WorldWideScience

Sample records for carbon stainless steel

  1. Hydrogen Effects on Austenitic Stainless Steels and High-Strength Carbon Steels

    OpenAIRE

    Todoshchenko, Olga

    2015-01-01

    The resistance to hydrogen embrittlement is an important factor in the development of new steel grades for a variety of applications. The thesis describes investigations on hydrogen effects on two classes of steels - austenitic stainless steels and advanced high-strength carbon steels. Hydrogen solubility and diffusion in metastable austenitic stainless steels are studied with thermal desorption spectroscopy (TDS). This method, together with the mathematical modeling of the processes of hy...

  2. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  3. Microstructural characterisation of carbon implanted austenitic stainless steel

    International Nuclear Information System (INIS)

    Low carbon (316L) austenitic stainless steel has been implanted with carbon ions with a fluence of 5 x 1017 C ions/cm2 using an ion energy of 75 keV. The effect of carbon ion implantation on the microstructure of the austenitic steel has been examined in cross-section using transmission electron microscopy (TEM) both before and after implantation, and the implantation data correlated with a computer based simulation, TRIM (Transport and Range of Ions in Matter). It has been found that the high-fluence carbon ion implantation modified the microstructure of the steel, as demonstrated by the presence of two amorphous layers separated by a layer of expanded austenite

  4. Microstructural characterisation of carbon implanted austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.E. [Scientific Affairs Research Group, Stryker Orthopaedics, Raheen Business Park, Limerick (Ireland)]. E-mail: matthew.murphy@stryker.com; Insley, G.M. [Scientific Affairs Research Group, Stryker Orthopaedics, Raheen Business Park, Limerick (Ireland); Laugier, M.T. [Department of Physics, University of Limerick, Limerick (Ireland); Newcomb, S.B. [Sonsam Ltd., Glebe Laboratories, Newport, Tipperary (Ireland)

    2005-06-01

    Low carbon (316L) austenitic stainless steel has been implanted with carbon ions with a fluence of 5 x 10{sup 17} C ions/cm{sup 2} using an ion energy of 75 keV. The effect of carbon ion implantation on the microstructure of the austenitic steel has been examined in cross-section using transmission electron microscopy (TEM) both before and after implantation, and the implantation data correlated with a computer based simulation, TRIM (Transport and Range of Ions in Matter). It has been found that the high-fluence carbon ion implantation modified the microstructure of the steel, as demonstrated by the presence of two amorphous layers separated by a layer of expanded austenite.

  5. Draft guideline of NDI for low carbon stainless steel

    International Nuclear Information System (INIS)

    The in-service inspection for the equipment at the nuclear power plants is obligated for to the electric power utilities and is implemented as the periodical utility inspection. On the other hand, the stress corrosion cracks emerge in low carbon stainless steel and the verification of the non-destructive inspection technologies becomes urgent business. JNES implemented a verification test about flaw detectability and sizing accuracy of the non-destructive inspection technologies to the reactor core shroud and the nuclear reactor recirculation pipe made of the low carbon stainless steel, and worked out the draft guideline of the non-destructive inspection. In this paper, we reports on the part of the result of the verification test which JNES implemented. (author)

  6. Acid neutralisation capacity of accelerated carbonated stainless steel slag.

    Science.gov (United States)

    Johnson, D C; MacLeod, C L; Hills, C D

    2003-05-01

    The acid neutralisation capacity test is widely used to assess the long-term performance of waste materials prior to disposal. Samples of fixed mass are exposed to increasing additions of nitric add in sealed containers and the resultant pH is plotted as a titration curve. In this work, the add neutralisation capacity test was used in the assessment of an accelerated carbonated stainless steel slag. Difficulties arose in applying the test procedure to this material. This was largely because of the raised pressure from significant volumes of released carbon dioxide trapped in the sealed sample containers, causing an alteration to leachate pH values. Consequently, the add neutralisation capacity test was modified to enable testing of samples in equilibrium with the atmosphere. No adverse effects on the results from testing of a carbonate free material were recorded. PMID:12803247

  7. The diffusion of carbon from liquid sodium into stainless steel

    International Nuclear Information System (INIS)

    A theory which describes the diffusion of carbon from liquid sodium into austenitic stainless steels is proposed. It is suggested that diffusion occurs simultaneously along two routes, i.e. the grain boundaries and the grains themselves. The grain boundaries provide a faster route than through the grains. In both routes the diffusion is accompanied by precipitation of iron/chromium carbides. The contributions of each route to the carbon concentration in the steel add together to give the observed profile. Each contribution obeys an equation of the error function type given as a solution to Fick's second law. A method of fitting such an equation to suitable curves using the minimising of sums of squares has been developed. It's application to profiles obtained in the present work has shown them to obey the above theory. The contributions from the two routes could be separated and used to evaluate effective diffusion coefficients. Most of the profiles were obtained from steel samples carburised in small sealed capsules. Constant carbon activities in sodium were ensured by the use of suitable sources, mainly couples consisting of a metal and one of its carbides or two carbides of the same metal. The profiles were mainly obtained from the metal by Glow Discharge Optical Spectroscopy. Work on samples obtained from two flowing sodium loops is reported, and are compared with other profiling techniques. (author)

  8. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    International Nuclear Information System (INIS)

    Highlights: • The morphology of the corrosion of steel in cement paste was studied in situ. • During galvanostatic corrosion, carbon steel reinforcement corroded homogeneously. • On ferritic stainless steel, deep corrosion pits formed and caused wider cracks. • The measured rate of steel loss correlated well with Faraday’s law of electrolysis. - Abstract: In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover

  9. Nondestructive inspection technologies for low-carbon stainless steel

    International Nuclear Information System (INIS)

    This report summarized modification and additional items of 'ultrasonic testing guide for in-service inspection of light-water type nuclear power plant components' (JEAG4207-2004) for ultrasonic testing method for Primary Loop of Recirculation system (PLR) piping and core shrouds on the base of four year project on nondestructive inspection technologies for low-carbon stainless steel, which investigated defect detection capability and sizing accuracy for PLR piping and core shrouds, and their explanatory notes on ultrasonic testing method, indication length measurement, phased-array method and defect depth measurement for PLR piping, and indication length measurement and defect depth measurement for core shrouds. 'Eddy current testing guide using upper coil (draft)' for core shrouds was proposed with detailed explanatory notes. (T. Tanaka)

  10. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  11. Solidification of stainless steel slag by accelerated carbonation.

    Science.gov (United States)

    Johnson, D C; MacLeod, C L; Carey, P J; Hills, C D

    2003-06-01

    On exposure to carbon dioxide (CO2) at a pressure of 3 bars, compacts formed from pressed ground slag, and 12.5 weight percent water, were found to react with approximately 18% of their own weight of CO2. The reaction product formed was calcium carbonate causing the slag to self-cement. Unconfined compressive strengths of 9MPa were recorded in carbonated compacts whereas strengths of < 1 MPa were recorded in non-carbonated slag compacts. As molten stainless steel slag containing dicalcium silicate (C2S) cools it can undergo several phase transitions. The final transformation from the beta-polymorph to gamma-C2S is accompanied by a volume change that causes the slag to self-pulverise or 'dust'. As a consequence of this the fine grained portion of the slag contains more of this phase whilst the coarser particles of the slag contain more of the calcium magnesium silicates that contribute the bulk of the waste. The fine fraction (< 125 microm) of the slag when ground is found to react to the same extent as the ground bulk slag and produces compacts with equivalent strength. A coarser fraction (4-8 mm) when ground to a similar grading does not react as extensively and produces a weaker product. Additions of ordinary Portland cement (OPC) at 5 and 10 percent by weight did not alter the degree of reaction during carbonation of the bulk slag or ground fine fraction, however the strength of the 4-8 mm fraction was increased by this change. PMID:12868521

  12. Aerosol measurements from plasma torch cuts on stainless steel, carbon steel, and aluminum

    International Nuclear Information System (INIS)

    The main purpose of this project is to quantify aerosol particle size and generation rates produced by a plasma torch whencutting stainless steel, carbon steel and aluminum. the plasma torch is a common cutting tool used in the dismantling of nuclear facilities. Eventually, other cutting tools will be characterized and the information will be compiled in a user guide to aid in theplanning of both D ampersand D and other cutting operations. The data will be taken from controlled laboratory experiments on uncontaminated metals and field samples taken during D ampersand D operations at ANL nuclear facilities. The plasma torch data was collected from laboratory cutting tests conducted inside of a closed, filtered chamber. The particle size distributions were determined by isokinetically sampling the exhaust duct using a cascade impactor. Cuts on different thicknesses showed there was no observable dependence of the aerosol quantity produced as a function of material thickness for carbon steel. However, data for both stainless steel and aluminum revealed that the aerosol mass produced for these materials appear to have some dependance on thickness, with thinner materials producing tmore aerosols. The results of the laboratory cutting tests show that most measured particle size distributions are bimodal with one mode at about 0.2 μm and the other at about 10 μm. The average Mass Median Aerodynamic Diameters (MMAD's) for these tests are 0.36 ±0.08 μm for stainless steel, 0.48 ±0.17μm for aluminum and 0.52±0.12 μm for carbon steel

  13. Welded, sandblasted, stainless steel corrugated bars in non-carbonated and carbonated mortars: A 9-year corrosion study

    OpenAIRE

    Bautista, A.; Paredes, E. C.; Álvarez, S. M.; Velasco, F.

    2016-01-01

    Three different stainless steel corrugated grades (UNS S20430, S30403 and S32205) were similar welded to stainless steel bars with the same composition and dissimilar welded to carbon steel (CS). After cleaning the welding oxides by sandblasting, the reinforcements were embedded in mortar with chlorides and some of the samples were carbonated. Corrosion activity was monitored using corrosion potential (Ecorr) and electrochemical impedance spectroscopy (EIS). After 8 years of exposure, the sam...

  14. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    Science.gov (United States)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  15. A computational model for the carbon transfer in stainless steel sodium systems

    International Nuclear Information System (INIS)

    A method is proposed of computing the carbon transfer in the type 316, 304 and 321 stainless steels in sodium environment as a function of temperature, exposure time and carbon concentration in the sodium. The method is based on the criteria developed at ANL by introducing some simplifications and takes also into account the correlations obtained at WARD. Calculated carbon profiles are compared both with experimental data and with the results available by the other computer methods. The limits for quantitative predictions of the stainless steel carburization or decarburization exposed in a specific environment are discussed. (author)

  16. Stress corrosion cracking in low carbon stainless steel components in BWRs

    International Nuclear Information System (INIS)

    In recent years, numbers of SCC have occurred in core shrouds and primary loop recirculation piping made of low carbon stainless steels that had been recognized to be an SCC-resistant material. These incidents resulted in long-term shutdown of Japanese boiling water reactors and have drawn social as well as technical interests. This paper will provide an introductory review on (1) background of SCC observed in low carbon stainless steel components in BWRs, (2) characteristics of SCC in core shrouds and PLR piping, (3) structural integrity evaluation, (4) SCC mitigation techniques, (5) SCC mechanism and (6) research topics that should be covered regarding these issues. (author)

  17. The possibility of tribopair lifetime extending by welding of quenched and tempered stainless steel with quenched and tempered carbon steel

    OpenAIRE

    V. Marušić; I. Samardžić; Budić, I.; Marušić, L.

    2015-01-01

    In the conditions of tribocorrosion wear, extending of parts lifetime could be achieved by using stainless steel,which is hardened to sufficiently high hardness. In the tribosystem bolt/ bushing shell/link plate of the bucket elevator transporter conveyor machine, the previously quenched and tempered martensitic stainless steel for bolts is hardened at ≈47 HRC and welded with the quenched and tempered high yield carbon steel for bolts. Additional material, based on Cr-Ni-Mo (18/8/6) is used. ...

  18. Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Bradshaw, R.W. [Sandia National Labs., Livermore, CA (United States); Prairie, M.R.; Chavez, J.M. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    Corrosion behavior of two stainless steels and carbon steel in mixtures of NaNO{sub 3} and KNO{sub 3} was evaluated to determine if impurities found in commodity grades of alkali nitrates aggravate corrosivity as applicable to an advanced solar thermal energy system. Corrosion tests were conducted for 7000 hours with Types 304 and 316 stainless steels at 570C and A36 carbon steel at 316C in seven mixtures of NaNO{sub 3} and KNO{sub 3} containing variations in impurity concentrations. Corrosion tests were also conducted in a ternary mixture of NaNO{sub 3}, KNO{sub 3}, and Ca(NO{sub 3}){sub 2}. Corrosion rates were determined by descaled weight losses while oxidation products were examined by scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The nitrate mixtures were periodically analyzed for changes in impurity concentrations and for soluble corrosion products.

  19. Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints

    International Nuclear Information System (INIS)

    In this work, examinations on the microstructure and mechanical properties of plain carbon steel and AISI 430 ferritic stainless steel dissimilar welds are carried out. Welding is conducted in both autogenous and using ER309L austenitic filler rod conditions through gas tungsten arc welding process. The results indicate that fully-ferritic and duplex ferritic–martensitic microstructures are formed for autogenous and filler-added welds, respectively. Carbide precipitation and formation of martensite at ferrite grain boundaries (intergranular martensite) as well as grain growth occur in the heat affected zone (HAZ) of AISI 430 steel. It is found that weld heat input can strongly affect grain growth phenomenon along with the amount and the composition of carbides and intergranular martensite. Acquired mechanical characteristics of weld in the case of using filler metal are significantly higher than those of autogenous one. Accordingly, ultimate tensile strength (UTS), hardness, and absorbed energy during tensile test of weld metal are increased from 662 MPa to 910 MPa, 140 Hv to 385 Hv, and 53.6 J m−3 to 79 J m−3, respectively by filler metal addition. From fracture surfaces, predominantly ductile fracture is observed in the specimen welded with filler metal while mainly cleavage fracture occurs in the autogenous weld metal

  20. Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Sarkari Khorrami, Mahmoud; Mostafaei, Mohammad Ali; Pouraliakbar, Hesam, E-mail: hpouraliakbar@alum.sharif.edu; Kokabi, Amir Hossein

    2014-07-01

    In this work, examinations on the microstructure and mechanical properties of plain carbon steel and AISI 430 ferritic stainless steel dissimilar welds are carried out. Welding is conducted in both autogenous and using ER309L austenitic filler rod conditions through gas tungsten arc welding process. The results indicate that fully-ferritic and duplex ferritic–martensitic microstructures are formed for autogenous and filler-added welds, respectively. Carbide precipitation and formation of martensite at ferrite grain boundaries (intergranular martensite) as well as grain growth occur in the heat affected zone (HAZ) of AISI 430 steel. It is found that weld heat input can strongly affect grain growth phenomenon along with the amount and the composition of carbides and intergranular martensite. Acquired mechanical characteristics of weld in the case of using filler metal are significantly higher than those of autogenous one. Accordingly, ultimate tensile strength (UTS), hardness, and absorbed energy during tensile test of weld metal are increased from 662 MPa to 910 MPa, 140 Hv to 385 Hv, and 53.6 J m{sup −3} to 79 J m{sup −3}, respectively by filler metal addition. From fracture surfaces, predominantly ductile fracture is observed in the specimen welded with filler metal while mainly cleavage fracture occurs in the autogenous weld metal.

  1. Advanced manufacturing technologies of large martensitic stainless steel castings with ultra low carbon and high cleanliness

    Directory of Open Access Journals (Sweden)

    Lou Yanchun

    2010-11-01

    Full Text Available The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfied the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.

  2. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  3. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    International Nuclear Information System (INIS)

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 1017 ions-cm− 2, 2.4 × 1017 ions-cm− 2, and 4.8 × 1017 ions-cm− 2. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation

  4. The possibility of tribopair lifetime extending by welding of quenched and tempered stainless steel with quenched and tempered carbon steel

    Directory of Open Access Journals (Sweden)

    V. Marušić

    2015-04-01

    Full Text Available In the conditions of tribocorrosion wear, extending of parts lifetime could be achieved by using stainless steel,which is hardened to sufficiently high hardness. In the tribosystem bolt/ bushing shell/link plate of the bucket elevator transporter conveyor machine, the previously quenched and tempered martensitic stainless steel for bolts is hardened at ≈47 HRC and welded with the quenched and tempered high yield carbon steel for bolts. Additional material, based on Cr-Ni-Mo (18/8/6 is used. The microstructure and hardness of welded samples are tested. On the tensile tester, resistance of the welded joint is tested with a simulated experiment. Dimensional control of worn tribosystem elements was performed after six months of service.

  5. Welding irradiated stainless steel

    International Nuclear Information System (INIS)

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials

  6. Carbon content influence on the peritectic reaction path in stainless steels

    Directory of Open Access Journals (Sweden)

    J. Głownia

    2013-01-01

    Full Text Available An important role for the peritectic reaction path in castings of stainless steel play small changes in a carbon content (e.g. from 0,02 to 0,06 % C, at maintaining constant chromium and nickel values. An influence of the carbon content on the peritectic reaction stages constitutes the subject of studies. The calculations of the steel solidification pathways in the four-component system, of a constant chromium and nickel content of 18 % and 9 % – respectively and of various carbon content from 0,01 to 0,06 %, were performed. It was proved by means of the PANDAT program that the carbon concentration increases the Cr segregation and thereby changes the solidification path under actual conditions.

  7. Growth of carbon nanotubes and microfibers over stainless steel mesh by cracking of methane

    OpenAIRE

    Gao, L.Z.; Kiwi-Minsker, L.; Renken, A.

    2008-01-01

    The ${La}_{2}{NiO}_{4}$ film was synthesized on the 304 stainless steel (SS) mesh. The hydrogen reduction of La2NiO4 generated homogeneous nanocatalyst particles (probably ${Ni}/{La}_2{O}_{3}$) over which methane was cracked, producing carbon notubes/microfibers and hydrogen. The carbon nanotubes/microfibers were strongly bonded to the SS mesh. It was observed that the methane conversion always reached its maximum at the cracking temperature of 750 °C regardless of its concentration varying f...

  8. Effect of Carbon Content in Stainless Steels on Quantity of Grinding Energy

    Directory of Open Access Journals (Sweden)

    Wójcik R.

    2014-10-01

    Full Text Available The paper presents a study of the process of grinding stainless steels with different carbon contents. Verified the size and scope of the energy which is introduced in the surface layers for different types of abrasive grains and binders. The influence of parameters in plunge grinding process was considered in studies. The energy ratio was used for this purpose, which was calculated by multiplying energy and time of grinding wheel contact with the workpiece. To investigate influence of different carbon content on the level of energy density generated during grinding process special parameter Bp have been evaluated. The grinding tests were conducted in dry grinding technique.

  9. Microstructure, mechanical properties and corrosion behavior of laser welded dissimilar joints between ferritic stainless steel and carbon steel

    International Nuclear Information System (INIS)

    Highlights: • Laser welding of ferritic stainless steel to carbon steel joints was made. • The microstructure of this dissimilar joint is lath martensite and ferrite. • Decarburized layer and type II grain boundary was observed in joints. • The hardness distribution of two heat input joints across interface were analyzed. • Ecorr of dissimilar joint is between two base metals and joint has greatest icorr. - Abstract: The joint of dissimilar metals between ferritic stainless steel (FSS) and low carbon steel (CS) are welded by laser beam with two different welding speeds: 12 mm/s and 24 mm/s. Microstructure of dissimilar joint were investigated using optical microscope, X-ray diffraction and scanning electron microscope. The results show that the microstructure of this dissimilar joint is lath martensite and few ferrite, upper bainite and widmanstatten ferrite formed in heat-affected zone (HAZ) of CS. An increase of welding speed leads to narrower HAZ of CS and higher hardness of weld bead close to FSS side. The joints with different welding speed have similar ultimate tensile strength but superior elongation is obtained of high welding speed joint. Electrochemical corrosion test indicates the corrosion potential of dissimilar joint falls in between FSS and CS. And dissimilar joint has greatest corrosion current density which is attributed to the effect of galvanic corrosion

  10. Pyrolytic carbon-coated stainless steel felt as a high-performance anode for bioelectrochemical systems.

    Science.gov (United States)

    Guo, Kun; Hidalgo, Diana; Tommasi, Tonia; Rabaey, Korneel

    2016-07-01

    Scale up of bioelectrochemical systems (BESs) requires highly conductive, biocompatible and stable electrodes. Here we present pyrolytic carbon-coated stainless steel felt (C-SS felt) as a high-performance and scalable anode. The electrode is created by generating a carbon layer on stainless steel felt (SS felt) via a multi-step deposition process involving α-d-glucose impregnation, caramelization, and pyrolysis. Physicochemical characterizations of the surface elucidate that a thin (20±5μm) and homogenous layer of polycrystalline graphitic carbon was obtained on SS felt surface after modification. The carbon coating significantly increases the biocompatibility, enabling robust electroactive biofilm formation. The C-SS felt electrodes reach current densities (jmax) of 3.65±0.14mA/cm(2) within 7days of operation, which is 11 times higher than plain SS felt electrodes (0.30±0.04mA/cm(2)). The excellent biocompatibility, high specific surface area, high conductivity, good mechanical strength, and low cost make C-SS felt a promising electrode for BESs. PMID:27058401

  11. Corrugated stainless steels embedded in carbonated mortars with and without chlorides: 9-year corrosion results

    OpenAIRE

    Bautista, A.; Álvarez, S. M.; Paredes, E. C.; Velasco, F.; Guzmán, S.

    2015-01-01

    The corrosion behavior of 5 corrugated stainless steel bars was evaluated in carbonated mortars: UNS S20430, S30400, S31603, S31635 and S32205. The tests were carried out under 3 different exposure conditions: at high relative humidity (C-HRH); partially immersed in 3.5% NaCl (C-PD; and with CaCl2 added during mortar mixing and exposed to high relative humidity (C-HRHCl). Corrosion potential (Ecorr) measurements and electrochemical impedance spectroscopy (EIS) were used to monitor the behavio...

  12. Stress corrosion cracking tests for low carbon stainless steels with work hardened layer

    International Nuclear Information System (INIS)

    To avoid introduction of Cr depletion at grain boundaries by welding process, low carbon stainless steels (SSs) were used in corrosive environment as one of countermeasures for Stress Corrosion Cracking (SCC). Recently, it is reported that SCCs were introduced at portion with work hardened layer although low carbon SSs had been used at core shrouds and primary loop recirculation piping in Boiling Water Reactors. To simulate and examine the phenomenon, mechanical working, metallographic observation, hardness test and SCC tests in chloride solutions were conducted for low carbon SSs. From the results of metallographic observation and hardness test, it was confirmed that slip bands were observed around the surface and hardened layer was introduced by mechanical working. From the results of SCC tests, it was noticed that cracks which introduced from the surface, had grown into the matrix. It is thought that low carbon SSs with work hardened layer have susceptibility to SCC from the above. (author)

  13. Extended X-Ray Absorption Fine Structure Investigation of Carbon Stabilized Expanded Austenite and Carbides in Stainless Steel AISI 316

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny;

    2011-01-01

    Low temperature carburized AISI 316 stainless steel - carbon expanded austenite - was investigated with EXAFS and synchrotron diffraction together with synthesized carbides of the type M3C2, M7C3 and M23C6. It was found that the chemical environment of carbon expanded austenite is not associated...

  14. Stress and Composition of Carbon Stabilized Expanded Austenite on Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2009-01-01

    Low-temperature gaseous carburizing of stainless steel is associated with a colossal supersaturation of the fcc lattice with carbon, without the development of carbides. This article addresses the simultaneous determination of stress and composition profiles in layers of carbon xpanded austenite...... obtained by low-temperature gaseous carburizing of AISI 316. X-ray diffraction was applied for the determination of lattice spacing depth profiles by destructive depth profiling and reconstruction of the original lattice spacing profiles from the measured, diffracted intensity weighted, values. The...... compressive stress depth distributions correlate with the depth distribution of the strain-free lattice parameter, the latter being a measure for the depth distribution of carbon in expanded austenite. Elastically accommodated compressive stress values as high as -2.7 GPa were obtained, which exceeds the...

  15. Articles comprising ferritic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  16. Stainless steel for reinforcing bar concrete

    International Nuclear Information System (INIS)

    Where corrosion resisting reinforcing bar is required, stainless steel has been employed for many applications. The longest recorded use so far is over 75 years for a restoration project in the United Kingdom. Other areas are highway bridge decks, retaining walls, tunnels, pier and overpass structures all of which use stainless steel to prevent corrosion and extend structure life. Carbon steel rebar leads to premature failure via concrete spalling that results in excessive repair, high cost, traffic delay and commerce disruption. Selection of stainless steel is based on its corrosion resistance, strength and long life. Installed cost using stainless steel reinforcing barranges from one to fifteen percent depending on structure complexity. Life Cycle Cost calculations reveal when stainless steel reinforcing bar is factored into the design, with a life expectancy up to 125 years, the alloy is cost effective. Data will be exhibited relative to mechanical and physical properties of stainless steel compared to carbon steel rebar. Some stainless rebar applications around the World will be discussed in addition to laboratory and field test results with U-bent stainless steel specimens embedded in concrete. Comments will also be made relative to the environment, lengthened journeys, delivery delay, fuel burned as vehicles sit at idle, drilling, blasting, crushing and transport of aggregate, cement and the attendant power units to manufacture these items for reconstruction. (author)

  17. Accelerated corrosion of stainless steels with the presence of molten carbonates below 923 K

    International Nuclear Information System (INIS)

    The high-temperature corrosion of stainless steels (SUS316L and SUS310S) in the presence of lithium-potassium eutectic carbonate and lithium-sodium eutectic carbonate has been studied by thermogravimetry and the metal consumption method under a carbon dioxide-oxygen atmosphere in the temperature range of 773-1123 K. Although the corrosion of SUS310S obeyed the parabolic rate law for all reaction conditions, the corrosion of SUS316L significantly depended on the reaction conditions. At or above 923 K, the corrosion of SUS316L obeyed the parabolic rate law, even with a carbonate coating. The corrosion rates were accelerated during the initial period of corrosion tests below 923 K, especially around 823 K with a lithium-sodium carbonates coating. The initial accelerated corrosion was a local corrosion, which produced through holes in the metal specimens, and occurred more clearly at higher carbon dioxide partial pressures with the lithium-sodium carbonate coating than with the lithium-potassium carbonate coating. (author)

  18. Secondary electron yields of carbon-coated and polished stainless steel

    International Nuclear Information System (INIS)

    To increase the power throughput to a plasma of an existing lower hybrid waveguide, secondary electron production on the walls and subsequent electron multiplication must be reduced. Since carbon has a low secondary electron coefficient (delta), measurements were performed for several uhv compatible carbon coatings (Aquadag, vacuum pyrolized Glyptal, and lamp black deposited by electrophoresis) as a function of primary beam voltage (35 eV to 10 keV), surface roughness (60 through 600 grit mechanical polishing and electropolishing), coating thickness, and angle of incidence (theta). Also measured were uncoated stainless steel, Mo, Cu, Ti, TiC, C as soot and ATJ graphite. The yields were obtained by varying the sample bias and measuring the collected current while the samples were in the electron beam of a scanning Auger microprobe. This technique allows delta measurements of Auger characterized surfaces with less than or equal to .3 mm spatial resolution

  19. Refractories for the direct production of low carbon stainless steel with niobium and molybdenum using the double slag technique

    International Nuclear Information System (INIS)

    The direct production of low carbon stainless steel with molybdenum and niobium was studied. Several basic crucibles with different compositions were analyzed to determine their resistance to wearing. The stainless steel was produced in an induction furnace from 1010 steel. The carbon content of the steel was lowered with briquettes containing iron oxide (scales) and lime introduced to the crucible. The first slag was removed and replaced by a second one formed only by pellets of lime; this second slag was removed before the addition of nickel and ferroalloys in the same crucible. The experimental results showed that the best resistance to wearing of the crucible was obtained with a mixture of 80% MAGNARMIX 363 and 20% Harmix Fe. (Author)

  20. Microhardness tests of stainless steel 52100 implanted with nitrogen and carbon dioxide

    CERN Document Server

    Mardanian, M; Taheri, Z

    2003-01-01

    In this research work, samples of stainless steel 52100 disks were implanted with nitrogen and carbon dioxide ions at the energy of 90 keV. Microhardness measurement were performed to determine the hardness of the surface. The N-2 sup + implanted steels at the doses of 1x10 sup 1 8 ions cm sup sub 2 gave the highest hardness of 49.70%, while for the CO sub 2 sup + ions implantation, the hardness of 17% and 5% were obtained at the doses of 3x10 sup 1 8 and 1x10 sup 1 9 ions cm sup - 2, respectively. To support the interpretation of our microhardness results the implanted surface were analyzed by the use of XRD method. Our results indicated that the hardness of the N sub 2 sup + implanted samples are due to formation of beta-Cr N phase in the surface layer, while in the CO sub 2 + implanted samples no observation of carbon as graphite or carbide was made. In addition, the absence of any hump in the XRD spectrum indicating that carbon is not in the amorphous phase either.

  1. Bonding Mechanisms in Resistance Microwelding of 316 Low-Carbon Vacuum Melted Stainless Steel Wires

    Science.gov (United States)

    Khan, M. I.; Kim, J. M.; Kuntz, M. L.; Zhou, Y.

    2009-04-01

    Resistance microwelding (RMW) is an important joining process used in the fabrication of miniature instruments, such as electrical and medical devices. The excellent corrosion resistance of 316 low-carbon vacuum melted (LVM) stainless steel (SS) wire makes it ideal for biomedical applications. The current study examines the microstructure and mechanical properties of crossed resistance microwelded 316LVM wire. Microtensile and microhardness testing was used to analyze the mechanical performance of welds, and fracture surfaces were examined using scanning electron microscopy. Finally, a bonding mechanism is proposed based on optimum joint breaking force (JBF) using metallurgical observations of weld cross sections. Moreover, comparisons with RMWs of Ni, Au-plated Ni, and SUS304 SS wire are discussed.

  2. Nanoscopic strength analysis of work-hardened low carbon austenitic stainless steel, 316SS

    International Nuclear Information System (INIS)

    Stress corrosion cracking (SCC) occurs in shrouds and piping of low carbon austenitic stainless steels at nuclear power plants. A work-hardened layer, where the transgranular SCC initiates, is considered to be one of the probable cause for this occurrence. In order to clarify the microstructural characteristics of work-hardened layer at the surface of shrouds or piping, the strengthen analysis of low carbon austenitic stainless steel, 316SS, rolled at the reduction in area, RA, of 10, 20, 30, 40 and 50% at room temperature were conducted on a nanoscopic scale, using an ultra-microhardness tester, TEM and SEM. TEM and SEM observation showed that the microstructural parameters are the dislocation cell size, dcel, coarse slip spacing, lcsl, and austenitic grain size, dγ. Referring 10dcel and 10lcsl, Vickers hardness, HV, corresponding to macro strength was expressed as Hυ=Hυ*bas + Hυ*sol + Hυ*dis + Hυ*cel + Hυ*csl. Hυ*bas (=100) is the base hardness, Hυ*sol is the solid solution strengthening hardness, Hυ*dis is the dislocation strengthening hardness in the dislocation cell, and Hυ*cel and Hυ*csl are the fine grain strengthening hardness due to the dislocation cell and coarse slip. Hυ*sol was about 50, independently of RA. Hυ*dis was zero at RA 30%. Hυ*cel and Hυ*csl increased with increasing in RA and were kept constant at about 50 and 120 at RA=20 and 30%, respectively. It was suggested from these results that all dislocations introduced by rolling might be dissipated for the creation of dislocation cells and coarse slips at RA 30%. (author)

  3. The effect of surface pretreatment on the growth of carbon onto stainless steel from the decomposition of propane

    International Nuclear Information System (INIS)

    A previous study on the decomposition of propane over nickel at 973 K has demonstrated that the formation of carbon deposits occurs, not from the cracking of propane, but from the cracking of unsaturated hydrocarbon products of its decomposition. These deposits were also found to be mainly filamentous in nature. These experiments have now been extended to include studies of the propane-stainless steel system, with particular reference to the effects of pretreating the steel with oxygen and carbon dioxide (upon the extent of carbon deposition). (author)

  4. Detection of Signals of Mock-up Pipes of Carbon Steel and Stainless Steel using Guided Ultrasonic Waves due to Magnetostrictive Sensors

    International Nuclear Information System (INIS)

    A piping mock-up with a diameter of 6 inch and schedule number 80 of carbon steel and stainless steel were fabricated. The signals of weldments of these pipes were detected with a torsional vibration mode of frequency of 32 kHz using sensors, such as a pure Ni or a 49Fe-49Co-2V alloy strip. The signals from the 49Fe-49Co-2V alloy strip sensor were more detectable than those from the Ni strip sensor. The signals of 49Fe-49Co-2V alloy strip sensor of tile stainless steel piping mock-up were more detectable than those of 49Fe-49Co-2V alloy strip sensor of the carbon steel piping mock-up.

