesses, or by using the ridge filters. In this study, we used the Geant4 toolkit to simulate a typical passive scattering beam line. In particular, the CATANA transport beam line of INFN Laboratori Nazionali del Sud (LNS) in Catania has been reproduced in this work. Some initial properties of the entrance beam have been checked by benchmarking simulations with experimental data. A class dedicated to the simulation of the wheel modulators has been implemented. It has been designed in order to be easily modified for simulating any desired modulator wheel and, hence, any suitable beam modulation. By using some auxiliary range-shifters, a set of pristine Bragg peaks was obtained from the simulations. A mathematical algorithm was developed, using the simulated pristine dose profiles as its input, to calculate the weight of each pristine peak, reproduce the SOBP, and finally generate a flat dose distribution. Therefore, once the designed modulator has been realized, it has been tested at CATANA facility, comparing the experimental data with the simulation results.

  18. Dose-volume histogram analysis of hepatic toxicity related to carbon ion radiation therapy of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Yasuda, Shigeo; Kato, Hirotoshi; Tsujii, Hitohiko; Mizoe, Junetsu

    2005-01-01

    The purpose of this study is to analyze the correlation of hepatic toxicity with dose-volume factors of carbon ion radiotherapy in the liver. Forty-nine patients with hepatocellular carcinoma were treated with carbon ion radiotherapy delivered in 4 fractions over 4 to 7 days. Six patients received a total dose of 48 GyE and 43 received 52.8 GyE. The correlation of various blood biochemistry data with dose-volume histogram (DVH) data in non-cancerous liver were evaluated. The strongest significant correlation was seen between percent volume of non-cancerous liver with radiation dose more than 11 GyE (V 11 GyE ) and elevation of serum glutamic oxaloacetic transaminase (GOT) level as early adverse response after carbon ion beam radiation therapy (p=0.0003). In addition, significant correlation between DVH data and change of several other blood biochemistry data were also revealed in early phase. In late phase after carbon ion radiotherapy, the strongest significant correlation was seen between decrease of platelet count and V 26GyE (p=0.015). There was no significant correlation between other blood biochemistry data and DVH data in the late phase. It was suggested that dose-volume factors of carbon ion radiotherapy influenced only transient aggravation of liver function, which improved in the long term after irradiation. (author)

  19. Development and engineering design of a novel exocentric carbon-ion gantry for cancer therapy (the 'Riesenrad' gantry)

    International Nuclear Information System (INIS)

    Reimoser, S.A.

    2000-10-01

    The objective of the present thesis is to develop a novel gantry concept leading to a viable and efficient design for a carbon-ion gantry. Chapter 1 is meant to give some background information on radiation therapy and on the promises of ion treatment. Chapter 2 presents and summarizes existing gantry systems (in particular for protons) and briefly describes the experimental facilities for ion treatment in order to form an idea in what direction the design of an ion gantry might point. Chapter 3 is dedicated to the definition of the medical, beam-optical and mechanical constraints affecting the design of the ion gantry. The principal processes likely to take place inside the ion gantry are highlighted and the various technical systems and their interdependencies are investigated. As a result of these considerations it was decided to focus on the development of an exocentric gantry system for ion therapy, which was eventually named the 'Riesenrad' gantry. In contrast to conventional isocentric gantries, the main 90 o -bending magnet of the Riesenrad is placed on the axis of gantry rotation, hence minimizing the moment of inertia of the mobile structure and maximizing its rigidity. Several preliminary structural concepts for the Riesenrad gantry were generated, analyzed and compared in chapter 4. Finally, the variant featuring an independent telescopic cabin was chosen for further elaboration in a design phase (chapter 5). In the proposed variant, the bending magnet that sits on the axis and its counterweight (62 ton and 23 ton respectively) are supported by a central 'cage' of about 40 t. This gantry yields a higher efficiency in terms of structural weight to supported load compared to any other possible variant. A patient cabin is smoothly moved towards the desired treatment position by a system that is mechanically de-coupled from the central cage. Any desired position (that corresponds to a particular gantry angle) is achieved by vertical translation and

  20. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Neutron shielding calculations in a proton therapy facility based on Monte Carlo simulations and analytical models: Criterion for selecting the method of choice

    International Nuclear Information System (INIS)

    Titt, U.; Newhauser, W. D.

    2005-01-01

    Proton therapy facilities are shielded to limit the amount of secondary radiation to which patients, occupational workers and members of the general public are exposed. The most commonly applied shielding design methods for proton therapy facilities comprise semi-empirical and analytical methods to estimate the neutron dose equivalent. This study compares the results of these methods with a detailed simulation of a proton therapy facility by using the Monte Carlo technique. A comparison of neutron dose equivalent values predicted by the various methods reveals the superior accuracy of the Monte Carlo predictions in locations where the calculations converge. However, the reliability of the overall shielding design increases if simulation results, for which solutions have not converged, e.g. owing to too few particle histories, can be excluded, and deterministic models are being used at these locations. Criteria to accept or reject Monte Carlo calculations in such complex structures are not well understood. An optimum rejection criterion would allow all converging solutions of Monte Carlo simulation to be taken into account, and reject all solutions with uncertainties larger than the design safety margins. In this study, the optimum rejection criterion of 10% was found. The mean ratio was 26, 62% of all receptor locations showed a ratio between 0.9 and 10, and 92% were between 1 and 100. (authors)

  2. Facile synthesis of tunable carbon modified mesoporous TiO{sub 2} for visible light photocatalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiao-Na; Wang, Hui-Long, E-mail: hlwang@dlut.edu.cn; Wang, Xin-Kui; Jiang, Wen-Feng

    2017-08-01

    Highlights: • Combined hydrothermal-calcination steps were used to prepare mesoporous C-TiO{sub 2}. • Polyacrylate was employed as the carbon source. • XPS revealed the interstitial carbon modifying mode through carbonate-like species. • C-TiO{sub 2} exhibited visible light activity towards dinitro butyl phenol degradation. - Abstract: In this paper, we describe a simple and novel approach for preparing tunable carbon-modified mesoporous TiO{sub 2} photocatalysts by combining the in-situ carbonization of PAA-Ti/TiO{sub 2}, hydrothermal reaction process and post-calcination treatment. The synthesized carbon-modified mesoporous TiO{sub 2} powders were of high crystallinity, large specific surface area and good visible light response. The carbon species were formed by the carbonization of polyacrylate (PAA). The presence of carbonates was subsequently confirmed by the XPS spectra, which significantly narrow down the band gap of TiO{sub 2}. The organic group in polyacrylate served as the carbon source and carbon resulted from in-situ carbonization treatment could help to inhibit the excessive growth of TiO{sub 2} grain and enlarge the pore structure of TiO{sub 2}. The amount of carbon species could be feasibly modulated by adjusting the post-calcination temperature and the surface area of the photocatalyst was enlarged further after the partial removal of carbon species. The carbon-modified mesoporous TiO{sub 2} powders exhibit excellent reproducibility and photocatalytic performance under visible light irradiation.

  3. Review of ion beam therapy: Present and Future

    International Nuclear Information System (INIS)

    Alonso, Jose R.

    2000-01-01

    First therapy efforts at the Bevalac using neon ions took place in the 70's and 80's. Promising results led to construction of HIMAC in Chiba Japan, and more recently to therapy trials at GSI. Both these facilities are now treating patients with carbon beams. Advances in both accelerator technology and beam delivery have taken place at these two centers. Plans are well along for new facilities in Europe and Japan

  4. Association Between Facility-Level Utilization of Non-pharmacologic Chronic Pain Treatment and Subsequent Initiation of Long-Term Opioid Therapy.

    Science.gov (United States)

    Carey, Evan P; Nolan, Charlotte; Kerns, Robert D; Ho, P Michael; Frank, Joseph W

    2018-05-01

    Expert guidelines recommend non-pharmacologic treatments and non-opioid medications for chronic pain and recommend against initiating long-term opioid therapy (LTOT). We examined whether veterans with incident chronic pain receiving care at facilities with greater utilization of non-pharmacologic treatments and non-opioid medications are less likely to initiate LTOT. Retrospective cohort study PARTICIPANTS: Veterans receiving primary care from a Veterans Health Administration facility with incident chronic pain between 1/1/2010 and 12/31/2015 based on either of 2 criteria: (1) persistent moderate-to-severe patient-reported pain and (2) diagnoses "likely to represent" chronic pain. The independent variable was facility-level utilization of pain-related treatment modalities (non-pharmacologic, non-opioid medications, LTOT) in the prior calendar year. The dependent variable was patient-level initiation of LTOT (≥ 90 days within 365 days) in the subsequent year, adjusting for patient characteristics. Among 1,094,569 veterans with incident chronic pain from 2010 to 2015, there was wide facility-level variation in utilization of 10 pain-related treatment modalities, including initiation of LTOT (median, 16%; range, 5-32%). Veterans receiving care at facilities with greater utilization of non-pharmacologic treatments were less likely to initiate LTOT in the year following incident chronic pain. Conversely, veterans receiving care at facilities with greater non-opioid and opioid medication utilization were more likely to initiate LTOT; this association was strongest for past year facility-level LTOT initiation (adjusted rate ratio, 2.10; 95% confidence interval, 2.06-2.15, top vs. bottom quartile of facility-level LTOT initiation in prior calendar year). Facility-level utilization patterns of non-pharmacologic, non-opioid, and opioid treatments for chronic pain are associated with subsequent patient-level initiation of LTOT among veterans with incident chronic pain

  5. Nanotubos de carbono en la terapia fototérmica contra el cáncer - Carbon nanotubes in cancer photothermal therapy

    Directory of Open Access Journals (Sweden)

    John Castillo

    2013-08-01

    Full Text Available Synthesis of new nanomaterials has allowed increase the range applications in biomedical fields. Within this group carbon nanotubes are one of the most important, which are cylindrical structures whose physicochemical properties have become important tools in cancer therapy. This application includes targeted drug delivery and photothermal therapy. The aim of this paper is to review the state of the art of recent studies directed to the selective destruction of cancer cells through photothermal therapy by activating carbon nanotubes with near-infrared light or radio waves. This review will also provide relevant information to the use of a new alternative therapy in diseases like cancer by using irradiated carbon nanotubes with radiation harmless to the human body.

  6. Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit.

    Science.gov (United States)

    Qin, Nan; Shen, Chenyang; Tsai, Min-Yu; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun

    2018-01-01

    One of the major benefits of carbon ion therapy is enhanced biological effectiveness at the Bragg peak region. For intensity modulated carbon ion therapy (IMCT), it is desirable to use Monte Carlo (MC) methods to compute the properties of each pencil beam spot for treatment planning, because of their accuracy in modeling physics processes and estimating biological effects. We previously developed goCMC, a graphics processing unit (GPU)-oriented MC engine for carbon ion therapy. The purpose of the present study was to build a biological treatment plan optimization system using goCMC. The repair-misrepair-fixation model was implemented to compute the spatial distribution of linear-quadratic model parameters for each spot. A treatment plan optimization module was developed to minimize the difference between the prescribed and actual biological effect. We used a gradient-based algorithm to solve the optimization problem. The system was embedded in the Varian Eclipse treatment planning system under a client-server architecture to achieve a user-friendly planning environment. We tested the system with a 1-dimensional homogeneous water case and 3 3-dimensional patient cases. Our system generated treatment plans with biological spread-out Bragg peaks covering the targeted regions and sparing critical structures. Using 4 NVidia GTX 1080 GPUs, the total computation time, including spot simulation, optimization, and final dose calculation, was 0.6 hour for the prostate case (8282 spots), 0.2 hour for the pancreas case (3795 spots), and 0.3 hour for the brain case (6724 spots). The computation time was dominated by MC spot simulation. We built a biological treatment plan optimization system for IMCT that performs simulations using a fast MC engine, goCMC. To the best of our knowledge, this is the first time that full MC-based IMCT inverse planning has been achieved in a clinically viable time frame. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Are State-Sponsored New Radiation Therapy Facilities Economically Viable in Low- and Middle-Income Countries?

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Niloy R., E-mail: nrdatta@yahoo.com [Centre for Radiation Oncology, KSA-KSB, Kantonsspital Aarau, Aarau (Switzerland); Samiei, Massoud [Consultant, International Atomic Energy Agency (IAEA), Vienna (Austria); Bodis, Stephan [Centre for Radiation Oncology, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland and Department of Radiation Oncology, University Hospital Zurich (Switzerland)

    2015-10-01

    Purpose: The economic viability of establishing a state-funded radiation therapy (RT) infrastructure in low- and middle-income countries (LMICs) in accordance with the World Bank definition has been assessed through computation of a return on investment (ROI). Methods and Materials: Of the 139 LMICs, 100 were evaluated according to their RT facilities, gross national income (GNI) per capita, and employment/population ratio. The assumption was an investment of US$5 million for a basic RT center able to treat 1000 patients annually. The national breakeven points and percentage of ROI (%ROI) were calculated according to the GNI per capita and patient survival rates of 10% to 50% at 2 years. It was assumed that 50% of these patients would be of working age and that, if employed and able to work after treatment, they would contribute to the country's GNI for at least 2 years. The cumulative GNI after attaining the breakeven point until the end of the 15-year lifespan of the teletherapy unit was calculated to estimate the %ROI. The recurring and overhead costs were assumed to vary from 5.5% to 15% of the capital investment. Results: The %ROI was dependent on the GNI per capita, employment/population ratio and 2-year patient survival (all P<.001). Accordingly, none of the low-income countries would attain an ROI. If 50% of the patients survived for 2 years, the %ROI in the lower-middle and upper-middle income countries could range from 0% to 159.9% and 11.2% to 844.7%, respectively. Patient user fees to offset recurring and overhead costs could vary from “nil” to US$750, depending on state subsidies. Conclusions: Countries with a greater GNI per capita, higher employment/population ratio, and better survival could achieve a faster breakeven point, resulting in a higher %ROI. Additional factors such as user fees have also been considered. These can be tailored to the patient's ability to pay to cover the recurring costs. Certain pragmatic steps that could

  8. Are State-Sponsored New Radiation Therapy Facilities Economically Viable in Low- and Middle-Income Countries?

    International Nuclear Information System (INIS)

    Datta, Niloy R.; Samiei, Massoud; Bodis, Stephan

    2015-01-01

    Purpose: The economic viability of establishing a state-funded radiation therapy (RT) infrastructure in low- and middle-income countries (LMICs) in accordance with the World Bank definition has been assessed through computation of a return on investment (ROI). Methods and Materials: Of the 139 LMICs, 100 were evaluated according to their RT facilities, gross national income (GNI) per capita, and employment/population ratio. The assumption was an investment of US$5 million for a basic RT center able to treat 1000 patients annually. The national breakeven points and percentage of ROI (%ROI) were calculated according to the GNI per capita and patient survival rates of 10% to 50% at 2 years. It was assumed that 50% of these patients would be of working age and that, if employed and able to work after treatment, they would contribute to the country's GNI for at least 2 years. The cumulative GNI after attaining the breakeven point until the end of the 15-year lifespan of the teletherapy unit was calculated to estimate the %ROI. The recurring and overhead costs were assumed to vary from 5.5% to 15% of the capital investment. Results: The %ROI was dependent on the GNI per capita, employment/population ratio and 2-year patient survival (all P<.001). Accordingly, none of the low-income countries would attain an ROI. If 50% of the patients survived for 2 years, the %ROI in the lower-middle and upper-middle income countries could range from 0% to 159.9% and 11.2% to 844.7%, respectively. Patient user fees to offset recurring and overhead costs could vary from “nil” to US$750, depending on state subsidies. Conclusions: Countries with a greater GNI per capita, higher employment/population ratio, and better survival could achieve a faster breakeven point, resulting in a higher %ROI. Additional factors such as user fees have also been considered. These can be tailored to the patient's ability to pay to cover the recurring costs. Certain pragmatic steps that could

  9. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Farah, J., E-mail: jad.farah@irsn.fr; Trompier, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l’Homme, BP17, Fontenay-aux-Roses 92260 (France); Mares, V.; Schinner, K.; Wielunski, M. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764 (Germany); Romero-Expósito, M.; Domingo, C. [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193 (Spain); Trinkl, S. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764, Germany and Physik-Department, Technische Universität München, Garching 85748 (Germany); Dufek, V. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and National Radiation Protection Institute, Bartoškova 28, Prague 140 00 (Czech Republic); Klodowska, M.; Liszka, M.; Stolarczyk, L.; Olko, P. [Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow 31-342 (Poland); Kubancak, J. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and Department of Radiation Dosimetry, Nuclear Physics Institute, Řež CZ-250 68 (Czech Republic); and others

    2015-05-15

    Purpose: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. Methods: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9—Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H{sup ∗}(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs—tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm{sup 3}) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm{sup 2} field size. Results: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H{sup ∗}(10) value of ∼51 μSv Gy{sup −1}; this was measured at 1.15 m along the beam axis. H{sup ∗}(10) values

  10. The influence of lateral beam profile modifications in scanned proton and carbon ion therapy: a Monte Carlo study

    CERN Document Server

    Parodi, K; Kraemer, M; Sommerer, F; Naumann, J; Mairani, A; Brons, S

    2010-01-01

    Scanned ion beam delivery promises superior flexibility and accuracy for highly conformal tumour therapy in comparison to the usage of passive beam shaping systems. The attainable precision demands correct overlapping of the pencil-like beams which build up the entire dose distribution in the treatment field. In particular, improper dose application due to deviations of the lateral beam profiles from the nominal planning conditions must be prevented via appropriate beam monitoring in the beamline, prior to the entrance in the patient. To assess the necessary tolerance thresholds of the beam monitoring system at the Heidelberg Ion Beam Therapy Center, Germany, this study has investigated several worst-case scenarios for a sensitive treatment plan, namely scanned proton and carbon ion delivery to a small target volume at a shallow depth. Deviations from the nominal lateral beam profiles were simulated, which may occur because of misaligned elements or changes of the beam optic in the beamline. Data have been an...

  11. Effect of hyperbaric oxygen therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    DEFF Research Database (Denmark)

    Lawson-Smith, Pia; Jansen, Erik C; Hilsted, Linda

    2010-01-01

    Hydrogen cyanide (HCN) and carbon monoxide (CO) may be important components of smoke from fire accidents. Accordingly, patients admitted to hospital from fire accidents may have been exposed to both HCN and CO. Cyanide (CN) intoxication results in cytotoxic hypoxia leading to organ dysfunction...... and possibly death. While several reports support the use of hyperbaric oxygen therapy (HBO) for the treatment of severe CO poisoning, limited data exist on the effect of HBO during CN poisoning. HBO increases the elimination rate of CO haemoglobin in proportion to the increased oxygen partial pressure...

  12. SU-C-BRC-06: OpenCL-Based Cross-Platform Monte Carlo Simulation Package for Carbon Ion Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, N; Tian, Z; Pompos, A; Jiang, S; Jia, X [UT Southwestern Medical Ctr, Dallas, TX (United States); Pinto, M; Dedes, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen, Garching / Munich (Germany)

    2016-06-15

    Purpose: Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and fundamental physical quantities related to biological effects in carbon ion therapy. Its long computation time impedes clinical and research applications. We have developed an MC package, goCMC, on parallel processing platforms, aiming at achieving accurate and efficient simulations for carbon therapy. Methods: goCMC was developed under OpenCL framework. It supported transport simulation in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history algorithm was employed for charged particle transport with stopping power computed via Bethe-Bloch equation. Secondary electrons were not transported with their energy locally deposited. Energy straggling and multiple scattering were modeled. Production of secondary charged particles from nuclear interactions was implemented based on cross section and yield data from Geant4. They were transported via the condensed history scheme. goCMC supported scoring various quantities of interest e.g. physical dose, particle fluence, spectrum, linear energy transfer, and positron emitting nuclei. Results: goCMC has been benchmarked against Geant4 with different phantoms and beam energies. For 100 MeV/u, 250 MeV/u and 400 MeV/u beams impinging to a water phantom, range difference was 0.03 mm, 0.20 mm and 0.53 mm, and mean dose difference was 0.47%, 0.72% and 0.79%, respectively. goCMC can run on various computing devices. Depending on the beam energy and voxel size, it took 20∼100 seconds to simulate 10{sup 7} carbons on an AMD Radeon GPU card. The corresponding CPU time for Geant4 with the same setup was 60∼100 hours. Conclusion: We have developed an OpenCL-based cross-platform carbon MC simulation package, goCMC. Its accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon therapy.

  13. Experience with carbon ion radiotherapy at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Jaekel, O. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)]. E-mail: o.jaekel@dkfz.de; Schulz-Ertner, D. [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Karger, C.P. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Heeg, P. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Debus, J. [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2005-12-15

    At GSI, a radiotherapy facility was established using beam scanning and active energy variation. Between December 1997 and April 2004, 220 patients have been treated at this facility with carbon ions. Most patients are treated for chordoma and chondrosarcoma of the base of skull, using a dose of 60 Gye (Gray equivalent) in 20 fractions. Carbon ion therapy is also offered in a combination with conventional radiotherapy for a number of other tumors (adenoidcystic carcinoma, chordoma of the cervical spine and sacrum, atypical menningeoma). The patients treated for skull base tumors showed an overall local control rate after two years of 90%. The overall treatment toxicity was mild. This shows that carbon ion radiotherapy can safely be applied using a scanned beam and encouraged the Heidelberg university hospital to build a hospital based facility for ion therapy.

  14. Low-dose ion-based transmission radiography and tomography for optimization of carbon ion-beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Magallanes Hernandez, Lorena

    2017-02-21

    In the last few decades, ion-beam radiotherapy has emerged as a highly effective tumor treatment modality. Its success relies on the capability to precisely confine the prescribed dose within the target volume, due to the inverted depth-dose profile and the finite range featured by charged particles. However, to fully exploit the physical and biological advantages of ion-beams, it is necessary to prioritize on innovative imaging techniques to monitor the ion-range inside the patient. Main range uncertainties result from X-ray-based calibration of the ion relative Water Equivalent Path Length (rWEPL) during the planning phase, and patient anatomical or positioning variation during the treatment. In this thesis, low-dose carbon-ion transmissionimaging performed with a Residual Range Detector (RRD) is proposed as imaging strategy for actively scanned beam delivery facilities. It enables the verification of the beam range and the patient positioning with ion-radiographies (iRAD), and ion computed tomographies (iCT) can directly provide the ion stopping-power of the traversed tissue for treatment planning purposes. First experimental investigations aiming to minimize the imaging dose to the object are presented. The performance of the integration-mode multi-channel array of 61 parallel-plate ionization chambers (PPICs), interleaved with 3 mm thickness PMMA slabs, was thoroughly investigated for low-fluence irradiation. This characterization has been pursued in terms of beam-monitoring performance at the Heidelberg Ion-beam Therapy Center (HIT, Heidelberg, Germany), RRD signal-to-noise ratio (SNR), RRD charge-collection efficiency and drift voltage applied to the PPICs. Pixel-wise metrics for signal quality evaluation based on specific channel-charge features have been developed to support the visual assessment of the acquired images. Phantoms of different complexity and tissue-equivalent composition were imaged with high (5000 primaries per raster-scanning point (RP

  15. Low-dose ion-based transmission radiography and tomography for optimization of carbon ion-beam therapy

    International Nuclear Information System (INIS)

    Magallanes Hernandez, Lorena

    2017-01-01

    In the last few decades, ion-beam radiotherapy has emerged as a highly effective tumor treatment modality. Its success relies on the capability to precisely confine the prescribed dose within the target volume, due to the inverted depth-dose profile and the finite range featured by charged particles. However, to fully exploit the physical and biological advantages of ion-beams, it is necessary to prioritize on innovative imaging techniques to monitor the ion-range inside the patient. Main range uncertainties result from X-ray-based calibration of the ion relative Water Equivalent Path Length (rWEPL) during the planning phase, and patient anatomical or positioning variation during the treatment. In this thesis, low-dose carbon-ion transmissionimaging performed with a Residual Range Detector (RRD) is proposed as imaging strategy for actively scanned beam delivery facilities. It enables the verification of the beam range and the patient positioning with ion-radiographies (iRAD), and ion computed tomographies (iCT) can directly provide the ion stopping-power of the traversed tissue for treatment planning purposes. First experimental investigations aiming to minimize the imaging dose to the object are presented. The performance of the integration-mode multi-channel array of 61 parallel-plate ionization chambers (PPICs), interleaved with 3 mm thickness PMMA slabs, was thoroughly investigated for low-fluence irradiation. This characterization has been pursued in terms of beam-monitoring performance at the Heidelberg Ion-beam Therapy Center (HIT, Heidelberg, Germany), RRD signal-to-noise ratio (SNR), RRD charge-collection efficiency and drift voltage applied to the PPICs. Pixel-wise metrics for signal quality evaluation based on specific channel-charge features have been developed to support the visual assessment of the acquired images. Phantoms of different complexity and tissue-equivalent composition were imaged with high (5000 primaries per raster-scanning point (RP

  16. Facile synthesis of microporous carbon through a soft-template pathway and its performance in desulfurization and denitrogenation

    Institute of Scientific and Technical Information of China (English)

    Bo Sun; Gang Li; Xiaoxing Wang

    2010-01-01

    Wormlike/lamellar microporous carbons were prepared by using long alkyl chain primary amine hydrochloride as the template and resorcinol/formaldehyde as the carbon source under highly acidic conditions. The template can be eliminated by high temperature treatment under an inert atmosphere. The obtained carbon materials were characterized by N2 adsorption-desorption, transmission electron microscopy, thermogravimetry and scanning electron microscopy. The results show that dodecylamine hydrochloride surfactant can be used as the template of wormlike micropores structure while octadecylamine hydrochloride results in both lamellar and wormlike micropores. The obtained carbon materials have the similar pore size in the range of 0.5~0.59 nm, but with various morphologies such as monolith, spheres, and coralline. The microporous carbon obtained from dodecytamine hydrochloride surfactant shows good "adsorption performance to remove the refractory sulfur compounds and nitrogen-containing compounds in fuel.

  17. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy

    Science.gov (United States)

    Neves, Luis Filipe Ferreira

    To develop a therapeutic system with cancer cell selectivity, the present study evaluated a possible specific and localized tumor treatment. Phosphatidylserine (PS) exposure on the external face of the cell membrane is almost completely exclusive to cancer cells and endothelial cells in the tumor vasculature. The human protein annexin V is known to have strong calcium-dependent binding to anionic phospholipids such as PS. This protein was studied for targeting single-walled carbon nanotubes (SWNTs) to the vasculature of breast tumors. The synthesis of the protein annexin V, by a pET vector in Escherichia coli, constitutes the first phase of this study. Recombinant annexin V was purified from the cell lysate supernatant by immobilized metal affinity chromatography. The overall production of purified annexin V protein was 50 mg/L. The binding ability of the protein annexin V was evaluated by determining the dissociation constant when incubated with proliferating human endothelial cells in vitro. The dissociation constant, Kd, was measured to be 0.8 nM, indicating relatively strong binding. This value of Kd is within the range reported in the literature. Single-walled carbon nanotubes (SWNTs) were functionalized with annexin V using two intermediate linkers (containing FMOC and DSPE) resulting in stable suspensions. The SWNT and protein concentrations were 202 mg/L and 515 mg/L, respectively, using the linker with DSPE (average of nine preparations). The conjugation method that used the DSPE-PEG-maleimide linker allowed to successfully conjugate the SWNTs with final concentrations approximately five times higher than the linker containing FMOC. The conjugation method used has a non-covalent nature, and therefore the optical properties of the nanotubes were preserved. The conjugate was also visually observed using atomic force microscopy (AFM), allowing to verify the presence of the protein annexin V on the surface of the nanotubes, with an height ranging between 2

  18. Particle Therapy Using Protons or Carbon Ions for Unresectable or Incompletely Resected Bone and Soft Tissue Sarcomas of the Pelvis

    Energy Technology Data Exchange (ETDEWEB)

    Demizu, Yusuke, E-mail: y_demizu@nifty.com [Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan); Jin, Dongcun; Sulaiman, Nor Shazrina; Nagano, Fumiko; Terashima, Kazuki; Tokumaru, Sunao [Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan); Akagi, Takashi [Department of Radiation Physics, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan); Fujii, Osamu [Department of Radiation Oncology, Hakodate Goryokaku Hospital, Hakodate, Hokkaido (Japan); Daimon, Takashi [Department of Biostatistics, Hyogo College of Medicine, Nishinomiya, Hyogo (Japan); Sasaki, Ryohei [Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Fuwa, Nobukazu [Department of Radiation Oncology, Ise Red Cross Hospital, Ise, Mie (Japan); Okimoto, Tomoaki [Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan)

    2017-06-01

    Purpose: To retrospectively analyze the treatment outcomes of particle therapy using protons or carbon ions for unresectable or incompletely resected bone and soft tissue sarcomas (BSTSs) of the pelvis. Methods and Materials: From May 2005 to December 2014, 91 patients with nonmetastatic histologically proven unresectable or incompletely resected pelvic BSTSs underwent particle therapy with curative intent. The particle therapy used protons (52 patients) or carbon ions (39 patients). All patients received a dose of 70.4 Gy (relative biologic effectiveness) in 32 fractions (55 patients) or 16 fractions (36 patients). Results: The median patient age was 67 years (range 18-87). The median planning target volume (PTV) was 455 cm{sup 3} (range 108-1984). The histologic type was chordoma in 53 patients, chondrosarcoma in 14, osteosarcoma in 10, malignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma in 5, and other in 9 patients. Of the 91 patients, 82 had a primary tumor and 9 a recurrent tumor. The median follow-up period was 32 months (range 3-112). The 3-year rate of overall survival (OS), progression-free survival (PFS), and local control was 83%, 72%, and 92%, respectively. A Cox proportional hazards model revealed that chordoma histologic features and a PTV of ≤500 cm{sup 3} were significantly associated with better OS, and a primary tumor and PTV of ≤500 cm{sup 3} were significantly associated with better PFS. Ion type and number of fractions were not significantly associated with OS, PFS, or local control. Late grade ≥3 toxicities were observed in 23 patients. Compared with the 32-fraction protocol, the 16-fraction protocol was associated with significantly more frequent late grade ≥3 toxicities (18 of 36 vs 5 of 55; P<.001). Conclusions: Particle therapy using protons or carbon ions was effective for unresectable or incompletely resected pelvic BSTS, and the 32-fraction protocol was effective and relatively less toxic. Nevertheless, a

  19. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities.

    Science.gov (United States)

    Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content

  20. Facile synthesis of the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaohua [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China); School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Su, Shuai; Wu, Guangli; Li, Caizhu [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Qin, Zhe [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China); Lou, Xiangdong [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Zhou, Jianguo, E-mail: zhoujgwj@163.com [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China)

    2017-06-01

    Highlights: • Flower-like Ag/ZnO encapsulating carbon spheres (Ag/ZnO@C) was synthesized. • A green facile synthesis method was used. • Ag/ZnO@C exhibited better photocatalytic performance than Ag/ZnO, ZnO@C, and ZnO. • Dye and metronidazole both can be decomposed by Ag/ZnO@C. - Abstract: To utilize sunlight more effectively in photocatalytic reactions, the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres (Ag/ZnO@C) was successfully synthesized by a green and facile one-pot hydrothermal method. The carbon spheres (CSs) were wrapped by ZnO nanosheets, forming flower-like microstructures, and Ag nanoparticles (Ag NPs) were deposited on the surface of the ZnO nanosheets. The Ag/ZnO@C ternary heterostructure exhibited enhanced photocatalytic activity compared to those of Ag/ZnO, ZnO@C and pure ZnO for the degradation of Reactive Black GR and metronidazole under sunlight and visible light irradiation. This was attributed to the enhanced visible light absorption and effective charge separation based on the synergistic effect of ZnO, Ag NPs, and CSs. Due to the surface plasmon resonance effect of Ag NPs and surface photosensitizing effect of CSs, Ag/ZnO@C exhibited enhanced visible light absorption. Meanwhile, Ag NPs and CSs can both act as rapid electron transfer units to improve the separation of photogenerated charge carriers in Ag/ZnO@C. The primary active species were determined, and the photocatalytic mechanism was proposed. This work demonstrates an effective way to improve the photocatalytic performance of ZnO and provides information for the facile synthesis of noble metal/ZnO@C ternary heterostructure.

  1. Facile Synthesis of Coaxial CNTs/MnOx-Carbon Hybrid Nanofibers and Their Greatly Enhanced Lithium Storage Performance.

    Science.gov (United States)

    Yang, Zunxian; Lv, Jun; Pang, Haidong; Yan, Wenhuan; Qian, Kun; Guo, Tailiang; Guo, Zaiping

    2015-12-01

    Carbon nanotubes (CNTs)/MnOx-Carbon hybrid nanofibers have been successfully synthesized by the combination of a liquid chemical redox reaction (LCRR) and a subsequent carbonization heat treatment. The nanostructures exhibit a unique one-dimensional core/shell architecture, with one-dimensional CNTs encapsulated inside and a MnOx-carbon composite nanoparticle layer on the outside. The particular porous characteristics with many meso/micro holes/pores, the highly conductive one-dimensional CNT core, as well as the encapsulating carbon matrix on the outside of the MnOx nanoparticles, lead to excellent electrochemical performance of the electrode. The CNTs/MnOx-Carbon hybrid nanofibers exhibit a high initial reversible capacity of 762.9 mAhg(-1), a high reversible specific capacity of 560.5 mAhg(-1) after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 396.2 mAhg(-1) when cycled at the current density of 1000 mAg(-1), indicating that the CNTs/MnOx-Carbon hybrid nanofibers are a promising anode candidate for Li-ion batteries.

  2. Efficient and facile one pot carboxylation of multiwalled carbon nanotubes by using oxidation with ozone under mild conditions

    International Nuclear Information System (INIS)

    Naeimi, Hossein; Mohajeri, Ali; Moradi, Leila; Rashidi, Ali Morad

    2009-01-01

    Graphical abstract: In this work, oxidation of carbon nanotubes with ozone in the presence of hydrogen peroxide was studied. The reactions were performed under clean and mild conditions and oxidized products with high concentration of oxygenated groups were yielded. The reaction products were characterized with attenuated total reflectance (ATR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffractometry (XRD), back titration, X-ray photoelectron spectroscopy (XPS) and the dispersion behavior of the oxidized multiwalled carbon nanotubes (MWCNTs) was also studied. The results confirmed the presence of high concentrations of oxidative groups on the carbon nanotubes (CNTs) treated by the method of the present work.

  3. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Bergueiro, J.; Igarzabal, M.; Suarez Sandin, J.C.; Somacal, H.R.; Thatar Vento, V.; Huck, H.; Valda, A.A.; Repetto, M.

    2011-01-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  4. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Igarzabal, M.; Suarez Sandin, J.C. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Somacal, H.R. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Thatar Vento, V. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Huck, H.; Valda, A.A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Repetto, M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)

    2011-12-15

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  5. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.

    Science.gov (United States)

    Jia, Haiping; Stock, Christoph; Kloepsch, Richard; He, Xin; Badillo, Juan Pablo; Fromm, Olga; Vortmann, Britta; Winter, Martin; Placke, Tobias

    2015-01-28

    In this work, a novel, porous structured NiSi2/Si composite material with a core-shell morphology was successfully prepared using a facile ball-milling method. Furthermore, the chemical vapor deposition (CVD) method is deployed to coat the NiSi2/Si phase with a thin carbon layer to further enhance the surface electronic conductivity and to mechanically stabilize the whole composite structure. The morphology and porosity of the composite material was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption measurements (BJH analysis). The as-prepared composite material consists of NiSi2, silicon, and carbon phases, in which the NiSi2 phase is embedded in a silicon matrix having homogeneously distributed pores, while the surface of this composite is coated with a carbon layer. The electrochemical characterization shows that the porous and core-shell structure of the composite anode material can effectively absorb and buffer the immense volume changes of silicon during the lithiation/delithiation process. The obtained NiSi2/Si/carbon composite anode material displays an outstanding electrochemical performance, which gives a stable capacity of 1272 mAh g(-1) for 200 cycles at a charge/discharge rate of 1C and a good rate capability with a reversible capacity of 740 mAh g(-1) at a rate of 5C.

  7. Facile preparation of efficient electrocatalysts for oxygen reduction reaction: One-dimensional meso/macroporous cobalt and nitrogen Co-doped carbon nanofibers

    Science.gov (United States)

    Yoon, Ki Ro; Choi, Jinho; Cho, Su-Ho; Jung, Ji-Won; Kim, Chanhoon; Cheong, Jun Young; Kim, Il-Doo

    2018-03-01

    Efficient electrocatalyst for oxygen reduction reaction (ORR) is an essential component for stable operation of various sustainable energy conversion and storage systems such as fuel cells and metal-air batteries. Herein, we report a facile preparation of meso/macroporous Co and N co-doped carbon nanofibers (Co-Nx@CNFs) as a high performance and cost-effective electrocatalyst toward ORR. Co-Nx@CNFs are simply obtained from electrospinning of Co precursor and bicomponent polymers (PVP/PAN) followed by temperature controlled carbonization and further activation step. The prepared Co-Nx@CNF catalyst carbonized at 700 °C (Co-Nx@CNF700) shows outstanding ORR performance, i.e., a low onset potential (0.941 V) and half wave potential (0.814 V) with almost four-electron transfer pathways (n= 3.9). In addition, Co-Nx@CNF700 exhibits a superior methanol tolerance and higher stability (>70 h) in Zn-air battery in comparison with Pt/C catalyst (∼30 h). The outstanding performance of Co-Nx@CNF700 catalysts is attributed to i) enlarged surface area with bimodal porosity achieved by leaching of inactive species, ii) increase of exposed ORR active Co-Nx moieties and graphitic edge sites, and iii) enhanced electrical conductivity and corrosion resistance due to the existence of numerous graphitic flakes in carbon matrix.

  8. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy

    CERN Document Server

    Bohlen, TT; Quesada, J M; Bohlen, T T; Cerutti, F; Gudowska, I; Ferrari, A; Mairani, A

    2010-01-01

    As carbon ions, at therapeutic energies, penetrate tissue, they undergo inelastic nuclear reactions and give rise to significant yields of secondary fragment fluences. Therefore, an accurate prediction of these fluences resulting from the primary carbon interactions is necessary in the patient's body in order to precisely simulate the spatial dose distribution and the resulting biological effect. In this paper, the performance of nuclear fragmentation models of the Monte Carlo transport codes, FLUKA and GEANT4, in tissue-like media and for an energy regime relevant for therapeutic carbon ions is investigated. The ability of these Monte Carlo codes to reproduce experimental data of charge-changing cross sections and integral and differential yields of secondary charged fragments is evaluated. For the fragment yields, the main focus is on the consideration of experimental approximations and uncertainties such as the energy measurement by time-of-flight. For GEANT4, the hadronic models G4BinaryLightIonReaction a...

  9. Facile one-step direct electrodeposition of bismuth nanowires on glassy carbon electrode for selective determination of folic acid

    International Nuclear Information System (INIS)

    Ananthi, Arjunan; Kumar, Shanmugam Senthil; Phani, Kanala Lakshminarasimha

    2015-01-01

    Highlights: • BiNWs prepared through simple, fast one step electrochemical route. • BiNWs showed more catalytic activity and sensitivity than GC towards FA reduction. • Selective detection of FA was achieved with low limit of detection (9.53 × 10 −9 mol L −1 ). • Real sample analysis was successfully demonstrated using FA pharmaceutical tablets. • BiNWs based sensor matrix is inexpensive, and more suitable for FA real application. - Abstract: In the present work, we have developed a facile one step route to electrodeposition of stabilizer-free bismuth nanowires (BiNWs) on glassy carbon (GC) substrates by using a simple potentiostatic method. Formation of BiNWs on GC substrate was confirmed by field emission scanning electron microscopy (FE-SEM). The growth of BiNWs on the GC substrate was monitored by cyclic voltammetry and found that continuous in-situ generation of hydrogen bubbles during electrodeposition provides a stagnant template for the formation of BiNWs on the GC substrate. Phase-purity of the deposited BiNWs on GC substrate studied by XRD indicates no other oxide formation. The electrodeposited BiNWs on GC substrate was used for electro-reduction of folic acid (FA) and its quantitative determination in Britton-Robinson buffer of pH 4.5 solutions. The observed cyclic voltammetric reduction current of FA on BiNWs/GC is almost 15 times higher with 0.015 V less negative overpotential compared to bare GC substrate alone. This result clearly reveals the electrocatalytic activity of the deposited BiNWs. In addition, square wave voltammetry (SWV) showed a perfectly linear response in the concentration range of 1 × 10 −8 –15 × 10 −8 mol L −1 with a correlation coefficient of 0.9956. The limit of detection (LOD) and limit of quantitation (LOQ) are determined to be 9.53 × 10 −9 and 31.68 × 10 −9 mol L −1 respectively. The response of the BiNWs/GC sensor matrix is not affected by any usual interference from excess concentrations of

  10. Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Here, we report the controllable fabrication of transparent conductive films (TCFs) for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks of single-walled carbon nanotube (SWCNT)/poly(3

  11. Better antiretroviral therapy outcomes at primary healthcare facilities: an evaluation of three tiers of ART services in four South African provinces.

    Science.gov (United States)

    Fatti, Geoffrey; Grimwood, Ashraf; Bock, Peter

    2010-09-21

    There are conflicting reports of antiretroviral therapy (ART) effectiveness comparisons between primary healthcare (PHC) facilities and hospitals in low-income settings. This comparison has not been evaluated on a broad scale in South Africa. A retrospective cohort study was conducted including ART-naïve adults from 59 facilities in four provinces in South Africa, enrolled between 2004 and 2007. Kaplan-Meier estimates, competing-risks Cox regression, generalised estimating equation population-averaged models and logistic regression were used to compare death, loss to follow-up (LTFU) and virological suppression (VS) between PHC, district and regional hospitals. 29 203 adults from 47 PHC facilities, nine district hospitals and three regional hospitals were included. Patients at PHC facilities had more advanced WHO stage disease when starting ART. Retention in care was 80.1% (95% CI: 79.3%-80.8%), 71.5% (95% CI: 69.1%-73.8%) and 68.7% (95% CI: 67.0%-69.7%) at PHC, district and regional hospitals respectively, after 24 months of treatment (Phospitals (aHR 2.19; 95% CI: 1.94-2.47) and mortality was independently elevated at district hospitals (aHR 1.60; 95% CI: 1.30-1.99) compared to PHC facilities after 12 months of ART. District and regional hospital patients had independently reduced probabilities of VS, aOR 0.76 (95% CI: 0.59-0.97) and 0.64 (95% CI: 0.56-0.75) respectively compared to PHC facilities over 24 months of treatment. ART outcomes were superior at PHC facilities, despite PHC patients having more advanced clinical stage disease when starting ART, suggesting that ART can be adequately provided at this level and supporting the South African government's call for rapid up-scaling of ART at the primary level of care. Further prospective research is required to determine the degree to which outcome differences are attributable to either facility level characteristics or patient co-morbidity at hospital level.

  12. Better antiretroviral therapy outcomes at primary healthcare facilities: an evaluation of three tiers of ART services in four South African provinces.

    Directory of Open Access Journals (Sweden)

    Geoffrey Fatti

    Full Text Available BACKGROUND: There are conflicting reports of antiretroviral therapy (ART effectiveness comparisons between primary healthcare (PHC facilities and hospitals in low-income settings. This comparison has not been evaluated on a broad scale in South Africa. METHODOLOGY/PRINCIPAL FINDINGS: A retrospective cohort study was conducted including ART-naïve adults from 59 facilities in four provinces in South Africa, enrolled between 2004 and 2007. Kaplan-Meier estimates, competing-risks Cox regression, generalised estimating equation population-averaged models and logistic regression were used to compare death, loss to follow-up (LTFU and virological suppression (VS between PHC, district and regional hospitals. 29 203 adults from 47 PHC facilities, nine district hospitals and three regional hospitals were included. Patients at PHC facilities had more advanced WHO stage disease when starting ART. Retention in care was 80.1% (95% CI: 79.3%-80.8%, 71.5% (95% CI: 69.1%-73.8% and 68.7% (95% CI: 67.0%-69.7% at PHC, district and regional hospitals respectively, after 24 months of treatment (P<0.0001. In adjusted regression analyses, LTFU was independently increased at regional hospitals (aHR 2.19; 95% CI: 1.94-2.47 and mortality was independently elevated at district hospitals (aHR 1.60; 95% CI: 1.30-1.99 compared to PHC facilities after 12 months of ART. District and regional hospital patients had independently reduced probabilities of VS, aOR 0.76 (95% CI: 0.59-0.97 and 0.64 (95% CI: 0.56-0.75 respectively compared to PHC facilities over 24 months of treatment. CONCLUSIONS/SIGNIFICANCE: ART outcomes were superior at PHC facilities, despite PHC patients having more advanced clinical stage disease when starting ART, suggesting that ART can be adequately provided at this level and supporting the South African government's call for rapid up-scaling of ART at the primary level of care. Further prospective research is required to determine the degree to which

  13. Development of cancer therapy facility of HANARO and medical research in BNCT; development of the technique for boron concentration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Dong; Byun, Soo Hyun; Sun, Gwang Min; Kim, Suk Kwon; Kim, In Jung; Park, Chang Su [Seoul National University, Seoul (Korea)

    2002-03-01

    Objective and Necessity of the Project- Development of a boron concentration analysis facility used for BNCT. - Development of the technique for boron concentration analysis. Contents and Scopes of the Project - Construction of the boron concentration analysis facility based on PGAA. Estimation of the neutron beam characteristics. -Establishment of the technique for the boron concentration analysis. - Estimation of the reliability for the boron analysis. Results of the Project -Installation of the boron concentration analysis facility at Hanaro. - Neutron beam characteristics are the sample position (neutron flux : 7.9 x 10{sup 7} n/cm{sup 2}s, Cd-ratio : 266) Technique for the boron concentration analysis. - Boron detection sensitivity and limit (detection sensitivity : 2, 131 cps/mg-B, detection limit : 67 ng for 10,000 sec). 63 refs., 37 figs., 13 tabs. (Author)

  14. SU-D-BRB-02: Investigations of Secondary Ion Distributions in Carbon Ion Therapy Using the Timepix Detector.

    Science.gov (United States)

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jaekel, O; Martisikova, M

    2012-06-01

    Due to the high conformity of carbon ion therapy, unpredictable changes in the patient's geometry or deviations from the planned beam properties can result in changes of the dose distribution. PET has been used successfully to monitor the actual dose distribution in the patient. However, it suffers from biological washout processes and low detection efficiency. The purpose of this contribution is to investigate the potential of beam monitoring by detection of prompt secondary ions emerging from a homogeneous phantom, simulating a patient's head. Measurements were performed at the Heidelberg Ion-Beam Therapy Center (Germany) using a carbon ion pencil beam irradiated on a cylindrical PMMA phantom (16cm diameter). For registration of the secondary ions, the Timepix detector was used. This pixelated silicon detector allows position-resolved measurements of individual ions (256×256 pixels, 55μm pitch). To track the secondary ions we used several parallel detectors (3D voxel detector). For monitoring of the beam in the phantom, we analyzed the directional distribution of the registered ions. This distribution shows a clear dependence on the initial beam energy, width and position. Detectable were range differences of 1.7mm, as well as vertical and horizontal shifts of the beam position by 1mm. To estimate the clinical potential of this method, we measured the yield of secondary ions emerging from the phantom for a beam energy of 226MeV/u. The differential distribution of secondary ions as a function of the angle from the beam axis for angles between 0 and 90° will be presented. In this setup the total yield in the forward hemisphere was found to be in the order of 10 -1 secondary ions per primary carbon ion. The presented measurements show that tracking of secondary ions provides a promising method for non-invasive monitoring of ion beam parameters for clinical relevant carbon ion fluences. Research with the pixel detectors was carried out in frame of the Medipix

  15. Graphitic carbon nitride nanosheet@metal-organic framework core-shell nanoparticles for photo-chemo combination therapy

    Science.gov (United States)

    Chen, Rui; Zhang, Jinfeng; Wang, Yu; Chen, Xianfeng; Zapien, J. Antonio; Lee, Chun-Sing

    2015-10-01

    Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX and the PDT effect of g-C3N4 nanosheets can lead to considerably enhanced efficacy. Furthermore, the red fluorescence of DOX and the blue fluorescence of g-C3N4 nanosheets provide the additional function of dual-color imaging for monitoring the drug release process.Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX

  16. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    International Nuclear Information System (INIS)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc; Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia; Matei Ghimbeu, Camelia

    2016-01-01

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  17. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    Science.gov (United States)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc; Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia; Matei Ghimbeu, Camelia

    2016-12-01

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  18. Facile Control of the Porous Structure of Larch-Derived Mesoporous Carbons via Self-Assembly for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2017-11-01

    Full Text Available Mesoporous carbons have been successfully synthesized via self-assembly using larch-based resins as precursors and triblock copolymers as soft templates. The porous structure of mesoporous carbons can be tailored by adjusting the ratio of hydrophilic/hydrophobic (EO/PO units owing to interfacial curvature. Interestingly, the porous structures show a distinct change from vortex-like to worm-like pores, to stripe-like pores, and to ordered two-dimensional hexagonal pores as the ratio of hydrophilic/hydrophobic units increases, indicating the significant effect of EO/PO ratio on the porous structure. The mesoporous carbons as supercapacitor electrodes exhibit superior electrochemical capacitive performance and a high degree of reversibility after 2000 cycles for supercapacitors due to the well-defined mesoporosity of the carbon materials. Meanwhile, the superior carbon has a high specific capacitance of 107 F·g−1 in 6 M KOH at a current density of 10 A·g−1.

  19. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc [Université de Strasbourg, Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse, CNRS UMR (France); Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia [Institut de Chimie et des Matériaux Paris Est, UMR 7182, CNRS-UPEC (France); Matei Ghimbeu, Camelia, E-mail: camelia.ghimbeu@uha.fr [Université de Strasbourg, Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse, CNRS UMR (France)

    2016-12-15

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  20. Wide area scanning system and carbon microbeams at the external microbeam facility of the INFN LABEC laboratory in Florence

    Energy Technology Data Exchange (ETDEWEB)

    Giuntini, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Massi, M. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Calusi, S. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Castelli, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Carraresi, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Fedi, M.E.; Gelli, N. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Liccioli, L.; Mandò, P.A.; Mazzinghi, A. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Palla, L. [INFN, Sezione di Pisa and Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Romano, F.P. [Consiglio Nazionale delle Ricerche (CNR), Istituto per i Beni Archeologici e Monumentali (IBAM), Via Biblioteca, 4, 95124 Catania (Italy); Istituto Nazionale di Fisica Nucleare (INFN), LNS, Via S.Sofia 62, 95125 Catania (Italy); and others

    2015-04-01

    Recently, developments have been made to the external scanning microbeam of INFN-LABEC laboratory in Florence. A new system for mechanical sample scanning was implemented. This system allows us to acquire large maps (up to 20 × 20 cm{sup 2}), of great interest in the Cultural Heritage field. In parallel, the possibility of using carbon microbeams for experiments, such as, for example, ion beam modification of materials and MeV Secondary Ion Mass Spectrometry, has been investigated. As a test application, Particle Induced X-ray Emission with carbon microbeams has been performed on a lapis lazuli stone. First results for both wide area imaging and external carbon microbeams are briefly reported.

  1. Wide area scanning system and carbon microbeams at the external microbeam facility of the INFN LABEC laboratory in Florence

    International Nuclear Information System (INIS)

    Giuntini, L.; Massi, M.; Calusi, S.; Castelli, L.; Carraresi, L.; Fedi, M.E.; Gelli, N.; Liccioli, L.; Mandò, P.A.; Mazzinghi, A.; Palla, L.; Romano, F.P.

    2015-01-01

    Recently, developments have been made to the external scanning microbeam of INFN-LABEC laboratory in Florence. A new system for mechanical sample scanning was implemented. This system allows us to acquire large maps (up to 20 × 20 cm 2 ), of great interest in the Cultural Heritage field. In parallel, the possibility of using carbon microbeams for experiments, such as, for example, ion beam modification of materials and MeV Secondary Ion Mass Spectrometry, has been investigated. As a test application, Particle Induced X-ray Emission with carbon microbeams has been performed on a lapis lazuli stone. First results for both wide area imaging and external carbon microbeams are briefly reported

  2. Conducting pyrolysed carbon scaffolds for cell replacement therapy and energy applications

    DEFF Research Database (Denmark)

    Bunea, Ada-Ioana

    of SU-8 has been shown to enhance stem cell differentiation into dopaminergic neurons. Due to these properties, carbon was chosen as the conductive material for the development of optoelectrical devices. Quartz is transparent in the UV and visible range. It is thermally resistant up to 1600°C......, chemically inert, hard, durable and non-porous. These properties make it ideal as the transparent component in the development of optoelectrical devices. The aim of this work is to contribute to the development of optoelectrical devices for applications in two different fields: 1) the treatment of Parkinson...... at applications in biophotovoltaics has explored energy harvesting from thylakoid membranes as photosynthetic systems residing on patterned carbon electrodes for generating electrical power....