  5. Effect of alloying elements on the electronic properties of thin passive films formed on carbon steel, ferritic and austenitic stainless steels in a highly concentrated LiBr solution

    International Nuclear Information System (INIS)

    The influence of alloying elements on the electrochemical and semiconducting properties of thin passive films formed on several steels (carbon steel, ferritic and austenitic stainless steels) has been studied in a highly concentrated lithium bromide (LiBr) solution at 25 °C, by means of potentiodynamic tests and Mott–Schottky analysis. The addition of Cr to carbon steel promoted the formation of a p-type semiconducting region in the passive film. A high Ni content modified the electronic behaviour of highly alloyed austenitic stainless steels. Mo did not modify the electronic structure of the passive films, but reduced the concentration of defects. - Highlights: • The addition of Cr to carbon steel promotes p-type semiconductivity. • Passive films formed on stainless steels are made up of complex spinel oxides. • Ni modifies the electronic behaviour of highly alloyed austenitic stainless steels

  6. Decontamination and decarburization of stainless and carbon steel by melt refining

    International Nuclear Information System (INIS)

    With many nuclear reactors and facilities being decommissioned in the next ten to twenty years the concern for handling and storing Radioactive Scrap Metal (RSM) is growing. Upon direction of the DOE Office of Environmental Restoration and Waste Management, Lockheed Idaho Technology Company (LITCO) is developing technologies for the conditioning of spent fuels and high-level wastes for interim storage and repository acceptance, including the recycling of Radioactive Scrap Metals (RSM) for beneficial reuse with the DOE complex. In February 1993, Montana Tech of the University of Montana was contracted to develop and demonstrate technologies for the decontamination of stainless steel RSM. The general objectives of the Montana Tech research program included conducting a literature survey, performing laboratory scale melt refining experiments to optimize decontaminating slag compositions, performing an analysis of preferred melting techniques, coordinating pilot scale and commercial scale demonstrations, and producing sufficient quantities of surrogate-containing material for all of the laboratory, pilot and commercial scale test programs. Later on, the program was expanded to include decontamination of carbon steel RSM. Each research program has been completed, and results are presented in this report

  7. Influences of Spray Parameters on the Structure and Corrosion Resistance of Stainless Steel Layers Coated on Carbon Steel by Plasma Spray Treatment

    International Nuclear Information System (INIS)

    Stainless steel powders were sprayed on the grit-blasted SM45C carbon steel substrates using a plasma spray method. The influences of the spray parameters on the structure and corrosion resistance of the layers coated on the carbon steel were investigated. Corrosion behavior of the layers were analyzed by the anodic polarization tests in deaerated 0.1 M NaCl + 0.01 M NaOH solution at 80 .deg. C. The surface roughness and porosity were observed to decrease with decreasing the particle size. The surface hardness of the coating was always higher than that of the matrix, SM45C, implying that the higher resistance of the coating to erosion-corrosion than that of matrix, and increased as the spray power and the spray distance increase. Stainless steel coats showed more corrosion resistance than the carbon steel did, due to their passivity. The corrosion resistance of the coats, however, were inferior to that of the bulk stainless steels due to the inherent defects formed in the coats. The defects such as rough surface and pores provided the occluded sites favorable for the initiation of localized corrosion, resulting in the conclusion that finer the powder is, higher the corrosion resistance is. And the Cr oxides formation resulting in Cr depletion around the oxides reduced the corrosion resistance of the coats

  8. A Preliminary Model for the Carburization of Stainless Steel at High Temperatures in Sodium Containing Carbon at Unit Activity

    International Nuclear Information System (INIS)

    The problem of mass transport of carbon due to carbon activity gradients in sodium systems where part of the circuit is constructed in stainless steel and part in ferritic steel is one of practical importance. The use of low-alloy steels in the evaporator section of secondary circuits is attractive from the cost point of view, and should give freedom from worry on stress corrosion phenomena on the water side. Loss of carbon from an unstabilized low -alloy steel would, however, modify its mechanical properties, and lead to carburization of high-temperature austenitic components of the circuit, again with possibly adverse effects on mechanical properties. No satisfactory model of the kinetics of carburization of stainless steel exists, and this paper is a preliminary attempt to provide one. It is assumed that at the surface of the specimen exposed to sodium the equilibrium level of carbon will be set by the carbon activity of the external medium, and that there will be a carbon activity gradient extending inwards to the as yet unaffected matrix, with the growth of the thickness of the carburizing zone being controlled by the diffusion of carbon down the activity gradient. Within this zone, chromium-rich carbide will tend to precipitate to bring the local level of dissolved chromium into equilibrium with the local carbon activity, as required by the composition of the carbide, and the law of mass action. A simple diffusion model is set up on this basis and, with the aid of experimental data on carbon pick-up, values for the diffusion coefficient of carbon are calculated which are in reasonable agreement with extrapolated values for carbon diffusion in chromium-free austenite. Earlier models have tacitly assumed homogeneous carbon diffusion through the affected layer and this is believed to be incorrect for reasons that are stated. (author)

  9. Active brazing of carbon fiber reinforced SiC composite and 304 stainless steel with Ti–Zr–Be

    International Nuclear Information System (INIS)

    Carbon fiber reinforced SiC (Cf/SiC) was successfully joined to 304 stainless steel with Ti–Zr–Be filler metal by vacuum brazing. The interfacial microstructure was investigated by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), auger electron energy spectroscopy (AES) and X-diffraction (XRD). The mechanical properties of the brazed joints were measured by a mechanical testing machine. The results show that Ti and Zr elements in the interlayer can react with the brazed materials, the brazed joint mainly consists of Ti5Si3, TiSi, TiBe, TiFe and Zr(s,s) reaction products. The 304 stainless steel constantly dissolved and Ti, Be diffused into 304 stainless steel, which formed the diffusion layers between interlayer and 304 stainless steel. Ti and Be elements have an effect on promoting the formation of α-Fe layer. The maximum shear strength of 109.13±2.55 MPa is obtained at 950 °C with 60 min holding time

  10. Fatigue crack growth rate studies on pipes and pipe welds made of austenitic stainless steel and carbon steel

    International Nuclear Information System (INIS)

    The objective of the present study is to understand the fatigue crack growth behavior in austenitic stainless steel and carbon steel pipes and pipe welds by carrying out analysis/predictions and experiments. The Paris law has been used for the prediction of fatigue crack growth life. To carry out the analysis, Paris constants have been determined for pipe (base) and pipe weld materials by using Compact Tension (CT)/Three Point Bend (TPB) specimens machined from the actual pipe/pipe weld. Analyses have been carried out to predict the fatigue crack growth life of pipes/pipe welds having part through cracks on the outer surface. In the analyses, Stress Intensity Factors (K) have been evaluated through two different schemes. The first scheme considers the 'K' evaluations at two points of the crack front i.e. maximum crack depth and crack tip at the outer surface. The second scheme accounts for the area averaged root mean square stress intensity factor (KRMS) at deepest and surface points. In order to validate the analytical procedure/results, experiments have been carried out on full scale pipe and pipe welds with part through circumferential crack. Fatigue crack growth life evaluated using both schemes have been compared with experimental results. Use of stress intensity factor (KRMS) evaluated using second scheme gives better fatigue crack growth life prediction compared to that of first scheme. (author)

  11. Effect of reactor temperature on direct growth of carbon nanomaterials on stainless steel

    Science.gov (United States)

    Edzatty, A. N.; Syazwan, S. M.; Norzilah, A. H.; Jamaludin, S. B.

    2016-07-01

    Currently, carbon nanomaterials (CNMs) are widely used for various applications due to their extraordinary electrical, thermal and mechanical properties. In this work, CNMs were directly grown on the stainless steel (SS316) via chemical vapor deposition (CVD). Acetone was used as a carbon source and argon was used as carrier gas, to transport the acetone vapor into the reactor when the reaction occurred. Different reactor temperature such as 700, 750, 800, 850 and 900 °C were used to study their effect on CNMs growth. The growth time and argon flow rate were fixed at 30 minutes and 200 ml/min, respectively. Characterization of the morphology of the SS316 surface after CNMs growth using Scanning Electron Microscopy (SEM) showed that the diameter of grown-CNMs increased with the reactor temperature. Energy Dispersive X-ray (EDX) was used to analyze the chemical composition of the SS316 before and after CNMs growth, where the results showed that reduction of catalyst elements such as iron (Fe) and nickel (Ni) at high temperature (700 - 900 °C). Atomic Force Microscopy (AFM) analysis showed that the nano-sized hills were in the range from 21 to 80 nm. The best reactor temperature to produce CNMs was at 800 °C.

  12. A proposal to alloy design for low activation high manganese austenitic stainless steel - role of carbon and nitrogen

    International Nuclear Information System (INIS)

    The role of carbon and nitrogen in high Mn-Cr-Fe base alloy has been investigated in order to propose a favorable starting composition for a low activation austenitic stainless steel. The base composition of Fe-12% Cr-15% Mn was selected by the results of our previous study, because of prevention of δ ferrite formation and retardation of σ phase. The combined addition of carbon and nitrogen is very beneficial in making a stable γ phase, preventing σ phase formation and increasing high-temperature strength at around 875 K. Cold work of 20% is also very useful in increasing creep rupture strength because of finely dispersed precipitation of carbide during creep. From the consideration of these results, an alloy system of Fe-12% Cr-15% Mn-0.2% C-0.2% N has been designed as one of the preferable primary low activation austenitic stainless steel. (orig.)

  13. Chloride induced localized corrosion in simulated concrete pore solution: effect of a phosphate-based inhibitor on the behavior of 304L stainless steel compared to carbon steel

    International Nuclear Information System (INIS)

    In this paper, the acoustic emission technique coupled with electrochemical measurements was used to determine, in simulated concrete pore solution (Ca(OH)2), the critical value [Cl-] / [OH-], which prevents the pitting corrosion initiation of AISI 304L austenitic stainless steel, and to compare this critical value with that of the carbon steel in the same medium with and without inhibitor Na3PO4. The results show that for the austenitic stainless steel, the critical threshold of pitting corrosion initiation is around 5, while for carbon steel without inhibitor in Ca(OH)2 solution, it has a low value of about 0.6. However, the presence of the inhibitor Na3PO4 in this solution leads to the formation of a protective phosphate layer on the steel surface, increasing the critical ratio [Cl-] / [OH-] from 0.6 to 15. Under these conditions, the corrosion behavior of carbon steel is improved and, thanks to the blocking of pitting sites by the Na3PO4 inhibitor, it becomes much more resistant to localized corrosion than AISI 304L austenitic steel. (authors)

  14. Carbon diffusion and phase transformations during gas carburizing of high-alloyed stainless steels: Experimental study and theoretical modeling

    Science.gov (United States)

    Turpin, T.; Dulcy, J.; Gantois, M.

    2005-10-01

    Gas carburizing of high-alloyed stainless steels increases surface hardness, as well as the overall mechanical characteristics of the surface. The growth of chromium-rich carbides during carbon transfer into the steel causes precipitation hardening in the surface, but decreases the chromium content in solid solution. In order to maintain a good corrosion resistance in the carburized layer, the stainless steel composition and the carburizing process need to be optimized. To limit the experimental work, a methodology using software for modeling the thermodynamic and kinetic properties in order to simulate carbon diffusion and phase transformations during gas carburizing is presented. Thermodynamic calculations are initially used to find the optimum parameters ( T, carbon wt pct, etc.) in order to maintain the highest Cr and Mo contents in the austenitic solid solution. In a second step, kinetic calculations using the diffusion-controlled transformations (DICTRA) software are used to predict how the amount of the different phases varies and how the carbon profile in the steel changes as a function of time during the process. Experimental carbon profiles were determined using a wavelength-dispersive spectrometer for electron-probe microanalysis (WDS-EPMA), while carbide compositions were measured by energy-dispersive spectroscopy_X (EDS_X) analyses. A good agreement between calculated and experimental values was observed for the Fe-13Cr-5Co-3Ni-2Mo-0.07C and the Fe-12Cr-2Ni-2Mo-0.12C (wt pct) martensitic stainless steels at 955 °C and 980 °C.

  15. Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study.

    Science.gov (United States)

    Rezaei, Farshid; Hassani, Kamran; Solhjoei, Nosratollah; Karimi, Alireza

    2015-12-01

    Total hip replacement (THR) has been ranked within the most typical surgical processes in the world. The durability of the prosthesis and loosening of prosthesis are the main concerns that mostly reported after THR surgeries. In THR, the femoral prosthesis can be fixed by either cement or cementless methods in the patient's bones. In both procedures, the stability of the prosthesis in the hosted bone has a key asset in its long-term durability and performance. This study aimed to execute a comparative finite element simulation to assess the load transfer between the prosthesis, which is made of carbon/PEEK composite and stainless steel/titanium, and the femur bone. The mechanical behavior of the cortical bone was assumed as a linear transverse isotropic while the spongy bone was modeled like a linear isotropic material. The implants were made of stainless steel (316L) and titanium alloy as they are common materials for implants. The results showed that the carbon/PEEK composites provide a flatter load transfer from the upper body to the leg compared to the stainless steel/titanium prosthesis. Furthermore, the results showed that the von Mises stress, principal stress, and the strain in the carbon/PEEK composites prosthesis were significantly lower than that made of the stainless steel/titanium. The results also imply that the carbon/PEEK composites can be applied to introduce a new optimum design for femoral prosthesis with adjustable stiffness, which can decrease the stress shielding and interface stress. These findings will help clinicians and biomedical experts to increase their knowledge about the hip replacement. PMID:26462678

  16. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr-Ni stainless steel

    International Nuclear Information System (INIS)

    Research highlights: → Hot-rolled ultra low carbon martensite is characterized by dislocation cells substructure. → The formation of dislocation cells is attributed to high Ms and low interstitial atoms content. → Hot-rolled ultra low carbon 12Cr-Ni stainless steel has excellent impact toughness. → Delta ferrite deteriorates the impact toughness of hot-rolled 12Cr-Ni stainless steel. - Abstract: 12Cr-Ni stainless steels containing different carbon contents from 0.004 wt.% to 0.034 wt.% were hot-rolled and air-cooled. Their corresponding microstructures were observed with optical microscope and transmission electron microscope, and the Vickers hardness, tensile and impact tests were also carried out. It was found that the martensitic morphology was significantly influenced by carbon content. The as-received ultra low carbon martensite in the steel containing 0.004 wt.% C is characterized by dislocation cells substructure. The formation of dislocation cells is attributed to high martensite finishing point (above 400 deg. C) and low interstitial atoms content. On the other hand, the martensite in the steel containing 0.034 wt.% C consists mainly of typical martensite laths because of low martensite finishing point and high interstitial atoms content which hinder dislocation motion. Furthermore, carbon content has an evident effect on the mechanical properties of 12Cr-Ni steels. The hardness and strength of the as-received steels increase with an increase in carbon content, but their elongation and impact toughness decrease with the carbon content. The steel containing 0.004 wt.% C has excellent impact toughness due to the ultra low carbon content in the martensite composed of dislocation cells.

  17. Advances in the research of nitrogen containing stainless steels

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The current status of nitrogen containing stainless steels at home and aboard has been introduced. The function and existing forms of nitrogen in the stainless steels, influence of nitrogen on mechanical properties and anti-corrosion properties as well as the application of nitrogen containing cast stainless steels were discussed in this paper. It is clear that nitrogen will be a potential and important alloying element in stainless steels. And Argon Oxygen Decarbonization (AOD) refining can provide an advanced manufacture process for nitrogen containing stainless steels with ultra-low- carbon and high cleanliness.

  18. Advances in the research of nitrogen containing stainless steels

    Directory of Open Access Journals (Sweden)

    Zhongqiu ZHANG

    2004-08-01

    Full Text Available The current status of nitrogen containing stainless steels at home and abroad has been introduced. The function and existing forms of nitrogen in stainless steels, influence of nitrogen on mechanical properties and anti-corrosion properties as well as the application of the nitrogen containing stainless steels were discussed in this paper. It is clear that nitrogen will be a potential and important alloying element in stainless steels. And Argon Oxygen Decarbonization (AOD refining can provide an advanced manufacture process for nitrogen containing stainless steels with ultra-low carbon and high cleaniness.

  19. Effects of silicon, molybdenum, and nitrogen on elevated temperature properties of low carbon austenitic stainless steels

    International Nuclear Information System (INIS)

    To improve the high temperature mechanical properties of low carbon medium nitrogen type 316 stainless steels (316FR) the effect of Si addition on high temperature properties was investigated in relation to Mo and N which are the strengthening elements of 316FR. Tensile and creep rupture tests at 550degC and aging test at 550, 600, and 650degC were conducted. The microstructures of ruptured specimens and aged ones were examined with an electron microscope and extracted residues analysis. The addition of 3 mass% Si, 2% Mo, and 0.08% N increased both tensile strength and elongation. Creep rupture strength was slightly increased by the addition of Si with or without Mo and N, while the addition of Mo or N remarkably increased rupture strength. Although rupture elongation increased by the addition of Si to a base alloy and a MO containing one, it did not changed with Si in case of a Mo and N containing alloy. The addition of Si to base alloy caused precipitation of G phase on grain boundaries, while in case of a Mo containing alloys Si remarkably accelerated precipitation of G phase on grain boundaries and Laves phase in matrix. (author)

  20. Stainless steels low temperature nitriding

    International Nuclear Information System (INIS)

    Nitrogen ions implantation of 316L stainless steel leads to monophasic diffusion layers, which are constituted of a solid solution (γN) fcc, metastable, nitrogen sur-saturated, and without order. This article shows that for 316L stainless steels,these layers improve the tribological properties without degradation of the corrosion resistance. (A.B.). 13 refs. 6 figs

  1. Hydrogen peroxide sensor based on a stainless steel electrode coated with multi-walled carbon nanotubes modified with magnetite nanoparticles

    International Nuclear Information System (INIS)

    Multi-walled carbon nanotubes (MWCNTs) were decorated with magnetite (Fe3O4) nanoparticles and then used to modify a stainless steel electrode. The Fe3O4/MWCNTs composite was characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction patterns. Electrochemical properties of the modified electrode revealed a substantial catalytic activity for the reduction of hydrogen peroxide. The relationship between peak current and the concentration of hydrogen peroxide was linear in the range from 0.06 mmol L-1 to 0.36 mmol L-1, and the lowest detectable concentration is 0.01 mmol.L-1 (S/N=3). The modified stainless steel electrode displays excellent stability. (author)

  2. The a.c. response of lithium, stainless steel, and porous carbon electrodes in thionyl chloride solutions

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    Impedance measurements on Li electrodes in SOCl2 electrolytes indicate that the structure of the passivating surface layer formed in 1.8M LiAlCl4 differs from that formed in 1.8M AlCl3, 1.2M LiCl, 0.6M SO2. Also, porous carbon electrodes are found to behave differently in these two electrolytes....... Unpolarised stainless steel electrodes show a 67° constant phase angle impedance over a wide frequency range whereas polarised to O mV vs. Li the impedance diagram is very similar to that of Li. Finally, it is found that passivation may develop differently for Li pressed onto stainless steel from that of Li...

  3. Investigation on carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water

    Energy Technology Data Exchange (ETDEWEB)

    Mu, L.J. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)], E-mail: mulijunxjtu@126.com; Zhao, W.Z. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-01-15

    The carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water is studied by potentiodynamic curve and electrochemical impedance spectroscopy (EIS); the micro-structure and composition of the corrosion scale formed at high-temperature and high-pressure are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that 13Cr stainless steel is in passive state in the stratum water, the passive current density increases and the passive potential region decreases with increasing temperature. The corrosion scale formed at high-temperature and high-pressure is mainly composed of iron/chromium oxides and a little amount of FeCO{sub 3}.

  4. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates

    Institute of Scientific and Technical Information of China (English)

    Ming Liu; Hong-feng Xu; Jie Fu; Ying Tian

    2016-01-01

    Ni–Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was depositedin situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L−1 H2SO4 solution containing 5 ppm F− at 80°C was inves-tigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.

  5. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates

    Science.gov (United States)

    Liu, Ming; Xu, Hong-feng; Fu, Jie; Tian, Ying

    2016-07-01

    Ni-Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L-1 H2SO4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.

  6. CASE-HARDENING OF STAINLESS STEEL

    DEFF Research Database (Denmark)

    2004-01-01

    The invention relates to case-hardening of a stainless steel article by means of gas including carbon and/or nitrogen, whereby carbon and/or nitrogen atoms diffuse through the surface into the article. The method includes activating the surface of the article, applying a top layer on the activated...

  7. Stainless steel recycle FY94 progress report

    International Nuclear Information System (INIS)

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft3) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program

  8. Stainless Steel Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Karnesky, Richard A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  9. Stainless steel display evaluation

    Science.gov (United States)

    Hopper, Darrel G.; Meyer, Frederick M.; Longo, Sam J.; Trissell, Terry L.

    2007-04-01

    Active matrix organic light emitting diode (AMOLED) technology is one candidate to become a low power alternative in some applications to the currently dominant, active matrix liquid crystal display (AMLCD), technology. Furthermore, fabrication of the AMOLED on stainless steel (SS) foil rather than the traditional glass substrate, while presenting a set of severe technical challenges, opens up the potential for displays that are both lighter and less breakable. Also, transition to an SS foil substrate may enable rollable displays - large when used but small for stowage within gear already worn or carried or installed. Research has been initiated on AMOLED/SS technology and the first 320 x 240 color pixel 4-in. demonstration device has been evaluated in the AFRL Display Test and Evaluation Laboratory. Results of this evaluation are reported along with a research roadmap.

  10. Comparison of ammonia, morpholine and ethanolamine as conditioning agent on the formation and deposition of iron oxides on stainless steel and carbon steel in conditions of PWR secondary circuits

    International Nuclear Information System (INIS)

    An experimental circulating water loop was built to follow the formation, the transport and the deposition of iron oxides in the feedwater system of the secondary circuit of PWR plants. The test section operated at high temperature (up to 250oC) is made in carbon steel steel and includes three removable segments for characterization, one of which is in stainless steel for comparison, while all the other parts of the loop are made in stainless steel. Tests were performed from 18 to 101 days in one-phase flow conditions at 150 L.h-1 with a linear velocity between 0.92 m/s and 1.1 m/s at 220oC in ammonia/hydrazine, morpholine/hydrazine and ethanolamine/hydrazine media. The obtained results confirm the formation of iron oxide on carbon steel and stainless steel surface in the conditions of PWR secondary circuits. The surface characterizations show that magnetite is the corrosion product formed on carbon steel and stainless steel at 220oC and goethite is formed at room temperature on stainless steel. At high temperature, on carbon steel, the deposit is thicker in the ammonia medium than in the ethanolamine and morpholine medium. (author)

  11. Elevated temperature material properties of stainless steel reinforcing

    OpenAIRE

    Gardner, L.; Bu, Y; Francis, P; Baddoo, NR; Cashell, K; McCann, F

    2016-01-01

    Corrosion of carbon steel reinforcing bar can lead to deterioration of concrete structures, especially in regions where road salt is heavily used or in areas close to sea water. Although stainless steel reinforcing bar costs more than carbon steel, its selective use for high risk elements is cost-effective when the whole life costs of the structure are taken into account. Considerations for specifying stainless steel reinforcing bars and a review of applications are presented herein. Atten...

  12. Progress and teachings of stress corrosion cracking of low-carbon stainless steels used in BWR NPP (4)

    International Nuclear Information System (INIS)

    In the structural integrity evaluations of low-carbon stainless- or austenitic steel- made shrouds and primary loop recirculation (PLR) pipes used in Boiling Water Reactor Nuclear Power Plants, the stress corrosion crack propagation rates (crack depth) near shroud and near PLR pipe weld joints are assessed from the welding residual stress distribution obtained by the finite element method and by mockup testing, respectively. The structural integrity is evaluated by the plastic and the elastic-plastic fracture mechanics evaluation methods, respectively. (K. Kato)

  13. Chromium-Makes stainless steel stainless

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  14. Overlay welding irradiated stainless steel

    International Nuclear Information System (INIS)

    An overlay technique developed for welding irradiated stainless steel may be important for repair or modification of fusion reactor materials. Helium, present due to n,α reactions, is known to cause cracking using conventional welding methods. Stainless steel impregnated with 3 to 220 appm helium by decay of tritium was used to develop a welding process that could be used for repair. The result was a gas metal arc weld overlay technique with low-heat input and low-penetration into the helium-containing material. Extensive metallurgical and mechanical testing of this technique demonstrated substantial reduction of helium embrittlement damage. The overlay technique was applied to irradiated 304 stainless steel containing 10 appm helium. Surface cracking, present in conventional welds made on the same steel at lower helium concentrations, was eliminated. Underbead cracking, although greater than for tritium charged and aged material, was minimal compared to conventional welding methods

  15. The microstructure of type 304 stainless steel implanted with titanium and carbon and its relation to friction and wear tests

    International Nuclear Information System (INIS)

    The authors have used transmission electron microscopy to examine the microstructure of type 304 stainless steel which was ion implanted with high doses (2 X 1017 atoms cm-2) of titanium and carbon. It is found that the resulting surface alloy is an amorphous phase similar to that observed when pure iron is identically implanted. This result is important for identifying the mechanisms by which the coefficient of friction and the wear depth are reduced in unlubricated pin-on-disc tests of type 304 stainless steel implanted with titanium and carbon. The effect of temperature on the amorphous alloy during annealing in the microscope has also been examined. It is found that devitrification begins after 15 min at 5000C and that the alloy fully crystallizes into f.c.c., b.c.c. and TiC phases after 15 min at 6500C. A comparison of mechanical test results from devitrified specimens with results from amorphous specimens demonstrates that the reduction in the coefficient of friction correlates with the presence of the amorphous layer, whereas the reduction in the wear depth is obtained for both amorphous and crystalline alloys. (Auth.)

  16. Strip casting of stainless steels

    OpenAIRE

    Raabe, D.

    1997-01-01

    FLAT PRODUCTS OF STAINLESS STEELS ARE CONVENTIONALLY MANUFACTURED BY CONTINUOUS CASTING, HOT ROLLING, HOT BAND ANNEALING, PICKLING, COLD ROLLING AND RECRYSTALLISATION. IN THE LAST YEARS STRIP CASTING HAS INCREASINGLY ATTRACTED ATTENTION. IT OFFERS THREE IMPROVEMENTS IN COMPARISON TO THE CONVENTIONAL METHOD.1.) IT ALLOWS TO CAST STEEL SHEETS WITH THE SAME THICKNESS AND WIDTH AS THOSE PRODUCED BY HOT ROLLING. THIS MEANS THAT THE HOT ROLLING PROCESSIS BYPASSED. 2.) THE STRIP CAST STEEL REVEALS A...

  17. Effects of silicon, carbon and molybdenum additions on IASCC of neutron irradiated austenitic stainless steels

    Science.gov (United States)

    Nakano, J.; Miwa, Y.; Kohya, T.; Tsukada, T.

    2004-08-01

    To study the effects of minor elements on irradiation assisted stress corrosion cracking (IASCC), high purity type 304 and 316 stainless steels (SSs) were fabricated and minor elements, Si or C were added. After neutron irradiation to 3.5 × 10 25 n/m 2 ( E>1 MeV), slow strain rate tests (SSRTs) of irradiated specimens were conducted in oxygenated high purity water at 561 K. Specimen fractured surfaces were examined using a scanning electron microscope (SEM) after the SSRTs. The fraction of intergranular stress corrosion cracking (IGSCC) on the fractured surface after the SSRTs increased with neutron fluence. In high purity SS with added C, the fraction of IGSCC was the smallest in the all SSs, although irradiation hardening level was the largest of all the SSs. Addition of C suppressed the susceptibility to IGSCC.

  18. Numerical modelling of the behaviour of a stainless steel portal frame subjected to fire

    OpenAIRE

    Lopes, N.; Vila Real, P. M. M.; Piloto, P.A.G.; Mesquita, L.M.R.; Silva, L. S

    2006-01-01

    It is known that stainless steel has a better fire performance than carbon steel, which can lead to a growing utilization of this kind of steel in structures. In fact, although more expensive than the carbon steel, structures in stainless steel can be competitive because of its smaller thermal protection need. With the purpose of modelling by Finite Element Method the behaviour of a stainless steel framed structure, without any protection, submitted to fire, has been introduced...

  19. Plating on stainless steel alloys

    International Nuclear Information System (INIS)

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate

  20. Fatigue fracture analysis in medium carbon structural steel and austenitic stainless steel by X-ray fractography

    International Nuclear Information System (INIS)

    Apart from the reidual stresses present in the bulk material, a growing fatigue crack may develop its own stress field ahead of the crack tip which in turn could influence the crack propagation behaviour. A fracture surface analysis through measurement of the residual stress of a failed component may provide some additional useful information to that obtained through conventional metallurgical and fracture mechanics investigations. This method of fracture surface analysis using x-ray diffraction technique is known as X-ray Fractography. Residual stress (ρ sub γ) and the full width at half maximum (FWHM) of the x-ray diffraction profile of any reflection are determined at different crack lengths on the fracture surface. These are then corelated to the fracture toughness parameters such as fracture toughness K sub I sub C, the maximum stress intensity factor K sub max and the stress intensity factor range δK. The present investigation aims at detailed x-ray analysis of the fatigue fractured surfaces of the compact tension specimens prepared from ferritic and austenitic stainless steels. The ferritic steel has been subjected to various heat treatments to obtain different microstructures and mechanical properties. The overall observations are analyzed through fatigue (cumulative) damage and material science concepts

  1. C-O relations of the extremely low carbon austenitic stainless steels and nickel base high alloys in vacuum induction melting

    International Nuclear Information System (INIS)

    It is well known that in vacuum-melted austenitic stainless steel and nickel base alloy, the impurities of minute amounts affect adversely the corrosion resistance and high temperature strength. Therefore the materials of high quality, such as those in extremely low carbon range below 0.01%, are required in nuclear and chemical plants. In this study, austenitic stainless steel such as SUS 308, 309 and 316 and nickel base alloy such as Ni-20 Cr-2.6 Nb and Ni-20 Mo-3W were melted in a 200 kg vacuum induction furnace, and the behaviors of C and O during the refining were investigated, also the thermodynamical analysis was performed. For comparison, pure iron was studied at the same time. The amounts of C and O were reduced from the beginning of melting through intensive boiling period, and when quiescent period was reached, the equilibrium relation of C and O was able to be applied also to the case of austenitic stainless steel. In case of the nickel base alloy, it was presumed that the relation of C and O in quiescent period of molten alloy was near the equilibrium state. The partial pressure of CO in the stainless steel was low as compared with the pure iron, because the effect of refractory material to the oxygen potential of molten steel is different according to the steel composition. (auth.)

  2. The continuous strength method for structural stainless steel design

    OpenAIRE

    Afshan, S; Gardner, L.

    2013-01-01

    Current stainless steel design standards are based on elastic, perfectly plastic material behaviour providing consistency with carbon steel design expressions, but often leading to overly conservative results, particularly in the case of stocky elements. More economic design rules in accordance with the actual material response of stainless steel, which shows a rounded stress–strain curve with significant strain hardening, are required. Hence, the continuous strength method (CSM) was develope...

  3. AEM ANALYSIS OF STAINLESS STEEL

    OpenAIRE

    Ogilvie, R.

    1984-01-01

    Quantitative AEM of thin films of stainless steel is presented. The X-ray data is corrected for absorption, secondary fluorescence and detector efficiency. A new form of the fluorescence correction has been derived. A modified form of the Cliff-Lorimer equations is also presented.

  4. Evaluation of aging embrittlement of low-carbon austenitic stainless steel weld metal near the BWR operating temperature

    International Nuclear Information System (INIS)

    To evaluate the rate of thermal embrittlement of type 316 low-carbon stainless steel weld metal at BWR operating temperature, aging test at 310degC, 335degC, and 400degC was carried out. Hardness of each ferrite and austenite phase of specimens was measured selectively by microhardness tester. Hardness of ferrite was increased apparently with all three aging temperatures, whereas hardness of austenite was not changed. Changes in the microstructure of ferrite aged at 310degC for 11,000h and 18,000h were analyzed by TEM. It has been revealed that hardening of ferrite with aging at 310degC was result of spinodal decomposition. Arrhenius plots for hardening rate of ferrite at each three aging temperature was plotted, and apparent activation energy was estimated. Using the apparent activation energy, hardening rate at 288degC was discussed. (author)

  5. Experimental and estimated crack mouth opening displacements on carbon and stainless steel pipes under monotonic and cyclic bending load

    International Nuclear Information System (INIS)

    During last ten years ENEA funded several research programs with the objective of studying the fracture behavior of cracked pipes. In the framework of national programs almost 100 carbon and stainless steel pipes were tested under quasi-static bending moment. In 1988 ENEA joined the International Piping Integrity Research Group (IPIRG), a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom and the United States. This 5-year program was conducted at Battelle Laboratories and was completed in June 1991. The scope of this paper is the comparison between Crack Mouth Opening Displacement (CMOD) estimation scheme calculations and IPIRG data relative to displacement controlled tests. Since CMODs are necessary to evaluate the leak area associated to through-wall cracks postulated in Leak Before Break analysis of nuclear power plant pipeline, the accuracy in the prediction of CMODs becomes fundamental. (author)

  6. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires. PMID:9228844

  7. Stainless steel denitriding with slag

    International Nuclear Information System (INIS)

    Calculation and experimental methods were used to investigate the process of titanium nitride formation when alloying chromium nickel stainless steels with titanium. At common concentrations of titanium and nitrogen, titanium nitrides were observed to be precipitated from the melt into slag in amounts of 0.1% and more. The laboratory study of the slag influence of the process of steel refining from titanium nitrides showed that the slag containing calcium, aluminium and magnesium oxides is favourable to the denitriding of steel. In addition, the possibility of direct transition of dissolved nitrogen from the metal into the slag is revealed. 7 refs., 1 fig., 2 tabs

  8. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  9. Characteristics of vacuum sintered stainless steels

    OpenAIRE

    Z. Brytan; L.A. Dobrzański; M. Actis Grande; Rosso, M.

    2009-01-01

    Purpose: In the present study duplex stainless steels were sintered in vacuum. using rapid cooling form the mixture of prealloyed and alloying element powders The purpose of this paper was to describe the obtained microstructures after sintering as well as the main mechanical properties of sintered stainless steels.Design/methodology/approach: In presented work duplex stainless steels were obtained through powder metallurgy starting from austenitic 316L or ferritic 410L prealloyed stainless s...

  10. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' and Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of G phase to loss of toughness is now known. Microstructural data also indicate that weakening of ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 4500C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 4500C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  11. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  12. Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties

    OpenAIRE

    Santos, Rafael; Van Bouwel, Jens; Vandevelde, Ellen; Mertens, Gilles; Elsen, Jan; Van Gerven, Tom

    2013-01-01

    This work explores the mineral carbonation of stainless steel slags in search for a technically and economically feasible treatment solution that steers these waste residues away from costly disposal in landfills and into valuable applications. Argon Oxygen Decarburization (AOD) and Continuous Casting (CC) slags prove ideal for mineral carbonation as their powdery morphology forgoes the need for milling and provides sufficient surface area for high reactivity towards direct aqueous carbonatio...

  13. The electrochemistry of 13% chromium stainless steel in oilfield brines

    Energy Technology Data Exchange (ETDEWEB)

    Sidorin, Dmitry; Pletcher, Derek [Department of Chemistry, The University of Southampton, Southampton SO17 1BJ (United Kingdom); Hedges, Bill [BP Trinidad Ltd., P.O. Box 714, Port of Spain (Trinidad and Tobago)

    2005-07-25

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel. (author)

  14. The electrochemistry of 13% chromium stainless steel in oilfield brines

    International Nuclear Information System (INIS)

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel

  15. Microbial corrosion of stainless steel.

    Science.gov (United States)

    Ibars, J R; Moreno, D A; Ranninger, C

    1992-11-01

    Stainless steel, developed because of their greater resistance to corrosion in different aggressive environments, have proved to be affected, however, by various processes and types of corrosion. Some of these types of corrosion, mainly pitting, is activated and developed in the presence of microorganisms, which acting in an isolated or symbiotic way, according to their adaptation to the environment, create a favorable situation for the corrosion of these steel. The microorganisms that are involved, mainly bacteria of both the aerobic and anaerobic type, modify the environment where the stainless steel is found, creating crevices, differential aeration zones or a more aggressive environment with the presence of metabolites. In these circumstances, a local break of the passive and passivating layer is produced, which is proper to these types of steel and impedes the repassivation that is more favorable to corrosion. In the study and research of these types of microbiologically influenced corrosion are found electrochemical techniques, since corrosion is fundamentally an electrochemical process, and microbiological techniques for the identification, culture, and evaluation of the microorganisms involved in the process, as well as in the laboratory or field study of microorganism-metal pairs. Microstructural characterization studies of stainless steel have also been considered important, since it is known that the microstructure of steel can substantially modify their behavior when faced with corrosion. As for surface analysis studies, it is known that corrosion is a process that is generated on and progresses from the surface. The ways of dealing with microbiologically influenced corrosion must necessarily include biocides, which are not always usable or successful, the design of industrial equipment or components that do not favor the adherence of microorganisms, using microstructures in steel less sensitive to corrosion, or protecting the materials. PMID:1492953

  16. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    OpenAIRE

    Syed Altaf Khalid; Vadivel Kumar; Prithviraj Jayaram

    2012-01-01

    Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets - titanium, self-ligating stainless steel, and conventional stainless steel - using stainless steel archwires and TMA archwires. An in vitro study of simulated ca...

  17. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  18. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    OpenAIRE

    Masafumi Matsushita

    2011-01-01

    Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in...

  19. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies

    NARCIS (Netherlands)

    Shulga, A. V.

    2013-01-01

    The ring tensile test method was optimized and successfully used to obtain precise data for specimens of the cladding tubes of AISI type 316 austenitic stainless steels and ferritic-martensitic stainless steel. The positive modifications in the tensile properties of the stainless steel cladding tube

  20. Influence of tungsten, carbon and nitrogen on toughness and weldability of low activation austenitic high manganese stainless steels

    International Nuclear Information System (INIS)

    The effect of alloying elements of tungsten, carbon and nitrogen on high temperature strength, toughness and weldability of Fe-12Cr-15Mn alloy has been investigated. The high temperature strength of Fe-12Cr-15Mn-0.2C-0.1N at 873 K increases with the addition of 2-300W without affecting ductility. The toughness as estimated by Charpy tests, is also not influenced by the addition of 2-3%W, while the increase of carbon content decreases the absorbed energy. The transition temperature shifts to higher temperature by aging at 873 K for 3600 ks, but it is still lower than room temperature. The degradation of toughness after aging is considered to be related to the precipitation of M23C6 on grain boundaries. The weldability evaluated by hot cracking susceptibility is not affected by alloying of tungsten and carbon in this alloy system. It is noted that the alloys studied show less hot cracking susceptibility than commercial AISI 316L stainless steel. (orig.)

  1. Nano-composite stainless steel

    Science.gov (United States)

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  2. GFRP stainless steel hybrid cryostat

    International Nuclear Information System (INIS)

    As an instrument to measure superconducting properties (Jc,Tc,Hc) by the magnetization method, a cryostat containing the magnet that generated an external magnetic field has been developed. To ensure thermal insulation ability and structural durability, this cryostat consists of a GFRP inner vessel and a stainless steel outer vessel. Various tests were carried out to verify the sufficient performance of this cryostat. Results are presented

  3. Nickel: makes stainless steel strong

    Science.gov (United States)

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  4. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65

    International Nuclear Information System (INIS)

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  5. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...... by replacement of the nitride ions with oxide ions in the molten carbonate electrolyte....

  6. Nano-Meso-Macro strength analysis of low carbon austenitic stainless steels pre-strained under tension and compression loading

    International Nuclear Information System (INIS)

    This report describes the nanoscopic strength analysis of low carbon austenitic stainless steel 316NG pre-strained to ±10% and ±20% true strain under tension and compression loading. This strength analysis was conducted, using an ultra-micro, micro and Vickers hardness testers and TEM. TEM observations showed that micro-structural parameters relevant the analysis are the dislocation cell size, dcel and the coarse slip band spacing, lcsl. 10dcel or 10lcsl shows the position where fine grain strengthening by dislocation cells or slip spacing saturates and the hardness becomes constant. The Vickers hardness, HV, corresponding to the micro strength was expressed as HV=Hυ*bas + Hυ*sol + Hυ*dis + Hυ*cel + H*υcsl. Hυ*bas is the base hardness, Hυ*sol is the solid solution strengthening hardness, Hυ*dis is the dislocation strengthening hardness in the dislocation cell, and Hυ*cel and Hυ*csl are the fine grain strengthening hardness due to the dislocation cell and coarse slip band, respectively. Hυ*bas, Hυ*sol and Hυ*dis were about 100, 50 and 0, respectively, independently of the pre-strain of ±10% and ±20%. Accordingly, the Vickers hardness increment corresponding to the work hardening was equal to the sum of Hυ*cel and Hυ*csl. In other words, the work hardening due to tension and compression pre-straining up to ±20% is dominated by fine grain strengthening due to the dislocation cell and coarse slip band. This behavior was similar to that obtained in SUS316NG steel pre-stained by cold rolling in the previous study. It is concluded from those results that the work hardening mechanisms in SUS316NG steel are independent of the pre-strain method. (author)

  7. Irradiation embrittlement of ferritic stainless steels

    International Nuclear Information System (INIS)

    The characteristics of the irradiation embrittlement of some ferritic stainless steels were examined by tensile tests. Steels selected in this investigation were classified into three groups: chi phase, precipitation hardened Fe-13Cr steels; tempered martensitic Fe-12Cr steels; and low alloy steels. The latter steels were chosen in order to compare the irradiation embrittlement characteristics with those of stainless steels. The stainless steels were superior to the low alloy steels with regard to the irradiation embrittlement (the changes in both ductile-brittle transition temperature (DBTT) and unstable plastic flow transition temperature (UPFTT)), irrespective of whether these stainless steels had chi phase precipitated structures or tempered martensitic structures. The suppression of the DBTT increase owing to irradiation results from low yield stress increase Δσsub(y) and high |[dσsub(y)(u)/dT]|, where u denotes unirradiated, in the stainless steels. The suppression of the UPFTT results from the high work hardening rate or the high work exponent and the low Lueders strain in the stainless steels. These characteristics of irradiation embrittlement in the ferritic stainless steels are thought to be caused by the defect structure, which is modified by Cr atoms. (author)

  8. Estimation of revealing methods of microstructure in duplex stainless steels

    International Nuclear Information System (INIS)

    Revealing of microstructure in duplex stainless steels by conventional chemical or electrochemical etching methods is relatively difficult as opposed to carbon steels. There are a many etching methods for duplex stainless steels, however electrolytic etching is really the best way to go. Electrochemical etching assures very good distinction of ferrite, austenite and secondary phases also etching of grain boundaries and twins, simultaneously warranting repeatability of process' circumstances. However, literature data do not deliver enough explicit parameters and conditions of electrolytic etching process, what in consequence can lead to indirect phenomenon during the process, such as pitting or etching twins. In frames of this work we have tested different methods of electrolytic etching of duplex stainless steel 1.4462-X2CrNiMoN 22.5.3 according to EURONORM (UNS S3108). This article has in view discussing of controversial matter of argument relating to revealing microstructure in duplex stainless steels on the ground of conducted investigations. (author)

  9. Hot workability of duplex stainless steels

    OpenAIRE

    Martin, Guilhem

    2011-01-01

    The Duplex Stainless Steels (DSS) are defined as a family of stainless steels consisting of a two-phase microstructure involving δ-ferrite and γ-austenite. Exceptional combinations of strength and toughness together with good corrosion resistance under critical working conditions designate DSS a suitable alternative to conventional austenitic stainless steels. Unfortunately, the relatively poor hot workability of these alloys makes the industrial processing of flat products particularly criti...

  10. Evaluation of stainless steels for their resistance to intergranular corrosion

    International Nuclear Information System (INIS)

    Austenitic stainless steels are being considered as structural materials for first wall/blanket systems in the international thermonuclear reactor (ITER). The uniform corrosion of stainless steels in water is well known and is not a critical issue limiting its application for the ITER design. The sensitivity of austenitic steels to intergranular corrosion (IGC) can be estimated rather accurately by means of calculation methods, considering structure and chemical composition of steel. There is a maximum permissible carbon content level, at which sensitization of stainless steel is eliminated: K=Creff-αCeff, where α-thermodynamic coefficient, Creff-effective chromium content (regarding molybdenum influence) and Ceff-effective carbon content (taking into account nickel and stabilizing elements). Corrosion tests for 16Cr11Ni3MoTi, 316L and 316LN steel specimens, irradiated up to 2 x 1022 n/cm2 fluence have proved the effectiveness of this calculation technique for determination of austenitic steels tendency to IGC. This method is directly applicable in austenitic stainless steel production and enables one to exclude complicated experiments on determination of stainless steel susceptibility to IGC. (orig.)

  11. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies

    International Nuclear Information System (INIS)

    Highlights: ► The ring tensile test method was optimized and successfully used. ► The cladding tubes fabricated by PM HIP and traditional technologies were tested. ► Improvement of the cladding tubes properties fabricated by PM HIP was found. ► Correlation of the homogeneity of carbon, boron with the properties was revealed. -- Abstract: The ring tensile test method was optimized and successfully used to obtain precise data for specimens of the cladding tubes of AISI type 316 austenitic stainless steels and ferritic–martensitic stainless steel. The positive modifications in the tensile properties of the stainless steel cladding tubes fabricated by powder metallurgy and hot isostatic pressing of melt atomized powders (PM HIP) when compared with the cladding tubes produced by traditional technology were found. Presently, PM HIP is also used in the fabrication of oxide dispersion strengthened (ODS) ferritic–martensitic steels. The high degree of homogeneity of the distribution of carbon and boron as well the high dispersivity of the phase-structure elements in the specimens manufactured via PM HIP were determined by direct autoradiography methods. These results correlate well with the increase of the tensile properties of the specimens produced by PM HIP technology

  12. Evolution of properties and structure of molybdena austenitic stainless steel with low carbon concentration to endure high temperature for a long time

    International Nuclear Information System (INIS)

    Fast sodium cooled reactor vessels are exposed to temperatures up to 550 C, and should therefore be built of stainless austenitic steels. This study presents results of resistance tests and inter-crystalline corrosion performed on two samples of stainless steel 17-13 (with molybdenum and carbon) 15 and 70 mm thick, after spending between 10 and 30,000 hours at temperatures between 400 and 900 C. Principal changes of mechanical properties consisted of small hardening observed at temperatures between 600 and 700 C, and decreasing ductility. Loss of ductility is even greater at temperatures between 550 and 750 C as the temperature or the time spent are higher. A comparison with other stainless steel austenitic steels is performed. An extrapolation of results obtained for two samples, based on diffusion laws, permits to evaluate the level of brittleness at 550 C after a very long time of utilisation. Short performance at higher temperatures lead to comparable brittleness. Structure study (optical microscopy or electronic microscopy) performed in parallel enabled to complete the domains of precipitation observed by B. Weiss and R. Stickler for a steel of the same type and to define the mode of brittleness of material during its exposure to high temperatures

  13. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    OpenAIRE

    Yoshiyuki Show; Toshimitsu Nakashima; Yuta Fukami

    2013-01-01

    Composite film of carbon nanotube (CNT) and polytetrafluoroethylene (PTFE) was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS) bipolar plates of the proton exchange membrane fuel cell (PEMFC) as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assemb...

  14. Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF{sub 6} salt

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Seung-Taek [Department of Chemical Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)], E-mail: smyung@iwate-u.ac.jp; Sasaki, Yusuke [Department of Chemical Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Saito, Takamitsu [Nissan Motors, 1 Natsushima, Yokosuka, Kanagawa 273-8523 (Japan); Sun, Yang-Kook [Department of Chemical Engineering, Hanyang University, Seungdong-Gu, Seoul 133-791 (Korea, Republic of); Yashiro, Hitoshi [Department of Chemical Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)], E-mail: yashiro@iwate-u.ac.jp

    2009-10-01

    Passivation behavior of type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF{sub 6} salt was studied using electrochemical polarization, X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectroscopy (ToF-SIMS). Cathodic polarization to 0 V vs. Li/Li{sup +} resulted in most but not complete reduction of the air-formed film from oxides to metal on the stainless steel, as confirmed by XPS. For complete elimination of the air-formed film, the surface of the stainless steel was scratched under anodic polarization conditions. At 3 V vs. Li/Li{sup +} where an anodic current peak appeared, only an indistinct layer was recognized on the newly scratched surface, according to ToF-SIMS analysis. Above 4 V vs. Li/Li{sup +}, substantial passive films were formed, which were composed of oxides and fluorides of iron and chromium. The origin of oxide was due to water contained in the non-aqueous alkyl carbonate solution, and that of fluorides were the result of the decomposition of electrolytic salt, LiPF{sub 6}, especially at higher potential. The resultant passive films were stable in the non-aqueous alkyl carbonate solution containing LiPF{sub 6} salt.

  15. Studies of diamond-like carbon (DLC) films deposited on stainless steel substrate with Si/SiC intermediate layers

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Liu Gui-Chang; Wang Li-Da; Deng Xin-Lü; Xu Jun

    2008-01-01

    In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and thesp3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp3 bonding and reduced the hardness. The incorporated Si atoms substituted sp2- bond carbon atoms in ring structures, which promoted the formation of sp3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power.

  16. Fatigue strain-life behavior of carbon and low-alloy steels, austenitic stainless steels, and Alloy 600 in LWR environments

    International Nuclear Information System (INIS)

    The existing fatigue strain vs. life (S-N) data, foreign and domestic, for carbon and low-alloy steels, austenitic stainless steels, and Alloy 600 used in the construction of nuclear power plant components have been compiled and categorized according to material, loading, and environmental conditions. Statistical models have been developed for estimating the effects of the various service conditions on the fatigue life of these materials. The results of a rigorous statistical analysis have been used to estimate the probability of initiating a fatigue crack. Data in the literature were reviewed to evaluate the effects of size, geometry, and surface finish of a component on its fatigue life. The fatigue S-N curves for components have been determined by adjusting the probability distribution curves for smooth test specimens for the effect of mean stress and applying design margins to account for the uncertainties due to component size/geometry and surface finish. The significance of the effect of environment on the current Code design curve and on the proposed interim design curves published in NUREG/CR-5999 is discussed. Estimations of the probability of fatigue cracking in sample components from BWRs and PWRs are presented

  17. Ductile fracture behavior of 6-inch diameter type 304 stainless steel and STS 42 carbon steel piping containing a through-wall or part-through crack

    International Nuclear Information System (INIS)

    The double ended guillotine break philosophy in the design base accident of the nuclear power plant is considered to be overly conservative from the view point of piping design. Through the past experiences and developments of the fabrication, inspection, and operation of nuclear power plants, it has been recognized that the Leak-Before-Break (LBB) concept can be justified in the LWR pressure boundary pipings. In order to verify the LBB concept, extensive experimental and theoretical works are being conducted in many countries. Furthermore, a revised piping design standard, in which LBB concept is introduced, is under preparation in Japan, U.S.A., and European countries. At JAERI, a research program to investigate the unstable ductile fracture behavior of LWR piping under bending load has been carried out as a part of the LBB verification researches since 1983. This report summarizes the result of the ductile fracture tests conducted at room temperature in 1983 and 84. The 6-inch diameter pipes of type 304 stainless steel and STS 42 carbon steel pipe with a through-wall or part-through crack were tested under bending load with low or high compliance condition at room temperature. Pipe fracture data were obtained from the test as regards to load- displacement curve, crack extension, net section stress, J-resistance curve, and so on. Besides, the influence of the compliance on the fracture behavior was examined. Discussions are performed on the ductile pipe fracture criterion, flaw evaluation criterion, and LBB evaluation method. (author)

  18. Effect of loading direction on crack growth behavior near fusion line in low carbon stainless steel weld joints

    International Nuclear Information System (INIS)

    SCC growth tests on the specimens machined out from SMAW and TIG weld joints of low carbon type 316L stainless steel were conducted in simulated BWR coolant condition to clarify effect of loading direction on SCC growth behavior near weld fusion line. The results obtained are as follows; (1) IGSCCs from pre-crack tips in base metal propagated toward the weld metal with branching of secondary cracks, and then, the cracks changed direction to avoid the weld metal and propagated along with the fusion line. Tendency of crack behavior of avoiding weld metal was observed remarkably in specimens, which had smaller angle between specimen neutral line and fusion line. (2) Propagation of large crack of IDSCC into weld metal was observed only in a specimen with the crack propagation direction vertical to the fusion line. (3) Result of crack length measurement for 63 secondary cracks, which propagated into weld metal showed that 80% of cracks located within 50 μm from the fusion line, and two cracks with propagation length greater than 150 μm were observed only in the specimens with the crack propagation direction vertical to the fusion line. These results suggested that SCC in the base metal tends to propagate to avoid the weld metal and the relationship between dendrite orientation and loading direction affects SCC propagation behavior into weld metal. (author)

  19. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' phase and the Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of the G phase to loss of toughness is now known. Microstructural data also indicate that weakening of the ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 4500C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 4500C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  20. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.;

    2004-01-01

    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding. The...... overall assessment of the weld bonding process is made using several commercial adhesives with varying working times under different surface conditions. The quality of the resulting joints is evaluated by means of macroetching observations, tension-shear tests and peel tests. The theoretical investigation...

  1. Spectrographic analysis of stainless steels

    International Nuclear Information System (INIS)

    Two spectrogaphyic solution techniques, 'Porous Cup' and 'Vacuum Cup', were investigated in order to determine the minor constituents (Cr, Ni, Mo, Mn, Cu and V) of stainless steels. Iron and cobalt were experimented as internal standards. The precision varied from 4 to 11% for both spectrographic techniques, in which cobalt was used as international standard. Certified standards from National Bureau of Standards and Instituto de Pesquisas Tecnologicas were analysed to verify the accuracy of both techniques. The best accuracy was obtained with the Vacuum Cup techniques. (Author)

  2. Interaction between stainless steel and plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Dunwoody, John T [Los Alamos National Laboratory; Mason, Richard E [Los Alamos National Laboratory; Freibert, Franz J [Los Alamos National Laboratory; Willson, Stephen P [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Worl, Laura A [Los Alamos National Laboratory; Archuleta, Alonso [Los Alamos National Laboratory; Conger, Donald J [Los Alamos National Laboratory

    2010-01-01

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  3. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    Directory of Open Access Journals (Sweden)

    Syed Altaf Khalid

    2012-01-01

    Full Text Available Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets - titanium, self-ligating stainless steel, and conventional stainless steel - using stainless steel archwires and TMA archwires. An in vitro study of simulated canine retraction was undertaken to evaluate the difference in frictional resistance between titanium, self-ligating stainless steel, and stainless steel brackets, using stainless steel and TMA archwires. Results and Conclusion: We compared the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and TMA archwires, with the help of Instron Universal Testing Machine. One-way analysis of variance (ANOVA, Student′s "t" test, and post hoc multiple range test at level of <0.05 showed statistically significant difference in the mean values of all groups. Results demonstrated that the titanium, self-ligating stainless steel, and stainless steel brackets of 0.018-inch and 0.022-inch slot had no significant variations in frictional résistance. The self-ligating bracket with TMA archwires showed relatively less frictional resistance compared with the other groups. The titanium bracket with TMA archwires showed relatively less frictional resistance compared with the stainless steel brackets.

  4. Tests on ferritic stainless steel RHS and SHS beam-columns

    OpenAIRE

    Arrayago Luquin, Itsaso; Real Saladrigas, Esther; Mirambell Arrizabalaga, Enrique

    2015-01-01

    The desirable features offered by different stainless steel grades have encouraged the use of this material in construction and the lower nickel content of the ferritic grades allows, additionally, controlling and decreasing the initial investment needs. Design expressions codified for carbon steel have been extended to stainless steel elements in EN1993-1-4, regardless their different mechanical behaviours. The study of stainless steel elements subjected to combined axial compression and ben...

  5. Experimental study on ferritic stainless steel RHS and SHS beam-columns

    OpenAIRE

    Arrayago Luquin, Itsaso; Real Saladrigas, Esther; Mirambell Arrizabalaga, Enrique

    2015-01-01

    Ferritic stainless steels, with their lower nickel content, supplement the desirable features offered by different stainless steel grades with a more controlled and lower initial investment requirements, which have encouraged the use of these materials in construction. The nonlinear behaviour of stainless steel grades is not usually considered when extending design expressions codified for carbon steel to these alloyed materials, leading to overconservative design approaches and the applicabi...

  6. Threshold Chloride Concentration of Stainless Steels in Simulated Concrete Pore Solution

    OpenAIRE

    Wang, Hailong; Ling, Jiayan; Sun, Xiaoyan

    2016-01-01

    To evaluate whether stainless steel can replace carbon steel as rebar in reinforced concrete structures exposed to aggressive environment, the threshold chloride concentration of carbon steel, austenitic and duplex stainless steels were experimentally studied in this paper. The solutions with pH ranging from 9.5 to 13.6 were used herein to simulate the pore liquids in both alkaline and carbonated concretes. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests we...

  7. Carburization of stainless steel furnace tubes

    International Nuclear Information System (INIS)

    Stainless steel containing molybdenum are usually recommended to resist naphtenic acid corrosion in vacuum heaters. In 1993 the original 5Cr-1/2Mo roof tubes of the furnace in a vacuum unit were replaced by stainless steel 316 Ti to minimize tube replacement and increase heater reliability. Unexpectedly, some of the new tubes failed after only three years of service and just one year after undergoing the last inspection. The damage occurred in the form of deep holes and perforations, starting from the outside tube surface on the fireside. Coke build-up occurred due to severe operating conditions, overheating the tubes on the fireside, above 675 Centigrade. Metallographic and Scanning Electron Microscopy (Sem) examination revealed internal and external carburization of the material due to the presence of coke and combustion ashes, respectively. The increase in the skin metal temperature facilitated the diffusion of carbon from these carbon-rich deposits into the low carbon content material (0.023%). Depletion of chromium at the grain boundaries due to the massive formation of chromium carbides, resulted in a severe intergranular corrosion attack by molten salts rich in vanadium and sulfur produced by asphalt burning. Normal operating practice demands the use of steam for the heater tubes to control coke build-up. This practice had been first reduced and then eliminated, during the past two years prior to the failure, because of economic incentives. This paper describes the root cause analysis conducted to account for these premature tube failures. (Author)

  8. Corrugated stainless steels embedded in mortar for 9 years: corrosion results of non-carbonated, chloride-contaminated samples

    OpenAIRE

    Bautista, A.; Paredes, E. C.; Velasco, F.; Álvarez, S. M.

    2015-01-01

    Mortar samples reinforced with 5 different corrugated stainless steels were tested for 9 years in 2 different conditions: partial immersion (PI) in 3.5% NaCl, and chloride addition to the mortar and exposure to high relative humidity (HRH). The monitoring during the exposures was carried out with corrosion potential (E-corr) and electrochemical impedance spectroscopy (EIS) measurements. A year before finishing (after 8 years of exposure), the reinforced mortar samples were anodically polarise...

  9. Carburisation of stainless steel caused by oil in sodium

    International Nuclear Information System (INIS)

    The primary objectives of this work were to investigate the kinetics of austenitic stainless steel carburisation in sodium caused by oil in sodium, and to measure the corresponding 'sodium carbon activity' (a quantitative measure of sodium steel carburisation potential). For comparative purposes, the steel carburising effects of chemically simpler carbon sources have also been studied. The specific experimental investigations have involved: (i) A study of the kinetics of stainless steel carburisation at 5500C caused by oil in sodium; (ii) A determination of the effective steel carburisation potential (carbon activity) arising from oil ingress, and its persistence with time, and (iii) A comparison of oil and chemically simpler carbon sources, namely graphite and cementite (as carburised iron, Fe-Fe3C), with regard to both kinetics of steel carburisation and sodium carbon activities produced. In all cases, the nature and extent of carburisation has been determined by optical metallography, X-ray and nuclear microprobe analysis. Preliminary studies on the mutual effect of steel surfaces in close proximity have also been conducted. Previous studies on steel carburisation in sodium are outlined, and the present results are discussed in the context of available thermodynamic and kinetic data pertaining to the carbon-steel and carbon-sodium systems. (author)

  10. Fire resistance of stainless steel structural elements

    OpenAIRE

    Gomboši, Jana

    2015-01-01

    Graduation thesis represents behavior of structural elements made from stainless steel in case of fire. The general rules according to the European standard SIST EN 1993-1-2 to determine design resistance of the steel structural element for fire conditions are presented. The main focus was to determinate behavior of stainless steel column exposed to the standard fire. Buckling resistance of the column was calculated with a simplified method from the standard SIST EN 1993-1-2. Mech...

  11. Magnetic properties of stainless steels at room and cryogenic temperatures

    International Nuclear Information System (INIS)

    The magnetic properties of ten types of ferritic and martensitic stainless steels have been measured at room temperature and at 77 K. The steel samples studied were in the annealed state as received from the manufacturer. Our room temperature measurements indicate significantly harder magnetic properties than those quoted in the ASM International Handbook, which studied fully annealed stainless steel samples. Despite having harder magnetic properties than fully annealed steels some of the as-received steels still display soft magnetic properties adequate for magnetic applications. The carbon content of the steels was found to affect the permeability and coercive force, with lower-carbon steels displaying significantly higher permeability and lower coercive force. The decrease in coercive force with reduced carbon content is attributed to fewer carbide inclusions which inhibit domain wall motion. Cooling to 77 K resulted in harder magnetic properties. Averaged over the ten steels tested the maximum permeability decreased by 8%, the coercive force increased by 14%, and the residual and saturation flux densities increased by 4% and 3%, respectively. The change in coercive force when cooled is comparable to the theoretical prediction for iron, based on a model of domain wall motion inhibited by inclusions. The modest changes of the magnetic properties indicate that the stainless steels can still be used in magnetic applications at very low temperatures.

  12. 75 FR 973 - Certain Welded Stainless Steel Pipes From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2010-01-07

    ... Welded Stainless Steel Pipes from Korea, 57 FR 62301 (Dec. 30, 1992), as amended in Notice of Amended... Sales at Less than Fair Value: Certain Cut-to-Length Carbon Steel Plate from South Africa, 62 FR 61731... International Trade Administration Certain Welded Stainless Steel Pipes From the Republic of Korea:...

  13. Duplex stainless steels for osteosynthesis devices.

    Science.gov (United States)

    Cigada, A; Rondelli, G; Vicentini, B; Giacomazzi, M; Roos, A

    1989-09-01

    The austenitic stainless steels used today for the manufacture of osteosynthesis devices are sensitive to crevice corrosion. In this study the corrosion properties of some duplex stainless steels were evaluated and compared to traditional austenitic stainless steels. According to our results the following ranking was established: 23Cr-4Ni less than AISI 316L less than ASTM F138 less than 22Cr-5Ni-3Mo less than 27Cr-31Ni-3.5Mo less than 25Cr-7Ni-4Mo-N. In particular the results showed that the high-performance 25Cr-7Ni-4Mo-N duplex stainless steel, with high molybdenum and nitrogen contents, can be considered not susceptible to crevice corrosion in the human body. The duplex stainless steels have also better mechanical properties at the same degree of cold working compared with austenitic stainless steels. Hence the 25Cr-7Ni-4Mo-N duplex stainless steel can be considered a convenient substitute of ASTM F138 for orthopedic and osteosynthesis devices. PMID:2777835

  14. Preparation of precursor for stainless steel foam

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiang-yang; LI Shan-ni; LI Jie; LIU Ye-xiang

    2008-01-01

    The effects of polyurethane sponge pretreatment and slurry compositions on the slurry loading in precursor were discussed, and the,performances of stainless steel foams prepared from precursors with different slurry loadings and different particle sizes of the stainless steel powder were also investigated. The experimental results show that the pretreatment of sponge with alkaline solution is effective to reduce the jam of cells in precursor and ensure the slurry to uniformly distribute in sponge, and it is also an effective method for increasing the slurry loading in precursor; the mass fraction of additive A and solid content in slurry greatly affect the slurry loading in precursor, when they are kept in 9%-13% and 52%-75%, respectively, the stainless steel foam may hold excellent 3D open-cell network structure and uniform muscles; the particle size of the stainless steel powder and the slurry loading in precursor have great effects on the bending strength, apparent density and open porosity of stainless steel foam; when the stainless steel powder with particle size of 44 tan and slurry loading of 0.5 g/cm3 in precursor are used, a stainless steel foam can be obtained, which has open porosity of 81.2%, bending strength of about 51.76 MPa and apparent density of about 1.0 g/cm3.

  15. Transformation behavior in low carbon 13% chromium-3% copper stainless steel; Tei C-13%Cr-3%Cu ko no hentai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, T.; Uemori, R.; Miyasaka, A. [Nippon Steel Corp., Tokyo (Japan)

    2000-10-01

    Martensitic transformation and {gamma} {yields} {alpha} transformation behavior were investigated in low carbon 13% chromium stainless steels containing 2% nickel or 3% copper. The main conclusions are as follows: (1) Hardness of 2% nickel added low carbon 13% chromium steel was independent of cooling rate after hot working at large reduction. Structure of the steel was martensitic even after being subjected to such large reduction of 75%. This result suggests that ferritic transformation was hard to occur under an usual cooling rate because austenite phase was sufficiently stablized by the addition of chromium and nickel. (2) Austenite to ferrite transformation occurred only for the low carbon 13% chromium 3% copper steel without nickel even at the small cooling rate, such as 0.01K/s. This result was mainly attributed to the unstabilization of austenite phase which caused by the precipitation of {epsilon}-Cu. Furthermore, austenite of the steel becomes easy to transform to ferrite due to heavy hot working. This phenomenon was seemed to be caused by the increase in the area of austenite grain boundary owing to recrystallization. Thus, it was considered that the nucleation of {epsilon}-Cu at the grain boundaries promoted ferrite formation. (author)

  16. Microscale investigation of the corrosion performances of low-carbon and stainless steels in highly alkaline concretes

    OpenAIRE

    Itty, Pierre-Adrien

    2012-01-01

    Low-carbon steel shows good stability with respect to corrosion when embedded in ordinary portland cement concrete. This is due to the high alkaline content of the concrete pore solution favoring the formation of an iron oxide film that naturally keeps the steel in a passive state. With the rise of new types of concretes, based on different chemistries, the durability of reinforcements made out of low-carbon steel is at stake. Among the new concrete types, inorganic polymer concretes are char...

  17. Resistance microwelding of 316L stainless steel wire to block

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Khan, M.I.; Bay, Niels;

    2011-01-01

    The excellent corrosion resistance of low carbon vacuum melted 316 stainless steel coupled with its non-magnetic properties makes it ideal for biomedical applications. The typical joint geometry for microcomponents, such as medical implants, includes joining of fine wire to a larger block. However......, this type of joint has received little attention in the current literature. The present study was conducted to examine the microstructure and mechanical properties of low carbon vacuum melted 316 stainless steel wire welded to a larger block. Results revealed solid state bonding occurring at low...

  18. Tritiated Water Interaction with Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Glen R. Longhurst

    2007-05-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

  19. Recycle of radiologically contaminated austenitic stainless steels

    International Nuclear Information System (INIS)

    The United States Department of Energy owns large quantities of radiologically contaminated austenitic stainless steel which could by recycled for reuse if appropriate release standards were in place. Unfortunately, current policy places the formulation of a release standard for USA industry years, if not decades, away. The Westinghouse Savannah River Company, Idaho National Engineering Laboratory and various university and industrial partners are participating in initiative to recycle previously contaminated austenitic stainless steels into containers for the storage and disposal of radioactive wastes. This paper describes laboratory scale experiments which demonstrated the decontamination and remelt of stainless steel which had been contaminated with radionuclides

  20. Carbonation of stainless steel slag in the context of in situ Brownfield remediation

    NARCIS (Netherlands)

    Capobianco, O.; Costa, G.; Thuy, L.; Magliocco, E.; Hartog, Niels; Baciocchi, R.

    2014-01-01

    The main aim of this work was to assess the potential of in situ carbonation as a treatment to modify the properties of alkaline materials such as industrial soil in terms of leaching behaviour and mineralogy and to store the CO2 generated by specific treatments applied in the context of Brownfield

  1. Some properties of chromized stainless steels

    International Nuclear Information System (INIS)

    Materials used for constructions in food processing industry should meet mechanical specifications and sanitary requirements. The most often used steels AISI304 and 316L have similar mechanical characteristics but the corrosion resistance of 316L stainless steel is considerably better. On the other hand the price of 316L steel is twice higher. The advantageous solution with minimal investment cost is chemical modification of stainless steel surface layer. Main directions of chemical modifications of surface layers were characterized in this paper. In this paper there were also presented effects of chromizing of steel type AISI316L in order to increasing erosion - corrosion resistance. There were analysed structures; mechanical characteristics and durability of chromized stainless steel. (author)

  2. Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel

    Science.gov (United States)

    Feng, Kai; Li, Zhuguo; Lu, Fenggui; Huang, Jian; Cai, Xun; Wu, Yixiong

    2014-03-01

    High electrical conductivity and corrosion resistance are central to advances in wider application of metallic bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). In this study, C/Cr-Ti-N multilayer coatings are deposited by physical vapor deposition and the effect of Cr:Ti ratio on the corrosion resistance and interfacial contact resistance (ICR) are systematically investigated. Scanning electron microscopy (SEM) result shows that the carbon layer is compact and uniform. Excellent corrosion resistance of 0.127 μA cm-2 current density at operating voltage in PEMFC cathode environment and low ICR of 2.03 mΩ-cm2 at compaction force of 150 N cm-2 are achieved when Cr:Ti ratio is 2:4 and 3:3, respectively. The significant enhancement in surface conductivity is probably because that the current comes from carbon paper is homogenized by two electrically conductive layers and flows to the passive film with much more contact area. After polarization, ICR increase to 3.07 mΩ-cm2 and 3.02 mΩ-cm2 in the simulated PEMFC cathode and anode environment, respectively. However, the Raman spectroscopy results disclose that the bonding type of top carbon film before and after polarization shows little difference. The results indicate that C/Cr-Ti-N multilayer coating with Cr:Ti ratio of 2:4 achieves the optimal composition.