  3. Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia

    Directory of Open Access Journals (Sweden)

    Iancu C

    2011-08-01

    Full Text Available Cornel Iancu, Lucian Mocan3rd Surgery Clinic, Department of Nanomedicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, RomaniaAbstract: Carbon nanotubes (CNTs are emerging versatile tools in nanomedicine applications, particularly in the field of cancer targeting. Due to diverse surface chemistry and unique thermal properties, CNTs can act as strong optical absorbers in near infrared light where biological systems prove to be highly transparent. The process of laser-mediated ablation of cancer cells marked with biofunctionalized CNTs is frequently termed “nanophotothermolysis.” This paper illustrates the potential of engineered CNTs as laser-activated photothermal agents for the selective nanophotothermolysis of cancer cells.Keywords: carbon nanotubes, cancer targeting, functionalization, optical excitation, cancer treatment

  4. A novel single walled carbon nanotube (SWCNT) functionalization agent facilitating in vivo combined chemo/thermo therapy

    Science.gov (United States)

    Zhang, Liwen; Rong, Pengfei; Chen, Minglong; Gao, Shi; Zhu, Lei

    2015-10-01

    Carbon nanotubes (CNTs) have shown intriguing applications in biotechnological and biomedical fields due to their unique shape and properties. However, the fact that unmodified CNTs are prone to aggregation, stunts CNTs applications under physiological conditions. In this research, we found that as little as 1/5th the single walled carbon nanotube (SWCNT) weight of Evans Blue (EB) is capable of dispersing SWCNT as well as facilitating SWCNT functionalization. In view of the binding between EB and albumin, the yielding product (SWCNT/EB) demonstrated extreme stability for weeks under physiological conditions and it can be endowed with a therapeutic ability by simply mixing SWCNT/EB with an albumin based drug. Specifically, the formed SWCNT/EB/albumin/PTX nanocomplex exhibits strong near-infrared (NIR) absorbance, and can serve as an agent for chemo/thermal therapeutic purposes. Our in vivo result reveals that SWCNT/EB/albumin/PTX after being administered into the MDA-MB-435 tumor would effectively ablate the tumor by chemo and photothermal therapy. Such a combined treatment strategy provides remarkable therapeutic outcomes in restraining tumor growth compared to chemo or photothermal therapy alone. Overall, our strategy of dispersing SWCNTs by EB can be used as a platform for carrying other drugs or functional genes with the aid of albumin to treat diseases. The present study opens new opportunities in surface modification of SWCNTs for future clinical disease treatment.Carbon nanotubes (CNTs) have shown intriguing applications in biotechnological and biomedical fields due to their unique shape and properties. However, the fact that unmodified CNTs are prone to aggregation, stunts CNTs applications under physiological conditions. In this research, we found that as little as 1/5th the single walled carbon nanotube (SWCNT) weight of Evans Blue (EB) is capable of dispersing SWCNT as well as facilitating SWCNT functionalization. In view of the binding between EB and

  5. Generalized eczematous reaction after fractional carbon dioxide laser therapy for tattoo allergy.

    Science.gov (United States)

    Meesters, Arne A; De Rie, Menno A; Wolkerstorfer, Albert

    2016-12-01

    Allergic tattoo reactions form a therapeutically difficult entity. Treatment with conventional quality-switched lasers does not completely remove the allergenic particles and may lead to generalized hypersensitivity reactions. Recently, ablative fractional laser therapy was introduced as a treatment for allergic tattoo removal. We present two cases of allergic reactions to red tattoo ink treated with 10,600-nm fractional CO 2 laser. At the end of treatment, almost complete removal of red ink accompanied by a significant reduction of symptoms was observed in the first patient, whereas the second patient developed an acute generalized eczematous reaction after five treatments. These findings confirm that ablative fractional laser therapy is capable of significant removal of tattoo ink in an allergic tattoo reaction. However, it implies a risk of generalized hypersensitivity reactions. To our knowledge, this is the first case of a generalized hypersensitivity reaction following treatment of tattoo allergy with the fractional CO 2 laser.

  6. Facile synthesis of ultrafine Co3O4 nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Li, Mian; Han, Ce; Zhang, Yufan; Bo, Xiangjie; Guo, Liping

    2015-01-01

    Highlights: • Novel hyperfine Co 3 O 4 nanocrystals decorated porous carbon matrixes. • Facile synthesis without use of any harmful dispersing reagents or surfactants. • High dispersion degree of Co 3 O 4 nanocrystals and excellent e − transport rates. • A large current sensitivity of 955.9 μA cm −2 mM −1 toward glucose. • Excellent anti-interference and stability for glucose detection. - Abstract: A facile, effective, and environmentally friendly method has been adopted for the first time to prepare tiny Co 3 O 4 nanocrystals embedded carbon matrices without using surfactants, harmful organic reagents or extreme conditions. Structural characterizations reveal that the size-controlled Co 3 O 4 nanocrystals are uniformly dispersed on carbon matrices. Electrochemical measurements reveal that Co 3 O 4 -ordered mesoporous carbon (OMC) can more efficiently catalyze glucose oxidation and acquire better detection parameters compared with those for the Co 3 O 4 -macroporous carbon, Co 3 O 4 -reduced graphene oxide, and free Co 3 O 4 nanoparticles (NPs) (such as: the large sensitivity (2597.5 μA cm −2 mM −1 between 0 and 0.8 mM and 955.9 μA cm −2 mM −1 between 0.9 and 7.0 mM), fast response time, wide linear range, good stability, and surpassingly selective capability to electroactive molecules or Cl − ). Such excellent performances are attributed to the synergistic effect of the following three factors: (1) the high catalytic sites provided by the uniformly dispersed and size-controlled Co 3 O 4 nanocrystals embedded on OMC; (2) the excellent reactant transport efficiency caused by the abundant mesoporous structures of OMC matrix: (3) the improved electron transport in high electron transfer rate (confinement of the Co 3 O 4 NPs in nanoscale spaces ensured intimate contact between Co 3 O 4 nanocrystals and the conducting OMC matrix). The superior catalytic activity and selectivity make Co 3 O 4 -OMC very promising for application in direct

  7. Facile synthesis of ultrafine Co{sub 3}O{sub 4} nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mian; Han, Ce; Zhang, Yufan; Bo, Xiangjie, E-mail: baoxj133@nenu.edu.cn; Guo, Liping, E-mail: guolp078@nenu.edu.cn

    2015-02-25

    Highlights: • Novel hyperfine Co{sub 3}O{sub 4} nanocrystals decorated porous carbon matrixes. • Facile synthesis without use of any harmful dispersing reagents or surfactants. • High dispersion degree of Co{sub 3}O{sub 4} nanocrystals and excellent e{sup −} transport rates. • A large current sensitivity of 955.9 μA cm{sup −2} mM{sup −1} toward glucose. • Excellent anti-interference and stability for glucose detection. - Abstract: A facile, effective, and environmentally friendly method has been adopted for the first time to prepare tiny Co{sub 3}O{sub 4} nanocrystals embedded carbon matrices without using surfactants, harmful organic reagents or extreme conditions. Structural characterizations reveal that the size-controlled Co{sub 3}O{sub 4} nanocrystals are uniformly dispersed on carbon matrices. Electrochemical measurements reveal that Co{sub 3}O{sub 4}-ordered mesoporous carbon (OMC) can more efficiently catalyze glucose oxidation and acquire better detection parameters compared with those for the Co{sub 3}O{sub 4}-macroporous carbon, Co{sub 3}O{sub 4}-reduced graphene oxide, and free Co{sub 3}O{sub 4} nanoparticles (NPs) (such as: the large sensitivity (2597.5 μA cm{sup −2} mM{sup −1} between 0 and 0.8 mM and 955.9 μA cm{sup −2} mM{sup −1} between 0.9 and 7.0 mM), fast response time, wide linear range, good stability, and surpassingly selective capability to electroactive molecules or Cl{sup −}). Such excellent performances are attributed to the synergistic effect of the following three factors: (1) the high catalytic sites provided by the uniformly dispersed and size-controlled Co{sub 3}O{sub 4} nanocrystals embedded on OMC; (2) the excellent reactant transport efficiency caused by the abundant mesoporous structures of OMC matrix: (3) the improved electron transport in high electron transfer rate (confinement of the Co{sub 3}O{sub 4} NPs in nanoscale spaces ensured intimate contact between Co{sub 3}O{sub 4} nanocrystals and the

  8. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems

    Czech Academy of Sciences Publication Activity Database

    Farah, J.; Mares, V.; Romero-Exposito, M.; Trinkl, S.; Domingo, C.; Dufek, V.; Klodowska, M.; Kubančák, Ján; Knezevic, Z.; Ploc, Ondřej

    2015-01-01

    Roč. 42, č. 5 (2015), s. 2572-2584 ISSN 0094-2405 Institutional support: RVO:61389005 Keywords : scanning proton therapy * measurement of stray neutrons * spectrometry * ambient dose eyuivalent * intercomparison Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.496, year: 2015

  9. Facile Synthesis of Carbon-Coated Zn2SnO4 Nanomaterials as Anode Materials for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xiaoxu Ji

    2014-01-01

    Full Text Available Carbon-coated Zn2SnO4 nanomaterials have been synthesized by a facile hydrothermal method in which as-prepared Zn2SnO4 was used as the precursor and glucose as the carbon source. The structural, morphological, and electrochemical properties were investigated by means of X-ray (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and electrochemical measurement. The first discharge/charge capacity of carbon-coated Zn2SnO4 was about 1248.8 mAh/g and 873.2 mAh/g at a current density of 200 mA/g in the voltage range of 0.05 V–3.0 V, respectively, corresponding to Coulombic efficiency of 69.92%. After 40 cycles, the capacity retained 400 mAh/g, which is much better than bare Zn2SnO4.

  10. Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity

    Science.gov (United States)

    Wang, Huan; Qiu, Xueqing; Liu, Weifeng; Yang, Dongjie

    2017-12-01

    In this work, a novel lignin-based carbon/ZnO (LC/ZnO) hybrid composite with excellent photocatalytic performance was prepared through a convenient and environment friendly method using alkali lignin (AL) as carbon source. The morphological, microstructure and optical properties of the as-prepared LC/ZnO hybrid composite was characterized with scanning electron microscope (SEM), X-ray diffraction (XRD), Raman and UV-vis. The resulting LC/ZnO hybrid is composed of highly dispersed ZnO nanoparticles embedded on a lignin-based carbon nanosheet, showing excellent photogenerated electrons and holes separation and migration efficiency. The photocatalytic activity of LC/ZnO was much higher than the pure ZnO. The LC/ZnO hybrid composite showed different photocatalytic mechanism for degradation of negative methyl orange (MO) and positive Rhodamine B (RhB). It showed that h+ was the main photocatalytic active group during the degradation of MO, ·O2- and ·OH were the photocatalytic active groups during degradation of RhB. This reported photocatalyst with selective degradation of positive and negative organic dyes may have a great application prospect for photoelectric conversion and catalytic materials. Results of this work were of practical importance for high-valued utilization of lignin for carbon materials.

  11. Facile insertion of a cyclic alkyl(amino) carbene carbon into the B-B bond of diboron(4) reagents.

    Science.gov (United States)

    Eichhorn, Antonius F; Kuehn, Laura; Marder, Todd B; Radius, Udo

    2017-10-24

    We report herein the room temperature insertion of the carbene carbon atom of the cyclic (alkyl)(amino) carbene cAAC Me into the B-B single bonds of the diboron(4) compounds B 2 pin 2 , B 2 cat 2 , B 2 neop 2 , and B 2 eg 2 (pin = pinacolato, cat = catecholato, neop = neopentylglycolato, eg = ethyleneglycolato).

  12. Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhang ZZ

    2011-10-01

    Full Text Available Lei Wang1, Mingyue Zhang1, Nan Zhang1, Jinjin Shi1, Hongling Zhang1, Min Li1, Chao Lu2, Zhenzhong Zhang1 1School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China; 2University of Maryland, College Park, MD, USA Background: Single-walled carbon nanotubes (SWNT are poorly soluble in water, so their applications are limited. Therefore, aqueous solutions of SWNT, designed by noncovalent functionalization and without toxicity, are required for biomedical applications. Methods: In this study, we conjugated docetaxel with SWNT via p-p accumulation and used a surfactant to functionalize SWNT noncovalently. The SWNT were then conjugated with docetaxel (DTX-SWNT and linked with NGR (Asn-Gly-Arg peptide, which targets tumor angiogenesis, to obtain a water-soluble and tumor-targeting SWNT-NGR-DTX drug delivery system. Results: SWNT-NGR-DTX showed higher efficacy than docetaxel in suppressing tumor growth in a cultured PC3 cell line in vitro and in a murine S180 cancer model. Tumor volumes in the S180 mouse model decreased considerably under near-infrared radiation compared with the control group. Conclusion: The SWNT-NGR-DTX drug delivery system may be promising for high treatment efficacy with minimal side effects in future cancer therapy. Keywords: single-walled carbon nanotubes, docetaxel, NGR peptide, tumor-targeting, near-infrared radiation

  13. A facile approach towards increasing the nitrogen-content in nitrogen-doped carbon nanotubes via halogenated catalysts

    International Nuclear Information System (INIS)

    Ombaka, L.M.; Ndungu, P.G.; Omondi, B.; McGettrick, J.D.; Davies, M.L.; Nyamori, V.O.

    2016-01-01

    Nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized at 850 °C via a CVD deposition technique by use of three ferrocenyl derivative catalysts, i.e. para-CN, -CF_3 and -Cl substituted-phenyl rings. The synthesized catalysts have been characterized by NMR, IR, HR-MS and XRD. The XRD analysis of the para-CF_3 catalyst indicates that steric factors influence the X-ray structure of 1,1′-ferrocenylphenyldiacrylonitriles. Acetonitrile or pyridine was used as carbon and nitrogen sources to yield mixtures of N-CNTs and carbon spheres (CS). The N-CNTs obtained from the para-CF_3 catalysts, in pyridine, have the highest nitrogen-doping level, show a helical morphology and are less thermally stable compared with those synthesized by use of the para-CN and -Cl as catalyst. This suggests that fluorine heteroatoms enhance nitrogen-doping in N-CNTs and formation of helical-N-CNTs (H-N-CNTs). The para-CF_3 and para-Cl catalysts in acetonitrile yielded iron-filled N-CNTs, indicating that halogens promote encapsulation of iron into the cavity of N-CNT. The use of acetonitrile, as carbon and nitrogen source, with the para-CN and -Cl as catalysts also yielded a mixture of N-CNTs and carbon nanofibres (CNFs), with less abundance of CNFs in the products obtained using para-Cl catalysts. However, para-CF_3 catalyst in acetonitrile gave N-CNTs as the only shaped carbon nanomaterials. - Graphical abstract: Graphical abstract showing the synthesis of N-CNTs using halogenated-ferrocenyl derivatives as catalyst with pyridine or acetonitrile as nitrogen and carbon sources via the chemical vapour deposition technique. - Highlights: • N-CNTs were synthesized from halogenated ferrocenyl catalysts. • Halogenated catalysts promote nitrogen-doping and pyridinic nitrogen in N-CNTs. • Halogenated catalysts facilitate iron filling of N-CNTs.

  14. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy

    CERN Document Server

    Watts, David; Sauli, Fabio; Amaldi, Ugo

    2013-01-01

    On-line verification of the delivered dose during proton and carbon ion radiotherapy is currently a very desirable goal for quality assurance of hadron therapy treatment plans. In-beam positron emission tomography (ibPET), which can provide an image of the β+ activity induced in the patient during irradiation, which in turn is correlated to the range of the ion beam, is one of the modalities for achieving this goal. Application to hadron therapy requires that the scanner geometry be modified from that which is used in nuclear medicine. In particular, PET detectors that allow a sub-nanosecond time-of-flight (TOF) registration of the collinear photons have been proposed. Inclusion of the TOF information in PET data leads to more effective PET sensitivity. Considering the challenges inherent in the ibPET technique, namely limited β+ activity and the effect of biological washout due to blood flow, TOF-PET technologies are very attractive. In this context, the TERA Foundation is investigating the use of resistiv...

  15. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy

    CERN Document Server

    Mairani, A; Kraemer, M; Sommerer, F; Parodi, K; Scholz, M; Cerutti, F; Ferrari, A; Fasso, A

    2010-01-01

    Clinical Monte Carlo (MC) calculations for carbon ion therapy have to provide absorbed and RBE-weighted dose. The latter is defined as the product of the dose and the relative biological effectiveness (RBE). At the GSI Helmholtzzentrum fur Schwerionenforschung as well as at the Heidelberg Ion Therapy Center (HIT), the RBE values are calculated according to the local effect model (LEM). In this paper, we describe the approach followed for coupling the FLUKA MC code with the LEM and its application to dose and RBE-weighted dose calculations for a superimposition of two opposed C-12 ion fields as applied in therapeutic irradiations. The obtained results are compared with the available experimental data of CHO (Chinese hamster ovary) cell survival and the outcomes of the GSI analytical treatment planning code TRiP98. Some discrepancies have been observed between the analytical and MC calculations of absorbed physical dose profiles, which can be explained by the differences between the laterally integrated depth-d...

  16. A custom-made mouthpiece incorporating tongue depressors and elevators to reduce radiation-induced tongue mucositis during carbon-ion radiation therapy for head and neck cancer.

    Science.gov (United States)

    Ikawa, Hiroaki; Koto, Masashi; Ebner, Daniel K; Takagi, Ryo; Hayashi, Kazuhiko; Tsuji, Hiroshi; Kamada, Tadashi

    We introduce a custom-made mouthpiece for carbon-ion radiation therapy for head and neck malignancy. The mouthpiece incorporates either a tongue depressor or elevator depending on tumor location. The risk of tongue mucositis may be reduced without compromising therapeutic efficacy through mouthpiece shaping. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Facile synthesis of highly stable and well-dispersed mesoporous ZrO(2)/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene.

    Science.gov (United States)

    Li, Qiang; Xu, Jie; Wu, Zhangxiong; Feng, Dan; Yang, Jianping; Wei, Jing; Wu, Qingling; Tu, Bo; Cao, Yong; Zhao, Dongyuan

    2010-09-28

    Highly ordered mesoporous ZrO(2)/carbon (FDU-15) composites have been synthesized via a facile evaporation induced triconstituent co-assembly (EISA) approach by using Pluronic F127 as a template and zirconium oxychloride octahydrate and resol as Zr and carbon sources. The synthesized mesoporous composites exhibit a highly ordered two-dimensional (2-D) hexagonal mesostructure with relatively high specific surface areas (up to 947 m(2) g(-1)), pore sizes around 3.8 nm and high pore volumes (up to 0.71 cm(3) g(-1)). The results clearly show that the crystalline zirconia nanoparticles (ca. 1.9-3.9 nm) are well-dispersed in amorphous matrices of the ordered mesoporous carbon FDU-15 materials, which construct the nanocomposites. The ordered mesostructures of the obtained ZrO(2)/FDU-15 composites can be well-retained even at the high pyrolysis temperature (up to 900 degrees C), suggesting a high thermal stability. The zirconia content of the ZrO(2)/FDU-15 composites can be tunable in a wide range (up to 47%). Moreover, the resultant mesoporous ZrO(2)/FDU-15 composites exhibit high catalytic activity in oxidative dehydrogenation (ODH) of ethylbenzene (EB) to styrene (ST), with high ethylbenzene conversion (59.6%) and styrene selectivity (90.4%), which is mainly attributed to the synergistic catalytic effect between the oxygen-containing groups located on the carbon pore walls and weakly basic sites of the nanocrystalline ZrO(2). Furthermore, the high specific surface areas and opening pore channels are also responsible for their high catalytic activity. Therefore, it is a very promising catalyst material in styrene production on an industrial scale.

  18. Treatment of malaria from monotherapy to artemisinin-based combination therapy by health professionals in urban health facilities in Yaoundé, central province, Cameroon

    Directory of Open Access Journals (Sweden)

    Bley Daniel

    2009-07-01

    Full Text Available Abstract Background After adoption of artesunate-amodiaquine (AS/AQ as first-line therapy for the treatment of uncomplicated malaria by the malaria control programme, this study was designed to assess the availability of anti-malarial drugs, treatment practices and acceptability of the new protocol by health professionals, in the urban health facilities and drugstores of Yaoundé city, Cameroon. Methods Between April and August 2005, retrospective and current information was collected by consulting registers and interviewing health practitioners in urban health facilities using a structured questionnaire. Results In 2005, twenty-seven trade-named drugs have been identified in drugstores; quinine tablets (300 mg were the most affordable anti-malarial drugs. Chloroquine was restricted to food market places and no generic artemisinin derivative was available in public health centres. In public health facilities, 13.6% of health professionals were informed about the new guidelines; 73.5% supported the use of AS-AQ as first-line therapy. However, 38.6% apprehended its use due to adverse events attributed to amodiaquine. Malaria treatment was mainly based on the diagnosis of fever. Quinine (300 mg tablets was the most commonly prescribed first-line anti-malarial drug in adults (44.5% and pregnant women (52.5%. Artequin® was the most cited artemsinin-based combination therapy (ACT (9.9%. Medical sales representatives were the main sources of information on anti-malarials. Conclusion The use of AS/AQ was not implemented in 2005 in Yaoundé, despite the wide range of anti-malarials and trade-named artemisinin derivatives available. Nevertheless, medical practitioners will support the use of this combination, when it is available in a paediatric formulation, at an affordable price. Training, information and participation of health professionals in decision-making is one of the key elements to improve adherence to new protocol guidelines. This baseline

  19. Implementation of co-trimoxazole preventive therapy policy for malaria in HIV-infected pregnant women in the public health facilities in Tanzania

    Directory of Open Access Journals (Sweden)

    Kamuhabwa AAR

    2016-12-01

    Full Text Available Appolinary AR Kamuhabwa, Richard Gordian, Ritah F Mutagonda Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania Background: In 2011, Tanzania adopted a policy for provision of daily co-trimoxazole prophylaxis to HIV-infected pregnant women for prevention of malaria and other opportunistic infections. As per the policy, HIV-infected pregnant women should not be given sulfadoxine-pyrimethamine (SP for intermittent preventive therapy. The challenges associated with this policy change and the extent to which the new policy for prevention of malaria in pregnant women coinfected with HIV was implemented need to be assessed. Aim: To assess the implementation of malaria-preventive therapy policy among HIV-infected pregnant women in the public health facilities in Dar es Salaam, Tanzania. Methodology: The study was conducted in Kinondoni Municipality, Dar es Salaam, Tanzania, from January 2015 to July 2015. Three hundred and fifty-three HIV-infected pregnant women who were attending antenatal clinics (ANCs and using co-trimoxazole for prevention of malaria were interviewed. Twenty-six health care workers working at the ANCs were also interviewed regarding provision of co-trimoxazole prophylaxis to pregnant women. A knowledge scale was used to grade the level of knowledge of health care providers. Focus group discussions were also conducted with 18 health care workers to assess the level of implementation of the policy and the challenges encountered. Results: Twenty-three (6.5% pregnant women with known HIV serostatus were using co-trimoxazole for prevention of opportunistic infections even before they became pregnant. Out of the 353 HIV-infected pregnant women, eight (2.5% were coadministered with both SP and co-trimoxazole. Sixty (16.7% pregnant women had poor adherence to co-trimoxazole prophylaxis. Out of the 26 interviewed health care providers, 20 had high

  20. Implementation of co-trimoxazole preventive therapy policy for malaria in HIV-infected pregnant women in the public health facilities in Tanzania.

    Science.gov (United States)

    Kamuhabwa, Appolinary Ar; Gordian, Richard; Mutagonda, Ritah F

    2016-01-01

    In 2011, Tanzania adopted a policy for provision of daily co-trimoxazole prophylaxis to HIV-infected pregnant women for prevention of malaria and other opportunistic infections. As per the policy, HIV-infected pregnant women should not be given sulfadoxine-pyrimethamine (SP) for intermittent preventive therapy. The challenges associated with this policy change and the extent to which the new policy for prevention of malaria in pregnant women coinfected with HIV was implemented need to be assessed. To assess the implementation of malaria-preventive therapy policy among HIV-infected pregnant women in the public health facilities in Dar es Salaam, Tanzania. The study was conducted in Kinondoni Municipality, Dar es Salaam, Tanzania, from January 2015 to July 2015. Three hundred and fifty-three HIV-infected pregnant women who were attending antenatal clinics (ANCs) and using co-trimoxazole for prevention of malaria were interviewed. Twenty-six health care workers working at the ANCs were also interviewed regarding provision of co-trimoxazole prophylaxis to pregnant women. A knowledge scale was used to grade the level of knowledge of health care providers. Focus group discussions were also conducted with 18 health care workers to assess the level of implementation of the policy and the challenges encountered. Twenty-three (6.5%) pregnant women with known HIV serostatus were using co-trimoxazole for prevention of opportunistic infections even before they became pregnant. Out of the 353 HIV-infected pregnant women, eight (2.5%) were coadministered with both SP and co-trimoxazole. Sixty (16.7%) pregnant women had poor adherence to co-trimoxazole prophylaxis. Out of the 26 interviewed health care providers, 20 had high level of knowledge regarding malaria-preventive therapy in HIV-infected pregnant women. Lack of adequate supply of co-trimoxazole in health facilities and inadequate training of health care providers were among the factors causing poor implementation of co

  1. Separation of CO2 in a Solid Waste Management Incineration Facility Using Activated Carbon Derived from Pine Sawdust

    Directory of Open Access Journals (Sweden)

    Inés Durán

    2017-06-01

    Full Text Available The selective separation of CO2 from gas mixtures representative of flue gas generated in waste incineration systems is studied on two activated carbons obtained from pine sawdust and compared to a commercial activated carbon. Dynamic adsorption experiments were conducted in a fixed-bed adsorption column using a binary mixture (N2/CO2 with a composition representative of incineration streams at temperatures from 30 to 70 °C. The adsorption behavior of humid mixtures (N2/CO2/H2O was also evaluated in order to assess the influence of water vapor in CO2 adsorption at different relative humidity in the feed gas: 22% and 60%. Moreover, CO2 adsorption was studied in less favorable conditions, i.e., departing from a bed initially saturated with H2O. In addition, the effect of CO2 on H2O adsorption was examined. Experimental results showed that the CO2 adsorption capacity can be reduced significantly by the adsorption of H2O (up to 60% at high relative humidity conditions. On the other hand, the breakthrough tests over the adsorbent initially saturated with water vapor indicated that H2O is little affected by CO2 adsorption. The experimental results pointed out the biomass based carbons as best candidates for CO2 separation under incineration flue gas conditions.

  2. Ambient dose equivalent measurements in secondary radiation fields at proton therapy facility CCB IFJ PAN in Krakow using recombination chambers

    Directory of Open Access Journals (Sweden)

    Jakubowska Edyta A.

    2016-03-01

    Full Text Available This work presents recombination methods used for secondary radiation measurements at the Facility for Proton Radiotherapy of Eye Cancer at the Institute for Nuclear Physics, IFJ, in Krakow (Poland. The measurements of H*(10 were performed, with REM-2 tissue equivalent chamber in two halls of cyclotrons AIC-144 and Proteus C-235 and in the corridors close to treatment rooms. The measurements were completed by determination of gamma radiation component, using a hydrogen-free recombination chamber. The results were compared with the measurements using rem meter types FHT 762 (WENDI-II and NM2 FHT 192 gamma probe and with stationary dosimetric system.

  3. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  4. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Schwint, A.E.; Hartwell, J.K.; Heber, E.M.; Trivillin, V.; Castillo, J.; Wentzeis, L.; Sloan, P.; Wemple, C.A.

    2004-10-04

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  5. Study on the irradiation port for wide spread use of carbon cancer therapy

    International Nuclear Information System (INIS)

    Komori, Masataka; Yonai, Shunsuke; Kanai, Tatsuaki

    2006-01-01

    A compact irradiation port for wide spread use of carbon radiotherapy is designed. The port length will be reduced to 5.5 m, which equal to half-length of Heavy Ion Medical Accelerator in Chiba (HIMAC). The broad beam method will be used to produce an irradiation field up to 220 mm in diameter and 250 mm in depth. We propose an amplitude-modulation wobbler method, so called spiral wobbler method, to produce the large irradiation field using a small radius beam. The system has an advantage that the residual range at an iso-center is longer than that produced by a conventional wobbler-scatterer method. An accurate dose estimation system will be introduced instead of measuring a calibration factor of dose monitor for each patient. In this project, we verify the design of the irradiation port and the dose estimation system. (author)

  6. Validation of recent Geant4 physics models for application in carbon ion therapy

    CERN Document Server

    Lechner, A; Ivanchenko, V N

    2010-01-01

    Cancer treatment with energetic carbon ions has distinct advantages over proton or photon irradiation. In this paper we present a simulation model integrated into the Geant4 Monte Carlo toolkit (version 9.3) which enables the use of ICRU 73 stopping powers for ion transport calculations. For a few materials, revised ICRU 73 stopping power tables recently published by ICRU (P. Sigmund, A. Schinner, H. Paul, Errata and Addenda: ICRU Report 73 (Stopping of Ions Heavier than Helium), International Commission on Radiation Units and Measurements, 2009) were incorporated into Geant4, also covering media like water which are of importance in radiotherapeutical applications. We examine, with particular attention paid to the recent developments, the accuracy of current Geant4 models for simulating Bragg peak profiles of C-12 ions incident on water and polyethylene targets. Simulated dose distributions are validated against experimental data available in the literature, where the focus is on beam energies relevant to io...