  3. Hydrogen compatibility handbook for stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  4. Horizontal electron beam welding for stainless steels

    International Nuclear Information System (INIS)

    Stainless steel samples have been realized by local vacuum apparatus for electron beam welding applications to reactor core shell realizations. The best welding parameters have been determined by a systematic study. The welds have been characterized by mechanical tests

  5. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  6. Investigation of residual stress in laser welding between carbon steel AISI 1010 and stainless AISI 304

    International Nuclear Information System (INIS)

    The dissimilar materials union has the residual stress formation as one of the most critical problems, which occurs mainly because these materials have both different thermal expansion coefficients and thermal conductivities. In this study, it was investigated the laser welding technique between steels, AISI 1010 and AISI 304. The materials were joined by butt autogenous welding with a continuous Nd:YAG laser. The main objective was to identify the welding parameters influence by the residual stresses analysis in the heat affected zone (HAZ). It was executed a factorial design with three-factor at two levels with a replica, which were varied power, welding speed and focal position of the laser beam. Residual stress measurements by the diffraction of X-rays were performed on the sample surface, to study their variation as a function of the parameters investigated. The blind hole method was also used to evaluate the residual stress along the samples depth, up to depth of 1mm. Besides residual stress measurement, weld seams were evaluated by optical and scanned electron microscopy, which were aimed to determine the weld geometry and changes in the microstructure. It was also made Vickers hardness measurements to evaluate the extent of HAZ. To evaluate the mechanical properties of the union were performed tensile and fatigue test. The MINITAB 15 software was used to analyze the residual stresses obtained by the blind hole method at different depths of the HAZ. It was also used statistical regression based on both the influences different and the combination of this input factors, in the residual stress of union. The results indicate that the models can satisfactorily predict the responses and provide users a guide to better define the welding parameters. (author)

  7. The improvement by a CVD silica coating of the oxidation behaviour of a 20%Cr/25%Ni niobium stabilized stainless steel in carbon dioxide

    International Nuclear Information System (INIS)

    The improvement of the oxidation behaviour of the 20%Cr-25%Ni-Nb stabilized (20/25/Nb) austenitic stainless steel, in carbon dioxide, by a silica coating, formed by a vapour reaction upon the pre-oxidized steel surface, has been examined at 8250C. The exposure periods extended to 5975 h duration. The silica coating effectiveness increased with its thickness over the range examined, 0.5 to 27 μm. Coatings > approximately 2 μm thick reduced the extent of oxidation by at least a factor of five by providing a barrier to the diffusion of cations outwards and oxidant inwards responsible for oxide growth on the 20/25/Nb steel. In addition, they completely inhibited oxide spallation because oxidation of the steel constituents occurred primarily within the silica coating whose adherence was maintained throughout the exposure. During the prolonged heat treatment of > approximately 2 μm thick silica coated steel, the iron and nickel constituents in the precoating oxide film were reduced by solid-solid reaction with manganese and probably also chromium from the underlying steel. (author)

  8. Tempering of martensitic stainless steel with 0.6 w/o nitrogen and/or carbon

    International Nuclear Information System (INIS)

    Martensitic stainless high nitrogen steels are used for advanced bearings because of their superior corrosion resistance and hot hardness. Therefore the tempering behaviour of steels SC, SN and SNC with close to 15w/oCr, 1w/oMo and 0.6w/oC, N or C+N, respectively, was investigated. Secondary hardening is enhanced by nitrogen, which also increase the content of retained austenite and its resistance to tempering especially in SNC. During tempering element of -, Θ- and M7C3-carbides precipitate in SC while element of -, ζ- and M2N-nitrides appear in SN. In SNC carbides and nitrides precipitate separately. Moessbauer spectroscopy revealed clustering of solute atoms in SC and ordering in SN and more so in SNC. (orig.)

  9. Fracture toughness properties of duplex stainless steels

    OpenAIRE

    Sieurin, Henrik

    2006-01-01

    Good toughness properties in base and weld material enable the use of duplex stainless steels (DSS) in critical applications. DSS offer high strength compared to common austenitic stainless steels. The high strength can be utilized to reduce the wall thickness and accordingly accomplish reduction of cost, welding time and transportation weight, contributing to ecological and energy savings. Although DSS have been used successfully in many applications the last decades, the full utilisation in...

  10. Phase transformations in welded supermartensitic stainless steels

    OpenAIRE

    Carrouge, Dominique

    2002-01-01

    Supermartensitic stainless steels have recently been introduced in the oil and gas industries to substitute more expensive duplex stainless steels for onshore and offshore tubing applications. Although easily joined by arc welding processes, the service life of the supermartensitic welded joint in corrosive environments relies to a large extent on the behaviour of the heat-affected zone (HAZ). The microstructure of the HAZ in these new materials has, until now, received little ...

  11. Behaviour of stainless steel in natural seawater

    OpenAIRE

    Compere, Chantal; Le Bozec, Nathalie

    1997-01-01

    In this paper, investigations performed in natural and artificial seawater on stainless steels will be presented. They concerned studies on: biofilm formation, passive layers composition, electrochemical behaviour, localised corrosion and the evolution of these different parameters as a function of ageing time. According to literature surveys, the different aspects will be discussed. Some conclusions will be drawn concerning the actual knowledge on the behaviour of stainless steels in seawater.

  12. A Duplex Stainless Steel for Chloride Environments

    Science.gov (United States)

    Sridhar, N.; Kolts, J.; Flasche, L. H.

    1985-03-01

    This paper examines the effects of microstructural changes on the corrosion, stress corrosion cracking and corrosion fatigue resistance of a duplex stainless steel to chloride environments. The microstructural changes can be precipitation of phases such as sigma and carbides, or changes in the distribution of austenite and ferrite. The former can be important in hot forming operations while the latter is important in welding. The methods of minimizing these deleterious effects can sometimes be different from those used for austenitic stainless steel.

  13. Characteristics of cold rolled stainless steel sheets

    International Nuclear Information System (INIS)

    The cold rolling of sheets of austenitic stainless steel was investigated for different temperatures and percentages of reduction. It was also established under which conditions are the mechanical strenght and the ductility improved. It was found that this improvement is related to the characteristics of martensitic transformation taking place during rolling and through the tensile tests performed in stainless steels with different degree of martensitic transformation. The results are explained on the basis of martensite participation in the stained structure. (Author)

  14. Tritium in austenitic stainless steel vessels

    International Nuclear Information System (INIS)

    Austenitic stainless steels are normally recommended for components of hydrogen-handling equipment in applications where high in-service reliability is required. The literature leading to this recommendation is reviewed, and it is shown that AISI Type 316L stainless is particularly suitable for use in tritium-handling and storage systems. When made of this steel, the storage vessels will be extremely resistant to any degradation from tritium in both routine and accident conditions. (author)

  15. Characteristics of vacuum sintered stainless steels

    Directory of Open Access Journals (Sweden)

    Z. Brytan

    2009-04-01

    Full Text Available Purpose: In the present study duplex stainless steels were sintered in vacuum. using rapid cooling form the mixture of prealloyed and alloying element powders The purpose of this paper was to describe the obtained microstructures after sintering as well as the main mechanical properties of sintered stainless steels.Design/methodology/approach: In presented work duplex stainless steels were obtained through powder metallurgy starting from austenitic 316L or ferritic 410L prealloyed stainless steels powders by controlled addition of alloying elements powder. Prepared mixes were sintered in a vacuum furnace in 1250°C for 1h. After sintering rapid cooling (6°C/s using nitrogen under pressure was applied. Sintered compositions were subjected to structural examinations by scanning and optical microscopy and EDS analysis as well as X-ray analysis. Mechanical properties were studied through tensile tests and Charpy impact test.Findings: It was demonstrated that austenitic-ferritic microstructures with regular arrangement of both phases and absence of precipitates can be obtained with properly designed powder mix composition as well as sintering cycle with rapid cooling rate. Obtained sintered duplex stainless steels shows good mechanical properties which depends on phases ratio in the microstructure and elements partitioning (Cr/Ni between phases.Research limitations/implications: Basing on alloys characteristics applied cooling rate and powder mix composition seems to be a good compromise to obtain balanced sintered duplex stainless steel microstructures.Practical implications: Mechanical properties of obtained sintered duplex stainless steels structures are rather promising, especially with the aim of extending their field of possible applications.Originality/value: The utilization of vacuum sintering process with rapid cooling after sintering combined with use of elemental powders added to a stainless steel base powder shows its advantages in terms

  16. Studies of stainless steel exposed to sandblasting

    OpenAIRE

    Horodek Paweł; Eseev Marat K.; Kobets Andrey G.

    2015-01-01

    The influence of sandblasting on surface and subsurface of stainless steel is investigated using variable energy positron beam (VEP), positron annihilation spectroscopy (PAS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Samples of stainless steel were blasted using 110 μm particles of Al2O3 under different pressure and time duration. In the case of sandblasting for 90 s, the reduction of positron diffusion length depending on the applied pressure was observed. Sandb...

  17. Operational experience of stainless steels in seawater-cooled systems

    International Nuclear Information System (INIS)

    A study has been made of chiefly Swedish and Finnish operational experience of stainless steel in seawater and brackish water. A report is given on 23 typical cases, behind which in actual fact a considerably larger number of individual practical cases are concealed. The answer to the primary question why a standard steel of type SS 2343 (AISI 316) sometimes, contrary to expectation, remains unattacked by local corrosion is that there is usually spontaneous cathodic protection by other less noble components of carbon steel, cast iron or some copper alloy in direct contact with the stainless steel. The study confirms in other respects the adverse effect of residual oxides after welding and the beneficial of low temperature, high continuous waterflow and periodic cleaning, and of rinsing with fresh water during out-of service periods. It also verifies the additional advantages of the new high-alloy special steels which have begun to be marketed in recent years for seawater applications. (author)

  18. Tritium in austenitic stainless steel vessels

    International Nuclear Information System (INIS)

    The vessel used for the long-term storage of tritium (titanium tritide) will be of welded 316L stainless steel construction. The 316L stainless is chosen partially because of its excellent resistance, in the wrought condition, to any degradation of mechanical properties from contact with hydrogen isotopes. The work reported here was undertaken to check that the welds in the vessel would have a satisfactory response to the hydrogen isotopes. A satisfactory response has been demonstrated, leading to a general conclusion that the titanium tritide/316L stainless steel vessel combination provides an extremely reliable storage facility for the tritium

  19. Stainless steel beam-columns in case of fire

    OpenAIRE

    Lopes, Nuno; VILA REAL Paulo; da Silva, Luis; Franssen, Jean-Marc

    2007-01-01

    Eurocode 3 states that stainless steel structural members, subjected to high temperatures, must be designed with the same expressions used on carbon steel members. However, as these two materials have different constitutive laws, it should be expected that different formulae for the calculation of member stability should be used for room temperature design. In a recent work, the authors have proposed a more accurate procedure for the evaluation of the fire resistance of stai...

  20. High Mn austenitic stainless steel

    Science.gov (United States)

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  1. Two-ply yarn supercapacitor based on carbon nanotube/stainless steel core-sheath yarn electrodes and ionic liquid electrolyte

    Science.gov (United States)

    Lyu, Xiaoming; Su, Fenghua; Miao, Menghe

    2016-03-01

    Linear supercapacitors have great potential as power source in electronic textiles. However, the energy density of most yarn supercapacitors reported so far is still quite low and decreases significantly as the supercapacitor length increases. Here, we report a two-ply yarn supercapacitor based on carbon nanotube/stainless steel core-sheath yarn electrode and ionic liquid electrolyte. The use of IL gel electrolyte widens the potential window of supercapacitor from 1.0 V to 2.7 V. The carbon nanotube/stainless steel core-sheath yarn structure greatly improves the charge transport efficiency and allows the length of the linear supercapacitor to be significantly scaled up. The resulting supercapacitor has shown outstanding electrochemical performances with a high volumetric capacitance of 263.31 F cm-3 and energy density of 6.67×10-2 Wh cm-3. The two-ply yarn supercapacitors are also very flexible and strong for use as sewing thread and for making knots without significant loss of their energy storage capacity.

  2. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  3. Development of highly corrosion resistant 18-8 stainless steel for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Corrosion behavior of ultra low carbon 18-8 stainless steel was evaluated in boiling nitric acid environment. Although ultra low carbon stainless steel shows excellent corrosion resistance, it is, due to low carbon content, easily induced martensite by cold work. Increasing the strain induced martensite by cold work, the corrosion rate of 18-8 stainless steel increased. Corrosion rate is summarized as a function of stability factor with represents a resistance to martensite transformation induced by cold work and highly austenitic stabilized steel showed better corrosion resistance. Ultra low carbon 18-8 stainless steel which is highly stabilized austenite was designed and manufactured with commercial mill. The development steel showed an excellent corrosion resistance in boiling nitric acid even after cold work. The corrosion rate of the welded joint was also excellent as well as matrix

  4. Radiation-induced sensitisation of stainless steels

    International Nuclear Information System (INIS)

    The book contains the proceedings of a symposium on radiation-induced sensitization of stainless steels, which took place at Berkeley, United Kingdom, 1986. The purpose of the symposium was to examine the mechanism leading to inter-granular corrosion of 20%Cr/25% Ni/Nb stainless steel cladding of AGR fuel following irradiation. Nine papers are presented, of which three are theoretical, two papers are based upon corrosion studies of 20%Cr/25%Ni/Nb steel, and the remaining are concerned with compositional redistribution and its measurement. (U.K.)

  5. Ageing of cast stainless steel components

    International Nuclear Information System (INIS)

    The nuclear industry uses cast stainless steels in areas where it is paramount to ensure reactor safety. Investigations into the resistance of cast stainless steels to intergranular stress corrosion cracking (SCC) in simulated light water reactor conditions have shown contrary to expectation, some nuclear grade steels are indeed susceptible to SCC. The paper sets out of determine whether the information available in the various life extension databanks is sufficient for the application of the various empirical and theoretical models to the relevant safety analyses or if not, to identify areas where data is deficient. (Author)

  6. Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels

    International Nuclear Information System (INIS)

    Highlights: → LSW of dissimilar SS and CS in overlapped configuration is performed successfully. → Increasing laser power leads to change of welding mode from conduction to keyhole. → Welding mode transition causes a growth of the mechanical strength of joining. -- Abstract: This paper aims at investigating metallurgical and mechanical characterization of dissimilar laser spot welds between low carbon and austenitic stainless steel sheets. Microstructural examination, microhardness test and quasi-static tensile-shear test were performed. Mechanical properties of the welds were described in terms of peak load. The effects of laser mean power on the performance of dissimilar laser spot welds have been studied. It was found that increasing laser mean power leads to the transition of laser welding mode from conduction to keyhole. This transition causes a significant growth of the fusion zone size in the lower sheet, i.e. the low carbon steel sheet; since, the keyhole acts as an effective trap for the laser beam and will greatly increase the energy absorption from the incident laser beam. It is also shown that the fusion zone size in the weaker sheet, i.e. the low carbon steel sheet is the controlling factors in determination of the mechanical strength of dissimilar austenitic/ferritic laser spot welds.

  7. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures. PMID:9713683

  8. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 550 from SUS side, 450 from CS side) and in cast stainless steel welds (refraction angle: 450, inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 450 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  9. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 4500C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the α' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 4500C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 4500C. 18 refs., 13 figs

  10. Aging degradation of cast stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450/sup 0/C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the ..cap alpha..' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450/sup 0/C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450/sup 0/C. 18 refs., 13 figs.

  11. Irradiation effects on 17-7 PH stainless steel, A-201 carbon steel, and titanium-6-percent-aluminum-4-percent-vanadium alloy

    Science.gov (United States)

    Hasse, R. A.; Hartley, C. B.

    1972-01-01

    Irradiation effects on three materials from the NASA Plum Brook Reactor Surveillance Program were determined. An increase of 105 K in the nil-ductility temperature for A-201 steel was observed at a fluence of approximately 3.1 x 10 to the 18th power neutrons/sq cm (neutron energy E sub n greater than 1.0 MeV). Only minor changes in the mechanical properties of 17-7 PH stainless steel were observed up to a fluence of 2 x 10 to the 21st power neutrons/sq cm (E sub n greater than 1.0 MeV). The titanium-6-percent-aluminum-4-percent-vanadium alloy maintained its notch toughness up to a fluence of 1 x 10 to the 21st power neutrons/sq cm (E sub n greater than 1.0 MeV).

  12. HTPro: Low-temperature Surface Hardening of Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Somers, Marcel A. J.

    Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance.......Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance....

  13. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular, the...

  14. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present contribtion gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular, the...

  15. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  16. Explosive Surface Hardening of Austenitic Stainless Steel

    Science.gov (United States)

    Kovacs-Coskun, T.

    2016-04-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea mean indirect hardening setup. Austenitic stainless steels have high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  17. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    Science.gov (United States)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  18. Thermal aging of cast duplex stainless steels

    International Nuclear Information System (INIS)

    Cast duplex stainless steels of CR8M and CF8 are used in major components because of their superior characteristics, such as corrosion resistance, weldability and so on. But, these stainless steels are known to have tendency of thermal aging embrittlement after long term service. Therefore, mechanical properties have been investigated using Charpy impact specimens and fracture toughness specimens aged at 300∼400 C up to 40,000 hours. As the results, effects of thermal aging on mechanical properties of these stainless steels were identified and a good relationship between Charpy impact energy and fracture toughness was obtained. In addition, prediction method for Charpy absorbed energy and fracture toughness was established

  19. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    OpenAIRE

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2013-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel sau...

  20. Initial oxidation of duplex stainless steel 2205

    Energy Technology Data Exchange (ETDEWEB)

    Donik, E.; Kocijan, A.; Jenko, M. [Institute of metals and technology, Ljubljana (Slovenia)

    2009-07-01

    Due to superior mechanical and corrosion properties of duplex stainless steels which result in weight reduction of the constructions, thus contributing to the decreases in total costs and also due to the large and versatile usage of the alloy, duplex stainless steel is gradually displacing stainless steels of the AISI 300 series. Pickling of duplex stainless steel has proven to be much more difficult than that of standard austenitic grade (AISI 300 series). There is no complete agreement in the literature on scale (high temperature oxidation) dissolution mechanism in neutral pickling solutions. During annealing, duplex stainless steel is heated in annealing furnace up to 1050 C and is kept at this temperature for some time to soften the metal in order to release the work hardening induced by hot and cold rolling. The elimination of surface defects by forming the oxide scale is required to improve the corrosion resistance. Three different techniques were used to produce thin oxide layers on polished and sputter cleaned duplex stainless steel samples. They were exposed to 10{sup -5} mb pure oxygen inside the vacuum chamber, exposed to ambient conditions for 24 hours and plasma oxidized. Oxide layers thus produced were analysed using XPS depth profiling for determination of the oxide layer's composition with depth. It was found that all techniques produce oxide layer with different traces of metallic components and with chromium oxide maximum concentration shifted towards the oxide layer - bulk metal interface. Depletion of Cr in bulk immediately below the interface was also observed. Simplified ARXPS procedure was used to corroborate thickness estimates for thinnest oxide layers. (authors)

  1. Initial oxidation of duplex stainless steel 2205

    International Nuclear Information System (INIS)

    Due to superior mechanical and corrosion properties of duplex stainless steels which result in weight reduction of the constructions, thus contributing to the decreases in total costs and also due to the large and versatile usage of the alloy, duplex stainless steel is gradually displacing stainless steels of the AISI 300 series. Pickling of duplex stainless steel has proven to be much more difficult than that of standard austenitic grade (AISI 300 series). There is no complete agreement in the literature on scale (high temperature oxidation) dissolution mechanism in neutral pickling solutions. During annealing, duplex stainless steel is heated in annealing furnace up to 1050 C and is kept at this temperature for some time to soften the metal in order to release the work hardening induced by hot and cold rolling. The elimination of surface defects by forming the oxide scale is required to improve the corrosion resistance. Three different techniques were used to produce thin oxide layers on polished and sputter cleaned duplex stainless steel samples. They were exposed to 10-5 mb pure oxygen inside the vacuum chamber, exposed to ambient conditions for 24 hours and plasma oxidized. Oxide layers thus produced were analysed using XPS depth profiling for determination of the oxide layer's composition with depth. It was found that all techniques produce oxide layer with different traces of metallic components and with chromium oxide maximum concentration shifted towards the oxide layer - bulk metal interface. Depletion of Cr in bulk immediately below the interface was also observed. Simplified ARXPS procedure was used to corroborate thickness estimates for thinnest oxide layers. (authors)

  2. Embrittlement of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    To prevent hot-cracking, austenitic stainless steel welds generally contain a small percent of delta ferrite. Although ferrite has been found to effectively prevent hot-cracking, it can lead to embrittlement of welds when exposed to elevated temperatures. The aging behavior of type-308 stainless steel weld has been examined over a range of temperatures 475--850 C for times up to 10,000 hrs. Upon aging, and depending on the temperature range, the unstable ferrite may undergo a variety of solid state transformations. These phase changes creep-rupture and Charpy impact properties

  3. Measuring secondary phases in duplex stainless steels

    Science.gov (United States)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  4. Stainless Steel Microstructure and Mechanical Properties Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  5. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  6. 21 CFR 878.4495 - Stainless steel suture.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  7. Influence of metallurgical phase transformation on crack propagation of 15-5PH stainless steel and 16MND5 low carbon steel

    International Nuclear Information System (INIS)

    This study focuses on the effects of phase transformations on crack propagation. We want to understand the changes of fracture toughness during welding. In this work, fracture toughness is expressed by J-integral. There are many experimental methods to obtain the critical toughness JIC but they are impractical for our investigation during phase transformation. That is the reason why we have proposed a method coupling mechanical tests, digital image correlation and finite element simulation. The fracture tests are implemented on pre-cracked single edge notched plate sample which is easy for machining and heat conduct during phase transformation. The tests are conducted at different temperatures until rupture. Digital image correlation gives us the displacement information on every sample. Each test is then simulated by finite element where the fracture toughness is evaluated by the method G-Theta at the crack propagation starting moment found by potential drop method and digital image correlation technical. Two materials have been studied, 15Cr-5Ni martensitic precipitation hardening stainless steel and 16MND5 ferritic low carbon steel. For these two materials, different test temperatures were chosen before, during and after phase transformation for testing and failure characterization of the mechanical behavior. Investigation result shows that metallurgical phase transformation has an influence on fracture toughness and further crack propagation. For 15-5PH, the result of J1C shows that the as received 15-5PH has higher fracture toughness than the one at 200 C. The toughness is also higher than the original material after one cycle heat treatment probably due to some residual austenite. Meanwhile, pure austenite 15-5PH at 200 C has higher fracture toughness than pure martensitic 15-5PH at 200 C. For 16MND5, the result also proves that the phase transformation affects fracture toughness. The as received material has bigger J1C than the situation where it was heated

  8. Stainless chromium-nickel steels. Chapter I

    International Nuclear Information System (INIS)

    The chemical composition is tabulated of 90 chromium-nickel stainless steels and alloys given in volume %. The values are also given of the corrosion resistance of the steels and alloys. The tables show data on the surface condition or the methods of material working, types and chemical composition of the medium where corrosion resistance tests were carried out, temperature, pressure, time of tests, corrosion rates, corrosion types, and literature references. A total of 35 references is given. (J.B.)

  9. Nickel-free austenitic stainless steels for medical applications

    Directory of Open Access Journals (Sweden)

    Ke Yang and Yibin Ren

    2010-01-01

    Full Text Available The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels.

  10. Experiments on cold-formed ferritic stainless steel slender sections

    OpenAIRE

    Bock Montero, Marina; Arrayago Luquin, Itsaso; Real Saladrigas, Esther

    2015-01-01

    The usage of stainless steel in construction has been increasing owing to its corrosion resistance, aesthetic appearance and favourable mechanical properties. The most common stainless steel grades used for structural applications are austenitic steels. The main drawback of these grades relies on their nickel content (around 8–10%), resulting in a relatively high initial material cost. Other stainless steel grades with lower nickel content such as the ferritic steels offer the benefits of ...

  11. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2013-01-01

    Full Text Available Composite film of carbon nanotube (CNT and polytetrafluoroethylene (PTFE was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS bipolar plates of the proton exchange membrane fuel cell (PEMFC as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.

  12. Effect of δ-ferrite on stress corrosion cracking behavior of low-carbon stainless steel weld in high temperature water

    International Nuclear Information System (INIS)

    Stress corrosion cracking (SCC) behavior of low-carbon stainless steel welds in high temperature water has been discussed with special attention on relation to the characteristics of microstructure. To investigate the effect of δ-ferrite on SCC behavior, simulated heat-affected zone (partially melted zone) microstructure, where δ-ferrite islands were widely distributed on grain boundary, was made by induction heating up to just below melting point. From the results of constant strain SCC test in high temperature water, it has been obvious that many crack tips located at δ-ferrite. The relative crack growth rate at the δ-γ interface was estimated to be much lower than that at the γ-γ interface. Cracks remained for a considerable period of time just after they reached δ-ferrite islands which act as a crack arrester. (author)

  13. Thermodynamic and electrochemistry analysis of the zinc electrodeposition in NH4Cl–NH3 electrolytes on Ti, Glassy Carbon and 316L Stainless Steel

    International Nuclear Information System (INIS)

    Thermodynamic diagrams, X-ray diffraction and electrochemical analysis are conducted to evaluate the solution chemistry of the Zn(II)–NH4Cl–NH3–H2O system as well as the feasibility of zinc electrorecovery at different pH values. Titanium, Glassy Carbon and 316L Stainless Steel substrates are used as cathode materials. At any region of pH, multiple Zn(II) complexes coexist in solution, but only one predominates. While chloro- (ZnCl42−), ternary (ZnNH3Cl3− and Zn(NH3)3Cl+) and amino-complexes (Zn(NH3)42+) dominate the region of low, neutral and alkaline pH, respectively, the solubility of the system is limited by the formation of two solids, Zn(NH3)1.6Cl0.4(s) and ZnO(s) at neutral and alkaline conditions, respectively. The thermodynamic and electrochemical evaluations reveal that the potential required to deposit Zn(s) becomes more negative as the pH value is increased, whereby the reduction of amino-complexes demand a larger amount of energy compared to the chloro-complexes. This effect is accounted for different ligand substitution mechanisms operating for the chloro- and amino-complexes of Zn(II). The onset of the zinc deposition relies on the cathode material and is accompanied by the HER regardless of the substrate utilized. The surface of Stainless Steel electrode exhibits the smallest overpotential, followed by the Glassy Carbon, and Ti cathodes where the TiO2(s) (native film) plays a determining role during the deposition. Higher current efficiencies are obtained on every substrate as the pH value is increased. Experimental conditions around neutral pHs (5.5 < pH < 8) are potentially suitable to perform the zinc electrodeposition for this system.

  14. Welding-induced local maximum residual stress in heat affected zone of low-carbon austenitic stainless steel with machined surface layer and its influential factors

    International Nuclear Information System (INIS)

    In this study, the effects of work-hardening and pre-existing stress in the machined surface layer of low-carbon austenitic stainless steel on the welding-induced residual stress were experimentally investigated through the use of weld specimens with three different surface layers; as-cutout, mechanically-polished and electrolytically-polished. The high tensile and compressive stresses exist in the work-hardened surface layer of the as-cutout and mechanically-polished specimens, respectively. Meanwhile, no stress and work-hardened surface layer exist in the electrolytically-polished specimen. TIG bead-on-plate welding under the same welding heat input conditions was performed to introduce the residual stress into these specimens. Using these welded specimens, the distributions of welding-induced residual stress were measured by the X-ray diffraction method. Similarly, the distributions of hardness in welds were estimated by the Vickers hardness test. And then, these distributions were compared with one another. Based on the results, the residual stress in the weld metal (WM) is completely unaffected by the machined surface layer because the work-hardened surface layer disappears through the processes of melting and solidification during welding. The local maximum longitudinal tensile residual stress in the heat affected zone (HAZ) depends on the work-hardening but not on the existing stress, regardless of whether tensile or compressive, in the machined surface layer before welding. At the base metal far from WM and HAZ, the residual stress is formed by the addition of the welding-induced residual stress to the pre-existing stress in the machined surface layer before welding. The features of the welding-induced residual stress in low-carbon austenitic stainless steel with the machined surface layer and their influential factors were thus clarified. (author)

  15. Amorphous stainless steel coatings prepared by reactive magnetron-sputtering from austenitic stainless steel targets

    OpenAIRE

    Cusenza, Salvatore; Schaaf, Peter

    2009-01-01

    Stainless steel films were reactively magnetron sputtered in argon/methane gas flow onto oxidized silicon wafers using austenitic stainless-steel targets. The deposited films of about 200 nm thickness were characterized by conversion electron Mössbauer spectroscopy, magnetooptical Kerr-effect, X-ray diffraction, scanning electron microscopy, Rutherford backscattering spectrometry, atomic force microscopy, corrosion resistance tests, and Raman spectroscopy. These complementary methods were us...

  16. Interaction of bending and axial load for ferritic stainless steel RHS columns

    OpenAIRE

    Arrayago Luquin, Itsaso; Picci, F; Mirambell Arrizabalaga, Enrique; Real Saladrigas, Esther

    2015-01-01

    Stainless steels are ideal for sustainable structural performances due to their excellent corrosion resistance, appropriate mechanical properties, aesthetic appearance and easy maintenance. However, the nonlinear behaviour and strain-hardening effects characterizing these materials make them different from carbon steel and some specific guidance is necessary. Although some investigations regarding the behaviour of stainless steel beam-columns subjected to combined compression and bending mome...

  17. Bolted connections of cold-formed stainless steel at elevated temperatures and post-fire condition

    OpenAIRE

    Cai, Yancheng; 蔡炎城

    2013-01-01

    The structural behaviour of single shear bolted connections and double shear bolted connections of cold-formed stainless steel at elevated temperatures and post-fire condition has been investigated in this study. The current design rules on bolted connections of cold-formed stainless steel are mainly based on those of carbon steel, and are applicable for room (ambient) temperature condition only. These design rules may not be applicable for elevated temperatures. Therefore, design guidelines ...

  18. Hydrogen gas embrittlement of selected stainless steels

    International Nuclear Information System (INIS)

    Hydrogen gas embrittlement of selected stainless steels: metastable 18-8, (α+γ) IN 744 and γ' or N-hardened austenites, has been investigated means of the triaxial disk pressure test at various pressure increase rates, at RT or sometimes -500C and +1000C. Test are supplemented with SEM and magnetic phase determination

  19. Austenitic stainless steels for cryogenic service

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  20. Corrosion of plasma nitrided austenitic stainless steels

    International Nuclear Information System (INIS)

    The corrosion behaviour of plasma nitrided austenitic stainless steel grades AISI 304, 316 and 321 was studied at various temperatures. Certain plasma nitriding cycles included a post-oxidation treatment. The corrosion rates were measured using linear polarisation technique. Results showed that corrosion rate increased with the plasma nitriding temperature. Minimum deterioration occurred at 653K. (author). 2 tabs., 4 figs., 10 refs

  1. Microbially Influenced Corrosion of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deuk; Ryu, Seung Ki; Kim Young Ho [POSCO Techanical Researh Laboratories, Pohang (Korea, Republic of)

    1996-06-25

    Microbially Influenced Corrosion(MIC) is often a significant factor in controlling the long-term performance of most structural materials in industrial applications. This papers cover MIC mechanism and evaluation of stainless steels in soil and sea water environments. Papers also cover detection, monitoring and mitigation of MIC, biocides and treatments. (author). 28 refs., 2 tabs., 5 figs.

  2. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...

  3. Irradiation creep of stainless steel in bending

    International Nuclear Information System (INIS)

    The development is described of a test to measure irradiation enhanced creep in bending of 20% cold-worked Type-316 stainless steel. The test will be irradiated in the experimental fast reactor EBR-II. The rationale used in design selection is described. The selected beam designs, the supportive tests in other stress states and the measurement techniques are described in detail. (Auth.)

  4. Irradiation creep of stainless steel in bending

    International Nuclear Information System (INIS)

    The development is described of a test to measure irradiation enhanced creep in bending of 20% cold-worked Type-316 stainless steel. The test will be irradiated in the experimental fast reactor EBR-II. The rationale used in design selection is described. The selected beam designs, the supportive tests in other stress states and the measurement techniques are described in detail

  5. Austenitic stainless steels for cryogenic service

    International Nuclear Information System (INIS)

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K

  6. The energy benefit of stainless steel recycling

    International Nuclear Information System (INIS)

    The energy used to produce austenitic stainless steel was quantified throughout its entire life cycle for three scenarios: (1) current global operations, (2) 100% recycling, and (3) use of only virgin materials. Data are representative of global average operations in the early 2000s. The primary energy requirements to produce 1 metric ton of austenitic stainless steel (with assumed metals concentrations of 18% Cr, 8% Ni, and 74% Fe) is (1) 53 GJ, (2) 26 GJ, and (3) 79 GJ for each scenario, with CO2 releases totaling (1) 3.6 metric tons CO2, (2) 1.6 metric tons CO2, and (3) 5.3 metric tons CO2. Thus, the production of 17 million metric tons of austenitic stainless steel in 2004 used approximately 9.0x1017 J of primary energy and released 61 million metric tons of CO2. Current recycling operations reduce energy use by 33% (4.4x1017 J) and CO2 emissions by 32% (29 million tons). If austenitic stainless steel were to be produced solely from scrap, which is currently not possible on a global level due to limited availability, energy use would be 67% less than virgin-based production and CO2 emissions would be cut by 70%. The calculation of the total energy is most sensitive to the amount and type of scrap fed into the electric arc furnace, the unit energy of the electric arc furnace, the unit energy of ferrochromium production, and the form of primary nickel

  7. Stainless steel forgings for nuclear chemical plants

    International Nuclear Information System (INIS)

    This Specification covers detailed requirements for the supply of austenitic stainless steel forgings used in radioactive and corrosive areas within the Nuclear Industry. With the exception of 316S51 the materials specified are all suitable for contact with nitric acid, 316S51 being included as suitable for use in contact with sodium and other alkali metals at elevated temperatures. (author)

  8. Sintering and characterization of YAG dispersed ferritic stainless steels

    International Nuclear Information System (INIS)

    The present study investigates the effect of yttrium aluminium garnet (YAG) addition on the densification, mechanical, tribological and corrosion behaviour of ferritic (434L) stainless steels. The composites were sintered at both solid-state (1200 deg. C) and supersolidus (1400 deg. C) sintering conditions. Supersolidus sintering results in superior densification, hardness and corrosion resistance of both straight 434L stainless steel as well as YAG reinforced 434L stainless steels. The addition of YAG to 434L stainless steels at supersolidus sintered conditions improves the strength and wear resistance of 434L stainless steels without significantly degrading the corrosion performance

  9. Stainless steels: general considerations and rates of crack growth

    International Nuclear Information System (INIS)

    This report describes the different types of stainless steels, and presents the laws governing the rates of crack growth for several stainless steels extensively used for the manufacture of structures in nuclear power plants. The laws are not discussed in detail in the report. After a brief review of the development of stainless steels, the main categories of stainless steels, their mechanical characteristics and corrosion resistance, are presented. Finally, the rates of crack growth are presented for various stainless steels, mainly austenitic. The study overall aim is an investigation of the cracking in the 900 MWe primary pump thermal barriers and shafts

  10. Experimental and Theoretical Investigations of Hot Isostatically Pressed-Produced Stainless Steel/High Alloy Tool Steel Compound Materials

    Science.gov (United States)

    Lindwall, Greta; Flyg, Jesper; Frisk, Karin; Sandberg, Odd

    2011-05-01

    Consolidation of tool steel powders and simultaneous joining to a stainless 316L steel are performed by hot isostatic pressing (HIP). Two tool steel grades are considered: a high vanadium alloyed carbon tool steel, and a high vanadium and chromium alloyed nitrogen tool steel. The boundary layer arising during diffusion bonding is in focus and, in particular, the diffusion of carbon and nitrogen over the joint. Measurements of the elemental concentration profiles and corrosion tests by the double loop-electrochemical potentiokinetic reactivation (DL-EPR) method are performed. Comparative calculations with the DICTRA software are performed and are found to be in agreement with the experimental results. It is found that the carbon tool steel grade has a more critical influence on the corrosion resistance of the stainless 316L steel in comparison to the nitrogen tool steel grade.