  7. Design and performance of daily quality assurance system for carbon ion therapy at NIRS

    Science.gov (United States)

    Saotome, N.; Furukawa, T.; Hara, Y.; Mizushima, K.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    At National Institute of Radiological Sciences (NIRS), we have been commissioning a rotating-gantry system for carbon-ion radiotherapy. This rotating gantry can transport heavy ions at 430 MeV/u to an isocenter with irradiation angles of ±180° that can rotate around the patient so that the tumor can be irradiated from any direction. A three-dimensional pencil-beam scanning irradiation system equipped with the rotating gantry enables the optimal use of physical characteristics of carbon ions to provide accurate treatment. To ensure the treatment quality using such a complex system, the calibration of the primary dose monitor, output check, range check, dose rate check, machine safety check, and some mechanical tests should be performed efficiently. For this purpose, we have developed a measurement system dedicated for quality assurance (QA) of this gantry system: the Daily QA system. The system consists of an ionization chamber system and a scintillator system. The ionization chamber system is used for the calibration of the primary dose monitor, output check, and dose rate check, and the scintillator system is used for the range check, isocenter, and gantry angle. The performance of the Daily QA system was verified by a beam test. The stability of the output was within 0.5%, and the range was within 0.5 mm. The coincidence of the coordinates between the patient-positioning system and the irradiation system was verified using the Daily QA system. Our present findings verified that the new Daily QA system for a rotating gantry is capable of verifying the irradiation system with sufficient accuracy.

  8. Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol

    Science.gov (United States)

    Wang, Shan; Gao, Shasha; Tang, Yakun; Wang, Lei; Jia, Dianzeng; Liu, Lang

    2018-04-01

    Coal-based activated carbons (AC) were acted as the support, Cu/AC catalysts were synthesized by a facile solid-state reaction combined with subsequent heat treatment. In Cu/AC composites, highly dispersed Cu nanospheres were anchored on AC. The catalytic activity for 4-nitrophenol (4-NP) was investigated, the effects of activation temperature and copper loading on the catalytic performance were studied. The catalysts exhibited very high catalytic activity and moderate chemical stability due to the unique characteristics of the particle-assembled nanostructures, the high surface area and the porous structure of coal-based AC and the good dispersion of metal particles. Design and preparation of non-noble metal composite catalysts provide a new direction for improving the added value of coal.

  9. Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin

    Energy Technology Data Exchange (ETDEWEB)

    Manasa, G [Electrochemistry Research Group, Department of Chemistry, St. Joseph' s College, Lalbagh Road, Bangalore, 560027, Karnataka (India); Mascarenhas, Ronald J, E-mail: ronaldmasc2311@yahoo.co.in [Electrochemistry Research Group, Department of Chemistry, St. Joseph' s College, Lalbagh Road, Bangalore, 560027, Karnataka (India); Satpati, Ashis K [Analytical Chemistry Division, Bhabha Atomic Research Centre, Anushakthi Nagar, Trombay, Mumbai 400094, Maharashtra (India); D' Souza, Ozma J [Electrochemistry Research Group, Department of Chemistry, St. Joseph' s College, Lalbagh Road, Bangalore, 560027, Karnataka (India); Dhason, A [Soft Condensed Matter, Raman Research Institute, Sadashivnagar, Bangalore 560080, Karnataka (India)

    2017-04-01

    Free radicals are formed as byproducts of metabolism, and are highly unstable due to the presence of unpaired electrons. They readily react with other important cellular components such as DNA causing them damage. Antioxidants such as (+)-catechin (CAT), neutralize free radicals in the blood stream. Hence there is a need for detection and quantification of catechin concentration in various food sources and beverages. Electro-oxidative properties of catechin were investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). A carbon paste working electrode modified by electropolymerizing methylene blue (MB) was fabricated. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) techniques were used to study the surface morphology of the electrode. Quasi-reversible electron transfer reaction occurred at + 0.260 V through a diffusion controlled process. In comparison to the bare carbon paste electrode (CPE), there was a significant 5.3 times increment in anodic current sensitivity at the modified electrode at physiological pH. Our findings indicate that for the electro-oxidation of CAT, CPE is a better base material for electropolymerization of MB compared to glassy carbon electrode (GCE). Nyquist plot followed the theoretical shape, indicating low interfacial charge transfer resistance of 0.095 kΩ at the modified electrode. Calibration plots obtained by DPV were linear in two ranges of 1.0 × 10{sup −3} to 1.0 × 10{sup −6} and 1.0 × 10{sup −7} to 0.1 × 10{sup −8} M. The limit of detection (LOD) and limit of quantification (LOQ) was 4.9 nM and 14 nM respectively. Application of the developed electrode was demonstrated by detecting catechin in green tea and spiked fruit juice with satisfactory recoveries. The sensor was stable, sensitive, selective and reproducible. - Highlights: • Remarkable electrocatalytic oxidation of Catechin at poly(methylene blue) modified CPE • Complete elimination of signal

  10. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  11. Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications

    Science.gov (United States)

    Arul, Velusamy; Sethuraman, Mathur Gopalakrishnan

    2018-04-01

    Green synthesis of fluorescent nitrogen doped carbon dots (N-CDs) using Actinidia deliciosa (A. deliciosa) fruit extract as a carbon precursor and aqueous ammonia as a nitrogen dopant is reported here. The synthesized N-CDs were characterized by high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), UV-Visible spectroscopy (UV-Vis), fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The average size of the N-CDs was approximately 3.59 nm and the calculated inter layer distance was found to be 0.21 nm. Raman spectroscopy and SAED pattern revealed the graphitic nature of the synthesized N-CDs. The N-CDs were found to emit intense blue color at 405 nm under the excitation of 315 nm. The doping of nitrogen over the surface of the N-CDs was confirmed by EDS, FT-IR and XPS studies. The synthesized N-CDs were found to exhibit excellent catalytic activity in the reduction of Rhodamine-B using sodium borohydrate. The MTT assay was used to evaluate the cytotoxicity and biocompatibility of N-CDs towards L-929 and MCF-7 cells. From the results obtained, it was found that the N-CDs exhibit low cytotoxicity and superior biocompatibility on both L-929 and MCF-7 cells.

  12. Facile preparation of molecularly imprinted polypyrrole-graphene-multiwalled carbon nanotubes composite film modified electrode for rutin sensing.

    Science.gov (United States)

    Yang, Lite; Yang, Juan; Xu, Bingjie; Zhao, Faqiong; Zeng, Baizhao

    2016-12-01

    In this paper, a novel molecularly imprinted composite film modified electrode was presented for rutin (RT) detection. The modified electrode was fabricated by electropolymerization of pyrrole on a graphene-multiwalled carbon nanotubes composite (G-MWCNTs) coated glassy carbon electrode in the presence of RT. The netlike G-MWCNTs composite, prepared by in situ hydrothermal process, had high conductivity and electrocatalytic activity. At the resulting MIP/G-MWCNTs/GCE electrode RT could produce a sensitive anodic peak in pH 1.87 Britton-Robinson buffer solution. The factors affecting the electrochemical behavior and response of RT on the modified electrode were carefully investigated and optimized. Under the selected conditions, the linear response range of RT was 0.01-1.0μmolL -1 and the detection limit (S/N=3) was 5.0nmolL -1 . The electrode was successfully applied to the determination of RT in buckwheat tea and orange juice samples, and the recoveries for standards added were 93.4-105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Facile Synthesis of Three-Dimensional Heteroatom-Doped and Hierarchical Egg-Box-Like Carbons Derived from Moringa oleifera Branches for High-Performance Supercapacitors.

    Science.gov (United States)

    Cai, Yijin; Luo, Ying; Xiao, Yong; Zhao, Xiao; Liang, Yeru; Hu, Hang; Dong, Hanwu; Sun, Luyi; Liu, Yingliang; Zheng, Mingtao

    2016-12-07

    In this paper, we demonstrate that Moringa oleifera branches, a renewable biomass waste with abundant protein content, can be employed as novel precursor to synthesize three-dimensional heteroatom-doped and hierarchical egg-box-like carbons (HEBLCs) by a facile room-temperature pretreatment and direct pyrolysis process. The as-prepared HEBLCs possess unique egg-box-like frameworks, high surface area, and interconnected porosity as well as the doping of heteroatoms (oxygen and nitrogen), endowing its excellent electrochemical performances (superior capacity, high rate capability, and outstanding cycling stability). Therefore, the resultant HEBLC manifests a maximum specific capacitance of 355 F g -1 at current density of 0.5 A g -1 and remarkable rate performance. Moreover, 95% of capacitance retention of HEBLCs can be also achieved after 20 000 charge-discharge cycles at an extremely high current density (20 A g -1 ), indicating a prominent cycling stability. Furthermore, the as-assembled HEBLC//HEBLC symmetric supercapacitor displays a superior energy density of 20 Wh kg -1 in aqueous electrolyte and remarkable capacitance retention (95.6%) after 10 000 charge-discharge cycles. This work provides an environmentally friendly and reliable method to produce higher-valued carbon nanomaterials from renewable biomass wastes for energy storage applications.

  14. Facile fabrication of carbon microspheres decorated with B(OH) 3 and α-Fe 2 O 3 nanoparticles: superior microwave absorption

    KAUST Repository

    Zhong, Bo

    2017-06-02

    We demonstrate that novel three-dimensional (3D) B(OH)3 and α-Fe2O3 nanoparticles decorated carbon microspheres (B(OH)3/α-Fe2O3-CMSs) can be fabricated via a facile thermal treatment process. The carbon microspheres with diameter of 1 to 3 μm and decorated B(OH)3 and α-Fe2O3 nanoparticles with diameters of several to tens of nanometers are successfully fabricated. These novel 3D B(OH)3/α-Fe2O3-CMS composites exhibit enhanced microwave absorption with tunable strong absorption wavebands in the frequency range of 2–18 GHz. They have a minimum reflection loss (RL) value of -52.69 dB at a thickness of 3.0 mm, and the effective absorption bandwidth for RL less than -10 dB is as large as 5.64 GHz. The enhanced microwave absorption performance arises from the synergy of the impedance matching caused by the B(OH)3 nanoparticles, dielectric loss as well as the enhancement of multiple reflection among 3D α-Fe2O3 nanocrystals. These results provide a new strategy to tune electromagnetic properties and enhance the capacity of high-efficient microwave absorbers.

  15. A facile template approach for the synthesis of mesoporous Fe3C/Fe-N-doped carbon catalysts for efficient and durable oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Shuai Li; Bo Li; Liang Ma; Jia Yang; Hangxun Xu

    2017-01-01

    Facile synthetic approaches toward the development of efficient and durable nonprecious metal catalysts for the oxygen reduction reaction (ORR) are very important for commercializing advanced electrochemical devices such as fuel cells and metal-air batteries.Here we report a novel template approach to synthesize mesoporous Fe-N-doped carbon catalysts encapsulated with Fe3C nanoparticles.In this approach,the layer-structured FeOCl was first used as a template for the synthesis of a three-dimensional polypyrrole (PPy) structure.During the removal of the FeOCl template,the Fe3+ can be absorbed by PPy and then converted into Fe3C nanoparticles and Fe-N-C sites during the pyrolyzing process.As a result,the as-prepared catalysts could exhibit superior electrocatalytic ORR performance to the commercial Pt/C catalyst in alkaline solutions.Furthermore,the Zn-air battery assembled using the mesoporous carbon catalyst as the air electrode could surpass the commercial Pt/C catalyst in terms of the power density and energy density.

  16. Facile fabrication of carbon microspheres decorated with B(OH) 3 and α-Fe 2 O 3 nanoparticles: superior microwave absorption

    KAUST Repository

    Zhong, Bo; Wang, Chaojun; Yu, Yuanlie; Xia, Long; Wen, Guangwu

    2017-01-01

    We demonstrate that novel three-dimensional (3D) B(OH)3 and α-Fe2O3 nanoparticles decorated carbon microspheres (B(OH)3/α-Fe2O3-CMSs) can be fabricated via a facile thermal treatment process. The carbon microspheres with diameter of 1 to 3 μm and decorated B(OH)3 and α-Fe2O3 nanoparticles with diameters of several to tens of nanometers are successfully fabricated. These novel 3D B(OH)3/α-Fe2O3-CMS composites exhibit enhanced microwave absorption with tunable strong absorption wavebands in the frequency range of 2–18 GHz. They have a minimum reflection loss (RL) value of -52.69 dB at a thickness of 3.0 mm, and the effective absorption bandwidth for RL less than -10 dB is as large as 5.64 GHz. The enhanced microwave absorption performance arises from the synergy of the impedance matching caused by the B(OH)3 nanoparticles, dielectric loss as well as the enhancement of multiple reflection among 3D α-Fe2O3 nanocrystals. These results provide a new strategy to tune electromagnetic properties and enhance the capacity of high-efficient microwave absorbers.

  17. Nano-biomedical approaches of cancer therapy using carbon based and magnetic nanomaterials

    Science.gov (United States)

    Karmakar, Alokita

    Since the inception of nanoparticles, they have affected almost each and every field of modern science and technology both in terms of research and application. Due to its subcellular level size and ease of modification for biological and medical purposes, nanoparticles have contributed greatly in various field of biomedical reaserch including cancer research. In this dissertation, emphasis has been given on an important area of research of a multi-modal anticancer therapeutic approach using carbon-based and magnetic inorganic nanoparticles. Ethylenediamine functionalized single wall carbon nanotubes (SWNTs) have been used to deliver a functional copy of p53 gene in a plasmid construct, to human breast cancer cell line MCF-7, in order to restore the activity of p53 protein, which in this case is extremely short-lived. The attachment of the plasmid on the SWNTs was determined by atomic force microscopy. The nanutobe has successfully delivered the plasmid into the MCF-7 cell which follows the expression of the p53 protein into the cell as evidenced by the expression of Green fluorescence protein which was tagged to p53 plasmid. Upon expression, the functional activity of the p53 protein was found to be significantly restored as after 72 hours of incubation ~40% of cancer cells were apoptotic. Apoptosis was further determined by caspase assay. In chapter 3, we have used SWNTs to accomplish the targeted delivery by functionalizing it with human epidermal growth factor (EGF). As EGF receptor is over expressed in many of the cancer cells, it is possible to deliver any chemotherapeutic agents selectively to those cancer cells. We used EGF conjugated to SWNTs for targeted delivery to PANC-1 cells. Results indicate EGF-functionalized SWNTs accumulate more into PANC-1 cells compared to only SWNTs only. Upon targeting, Raman spectroscopy and ELIZA assay were used to determine the association and dissociation pattern of the targeted SWCNTs. 2D-Raman mapping was used to show

  18. Evaluation and efficacy of carbon dioxide therapy (carboxytherapy) versus mesolipolysis in the treatment of cellulite.

    Science.gov (United States)

    Eldsouky, Fatma; Ebrahim, Howyda Mohamed

    2018-01-17

    Cellulite is an irregular alteration of the skin surface giving it cottage cheese appearance. Carboxytherapy is transcutaneous infusion of carbon dioxide into the affected site. Mesolipolysis aims to remove cellulite and improve skin texture. To verify the efficacy and safety of carboxytherapy versus mesolipolysis using phosphatidylcholine (PPC) in treatment of cellulite in thighs area. Forty-eight female patients with different grades of cellulite at thighs area were enrolled in this study. They were classified into two groups: group A received subcutaneous infusion of carboxytherapy, and group B was treated with mesolipolysis using PPC. Each group received six sessions at weekly intervals. sessions. The outcome measures and clinical assessment were based on cellulite grading scale and thigh circumference measurements. Standardized digital photography was taken before and after treatment. Patients were followed up for 6 months. After treatment, there was significant reduction in thigh circumference measurement p Carboxytherapy and mesolipolysis are safe and effective in cellulite treatment. Carboxytherapy is a promising alternative therapeutic modality for cellulite treatment.

  19. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mairani, A [University of Pavia, Department of Nuclear and Theoretical Physics, and INFN, via Bassi 6, 27100 Pavia (Italy); Brons, S; Parodi, K [Heidelberg Ion Beam Therapy Center and Department of Radiation Oncology, Im Neuenheimer Feld 450, 69120 Heidelberg (Germany); Cerutti, F; Ferrari, A; Sommerer, F [CERN, 1211 Geneva 23 (Switzerland); Fasso, A [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kraemer, M; Scholz, M, E-mail: Andrea.Mairani@mi.infn.i [GSI Biophysik, Planck-Str. 1, D-64291 Darmstadt (Germany)

    2010-08-07

    Clinical Monte Carlo (MC) calculations for carbon ion therapy have to provide absorbed and RBE-weighted dose. The latter is defined as the product of the dose and the relative biological effectiveness (RBE). At the GSI Helmholtzzentrum fuer Schwerionenforschung as well as at the Heidelberg Ion Therapy Center (HIT), the RBE values are calculated according to the local effect model (LEM). In this paper, we describe the approach followed for coupling the FLUKA MC code with the LEM and its application to dose and RBE-weighted dose calculations for a superimposition of two opposed {sup 12}C ion fields as applied in therapeutic irradiations. The obtained results are compared with the available experimental data of CHO (Chinese hamster ovary) cell survival and the outcomes of the GSI analytical treatment planning code TRiP98. Some discrepancies have been observed between the analytical and MC calculations of absorbed physical dose profiles, which can be explained by the differences between the laterally integrated depth-dose distributions in water used as input basic data in TRiP98 and the FLUKA recalculated ones. On the other hand, taking into account the differences in the physical beam modeling, the FLUKA-based biological calculations of the CHO cell survival profiles are found in good agreement with the experimental data as well with the TRiP98 predictions. The developed approach that combines the MC transport/interaction capability with the same biological model as in the treatment planning system (TPS) will be used at HIT to support validation/improvement of both dose and RBE-weighted dose calculations performed by the analytical TPS.

  20. Hybrid biomaterials based on calcium carbonate and polyaniline nanoparticles for application in photothermal therapy.

    Science.gov (United States)

    Neira-Carrillo, Andrónico; Yslas, Edith; Marini, Yazmin Amar; Vásquez-Quitral, Patricio; Sánchez, Marianela; Riveros, Ana; Yáñez, Diego; Cavallo, Pablo; Kogan, Marcelo J; Acevedo, Diego

    2016-09-01

    Inorganic materials contain remarkable properties for drug delivery, such as a large surface area and nanoporous structure. Among these materials, CaCO3 microparticles (CMPs) exhibit a high encapsulation efficiency and solubility in acidic media. The extracellular pH of tumor neoplastic tissue is significantly lower than the extracellular pH of normal tissue facilitating the release of drug-encapsulating CMPs in this area. Conducting polyaniline (PANI) absorbs light energy and transforms it into localized heat to produce cell death. This work aimed to generate hybrid CMPs loaded with PANI for photothermal therapy (PTT). The hybrid nanomaterial was synthesized with CaCO3 and carboxymethyl cellulose in a simple, reproducible manner. The CMP-PANI-Cys particles were developed for the first time and represent a novel type of hybrid biomaterial. Resultant nanoparticles were characterized utilizing scanning electron microscopy, dynamic light scattering, zeta potential, UV-vis, FTIR and Raman spectroscopy. In vitro HeLa cells in dark and irradiated conditions showed that CMP-PANI-Cys and PANI-Cys are nontoxic at the assayed concentrations. Hybrid biomaterials displayed high efficiency for potential PTT compared with PANI-Cys. In summary, hierarchical hybrid biomaterials composed of CMPs and PANI-Cys combined with near infrared irradiation represents a useful alternative in PTT. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Parental views on acute otitis media (AOM) and its therapy in children--results of an exploratory survey in German childcare facilities.

    Science.gov (United States)

    Kautz-Freimuth, Sibylle; Redaèlli, Marcus; Samel, Christina; Civello, Daniele; Altin, Sibel V; Stock, Stephanie

    2015-12-01

    Acute otitis media (AOM) is one of the main reasons for medical consultation and antibiotic use during childhood. Although 80% of AOM cases are self-limiting, antibiotic prescription is still high, either for physician- or for parent-related factors. This study aims to identify parental knowledge about, beliefs and attitudes towards, and experiences with AOM and its therapy and thus to gain insights into parents' perspectives within the German health care system. An exploratory survey was conducted among German-speaking parents of children aged 2 to 7 years who sent their children to a childcare facility. Childcare facilities were recruited by convenience sampling in different urban and rural sites in Germany, and all parents with children at those facilities were invited to participate. Data were evaluated using descriptive statistical analyses. One-hundred-thirty-eight parents participated. Of those, 75.4% (n = 104) were AOM-experienced and 75.4% (n = 104) had two or more children. Sixty-six percent generally agree that bacteria cause AOM. 20.2% generally agree that viruses cause AOM. 30.5% do not generally agree that viruses cause AOM. Eight percent generally agree that AOM resolves spontaneously, whereas 53.6% do not generally agree. 92.5% generally (45.7%) and partly (42.8%) agree that AOM needs antibiotic treatment. With respect to antibiotic effects, 56.6% generally agree that antibiotics rapidly relieve earache. 60.1% generally agree that antibiotics affect the gastrointestinal tract and 77.5% generally agree that antibiotics possibly become ineffective after frequent use. About 40% generally support and about 40% generally reject a "wait-and-see" strategy for AOM treatment. Parental-reported experiences reveal that antibiotics are by far more often prescribed (70.2%) than actively requested by parents (26.9%). Parental views on AOM, its therapy, and antibiotic effects reveal uncertainties especially with respect to causes, the natural course of the disease

  2. Evaluation of the radiological protection and proposal of a PGC in physical aspects for Roentgen therapy facilities

    International Nuclear Information System (INIS)

    Garcia R, L.M.; Silvestre, I.; Laguardia, R.A.; Almeida, A. de

    1998-01-01

    The present work was realized in a first stage in the Hnos Ameijeiras Hospital in Cuba and its objective in this phase is to present at the Regulatory Agency (OR) the documentation for obtaining the Institutional Exploitation License (LE) of a Roentgen therapy equipment, according with the IAEA Safety Series No. 115 and propose the Quality Assurance Program (PGC) in the physical aspects that it will be applied in this practice. For obtaining the LE it was made up a safety report, a safety manual and a radiological emergency plan. For making up the PGC it was established the reference state of the equipment (ER), realizing the tests which determine the value or stability of the physical parameters involved in the treatment through the adaptation of International protocols, mainly the 'Quality Assurance in Radiotherapy' derived of Arcal XXX. In a second stage were applied some of the acquired experiences in the Das Clinicas Hospital at Ribeirao Preto in Brazil. As more important results it was had that was renewed the Roentgen therapy Service of the Hnos. Ameijeiras Hospital and was made the PGC which will govern this practice. Moreover it was obtained the dose percentage curves in depth (PDP) for X-rays low energies. It was proposed procedures for the parameters control like the PDP, the absolute dose and the hemi reducing layer (CHR). With this work it was started doing the fulfilment of one of the main objectives of the Arcal XXX Project related with the Quality Assurance in Radiotherapy extending its application toward area of Latin American countries. (Author)

  3. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy.

    Science.gov (United States)

    Yan, Jian; Peng, Xifeng; Cai, Yulian; Cong, Wendong

    2018-06-01

    The present anti-angiogenic therapies for neovascular age-related macular degeneration require effective drug delivery systems for transfer drug molecules. Ranibizumab is an active humanized monoclonal antibody that counteracts active forms of vascular endothelial growth factor A in the neovascular age-related macular degeneration therapy. The development of ranibizumab-related therapies, we have designed the effective drug career with engineered magnetic nanoparticles (Fe 3 O 4 ) as a facile platform of ranibizumab delivery for the treatment of neovascular age-related macular degeneration. Ranibizumab conjugated iron oxide (Fe 3 O 4 )/PEGylated poly lactide-co-glycolide (PEG-PLGA) was successfully designed and the synthesized materials are analyzed different analytical techniques. The microscopic techniques (Scanning Electron Microscopy (SEM) & Transmission Electron Microscopy (TEM)) are clearly displayed that spherical nanoparticles into the PEG-PLGA matrix and presence of elements and chemical interactions confirmed by the results of energy dispersive X-ray analysis (EDX) and Fourier trans-form infrared (FTIR) spectroscopic methods. The in vitro anti-angiogenic evaluation of Fe 3 O 4 /PEG-PLGA polymer nanomaterial efficiently inhibits the tube formation in the Matrigel-based assay method by using human umbilical vein endothelial cells. Ranibizumab treated Fe 3 O 4 /PEG-PLGA polymer nanomaterials not disturbed cell proliferation and the results could not display the any significant differences in human endothelial cells. The present investigated results describe that Fe 3 O 4 /PEG-PLGA polymer nanomaterials can be highly favorable and novel formulation for the treatment of neovascular age-related macular degeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. [Comparison of the therapeutic effect on skeletal fluorosis and impact on urine fluoride value among fire needle therapy, electroacupuncture and calcium carbonate D3].

    Science.gov (United States)

    Wang, Tong; Yang, Xu-Guang; Wu, Zhong-Chao; Zhou, Jin-Cao; Chen, Zhong-Jie; Hu, Jing; Jiao, Yue; Zhao, Xiao-Guang

    2014-03-01

    To observe the impacts on skeletal fluorosis pain, joint motor dysfunction and urine fluoride excretion in the treatment with fire needle therapy, electroacupuncture and calcium carbonate D3. The randomized controlled trial was adopted. Ninety-five patients were randomized into a fire needle group (31 cases), an electroacupuncture group (33 cases) and a calcium carbonate D3 group (31 cases). In the fire needle group and the electroacupuncture group, Ashi points, Dazhui (GV 14), Geshu (BL 17), Quchi (LI 11), Hegu (LI 4), Xuehai (SP 10) points were selected and stimulated with fire needle and electroacupuncture separately, three times a week. In the calcium carbonate D3 group, calcium carbonate D3 tablets was prescribed for oral administration, 600 mg each time, twice a day. The duration of treatment was 2 months in the electroacupuncture group and calcium carbonate D3 group and 1 month in the fire needle group. VAS score, the range of motion (ROM) and urine fluoride value were compared before and after treatment in the patients of the three groups. After treatment, VAS value and ROM were improved significantly in the patients of the three groups (all P 0.05). After treatment, the urine fluoride value was increased significantly in the fire needle group [(7.89 +/- 3.61) mg/L vs (9.81 +/- 4.17) mg/L, P electroacupuncture group [(7.53 +/- 3.46) mg/L vs (8.97 +/- 4.21) mg/L, P 0.05). The fire needle therapy, electroacupuncture and calcium carbonate D3 all have the clinical value in the prevention and treatment of skeletal fluorosis and the difference in the therapeutic effect has not been discovered among them yet at present. But it has been found that the fire needle therapy and electroacupuncture display the active significance in the promotion of urine fluoride excretion.