  11. Aging degradation of cast stainless steels: Effects on mechanical properties

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water operating conditions. Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320, and 2900C. The results indicate that thermal aging increases the tensile strength and decreases the impact energy, J/sub IC/, and tearing modulus of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The fracture toughness results are consistent with the Charpy-impact data, i.e., the relative reduction in J/sub IC/ is similar to the relative decrease in impact energy. The ferrite content and concentration of C in the steel have a strong effect on the overall process of low-temperature embrittlement. The low-carbon CF-3 steels are the most resistant and Mo-containing CF-8M steels are most susceptible to embrittlement. Weakening of the ferrite/austenite phase boundaries by carbide precipitates has a significant effect on the kinetics and extent of embrittlement of the high-carbon CF-8 and CF-8M steels, particularly after aging at temperatures ≥4000C. The influence of N content and distribution of ferrite on loss of toughness are discussed. The data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280 to 4500C, i.e., extrapolation of high-temperature data to reactor temperatures may not be valid for some compositions of cast stainless steel

  12. Nickel-free austenitic stainless steels for medical applications

    OpenAIRE

    Ke Yang and Yibin Ren

    2010-01-01

    The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainl...

  13. High temperature decontamination of stainless steel surfaces

    International Nuclear Information System (INIS)

    Dilute Chemical Decontamination process that is carried out at low temperatures (<90 °C) is effective in obtaining good decontamination factors (DFs) on carbon steel (CS) system surfaces of PHWRs as the formulation is efficient in dissolving magnetite present on CS surfaces. However, this low temperature dilute chemical decontamination process is not effective in achieving appreciable DFs on stainless steel (SS) surfaces of nuclear power reactors as it is not efficient in dissolving Cr and Ni substituted oxides present on these surfaces. Hence, a high temperature process was evaluated for the effective decontamination of SS surfaces. Among the various formulations evaluated, formulation consisting of 5 mM NTA and 10 mM N2H4 at 160 °C was found to be appropriate for high temperature decontamination application. Dissolution of various oxides like, magnetite (Fe3O4), mixed ferrites (NiFe2O4, ZnFe2O4, MgFe2O4 etc), Cr oxide (Cr2O3), bonaccordite (Ni2FeBO5) etc. was carried out in NTA at 160 °C. Significant increase in dissolution rate was observed for these oxides at 160 °C. On increasing the temperature from 80 to 180 °C, the dissolution rate of Fe3O4 increased about 6 fold. The optimised formulation (5 mM NTA with 10 mM N2H4) was employed for removing the oxide formed on SS-304, SS-316, SS-403 and SS-410 under simulated reactor water chemistry conditions. Oxide deposits from all the above surfaces could be completely removed by this high temperature process. This paper gives the summary of the results from the laboratory experiments and a simulated high temperature decontamination process. (author)

  14. Tensile-property characterization of thermally aged cast stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K. [Argonne National Lab., IL (United States)

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  15. Tensile-property characterization of thermally aged cast stainless steels

    International Nuclear Information System (INIS)

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components

  16. Flow Behavior Modeling of a Nitrogen-Alloyed Ultralow Carbon Stainless Steel During Hot Deformation: A Comparative Study of Constitutive Models

    Science.gov (United States)

    Shang, Xuekun; He, An; Wang, Yanli; Yang, Xiaoya; Zhang, Hailong; Wang, Xitao

    2015-10-01

    The present study focuses on comparison of accuracy of Johnson-Cook, modified Johnson-Cook, and modified Zerilli-Armstrong constitutive models to predict flow behavior of a nitrogen-alloyed ultralow carbon stainless steel at evaluated temperature. True strain-true stress data obtained from hot compression experiments performed with temperatures of 1223-1423 K and strain rates of 0.001-10 s-1 on a Gleeble-3500 thermal-simulator were employed to develop these three models. Furthermore, the ability of the three models to predict the outcomes was evaluated by comparing the correlation coefficient, absolute average related error, ability to track the experimental flow stress, numbers of material constants, and computational time required to develop models. The results show that the modified Johnson-Cook has a better description of the flow behaviors of the studied steel than the other two models. However, under certain conditions, the modified Zerilli-Armstrong model has accuracy comparable to the modified Johnson-Cook model.

  17. Production of Ti-containing 316L stainless steel in a crucible induction furnace

    International Nuclear Information System (INIS)

    The production of type 316L stainless steel with titanium was studied. The stainless steel was produced in an induction furnace using 1010 steel as starting material. The carbon and impurities contents of the steel were lowered by means of the addition of iron oxide and lime respectively. Finally, the last slag was removed before adding nickel and ferroalloys. Experimental results showed the wear resistance of the crucibles with different contents of magnamix 363 and the corrosion resistance of the steel obtained caused by a solution of sulfuric acid. (author)

  18. High specialty stainless steels and nickel alloys for FGD dampers

    Energy Technology Data Exchange (ETDEWEB)

    Herda, W.R.; Rockel, M.B.; Grossmann, G.K. [Krupp VDM GmbH, Werdohl (Germany); Starke, K. [Mannesmann-Seiffert GmbH, Beckum (Germany)

    1997-08-01

    Because of process design and construction, FGD installations normally have bypass ducts, which necessitates use of dampers. Due to corrosion from acid dew resulting from interaction of hot acidic flue gases and colder outside environments, carbon steel cannot be used as construction material under these specific conditions. In the past, commercial stainless steels have suffered by pitting and crevice corrosion and occasionally failed by stress corrosion cracking. Only high alloy specialty super-austenitic stainless steels with 6.5% Mo should be used and considered for this application. Experience in Germany and Europe has shown that with regard to safety and life cycle cost analysis as well as providing a long time warranty, a new specialty stainless steel, alloy 31--UNS N08031--(31 Ni, 27 Cr, 6.5 Mo, 0.2 N) has proven to be the best and most economical choice. Hundreds of tons in forms of sheet, rod and bar, as well as strip (for damper seals) have been used and installed in many FGD installations throughout Europe. Under extremely corrosive conditions, the new advanced Ni-Cr-Mo alloy 59--UNS N06059--(59 Ni, 23 Cr, 16 Mo) should be used. This paper describes qualification and workability of these alloys as pertains to damper applications. Some case histories are also provided.

  19. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadegan, M. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Feng, A.H. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Saeid, T. [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of); Shen, J. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Assadi, H. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  20. Phase Transformation in Cast Superaustenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Nathaniel Steven Lee Phillips

    2006-12-12

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  1. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  2. Tritium Depth Profiles in 316 Stainless Steel

    Science.gov (United States)

    Torikai, Yuji; Murata, Daiju; Penzhorn, Ralf-Dieter; Akaishi, Kenya; Watanabe, Kuniaki; Matsuyama, Masao

    To investigate the behavior of hydrogen uptake and release by 316 stainless steel (SS316), as-received and finely polished stainless steel specimens were exposed at 573 K to tritium gas diluted with hydrogen. Then tritium concentration in the exposed specimens was measured as a function of depth using a chemical etching method. All the tritium concentration profiles showed a sharp drop in the range of 10 μm from the top surface up to the bulk. The amount of tritium absorbed into the polished specimens was three times larger than that into the as-received specimen. However, the polishing effects disappeared by exposing to the air for a long time.

  3. Warm compacting behavior of stainless steel powders

    Institute of Scientific and Technical Information of China (English)

    肖志瑜; 柯美元; 陈维平; 召明; 李元元

    2004-01-01

    The warm compacting behaviors of four different kinds of stainless steel powders, 304L, 316L, 410L and 430L, were studied. The results show that warm compaction can be applied to stainless steel powders. The green densities and strengths of compacts obtained through warm compaction are generally higher than those obtained through cold compaction. The compacting behaviors in warm compaction and cold compaction are similar.Under the compacting pressure of 700 MPa, the warm compacted densities are 0. 10 - 0.22 g/cm3 higher than the cold compacted ones, and the green strengths are 11.5 %-50 % higher. The optimal warm compacting temperature is 100 - 110 ℃. In the die wall lubricated warm compaction, the optimum internal lubricant content is 0.2%.

  4. Cast alumina forming austenitic stainless steels

    Science.gov (United States)

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  5. Studies of stainless steel exposed to sandblasting

    Directory of Open Access Journals (Sweden)

    Horodek Paweł

    2015-12-01

    Full Text Available The influence of sandblasting on surface and subsurface of stainless steel is investigated using variable energy positron beam (VEP, positron annihilation spectroscopy (PAS, scanning electron microscopy (SEM, and atomic force microscopy (AFM. Samples of stainless steel were blasted using 110 μm particles of Al2O3 under different pressure and time duration. In the case of sandblasting for 90 s, the reduction of positron diffusion length depending on the applied pressure was observed. Sandblasting during 30 s leads only to the reduction of positron diffusion length to about 60 nm for all samples. Positron lifetimes close to 170 ps measured using positrons emitted directly from the source point to the presence of vacancies on the dislocation lines. SEM and AFM images show that surface roughness depends rather on pressure of sandblasting than time of exposition.

  6. Thermal ageing of duplex stainless steels

    International Nuclear Information System (INIS)

    The evolution of the mechanical properties of Mobearing anf Mo-free cast duplex stainless steels, induced by long term ageing in the range 300-400 deg C, has been studied in relation with the evolution of their microstructure. The unmixing of the ferritic Fe-Cr-Ni, solid solution by three-dimensional (sponge-like) spinodal decomposition and the precipitation of intermetallic G-phase particles are the main characteristics of this microstructural evolution

  7. Fatigue fracture modes of a stainless steel

    International Nuclear Information System (INIS)

    The influence of strain hardening and martensite phase transformation on the fatigue fracture regions (pulsative tension) of a Stainless Steel type AISI 316 was investigated. This lead to the conclusion that the greater austenite strain hardening level only favours the occurrence of a brittle fracture. Also, in as much as the static induced martensite is concerned, a direct influence on the failure process was not observed, whereas, apparently, the one transformed under cyclic loading has no contribution to the rupture mechanisms. (author)

  8. Cyclic deformation of duplex stainless steels

    OpenAIRE

    Mateo García, Antonio Manuel; Gironés, Ana

    2011-01-01

    Duplex stainless steels configure a family of metallic alloys that combined elevated mechanical properties with improved corrosion resistance when compared to standard austenitic grades. This excellent combination of properties leads to their use under many different applications, particularly in the fields of chemical, petrochemical, pulp and paper industries. Moreover, these applications usually involve cyclic loading, and consequently the study of fatigue properties has a great significanc...

  9. Ultrasonic examination of cast stainless steel

    International Nuclear Information System (INIS)

    We present the recent results of a program between CEA and EDF concerning ultrasonic examination of cast stainless steel. We compare the results obtained with different transducers, in particular large aperture composite transducers. We present different signal processing techniques (Spit Spectrum Processing) and image processing, developed to increase signal to noise ratio. Detection capabilities for artificial defects in different structures (equiaxed, columnar structures) are discussed. (authors). 2 refs., 15 figs

  10. Complex Protection of Vertical Stainless Steel Tanks

    OpenAIRE

    Fakhrislamov Radik Zakievich

    2014-01-01

    The authors consider the problem of fail-safe oil and oil products storage in stainless steel tanks and present the patented tank inner side protection technology. The latter provides process, ecological and fire safety and reducing soil evaporation of oil products, which is a specific problem. The above-mentioned technology includes corrosion protection and heat insulation protection providing increase of cover durability and RVS service life in general. The offered technological protection ...

  11. Stress corrosion cracking of L-grade stainless steel in high temperature water

    International Nuclear Information System (INIS)

    L-grade stainless steels such as 316NG, SUS316L and SUS304L are used for the BWR reactor internals and re-circulation pipes. The L-grade stainless steels are known as typical SCC resistant materials because they are hardly thermally sensitized in usual welding process due to its lower carbon contents. However SCC of the L-grade material components were recently reported. This paper summarizes the recent knowledge and reports about the SCC behavior of L-grade stainless steels and its mitigation and improvement methods in BWR primary water condition. (author)

  12. SRS stainless steel beneficial reuse program

    Energy Technology Data Exchange (ETDEWEB)

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  13. SCC of stainless steel under evaporative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, H.; Arnvig, P.E.; Wasielewska, W.; Wegrelius, L.; Wolfe, C. [Avesta Sheffield AB, Avesta (Sweden)

    1998-12-31

    Three different test methods have been used to assess the susceptibility of different stainless steel grades to SCC under evaporative and immersed conditions. The methods employed were the drop evaporation test, the wick test and a high temperature, high pressure test simulating a feedwater heater tubing application in power plants. The alloys investigated were commercially produced austenitic and duplex stainless steels varying in chemical composition, plus one copper-nickel alloy. The resistance of austenitic stainless steels towards SCC increased by increasing the content of Ni, Mo and Cr, thus the super austenitic 654SMO{reg_sign} (uns32654) did not show any cracking in any of the three tests. The super austenitic 254SMO{reg_sign} (UNS31254) revealed only slight SCC in the simulated feed water heater tubing application while the equivalent N08367 revealed severe pitting and cracking. The drop evaporation test exhibited the most severe test conditions characterized by thermally induced fatigue effects, sensibility to onset of corrosion and severe acidic conditions generated under deposits on the test specimen. Some factors in stress corrosion cracking tests such as thermal fatigue, diffusion, heat transfer and stress condition, are discussed with regard to their influence on the test results.

  14. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode.

    Science.gov (United States)

    Bajracharya, Suman; ter Heijne, Annemiek; Dominguez Benetton, Xochitl; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak

    2015-11-01

    Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3 mM d(-1), along with methane and hydrogen at -1.1 V/Ag/AgCl. Over 160 days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45 days of run-time in the C. ljungdahlii reactor, 2.4 mM d(-1) acetate production was achieved at -0.9 V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates. PMID:26066971

  15. The effects of grain boundary precipitates on cryogenic properties of aged 316-type stainless steels

    International Nuclear Information System (INIS)

    It is documented that sensitization in stainless steels results from the formation of grain boundary carbides that deplete the Cr in the vicinities of the grain boundaries. Sensitized austenitic stainless steels become brittle at cryogenic temperatures. Low carbon stainless steels are considered to be resistant to aging embrittlement. Our study of low carbon stainless steels demonstrates that aging at sensitization temperatures results in the formation of grain boundary intermetallic compounds or nitrides instead of carbides. The aging marginally change the 4 K yield strength, but decreases the 4 K stress intensity factor. The change of the yield strength is related to the pinning of the dislocations by solute atoms. The reduction of the stress intensity factor is attributed to the formation of the grain boundary precipitates. The sizes and amount of the grain boundary precipitate are so small that the 4 K crack growth rate at small ΔK is not affected.

  16. Friction Stir Welding of austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    C. Meran

    2010-11-01

    Full Text Available Purpose: Friction Stir Welding (FSW was applied austenitic stainless steels that is difficult to weld using FSW technique. Proper weld can be obtained by using appropriate welding parameter. In this paper, the effect of different tool rotational speeds, traverse speeds, compressive tool forces, and tool angles was investigated.Design/methodology/approach: The dimension of 3 mm x 75 mm x 150 mm two stainless steel plates were used and butt welded by FSW method using 7.5 kW vertical head milling machine. All welded test specimens were prepared perpendicular to the weld line in order to determine the mechanical properties and tested with 12 MPa/sec stress rate under stress control using a servo-hydraulic Instron 8801. Microstructure of the welding zone and macrograph of the heat affected zone was investigated by SEM.Findings: The average grain size in the SZ was between 3 and 7 μm, which is smaller than that in the BM. The average grain size in the HAZ was about 20 μm, which is half of that in the BM.Fine-grained microstructures are present the welded area. The dark bands observed in the weld zone were also detected the microstructure of the transition zone. Dark and narrow bands do not consist of pores or cavities. It was determined that these bands do not process an ultra fine-grained microstructure. They are Cr2O3 oxide layers which over the surface of stainless steels may have been ruptured during friction stir welding and may form bands inside the welding bead due to stirring.Research limitations/implications: The proper cooling system helps to prevent the stirrer tool from the deformation.Practical implications: The strength of the welded zone of AISI 304 stainless steel can be easily found by implementing welding design parameters and high quality joints can be obtained.Originality/value: This study was performed in the frame of the TUBITAK project no 106M504, „Friction Stir Weldability of Stainless Steels and Investigation of the

  17. VISUALIZATION OF ULTRASONIC-BEAM DISTORTION IN ANISOTROPIC STAINLESS STEEL

    OpenAIRE

    Claytor, T.; Kupperman, D.; Reimann, K.

    1985-01-01

    The inspection of cast stainless steel and stainless steel piping with a weld overlay is an important nondestructive testing problem in the nuclear industry. The ultrasonic inspection of these components is complicated by their coarse-grain and textured microstructure, which distorts the ultrasonic beam. The distortion of pulsed ultrasonic beams produced by conventional piezoelectric transducers mounted on stainless steel samples was measured by scanning the back surface of the samples with a...

  18. Buckling response of ferritic stainless steel columns at elevated temperatures

    OpenAIRE

    Afshan, S; Gardner, L; Baddoo, NR

    2013-01-01

    This paper presents a numerical study on the buckling behaviour of ferritic stainless steel columns in fire. Finite element models were developed and validated against existing test results to predict the elevated temperature non-linear response of ferritic stainless steel columns. A total of nine austenitic and three ferritic stainless steel column tests were replicated using the finite element analysis package ABAQUS. Parametric studies were performed to investigate the effects of variation...

  19. Corrosion fatigue of a superduplex stainless steel weldment

    OpenAIRE

    Comer, Anthony John

    2004-01-01

    Superduplex stainless steels have superior mechanical and corrosion properties compared to austenitic stainless steels such as the grade 300 series. This is a result of a microstructure consisting of roughly equal percentages of austenite (y) and ferrite (a) and negligible inclusion content. As a result, super duplex stainless steels are increasingly being used in the offshore oil and gas industries. It is also envisaged that they will find application in the emergent renewable energy sec...

  20. Sinter-hardening process applicable to stainless steels

    OpenAIRE

    M. Rosso; Z. Brytan; L.A. Dobrzański

    2007-01-01

    Purpose: of this paper was to describe sintered duplex stainless steels manufactured in sinter-hardening process and its usability in field of stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, ferritic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies apart from the preparation of mixes, Schaeffler’s diagram was taken into consideration. Pr...

  1. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    OpenAIRE

    Oladayo OLANIRAN; Peter Apata OLUBAMBI; Benjamin Omotayo ADEWUYI; Joseph Ajibade OMOTOYINBO; Ayodeji Ebenezar AFOLABI; Davies FOLORUNSO; Adekunle ADEGBOLA; Emanuel IGBAFEN

    2015-01-01

    Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction) dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr) and Nickel (Ni) were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail...

  2. Thermodynamic calculation of phase equilibria in stainless steels

    OpenAIRE

    Klančnik G.; Petrovič Steiner D.; Medved J.

    2012-01-01

    In this paper two examples of thermodynamic investigation of stainless steels using both, experimental and modeling approach are described. The ferritic-austenitic duplex stainless steel and austenitic stainless steel were investigated using thermal analysis. The complex melting behavior was evident for both alloy systems. Experimentally obtained data were compared with the results of the thermodynamic calculations using the CALPHAD method. The equilibrium thermal events were also descr...

  3. Characterization of thermal aging of duplex stainless steel by SQUID

    International Nuclear Information System (INIS)

    Thermal aging is a growing concern for long-term-aged duplex stainless steel piping in nuclear power plants. Superconducting QUantum Interference Device (SQUID) was used for the detection of thermal aging of SUS329 rolled duplex stainless steel and SCS16 cast duplex stainless steel. It was found that the SQUID output signal pattern in the presence of AC magnetic field applied to the specimen was sensitive to the changes in electromagnetic properties due to thermal aging

  4. Reliability analysis of structural stainless steel design provisions

    OpenAIRE

    Afshan, S; Francis, P.; Baddoo, NR; Gardner, L.

    2015-01-01

    Since the establishment of the Eurocode design provisions for structural stainless steel, a considerable amount of both statistical material data and experimental results on structural elements has been generated. In light of this, the current partial resistance factors recommended in EN 1993-1-4 for the design of stainless steel elements are re-evaluated. First, following an analysis of material data from key stainless steel producers, representative values of the over-strength and the coeff...

  5. Electrochemical aspects of stainless steel behaviour in biocorrosive environment

    International Nuclear Information System (INIS)

    Electrochemical measurements have been used to evaluate and follow, to understand and control microbial induced corrosion of stainless steels. Results include seawater loop tests and laboratory-based microbiological experiments. With natural flowing seawater, impedance spectroscopy measurements have been used to evaluate and follow biofilms on stainless steel tube-electrodes. With batch cultures of single bacterial strain (Sulphate Reducing Bacteria), open-circuit potential measurements and polarization curves performed on 316 L and 430 Ti stainless steels, have shown that the corrosion behaviour of these stainless steels is mainly dependent on the sulphide content of the culture media

  6. Achieving reduced fouling of cooling water exchangers with stainless steel tubes

    International Nuclear Information System (INIS)

    Good performance of cooling water heat exchangers plays a vital role in the over all energy efficiency of a chemical plant. Heavy fouling on carbon steel tubes of the cooling water exchangers was causing poor performance and frequent cleaning requirement. The carbon steel tubes were replaced with stainless steel tubes. Improved performance was achieved and cleaning frequency reduced. The paper covers the details of study and methodology applied for the above changes along with summary of results. (author)

  7. Complex Protection of Vertical Stainless Steel Tanks

    Directory of Open Access Journals (Sweden)

    Fakhrislamov Radik Zakievich

    2014-03-01

    Full Text Available The authors consider the problem of fail-safe oil and oil products storage in stainless steel tanks and present the patented tank inner side protection technology. The latter provides process, ecological and fire safety and reducing soil evaporation of oil products, which is a specific problem. The above-mentioned technology includes corrosion protection and heat insulation protection providing increase of cover durability and RVS service life in general. The offered technological protection scheme is a collaboration of the author, Steel Paint GmbH firm and JSC “Koksokhimmontazhproyekt”. PU foam unicomponent materials of Steel Paint GmbH firm provide the protection of tank inner side and cover.

  8. Austenitic stainless steel patterning by plasma assisted diffusion treatments

    International Nuclear Information System (INIS)

    The new concept of surface texturing or surface patterning on austenitic stainless steel by plasma assisted diffusion treatment is presented in this paper. It allows the creation of uniform micro or nano relief with regularly shaped asperities or depressions. Plasma assisted diffusion treatments are based on the diffusion of nitrogen and/or carbon in a metallic material at moderate to elevated temperatures. Below 420 deg. C, a plasma assisted nitriding treatment of austenitic stainless steel produces a phase usually called expanded austenite. Expanded austenite is a metastable nitrogen supersaturated solid solution with a disordered fcc structure and a distorted lattice. The nitrided layer with the expanded austenite is highly enriched in nitrogen (from 10 to 35 at%) and submitted to high compressive residual stresses. From mechanical consideration, it is shown that the only possible deformation occurs in the direction perpendicular to the surface. Such an expansion of the layer from the initial surface of the substrate to the gas phase is used here for surface patterning of stainless steel parts. The surface patterning is performed by using masks (TEM grid) and multi-dipolar plasmas.

  9. Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    X.J.Lee; L.Y.Lee; L.P.Y.Foo; K.W.Tan; D.G.Hassell

    2012-01-01

    The present work covers the preparation of carbon-based nanosorbents by ethylene decomposition on stainless steel mesh without the use of external catalyst for the treatment of water containing nickel ions (Ni2+).The reaction temperature was varied from 650 to 850℃,while reaction time and ethylene to nitrogen flow ratio were maintained at 30 min and 1:1 cm3/min,respectively.Results show that nanosorbents synthesised at a reaction temperature of 650℃ had the smallest average diameter (75 nm),largest BET surface area (68.95m2/g) and least amount of impurity (0.98 wt.% Fe).A series of batch sorption tests were performed to evaluate the effects of initial pH,initial metal concentration and contact time on Ni2+ removal by the nanosorbents.The equilibrium data fitted well to Freundlich isotherm.The kinetic data were best correlated to a pseudo second-order model indicating that the process was of chemisorption type.Further analysis by the Boyd kinetic model revealed that boundary layer diffusion was the controlling step.This primary study suggests that the prepared material with Freundlich constants compared well with those in the literature,is a promising sorbent for the sequestration of Ni2+ in aqueous solutions.

  10. Crossed-Wire Laser Microwelding of Pt-10 Pct Ir to 316 Low-Carbon Vacuum Melted Stainless Steel: Part I. Mechanism of Joint Formation

    Science.gov (United States)

    Zou, G. S.; Huang, Y. D.; Pequegnat, A.; Li, X. G.; Khan, M. I.; Zhou, Y.

    2012-04-01

    The excellent biocompatibility and corrosion properties of Pt alloys and 316 low-carbon vacuum melted (LVM) stainless steel (SS) make them attractive for biomedical applications. With the increasing complexity of medical devices and in order to lower costs, the challenge of joining dissimilar materials arises. In this study, laser microwelding (LMW) of crossed Pt-10 pct Ir to 316 LVM SS wires was performed and the weldability of these materials was determined. The joint geometry, joining mechanism, joint breaking force (JBF), and fracture modes were investigated using optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and microtensile testing. It was shown that the mechanisms of joint formation transitioned from (1) brazing, (2) a combination of brazing and fusion welding, and (3) fusion welding with increasing pulsed laser energy. The joints demonstrated various tensile failure modes including (1) interfacial failure below a peak power of 0.24 kW, (2) partial interfacial failure that propagated into the Pt-Ir wire, (3) failure in the Pt-Ir wire, and (4) failure in the SS wire due to porosity and severe undercutting caused by overwelding. During this study, the optimal laser peak power range was identified to produce joints with good joint geometry and 90 pct of the tensile strength of the Pt-10 pct Ir wire.

  11. Creviced SSRT tests on stress corrosion cracking in a simulated BWR environmental of low carbon austenitic stainless steels and their weld metals

    International Nuclear Information System (INIS)

    Creviced SSRT tests were conducted on low carbon austenitic stainless steels and their weld metals in a simulated BWR environment. When the materials were non-sensitized, the most of SCC is recognized EGSCC. From the SEM observation at high magnification indicated the presence of micro-cracks whose length is less than 5 μm in all cases. TEM observation of micro-cracks shows us the Cr-rich point at the non-propagating crack tip. Examination was made of the effects of the exposure time prior to loading, applied strain, cold work, DO level, chemical compositions of base materials and volume fraction of ferrite in weld metals obtained from creviced SSRT. At less than 20% of rolling reduction, no effects cold work could be seen, but at 30% of rolling reduction, high SCC susceptibility was apparent. A comparison of SCC susceptibility for type 304NG and 316NG indicated fewer cracks in the type 304NG. Thus possibly, Cr contents or the sub-structure may be related to SCC initiation. In weld metals, SCC occurs in the austenite phase or at the interface between austenite and ferrite. Weld metal with medium amount of ferrite has been shown to exhibit high SCC resistance since the ferrite network functions to be an obstacle for crack propagation. (author)

  12. Bacterial inhibition of silver-containing stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, W.C. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Chang, S.M.; Lin, J.D.; Tseng, I.S.; Wu, J.K. [National Taiwan Ocean Univ., Taiwan (China). Inst. of Materials Engineering

    2010-07-01

    In this study, silver (Ag) was added to AlSl 316 austenitic 2205 duplex and 430 ferritic stainless steels as a means of inhibiting bacterial contamination. Three Ag-containing stainless steels were prepared using vacuum melting techniques. The influence of the Ag addition on corrosion resistance, bacterial inhibition, and mechanical properties was investigated. A study of the Ag-containing stainless steel microstructures demonstrated that Ag precipitates as small particles on the steel matrix surface. The precipitates act as anodes in the local action cell in the presence of bacteria. Ag dissolution mechanisms from the Ag precipitates on the Ag-containing stainless steels in the presence of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were also discussed. Results of the study suggested that Ag-containing stainless steels may be used in areas where hygiene is a significant concern.

  13. Ion nitriding in 316=L stainless steel

    International Nuclear Information System (INIS)

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate CN/CFe near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  14. Electron beam welding of austenitic stainless steel

    International Nuclear Information System (INIS)

    Austenitic stainless steel is used for liquid metal-cooled fast breeder reactors with operating temperature of about 550 deg C, because its elevated temperature properties are excellent and the results of use are abundant. The welded joints in LMFBRs require high degree of safety, and the application of electron beam welding is studied to make welding joints of high quality. When the inelastic deformation in a certain limit is allowed as prescribed in the ASME Code, Case 1592, the elevated temperature properties of the welded joints of structures are particularly important. The materials tested were 10 mm thick plates of SUS 304, SUS 316 and SUS 321 steels, and 150 kV - 40 mA electron beam welder was employed. The method of welding was one side, one pass Uranami welding, and first, the appropriate welding conditions were decided. Elevated temperature tensile test was carried out on the parent materials and welded joints by electron beam welding and coated arc welding. Creep rupture test and elevated temperature fatigue test were also carried out. In EB-welded austenitic stainless steel, delta ferrite is scattered finely in austenite, and its quantity is very small and less than 1.5%. The tensile strength and 0.2% proof stress of EB-welded joints are almost same as those of parent materials. The creep rupture and fatigue properties of the joints are also close to those of parent materials. (Kako, I.)

  15. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.

    Science.gov (United States)

    Tulinski, Maciej; Jurczyk, Mieczyslaw

    2012-11-01

    In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites with hydroxyapatite are presented and characterized by means of X-ray diffraction and optical profiling. The samples were synthesized by mechanical alloying, heat treatment and nitriding of elemental microcrystalline powders with addition of hydroxyapatite (HA). In our work we wanted to introduce into stainless steel hydroxyapatite ceramics that have been intensively studied for bone repair and replacement applications. Such applications were chosen because of their high biocompatibility and ability to bond to bone. Since nickel-free austenitic stainless steels seem to have better mechanical properties, corrosion resistance and biocompatibility compared to 316L stainless steels, it is possible that composite made of this steel and HA could improve properties, as well. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g., orthopedic implants. In such application, the surface roughness and more specifically the surface topography influences the proliferation of cells (e.g., osteoblasts). PMID:23421285

  16. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    International Nuclear Information System (INIS)

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years

  17. The diffusivity of hydrogen in Nb stabilized stainless steel

    Science.gov (United States)

    Outlaw, R. A.; Peterson, D. T.

    1983-01-01

    The evolution of hydrogen from 347 stainless steel has been studied by using a real time dynamic technique under ultrahigh vacuum conditions. Auger electron spectroscopy was used to determine the surface composition as a function of time and temperature. The surface film on the electropolished samples was found to be approximately 15 A thick and consisted of a carbon-oxygen complex and a metal oxide (FexOy). Upon heating to 400 C, the carbon-oxygen complex desorbed as CO and the remaining oxygen and carbon began to incorporate. Also at this temperature sulfur began to diffuse out of the bulk to the surface and at approximately 800 C formed a complete monolayer. At 900 C, carbon and oxygen virtually disappeared, leaving the monolayer of sulfur as the only surface contaminant. The hydrogen diffusivity was found to follow closely the equation D = 7.01 x 10 to the -7th exp(-48.0/RT) sq m per second over the entire temperature range studied, thus indicating that hydrogen evolution is not significantly affected by the changing surface composition. The somewhat higher value of the diffusivity obtained in this work compared to past measurements in austenitic stainless steels may indicate the importance of sample preprocessing and ultrahigh vacuum conditions in minimizing the effects of surface layers.

  18. Plain carbon steel bipolar plates for PEMFC

    Institute of Scientific and Technical Information of China (English)

    WANG Jianli; SUN Juncai; TIAN Rujin; XU Jing

    2006-01-01

    Bipolar plates are a multifunctional component of PEMFC. Comparing with the machined graphite and stainless steels, the plain carbon steel is a very cheap commercial metal material. In this paper, the possibility of applying the plain carbon steels in the bipolar plate for PEMFC was exploited. In order to improve the corrosion resistance of the low carbon steel in the PEMFCs' environments,two surface modification processes was developed and then the electrochemical performances and interfacial contact resistance (ICR) of the surface modified plate of plain carbon steel were investigated. The results show that the surface modified steel plates have good corrosion resistance and relatively low contact resistance, and it may be a candidate material as bipolar plate of PEMFC.

  19. Fatigue properties of duplex stainless steel

    OpenAIRE

    Turrel, Benjamin; Luna Garcia, Jordi; Andraschko, Stephan

    2009-01-01

    PFC presentat a Oslo University College The aim of the project is to study fatigue properties of duplex stainless steel used for a bridge. The samples had to be tested and the results have to be compared with the theory, studied before. Six specimens have been broken by tensile fatigue testing machine in order to get more knowledge about the lifetime and the behavior under dynamic stress and not only for welded parts. Out of this new knowledge a new fatigue curve for this ma...