  5. A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); School of Mechanical and Electronic Engineering, Ningbo Dahongying University, Ningbo 315175 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Haibing, E-mail: xuhaibing@nimte.ac.cn [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Liu, Dong; Yan, Chun [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhu, Yingdan, E-mail: y.zhu@nimte.ac.cn [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China)

    2017-07-15

    Graphical abstract: Carbon fiber was successfully functionalized with a layer of coating and poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres (PZSMS) by in situ polymerization. The enhancement of surface roughness can improve obviously the interfacial properties through providing more contact points and increasing mechanical interlocking between carbon fiber and epoxy matrix. Moreover, the cyclomatrix-type polyphosphazene coating and PZSMS distributed on the fibers surface can heal the surface defects to some extent and assist in holding back or absorbing excessive stress, resulting in the improvement of tensile strength. - Highlights: • Polyphosphazene microspheres/CF hybrid reinforcements were prepared via a novel and facile one-pot in situ polymerization. • Plenty of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces. • The multi-scale hybrid CF reinforcement enhanced the interfacial adhesion of CF/epoxy composites obviously. • The tensile strength of multi-scale hybrid CF also showed an obvious increase. - Abstract: Introducing nanoscale reinforcements into the interface between carbon fiber (CF) and resin is an effective approach to improve the interfacial adhesion of CF composites. In this paper, a facile one-pot polymerization process provides a rapid and efficient method for preparing polyphosphazene microspheres/CF hybrid reinforcement using hexachlorocyclotriphosphazene (HCCP) and bis(4-hydroxyphenyl) sulfone (BPS) as monomers. By the in situ polymerization modification, HCCP and BPS were successfully cross-linked and deposited on the CF surface. Scanning electron microscope and atomic force microscopy images show that poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces and the surface roughness of fibers is enhanced obviously. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm that the

  6. A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites

    International Nuclear Information System (INIS)

    Chen, Xiang; Xu, Haibing; Liu, Dong; Yan, Chun; Zhu, Yingdan

    2017-01-01

    Graphical abstract: Carbon fiber was successfully functionalized with a layer of coating and poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres (PZSMS) by in situ polymerization. The enhancement of surface roughness can improve obviously the interfacial properties through providing more contact points and increasing mechanical interlocking between carbon fiber and epoxy matrix. Moreover, the cyclomatrix-type polyphosphazene coating and PZSMS distributed on the fibers surface can heal the surface defects to some extent and assist in holding back or absorbing excessive stress, resulting in the improvement of tensile strength. - Highlights: • Polyphosphazene microspheres/CF hybrid reinforcements were prepared via a novel and facile one-pot in situ polymerization. • Plenty of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces. • The multi-scale hybrid CF reinforcement enhanced the interfacial adhesion of CF/epoxy composites obviously. • The tensile strength of multi-scale hybrid CF also showed an obvious increase. - Abstract: Introducing nanoscale reinforcements into the interface between carbon fiber (CF) and resin is an effective approach to improve the interfacial adhesion of CF composites. In this paper, a facile one-pot polymerization process provides a rapid and efficient method for preparing polyphosphazene microspheres/CF hybrid reinforcement using hexachlorocyclotriphosphazene (HCCP) and bis(4-hydroxyphenyl) sulfone (BPS) as monomers. By the in situ polymerization modification, HCCP and BPS were successfully cross-linked and deposited on the CF surface. Scanning electron microscope and atomic force microscopy images show that poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces and the surface roughness of fibers is enhanced obviously. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm that the

  7. Augmented ingestion of carbon monoxide and sulfur oxides by occupants of vehicles while idling in drive-up facility lines

    Energy Technology Data Exchange (ETDEWEB)

    Myronuk, D J

    1977-02-01

    For a line-up of automobiles waiting for a period of time at a drive-up facility, the idling engine emissions are expelled in a rearward direction and tend to envelope the vehicles at the end portion of the queue. Factors that affect these highly localized pollutant accumulation episodes include local meteorological conditions, number, age and tune-up condition of the cars, exhaust pipe location, interior air handling equipment, vehicle separation distances and natural or artificial barriers that form troughs in which vehicular emissions can accumulate or be trapped. In a series of typical vehicle line-ups, local CO concentrations were measured. With Santa Clara Valley background levels of 2 to 5 ppm, the 15 min average driver-area concentration levels ranged from 15 ppm to 95 ppm with short term peaks between 100 and 1000 ppm. The exposure of humans to these concentrations of CO can result in mild headache or nausea, failure to react quickly to stimuli (like oncoming traffic) as well as setting a strain on the heart and lungs. These effects are temporary and reversible. A far more serious local air quality and health problem arises in the growing production of SO/sub x/ and sulfate compounds attributable to the legislated use of oxidizing catalytic mufflers for new car emission control and oxidation of the elemental S found in all gasoline. Using the CO levels as indicators of the accumulation of local automobile produced pollutants, when a majority of cars are equipped with catalytic converters, the anticipated adverse effects of SO/sub x/ concentrations, irritation and inflammation of healthy lung tissue of young and old people alike, as well as aggrevation of preexisting conditions of lung or heart impairment, will be a most undesirable feature of drive-up facility services. Potential reductions in the extent of this developing problem include S removal, SO/sub x/ traps and exhaust system redesign.

  8. Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-04-12

    Here, we report the controllable fabrication of transparent conductive films (TCFs) for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS). How baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (> 69 %, PET = 90 %), and good stability when subjected to cyclic loading (> 1000 cycles, better than indium tin oxide film) during processing. Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5×5 sensing pixels).

  9. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion

    KAUST Repository

    Rehman, Ata Ur

    2013-10-01

    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes (MWCNTs) have been developed for the first time. The MWCNTs were treated with wet chemical oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface functionality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results consistently confirmed the formation of carboxyl functionalities on MWCNTs, while the structure of MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs. © 2013 Elsevier B.V.

  10. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion

    KAUST Repository

    Rehman, Ata Ur; Abbas, Syed Mustansar; Ammad, Hafiz Muhammad; Badshah, Amin; Ali, Zulfiqar; Anjum, Dalaver H.

    2013-01-01

    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes (MWCNTs) have been developed for the first time. The MWCNTs were treated with wet chemical oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface functionality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results consistently confirmed the formation of carboxyl functionalities on MWCNTs, while the structure of MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs. © 2013 Elsevier B.V.

  11. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  12. Facile synthesis of carbon-11-labeled arylpiperazinylthioalkyl derivatives as new PET radioligands for imaging of 5-HT1AR

    International Nuclear Information System (INIS)

    Gao Mingzhang; Wang Min; Zheng Qihuang

    2012-01-01

    Carbon-11-labeled arylpiperazinylthioalkyl derivatives, 2-((4-(4-(2-[ 11 C]methoxyphenyl)piperazin-1-yl)butyl)thio)benzo[d]oxazole ([ 11 C]5a), 2-((4-(4-(2-[ 11 C]methoxyphenyl)piperazin-1-yl)butyl)thio)-5,7-dimethylbenzo [d]oxazole ([ 11 C]5c), 2-((4-(4-(2-[ 11 C]methoxyphenyl)piperazin-1-yl)butyl)thio)benzo[d]thiazole ([ 11 C]5e), 2-((6-(4-(2-[ 11 C]methoxyphenyl)piperazin-1-yl)hexyl)thio)benzo[d]oxazole ([ 11 C]5g), 2-((6-(4-(2-[ 11 C]methoxyphenyl)piperazin-1-yl)hexyl)thio)-5,7-dimethylbenzo [d]oxazole ([ 11 C]5i), and 2-((6-(4-(2-[ 11 C]methoxyphenyl)piperazin-1-yl)hexyl)thio)benzo[d]thiazole ([ 11 C]5k), were prepared from their corresponding phenol precursors with [ 11 C]CH 3 OTf through O-[ 11 C]methylation and isolated by a simplified solid-phase extraction (SPE) method using a Sep-Pak Plus C18 cartridge in 50–60% (n=5) radiochemical yields based on [ 11 C]CO 2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23 min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 277.5±92.5 GBq/μmol (n=5). - Highlights: ► New arylpiperazinylthioalkyl derivatives were synthesized. ► New carbon-11-labeled arylpiperazinylthioalkyl derivatives were synthesized. ► Simplified solid-phase extraction (SPE) method was employed in radiosynthesis.

  13. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy

    Science.gov (United States)

    Misra, Santosh K.; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-07-01

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C3-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C3-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C3 with phospholipid was used to generate C3-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies.

  14. Functional Poly(ε-caprolactone)s via Copolymerization of ε-Caprolactone and Pyridyl Disulfide-Containing Cyclic Carbonate: Controlled Synthesis and Facile Access to Reduction-Sensitive Biodegradable Graft Copolymer Micelles

    NARCIS (Netherlands)

    Chen, Wei; Zou, Yan; Jia, Junna; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

    2013-01-01

    Pyridyl disulfide-functionalized cyclic carbonate (PDSC) monomer was obtained in four straightforward steps from 3-methyl-3-oxetanemethanol and exploited for facile preparation of functional poly(ε-caprolactone) (PCL) containing pendant pyridyl disulfide (PDS) groups via ring-opening

  15. A facile approach to the synthesis of hydrophobic iron tetrasulfophthalocyanine (FeTSPc) nano-aggregates on multi-walled carbon nanotubes: A potential electrocatalyst for the detection of dopamine

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2011-07-01

    Full Text Available A facile method has been utilized to synthesize ahydrophobic form of nano-scaled iron (II) tetrasulfophthalocyanine (nanoFeTSPc), integrated with functionalized multi-walled carbon nanotubes (fMWCNT-nanoFeTSPc). The nanocomposite was characterized...

  16. First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility

    International Nuclear Information System (INIS)

    Hueso-González, Fernando; Enghardt, Wolfgang; Golnik, Christian; Petzoldt, Johannes; Pausch, Guntram; Fiedler, Fine; Priegnitz, Marlen; Römer, Katja E; Wagner, Andreas; Janssens, Guillaume; Prieels, Damien; Smeets, Julien; Vander Stappen, François

    2015-01-01

    Ion beam therapy promises enhanced tumour coverage compared to conventional radiotherapy, but particle range uncertainties significantly blunt the achievable precision. Experimental tools for range verification in real-time are not yet available in clinical routine. The prompt gamma ray timing method has been recently proposed as an alternative to collimated imaging systems. The detection times of prompt gamma rays encode essential information about the depth-dose profile thanks to the measurable transit time of ions through matter. In a collaboration between OncoRay, Helmholtz-Zentrum Dresden-Rossendorf and IBA, the first test at a clinical proton accelerator (Westdeutsches Protonentherapiezentrum Essen, Germany) with several detectors and phantoms is performed. The robustness of the method against background and stability of the beam bunch time profile is explored, and the bunch time spread is characterized for different proton energies. For a beam spot with a hundred million protons and a single detector, range differences of 5 mm in defined heterogeneous targets are identified by numerical comparison of the spectrum shape. For higher statistics, range shifts down to 2 mm are detectable. A proton bunch monitor, higher detector throughput and quantitative range retrieval are the upcoming steps towards a clinically applicable prototype. In conclusion, the experimental results highlight the prospects of this straightforward verification method at a clinical pencil beam and settle this novel approach as a promising alternative in the field of in vivo dosimetry. (paper)

  17. Green facility location

    NARCIS (Netherlands)

    Velázquez Martínez, J.C.; Fransoo, J.C.; Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.

    2017-01-01

    Transportation is one of the main contributing factors of global carbon emissions, and thus, when dealing with facility location models in a distribution context, transportation emissions may be substantially higher than the emissions due to production or storage. Because facility location models

  18. A facile and scalable method to prepare carbon nanotube-grafted-graphene for high performance Li-S battery

    Science.gov (United States)

    Wang, Q. Q.; Huang, J. B.; Li, G. R.; Lin, Z.; Liu, B. H.; Li, Z. P.

    2017-01-01

    A carbon nanotube-grafted-graphene (CNT-g-Gr) is developed for enhancements of electrical conduction and polysulfide (PS) absorption to improve rate performance and cycleability of lithium-sulfur battery. The CNT-g-Gr is prepared through CNT growth on Ni-deposited graphene sheet which is fabricated via pyrolysis of glucose in a molten salt. The obtained CNT-g-Gr shows much higher specific surface area and PS adsorption capability than graphene. The in-situ formed Ni nanoparticles on graphene sheet not only serve as the catalytic sites for CNT growth, but also function as the anchor-sites for polar PS absorption. The CNT-g-Gr contributes a superb PS adsorption capability arising from graphene and CNT absorbing weakly-polar PS species, and Ni nanoparticles absorbing the species with stronger polarity. The resultant Li-S battery with the CNT-g-Gr shows excellent cycleability and rate performance. A stable discharge capacity of 900 mAh g-1 (with low capacity degradation rate) and a rate capacity of 260 mAh g-1 at 30 C discharge rate have been achieved.

  19. A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue.

    Science.gov (United States)

    Gong, Jiang; Liu, Jie; Jiang, Zhiwei; Wen, Xin; Mijowska, Ewa; Tang, Tao; Chen, Xuecheng

    2015-05-01

    Novel porous cup-stacked carbon nanotube (P-CSCNT) with special stacked morphology consisting of many truncated conical graphene layers was synthesized by KOH activating CSCNT from polypropylene. The morphology, microstructure, textural property, phase structure, surface element composition and thermal stability of P-CSCNT were investigated by field-emission scanning electron microscope, transmission electron microscope (TEM), high-resolution TEM, N2 sorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermal gravimetric analysis. A part of oblique graphitic layers were etched by KOH, and many holes with a diameter of several to a doze of nanometers connecting inner tube with outside were formed, which endowed P-CSCNT with high specific surface area (558.7 m(2)/g), large pore volume (1.993 cm(3)/g) and abundant surface functional groups. Subsequently, P-CSCNT was used for adsorption of methylene blue (MB) from wastewater. Langmuir model closely fitted the adsorption results, and the maximum adsorption capacity of P-CSCNT was as high as 319.1mg/g. This was ascribed to multiple adsorption mechanisms including pore filling, hydrogen bonding, π-π and electrostatic interactions. Pseudo second-order kinetic model was more valid to describe the adsorption behavior. Besides, P-CSCNT showed good recyclablity and reusability. These results demonstrated that P-CSCNT had potential application in wastewater treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Facile preparation of a TiO2 quantum dot/graphitic carbon nitride heterojunction with highly efficient photocatalytic activity

    Science.gov (United States)

    Wang, Xing; Jiang, Subin; Huo, Xuejian; Xia, Rui; Muhire, Elisée; Gao, Meizhen

    2018-05-01

    In this article, mechanical grinding, an effortless and super-effective synthetic strategy, is used to successfully synthesize a TiO2 quantum dot (TiO2QD)/graphitic carbon nitride (g-C3N4) heterostructure. X-ray photoelectron spectroscopy results together with transmission electron microscopy reveal the formation of the TiO2QD/g-C3N4 heterostructure with strong interfacial interaction. Because of the advantages of this characteristic, the prepared heterostructure exhibits excellent properties for photocatalytic wastewater treatment. Notably, the optimum photocatalytic activity of the TiO2QD/g-C3N4 heterostructure is nearly 3.4 times higher than that of the g-C3N4 nanosheets used for the photodegradation of rhodamine B pollutant. In addition, the stability and possible degradation mechanism of the TiO2QD/g-C3N4 heterojunction are studied in detail. This method may stimulate an effective approach to synthesizing QD-sensitized semiconductor materials and facilitate their application in environmental protection.

  1. A facile route to form self-carried redox-responsive vorinostat nanodrug for effective solid tumor therapy

    Directory of Open Access Journals (Sweden)

    Han LQ

    2016-11-01

    Full Text Available Leiqiang Han, Tianqi Wang, Jingliang Wu, Xiaolan Yin, Hao Fang, Na Zhang School of Pharmaceutical Science, Shandong University, Ji’nan, Shandong, People’s Republic of China Abstract: Small molecule-based nanodrugs with nanoparticles (NPs that are mainly composed of small molecules, have been considered as a promising candidate for a next-generation nanodrug, owing to their unique properties. Vorinostat (SAHA is a canonical US Food and Drug Administration-approved histone deacetylase (HDAC inhibitor for the treatment of cutaneous T-cell lymphoma. However, the lack of efficacy against solid tumors hinders its progress in clinical use. Herein, a novel nanodrug of SAHA was developed based on disulfide-linked prodrug SAHA-S-S-VE. SAHA-S-S-VE could self-assemble into 148 nm NPs by disulfide-induced mechanisms, which were validated by molecular dynamics simulations. Under reduced conditions, the redox-responsive behavior of SAHA-S-S-VE was investigated, and the HDAC inhibition results verified the efficient release of free SAHA. With a biocompatible d-a-tocopheryl polyethylene glycol succinate (TPGS functionalization, the SAHA-S-S-VE/TPGS NPs exhibited low critical aggregation concentration of 4.5 µM and outstanding stability in vitro with drug-loading capacity of 24%. In vitro biological assessment indicated that SAHA-S-S-VE/TPGS NPs had significant anticancer activity against HepG2. Further in vivo evaluation demonstrated that the resulting NPs could be accumulated in the tumor region and inhibit the tumor growth effectively. This approach, which turned SAHA into a self-assembled redox-responsive nanodrug, provided a new channel for the use of HDAC inhibitor in solid tumor therapy. Keywords: SAHA, HDAC, small molecule, nanoparticles, self-assemble, disulfide bond

  2. HIV screening among TB patients and co-trimoxazole preventive therapy for TB/HIV patients in Addis Ababa: facility based descriptive study.

    Science.gov (United States)

    Denegetu, Amenu Wesen; Dolamo, Bethabile Lovely

    2014-01-01

    Collaborative TB/HIV management is essential to ensure that HIV positive TB patients are identified and treated appropriately, and to prevent tuberculosis (TB) in HIV positive patients. The purpose of this study was to assess HIV case finding among TB patients and Co-trimoxazole Preventive Therapy (CPT) for HIV/TB patients in Addis Ababa. A descriptive cross-sectional, facility-based survey was conducted between June and July 2011. Data was collected by interviewing 834 TB patients from ten health facilities in Addis Ababa. Both descriptive and inferential statistics were used to summarize and analyze findings. The proportion of TB patients who (self reported) were offered for HIV test, tested for HIV and tested HIV positive during their anti-TB treatment follow-up were; 87.4%, 69.4% and 20.2%; respectively. Eighty seven HIV positive patients were identified, who knew their status before diagnosed for the current TB disease, bringing the cumulative prevalence of HIV among TB patients to 24.5%. Hence, the proportion of TB patients who knew their HIV status becomes 79.9%. The study revealed that 43.6% of those newly identified HIV positives during anti-TB treatment follow-up were actually treated with CPT. However, the commutative proportion of HIV positive TB patients who were ever treated with CPT was 54.4%; both those treated before the current TB disease and during anti-TB treatment follow-up. HIV case finding among TB patients and provision of CPT for TB/HIV co-infected patients needs boosting. Hence, routine offering of HIV test and provision of CPT for PLHIV should be strengthened in-line with the national guidelines.

  3. Facile Synthesis of N-Doped Graphene-Like Carbon Nanoflakes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction

    Science.gov (United States)

    Gu, Daguo; Zhou, Yao; Ma, Ruguang; Wang, Fangfang; Liu, Qian; Wang, Jiacheng

    2018-06-01

    A series of N-doped carbon materials (NCs) were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile one-step pyrolysis method. The characterization of microstructural features shows that the NCs samples are composed of few-layered graphene-like nanoflakes with controlled in situ N doping, which is attributed to the confined pyrolysis of citric acid within the interlayers of the dicyandiamide-derived g-C3N4 with high nitrogen contents. Evidently, the pore volumes of the NCs increased with the increasing content of dicyandiamide in the precursor. Among these samples, the NCs nanoflakes prepared with the citric acid/dicyandiamide mass ratio of 1:6, NC-6, show the highest N content of 6.2 at%, in which pyridinic and graphitic N groups are predominant. Compared to the commercial Pt/C catalyst, the as-prepared NC-6 exhibits a small negative shift of 66 mV at the half-wave potential, demonstrating excellent electrocatalytic activity in the oxygen reduction reaction. Moreover, NC-6 also shows better long-term stability and resistance to methanol crossover compared to Pt/C. The efficient and stable performance are attributed to the graphene-like microstructure and high content of pyridinic and graphitic doped nitrogen in the sample, which creates more active sites as well as facilitating charge transfer due to the close four-electron reaction pathway. The superior electrocatalytic activity coupled with the facile synthetic method presents a new pathway to cost-effective electrocatalysts for practical fuel cells or metal-air batteries.

  4. Medical cyclotron facilities

    International Nuclear Information System (INIS)

    1984-09-01

    This report examines the separate proposals from the Austin Hospital and the Australian Atomic Energy Commission for a medical cyclotron facility. The proponents have argued that a cyclotron facility would benefit Australia in areas of patient care, availability and export of radioisotopes, and medical research. Positron emission tomography (PET) and neutron beam therapy are also examined

  5. Hyperbaric Oxygen Therapy Is Associated With Lower Short- and Long-Term Mortality in Patients With Carbon Monoxide Poisoning.

    Science.gov (United States)

    Huang, Chien-Cheng; Ho, Chung-Han; Chen, Yi-Chen; Lin, Hung-Jung; Hsu, Chien-Chin; Wang, Jhi-Joung; Su, Shih-Bin; Guo, How-Ran

    2017-11-01

    To date, there has been no consensus about the effect of hyperbaric oxygen therapy (HBOT) on the mortality of patients with carbon monoxide poisoning (COP). This retrospective nationwide population-based cohort study from Taiwan was conducted to clarify this issue. Using the Nationwide Poisoning Database, we identified 25,737 patients with COP diagnosed between 1999 and 2012, including 7,278 patients who received HBOT and 18,459 patients who did not. The mortality risks of the two cohorts were compared, including overall mortality, and stratified analyses by age, sex, underlying comorbidities, monthly income, suicide attempt, drug poisoning, acute respiratory failure, and follow-up until 2013 were conducted. We also tried to identify independent mortality predictors and evaluated their effects. Patients who received HBOT had a lower mortality rate compared with patients who did not (adjusted hazard ratio [AHR], 0.74; 95% CI, 0.67-0.81) after adjusting for age, sex, underlying comorbidities, monthly income, and concomitant conditions, especially in patients younger than 20 years (AHR, 0.45; 95% CI, 0.26-0.80) and those with acute respiratory failure (AHR, 0.43; 95% CI, 0.35-0.53). The lower mortality rate was noted for a period of 4 years after treatment of the COP. Patients who received two or more sessions of HBOT had a lower mortality rate than did those who received HBOT only once. Older age, male sex, low monthly income, diabetes, malignancy, stroke, alcoholism, mental disorders, suicide attempts, and acute respiratory failure were also independent mortality predictors. HBOT was associated with a lower mortality rate in patients with COP, especially in those who were younger than 20 years and those with acute respiratory failure. The results provide important references for decision-making in the treatment of COP. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  6. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    Science.gov (United States)

    Rafique, Shaista; Sharif, Rehana; Rashid, Imran; Ghani, Sheeba

    2016-08-01

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance Rct(2.50 Ω cm2) for I3-/I- redox solution. The four probe studies showed the large electrical conductivity (226S cm-1) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm-2) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.

  7. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors

    Science.gov (United States)

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-01

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g-1 at 0.128 A g-1, which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g-1) and pure CF (0.6 F g-1) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  8. Facile preparation of three-dimensional Co1-xS/sulfur and nitrogen-codoped graphene/carbon foam for highly efficient oxygen reduction reaction

    Science.gov (United States)

    Liang, Hui; Li, Chenwei; Chen, Tao; Cui, Liang; Han, Jingrui; Peng, Zhi; Liu, Jingquan

    2018-02-01

    Because of the urgent need for renewable resources, oxygen reduction reaction (ORR) has been widely studied. Finding efficient and low cost non-precious metal catalyst is increasingly critical. In this study, melamine foam is used as template to obtain porous sulfur and nitrogen-codoped graphene/carbon foam with uniformly distributed cobalt sulfide nanoparticles (Co1-xS/SNG/CF) which is prepared by a simple infiltration-drying-sulfuration method. It is noteworthy that melamine foam not only works as a three-dimensional support skeleton, but also provides a nitrogen source without any environmental pollution. Such Co1-xS/SNG/CF catalyst shows excellent oxygen reduction catalytic performance with an onset potential of only 0.99 V, which is the same as that of Pt/C catalyst (Eonset = 0.99 V). Furthermore, the stability and methanol tolerance of Co1-xS/SNG/CF are more outstanding than those of Pt/C catalyst. Our work manifests a facile method to prepare S and N-codoped 3D graphene network decorated with Co1-xS nanoparticles, which may be utilized as potential alternative to the expensive Pt/C catalysts toward ORR.

  9. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors.

    Science.gov (United States)

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-27

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g -1 at 0.128 A g -1 , which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g -1 ) and pure CF (0.6 F g -1 ) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  10. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Shaista; Sharif, Rehana; Ghani, Sheeba [Department of Physics, University of Engineering and Technology, Lahore, 54000 (Pakistan); Rashid, Imran, E-mail: f.imran.rashid@gmail.com [Department of Electrical Engineering, The University of Lahore, Islamabad, 44000 (Pakistan)

    2016-08-15

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance R{sub ct}(2.50 Ω cm{sup 2}) for I{sub 3}{sup −}/I{sup −} redox solution. The four probe studies showed the large electrical conductivity (226S cm{sup −1}) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm{sup −2}) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.

  11. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Rafique, Shaista; Sharif, Rehana; Ghani, Sheeba; Rashid, Imran

    2016-01-01

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance R_c_t(2.50 Ω cm"2) for I_3"−/I"− redox solution. The four probe studies showed the large electrical conductivity (226S cm"−"1) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm"−"2) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.

  12. SU-E-T-499: Initial Developments of An OpenCL-Based Cross-Platform Monte Carlo Dose Engine for Carbon Ion Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, N; Tian, Z; Pompos, A; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Pinto, M; Dedes, G; Parodi, K [Ludwig-Maximilians-Univ. Munchen, Garching B. Munich (Germany)

    2015-06-15

    Purpose Dose calculation is of critical importance for carbon ion therapy. Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and of all the more fundamental physical quantities related to biological effects. The long computation time, however, limits its routine clinical applications. We have recently started developing a fast MC package, gCMC for carbon therapy on a parallel processing platform, e.g. GPU, aiming at achieving sufficient efficiency to enable MC in clinically important tasks. This abstract reports our progress. Methods gCMC was developed in OpenCL environment. Our initial developments focused on water material. gCMC supported carbon ion transport in the energy range of 1–450 MeV/u. A Class II condensed history algorithm was implemented for charged particle transport simulations with stopping power computed via Bethe-Bloch equation. Energy straggling and multiple scattering were modeled. Total cross section of nuclear interaction was extracted from Geant4. At present, nuclear interaction events were sampled but transports of secondary particles were not included. Results We tested cases with a homogeneous water phantom and a pencil carbon ion beam with energy of 200–400 MeV/u. When only electro-magnetic channel was included, dose/fluence difference between gCMC and Geant4 results averaged within 10% isodose line was <0.5% of the maximum dose/fluence. After enabling nuclear interactions without transporting secondary particles, dose and fluence agreed with the corresponding results computed by Geant4 with <1% difference. Due to the support for multiple platforms of OpenCL, gCMC was executable on NVidia and AMD GPUs, and Intel CPUs. It took ∼50 sec to transport 107 200MeV/u source carbon ions on an NVidia Titan GPU card. Conclusion Preliminary studies have demonstrated the accuracy and efficiency of gCMC. With further developments in near future, gCMC will potentially achieve clinically

  13. SU-E-T-499: Initial Developments of An OpenCL-Based Cross-Platform Monte Carlo Dose Engine for Carbon Ion Therapy

    International Nuclear Information System (INIS)

    Qin, N; Tian, Z; Pompos, A; Jiang, S; Jia, X; Pinto, M; Dedes, G; Parodi, K

    2015-01-01

    Purpose Dose calculation is of critical importance for carbon ion therapy. Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and of all the more fundamental physical quantities related to biological effects. The long computation time, however, limits its routine clinical applications. We have recently started developing a fast MC package, gCMC for carbon therapy on a parallel processing platform, e.g. GPU, aiming at achieving sufficient efficiency to enable MC in clinically important tasks. This abstract reports our progress. Methods gCMC was developed in OpenCL environment. Our initial developments focused on water material. gCMC supported carbon ion transport in the energy range of 1–450 MeV/u. A Class II condensed history algorithm was implemented for charged particle transport simulations with stopping power computed via Bethe-Bloch equation. Energy straggling and multiple scattering were modeled. Total cross section of nuclear interaction was extracted from Geant4. At present, nuclear interaction events were sampled but transports of secondary particles were not included. Results We tested cases with a homogeneous water phantom and a pencil carbon ion beam with energy of 200–400 MeV/u. When only electro-magnetic channel was included, dose/fluence difference between gCMC and Geant4 results averaged within 10% isodose line was <0.5% of the maximum dose/fluence. After enabling nuclear interactions without transporting secondary particles, dose and fluence agreed with the corresponding results computed by Geant4 with <1% difference. Due to the support for multiple platforms of OpenCL, gCMC was executable on NVidia and AMD GPUs, and Intel CPUs. It took ∼50 sec to transport 107 200MeV/u source carbon ions on an NVidia Titan GPU card. Conclusion Preliminary studies have demonstrated the accuracy and efficiency of gCMC. With further developments in near future, gCMC will potentially achieve clinically

  14. Dose-response relationship of dicentric chromosomes in human lymphocytes obtained for the fission neutron therapy facility MEDAPP at the research reactor FRM II.