  20. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  1. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Directory of Open Access Journals (Sweden)

    Masafumi Matsushita

    2011-07-01

    Full Text Available Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride.

  2. 75 FR 81309 - Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan

    Science.gov (United States)

    2010-12-27

    ... COMMISSION [Investigation Nos. 701-TA-376 and 379 and 731-TA-788, 790-793 (Second Review)] Stainless Steel... stainless steel plate from Belgium and South Africa and the antidumping duty orders on stainless steel plate... steel plate from Belgium and South Africa and/or the antidumping duty orders on stainless steel...

  3. Characterization of silane layers on modified stainless steel surfaces and related stainless steel-plastic hybrids

    International Nuclear Information System (INIS)

    The aim of this work was to characterize silane layers on the modified stainless steel surfaces and relate it to the adhesion in the injection-molded thermoplastic urethane-stainless steel hybrids. The silane layers were characterized with scanning electron microscope and transmission electron microscope, allowing the direct quantization of silane layer thickness and its variation. The surface topographies were characterized with atomic force microscope and chemical analyses were performed with X-ray photoelectron spectroscopy. The mechanical strength of the respective stainless steel-thermoplastic urethane hybrids was determined by peel test. Polishing and oxidation treatment of the steel surface improved the silane layer uniformity compared to the industrially pickled surface and increased the adhesion strength of the hybrids, resulting mainly cohesive failure in TPU. XPS analysis indicated that the improved silane bonding to the modified steel surface was due to clean Fe2O3-type surface oxide and stronger interaction with TPU was due to more amino species on the silane layer surface compared to the cleaned, industrially pickled surface. Silane layer thickness affected failure type of the hybrids, with a thick silane layer the hybrids failed mainly in the silane layer and with a thinner layer cohesively in plastic.

  4. Effect of Fabric Cover and Pore Area Distribution of Carbon/Stainless Steel/Polypropylene Hybrid Yarn-Woven Fabric on Electromagnetic Shielding Effectiveness

    Science.gov (United States)

    Krishnasamy, Jagatheesan; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2016-06-01

    The electromagnetic shielding behavior of fabrics woven with carbon/stainless steel/polypropylene (C/SS/PP) hybrid yarns were investigated in the frequency range of 300 kHz to 1.5 GHz. This study mainly emphasizes the electromagnetic shielding behavior of C/SS/PP hybrid yarn fabric and the effect of different fabric parameters such as pick density, fabric architecture and number of fabric layers on shielding effectiveness (SE) of fabrics with C/SS/PP hybrid yarns. The SE of fabric samples were tested by a vector network analyzer using a coaxial transmission line tester. In addition, surface images of different fabric structures were examined to appreciate the effect of yarn floats on the shielding behavior of fabrics. From the SE test, it was observed that an increase in pick density increases the SE of C/SS/PP hybrid yarn fabric due to addition of carbon and SS content in the fabric. Besides, the fabric cover and pore area distribution are also changed for varying pick densities. Essentially, a fabric's architecture plays an important role in the fabric cover and pore area distribution. The one-end float (1/1 plain) fabric of 6.3 ppcm provides higher shielding of 88.44 dB than a 4-end (4/1 twill) or 7-end float (8-end satin) fabrics of 6.3 ppcm. Moreover, an increase in the number of fabric layers also improves the SE of fabrics. The developed C/SS/PP hybrid yarn fabric can be used for shielding wireless transmissions, radar transmissions and for shielding panels.

  5. Flow lines and microscopic elemental inhomogeneities in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mosley, Jr, W C

    1982-01-01

    Flow lines in mechanically formed austenitic stainless steels are known to influence fracture behavior. Enhancement of flow lines by chemical etching is evidence of elemental inhomogeneity. This paper presents the results of electron microprobe analyses to determine the nature of flow lines in three austenitic stainless steels: 21Cr-6Ni-9Mn, 304L, and 19Ni-18Cr.

  6. Deformation induced martensitic transformation in stainless steels

    International Nuclear Information System (INIS)

    Deformation induced martensitic transformation was investigated in metastable austenitic stainless steel. This steel can present a microstructure of austenite (γ), α' martensite and non magnetic ε martensite. Uni-axial tensile test was used for loading at different temperatures below room temperature (from -120 to 20 deg. C). During the deformation the transformation takes place at certain places in an anisotropic way and texture also develops. Quantitative phase analysis was done by X-ray diffraction (XRD) and magnetic methods while the texture was described by X-ray diffraction using a special inverse pole figure. The quantitative phase analysis has shown that the formation of α' and ε martensite from austenite is the function of deformation rate, and deformation temperature. The transformation of the textured austenite takes place in an anisotropic way and a well defined crystallographic relationship between the parent and α' martensite phase has been measured

  7. Operational experience with stainless steel condenser tubes

    International Nuclear Information System (INIS)

    Longitudinal seam welded tubes of stainless austenitic 18/8 CrNi and 18/8/2 CrNiMo steels have proved their worth when used in steam condensers with fresh water recooling. However, in water containing a high level of salt, in particular brackish water and seawater, experience to date has not been satisfactory in the case of these materials. High-alloy austenitic, ferritic and austenitic-ferritic steels developed during the last 10 years, on the other hand, have high pitting potentials and, both in the laboratory and in practice, have proved their suitability as heat-exchanger materials for steam condensers. These materials are easily worked to form welded tubes with a longitudinal seam and are therefore a relatively inexpensive design which ensures both plant safety and availability

  8. Advanced surface analysis on stainless steel

    International Nuclear Information System (INIS)

    The aim of this investigation is to minimise the build-up of radionuclides (especially of Co-60) in the oxide layers of austenitic steels by variation of pH and dosing of metal ions. Stainless steel samples were exposed to water in 11 autoclaves in flow through mode (11/h) for 5 days at 288 oC with metal ions and radioactive tracers having been added to the water. In addition to the activity measurements the semiconducting properties of the oxides and oxide layer thickness were determined by photo-electrochemistry and secondary ion mass spectroscopy. Correlation of activity uptake with layer thickness, type of semiconductor and band gap energy is shown. The presence of different metal ions in the oxidation process implies changes of the semiconducting properties of the oxide and different susceptibility of activity uptake into the oxide layers. (author)

  9. Microbially induced corrosion of carbon steel in deep groundwater environment

    OpenAIRE

    Rajala, Pauliina; Carpén, Leena; Vepsäläinen, Mikko; Raulio, Mari; Sohlberg, Elina; Bomberg, Malin

    2015-01-01

    The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing abil...

  10. Stainless steel is a promising electrode material for anodes of microbial fuel cells

    OpenAIRE

    Pocaznoi, Diana; Calmet, Amandine; Etcheverry, Luc; Erable, Benjamin; Bergel, Alain

    2012-01-01

    The abilities of carbon cloth, graphite plate and stainless steel to form microbial anodes were compared under identical conditions. Each electrode was polarised at −0.2 V vs. SCE in soil leachate and fed by successive additions of 20 mM acetate. Under these conditions, the maximum current densities provided were on average 33.7 A m−2 for carbon cloth, 20.6 A m−2 for stainless steel, and 9.5 A m−2 for flat graphite. The high current density obtained with carbon cloth was obviously influenced ...

  11. Vanadium effect on ductility of nickelless ferrite stainless steels

    International Nuclear Information System (INIS)

    Examined were the structure, properties, and the process characteristics of a new 08Kh18F2T1 nickel-free stainless steel, which differs from 08Kh18T1 steel by the additional alloying with vanadium in an amount of up to 1.5%. It has been established that the elongation of the specimens made of 0Kh18F2T1 steel increases noticeably (on the average of 7%) with a certain increase in its strength, as compared with the elongation of 0.8Kh18T1 steel. By varying the modes of the thermal treatment of cold-rolled sheet, the mechanical strength of 0318F2T1 steel may be increased up to 53 to 55.5 kgf/mm2, while the elongation of the steel is preserved within the range of 39 to 41%. It is shown that the additional alloying with vanadium completely suppresses α reversible γ transformation, and cleans the boundaries of ferrite grain. This is substantiated by the measurement of the microhardness at the grain boundaries. Stabilization of ferrite occurs owing to the binding of carbon into titanium carbides and to the introduction of vanadium into the solid solution, and it considerably reduces the absolute and the relative difference between the central portion and the boundaries of grains

  12. Development of a lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Liljas, M.; Johansson, P.; Liu Hui-Ping; Olsson, C.O.A. [Avesta Research Centre, Avesta (Sweden). Outokumpu Stainless

    2008-06-15

    The classic series of duplex stainless steels shows very high corrosion resistance and can be used for very demanding applications. A new lean duplex steel, LDX 2101 {sup registered} (EN 1.4162, UNS S32101), has been developed with corrosion resistance on a par with standard austenitic grades. Application areas include: structural components, chemical industry, tanks and containers. The steel was designed to have equal amounts of ferrite and austenite in annealed condition and with an austenite that is stable against strain-induced martensite. Thanks to its high nitrogen content, the steel has a fast austenite reformation when subjected to thermal cycling, e.g. welding. Unlike conventional duplex grades, the formation of intermetallic phase is very sluggish, although precipitation of nitrides and carbides has a certain impact on material properties after exposure in the temperature range 600 to 800 C. The precipitation behaviour after different isothermal treatments is described and its influence on different product properties is shown. A good agreement was found between impact toughness and corrosion resistance for a wide range of thermal treatments. (orig.)

  13. Citric Acid Passivation of Stainless Steel

    Science.gov (United States)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  14. Fracture toughness of irradiated stainless steel alloys

    International Nuclear Information System (INIS)

    The postirradiation fracture toughness responses of Types 316 and 304 stainless steel (SS) wrought products, cast CF8 SS and Type 308 SS weld deposit were characterized at 4270C using J/sub R/-curve techniques. Fast-neutron irradiation of these alloys caused an order of magnitude reduction in J/sub c/ and two orders of magnitude reduction in tearing modulus at neutron exposures above 10 dpa, where radiation-induced losses in toughness appeared to saturate. Saturation J/sub c/ values for the wrought materials ranged from 28 to 31 kJ/m2; the weld exhibited a saturation level of 11 kJ/m2. Maximum allowable flaw sizes for highly irradiated stainless steel components stressed to 90% of the unirradiated yield strength are on the order of 3 cm for the wrought material and 1 cm for the weld. Electron fractographic examination revealed that irradiation displacement damage brought about a transition from ductile microvoid coalescence to channel fracture, associated with local separation along planar deformation bands. The lower saturation toughness value for the weld relative to that for the wrought products was attributed to local failure of ferrite particles ahead of the advancing crack which prematurely initiated channel fracture

  15. Antibacterial polyelectrolyte micelles for coating stainless steel.

    Science.gov (United States)

    Falentin-Daudré, Céline; Faure, Emilie; Svaldo-Lanero, Tiziana; Farina, Fabrice; Jérôme, Christine; Van De Weerdt, Cécile; Martial, Joseph; Duwez, Anne-Sophie; Detrembleur, Christophe

    2012-05-01

    In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged polyelectrolyte micelles doped with silver-based nanoparticles with a polyanion. The micelles are formed by electrostatic interaction between two oppositely charged polymers: a polycation bearing 3,4-dihydroxyphenylalanine units (DOPA, a major component of natural adhesives) and a polyanion (poly(styrene sulfonate), PSS) without using any block copolymer. DOPA units are exploited for their well-known ability to anchor to stainless steel and to form and stabilize biocidal silver nanoparticles (Ag(0)). The chlorine counteranion of the polycation forms and stabilizes biocidal silver chloride nanoparticles (AgCl). We demonstrate that two layers of micelles (alternated by PSS) doped with silver particles are enough to impart to the surface strong antibacterial activity against gram-negative E. coli. Moreover, micelles that are reservoirs of biocidal Ag(+) can be easily reactivated after depletion. This novel water-based approach is convenient, simple, and attractive for industrial applications. PMID:22506542

  16. Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material

    OpenAIRE

    Salman, Muhammad Salman; Cizer, Özlem; Pontikes, Yiannis; Santos, Rafael; Vandewalle, Lucie; Blanpain, Bart; Van Balen, Koen

    2014-01-01

    Non-stabilized Argon Oxygen Decarburisation (AODNS) slag in powdered form was examined for its carbon dioxide sequestration capacity and for its potential utilization in the fabrication of high value building materials. The curing of the sample was carried out in two accelerated carbonation environments: i) in a carbonation chamber, maintained at atmospheric pressure, 22 °C, 5 vol.% CO2 and 80% RH; and ii) in a carbonation reactor, where the CO2 partial pressure (pCO2) and temperature could b...

  17. Assessment of thermal embrittlement of cast stainless steels

    International Nuclear Information System (INIS)

    A procedure and correlations are presented for assessing thermal embrittlement and predicting Charpy-impact energy and fracture toughness J-R curve of cast stainless steel components under Light Water Reactor operating conditions from known material information. The ''saturation'' impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Fracture properties as a function of time and temperature of reactor service are estimated from the kinetics of embrittlement, which are also determined from chemical composition. A common ''predicted lower-bound'' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature. Examples of estimating fracture toughness of cast stainless steel components during reactor service are presented

  18. EXPERIMENTAL RESEARCH OF THE DUPLEX STAINLESS STEEL WELDS IN SHIPBUILDING

    OpenAIRE

    Juraga, Ivan; Stojanović, Ivan; Ljubenkov, Boris

    2014-01-01

    Duplex stainless steel is used in shipbuilding increasingly because of its good mechanical properties and marked corrosion resistance. This steel has a two phase structure (austenite-ferrite) which is sensitive on heat input during welding because of the possible ferritisation appearance, that is, increase in ferrite content in the area of heat effected zone (HAZ) which can lead to loss of mechanical and corrosion properties. Work with duplex stainless steel requires special attention in ever...

  19. Effects of frequency on fatigue behavior of type 316 low-carbon, nitrogen-added stainless steel in air and mercury for the spallation neutron source

    Science.gov (United States)

    Tian, H.; Liaw, P. K.; Fielden, D. E.; Brooks, C. R.; Brotherton, M. D.; Jiang, L.; Yang, B.; Wang, H.; Strizak, J. P.; Mansur, L. K.

    2006-01-01

    The high-cycle fatigue behavior of type 316 low-carbon, nitrogen-added (LN) stainless steel (SS), the prime-candidate target-container material for the spallation neutron source (SNS), was investigated in air and mercury. Test frequencies ranged from 0.2 to 10 Hz with an R ratio of -1, and 10 to 700 Hz with an R ratio of 0.1. During tension-compression fatigue studies, a significant increase in the specimen temperature was observed at 10 Hz in air, which decreased the fatigue life of the 316 LN SS relative to that at 0.2 Hz. Companion tests in air were carried out, while cooling the specimen with nitrogen gas at 10 Hz in air. In these experiments, fatigue lives were comparable at 10 Hz in air with nitrogen cooling and at 0.2 Hz in air. During tension-tension fatigue studies, a higher specimen temperature was observed at 700 than at 10 Hz. After cooling the specimen, comparable fatigue lives were found at 10 and at 700 Hz. The frequency effect on the fatigue life in mercury was found to be much less than that in air, due to the fact that mercury acts as an effective coolant during the fatigue experiment. Striation spacing on the fracture surface at different test frequencies was closely examined, relative to calculated Δ K values, during fatigue of the 316 LN SS. Specimen self-heating has to be considered in understanding fatigue characteristics of 316 LN SS in air and mercury.

  20. 75 FR 81308 - Stainless Steel Sheet And Strip From Germany, Italy, Japan, Korea, Mexico, And Taiwan

    Science.gov (United States)

    2010-12-27

    ... COMMISSION Stainless Steel Sheet And Strip From Germany, Italy, Japan, Korea, Mexico, And Taiwan AGENCY... countervailing duty order on stainless steel sheet and strip from Korea and antidumping duty orders on stainless... on stainless steel sheet and strip from Korea and/or the antidumping duty orders on stainless...

  1. Cleaning the magnesium oxide contaminated stainless steel system using a high temperature decontamination process

    International Nuclear Information System (INIS)

    A high pressure and high temperature (HTHP) system made of stainless steel-316, that simulates the reactor coolant systems of pressurized water reactors has been constructed for carrying out experimental investigations on power reactor water chemistry. After two months of operation at 280 C, magnesium was observed in the coolant. This was attributed to the failure of some heater pins that contained magnesium oxide as insulator. This magnesium oxide got distributed over the entire system. In order to remove the magnesium that had deposited and reacted over the oxide film formed over the stainless steel surfaces, the system was chemically cleaned using a mixture of nitrilo-tri-acetic-acid (NTA) and N2H4 at high temperature. The chromium containing oxide film formed over the stainless steel surfaces are normally removed using oxidizing pretreatment followed by treatment with reducing formulation. A minimum of three such cycles are required to complete the dissolution of contaminated oxide film. It has been proved elsewhere that chromium-containing oxides can be dissolved by simple chelating agents but at a relatively higher temperature (150-180 C) with NTA. Thus, NTA based process was tested for its capability to remove the magnesium contaminated oxide film formed over stainless steel. In addition to stainless steel, the system has few carbon steel areas. Hence, the compatibility of stainless steel and carbon steel to the NTA-N2H4 mixture was determined. Tests were carried out at different concentrations of NTA and at different pH. It was observed that carbon steel corrosion rates were quite high at low pH. With increasing pH, the corrosion rate decreased. The surface roughening observed at low pH was not observed at pH 8.0. Hence, it was decided to carry out the cleaning at pH 7.0 and with NTA concentration of 5 mM. Visual examination of the test flanges after the cleaning indicated complete removal of the oxide film. Results of chemical analysis indicated that

  2. Beneficially reusing LLRW the Savannah River Site Stainless Steel Program

    International Nuclear Information System (INIS)

    With 68 radioactively contaminated excess Process Water Heat Exchangers the Savannah River Site launched its program to turn potential LLRW metal liabilities into assets. Each Heat Exchanger contains approximately 100 tons of 304 Stainless Steel and could be disposed as LLRW by land burial. Instead the 7000 tons of metal will be recycled into LLRW, HLW, and TRU waste containers thereby eliminating the need for near term land disposal and also eliminating the need to add more clean metal to the waste stream. Aspects of the partnership between DOE and Private Industry necessary to accomplish this new mission are described. A life cycle cost analysis associated with past practices of using carbon steel containers to indefinitely store material (contributing to the creation of today's legacy waste problems) is presented. The avoided cost calculations needed to support the economics of the ''Indifference'' decision process in assessing the Beneficial Reuse option relative to the Burial option are described

  3. On phase equilibria in duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Wessman, S. [Swerea KIMAB AB, Stockholm (Sweden); Pettersson, R. [Outokumpu Stainless AB, Avesta Research Centre, Avesta (Sweden); Hertzman, S. [Outokumpu Stainless Research Foundation, Stockholm (Sweden)

    2010-05-15

    The equilibrium conditions of four duplex stainless steels; Fe-23Cr-4.5Ni-0.1N, Fe-22Cr-5.5Ni-3Mo-0.17N, Fe-25Cr-7Ni-4Mo-0.27N and Fe-25Cr-7Ni-4Mo-1W-1.5Cu-0.27N were studied in the temperature region from 700 to 1000 C. Phase compositions were determined with SEM EDS and the phase fractions using image analysis on backscattered SEM images. The results showed that below 1000 C the steels develop an inverse duplex structure with austenite and sigma phase, of which the former is the matrix phase. With decreasing temperature, the microstructure will be more and more complex and finely dispersed. The ferrite is, for the higher alloyed steels, only stable above 1000 C and at lower temperatures disappears in favour of intermetallic phases. The major intermetallic phase is sigma phase with small amounts of chi phase, the latter primarily in high Mo and W grades. Nitrides, not a focus in this investigation, were present as rounded particles and acicular precipitates at lower temperatures. The results were compared to theoretical predictions using the TCFE5 and TCFE6 databases. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Development of commercial nitrogen-rich stainless steels

    International Nuclear Information System (INIS)

    This paper reviews the development of nitrogen alloyed stainless steels. Nitrogen alloying of austenitic stainless steels started at an early stage and was to a large extent caused by nickel shortage. However, direct technical advantages such as increased strength of the nitrogen alloyed steels made them attractive alternatives to the current steels. It was not until the advent of the AOD (argon oxygen decarburisation) process in the late 1960s that nitrogen alloying could be controlled to such accuracy that it became successful commercially on a broader scale. The paper describes production aspects and how nitrogen addition influences microstructure and the resulting properties of austenitic and duplex stainless steels. For austenitic steels there are several reasons for nitrogen alloying. Apart from increasing strength nitrogen also improves structural stability, work hardening and corrosion resistance. For duplex steels nitrogen also has a decisive effect in controlling the microstructure during thermal cycles such as welding. (orig.)

  5. Nickel-free Stainless Steel for Medical Applications

    Institute of Scientific and Technical Information of China (English)

    Yibin REN; Ke YANG; Bingchun ZHANG; Yaqing WANG; Yong LIANG

    2004-01-01

    BIOSS4 steel is essentially a nickel-free austenitic stainless steel developed by the Institute of Metal Research, Chinese Academy of Sciences, in response to nickel allergy problems associated with nickel-containing stainless steels that are widely used in medical applications. The high nitrogen content of this steel effectively maintains the austenitic stability and also contributes to the high levels of corrosion resistance and strength. BIOSS4 steel possesses a good combination of high strength and toughness, better corrosion resistance, and better blood compatibility, in comparison with the medical 316L stainless steel. Potential applications of BIOSS4 steel can include medical implantation material and orthodontic or orthopedic devices, as well as jewelries and other decorations.

  6. In vivo behavior of a high performance duplex stainless steel.

    Science.gov (United States)

    Cigada, A; De Santis, G; Gatti, A M; Roos, A; Zaffe, D

    1993-01-01

    An in vivo investigation of a new high molybdenum and nitrogen duplex stainless steel (25Cr--7Ni--4Mo--0.3N) has been performed. Cylindrical pins and specially developed devices, to test in static conditions the in vivo localized corrosion resistance, made of this new duplex steel and of a common austenitic stainless steel were implanted in rabbit's femurs for 6 and 12 months. After sacrifice, SEM observations and EDS microanalyses to detect metallic ion release were carried out on the femur sections surrounding the pins. Morphologic observations with stereoscope and SEM were performed on the metallic surfaces of the special devices in order to detect the presence of localized corrosion. Both ion release and localized corrosion were observed for the specimens made of austenitic stainless steel, but not for those made of 25Cr--7Ni--4Mo--0.3N duplex stainless steel. PMID:10148344

  7. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    Directory of Open Access Journals (Sweden)

    Bibo Yao

    2016-03-01

    Full Text Available Powder metallurgy (P/M technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  8. Stainless Steel Round Robin Test: Centrifugally cast stainless steel screening phase

    International Nuclear Information System (INIS)

    This report presents the results of the Centrifugally Cast Stainless Steel Round Robin Test (CCSSRRT). The CCSSRRT is the first phase of an effort to investigate and improve the capability and reliability of NDE inspections of light water reactor piping systems. This phase was a screening test to identify the most promising procedures presently available for CCSS. The next phase will be an in-depth program to evaluate the capability and reliability of inservice inspections (ISI) for piping. In the CCSSRRT, 15 centrifugally cast stainless steel pipe sections containing welds and laboratory-grown thermal fatigue cracks in both columnar and equiaxed base material were used. These pipe specimens were inspected by a total of 18 teams from Europe and the United States using a variety of NDE techniques, mostly ultrasonic (UT). The inspections were carried out at the team's facilities and included inspections from both sides of the weld and inspections restricted to one side of the weld. The results of the CCSSRRT make it apparent that a more detailed study on the capability and reliability of procedures to inspect stainless steel materials is needed to better understand the specific material and flaw properties and how they affect the outcome of an inspection

  9. Hydrogen permeability of nitrided stainless steel

    International Nuclear Information System (INIS)

    The surface of a 316 stainless steel (316SS) specimen was nitrided by an electrochemical treatment in molten fluoride salt. Its hydrogen permeability was evaluated and compared with that of bare 316SS at temperature from 450degC to 650degC. When it was exposed to hydrogen pressure of 1.0 kPa from 450degC to 650degC, its permeability was 7.2×10-11 to 6.4×10-12 mol/sec.m.Pa1/2. The permeation flux was increased with temperature and the permeability is deviated from Sieverts' law around 450degC. It followed Sieverts' law and was similar to that of bare 316SS at elevated temperatures. This result suggested the surface nitriding increases solubility at low temperatures around 450degC. (author)

  10. Simulation of a stainless steel multipass weldment

    International Nuclear Information System (INIS)

    Several problems in nuclear power plants are due to shrinkage and distortion of welded structures and the associated residual stresses. In this context, a stainless steel multipass weldment realized in a H type constrained specimen has been calculated by means of finite element method. The temperatures obtained from a 3 D modified Rosenthal equation are compared with the experimental ones, and are then used for the 2 D simulation in which a linear Kinematic hardening is assumed in relation to a Von Mises plasticity criteria. Materials data are well known up to very high temperatures (12000 C) and are introduced in the model. Experimental and calculated displacements after the first pass are compared and a discussion points out what improvements should be made for a better agreement. (author). 3 refs., 8 figs, 1 tab

  11. Magnetic characterisation of duplex stainless steel

    Science.gov (United States)

    Mészáros, I.

    2006-02-01

    Heat treatment-induced microstructural processes were studied by different non-destructive magnetic and mechanical material testing methods in the present work. A commercial SAF 2507 type superduplex stainless steel was investigated. This alloy contains about 40% metastable ferrite which can decompose to a sigma phase and secondary austenite due to heat treatment. All the mechanical, corrosion resistance and magnetic properties are strongly influenced by this microstructural changes. This study had two aims: to understand better the kinetics of the ferrite decomposition process and to study the application possibilities of the applied magnetic measurements. This paper presents an application possibility of the nonlinear harmonics analysis measurement and demonstrates the possibility to find a quantitative correlation between measured harmonics and mechanical properties obtained from destructive tests.

  12. Electrochemical decontamination of Pu contaminated stainless steel

    International Nuclear Information System (INIS)

    Electrochemical decontamination has been demonstrated to be very effective in removing plutonium nitrate contamination (0.5 μg cm-2) on stainless steels. The amount of metal dissolved to achieve a DF of 102 to 103 was 2 to 7 μm depending on the electrolyte used. In unstirred electrolytes 1M HNO3, 1M HNO3/0.1M NaF, 5M HNO3 perform best. Under stirred electrolyte conditions, there is a general marginal fall in effectiveness except for 5M HNO3 where there is a slight improvement. The optimum performance is a compromise between maximizing the electrolyte throwing power and minimizing substrate surface roughening during decontamination. (author)

  13. MOCVD deposition of YSZ on stainless steels

    Science.gov (United States)

    Chevalier, S.; Kilo, M.; Borchardt, G.; Larpin, J. P.

    2003-01-01

    Yttria stabilized zirconia was deposited on stainless steel using the metal-organic chemical vapor deposition (MOCVD) technique, from β-diketonate precursors. The variation of the evaporation temperatures of yttrium and zirconium precursor allowed to control the level of Y within the film. Over the temperature range 125-150 °C, the Y content increased from 2.5 to 17.6 at.%. X-ray diffraction (XRD) analyses evidenced tetragonal phase of zirconia when the Y content was below 8 at.%, and cubic phase for higher concentration. Sputtered neutral mass spectrometry (SNMS) profiles confirmed that the control and stability of Y precursor temperature were of major importance to guarantee the homogeneity of the deposited films.

  14. A stainless steel bracket for orthodontic application.

    Science.gov (United States)

    Oh, Keun-Taek; Choo, Sung-Uk; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2005-06-01

    Aesthetics has become an essential element when choosing orthodontic fixed appliances. Most metallic brackets used in orthodontic therapy are made from stainless steel (SS) with the appropriate physical properties and good corrosion resistance, and are available as types 304, 316 and 17-4 PH SS. However, localized corrosion of these materials can frequently occur in the oral environment. This study was undertaken to evaluate the accuracy of sizing, microstructure, hardness, corrosion resistance, frictional resistance and cytotoxicity of commercially available Mini-diamond (S17400), Archist (S30403) and experimentally manufactured SR-50A (S32050) brackets. The size accuracy of Mini-diamond was the highest at all locations except for the external horizontal width of the tie wing (P SS brackets. PMID:15947222

  15. Dissolution of stainless steel in artificial saliva.

    Science.gov (United States)

    Lakatos-Varsányi, M; Wegrelius, L; Olefjord, I

    1997-01-01

    Dissolution of stainless steel type 304 in artificial saliva was studied by electrochemical methods, electron spectroscopy for chemical analysis, and atom absorption spectroscopy. The samples were polarized in the -400 mV (saturated calomel electrode) to -50 mV (saturated calomel electrode) range. The total thickness of the passive film was found to be 25 +/- 3 A, independent of the potential. The passive film consists of a duplex structure: an inner layer of (Cr0.5Fe0.5)2O3 and an outer layer of a mixture of Cr(OH)3 and (CrxFey)PO4.2H2O. The analysis indicated that 11 micrograms/cm2 of the alloying elements were dissolved during exposure for 1 year. PMID:9197105

  16. Forging evaluaion of 304L stainless steel

    International Nuclear Information System (INIS)

    The objective of this project was to evaluate and characterize the effects of various forging parameters on the metallographic structure and mechanical properties of 304L stainless steel forgings. Upset and die forgings were produced by hammer and Dynapak forging with forging temperatures ranging from 760 to 11450C, upset reductions ranging from 20 to 60%, and annealing times ranging from 0 to 25 minutes at 8430C. The carbide precipitation behavior observed was found to be a function of forging temperature and annealing time. Higher forging temperatures were beneficial in avoiding continuous carbide precipitation and annealing at 8430C promoted increased carbide precipitation. The yield strength of the unannealed forgings decreased with increasing forging temperature and, with the exception of the 11450C upset forgings, was significantly lowered by annealing

  17. Fast response stainless steel sodium thermocouple

    International Nuclear Information System (INIS)

    Thermo electro motive force and transient response characteristics of well-type stainless steel sodium thermocouples have been studied. The experiments were performed with a specially constructed test rig allowing the placement of several couples at various depths of immersion in liquid sodium and at different spacings. The time response was studied by inducing temperature transients in a hot sodium injection and gas injection, and photographing the oscilloscope trace of the output. The possibility of using these thermocouples in transit time flowmeters in sodium circuit was ascertained by observing the response from two thermocouples in flowing sodium, and evaluating the cross-correlation between the response. The application of such thermocouples for fast reactors and sodium circuits is also discussed. (author)

  18. Systems design of high-performance stainless steels

    Science.gov (United States)

    Campbell, Carelyn Elizabeth

    A systems approach has been applied to the design of high performance stainless steels. Quantitative property objectives were addressed integrating processing/structure/property relations with mechanistic models. Martensitic transformation behavior was described using the Olson-Cohen model for heterogeneous nucleation and the Ghosh-Olson solid-solution strengthening model for interfacial mobility, and incorporating an improved description of Fe-Co-Cr thermodynamic interaction. Coherent Msb2C precipitation in a BCC matrix was described, taking into account initial paraequilibrium with cementite. Using available SANS data, a composition dependent strain energy was calibrated and a composition independent interfacial energy was evaluated to predict the critical particle size versus the fraction of the reaction completed as input to strengthening theory. Multicomponent Pourbaix diagrams provided an effective tool for evaluating oxide stability; constrained equilibrium calculations correlated oxide stability to Cr enrichment in the oxide film to allow more efficient use of alloy Cr content. Multicomponent solidification simulations provided composition constraints to improve castability. Using the Thermo-Calc and DICTRA software packages, the models were integrated to design a carburizing, secondary-hardening martensitic stainless steel. Initial characterization of the prototype showed good agreement with the design models and achievement of the desired property objectives. Prototype evaluation confirmed the predicted martensitic transformation temperature and the desired carburizing response, achieving a case hardness of Rsb{c} 64 in the secondary-hardened condition without case primary carbides. Decarburization experiments suggest that the design core toughness objective (Ksb{IC} = 65 MPasurdm) can be achieved by reducing the core carbon level to 0.05 weight percent. To achieve the core toughness objective at high core strength levels requires further analysis of an

  19. Nitrogen bearing austenitic stainless steels for surgical implants

    Energy Technology Data Exchange (ETDEWEB)

    Tschiptschin, A.P.; Aidar, C.H.; Alonso-Falleiros, N. [Sao Paulo Univ. (Brazil). Escola Politecnica; Neto, F.B. [Instituto de Pesquisas Tecnologicas, Sao Paulo (Brazil)

    1999-07-01

    Nitrogen addition promotes substantial improvements on general and localized corrosion performance of stainless steels. In recent times high nitrogen (up to 0.6 wt%) and Mn bearing super austenitic stainless steel has been studied for medical applications due to its low Ni content, the so called body friendly alloys. 18%Cr, 0.4%N and 15%Mn stainless steels were cast either from electrolytic or commercial master alloys in induction furnace, forged, solubilized at 1423K for 3 hours and water quenched. Delta ferrite and carbide precipitate free structures were observed. (orig.)

  20. EXAFS investigation of low temperature nitrided stainless steel

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny;

    2008-01-01

    Low temperature nitrided stainless steel AISI 316 flakes were investigated with EXAFS and X-ray diffraction analysis. The stainless steel flakes were transformed into a mixture of nitrogen expanded austenite and nitride phases. Two treatments were carried out yielding different overall nitrogen...... contents: (1) nitriding in pure NH3 and (2)nitriding in pure NH3 followed by reduction in H2. The majority of the Cr atoms in the stainless steel after treatment 1 and 2 was associated with a nitrogen–chromium bond distance comparable to that of the chemical compound CrN. The possibility of the occurrence...

  1. Kinetics of chemical interactions between zirconium alloys and stainless steels

    International Nuclear Information System (INIS)

    The chemical interaction kinetics of reactor core component zirconium alloys and stainless steels at high temperatures was examined. Interaction of as-received and preoxidized Zr1%Nb with X18H10T stainless steel used in WWER type nuclear reactors, and also that of Zircaloy-4 and AISI-316 stainless steel, for comparison, were investigated. The reaction rate measurements were supplemented with post-test metallographical examinations. Results are presented and evaluated, and compared with literature data. (author). 14 refs., 31 figs., 8 tabs

  2. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE present...... in the stainless steel alloys. The presented computational approach for alloy design enables “screening” of hundreds of thousands hypothetical alloy systems by use of Thermo-Calc. Promising compositions for new stainless steel alloys can be selected based on imposed criteria, i.e. facilitating easy...

  3. Shear design recommendations for stainless steel plate girders

    OpenAIRE

    Saliba, Najib; Real, E.; Gardner, Leroy

    2014-01-01

    The behaviour and design of stainless steel plate girders loaded in shear is investigated in this paper. A review of existing methods for the design of stainless steel plate girders, including codified provisions, is first presented. A database of thirty-four experiments carried out on austenitic, duplex and lean duplex stainless steel plate girders is then reported, and used to assess the current shear resistance design equations from Eurocode 3: Part 1.4 and Eurocode 3: Part 1.5 and the rec...

  4. Thermodynamic calculation of phase equilibria in stainless steels

    Directory of Open Access Journals (Sweden)

    Klančnik G.

    2012-01-01

    Full Text Available In this paper two examples of thermodynamic investigation of stainless steels using both, experimental and modeling approach are described. The ferritic-austenitic duplex stainless steel and austenitic stainless steel were investigated using thermal analysis. The complex melting behavior was evident for both alloy systems. Experimentally obtained data were compared with the results of the thermodynamic calculations using the CALPHAD method. The equilibrium thermal events were also described by the calculated heat capacity. In spite of the complexity of both selected real alloy systems a relative good agreement was obtained between the thermodynamic calculations and experimental results.

  5. Thermal fatigue crack growth in stainless steel

    International Nuclear Information System (INIS)

    A judgment of residual service life of engineering parts exposed to thermal fatigue makes it possible to deal with economic and safety issues in power plants. The aim of this study is to analyze a fatigue crack initiation and propagation in A321 stainless steel bodies subjected to repeated thermal shocks. For this purpose, various methods of crack propagation monitoring were used. The first stage of experiments included mechanical cyclic loading of specimens with the central notch at fixed temperatures ranging from 20 °C to 410 °C. The crack growth rate was only minimally influenced by temperature in this case. Thermal loading of the same specimens with ΔT varying from 150 °C to 340 °C showed very rapid crack initiation in the notches and its asymmetric growth. Metallographic and fractographic analyses of failed specimens were carried out after 1000, 3000 and 6000 thermal cycles. The comparison of the fracture surface micromorphology confirmed the similarity in the mechanism of the thermal and mechanical fatigue crack growth. Stress analysis using the finite element method consisting of transient thermal and mechanical solutions was performed in order to simulate the experiments. Thermal fatigue crack growth assessment was carried out on the basis of the experiments and the computed thermally induced stress intensity factors. This model successfully confirms the discussed analogy of thermal and mechanical stress induced damage. Highlights: ► A fatigue crack initiation and propagation in A321 stainless steel was analyzed. ► Mechanical and thermal experiments were performed, simulated also by FEM. ► Similarity in the mechanism of thermal and mechanical fatigue crack growth found. ► Application of the Paris model for the thermal cycling confirmed.

  6. The a.c. response of lithium, stainless steel, and porous carbon electrodes in thionyl chloride solutions

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    1985-01-01

    Impedance measurements on Li electrodes in SOCl2 electrolytes indicate that the structure of the passivating surface layer formed in 1.8M LiAlCl4 differs from that formed in 1.8M AlCl3, 1.2M LiCl, 0.6M SO2. Also, porous carbon electrodes are found to behave differently in these two electrolytes. ...

  7. Influence of Silicon, Carbon and Phosphorus on Intergranular Corrosion of High Purity Austenitic Stainless Steels Under Transpassive Conditions

    OpenAIRE

    Stolarz, J.

    1995-01-01

    Precipitate-free Fe-Cr-Ni f.c.c. alloys exhibit strong intergranular corrosion in acid solutions at electrochemical potentials from the transpassivity range. Segregation of impurity atoms to grain boundaries is generally considered to be responsible for this specific kind of localized damage. A study of the influence of silicon, phosphorus and carbon on the intergranular transpassive corrosion of the solution treated Fe-17Cr-13Ni alloy in the 2N sulphuric acid at a fixed electrochemical poten...

  8. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media

    OpenAIRE

    Hong Luo; Huaizhi Su; Chaofang Dong; Kui Xiao; Xiaogang Li

    2015-01-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other prop...

  9. Stainless steel anodes for alkaline water electrolysis and methods of making

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  10. Behaviour and design of cold-formed lean duplex stainless steel members

    OpenAIRE

    Huang, Yun'er; 黃韵兒

    2013-01-01

    Cold-formed stainless steel sections have been increasingly used in architectural and structural applications. Yet the high price of stainless steel limits the application to construction projects. The lean duplex stainless steel (EN 1.4162) offers an opportunity for stainless steels to be used more widely due to its competitive in price, good mechanical properties and corrosion resistance. The lean duplex stainless steel is a relatively new material, and research on this material is limited....

  11. Effects of Cr2N Precipitation on the Antibacterial Properties of AISI 430 Stainless Steel

    OpenAIRE

    Je-Kang Du; Chih-Yeh Chao; Yu-Ting Jhong; Chung-Hao Wu; Ju-Hui Wu

    2016-01-01

    Based on their mechanical properties and good corrosion resistance, some commercial Ni-Cr stainless steels have been widely applied as biomaterials, including the austenitic 304 stainless steel, the austenitic 316 stainless steel, the duplex 2205 stainless steel, and the ferritic 430 stainless steel. In order to reduce the occurrence of infections resulting from biomaterial implants, instruments, and medical devices, Cu2+ and Ag2+ ions have been added onto biomaterials for increasing the anti...

  12. Bacterial adhesion on ion-implanted stainless steel surfaces

    International Nuclear Information System (INIS)

    Stainless steel disks were implanted with N+, O+ and SiF3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF3+-implanted stainless steel performed much better than N+-implanted steel, O+-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions

  13. Bacterial adhesion on ion-implanted stainless steel surfaces

    Science.gov (United States)

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  14. Welding technology trend of austenitic stainless steels for cryogenic services

    International Nuclear Information System (INIS)

    At present, the large use of stainless steel in cryogenic field is the storage and transport system for liquefied gas represented by LNG and the nuclear fusion reactors utilizing superconductivity. Most of the stainless steel used for the LNG system is austenitic stainless steel SUS 304. The main use of stainless steel for fusion reactors is the support structures for superconductive magnets, and the thick plates over 150 mm are used. In the experiment, SUS 304L and 316L were used, but the development of a new high strength stainless steel is actively advanced. The target specification of the cryogenic structural material for the fusion experimental reactor (FER) was proposed in 1982. The proof stress is not lower than 1200 MPa, and the fracture toughness value is not lower than 200 MPa √m at 4 K. Six kinds of nitrogen-strengthened austenitic stainless steels and high manganese austenitic steels are developed. As the problems of the welded parts, the toughness and strength at extremely low temperature, the susceptibility to high temperature cracking, the material quality design of the welded metals and so on are examined. The welding methods are GTAW and GMAW. (K.I.)

  15. Phase Transformations in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  16. Phase transformations in cast duplex stainless steels

    Science.gov (United States)

    Kim, Yoon-Jun

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  17. Optimization of welding variables for duplex stainless steel by GTAW and SMAW

    International Nuclear Information System (INIS)

    The main problems faced during the welding of duplex stainless steels are cleanliness and slag inclusions. In the present work the methods to eliminate these problems were studied during the welding of duplex stainless steel by Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW). Since the duplex stainless steel is an expensive material, the initial experiments for optimization of welding variables were. carried out on low carbon steel (CS) plates with duplex consumables. Welding of butt groove joints on CS plates was carried with various sets of welding variables i.e. current, voltage and arc energy using duplex consumables. The. radiographic inspection, micro-structural observations and hardness testing of the welds suggested the welding variables that will produce a sound weld on CS plate. These optimized variables were then used for the welding of edge groove joint and T -joint on duplex stainless steel by GTAW and SMAW processes. The hardness and micro-structural study of the joints produced on duplex stainless steel by GTAW and SMAW with duplex consumables were also studied. No slag inclusions and porosity were observed in the microstructure of these weldments and their properties were found similar to the parent metal. (author)

  18. Surface modified stainless steels for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  19. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    Directory of Open Access Journals (Sweden)

    Oladayo OLANIRAN

    2015-05-01

    Full Text Available Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr and Nickel (Ni were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail using scanning electron microscopy (SEM and X-ray diffraction (XRD. The microstructural evolution and phase formation during oxide dispersion strengthening of duplex stainless steel composites were investigated. The influence of composition variation of the reinforcements on the microstructural and corrosion behaviour in simulated mine water of the composites were investigated. In this manuscript, it was established that composition has great influence on the structure/properties relationship of the composites developed.

  20. Evaluation of tensile properties of cast stainless steel using ball

    International Nuclear Information System (INIS)

    In this study the ball indentation tests were performed on the four unaged cast stainless steel and 316 stainless steel, which have different microstructure and strength, to examine the applicability of ball indentation test to the evaluation of thermal aging of cast stainless steel. Also, the reliability of test results were analyzed by evaluating the scattering of data tested from each material and by comparing tensile properties obtained from ball indentation test and tensile test. The results showed that the maximum standard deviation to mean value are less than 6%, and the average standard deviation to mean value are about 1.5∼2.5%, when 2 point data that show out of trend were discarded from the data set tested a single specimen. Also, the scattering increased slightly with decreasing δ-ferrite content. Additionally, the ball indentation test predicted the tensile properties of cast stainless steel within an error of ±10% for all materials

  1. Overlaying of type 316 austenitic stainless steel with type 430 ferritic stainless steel

    International Nuclear Information System (INIS)

    Overlaying of type 316 austenitic stainless steel vessel with type 430 ferritic stainless is proposed for liquid magnesium service. The interface in this type of bimetallic configuration has been shown to be a cause for concern as it contains a hard and brittle martensite micro constituent which becomes susceptible to cracking under certain conditions. This study was carried out to standardize the welding conditions and characterise the interface in order to obtain sound overlay. Some tests were also conducted to simulate the elevated temperature service. The investigation has shown that the interface hardness approaches 400 VPN when no preheating is employed. However, in the preheated samples, appreciable reduction in the peak hardness was observed. This has been attributed to a decrease in the cooling rate of the clad metal with an increase in the preheating temperature which results in softening of the martensite. The minimum recommended preheat is 473 K. The samples exposed to thermal cycle tests to a peak temperature of 1223 K to simulate the service condition did not show any cracking at the interface after 20 cycles of testing. Therefore, this study has demonstrated the stability of the interface between type 316 and 430 stainless steels at the intended temperature of service. (author)

  2. Stainless steels and special grades for specific applications

    International Nuclear Information System (INIS)

    The development of special steels grades with a composition between stainless steels and nickel alloys for localised corrosion resistance applications (steam condenser, combustion products de-pollution...) are shortly presented by family (austenitic and super-austenitic stainless steels of the URANUS family with or without nitrogen additions, austeno-ferritic steels), with electrochemistry corrosion tests evaluation : in standard medium (30 g/l NaCl + 6% FeCl3) or in real medium. (A.B.). 6 refs., 12 figs., 2 tabs

  3. Corrosion resistance properties of sintered duplex stainless steel

    OpenAIRE

    L.A. Dobrzański; Z. Brytan; M. Actis Grande; M. Rosso

    2006-01-01

    Purpose: of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the ...

  4. CO-DOPED POLYPYRROLE COATINGS FOR STAINLESS STEEL PROTECTION

    OpenAIRE

    W. PRISSANAROON; Brack, N.; Pigram, P. J.; J. LIESEGANG

    2006-01-01

    Polypyrrole (PPy) films have been successfully electrodeposited on stainless steel substrates in aqueous solution. In this work, three systems of electrolytes were studied: oxalic acid, dodecylbenzenesulfonic acid (DBSA) and a mixture of oxalic acid and DBSA. A combination of XPS and TOF–SIMS revealed the formation of an iron oxalate layer at the interface between the oxalic acid-doped PPy (PPy(Ox)) and stainless steel and a thin layer of DBSA was observed at the interface between DBSA-doped ...

  5. Fatigue curve and stress strain response for stainless steel

    International Nuclear Information System (INIS)

    Applicability of ASME, KTA and RCC-M fatigue design curves for stainless steels is an issue of current debate. Laboratory data have shown environmental effects in coolant waters, but applicability of the proposed new design criteria to current plant components has been questioned. In a Regulatory Guide for new designs, the US NRC endorsed also a new air curve for stainless steels. Aim of the current study is to test applicability of the existing and proposed design criteria

  6. Properties of duplex stainless steels made by powder metallurgy

    OpenAIRE

    M. Rosso; M. Actis Grande; Z. Brytan; L.A. Dobrzański

    2007-01-01

    Purpose: of this paper was to examine the mechanical properties of duplex stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies behind the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been sintered in a vacuu...

  7. Probing the duplex stainless steel phases via magnetic force microscopy

    Science.gov (United States)

    Gheno, S. M.; Santos, F. S.; Kuri, S. E.

    2008-03-01

    Duplex stainless steels are austenitic-ferritic alloys used in many applications, thanks to their excellent mechanical properties and high corrosion resistance. In this work, chemical analyses, x-ray diffraction, and magnetic force microscopy (MFM) were employed to characterize the solution annealed and aged duplex stainless steel. The samples exhibited no changes in lattice parameters and the MFM technique proved successful in clearly imaging the magnetic domain structure of the ferrite phase.

  8. Corrosion of Stainless Steels of Cryogenic Hydrocarbon Flare Tips Burners

    OpenAIRE

    H. U. Nwosu; A. U. Iwuoha

    2011-01-01

    Analysis of the corrosion resistance of AISI Type 304 Stainless Steel (SS) used in flare tips (burners) of natural gas (NG) extraction facilities is considered to determine the resistance of this grade of austenitic stainless steel to the aggressive corrosive actions of the environment. It was observed that the grade of SS yielded quite early to corrosion attacks which gave effects to scaling, flaking, pitting, material thinning and flare distortions in the burners contrary to expectations. T...

  9. Thermal fatigue of austenitic and duplex stainless steels

    OpenAIRE

    Virkkunen, Iikka

    2001-01-01

    Thermal fatigue behavior of AISI 304L, AISI 316, AISI 321, and AISI 347 austenitic stainless steels as well as 3RE60 and ACX-100 duplex stainless steels was studied. Test samples were subjected to cyclic thermal transients in the temperature range 20 - 600°C. The resulting thermal strains were analyzed with measurements and numerical calculations. The evolution of thermal fatigue damage was monitored with periodic residual stress measurements and replica-assisted microscopy. The elastic strai...

  10. Hydrogen Embrittlement Susceptibility of Super Duplex Stainless Steels

    OpenAIRE

    Alsarraf, Jalal

    2010-01-01

    This thesis describes the metallurgical and environmental factors that influence hydrogen embrittlement of super duplex stainless steels and presents a model to predict the rate at which embrittlement occurs. Super duplex stainless steel has an austenite and ferrite microstructure with an average fraction of each phase of approximately 50%. An investigation was carried out on the metallurgical and environmental factors that influence hydrogen embrittlement of super duplex st...

  11. Restorasi Gigi Insisivus Sulung Menggunakan Resin Veneer Mahkota Stainless Steel

    OpenAIRE

    Hilda Shandika P.

    2008-01-01

    Untuk memperbaiki kerusakan gigi yang luas diperlukan restorasi yang tahan lama, retentif, dan estetik. Mahkota stainless steel digunakan untuk merestorasi insisivus sulung yang mengalami karies berat, kelainan bentuk atau akibat trauma. Mahkota ini merupakan restorasi yang kuat, tidak mudah fraktur, dan jarang rusak sampai beberapa tahun selama masih berada di tempatnya. Namun mahkota stainless steel memiliki kekurangan dari segi estetik karena warna peraknya yang mengganggu perhatian pada w...

  12. Stainless steel reinforcement for durability in concrete structures

    International Nuclear Information System (INIS)

    Stainless steels and concrete are materials which the nuclear industry, more than any other, has given special attention to over the years. It is the intention of this paper to inform congress about developments outside the nuclear industry, in the use of stainless steel as reinforcement (rebar) in concrete structures. It is left to individual engineers within the industry to assess the implications of this information to applications with which they will be familiar. (author)

  13. Long-term aging of cast stainless steels: Mechanisms and resulting properties

    International Nuclear Information System (INIS)

    Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320 and 290 deg. C. The results indicate that thermal aging increases the tensile strength and decreases the impact energy, JIC, and tearing modules of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The ferrite content and concentration of carbon in the steel have a strong effect on the overall process of low-temperature embrittlement. The low-carbon CF-3 steels are the most resistant and the molybdenum-containing high-carbon CF-8M steels are the most susceptible to low-temperature embrittlement. Microstructural data indicate that three processes contribute to embrittlement of cast stainless steels, viz., Cr-rich α' and G-phase precipitation in the ferrite, and carbide precipitation on the austenite/ferrite phase boundary. The influence of nitrogen content and ferrite distribution on loss of toughness are discussed. The data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280-450 deg. C, i.e., extrapolation of high temperature data to reactor temperatures may not be valid for some compositions of cast stainless steel. (author)

  14. Improved cast stainless steels for shield module applications

    International Nuclear Information System (INIS)

    Full text of publication follows: Casting of austenitic stainless steels offers the possibility of directly producing large and/or relatively complex structures, such as the first wall shield modules or the divertor cassette for the International Tokamak Experimental Reactor (ITER). Casting offers major cost savings when compared to fabrication via welding together quarter modules machined from large forgings. However, because of the large grain size, low dislocation density and extensive segregation of alloying elements, the strength properties of such cast components are frequently inferior to those of conventionally forged and annealed components. To improve and validate cast stainless steel as a substitute for wrought stainless steel for shield module applications, a series of test cast steels based on the commercially available CF3M specification have been designed and fabricated. These modifications utilize combinations of Mn and N,which are expected to synergistically result in significant increases in strength. In addition, two other alloys will enhance solid solution strengthening with Cu and W additions to increase strength. It will be necessary to demonstrate that these compositional modifications do not adversely affect performance in the ITER water corrosion and radiation environments Computational thermodynamics and solidification modeling predict that these improved cast steel compositions to be fully austenitic throughout the solidification process. Post-cast heat treatments are a second-route for improving strength and properties of cast materials. Homogenizing treatments to remove second particles have also been explored as means of improving strength in cast stainless steel. In this paper, the physical metallurgy, mechanical properties, and irradiation tolerance of the improved cast stainless steel compositions and heat treatments will be compared to standard cast stainless steel. Fracture toughness, weldability, and non-destructive analysis of

  15. Copper contamination in thin stainless steel sheet

    International Nuclear Information System (INIS)

    The standard welding technique used at Oak Ridge Y-12 Plant for joining thin stainless sheet is the gas tungsten arc (GTA) welding process. One of the reoccurring problems with the sheet welds is surface cracking in the heat-affected zone (HAZ). Metallography shows that the cracks are only about 0.05 mm (0.002 in.) deep which is significant in a 0.25 mm (0.01 in.) thick sheet. Thus, welding requirements do not permit any surfacing cracking as detected by a fluorescent dye penetrant test conducted on every part after welding. Surface cracks have been found in both of the two most common weld designs in the thin sheet fabricated at the Oak Ridge Y-12 Plant. These butt joints are welded between two 0.25 mm thick stainless steel sheets and a tube with eyelet welded to a 25 mm (0.98 in.) thick sheet. The weld between the two sheets is made on a semiautomatic seam welding unit, whereas the tube-to-eyelet-to-sheet welds are done manually. The quality of both welds is very dependent on the welding procedure and the way the parts are placed in the weld fixturing. Metallographic examination has indicated that some welded parts with surface cracking in the weld region had copper particles on the surface, and the question of copper contamination has been raised. With the aid of a scanning electron microscope and an electron microprobe, the existence of copper in an around the surface cracks has been verified. The copper is on the surface of the parts prior to welding in the form of small dust particles

  16. Effect of heat treatment on the Mechanical Properties and Corrosion Behavior of Duplex Stainless Steel Pipeline Weldments

    International Nuclear Information System (INIS)

    Duplex stainless steel (DSS) is a relatively new class of alloys characterized by a low - carbon content (< 0.03 wt %). body centered cubic ferrite . face centered cubic austenite microstructure, and additions of molybdenum, nitrogen, tungsten nd copper. the typical chromium and nickel contents are 20 to 30% and 5 to 10% respectively. the specific advantages offered by DSS over conventional 300 series stainless steel are strength (about twice that of austenitic stainless steels), chloride-stress corrosion cracking resistance and pitting corrosion resistance. these materials are used in the intermediate temperature range about-60 to 300 C where resistance to acids and aqueous chloride is required

  17. Long-term embrittlement of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    This progress report summarizes work performed by Argonne National Laboratory on long-term embrittlement of cast duplex stainless steels in LWR systems during the six months from April to September 1987. Microstructural studies were conducted to investigate the kinetics of spinodal decomposition and G-phase and γ2 precipitation of CF-8 and CF-8M grades of cast stainless steel. The results indicate that the presence of Mo in CF-8M steel accelerates spinodal decomposition as well as G-phase and γ2 precipitation. Examination of the long-term-aged CF-8M steels also revealed a ''spinodal-like'' decomposition of the austenite caused by segregation of Fe and Ni in the matrix. Preliminary results indicate that local regions of austenite are significantly hardened by the decomposition. Charpy-impact, tensile, and J-R curve data are presented for several heats of cast stainless steels aged at temperatures between 320 and 450 degree C for times up to 10,000 h. The results indicate that concentrations of carbon and nitrogen in the steel and the ferrite content and spacing are important parameters in controlling low-temperature embrittlement. The existing correlations for estimating the extent and kinetics of embrittlement do not accurately represent the properties of different grades and compositions of cast stainless steel after thermal aging. 36 refs., 24 figs., 5 tabs

  18. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    OpenAIRE

    Prabhu Paulraj; Rajnish Garg

    2015-01-01

    Duplex Stainless Steels (DSS) and Super Duplex Stainless Steel (SDSS) have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic pha...

  19. Void Volume Swelling Dependent on Grain Size in Austenitic Stainless Steel

    DEFF Research Database (Denmark)

    Singh, Bachu Narain

    1973-01-01

    Describes some of the main findings of a systematic study of the effect of grain size on the void volume swelling. In this study a powder-produced 20 Ni/20 Cr austenitic stainless steel, with 0.02% carbon and without carbide-forming elements was used. Some specimens containing dispersions of...

  20. Surface stability and conductivity of a high Cr and Ni austenitic stainless steel plates for PEMFC

    Institute of Scientific and Technical Information of China (English)

    TIAN Rujin; SUN Juncai; WANG Jianli

    2006-01-01

    In order to use stainless steel as bipolar plate for PEMFC, electrochemical behavior of a high Cr and Ni austenitic stainless steel was studied in the solutions containing different concentration of H2SO4 and 2 mg·L-1 F-, and interfacial contact resistance was measured after corrosion tests. The experimental results show that the passive current density lowers with decreasing the concentration of H2SO4. The interfacial contact resistance between carbon paper and passive film formed in the simulated PEMFC environment is higher than the goal of bipolar plate for PEMFC. Surface conductivity should be further reduced by surface modification.

  1. Experimental study on ferritic stainless steel RHS and SHS cross-sectional resistance under combined loading

    OpenAIRE

    Arrayago Luquin, Itsaso; Real Saladrigas, Esther

    2015-01-01

    The excellent corrosion resistance presented by all stainless steel grades, together with their appropriate mechanical properties, aesthetic appearance and easy maintenance , make s these metallic alloys perfect for sustainable structural performances. However, their nonlinear stress - strain behaviour together with the ir strong strain hardening features, make s them different from carbon steel and makes the development of some specific guidance necessary . Although the compressive and flexu...

  2. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    Science.gov (United States)

    Adhe, K. M.; Kain, V.; Madangopal, K.; Gadiyar, H. S.

    1996-08-01

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 °C for 30 min to 10 h. The heat-treated samples then undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 °C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted.

  3. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    International Nuclear Information System (INIS)

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 C for 30 min to 10 h. The heat-treated samples than undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted

  4. Research on the mechanism of stainless steel decontamination

    International Nuclear Information System (INIS)

    The most important oxide appearing on structural materials in NPPs operating CANDU type reactors is the magnetite (Fe3O4), a mixed ferro-ferric oxide (FeO·Fe2O3) in which radionuclides are built up by adsorption. On the surface of austenitic stainless steels immersed in lithiated water, at high temperature, a duplex oxide occurs, formed of an inner layer of the type (Fe,Cr)2O3 and an outer, spinel one, rich in Fe, of the type NiFe2O4. To decontaminate such components solving of the oxide layer is necessary , avoiding as much as possible an attack against the basic material. Due to the high Cr concentration in this superficial oxides the chemical processes imply: a pre-treatment stage during which oxidation of Cr3+ into Cr6+ takes place and implicitly the solubilization of Cr2O3, followed by removal of solution and washing out with demineralized water; a second stage in which the remnant oxide is removed from the component by a usual procedure, specific to carbon steel decontamination (such as CAN-DECON procedure). Among the oxiding agents the most frequently used is potassium permanganate while in the second stage a mixture of oxalic and citric acids as well as Na-EDTA and corrosion inhibitors are added. The mechanism of solving the oxide film from samples of 304L stainless steels was studied by means of XPS technique while the structure of the oxide film was evidenced by ESCA. The results obtained are in good agreement with the theoretical studies

  5. Fracture toughness of stainless steel welds

    International Nuclear Information System (INIS)

    The effects of temperature, composition and weld-process variations on the fracture toughness behavior for Types 308 and 16-8-2 stainless steel (SS) welds were examined using the multiple-specimen J/sub R/-curve procedure. Fracture characteristics were found to be dependent on temperature and weld process but not on filler material. Gas-tungsten-arc (GTA) welds exhibited the highest fracture toughness, a shielded metal-arc (SMA) weld exhibited an intermediate toughness and submerged-arc (SA) welds yielded the lowest toughness. Minimum-expected fracture properties were defined from lower-bound J/sub c/ and tearing modulus values generated here and in previous studies. Fractographic examination revealed that microvoid coalescence was the operative fracture mechanism for all welds. Second phase particles of manganese silicide were found to be detrimental to the ductile fracture behavior because they separated from the matrix during the initial stages of plastic straining. In SA welds, the high density of inclusions resulting from silicon pickup from the flux promoted premature dimple rupture. The weld produced by the SMA process contained substantially less manganese silicide, while GTA welds contained no silicide inclusions. Delta ferrite particles present in all welds were substantially more resistant to local failure than the silicide phase. In welds containing little or no manganese silicide, delta ferrite particles initiated microvoid coalescence but only after extensive plastic straining

  6. Martensite transformation in antimony implanted stainless steel

    International Nuclear Information System (INIS)

    The authors have used Rutherford backscattering analysis (RBS) and transmission electron microscopy (TEM) and diffraction to investigate austenitic stainless steel crystals implanted at room temperature with 80 keV Sb+ ions to a fluence of 5 x 1020 ions/m2, thus providing implantation with a heavy group V element. RBS channeling spectra from implanted crystals show a damage peak which approaches the height of the random level and therefore indicates a very high degree of disorder in the implanted layers. The distribution of the disorder extends to a depth 3-5 times the depth of the primary radiation damage. The Sb peaks under channeling as well as random conditions are indistinguishable, confirming that substitutionality during implantation is negligible. To establish the nature of the disorder which cannot be assessed from the RBS analysis alone, and in particular to assess whether an amorphous alloy is formed in the implanted layer as indicated from the RBS spectra, samples implanted under similar conditions were investigated in the TEM. Significant extra spots in the patterns can be ascribed to the presence of a radiation induced b.c.c. phase of martensitic origin. The result that a significant amount of martensite can be induced by antimony implantation seems to indicate that the main driving force for the transition is due to damage induced stress concentrations. (Auth.)

  7. He blisters on welded austenitic stainless steel

    International Nuclear Information System (INIS)

    Surface blisters of single-crystal and polycrystalline metals induced by He-ion irradiation have been investigated by many researchers and several blister-formation mechanisms have been proposed. But there is no report on what blister densities and blister sizes are to be expected on a welded 316 austenitic stainless steel in use as a fusion reactor material. An experiment was carried out, and details are given. The exfoliation of blisters was almost not observed until the total dose of 2 x 1022 ions m-2 was reached. A figure shows the blister densities for every increment in blister diameter of 0.5 μm on the base and weld metals. A second figure shows the corresponding blister densities on the base and weld metals annealed at 653 K for 4.5 ksec after He-ion irradiation. The total blister densities of the base metals decrease to 4.3 to 5.5 x 1010 blisters m-2 and the average blister sizes increase to 2.8 to 3.2 μm. This phenomenon indicates that the implanted He ions diffuse in the weld and base metals. The blister sizes on the weld metals are smaller than those on the base metals and the densities on the weld metals are greater than those on the base metals. (author)

  8. Activating Flux Design for Laser Welding of Ferritic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    马立; 胡绳荪; 胡宝; 申俊琦; 王勇慧

    2014-01-01

    The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investi-gated in this study. Some conventional oxides, halides and carbonates were applied in laser welding. The results showed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved the penetration more effectively at low power than that at high power. The uniform design was adopted to arrange the formula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to 2.23 times as large as that without flux, including 50%ZrO2, 12.09%CaCO3, 10.43%CaO and 27.48%MgO. Through the high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the pene-tration capability.

  9. 78 FR 34644 - Stainless Steel Plate in Coils From Belgium: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2013-06-10

    ... International Trade Administration Stainless Steel Plate in Coils From Belgium: Preliminary Results of... administrative review of the antidumping duty order on stainless steel plate in coils (steel plate) from Belgium...: Scope of the Order The product covered by this order is certain stainless steel plate in...

  10. 78 FR 79662 - Stainless Steel Plate in Coils From Belgium: Final Results of Antidumping Duty Administrative...

    Science.gov (United States)

    2013-12-31

    ... Value: Stainless Steel Plate in Coils from Belgium, 64 FR 15476 (March 31, 1999), as amended by... International Trade Administration Stainless Steel Plate in Coils From Belgium: Final Results of Antidumping... administrative review on stainless steel plate in coils (steel plate) from Belgium.\\1\\ This review covers...

  11. Automatic orbital TIG-welding of small bore austenitic stainless steel tubes for nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Traditionally, manual welding techniques have been employed for shop and site fabrication of small bore austenitic stainless steel tubes in the nuclear fuel reprocessing plant of British Nuclear Fuels Limited (BNFL). This Paper describes an evaluation programme carried out to develop welding procedures for both 18Cr-13Ni-1Nb and 18Cr-10Ni low carbon stainless steel small bore tubing, the type of equipment used, and the modifications required for application to shop and site environments. (author)

  12. Corrosion behavior of duplex stainless steel in sulphuric acid

    International Nuclear Information System (INIS)

    Duplex stainless steels are alloyed and processed to develop microstructure of roughly equal amounts of ferrite and austenite. Duplex stainless steel constitute a new class of materials because they have balanced amounts of ferrite and austenite. Since they have high content of chromium and molybdenum present, thus they have good corrosion resistance. Their corrosion resistance is double to that of annealed austenitic stainless steels with regard to pitting, crevice corrosion, sulphide stress corrosion, and chloride stress corrosion environments. The corrosion behavior of duplex stainless steel in various concentrations of sulphuric acid was studied. The reactions were carried out by placing the steel specimen in a beaker containing a known concentration of sulphuric acid at room temperature for a definite period. Pits were initiated in duplex stainless steel specimen and the propagation of pits depends upon the concentration of the acid solution in which the sample is in contact. The weight loss for definite period of time were measured and corrosion rates were calculated in millimetres per year. The corrosion rates increases with an increase in acid concentration at room temperature. A comparison of the results obtained from various concentrations of sulphuric acid with the same concentrations of nitric acid is also discussed. (author)

  13. Radiation effects in stainless steels and tungsten using as ADS spallation neutron source system

    International Nuclear Information System (INIS)

    Radiation effects have been studied in the home-made modified 316L stainless steel and standard stainless steel and tungsten irradiated by 80 MeV 12C or 85 MeV 19F ions. The experimental results show that the radiation resistant property of stainless steels is much better than that of tungsten and the homemade modified 316L stainless steel has the best radiation resistant property among them. The stainless steels are a good choice for beam window material of the ADS spallation neutron source system, and the homemade modified 316L stainless steel is the best choice

  14. Stainless steel tube-based cell cryopreservation containers.

    Science.gov (United States)

    Shih, Wei-Hung; Yu, Zong-Yan; Wu, Wei-Te

    2013-12-01

    This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the

  15. Modern high strength QT, TM and duplex-stainless steels

    International Nuclear Information System (INIS)

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  16. Mechanical Properties of Thermally Aged Austenitic Stainless Steel Welds and Cast Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Conventional test methods for tensile and J-R properties of such weld require large size specimens. Meanwhile, small punch (SP) test has advantages of using small size samples at specific location. In this study, the mechanical property changes caused by the thermal aging were evaluated for the stainless steel welds and CASSs using tensile, J-R, and SP test. Based on the results, correlations were developed to estimate the fracture toughness using the load-displacement curve of SP tests. Finally, the fracture surfaces of compact tension (CT) and SP test specimens are compared and discussed in view of the effect of thermal aging on microstructure. Stainless steel welds of ER316L and ER347 as well as CASS (CF8M) were thermally aged at 400 .deg. C for 5,000 h. So far, tensile properties and fracture toughness of un-aged materials were carried out at room temperature and 320 .deg. C as a reference data. In order to evaluate the effect of thermal aging on mechanical properties, aged specimens are being tested and the changes in these properties will be discussed. In addition, correlations will be developed to estimate the fracture toughness in between J-R curve and SP curve

  17. 77 FR 28568 - Grant of Authority for Subzone Status; North American Stainless, (Stainless Steel), Ghent, KY

    Science.gov (United States)

    2012-05-15

    ... public comment has been given in the Federal Register (76 FR 66684-66685, 10-27-2011) and the application... Steel), Ghent, KY Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as... authority to establish a special-purpose subzone at the stainless steel mill of North American...