    Science.gov (United States)

    Schmid, E; Wagner, F M; Romm, H; Walsh, L; Roos, H

    2009-02-01

    The biological effectiveness of neutrons from the neutron therapy facility MEDAPP (mean neutron energy 1.9 MeV) at the new research reactor FRM II at Garching, Germany, has been analyzed, at different depths in a polyethylene phantom. Whole blood samples were exposed to the MEDAPP beam in special irradiation chambers to total doses of 0.14-3.52 Gy at 2-cm depth, and 0.18-3.04 Gy at 6-cm depth of the phantom. The neutron and gamma-ray absorbed dose rates were measured to be 0.55 Gy min(-1) and 0.27 Gy min(-1) at 2-cm depth, while they were 0.28 and 0.25 Gy min(-1) at 6-cm depth. Although the irradiation conditions at the MEDAPP beam and the RENT beam of the former FRM I research reactor were not identical, neutrons from both facilities gave a similar linear-quadratic dose-response relationship for dicentric chromosomes at a depth of 2 cm. Different dose-response curves for dicentrics were obtained for the MEDAPP beam at 2 and 6 cm depth, suggesting a significantly lower biological effectiveness of the radiation with increasing depth. No obvious differences in the dose-response curves for dicentric chromosomes estimated under interactive or additive prediction between neutrons or gamma-rays and the experimentally obtained dose-response curves could be determined. Relative to (60)Co gamma-rays, the values for the relative biological effectiveness at the MEDAPP beam decrease from 5.9 at 0.14 Gy to 1.6 at 3.52 Gy at 2-cm depth, and from 4.1 at 0.18 Gy to 1.5 at 3.04 Gy at 6-cm depth. Using the best possible conditions of consistency, i.e., using blood samples from the same donor and the same measurement techniques for about two decades, avoiding the inter-individual variations in sensitivity or the differences in methodology usually associated with inter-laboratory comparisons, a linear-quadratic dose-response relationship for the mixed neutron and gamma-ray MEDAPP field as well as for its fission neutron part was obtained. Therefore, the debate on whether the fission

  15. Facile synthesis of ternary MnO2/graphene nanosheets/carbon nanotubes composites with high rate capability for supercapacitor applications

    International Nuclear Information System (INIS)

    Ramezani, M.; Fathi, M.; Mahboubi, F.

    2015-01-01

    Highlights: • MnO 2 /GNS/CNT composite is synthesized through a facile chemical method. • The composite electrode shows the highest specific capacitance of 367 F g −1 . • Specific capacitance of MnO 2 /GNS/CNT is about 6.58 times that of the pure MnO 2 . • This composite electrode shows the best rate capability among all MnO 2 composites. - Abstract: Ternary composites of manganese dioxide/graphene nanosheets/carbon nanotubes (MnO 2 /GNS/CNTs) have been fabricated through a facile chemical method involving in situ growth of MnO 2 particles on the surface of graphene oxide (GO)/CNT hybrid following by the chemical reduction of GO. The morphology and structure of the resulting materials are characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), ultraviolet/visible (UV/Vis) spectroscopy and X-ray diffraction (XRD). The supercapacitive behaviors of the sample electrodes are evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) techniques in 1 M Na 2 SO 4 aqueous solution. The electrochemical measurements show that the specific capacitance of MnO 2 /GNS/CNT composite at the scan rate of 20 mV s −1 (367 F g −1 ) is much higher than that of pure MnO 2 (55.7 F g −1 ), binary MnO 2 /CNT (180 F g −1 ) and MnO 2 /GNS (310 F g −1 ) composites. In addition, the MnO 2 /GNS/CNT composite shows excellent rate capability, with 79.3% capacitance retention after a 5-fold increase in potential scan rate and better cycling stability, with 83% capacitance retention after 3000 cycles. These advances can be attributed to the synergistic effects of GNS and CNT in the composite structure, which facilitates electrolyte ions accessibility to the electrode material during electrochemical process as well as maintaining the mechanical strength

  16. Efficacy and tolerability of lodenafil carbonate for oral therapy of erectile dysfunction: a phase III clinical trial.

    Science.gov (United States)

    Glina, Sidney; Fonseca, Gilvan N; Bertero, Eduardo B; Damião, Ronaldo; Rocha, Luíz C A; Jardim, Carlos R F; Cairoli, Carlos E; Teloken, Cláudio; Torres, Luiz O; Faria, Geraldo E; da Silva, Marcelo B; Pagani, Eduardo

    2010-05-01

    This is a phase III, prospective, randomized, double-blind, placebo-controlled clinical trial on lodenafil carbonate (LC), a novel phosphodiesterase 5 inhibitor developed in Brazil. Expanding information on LC efficacy and safety. International Index of Erectile Function (IIEF) erectile domain, positive answers to the sexual encounter profile (SEP)-2 and SEP-3 questions and incidence of adverse events (AEs). A total of 350 men with erectile dysfunction (ED) of all degrees were randomized to placebo, LC 40 mg or LC 80 mg and followed for 4 weeks. They completed the IIEF and answered the SEP questions 2 and 3 after each intercourse without and with the use of LC. IIEF Erectile Domain scores without and with the use of medication were the following (mean [M] +/- standard deviation [SD]): placebo = 13.9 +/- 5.2 and 14.8 +/- 7.8; LC 40 mg = 13.6 +/- 5.3 and 18.6 +/- 8.0; LC 80 mg = 13.4 +/- 4.9 and 20.6 +/- 7.7 (analysis of variance [ANOVA] P < 0.01). Positive answers to SEP-2 without and with the use of medication were the following (M +/- SD): placebo = 55.3 +/- 43.2% and 52.1 +/- 41.4%; LC 40 mg = 46.4 +/- 44.3% and 63.5 +/- 42.0%; LC 80 mg = 50.2 +/- 40.9% and 80.8 +/- 32.3% (ANOVA P < 0.01). Positive answers to SEP-3 were the following: placebo = 20.2 +/- 32.3% and 29.7 +/- 38.1%; LC 40 mg = 19.6 +/- 34.3% and 50.8 +/- 44.4%; LC 80 mg = 20.8 +/- 33.2% and 66.0 +/- 39.3% (ANOVA P < 0.01). The patients with at least one AE were placebo = 28.7%, LC 40 mg = 40.9%, and LC 80 mg = 49.5%. AEs whose incidence was significantly higher with LC than with placebo included rhinitis, headache, flushing, visual disorder, and dizziness. LC showed a satisfactory efficacy-safety profile for oral therapy of ED.

  17. Examining appropriate diagnosis and treatment of malaria: availability and use of rapid diagnostic tests and artemisinin-based combination therapy in public and private health facilities in south east Nigeria

    Directory of Open Access Journals (Sweden)

    Uzochukwu Benjamin SC

    2010-08-01

    Full Text Available Abstract Background Rapid diagnostic tests (RDTs and Artemisinin-based combination therapy (ACT have been widely advocated by government and the international community as cost-effective tools for diagnosis and treatment of malaria. ACTs are now the first line treatment drug for malaria in Nigeria and RDTs have been introduced by the government to bridge the existing gaps in proper diagnosis. However, it is not known how readily available these RDTs and ACTs are in public and private health facilities and whether health workers are actually using them. Hence, this study investigated the levels of availability and use of RDTs and ACTs in these facilities. Methods The study was undertaken in Enugu state, southeast Nigeria in March 2009. Data was collected from heads of 74 public and private health facilities on the availability and use of RDTs and ACTs. Also, the availability of RDTs and the types of ACTs that were available in the facilities were documented. Results Only 31.1% of the health facilities used RDTs to diagnose malaria. The majority used the syndromic approach. However, 61.1% of healthcare providers were aware of RDTs. RDTs were available in 53.3% of the facilities. Public health facilities and health facilities in the urban areas were using RDTs more and these were mainly bought from pharmacy shops and supplied by NGOs. The main reasons given for non use are unreliability of RDTs, supply issues, costs, preference for other methods of diagnosis and providers' ignorance. ACTs were the drug of choice for most public health facilities and the drugs were readily available in these facilities. Conclusion Although many providers were knowledgeable about RDTs, not many facilities used it. ACTS were readily available and used in public but not private health facilities. However, the reported use of ACTs with limited proper diagnosis implies that there could be high incidence of inappropriate case management of malaria which can also increase

  18. Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of Azithromycin

    International Nuclear Information System (INIS)

    Zhang, Kaixin; Lu, Limin; Wen, Yangping; Xu, Jingkun; Duan, Xuemin; Zhang, Long; Hu, Dufen; Nie, Tao

    2013-01-01

    Graphical abstract: -- Highlights: •The necklace-like GO-MWCNTs nanohybrid was facilely synthesized by ultrasonication. •The nanocomposites can be effectively used for the detection of Azithromycin. •Low detection limit with wide linear range could be obtained. •The method was applied to determine Azi in real samples. -- Abstract: A novel electrochemical platform was designed for the determination of Azithromycin (Azi), a widely used macrolide antibiotic, by combining the hydrophilic properties of graphene oxide (GO) and the excellent electronic and antifouling properties of multi-walled carbon nanotubes (MWCNTs). Stable MWCNTs aqueous dispersion has been prepared using GO nano-sheets as surfactant and the obtained GO-MWCNTs nanohybrid was characterized by UV–vis spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and electrochemical impedance spectroscopy, which confirmed that GO nano-sheets were attached onto the wall of MWCNTs to form a necklace-like structure. Electrochemical results obviously reveal that the oxidation peak currents of Azi obtained at the GC electrode modified with GO-MWCNTs hybrid are much higher than those at the MWCNTs/GC, GO/GC and bare GC electrodes. Under optimized conditions, the anodic peak current was linear to the concentration of Azi in the range from 0.1 to 10 μM with the detection limit of 0.07 μM. To further validate its possible application, the proposed method was successfully used for the determination of Azi in pharmaceutical formulations with satisfactory results

  19. Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of Azithromycin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kaixin [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Lu, Limin; Wen, Yangping [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); College of Science, Jiangxi Agricultural University, Nanchang 330045 (China); Xu, Jingkun, E-mail: xujingkun@tsinghua.org.cn [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Duan, Xuemin; Zhang, Long; Hu, Dufen [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Nie, Tao [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); College of Science, Jiangxi Agricultural University, Nanchang 330045 (China)

    2013-07-17

    Graphical abstract: -- Highlights: •The necklace-like GO-MWCNTs nanohybrid was facilely synthesized by ultrasonication. •The nanocomposites can be effectively used for the detection of Azithromycin. •Low detection limit with wide linear range could be obtained. •The method was applied to determine Azi in real samples. -- Abstract: A novel electrochemical platform was designed for the determination of Azithromycin (Azi), a widely used macrolide antibiotic, by combining the hydrophilic properties of graphene oxide (GO) and the excellent electronic and antifouling properties of multi-walled carbon nanotubes (MWCNTs). Stable MWCNTs aqueous dispersion has been prepared using GO nano-sheets as surfactant and the obtained GO-MWCNTs nanohybrid was characterized by UV–vis spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and electrochemical impedance spectroscopy, which confirmed that GO nano-sheets were attached onto the wall of MWCNTs to form a necklace-like structure. Electrochemical results obviously reveal that the oxidation peak currents of Azi obtained at the GC electrode modified with GO-MWCNTs hybrid are much higher than those at the MWCNTs/GC, GO/GC and bare GC electrodes. Under optimized conditions, the anodic peak current was linear to the concentration of Azi in the range from 0.1 to 10 μM with the detection limit of 0.07 μM. To further validate its possible application, the proposed method was successfully used for the determination of Azi in pharmaceutical formulations with satisfactory results.

  20. Poly(acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xian; Liu, Chang; Wang, Shengyu; Jiao, Jian; Di, Donghua; Jiang, Tongying; Zhao, Qinfu, E-mail: zqf021110505@163.com; Wang, Siling, E-mail: silingwang@syphu.edu.cn

    2017-02-01

    In this work, we described the development of the redox and pH dual stimuli-responsive drug delivery system and combination of the chemotherapy and photothermal therapy for cancer treatment. The poly(acrylic acid) (PAA) was conjugated on the outlets of hollow mesoporous carbon (HMC) via disulfide bonds. PAA was used as a capping to block drug within the mesopores of HMC for its lots of favorable advantages, such as good biocompatibility, appropriate molecular weight to block the mesopores of HMC, extension of the blood circulation, and the improvement of the dispersity of the nano-carriers in physiological environment. The DOX loaded DOX/HMC-SS-PAA had a high drug loading amount up to 51.9%. The in vitro drug release results illustrated that DOX/HMC-SS-PAA showed redox and pH dual-responsive drug release, and the release rate could be further improved by the near infrared (NIR) irradiation. Cell viability experiment indicated that DOX/HMC-SS-PAA had a synergistic therapeutic effect by combination of chemotherapy and photothermal therapy. This work suggested that HMC-SS-PAA exhibited dual-responsive drug release property and could be used as a NIR-adsorbing drug delivery system for chemo-photothermal synergistic therapy. - Highlights: • Poly(acrylic acid) was grafted on hollow mesoporous carbon (HMC) via disulfide bonds. • The grafted PAA could increase the biocompatibility and stability of HMC. • The DOX-loaded DOX/HMC-SS-PAA had a high drug loading efficiency up to 51.9%. • DOX/HMC-SS-PAA showed redox/pH dual-responsive and NIR-triggered drug release. • DOX/HMC-SS-PAA showed a chemo/photothermal synergistic therapy effect.

  1. Poly(acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy

    International Nuclear Information System (INIS)

    Li, Xian; Liu, Chang; Wang, Shengyu; Jiao, Jian; Di, Donghua; Jiang, Tongying; Zhao, Qinfu; Wang, Siling

    2017-01-01

    In this work, we described the development of the redox and pH dual stimuli-responsive drug delivery system and combination of the chemotherapy and photothermal therapy for cancer treatment. The poly(acrylic acid) (PAA) was conjugated on the outlets of hollow mesoporous carbon (HMC) via disulfide bonds. PAA was used as a capping to block drug within the mesopores of HMC for its lots of favorable advantages, such as good biocompatibility, appropriate molecular weight to block the mesopores of HMC, extension of the blood circulation, and the improvement of the dispersity of the nano-carriers in physiological environment. The DOX loaded DOX/HMC-SS-PAA had a high drug loading amount up to 51.9%. The in vitro drug release results illustrated that DOX/HMC-SS-PAA showed redox and pH dual-responsive drug release, and the release rate could be further improved by the near infrared (NIR) irradiation. Cell viability experiment indicated that DOX/HMC-SS-PAA had a synergistic therapeutic effect by combination of chemotherapy and photothermal therapy. This work suggested that HMC-SS-PAA exhibited dual-responsive drug release property and could be used as a NIR-adsorbing drug delivery system for chemo-photothermal synergistic therapy. - Highlights: • Poly(acrylic acid) was grafted on hollow mesoporous carbon (HMC) via disulfide bonds. • The grafted PAA could increase the biocompatibility and stability of HMC. • The DOX-loaded DOX/HMC-SS-PAA had a high drug loading efficiency up to 51.9%. • DOX/HMC-SS-PAA showed redox/pH dual-responsive and NIR-triggered drug release. • DOX/HMC-SS-PAA showed a chemo/photothermal synergistic therapy effect.

  2. Poly(trimethylene carbonate) as a carrier for rifampicin and vancomycin to target therapy-recalcitrant staphylococcal biofilms

    NARCIS (Netherlands)

    Kluin, Otto S.; Busscher, Henk J.; Neut, Danielle; van der Mei, Henny C.

    2016-01-01

    Standard antibiotic therapy in osteomyelitis patients is of limited value when methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis (MRSE), or small-colony variants (SCV) are present. Far better results are obtained by local drug delivery of antibiotic combinations

  3. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  4. Simulating demand for innovative radiotherapies: An illustrative model based on carbon ion and proton radiotherapy

    International Nuclear Information System (INIS)

    Pommier, Pascal; Lievens, Yolande; Feschet, Fabien; Borras, Josep M.; Baron, Marie Helene; Shtiliyanova, Anastasiya; Pijls-Johannesma, Madelon

    2010-01-01

    Background and purpose: Innovative therapies are not only characterized by major uncertainties regarding clinical benefit and cost but also the expected recruitment of patients. An original model was developed to simulate patient recruitment to a costly particle therapy by varying layout of the facility and patient referral (one vs. several countries) and by weighting the treated indication by the expected benefit of particle therapy. Material and methods: A multi-step probabilistic spatial model was used to allocate patients to the optimal treatment strategy and facility taking into account the estimated therapeutic gain from the new therapy for each tumour type, the geographical accessibility of the facilities and patient preference. Recruitment was simulated under different assumptions relating to the demand and supply. Results: Extending the recruitment area, reducing treatment capacity, equipping all treatment rooms with a carbon ion gantry and inclusion of proton protocols in carbon ion facilities led to an increased proportion of indications with the highest expected benefit. Assuming the existence of a competing carbon ions facility, lower values of therapeutic gain, and a greater unwillingness of patients to travel for treatment increased the proportion of indications with low expected benefit. Conclusions: Modelling patient recruitment may aid decision-making when planning new and expensive treatments.

  5. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  6. Multicenter Study of Carbon-Ion Radiation Therapy for Mucosal Melanoma of the Head and Neck: Subanalysis of the Japan Carbon-Ion Radiation Oncology Study Group (J-CROS) Study (1402 HN)

    Energy Technology Data Exchange (ETDEWEB)

    Koto, Masashi, E-mail: koto.masashi@qst.go.jp [Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba (Japan); Demizu, Yusuke [Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno (Japan); Saitoh, Jun-ichi [Gunma University Heavy Ion Medical Center, Maebashi (Japan); Suefuji, Hiroaki [Ion Beam Therapy Center, SAGA-HIMAT Foundation, Tosu (Japan); Tsuji, Hiroshi [Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba (Japan); Okimoto, Tomoaki [Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno (Japan); Ohno, Tatsuya [Gunma University Heavy Ion Medical Center, Maebashi (Japan); Shioyama, Yoshiyuki [Ion Beam Therapy Center, SAGA-HIMAT Foundation, Tosu (Japan); Takagi, Ryo [Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba (Japan); Nemoto, Kenji [Department of Radiation Oncology, Yamagata University Faculty of Medicine, Yamagata (Japan); Nakano, Takashi [Gunma University Heavy Ion Medical Center, Maebashi (Japan); Kamada, Tadashi [Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba (Japan)

    2017-04-01

    Purpose: To evaluate the efficacy and safety of carbon-ion radiation therapy (RT) for mucosal melanoma of the head and neck (MMHN) in the Japan Carbon-Ion Radiation Oncology Study Group study. Methods and Materials: Patients with MMHN with N0-1M0 status who were treated with carbon-ion RT at 4 institutions in Japan between November 2003 and December 2014 were analyzed retrospectively. Two hundred sixty patients (male, 111; female, 149; median age, 68 years) with histologically proven MMHN were enrolled. Results: Primary sites included the nasal cavity in 178 patients, paranasal sinuses in 43, oral cavity in 27, and pharynx in 12. Eighty-six patients had T3 tumors, 147 had T4a tumors, and 27 had T4b tumors. Two hundred fifty-one patients were diagnosed with N0 disease, and 9 with N1 disease. The median total dose and number of fractions were 57.6 Gy RBE (relative biological effectiveness) and 16, respectively. Chemotherapy including dimethyl traizeno imidazole carboxamide was used concurrently in 129 patients. The median follow-up duration was 22 months (range, 1-132 months). The 2-year overall survival and local control rates were 69.4% and 83.9%, respectively. Multivariate analysis showed that gross tumor volume and concurrent chemotherapy were significant prognostic factors for overall survival. Grade 3 and grade 4 late morbidities were observed in 27 and 7 patients (5 developed ipsilateral blindness, 1 mucosal ulcer, and 1 second malignant disease in the irradiated volume), respectively. No patients developed grade 5 late morbidities. Conclusion: Carbon-ion RT is a promising treatment option for MMHN.

  7. Removal of odor originating from kitchen wastewater treatment facilities by activated carbon impregnated iodic acid; Chubo haisui shori shisetsu kara hasseisuru akushu no yososan tenchaku kasseitan ni yoru jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Yano, H.; Hashimoto, S.; Yonemura, S. [Shimizu Corp., Tokyo (Japan); Shoda, M. [Research Laboratory of Resources Utilization, Yokohama (Japan)

    1997-07-10

    Activated carbon impregnated iodic acid (deodorant D) was developed as a new deodorant. Deodorization performance of deodorant D as well as three kinds of commercial activated carbons (deodorant A, B and C) was tested for odors originating from the kitchen wastewater treatment facilities of one commercial building. The odor exhausted from this facility was medium concentration between 422 and 31,620. The main odorous compounds were hydrogen sulfide (0.076 to 15.7 ppm) and methyl mercaptan (not detected to 0.081 ppm). The hydrogen sulfide contribution to the odor concentration was about 90%. The main apparatuses from which the odors were originating were the raw water tank and the pressurized flotation tank. The total odor emission rate was between 10{sup 4.9} and 10{sup 5.7} Nm{sup 3}/min. For the performance test for deodorants, fixed bed adsorption experimental equipment was used, and the breakthrough time of odor concentration and hydrogen sulfide were used as indexes. Correlation between the contact time and the breakthrough time was observed for all of the deodorants. For a contact time of 0.5 sec, the breakthrough times for odor concentration were D>C>B>A, and the breakthrough times for hydrogen sulfide were D>C>B>A. Effectiveness of activated carbon impregnated iodic acid was recognized. 11 refs., 7 figs., 7 tabs.

  8. A facile route for growth of CNTs on Si@hard carbon for conductive agent incorporating anodes for lithium-ion batteries.

    Science.gov (United States)

    Kim, Chanhoon; Choi, Sinho; Yoo, Seungmin; Kwon, Dohyoung; Ko, Seunghee; Kim, Ju-Myung; Lee, Sang-Young; Kim, Il-Doo; Park, Soojin

    2015-07-14

    Conductive agent incorporating Si anodes consisting of directly grown carbon nanotubes on hard carbon encapsulating Si nanoparticles were prepared by a one-pot chemical vapour deposition process. Owing to this fabulous structure, Si-based anodes exhibit excellent cycle retention and rate capability with a high-mass-loading of 3.5 mg cm(-2).

  9. Influence of intraperitoneal therapy with mitomycin C adsorbed on activated carbon on anastomotic and wound healing in rats

    NARCIS (Netherlands)

    Jansen, M; Jansen, PL; Fass, J; Langejurgen, E; Forsch, S; Tietze, L; Schumpelick, [No Value

    In an effort to prevent intraperitoneal dissemination of gastric carcinoma, local chemotherapy with mitomycin C adsorbed to activated carbon (MMC-CH) has been implemented. Results of clinical studies showed improved survival and a reduced systemic toxicity after the use of prophylactic treatment

  10. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy.

    Science.gov (United States)

    Grevillot, L; Stock, M; Vatnitsky, S

    2015-10-21

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular. A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design. A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients.

  11. Dance Facilities.

    Science.gov (United States)

    Ashton, Dudley, Ed.; Irey, Charlotte, Ed.

    This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…

  12. Effect of hyperbaric oxygen therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    DEFF Research Database (Denmark)

    Lawson-Smith, Pia; Jansen, Erik C; Hilsted, Linda

    2010-01-01

    Hydrogen cyanide (HCN) and carbon monoxide (CO) may be important components of smoke from fire accidents. Accordingly, patients admitted to hospital from fire accidents may have been exposed to both HCN and CO. Cyanide (CN) intoxication results in cytotoxic hypoxia leading to organ dysfunction...... and animal experiments have shown that in rats exposed to CN intoxication, HBO can increase the concentration of CN in whole blood....

  13. A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode

    KAUST Repository

    Estevez, Luis; Dua, Rubal; Bhandari, Nidhi; Ramanujapuram, Anirudh; Wang, Peng; Giannelis, Emmanuel P.

    2013-01-01

    An ice templating coupled with hard templating and physical activation approach is reported for the synthesis of hierarchically porous carbon monoliths with tunable porosities across all three length scales (macro- meso- and micro), with ultrahigh

  14. Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO2 capture

    International Nuclear Information System (INIS)

    Sha, Yunfei; Lou, Jiaying; Bai, Shizhe; Wu, Da; Liu, Baizhan; Ling, Yun

    2015-01-01

    Highlights: • A pre-treatment process is used to prepared N-doped carbon from waste biomass. • Waste tobaccos, which are limited for the disposal, are used as the raw materials. • The product shows a specific surface area and nitrogen content. • Its electrochemical performance is better than commercial activated carbon. • Its CO 2 sorption performance is also better than commercial activated carbon. - Abstract: Preparing nitrogen-doped porous carbons directly from waste biomass has received considerable interest for the purpose of realizing the atomic economy. In this study, N-doped porous carbons have been successfully prepared from waste tobaccos (WT) by a simple pre-treatment process. The sample calcinated at 700 °C (WT-700) shows a micro/meso-porous structures with a BET surface area of 1104 m 2 g −1 and a nitrogen content of ca. 19.08 wt.% (EDS). Performance studies demonstrate that WT-700 displays 170 F g −1 electrocapacitivity at a current density of 0.5 A g −1 (in 6 M KOH), and a CO 2 capacity of 3.6 mmol g −1 at 0 °C and 1 bar, and a selectivity of ca. 32 for CO 2 over N 2 at 25 °C. Our studies indicate that it is feasible to prepare N-enriched porous carbons from waste natural crops by a pre-treatment process for potential industrial application

  15. Quantum dot tailored to single wall carbon nanotubes: a multifunctional hybrid nanoconstruct for cellular imaging and targeted photothermal therapy.

    Science.gov (United States)

    Nair, Lakshmi V; Nagaoka, Yutaka; Maekawa, Toru; Sakthikumar, D; Jayasree, Ramapurath S

    2014-07-23

    Hybrid nanomaterial based on quantum dots and SWCNTs is used for cellular imaging and photothermal therapy. Furthermore, the ligand conjugated hybrid system (FaQd@CNT) enables selective targeting in cancer cells. The imaging capability of quantum dots and the therapeutic potential of SWCNT are available in a single system with cancer targeting property. Heat generated by the system is found to be high enough to destroy cancer cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin-Reyes, H; Wilson, J

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1 x 1 cm^2 ) silicon sensors.

  17. The Birmingham Irradiation Facility

    International Nuclear Information System (INIS)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Wilson, J.

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1×1 cm 2 ) silicon sensors

  18. Dosimetric variation due to CT inter-slice spacing in four-dimensional carbon beam lung therapy

    International Nuclear Information System (INIS)

    Kumagai, Motoki; Mori, Shinichiro; Kandatsu, Susumu; Baba, Masayuki; Sharp, Gregory C; Asakura, Hiroshi; Endo, Masahiro

    2009-01-01

    When CT data with thick slice thickness are used in treatment planning, geometrical uncertainty may induce dosimetric errors. We evaluated carbon ion dose variations due to different CT slice thicknesses using a four-dimensional (4D) carbon ion beam dose calculation, and compared results between ungated and gated respiratory strategies. Seven lung patients were scanned in 4D mode with a 0.5 mm slice thickness using a 256-multi-slice CT scanner. CT images were averaged with various numbers of images to simulate reconstructed images with various slice thicknesses (0.5-5.0 mm). Two scenarios were studied (respiratory-ungated and -gated strategies). Range compensators were designed for each of the CT volumes with coarse inter-slice spacing to cover the internal target volume (ITV), as defined from 4DCT. Carbon ion dose distribution was computed for each resulting ITV on the 0.5 mm slice 4DCT data. The accumulated dose distribution was then calculated using deformable registration for 4D dose assessment. The magnitude of over- and under-dosage was found to be larger with the use of range compensators designed with a coarser inter-slice spacing than those obtained with a 0.5 mm slice thickness. Although no under-dosage was observed within the clinical target volume (CTV) region, D95 remained at over 97% of the prescribed dose for the ungated strategy and 95% for the gated strategy for all slice thicknesses. An inter-slice spacing of less than 3 mm may be able to minimize dose variation between the ungated and gated strategies. Although volumes with increased inter-slice spacing may reduce geometrical accuracy at a certain respiratory phase, this does not significantly affect delivery of the accumulated dose to the target during the treatment course.

  19. Re-irradiation of adenoid cystic carcinoma: Analysis and evaluation of outcome in 52 consecutive patients treated with raster-scanned carbon ion therapy

    International Nuclear Information System (INIS)

    Jensen, Alexandra D.; Poulakis, Melanie; Nikoghosyan, Anna V.; Chaudhri, Naved; Uhl, Matthias; Münter, Marc W.; Herfarth, Klaus K.; Debus, Jürgen

    2015-01-01

    Background: Treatment of local relapse in adenoid cystic carcinoma (ACC) following prior radiation remains a challenge: without the possibility of surgical salvage patients face the choice between palliative chemotherapy and re-irradiation. Chemotherapy yields response rates around 30% and application of tumouricidal doses is difficult due to proximity of critical structures. Carbon ion therapy (C12) is a promising method to minimize side-effects and maximize re-treatment dose in this indication. We describe our initial results for re-irradiation in heavily pre-treated ACC patients. Methods: Patients treated with carbon ion therapy between 04/2010 and 05/2013 (N = 52 pts, median age: 54 a) were retrospectively evaluated regarding toxicity (NCI CTC v.4), tumour response (RECIST) and control rates. 48 pts (92.3%) received carbon ions only, 4 pts received IMRT plus C12. Results: 4 pts were treated following R1-resection, 43 pts for inoperable local relapse. Most common tumour sites were paranasal sinus (36.5%), parotid (19.2%), and base of skull (17.3%). Pts received a median dose of 51 GyE C12/63 Gy BED and cumulative dose of 128 Gy BED [67–182 Gy] after a median RT-interval of 61 months. Median target volume was 93 ml [9–618 ml]. No higher-grade (>°II) acute reactions were observed, 7 pts showed blood–brain-barrier changes (°I/II: 8 pts; °III: 2 pts), 1 pt corneal ulceration, xerophthalmia 7 pts, °IV bleeding 1 pt, tissue necrosis 2 pts, otherwise no significant late reactions. Objective response rate (CR/PR) was 56.6%. With a median follow-up of 14 months [1–39 months] local control and distant control at 1a are 70.3% and 72.6% respectively. Of the 18 pts with local relapse, 13 pts have recurred in-field, 1 pt at the field edge, 3 pts out of field, and one in the dose gradient. Conclusion: Despite high applied doses, C12 re-irradiation shows moderate side-effects, response rates even in these heavily pre-treated patients are encouraging and present a

  20. Temporal Lobe Reactions After Carbon Ion Radiation Therapy: Comparison of Relative Biological Effectiveness–Weighted Tolerance Doses Predicted by Local Effect Models I and IV

    Energy Technology Data Exchange (ETDEWEB)

    Gillmann, Clarissa, E-mail: clarissa.gillmann@med.uni-heidelberg.de [Department of Radiation Oncology and Radiation Therapy, Heidelberg University Hospital, Heidelberg (Germany); Jäkel, Oliver [Department of Radiation Oncology and Radiation Therapy, Heidelberg University Hospital, Heidelberg (Germany); Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schlampp, Ingmar [Department of Radiation Oncology and Radiation Therapy, Heidelberg University Hospital, Heidelberg (Germany); Karger, Christian P. [Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2014-04-01

    Purpose: To compare the relative biological effectiveness (RBE)–weighted tolerance doses for temporal lobe reactions after carbon ion radiation therapy using 2 different versions of the local effect model (LEM I vs LEM IV) for the same patient collective under identical conditions. Methods and Materials: In a previous study, 59 patients were investigated, of whom 10 experienced temporal lobe reactions (TLR) after carbon ion radiation therapy for low-grade skull-base chordoma and chondrosarcoma at Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany in 2002 and 2003. TLR were detected as visible contrast enhancements on T1-weighted MRI images within a median follow-up time of 2.5 years. Although the derived RBE-weighted temporal lobe doses were based on the clinically applied LEM I, we have now recalculated the RBE-weighted dose distributions using LEM IV and derived dose-response curves with Dmax,V-1 cm³ (the RBE-weighted maximum dose in the remaining temporal lobe volume, excluding the volume of 1 cm³ with the highest dose) as an independent dosimetric variable. The resulting RBE-weighted tolerance doses were compared with those of the previous study to assess the clinical impact of LEM IV relative to LEM I. Results: The dose-response curve of LEM IV is shifted toward higher values compared to that of LEM I. The RBE-weighted tolerance dose for a 5% complication probability (TD{sub 5}) increases from 68.8 ± 3.3 to 78.3 ± 4.3 Gy (RBE) for LEM IV as compared to LEM I. Conclusions: LEM IV predicts a clinically significant increase of the RBE-weighted tolerance doses for the temporal lobe as compared to the currently applied LEM I. The limited available photon data do not allow a final conclusion as to whether RBE predictions of LEM I or LEM IV better fit better clinical experience in photon therapy. The decision about a future clinical application of LEM IV therefore requires additional analysis of temporal lobe reactions in a

  1. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  2. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  3. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  4. The Diesel Exhaust in Miners Study: III. Interrelations between respirable elemental carbon and gaseous and particulate components of diesel exhaust derived from area sampling in underground non-metal mining facilities.

    Science.gov (United States)

    Vermeulen, Roel; Coble, Joseph B; Yereb, Daniel; Lubin, Jay H; Blair, Aaron; Portengen, Lützen; Stewart, Patricia A; Attfield, Michael; Silverman, Debra T

    2010-10-01

    Diesel exhaust (DE) has been implicated as a potential lung carcinogen. However, the exact components of DE that might be involved have not been clearly identified. In the past, nitrogen oxides (NO(x)) and carbon oxides (CO(x)) were measured most frequently to estimate DE, but since the 1990s, the most commonly accepted surrogate for DE has been elemental carbon (EC). We developed quantitative estimates of historical exposure levels of respirable elemental carbon (REC) for an epidemiologic study of mortality, particularly lung cancer, among diesel-exposed miners by back-extrapolating 1998-2001 REC exposure levels using historical measurements of carbon monoxide (CO). The choice of CO was based on the availability of historical measurement data. Here, we evaluated the relationship of REC with CO and other current and historical components of DE from side-by-side area measurements taken in underground operations of seven non-metal mining facilities. The Pearson correlation coefficient of the natural log-transformed (Ln)REC measurements with the Ln(CO) measurements was 0.4. The correlation of REC with the other gaseous, organic carbon (OC), and particulate measurements ranged from 0.3 to 0.8. Factor analyses indicated that the gaseous components, including CO, together with REC, loaded most strongly on a presumed 'Diesel exhaust' factor, while the OC and particulate agents loaded predominantly on other factors. In addition, the relationship between Ln(REC) and Ln(CO) was approximately linear over a wide range of REC concentrations. The fact that CO correlated with REC, loaded on the same factor, and increased linearly in log-log space supported the use of CO in estimating historical exposure levels to DE.

  5. HEATHER - HElium Ion Accelerator for RadioTHERapy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jordan [Huddersfield U.; Edgecock, Thomas [Huddersfield U.; Green, Stuart [Birmingham U.; Johnstone, Carol [Fermilab

    2017-05-01

    A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 superconducting rings, treating with helium ions (He²⁺ ) and image with hydrogen ions (H + 2 ). Currently only carbon ions are used to treat cancer, yet there is an increasing interest in the use of lighter ions for therapy. Lighter ions have reduced dose tail beyond the tumour compared to carbon, caused by low Z secondary particles produced via inelastic nuclear reactions. An FFAG approach for helium therapy has never been previously considered. Having demonstrated isochronous acceleration from 0.5 MeV to 900 MeV, we now demonstrate the survival of a realistic beam across both stages.

  6. Electronic medical record systems are associated with appropriate placement of HIV patients on antiretroviral therapy in rural health facilities in Kenya: a retrospective pre-post study

    NARCIS (Netherlands)

    Oluoch, Tom; Katana, Abraham; Ssempijja, Victor; Kwaro, Daniel; Langat, Patrick; Kimanga, Davies; Okeyo, Nicky; Abu-Hanna, Ameen; de Keizer, Nicolette

    2014-01-01

    There is little evidence that electronic medical record (EMR) use is associated with better compliance with clinical guidelines on initiation of antiretroviral therapy (ART) among ART-eligible HIV patients. We assessed the effect of transitioning from paper-based to an EMR-based system on

  7. A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode

    KAUST Repository

    Estevez, Luis

    2013-05-03

    An ice templating coupled with hard templating and physical activation approach is reported for the synthesis of hierarchically porous carbon monoliths with tunable porosities across all three length scales (macro- meso- and micro), with ultrahigh specific pore volumes [similar]11.4 cm3 g−1. The materials function well as amine impregnated supports for CO2 capture and as supercapacitor electrodes.

  8. Facile fabrication of carbon brush with reduced graphene oxide (rGO) for decreasing resistance and accelerating pollutants removal in bio-electrochemical systems.

    Science.gov (United States)

    Cui, Dan; Yang, Li-Ming; Liu, Wen-Zong; Cui, Min-Hua; Cai, Wei-Wei; Wang, Ai-Jie

    2018-07-15

    Low electrode resistance is crucial for achieving efficient reactions in bio-electrochemical system (BES), especially considering the factors of BES scaling-up and microbial effects. Graphene has revealed a cornucopia of potential applications due to its high conductivity and extraordinary electrochemical properties. Here, significant reduction of electrode resistance and increment of electrochemical activity were achieved by fabricating the three-dimensional carbon brush using reduced graphene oxide (rGO/carbon brush) through one-step electro-deposition without any binder. The rGO/carbon brush was employed as cathode in BES equipped with bio-anode for azo compound (AO7) removal. The charge transfer resistances of cathode part and whole cell were decreased by 89% and 65%, respectively. The reactor showed quickly start-up within 48 h with peak cycle current six fold increase relative to the control. AO7 decolorization efficiency reached 91.1 ± 0.1% at 4 h and 97.6 ± 0.4% at 6 h. Effective decolorization of AO7 was at rate up to 650.7 g AO7/m 3 ·h. The results indicated that the advantages of graphene and three-dimensional carbon brush successfully improved the overall performance of BES and enhanced refractory pollutants removal when applied to specific wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Bevalac Radiotherapy Facility

    International Nuclear Information System (INIS)

    Alonso, J.R.; Howard, J.; Criswell, T.

    1979-03-01

    Patient Treatment Room at the Bevalac is now in full operation. In the design of this facility, emphasis has been placed on creating an atmosphere appropriate to a clinical facility; the usual features of an irradiation cave have been hidden behind carpets, curtains and paint. Patient positioning is done with a Philips Ram-style couch, with additional fixtures to accommodate a patient in the seated or standing, as well as the supine, position. Dosimetry apparatus, collimators, ion chambers and the beam flattening system used to produce the highly uniform 20 cm diameter therapy field are described

  10. Bevalac Radiotherapy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.R.; Howard, J.; Criswell, T.

    1979-03-01

    Patient Treatment Room at the Bevalac is now in full operation. In the design of this facility, emphasis has been placed on creating an atmosphere appropriate to a clinical facility; the usual features of an irradiation cave have been hidden behind carpets, curtains and paint. Patient positioning is done with a Philips Ram-style couch, with additional fixtures to accommodate a patient in the seated or standing, as well as the supine, position. Dosimetry apparatus, collimators, ion chambers and the beam flattening system used to produce the highly uniform 20 cm diameter therapy field are described.

  11. Facile synthesis of silver nanoparticles supported on three dimensional graphene oxide/carbon black composite and its application for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Yuan, Lizhi; Jiang, Luhua; Liu, Jing; Xia, Zhangxun; Wang, Suli; Sun, Gongquan

    2014-01-01

    Graphical abstract: - Highlights: • Ag nanoparticles were prepared using GO as reductant without any stabilizers. • A composite support with a 3D structure was constructed by GO and carbon black. • The Ag/GO/C composite shows enhanced ORR activity compared with Ag/GO. - Abstract: A 3D graphene oxide/carbon sphere supported silver composite (Ag/GO/C) was synthesized using graphene oxide as the reducing agent. The reducing process of Ag + was monitored by the ultra violet-visible (UV-vis) absorption spectrometer and the physical properties of the Ag/GO/C composite were characterized by Fourier transform infrared spectrometer (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the dispersive Ag nanoparticles are anchored uniformly on the surface of GO sheets with a mean size of about 6.9 nm. With introducing carbon black, the Ag nanoparticles aggregated slightly. Compared with its counterpart Ag/GO, the Ag/GO/C composite showed a significantly enhanced activity towards the oxygen reduction reaction in alkaline media. The enhancement can be ascribed to the 3D composite support, which not only improves the electrical conductivity, but also enforces the mass transport in the catalyst layer facilitating the reactants access to the active sites. Moreover, the Ag/GO/C composite exhibits good tolerance to alcohols, carbonates and tetramethylammonium hydroxide. This work is expected to open a new pathway to use GO as a reducing agent to synthesize electrocatalysts without surfactants

  12. Facile longitudinal unzipping of carbon nanotubes to graphene nanoribbons and their effects on LiMn2O4 cathodes in rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Ilango, P. Robert; Prasanna, K.; Subburaj, T.; Jo, Yong Nam; Lee, Chang Woo

    2015-01-01

    Highlights: • The graphene nanoribbons are successfully synthesized by chemical unzipping method. • The LiMn 2 O 4 is surface modified with graphene nanoribbons via ultrasonic-assisted wet-coating. • The electrochemical effects of graphene nanoribbons on LiMn 2 O 4 are studied. • The modified LiMn 2 O 4 shows the good electronic conductivity and improved capacity. - Abstract: A LiMn 2 O 4 cathode has been surface-modified with carbon nanotubes and graphene nanoribbons via an ultrasonic-assisted wet-coating method. The structural stability of the surface-modified LiMn 2 O 4 and the amorphous nature of the coated carbon materials are confirmed using X-ray diffraction (XRD). Field emission scanning electron microscopy (FE-SEM) reveals the strong and uniform distribution of graphene nanoribbons over the LiMn 2 O 4 in comparison to the carbon nanotubes-coated LiMn 2 O 4 . Furthermore, field emission transmission electron microscopy (FE-TEM) confirms the strong adhesion of a smooth, sheet-like graphene nanoribbons layer over the LiMn 2 O 4 surface, whereas the carbon nanotubes are observed to have weak and/or irregular contact with LiMn 2 O 4 . Electrochemical studies have been carried out by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and a galvanostatic cycler. The graphene nanoribbons-modified LiMn 2 O 4 cathode shows better electrochemical properties in terms of a suppressed charge transfer resistance, high current density, negative shift in polarization, longer calendar life, and high rate capabilities. In addition, the graphene nanoribbons-modified LiMn 2 O 4 delivered 90% of the retention capacity after 50 cycles at a rate of 1 C with the potential limits of 3.0–4.5 V vs. Li/Li + .

  13. Animal facilities

    International Nuclear Information System (INIS)

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  14. Fabrication of applicator system of miniature X-ray tube based on carbon nanotubes for a skin cancer therapy

    International Nuclear Information System (INIS)

    Park, Han Beom; Kim, Hyun Jin; Lee, Ju Hyuk; Ha, Jun Mok; Cho, Sung Oh

    2016-01-01

    A miniature X-ray tube is a small X-ray generation device generally with a diameter of less than 10 mm. Because of the feasible installation in a spatially constrained area and the possibility of electrical on/off control, miniature X-ray tubes can be widely used for nondestructive X-ray radiography, hand held X-ray spectrometers, electric brachytherapy, and interstitial or intracavitary radiation therapy or imaging with the substitution of radioactive isotopes. Miniature X-ray tubes have been developed mostly using thermionic electron sources or secondary X-ray emission. The X-ray tube show excellent field emission properties and good X-ray spectrum. Also, the flattening filter was made to irradiate uniformly. The X-ray dose radial uniformities between installed flattening filter and non-installed flattening filter were measured. When flattening filter is equipped, X-ray uniformity was improved from higher than 20% to lower than 10%. As a result, the fabricated applicator system of the miniature X-ray tube using optimized flattening filter exhibited fairly excellent properties

  15. Facile synthesis and stable cycling ability of hollow submicron silicon oxide–carbon composite anode material for Li-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joong-Yeon; Nguyen, Dan Thien [Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kang, Joon-Sup [Department of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Song, Seung-Wan, E-mail: swsong@cnu.ac.kr [Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2015-06-05

    Highlights: • Hollow submicron SiO{sub 2}–carbon composite material was synthesized using Si{sup 4+}-citrate chelation. • Composite material possessed a homogeneous distribution of SiO{sub 2} and carbon. • Composite electrode delivered ⩾600 mAh/g with a stable cycling stability. • This materials design and synthesis provides a useful platform for scalable production. - Abstract: Advanced SiO{sub 2}–carbon composite anode active material for lithium-ion battery has been synthesized through a simple chelation of silicon cation with citrate in a glyme-based solvent. The resultant composite material demonstrates a homogeneous distribution of constituents over the submicron particles and a unique hollow spherical microstructure, which provides an enhanced electrical conductivity and better accommodation of volume change of silicon during electrochemical charge–discharge cycling, respectively. As a result, the composite electrode exhibits a high cycling stability delivering the capacity retention of 91% at the 100th cycle and discharge capacities of 662–602 mAh/g and coulombic efficiencies of 99.8%. This material synthesis is scalable and cost-effective in preparing various submicron or micron composite electrode materials.

  16. Carbon ion radiotherapy for sarcomas

    International Nuclear Information System (INIS)

    Imai, Reiko

    2013-01-01

    Principles of heavy ion therapy, its application to bone and soft tissue sarcomas and outline of its general state are described. The heavy ion therapy has advantages of its high dose distribution to the target and strong biological effect due to the Bragg peak formation and high linear energy transfer, respectively. The authors use carbon ion generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) for the therapy of performance state 0-2 patients with the sarcomas unresectable, diagnosed pathologically, and of 60 y, 45% and teens, 8%) have been treated, whose tumor site has been the pelvis in 73%, volume >600 mL in 63%, tissue type of bone tumor in 70% (where cordoma has amounted to>200 cases). Five-year local control rate is found 71% and survival, 59%. In 175 therapeutically fresh cases with sacral cordoma of median age 67 y, with median clinical target volume 9 cm, treated with median dose 70.4 GyE/16 irradiations, the 8-y local control rate is found to be 69% and survival, 74%, within the median follow-up 54 months; with severe skin ulcer in 2 cases and deterioration of nervous dysfunction in 15 cases; suggesting the therapy is as effective and useful as surgical resection. At present, the therapy is not applicable to Japan health insurance. In the author's hospital, the heavy ion therapy has been conducted to total of >6,000 patients, which amounting to the largest number in the world. Now, 3 Japanese facilities can do the therapy as well and 3 countries in the world.(T.T.)

  17. A facile self-template strategy to fabricate three-dimensional nitrogen-doped hierarchical porous carbon/graphene for conductive agent-free supercapacitors with excellent electrochemical performance

    International Nuclear Information System (INIS)

    Yuanyuan, Yin; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2014-01-01

    Graphical abstract: - Highlights: • The paper reported a facile template-free strategy to fabricate three-dimensional nitrogen-doped hierarchical porous carbon/graphene (3D-NHPC/G). • Such a new concept of strategy creates 3D carbon framework, hierarchical pore distribution, moderate graphitization and appropriate nitrogen doping. • The 3D-NHPC/G offers high electric conductivity, mass transfer and specific surface area. • The 3D-NHPC/G electrode displays an largely enhanced electrochemical performance. - Abstract: Carbon materials with large surface area, high conductivity and suitable pore distribution are highly desirable for high-performance supercapacitors. The paper reported a self-template strategy for the fabrication of three-dimensional nitrogen-doped hierarchical porous carbon/graphene (3D-NHPC/G). The mixture of beer yeast cells, graphite oxide, urea, potassium hydroxide and phytic acid was dispersed in water by ultrasonication to form homogeneous slurry, which was then dried by spray drying and finally heated at 850°C in Ar/H 2 environment. The study shows that such a new strategy creates a 3D carbon framework, hierarchical pore distribution, moderate graphitization and appropriate nitrogen doping. The as-prepared 3D-NHPC/G offers excellent dispersion, specific surface area of 3108.7 m 2 g −1 and electronic conductivity of 3096 S m −1 , which is more than six-fold that of 3D-NHPC (494 S m −1 ). Owing to the greatly enchanced electron transfer and mass transport, the 3D-NHPC/G electrode displays the largely enhanced electrochemical performance. In 6 mol l −1 potassium hydroxide aqueous electrolyte, its specific capacitance is 318 F g −1 at the current density of 1 A g −1 , 277 F g −1 at the current density of 10 A g −1 , and 155 F g −1 at the current density of 100 A g −1 that can remain at least 96.5% after 10000 cycles. In 1 mol l −1 tetraethylammonium tetrafluoroborate organic electrolyte, the specific capacitance is 138

  18. Single-Fraction Carbon-Ion Radiation Therapy for Patients 80 Years of Age and Older With Stage I Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Karube, Masataka; Yamamoto, Naoyoshi; Nakajima, Mio; Yamashita, Hideomi; Nakagawa, Keiichi; Miyamoto, Tadaaki; Tsuji, Hiroshi; Fujisawa, Takehiko; Kamada, Tadashi

    2016-01-01

    Purpose: In an aging society, many senior citizens want less invasive treatment because of potential medical complications. The National Institute of Radiological Sciences has started to treat stage I lung cancer with single-fraction carbon-ion radiation therapy (CIRT) as a dose escalation prospective phase 1/2 trial. We evaluated the efficacy and safety of CIRT for patients 80 years of age and older, undergoing single-fraction CIRT. Methods and Materials: Peripheral non-small cell lung cancer patients who were treated with single-fraction CIRT were prospectively followed. We analyzed the data from among these patients 80 years of age and older. Results: There were 70 patients. Median age was 83 years (range: 80-89) and median follow-up period was 42.7 months (range: 12-128 months). Three-year local control, cause-specific survival, and overall survival rates were 88.0%, 81.6%, and 72.4%, respectively. Five-year local control, cause-specific survival, and overall survival rates were 85.8%, 64.9%, and 39.7%, respectively. There were no adverse effects higher than grade 2 either in the acute or late phase in terms of skin and lung. Analgesic agents were necessary for only 5 patients (7.1%), to relieve muscular or rib fracture pain caused by irradiation. Conclusions: Single-fraction CIRT was low-risk and effective, even for the elderly.

  19. Single-Fraction Carbon-Ion Radiation Therapy for Patients 80 Years of Age and Older With Stage I Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Karube, Masataka, E-mail: mstk117@gmail.com [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Yamamoto, Naoyoshi; Nakajima, Mio [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Yamashita, Hideomi; Nakagawa, Keiichi [Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Miyamoto, Tadaaki; Tsuji, Hiroshi [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Fujisawa, Takehiko [Chiba Foundation for Health Promotion and Disease Prevention, Chiba (Japan); Kamada, Tadashi [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2016-05-01

    Purpose: In an aging society, many senior citizens want less invasive treatment because of potential medical complications. The National Institute of Radiological Sciences has started to treat stage I lung cancer with single-fraction carbon-ion radiation therapy (CIRT) as a dose escalation prospective phase 1/2 trial. We evaluated the efficacy and safety of CIRT for patients 80 years of age and older, undergoing single-fraction CIRT. Methods and Materials: Peripheral non-small cell lung cancer patients who were treated with single-fraction CIRT were prospectively followed. We analyzed the data from among these patients 80 years of age and older. Results: There were 70 patients. Median age was 83 years (range: 80-89) and median follow-up period was 42.7 months (range: 12-128 months). Three-year local control, cause-specific survival, and overall survival rates were 88.0%, 81.6%, and 72.4%, respectively. Five-year local control, cause-specific survival, and overall survival rates were 85.8%, 64.9%, and 39.7%, respectively. There were no adverse effects higher than grade 2 either in the acute or late phase in terms of skin and lung. Analgesic agents were necessary for only 5 patients (7.1%), to relieve muscular or rib fracture pain caused by irradiation. Conclusions: Single-fraction CIRT was low-risk and effective, even for the elderly.

  20. In vivo study of necrosis on the liver tissue of Wistar rats: a combination of photodynamic therapy and carbon dioxide laser ablation

    International Nuclear Information System (INIS)

    Rego, R F; Nicolodelli, G; Bagnato, V S; Araujo, M T; Tirapelli, L F; Araujo-Moreira, F M

    2013-01-01

    Photodynamic therapy (PDT) is known to be limited to applications in large volume tumors due to its limited penetration. Therefore, a combination of PDT and carbon dioxide (CO 2 ) laser ablation may constitute a potential protocol to destroy bulk tumors because it involves an association of these two techniques allowing the removal of visible lesions with a high selectivity of destruction of remnant tumors. The main aim of this study is to investigate the most appropriate procedure to combine use of a CO 2 laser and PDT on livers of healthy rats, and to analyze different techniques of this treatment using three types of photosensitizers (PSs). Forty eight animals were separated to form six groups: (1) only CO 2 laser ablation, (2) drug and CO 2 laser ablation, (3) only PDT, (4) drug and light (PDT) followed by CO 2 laser ablation, (5) ablated with CO 2 laser followed by PDT, and (6) drug followed by CO 2 laser ablation and light. For each group, three types of photosensitization were used: topical 5-aminolevulinic acid (ALA), intravenous ALA and intravenous Photogem ® . Thirty hours after the treatments, the animals were sacrificed and the livers removed. The depth of necrosis was analyzed and measured, considering microscopic and macroscopic aspects. The results show that the effects of the PDT were considerably enhanced when combined with CO 2 laser ablation, especially when the PDT was performed before the CO 2 laser ablation. (paper)

  1. Facile Synthesis of Defect-Rich and S/N Co-Doped Graphene-Like Carbon Nanosheets as an Efficient Electrocatalyst for Primary and All-Solid-State Zn-Air Batteries.

    Science.gov (United States)

    Zhang, Jian; Zhou, Huang; Zhu, Jiawei; Hu, Pei; Hang, Chao; Yang, Jinlong; Peng, Tao; Mu, Shichun; Huang, Yunhui

    2017-07-26

    Developing facile and low-cost porous graphene-based catalysts for highly efficient oxygen reduction reaction (ORR) remains an important matter for fuel cells. Here, a defect-enriched and dual heteroatom (S and N) doped hierarchically porous graphene-like carbon nanomaterial (D-S/N-GLC) was prepared by a simple and scalable strategy, and exhibits an outperformed ORR activity and stability as compared to commercial Pt/C catalyst in an alkaline condition (its half-wave potential is nearly 24 mV more positive than Pt/C). The excellent ORR performance of the catalyst can be attributed to the synergistic effect, which integrates the novel graphene-like architectures, 3D hierarchically porous structure, superhigh surface area, high content of active dopants, and abundant defective sites in D-S/N-GLC. As a result, the developed catalysts are used as the air electrode for primary and all-solid-state Zn-air batteries. The primary batteries demonstrate a higher peak power density of 252 mW cm -2 and high voltage of 1.32 and 1.24 V at discharge current densities of 5 and 20 mA cm -2 , respectively. Remarkably, the all-solid-state battery also exhibits a high peak power density of 81 mW cm -2 with good discharge performance. Moreover, such catalyst possesses a comparable ORR activity and higher stability than Pt/C in acidic condition. The present work not only provides a facile but cost-efficient strategy toward preparation of graphene-based materials, but also inspires an idea for promoting the electrocatalytic activity of carbon-based materials.

  2. Efficacy and tolerability of lodenafil carbonate for oral therapy in erectile dysfunction: a phase II clinical trial.

    Science.gov (United States)

    Glina, Sidney; Toscano, Iderpol; Gomatzky, Celso; de Góes, Plínio Moreira; Júnior, Archimedes Nardozza; Claro, Joaquim Francisco de Almeida; Pagani, Eduardo

    2009-02-01

    Oral treatment with phosphodiesterase type 5 inhibitor (PDE5) is considered the first-line treatment for patients with erectile dysfunction (ED). Lodenafil carbonate (LC) is a novel PDE5. This is a phase II, prospective, randomized, double-blind, and placebo controlled clinical trial of LC. Efficacy end points were International Index of Sexual Function (IIEF) erectile domain, IIEF questions 3 and 4, and Sexual Encounter Profile (SEP) questions 2 and 3, before and after the use of LC or placebo. Seventy-two men older than 18 years, with ED for at least 6 months with stable sexual relationship were enrolled. Patients were randomized to placebo or LC 80 mg, 40 mg, or 20 mg and followed for 4 weeks. IIEF erectile domain scores before and after the use of medications were (mean +/- standard deviation [SD]): placebo: 11.9 +/- 3.4 and 12.6 +/- 5.5; LC 20 mg: 15.8 +/- 4.1 and 18.9 +/- 6.6; LC 40 mg: 11.9 +/- 4.4 and 15.4 +/- 8.1; LC 80 mg: 14.2 +/- 4.7 and 22.8 +/- 6.0 (ANOVA P < 0.01). The SEP-2 scores before and after the use of medications were (Mean +/- SD): placebo: 71.0 +/- 33.1 and 51.2 +/- 43.1; LC 20 mg 70.3 +/- 34.2 and 75.5 +/- 31.5; LC 40 mg: 48.4 +/- 42.1 and 60.8 +/- 42.5; LC 80 mg: 68.6 +/- 33.5 and 89.6 +/- 26.0. The SEP-3 scores were: placebo 23.3 +/- 27.6 and 33.6 +/- 42.3; LC 20 mg: 32.3 +/- 38.9 and 51.2 +/- 41.7; LC 40 mg: 39.7 +/- 44.7 and 46.7 +/- 41.1; LC 80 mg* 17.2 +/- 29.5 and 74.3 +/- 36.4 (*P < 0.05 for difference to placebo). The drug was well tolerated. Adverse reactions were mild and self-limited and included headache, rhinitis, flushing, color visual disorders, and dyspepsia. This study showed that the dosage of 80 mg of LC was significantly more efficacious than placebo and well tolerated.

  3. Facile stripping voltammetric determination of haloperidol using a high performance magnetite/carbon nanotube paste electrode in pharmaceutical and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Hasan, E-mail: h.bagheri@srbiau.ac.ir [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Afkhami, Abbas [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Panahi, Yunes [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khoshsafar, Hosein; Shirzadmehr, Ali [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2014-04-01

    Multi-walled carbon nanotubes decorated with Fe{sub 3}O{sub 4} nanoparticles were prepared to construct a novel sensor for the determination of haloperidol (Hp) by voltammetric methods. The morphology and properties of electrode surface were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. This modified sensor was used as a selective electrochemical sensor for the determination of trace amounts of Hp. The peak currents of differential pulse and square wave voltammograms of Hp increased linearly with its concentration in the ranges of 1.2 × 10{sup −3}–0.52 and 6.5 × 10{sup −4}–0.52 μmol L{sup −1}, respectively. The detection limits for Hp were 7.02 × 10{sup −4} and 1.33 × 10{sup −4} μmol L{sup −1} for differential pulse and square wave voltammetric methods, respectively. The results show that the combination of multi-walled carbon nanotubes and Fe{sub 3}O{sub 4} nanoparticles causes a dramatic enhancement in the sensitivity of Hp quantification. This sensor was successfully applied to determine Hp in pharmaceutical samples and biological fluids. The fabricated electrode showed excellent reproducibility, repeatability and stability. - Highlights: • A sensitive paste using Fe{sub 3}O{sub 4}/multi-walled carbon nanotubes was fabricated. • Haloperidol determination is based on its adsorption on the surface of Fe{sub 3}O{sub 4}/MWCNTs. • Different electrochemical methods and impedance spectroscopy were used for this study. • Haloperidol was determined in pharmaceutical and biological samples. • In comparison to other conventional methods, this method is simple, rapid, selective and cost-effective.

  4. Facile stripping voltammetric determination of haloperidol using a high performance magnetite/carbon nanotube paste electrode in pharmaceutical and biological samples

    International Nuclear Information System (INIS)

    Bagheri, Hasan; Afkhami, Abbas; Panahi, Yunes; Khoshsafar, Hosein; Shirzadmehr, Ali

    2014-01-01

    Multi-walled carbon nanotubes decorated with Fe 3 O 4 nanoparticles were prepared to construct a novel sensor for the determination of haloperidol (Hp) by voltammetric methods. The morphology and properties of electrode surface were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. This modified sensor was used as a selective electrochemical sensor for the determination of trace amounts of Hp. The peak currents of differential pulse and square wave voltammograms of Hp increased linearly with its concentration in the ranges of 1.2 × 10 −3 –0.52 and 6.5 × 10 −4 –0.52 μmol L −1 , respectively. The detection limits for Hp were 7.02 × 10 −4 and 1.33 × 10 −4 μmol L −1 for differential pulse and square wave voltammetric methods, respectively. The results show that the combination of multi-walled carbon nanotubes and Fe 3 O 4 nanoparticles causes a dramatic enhancement in the sensitivity of Hp quantification. This sensor was successfully applied to determine Hp in pharmaceutical samples and biological fluids. The fabricated electrode showed excellent reproducibility, repeatability and stability. - Highlights: • A sensitive paste using Fe 3 O 4 /multi-walled carbon nanotubes was fabricated. • Haloperidol determination is based on its adsorption on the surface of Fe 3 O 4 /MWCNTs. • Different electrochemical methods and impedance spectroscopy were used for this study. • Haloperidol was determined in pharmaceutical and biological samples. • In comparison to other conventional methods, this method is simple, rapid, selective and cost-effective

  5. Facilities Programming.

    Science.gov (United States)

    Bullis, Robert V.

    1992-01-01

    A procedure for physical facilities management written 17 years ago is still worth following today. Each of the steps outlined for planning, organizing, directing, controlling, and evaluating must be accomplished if school facilities are to be properly planned and constructed. However, lessons have been learned about energy consumption and proper…

  6. Comparison of quality assurance for performance and safety characteristics of the facility for Boron Neutron Capture therapy in Petten/NL with medical electron accelerators

    International Nuclear Information System (INIS)

    Rassow, Juergen; Stecher-Rasmussen, Finn; Voorbraak, Wim; Moss, Ray; Vroegindeweij, Corine; Hideghety, Katalin; Sauerwein, Wolfgang

    2001-01-01

    Background and purpose: The European Council Directive on health protection 97/43/EURATOM requires radiotherapy quality assurance programmes for performance and safety characteristics including acceptance and repeated tests. For Boron Neutron Capture therapy (BNCT) at the High Flux Reactor (HFR) in Petten/NL such a programme has been developed on the basis of IEC publications for medical electron accelerators. Results: The fundamental differences of clinical dosimetry for medical electron accelerators and BNCT are presented and the order of magnitude of dose components and their stability and that of the main other influencing parameter 10 B concentration for BNCT patient treatments. A comparison is given for requirements for accelerators and BNCT units indicating items which are not transferable, equal or additional. Preliminary results of in vivo measurements done with a set of 55 Mn, 63 Cu and 197 Au activation foils for all single fields for the four fractions at all 15 treated patients show with <±4% up to now a worse reproducibility than the used dose monitoring systems (±1.5%) caused by influence of hair position on the foil-skull distance. Conclusions: Despite the more complex clinical dosimetry (because of four relevant dose components, partly of different linear energy transfer (LET)) BNCT can be regulated following the principles of quality assurance procedures for therapy with medical electron accelerators. The reproducibility of applied neutron fluence (proportional to absorbed doses) and the main safety aspects are equal for all teletherapy methods including BNCT

  7. Sci—Fri PM: Topics — 07: Monte Carlo Simulation of Primary Dose and PET Isotope Production for the TRIUMF Proton Therapy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, C; Jirasek, A [University of Victoria (Australia); Blackmore, E; Hoehr, C; Schaffer, P; Trinczek, M [TRIUMF (Canada); Sossi, V [University of British Columbia (Canada)

    2014-08-15

    Uveal melanoma is a rare and deadly tumour of the eye with primary metastases in the liver resulting in an 8% 2-year survival rate upon detection. Large growths, or those in close proximity to the optic nerve, pose a particular challenge to the commonly employed eye-sparing technique of eye-plaque brachytherapy. In these cases external beam charged particle therapy offers improved odds in avoiding catastrophic side effects such as neuropathy or blindness. Since 1995, the British Columbia Cancer Agency in partnership with the TRIUMF national laboratory have offered proton therapy in the treatment of difficult ocular tumors. Having seen 175 patients, yielding 80% globe preservation and 82% metastasis free survival as of 2010, this modality has proven to be highly effective. Despite this success, there have been few studies into the use of the world's largest cyclotron in patient care. Here we describe first efforts of modeling the TRIUMF dose delivery system using the FLUKA Monte Carlo package. Details on geometry, estimating beam parameters, measurement of primary dose and simulation of PET isotope production are discussed. Proton depth dose in both modulated and pristine beams is successfully simulated to sub-millimeter precision in range (within limits of measurement) and 2% agreement to measurement within in a treatment volume. With the goal of using PET signals for in vivo dosimetry (alignment), a first look at PET isotope depth distribution is presented — comparing favourably to a naive method of approximating simulated PET slice activity in a Lucite phantom.

  8. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Here is given the decree (2000-1065) of the 25. of October 2000 reporting the publication of the convention between the Government of the French Republic and the CERN concerning the safety of the LHC (Large Hadron Collider) and the SPS (Proton Supersynchrotron) facilities, signed in Geneva on July 11, 2000. By this convention, the CERN undertakes to ensure the safety of the LHC and SPS facilities and those of the operations of the LEP decommissioning. The French legislation and regulations on basic nuclear facilities (concerning more particularly the protection against ionizing radiations, the protection of the environment and the safety of facilities) and those which could be decided later on apply to the LHC, SPS and auxiliary facilities. (O.M.)

  9. Dramatic property enhancement in polyetherimide using low-cost commercially functionalized multi-walled carbon nanotubes via a facile solution processing method

    International Nuclear Information System (INIS)

    Kumar, Sandeep; Li Bin; Caceres, Santiago; Zhong Weihong; Maguire, Russ G

    2009-01-01

    Polyetherimide (PEI) has excellent mechanical and thermal properties, and exceptional fire resistance. Developing even broader multi-functionality in PEI/carbon nanotube (CNT) composites for industrial applications is an alluring but challenging goal, due to processing difficulties related to the high pressure and temperature needed to achieve effective flow for this polymer, and costly and complex treatments of the CNTs. Here we report the fabrication of PEI nanocomposite films using low-cost commercially functionalized multi-walled carbon nanotubes (MWNTs), and a simple and innovative process, achieving exceptional properties with only 0.5 wt% of MWNTs, including an increase in electrical conductivity of 12 orders of magnitude, accompanied by an unprecedented increase of 86 0 C in thermal decomposition temperature (higher service temperature). Field emission scanning electron microscopy revealed a high degree of uniform dispersion among the MWNTs, superb polymer-MWNT interaction and formation of a spatially homogeneous nanotube network within the matrix. The enhancement in these properties suggests great potential use for this developed processing approach and the resulting nanocomposites for multi-functional coating or interfacing materials in aerospace and electronic industries.

  10. Facile Synthesis of Free-Standing NiO/MnO2 Core-Shell Nanoflakes on Carbon Cloth for Flexible Supercapacitors.

    Science.gov (United States)

    Xi, Shuang; Zhu, Yinlong; Yang, Yutu; Jiang, Shulan; Tang, Zirong

    2017-12-01

    Free-standing NiO/MnO 2 core-shell nanoflake structure was deposited on flexible carbon cloth (CC) used as electrode for high-performance supercapacitor (SC). The NiO core was grown directly on CC by hydrothermal process and the following annealing treatment. MnO 2 thin film was then covered on NiO structures via a self-limiting process in aqueous solution of 0.5 M KMnO 4 and 0.5 M Na 2 SO 4 with a carbon layer serving as the sacrificial layer. Both the core and shell materials are good pseudocapacitive materials, the compounds of binary metal oxides can provide the synergistic effect of all individual constituents, and thus enhance the performance of SC electrode. The obtained CC/NiO/MnO 2 heterostructure was directly used as SC electrodes, showing an enhanced electrochemical performance including areal capacitance of 316.37 mF/cm 2 and special gravimetric capacitance of 204.3 F/g at the scan rate of 50 mV/s. The electrode also shows excellent cycling stability, which retains 89% of its initial discharge capacitance after 2200 cycles with >97% Coulombic efficiency. The synthesized binder-free hierarchical composite electrode with superior electrochemical properties demonstrates enormous potential in the application of flexible SCs.

  11. A facile one-pot self-assembly approach to incorporate SnOx nanoparticles in ordered mesoporous carbon with soft templating for fuel cells

    Science.gov (United States)

    Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping

    2014-04-01

    Unique SnOx (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnOx/OMC) are firstly synthesized through a ‘one-pot’ synthesis together with the soft template self-assembly approach. The obtained SnOx/OMC nanocomposites with various SnOx contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m2 g-1, and high pore volumes between 0.39 and 0.48 cm3 g-1. With loading of Pt, Pt-SnOx/OMC with relatively low SnOx content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt-SnOx/C, which may be attributed not only to the synergetic effect of embedded SnOx, but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells.

  12. A facile one-pot self-assembly approach to incorporate SnOx nanoparticles in ordered mesoporous carbon with soft templating for fuel cells

    International Nuclear Information System (INIS)

    Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping

    2014-01-01

    Unique SnO x  (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnO x /OMC) are firstly synthesized through a ‘one-pot’ synthesis together with the soft template self-assembly approach. The obtained SnO x /OMC nanocomposites with various SnO x contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m 2  g −1 , and high pore volumes between 0.39 and 0.48 cm 3  g −1 . With loading of Pt, Pt–SnO x /OMC with relatively low SnO x content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt–SnO x /C, which may be attributed not only to the synergetic effect of embedded SnO x , but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells. (paper)

  13. Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique.

    Science.gov (United States)

    Sahoo, Bichitra Nanda; Balasubramanian, Kandasubramanian

    2014-12-15

    We have elucidated a cost effective fabrication technique to produce superhydrophobic polyvinylidene fluoride (PVDF/DMF/candle soot particle and PVDF/DMF/camphor soot particle composite) porous materials. The water repellent dry composite was formed by the interaction of non-solvent (methanol) into PVDF/carbon soot particles suspension in N,N-dimethylformamide (DMF). It is seen that longer quenching time effectively changes the surface morphology of dry composites. The nano broccoli like hierarchical microstructure with micro or nano scaled roughen surface was obtained for PVDF/DMF/camphor soot particle, which reveals water contact angle of 172° with roll off angle of 2°. However, composite coating of PVDF/DMF/candle soot particle shows nano cauliflower like hierarchical, which illustrates water contact angle of 169° with roll off angle of 3°. To elucidate the enhancement of water repellent property of PVDF composites, we further divulge the evolution mechanism of nano cauliflower and nano broccoli structure. In order to evaluate the water contact angle of PVDF composites, surface diffusion of water inside the pores is investigated. Furthermore, the addition of small amount of carbon soot particles in composite not only provides the crystallization of PVDF, but also leads to dramatical amendment of surface morphology which increases the surface texture and roughness for superhydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids.

    Science.gov (United States)

    Sadri, Rad; Hosseini, Maryam; Kazi, S N; Bagheri, Samira; Zubir, Nashrul; Solangi, K H; Zaharinie, Tuan; Badarudin, A

    2017-10-15

    In this study, we propose an innovative, bio-based, environmentally friendly approach for the covalent functionalization of multi-walled carbon nanotubes using clove buds. This approach is innovative because we do not use toxic and hazardous acids which are typically used in common carbon nanomaterial functionalization procedures. The MWCNTs are functionalized in one pot using a free radical grafting reaction. The clove-functionalized MWCNTs (CMWCNTs) are then dispersed in distilled water (DI water), producing a highly stable CMWCNT aqueous suspension. The CMWCNTs are characterized using Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The electrostatic interactions between the CMWCNT colloidal particles in DI water are verified via zeta potential measurements. UV-vis spectroscopy is also used to examine the stability of the CMWCNTs in the base fluid. The thermo-physical properties of the CMWCNT nano-fluids are examined experimentally and indeed, this nano-fluid shows remarkably improved thermo-physical properties, indicating its superb potential for various thermal applications. Copyright © 2017. Published by Elsevier Inc.

  15. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  16. An evaluation of NCRP report 151--radiation shielding design for radiotherapy facilities, and a feasibility study for 6 MV open-door treatments in an existing high-energy radiation therapy bunker

    Science.gov (United States)

    Kildea, John

    This thesis describes a study of shielding design techniques used for radiation therapy facilities that employ megavoltage linear accelerators. Specifically, an evaluation of the shielding design formalism described in NCRP report 151 was undertaken and a feasibility study for open-door 6 MV radiation therapy treatments in existing 6 MV, 18 MV treatment rooms at the Montreal General Hospital (MGH) was conducted. To evaluate the shielding design formalism of NCRP 151, barrier-attenuated equivalent doses were measured for several of the treatment rooms at the MGH and compared with expectations from NCRP 151 calculations. It was found that, while the insight and recommendations of NCRP 151 are very valuable, its dose predictions are not always correct. As such, the NCRP 151 methodology is best used in conjunction with physical measurements. The feasibility study for 6 MV open-door treatments made use of the NCRP 151 formalism, together with physical measurements for realistic 6 MV workloads. The results suggest that, dosimetrically, 6 MV open door treatments are feasible. A conservative estimate for the increased dose at the door arising from such treatments is 0.1 mSv, with a 1/8 occupancy factor, as recommended in NCRP 151, included.

  17. Reducing Emissions from Deforestaton and Forest Degradation (REDD+ – What is Behind the Idea and What is the Role of UN-REDD and Forest Carbon Partnership Facility (FCPF?

    Directory of Open Access Journals (Sweden)

    Saša Danon

    2011-12-01

    Full Text Available Background and Purpose: Although greenhouse gases related with the Land Use, Land Use Changes and the Forestry (LULUCF represent approximately 15-20% of all greenhouse gases emissions to the atmosphere, afforestation/reforestation projects of Kyoto protocol related Clean Development Mechanism (CDM represents only 0.75% of all CDM projects. All these facts prompted re-negotiation of climate change policy to include Reducing Emissions of Deforestation and forest Degradation (REDD+ in compliance carbon trading in the Post-Kyoto protocol. To help implementing the REDD+ in developing countries, two main multilateral readiness programs were established, the UN one (UN-REDD+, and the Forest Carbon Partnership Facility (FCPF, which was created by the World Bank. This paper describes the main idea behind REDD+ mechanism, the roles of UN-REDD and FCPF in creating REDD+ national policies and what are the challenges and main obstacles in successful implementation of REDD+. Material and Methods: Review of the existing literature like reports and publications related to REDD+ in general, as well as related with UN-REDD and FCPF roles in REDD+ implementation in sub- national, national and supra-national policies. Results and Conclusion: For successful implementation of REDD+ it is necessary to deal with the problems of governance (weak institution, corruption, lack of transparency and participation that are common present in most of the tropical countries involved in REDD+. The implementation of an effective REDD+ mechanism will need an improved capacity building and law enforcement. The analysis of UN-REDD and FCPF program reveals large overlapping, especially in current phase of capacity building. At present, it seems that UN-REDD maintains a more social oriented approach, while FCPF focuses more on carbon sequestration projects.

  18. A reviewed technique for total body electron therapy using a Varian Clinac 2100C/D high dose rate treatment beam facility

    International Nuclear Information System (INIS)

    Oliver, L.D.; Xuereb, E.M.A.; Last, V.; Hunt, P.B.; Wilfert, A.

    1996-01-01

    Our (Royal North Shore Hospital) most recent linear accelerator acquisition is a Varian Clinac 2100C/D which has a high dose rate (approximately 25Gy per minute at 1 metre) total body electron option. We investigated the physical characteristics of the electron beam to develop a suitable method of treatment for total body electron therapy. The useful electron beam width is defined as 80cm above and below the reference height. Measurements of the electron dose received from the two angled electron beams showed a critical dependence on the gantry angles. The treatment protocol uses ten different patient angles, fractionated into directly opposing fields and treated seuqentially each day. A full cycle of treatment is completed in five days. (author)

  19. Long-term Results of Carbon Ion Radiation Therapy for Locally Advanced or Unfavorably Located Choroidal Melanoma: Usefulness of CT-based 2-Port Orthogonal Therapy for Reducing the Incidence of Neovascular Glaucoma

    International Nuclear Information System (INIS)

    Toyama, Shingo; Tsuji, Hiroshi; Mizoguchi, Nobutaka; Nomiya, Takuma; Kamada, Tadashi; Tokumaru, Sunao; Mizota, Atsushi; Ohnishi, Yoshitaka; Tsujii, Hirohiko

    2013-01-01

    Purpose: To determine the long-term results of carbon ion radiation therapy (C-ion RT) in patients with choroidal melanoma, and to assess the usefulness of CT-based 2-port irradiation in reducing the risk of neovascular glaucoma (NVG). Methods and Materials: Between January 2001 and February 2012, a total of 116 patients with locally advanced or unfavorably located choroidal melanoma received CT-based C-ion RT. Of these patients, 114 were followed up for more than 6 months and their data analyzed. The numbers of T3 and T2 patients (International Union Against Cancer [UICC], 5th edition) were 106 and 8, respectively. The total dose of C-ion RT varied from 60 to 85 GyE, with each dose given in 5 fractions. Since October 2005, 2-port therapy (51 patients) has been used in an attempt to reduce the risk of NVG. A dose-volume histogram analysis was also performed in 106 patients. Results: The median follow-up was 4.6 years (range, 0.5-10.6 years). The 5-year overall survival, cause-specific survival, local control, distant metastasis-free survival, and eye retention rates were 80.4% (95% confidence interval 89.0%-71.8%), 82.2% (90.6%-73.8%), 92.8% (98.5%-87.1%), 72.1% (81.9%-62.3%), and 92.8% (98.1%-87.5%), respectively. The overall 5-year NVG incidence rate was 35.9% (25.9%-45.9%) and that of 1-port group and 2-port group were 41.6% (29.3%-54.0%) and 13.9% (3.2%-24.6%) with statistically significant difference (P<.001). The dose-volume histogram analysis showed that the average irradiated volume of the iris-ciliary body was significantly lower in the non-NVG group than in the NVG group at all dose levels, and significantly lower in the 2-port group than in the 1-port group at high dose levels. Conclusions: The long-term results of C-ion RT for choroidal melanoma are satisfactory. CT-based 2-port C-ion RT can be used to reduce the high-dose irradiated volume of the iris-ciliary body and the resulting risk of NVG

  20. Long-term Results of Carbon Ion Radiation Therapy for Locally Advanced or Unfavorably Located Choroidal Melanoma: Usefulness of CT-based 2-Port Orthogonal Therapy for Reducing the Incidence of Neovascular Glaucoma

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Shingo [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Department of Heavy Particle Therapy and Radiation Oncology, Faculty of Medicine, Saga University, Saga (Japan); Tsuji, Hiroshi, E-mail: h_tsuji@nirs.go.jp [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Mizoguchi, Nobutaka; Nomiya, Takuma; Kamada, Tadashi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Tokumaru, Sunao [Department of Heavy Particle Therapy and Radiation Oncology, Faculty of Medicine, Saga University, Saga (Japan); Mizota, Atsushi [Department of Ophthalmology, Teikyo University School of Medicine, Tokyo (Japan); Ohnishi, Yoshitaka [Department of Ophthalmology, Wakayama Medical University, Wakayama (Japan); Tsujii, Hirohiko [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2013-06-01

    Purpose: To determine the long-term results of carbon ion radiation therapy (C-ion RT) in patients with choroidal melanoma, and to assess the usefulness of CT-based 2-port irradiation in reducing the risk of neovascular glaucoma (NVG). Methods and Materials: Between January 2001 and February 2012, a total of 116 patients with locally advanced or unfavorably located choroidal melanoma received CT-based C-ion RT. Of these patients, 114 were followed up for more than 6 months and their data analyzed. The numbers of T3 and T2 patients (International Union Against Cancer [UICC], 5th edition) were 106 and 8, respectively. The total dose of C-ion RT varied from 60 to 85 GyE, with each dose given in 5 fractions. Since October 2005, 2-port therapy (51 patients) has been used in an attempt to reduce the risk of NVG. A dose-volume histogram analysis was also performed in 106 patients. Results: The median follow-up