  18. Effect of tin addition on the microstructure and properties of ferritic stainless steel

    Institute of Scientific and Technical Information of China (English)

    Yang Li; Ji-peng Han; Zhou-hua Jiang; Pan He

    2015-01-01

    This article reports the effects of Sn on the inclusions as well as the mechanical properties and hot workability of ferritic stainless steel. Precipitation phases and inclusions in Sn-bearing ferritic stainless steel were observed, and the relationship between the workability and the microstructure of the steel was established. Energy-dispersive X-ray spectroscopic analysis of the steel reveals that an almost pure Sn phase forms and MnS–Sn compound inclusions appear in the steel with a higher Sn content. Little Sn segregation was observed in grain boundaries and in the areas around sulfide inclusions;however, the presence of Sn does not adversely affect the workability of the steel con-taining 0.4wt%Sn. When the Sn content is 0.1wt%–0.4wt%, Sn improves the tensile strength and the plastic strain ratio and also improves the plasticity with increasing temperature. A mechanism of improving the workability of ferritic stainless steel induced by Sn addition was discussed:the presence of Sn lowers the defect concentration in the ultra-pure ferritic lattice and the good distribution of tin in the lattice overcomes the problem of hot brittleness that occurs in low-carbon steel as a result of Sn segregation.

  19. Aging of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70,000 h at 300, 350, and 4000C reveals the formation of four different types of precipitates that are not α'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after approx. 8 y at 3000C and shows cleavage fracture. Examination of the fracture surfaces of the impact-test specimens indicates that the toughness of the long-term aged material is determined by the austenite phase. 8 figures, 3 tables

  20. Experimental study on the emissivity of stainless steel

    International Nuclear Information System (INIS)

    The emissivity of material is a very important parameter for thermal radiative heat transfer. The emissivities of stainless steel 316L and 304 were measured as a fuction of surface temperature and heating time of test section by indirect method using the infrared thermometer. The error range of experiment is within 3∼10% and most of errors were occurred in measuring the surface temperature by thermocouple. The range of temperature for the experiment was 50∼540.deg. C and the emissivities of stainless steel 316L and 304 were increased along with the increase of surface temperature, and the increase rates for two materials were approximately the same and the value was about 1.31x10-4(1/.deg. C). The emissivity of stainless steel 316L with surface roughness 4.1μm was between 0.44 and 0.51, and the emissivity of stainless steel 304 with surface roughness 2.0μm was between 0.32 and 0.38 in this temperature range. The emissivity of stainless steel 304 was gradually increased by a value of 0.03 at 395.deg. C for 266 hours

  1. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes

    International Nuclear Information System (INIS)

    Stainless steel and graphite electrodes were individually addressed and polarized at -0.60 V vs. Ag/AgCl in reactors filled with a growth medium that contained 25 mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75 A m-2 for graphite and 20.5 A m-2 for stainless steel. Cyclic voltammetry performed at the end of the experiment indicated that the reduction started at around -0.30 V vs. Ag/AgCl on stainless steel. Removing the biofilm formed on the electrode surface made the current totally disappear, confirming that the G.sulfurreducens biofilm was fully responsible for the electrocatalysis of fumarate reduction. Similar current densities were recorded when the electrodes were polarized after being kept in open circuit for several days. The reasons for the bacteria presence and survival on non-connected stainless steel coupons were discussed. Chronoamperometry experiments performed at different potential values suggested that the biofilm-driven catalysis was controlled by electrochemical kinetics. The high current density obtained, quite close to the redox potential of the fumarate/succinate couple, presents stainless steel as a remarkable material to support biocathodes

  2. Aging of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70 000 h at 300, 350 and 4000C reveals the formation of four different types of precipitates that are not α'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after proportional 8 y at 3000C and shows cleavage fracture. Examination of the fracture surfaces of the impact test specimens indicates that the toughness of the long-term aged material is determined by the austenitic phase. (orig./HP)

  3. Embrittlement and life prediction of aged duplex stainless steel

    International Nuclear Information System (INIS)

    The stainless steel, for which the durability for long term in high temperature corrosive environment is demanded, is a complex plural alloy. Cr heightens the oxidation resistance, Ni improves the ductility and impact characteristics, Si improves the fluidity of the melted alloy and heightens the resistance to stress corrosion cracking, and Mo suppresses the pitting due to chlorine ions. These alloy elements are in the state of nonequilibrium solid solution in Fe base at practical temperature, and cause aging phenomena such as segregation, concentration abnormality and precipitation during the use for long term. The characteristics of stainless steel deteriorate due to this. Two-phase stainless cast steel, the example of the embrittlement of the material for an actual machine, the accelerated test of embrittlement, the activation energy for embrittlement, and as the mechanism of aging embrittlement, the spinodal decomposition of ferrite, the precipitation of G phase and the precipitation of carbides and nitrides are described. Also in the welded parts of austenitic stainless steel, delta-ferrite is formed during cooling, therefore, the condition is nearly same as two-phase stainless steel, and the embrittlement due to long term aging occurs. (K.I.)

  4. Corrosion resistance of kolsterised austenitic 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Abudaia, F. B., E-mail: fabudaia@yahoo.com; Khalil, E. O., E-mail: ekhalil9@yahoo.com; Esehiri, A. F., E-mail: Hope-eseheri@hotmail.co.uk; Daw, K. E., E-mail: Khawladaw@yahoo.com [University of Tripoli Department of Materials and Metallurgical Eng, Tripoli-Libya P.O.Box13589 (Libya)

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  5. Compresibility and sinterability of HCx PM steel diluted with stainless steels

    OpenAIRE

    Gordo Elena; Khattab Nermein Hamid; Ruiz-Navas Elisa María

    2003-01-01

    HCx powder metallurgy steel contains in its composition high contents of Cr and C, and significant quantities of alloy elements typical of tool steels (Mo, V, W), to provide the corrosion resistance of stainless steel with wear resistance of tool steels. HCx appears to be a suitable material for applications in aggressive environments, as valve seat inserts in automotive engines. However, this steel presents a low compressibility leading to high production costs. In this work, some results ca...

  6. Development of the ultrasonic technique for examination of centrifugally-cast stainless steel in pressure piping

    International Nuclear Information System (INIS)

    Centrifugally - cast stainless steel (CCSS) are used to manufacture a large variety of components in the nuclear industry. Weldments are also made to join these parts to carbon steel items. These welds are usually made of stainless steel or inconel alloys. CCSS is sophisticated material and justification for its use in critical components is safety and reliability. These steels, as any other materials, need to be inspected to assess their structural integrity. Ultrasonic testing is one of the possible techniques. In some cases it is the only one of the feasible methods for this examination. This mainly concerns components in the primary and auxiliary circuits of nuclear plants. For a long time it has been recognized that CCSS items can be extremely difficult to inspect using ultrasonics. Many attempts in various research laboratories were conducted to improve the testing technique

  7. Suggested solutions to improve the surface hardness of austenitic stainless steels without loosing their corrosion resistance

    International Nuclear Information System (INIS)

    Ionic nitridation is a process which is already used industrially. Indeed, by nitrogen diffusion, it is possible to harden the surfaces and then to improve the wear, seizure, and fatigue resistances. Nevertheless, the direct application to stainless steels induces a strong degradation of their un-oxidizable character. But this process can be optimized in order to maintain a good oxidation resistance. One way consists to work with a nitrogen plasma or with a carbon plasma. The materials properties obtained with a nitrogen plasma are discussed. Example of control elements of a PWR type reactor are given. This process is then compared with those whose plasma is a carbon plasma. According to the studied process, it is possible to increase the wear resistance of the austenitic stainless steel by a factor of 60 to 700 while entirely conserving the corrosion resistance of the untreated steel. (O.M.)

  8. Steam oxidation of boron carbide–stainless steel liquid mixtures

    International Nuclear Information System (INIS)

    In the framework of nuclear reactor core meltdown accidents studies, the oxidation kinetics of boron carbide–stainless steel liquid mixtures exposed to argon/steam atmospheres was investigated at temperatures up to 1527 °C. A B–Cr–Si–O liquid protective layer forms on the surface of the mixtures in contact with steam. This protective layer gradually transforms into a Cr2O3-rich slag. Important quantities of liquid can be projected from the melt during oxidation. These projections are favoured by high B4C contents in the melt, high steam partial pressures and low temperatures. In addition to stainless steel–boron carbide melts, simpler compositions (pure 304L stainless steel, iron–boron, iron–boron carbide and stainless steel–boron) were studied, in order to identify the basic oxidation mechanisms.

  9. Nitrogen depth profiles in plasma implanted stainless steel

    Science.gov (United States)

    Tian, Xiubo; Kwok, Dixon T. K.; Chu, Paul K.; Chan, Chung

    2002-07-01

    Nitrogen plasma immersion ion implantation (PIII) is a useful technique to enhance the surface properties of stainless steels and the in-depth distribution of the implanted nitrogen is a crucial parameter. A comparison of the nitrogen depth profiles in AISI 304 stainless steel reported in the literature and observed in our laboratory with the one simulated using a plasma sheath model and TRIM shows a discrepancy. The simulated profile is non-Gaussian and shallower due to the non-perfect high voltage pulses whereas the experimental profile is a better fit to a Gaussian distribution. Since most PIII equipment is not designed for ultra-high vacuum (UHV) operation and the plasma is highly reactive in this environment, the surface of the implanted samples is easily contaminated by a large amount of atmospheric species such as oxygen and carbon from the residual vacuum in the processing chamber, thereby converting the materials surface into an oxidized and carburized form. The change in the matrix composition in the near surface skews and translates the nitrogen depth profile obtained by Auger electron spectroscopy. By normalizing the nitrogen signal point-by-point with the combined (Fe+Cr+Ni) signal, a more accurate depth profile can be obtained. This type of normalization, albeit common in secondary ion mass spectrometry (SIMS) data quantification, is seldom implemented in the plasma community when dealing with nitrogen depth profiles acquired by Auger electron spectroscopy. Our results indicate that the excessively high surface contamination renders the raw nitrogen depth profile inaccurate and a proper normalization measure must be adopted.

  10. Evaluation of SCC susceptibility in high temperature water for type 316 stainless steels cooling system pipes produced by forging

    International Nuclear Information System (INIS)

    For three kinds of nitrogen-charged 316 stainless steels pipes produced by forging, the stress corrosion cracking susceptibility and fundamental properties were investigated. (1) Fundamental properties of the materials were mainly as follows. Two kinds of 316LN forged stainless steels, whose carbon and nitrogen contents were 0.012%C - 0.130%N and 0.018%C - 0.133%N, showed extremely high resistance against intergranular corrosion, although they were severely sensitized by both furnace-heating and weld-heating. However, a relatively high carbon charged 316N stainless steel, whose carbon and nitrogen contents were 0.048%C and 0.139%N, showed very large intergranular attack when the material was heated in sensitizing temperature. All the tensile test properties of above materials at room temperature and 3000C, which included 0.2% offset proof stress, ultimate tensile strength, total elongation and reduction of area, satisfied the criteria of the nuclear-grade 316 stainless steel. (2) As follows was the SCC susceptibility in 2880C high purity water containing air-saturated dissolved oxygen (approximately 8 ppm). Severely sensitized 316N stainless steels exhibited no SCC susceptibility in all SCC tests which were constant extension rate test at minimum 4.2 x 10-7S-1 strain rate, cyclic tension test in the trapezoidal stress waveform of 2.25 σy upper holding stress, and constant load test at 2.25 σy applied stress. However a sensitized 316N stainless steel containing 0.048% carbon was failed by intergranular stress corrosion crackings. From above results, the 316LN stainless steels pipes were evaluated to be promising alternate materials when their carbon content was suppressed lower to approximately 0.2 weight percentage. However, the smaller grain size material has to be produced in the forging process. (author)

  11. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT ) in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer

  12. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Directory of Open Access Journals (Sweden)

    ZHOU Shu-cai

    2007-08-01

    Full Text Available An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.

  13. Embrittlement of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Mechanical property data from Charpy-impact and J-R curve tests are presented for several experimental and commercial heats, as well as reactor-aged material of CF-3, CF-8, and CF-8M grades of cast stainless steel. The effects of material variables on the embrittlement of cast stainless steels are evaluated. The chemical composition and ferrite morphology have a strong effect on the extent and kinetics of embrittlement. The data are analyzed to establish the mechanisms of embrittlement. The procedure and correlations for predicting the impact strength and fracture toughness of cast components during reactor service are described. The lower bound values of impact strength and fracture toughness for low-temperature aged cast stainless steel are defined. 13 refs., 13 figs., 3 tabs

  14. Thermal Induced Processes in Laminar System of Stainless Steel - Beryllium

    International Nuclear Information System (INIS)

    The paper reports on investigation of the laminar system 'stainless steel 12Cr18Ni10Ti - Be' at thermal treatment. There have been determined sequences of phase transformations along with relative amount of iron-containing phases in the samples subjected to thermal beryllization. It has been revealed that thermal beryllization of stainless steel thin foils results in γ→α transformation and formation of the beryllides NiBe and FeBe2. It has also been revealed that direct γ→α- and reverse α→γ-transformations are accompanied by, correspondingly, formation and decomposition of the beryllide NiBe. It is shown that distribution of the formed phases within sample bulk is defined by local concentration of beryllium. Based on obtained experimental data there is proposed a physical model of phase transformations in stainless steel at thermal beryllization.

  15. Depth distribution of martensite in xenon implanted stainless steels

    International Nuclear Information System (INIS)

    The amount of stress-induced martensite and its distribution in depth in xenon implanted austenitic stainless steel poly- and single crystals have been measured by Rutherford backscattering and channeling analysis, depth selective conversion electron Moessbauer spectroscopy, cross-sectional transmission electron microscopy and x-ray diffraction analysis. In low nickel 17/7, 304 and 316 commercial stainless steels and in 17:13 single crystals the martensitic transformation starts at the surface and develops towards greater depth with increasing xenon fluence. The implanted layer is nearly completely transformed, and the interface between martensite and austenite is rather sharp and well defined. In high nickel 310 commercial stainless steel and 15:19 and 20:19 single crystals, on the other hand, only insignificant amounts of martensite are observed. (orig.)

  16. Diffusionless bonding of aluminum to type 304 stainless steel

    International Nuclear Information System (INIS)

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510oC) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  17. Highly robust stainless steel tips as microelectrospray emitters.

    Science.gov (United States)

    Ishihama, Yasushi; Katayama, Hiroyuki; Asakawa, Naoki; Oda, Yoshiya

    2002-01-01

    Tapered stainless steel spray tips for sheathless microelectrospray ionization (microESI) have been developed. The fabrication procedure for the tapered stainless steel tips was optimized using an electropolishing technique followed by removal of the burr. Using the tip as the microESI emitter, a stable ESI spray was obtained at a flow rate of 20 nL/min. The sensitivity of the microESI system was almost two orders greater than that of the conventional ion spray system. The tip was highly stable, and was successfully used for over 1000 h. Moreover, these stainless steel tips were suitable for use with sheathless capillary electrophoresis/mass spectrometry (CE/MS) and capillary liquid chromatography/mass spectrometry (LC/MS) for routine analysis in proteomic and pharmaceutical applications. PMID:11968120

  18. Microbially influenced corrosion of stainless steels in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, U.P.; Wolfram, J.H.; Rogers, R.D.

    1990-01-01

    This paper reviews the components, causative agents, corrosion sites, and potential failure modes of stainless steel components susceptible to microbially influenced corrosion (MIC). The stainless steel components susceptible to MIC are located in the reactor coolant, emergency, and reactor auxiliary systems, and in many plants, in the feedwater train and condenser. The authors assessed the areas of most high occurrence of corrosion and found the sites most susceptible to MIC to the heat-affected zones in the weldments of sensitized stainless steel. Pitting is the predominant MIC corrosion mechanisms, caused by sulfur reducing bacteria (SRB). Also discussed is the current status of the diagnostic, preventive, and mitigation techniques, including use of improved water chemistry, alternate materials, and improved thermomechanical treatments. 37 refs., 3 figs.

  19. Internal variable approach to superplastic deformation of duplex stainless steel

    International Nuclear Information System (INIS)

    An internal variable theory has been used in this study to investigate quantitatively the major deformation mechanism of a duplex stainless steel. The flow curves obtained from load relaxation tests were found separable into two parts, viz. Grain Matrix Deformation (GMD) curve and Grain/Phase Boundary Sliding (G/PBS) curve as was predicted by the internal variable theory. The major deformation mechanism of duplex stainless steel at high temperature is found to be a Dynamic Recrystallization (DRX) at an early stage of deformation, but grain/phase boundary sliding becomes the major deformation mechanism at the late stage of deformation. Additionally, χ phase precipitated first by replacing Mo with W in duplex stainless steels appears to improve the superplastic deformation characteristics when it exists below a critical level

  20. Mechanical properties of duple stainless steels laser joints

    International Nuclear Information System (INIS)

    The welded joints of stainless steels always present problems for the microstructural modifications that occur in the heat affected zone. Particularly, duplex stainless steels present very important changes when the weld pool solidifies forming fundamentally ferritic structures with some austenite in grain boundaries. These microstructural modifications, and those which occur in the HAZ, justify the mechanical properties of the joint and mainly those of plasticity, being all of them influenced by the processing conditions. In this work the influence of the laser welding speed on the tensile behaviour od duplex stainless steel welded joints is presented. The microstructure of the obtained seams and of the heat affected zone will be evaluated by means of optic and scanning electron microscopy. Also, different microhardness profiles have been obtained to evaluate the modifications in the mechanical properties both in the seam and the zone of thermal affection. (Author) 23 refs

  1. Sinter-hardening process applicable to stainless steels

    Directory of Open Access Journals (Sweden)

    M. Rosso

    2007-10-01

    Full Text Available Purpose: of this paper was to describe sintered duplex stainless steels manufactured in sinter-hardening process and its usability in field of stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, ferritic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies apart from the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been compacted at 800 MPa and sintered in a vacuum furnace with argon backfilling at temperatures from 1200°C to 1285°C for 0.5, 1 and 2 h. After sintering different cooling cycles were applied using nitrogen under pressure from 0.6 MPa to 0.002 MPa in argon atmosphere. Produced duplex stainless steels have been studied by scanning and optical microscopy and EDS chemical analysis of microstructure components.Findings: Obtained microstructure and mechanical properties of sintered duplex stainless steel strictly depend on the density and the pore morphology present in the microstructure and especially on cooling rate directly from sintering temperature in sinter-hardening process. The lowest cooling rate - applied gas pressure, the mechanical properties and corrosion resistance decrease due to precipitation of sigma phase. Proper bi-physic microstructure was obtained using nitrogen under pressure of 0.6 and 0.2 MPa.Research limitations/implications: Applied fast cooling rate seems to be a good compromise for mechanical properties and obtained microstructures, nevertheless further tests should be carried out in order to examine its influence on corrosion properties.Originality/value: The utilization of sinter-hardening process combined with use of elemental powders added to a stainless steel base powder shows its potentialities in terms of good microstructural homogeneity and especially working with cycles possible to introduce in

  2. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

    Directory of Open Access Journals (Sweden)

    Massimiliano Filippi

    2009-03-01

    Full Text Available The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing, in comparison with those obtained under standard/conventional process (EP conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material - medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES and X-ray photoelectron spectroscopy (XPS were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size, EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.

  3. Development of a duplex cast stainless steel for nuclear purposes

    International Nuclear Information System (INIS)

    The starting material was a Finnish austenitic-ferritic stainless steel belonging to the family of widely used CF 308 M cast steels. This original HKS steel failed in the Strauss tests, which are of primary importance for materials used in nuclear power piles. Development work on lowering the ferrite and interstitial impurity contents influenced the properties of the steel so much that it no longer failed the Strauss test nor showed any brittleness when tested after irradiation treatment. Welded samples also showed no brittleness, provided the welding was carried out using correct filler materials and suitable heat input. (author)

  4. Evaluation of the thermal ageing of duplex stainless steels

    International Nuclear Information System (INIS)

    Three methods have been investigated to follow up the thermal ageing of duplex stainless steels: microhardness tests, instrumented ultramicrohardness tests and Small Angle Neutron Scattering (SANS) techniques. The values measured with these methods have been correlated with pertinent parameters of the metallurgical ageing phenomenon determined by Atom-Probe. These methods seem to be sensitive and reproducible enough to detect and follow up the ageing of duplex stainless steels. They can be applied on small samples (chips) drawn from in-service components. (authors). 10 refs., 9 figs., 3 tabs

  5. Failure of austenitic stainless steel tubes during steam generator operation

    OpenAIRE

    M. Głowacka; J. Łabanowski; S. Topolska

    2012-01-01

    Purpose: of this study is to analyze the causes of premature failure of steam generator coil made of austenitic stainless steel. Special attention is paid to corrosion damage processes within the welded joints.Design/methodology/approach: Examinations were conducted several segments of the coil made of seamless cold-formed pipes Ø 23x2.3 mm, of austenitic stainless steel grade X6CrNiTi18-10 according to EN 10088-1:2007. The working time of the device was 6 months. The reason for the withdrawa...

  6. Fatigue behavior of welded austenitic stainless steel in different environments

    OpenAIRE

    D. S. Yawas; S.Y. Aku; S.O. Aluko

    2014-01-01

    The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat...

  7. Tool flank wear analyses on martensitic stainless steel by turning

    OpenAIRE

    S. Thamizhmnaii; B. Bin Omar; S. Saparudin; Hasan, S

    2008-01-01

    Purpose: Purpose of this research was to demonstrate tool wear by hard turning of martensitic stainless steel andthis material is pronounced as difficult to machine material. The evaluation was done using CBN cutting tool onSS 440 C stainless steel with hardness between 45 to 55 HRC.Design/methodology/approach: Turning parameters like cutting speed, feed rate and depth of cut was used.The turning was carried out dry process.Findings: The flank wear was caused by abrasive action between cuttin...

  8. Development status of ultrasonic test techniques for cast stainless steel

    International Nuclear Information System (INIS)

    Ultrasonic testing has been thought to be difficult to apply to cast stainless steel which is used as the material for the main coolant pipes in pressurized water reactors (PWRs). An ultrasonic testing technique using large aperture twin crystal transducers was developed in INSS for application to inspection of the main coolant pipes. The method was evaluated in an application to detect circumferential and axial defects in the cast stainless steel pipes. It was found that (1) the defects could be detected which had a depth that was so small that their evaluation was not required; and (2) depth sizing and length sizing of detected defects were also possible. (author)

  9. Corrosion of 316L stainless steels MAVL wastes containers

    International Nuclear Information System (INIS)

    The long lived and medium activity wastes are conditioned or could be re-conditioned in primary drums of 316L stainless steels. In the framework of wastes storage, these drums will be placed in concrete containers; each containers would contain one or more drums. This document recalls global information on the corrosion of stainless steels, analyzes specific conditions bond to the drums conditioning in concrete containers and the nature of the wastes, and details the consequences on the possible risks of external and internal corrosion of the drums. (A.L.B.)

  10. Impact toughness of tungsten films deposited on martensite stainless steel

    Institute of Scientific and Technical Information of China (English)

    HUANG Ning-kang; YANG Bin; WANG De-zhi

    2005-01-01

    Tungsten films were deposited on stainless steel Charpy specimens by magnetron sputtering followed by electron beam heat treatment. Charpy impact tests and scanning electron microscopy were used to investigate the ductile-brittle transition behavior of the specimens. With decreasing test temperature the fracture mode was transformed from ductile to brittle for both kinds of specimens with and without W films. The data of the crack initiation energy, crack propagation energy, impact absorbing energy, fracture time and deflection as well as the fracture morphologies at test temperature of -70 ℃ show that W films can improve the impact toughness of stainless steel.

  11. Ozone decay on stainless steel and sugarcane bagasse surfaces

    Science.gov (United States)

    Souza-Corrêa, Jorge A.; Oliveira, Carlos; Amorim, Jayr

    2013-07-01

    Ozone was generated using dielectric barrier discharges at atmospheric pressure to treat sugarcane bagasse for bioethanol production. It was shown that interaction of ozone molecules with the pretreatment reactor wall (stainless steel) needs to be considered during bagasse oxidation in order to evaluate the pretreatment efficiency. The decomposition coefficients for ozone on both materials were determined to be (3.3 ± 0.2) × 10-8 for stainless steel and (2.0 ± 0.3) × 10-7 for bagasse. The results have indicated that ozone decomposition has occurred more efficiently on the biomass material.

  12. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    Science.gov (United States)

    Michalska, J.

    2011-05-01

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  13. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Michalska, J, E-mail: joanna.k.michalska@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  14. Corrosion behaviour of some conventional stainless steels in electrolyzing process

    Directory of Open Access Journals (Sweden)

    Amal NASSAR

    2015-12-01

    Full Text Available In this study, attempts were made to increase the amount of hydrogen generated from the water electrolysis process. Some conventional stainless steels (316; 409; 410 and 430 were used as anode and cathode in electrolysis process. Further study was carried out on the corrosion trend in all the investigated metals. It is observed that the electrode material can effect on the amount of hydrogen generate by electrolyzing process and metal composition of the stainless steels effects on the rate of corrosion.

  15. Creep and creep rupture of thin stainless steel specimens

    International Nuclear Information System (INIS)

    Two types of experiment on two different materials are described: 1) Creep experiments on commercial stainless steel 316-20% cold worked, tested in high-vacuum (10-5 Pa) and in purified helium atmosphere. 2) Creep fracture experiments on stainless steel DIN 1.4970. Also some pre-experiments on the influence of grain size and sample thickness on tensile properties at room temperature were done on SS 316-p (material containing only Fe, Ni, Cr, Mo in the proper composition). (Auth.)

  16. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes

    OpenAIRE

    Dumas, Claire; Basséguy, Régine; Bergel, Alain

    2008-01-01

    Stainless steel and graphite electrodes were individually addressed and polarized at−0.60V vs. Ag/AgCl in reactors filled with a growth medium that contained 25mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75Am−2 for graphite and 20.5Am−2 for stainless steel. Cyclic voltamm...

  17. Application and development of stainless steel reinforced concrete structure

    Directory of Open Access Journals (Sweden)

    Meng Xian Hong

    2016-01-01

    Full Text Available Now reinforced concrete structure in our country develops very fast, and reinforced concrete structure has been widely applied by various buildings. But with the deepening of the research experts and scholars, they found in some areas where high corrosion of reinforced concrete structure with the increase of service time, the concrete cracks, and led to the internal steel bar corrosion conditions. In the face of these problems, the experts used stainless steel applied to the study of concrete. In this paper, the stainless stell reinforced concrete structure of the application and development status of made briefly.

  18. Transmission electron microscopy of undermined passive films on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, H.S.; Zhu, Y.; Sabatini, R.L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science; Ryan, M.P. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    1999-06-01

    A study has been made of the passive film remaining over pits on stainless steel using a high resolution transmission electron microscope. Type 305 stainless steel was passivated in a borate buffer solution and pitted in ferric chloride. Passive films formed at 0.2 V relative to a saturated calomel electrode were found to be amorphous. Films formed at higher potentials showed only broad diffraction rings. The passive film was found to cover a remnant lacy structure formed over pits passivated at 0.8 V. The metallic strands of the lace were roughly hemitubular in shape with the curved surface facing the center of the pit.

  19. Intergranular stress corrosion in soldered joints of stainless steel 304

    International Nuclear Information System (INIS)

    The intergranular stress cracking of welded joints of austenitic stainless steel, AISI 304, is a serious problem in BWR type reactors. It is associated with the simultaneous presence of three factors; stress, a critical media and sensibilization (DOS). EPR technique was used in order to verify the sensibilization degree in the base metal, and the zone affected by heat and welding material. The characterization of material was done. The objective of this work is the study of microstructure and the evaluation of EPR technique used for the determination of DOS in a welded plate of austenitic stainless steel AISI 304. (Author)

  20. Optimal Use of Duplex Stainless Steel in Storage Tanks

    OpenAIRE

    Talus, Eva

    2013-01-01

    The aim of this work is to get a better understanding of how optimal weight savings of the cylindrical shell plates in storage tanks can be reached using higher strength duplex material. The design criteria will be based on the requirements given by the American Petroleum Institute standards API 650 for welded storage tanks and API 12B for bolted storage tanks. The expected result is that use of duplex stainless steel instead of austenitic stainless steel can reduce the weight of the material...

  1. Structural Optimization of Corrugated Transverse Bulkheads Made of Stainless Steel

    OpenAIRE

    Andrić, Jerolim; Žanić, Vedran; Grgić, Mate

    2010-01-01

    The article describes structural optimization applied to the minimum weight design of corrugated transverse bulkheads made of the duplex stainless steel. The study presented in this paper was carried out within the EU FP6 project IMPROVE as a sub-task of multi-level structural optimization that was performed with the aim of development of a new innovative design of chemical tanker. This task can result in large benefi ts, because the unit price of duplex stainless steel is very high (5000 ...

  2. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Cornelia Bellmann

    2012-12-01

    Full Text Available Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.

  3. Corrosion resistance testing of high-boron-content stainless steels

    International Nuclear Information System (INIS)

    Boron steels, i.e. stainless steels with boron contents of 0.2 to 2.25 wt.%, are employed in nuclear engineering for the manufacture of baskets or wells in which radioactive fissile materials are stored, mostly spent nuclear fuel elements. The resistance of such steels to intergranular corrosion and uniform corrosion was examined in the Strauss solution and in boric acid; the dependence of the corrosion rate of the steels on their chemical composition was investigated, and their resistance was compared with that of AISI 304 type steel. Corrosion resistance tests in actual conditions of ''wet'' compact storage (demineralized water or a weak boric acid solution) gave evidence that boron steels undergo nearly no uniform corrosion and, as electrochemical measurements indicated, match standard corrosion-resistant steels. Corrosion resistance was confirmed to decrease slightly with increasing boron content and to increase somewhat with increasing molybdenum content. (Z.S.). 3 tabs., 4 figs., 7 refs

  4. 76 FR 18518 - Stainless Steel Sheet and Strip in Coils From Mexico: Rescission of Antidumping Duty...

    Science.gov (United States)

    2011-04-04

    ... International Trade Administration Stainless Steel Sheet and Strip in Coils From Mexico: Rescission of... stainless steel sheet and strip in coils from Mexico. The period of review is July 1, 2009, through June 30... American Stainless, and AK Steel Corporation (collectively ``petitioners''), we are now rescinding...

  5. 76 FR 46323 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2011-08-02

    ... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan... U.S.C.1675(c)), that revocation of the antidumping duty orders on stainless steel sheet and strip... revocation of the countervailing duty order on stainless steel sheet and strip from Korea and revocation...

  6. 76 FR 50495 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Science.gov (United States)

    2011-08-15

    ... COMMISSION Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan Determinations On the.... 1675(c)), that revocation of the countervailing duty order on stainless steel plate from South Africa and revocation of the antidumping duty orders on stainless steel plate from Belgium, Korea,...

  7. 75 FR 30437 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2010-06-01

    ... stainless steel sheet and strip in coils from France, Italy, and Korea (64 FR 42923-42925). Following five... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY... countervailing duty order on stainless steel sheet and strip from Korea and the antidumping duty orders...

  8. 75 FR 53714 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Science.gov (United States)

    2010-09-01

    ... imports of stainless steel butt-weld pipe fittings from Japan (53 FR 9787). On February 23, 1993, Commerce issued an antidumping duty order on imports of stainless steel butt-weld pipe fittings from Korea (58 FR... on imports of stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan (65 FR...

  9. 76 FR 31585 - Forged Stainless Steel Flanges From India: Notice of Rescission of Antidumping Duty...

    Science.gov (United States)

    2011-06-01

    ... International Trade Administration Forged Stainless Steel Flanges From India: Notice of Rescission of... stainless steel flanges from India. The period of review is February 1, 2010, through January 22, 2011... stainless steel flanges from India. See Antidumping or Countervailing Duty Order, Finding, or...

  10. 75 FR 59744 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Science.gov (United States)

    2010-09-28

    ... COMMISSION [Investigation Nos. 701-TA-376 and 379 and 731-TA-788, 790-793 (Second Review)] Stainless Steel... countervailing duty orders on stainless steel plate from Belgium and South Africa and the antidumping duty orders on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan. SUMMARY:...

  11. 77 FR 3231 - Certain Stainless Steel Wire Rods From India: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2012-01-23

    ... the Antidumping Duty Order on Stainless Steel Wire Rod From India, 76 FR 38686 (July 1, 2011). \\1\\ Antidumping Duty Order: Certain Stainless Steel Wire Rods from India, 58 FR 63335 (December 1, 1993). As a... reasonably foreseeable time. See Stainless Steel Wire Rod From India, 77 FR 1504 (January 10, 2012), and...

  12. 78 FR 13017 - Drawn Stainless Steel Sinks From the People's Republic of China: Final Affirmative Countervailing...

    Science.gov (United States)

    2013-02-26

    ...; Countervailing Duties, 62 FR 27296, 27323 (May 19, 1997). \\6\\ See Drawn Stainless Steel Sinks From the People's... International Trade Administration Drawn Stainless Steel Sinks From the People's Republic of China: Final... countervailable subsidies are being provided to producers and exporters of drawn stainless steel sinks (``SS...

  13. 76 FR 1599 - Stainless Steel Bar From Brazil: Final Results of Antidumping Duty Administrative Review

    Science.gov (United States)

    2011-01-11

    ... Less Than Fair Value: Stainless Steel Bar From Brazil, 59 FR 66914 (December 28, 1994). These deposit... International Trade Administration Stainless Steel Bar From Brazil: Final Results of Antidumping Duty... results of its administrative review of the antidumping duty order on stainless steel bar from Brazil....

  14. 77 FR 18211 - Drawn Stainless Steel Sinks From the People's Republic of China: Initiation of Countervailing...

    Science.gov (United States)

    2012-03-27

    ... International Trade Administration Drawn Stainless Steel Sinks From the People's Republic of China: Initiation...'') petition concerning imports of drawn stainless steel sinks from the People's Republic of China (``PRC... Antidumping and Countervailing Duties Against Drawn Stainless Steel Sinks from the People's Republic of...

  15. 78 FR 7395 - Stainless Steel Bar From India: Preliminary Results of Antidumping Duty Administrative Review...

    Science.gov (United States)

    2013-02-01

    ... Determination of Sales at Less Than Fair Value: Stainless Steel Bar from India, 59 FR 66915, 66921 (December 28... International Trade Administration Stainless Steel Bar From India: Preliminary Results of Antidumping Duty... the antidumping duty order on stainless steel bar (SSB) from India. The period of review (POR)...

  16. 77 FR 60673 - Drawn Stainless Steel Sinks From the People's Republic of China: Antidumping Duty Investigation

    Science.gov (United States)

    2012-10-04

    ... International Trade Administration Drawn Stainless Steel Sinks From the People's Republic of China: Antidumping...'') preliminarily determines that drawn stainless steel sinks (``drawn sinks'') from the People's Republic of China... unfinished, regardless of type of finish, gauge, or grade of stainless steel. Mounting clips,...

  17. 75 FR 12199 - Stainless Steel Bar from India: Preliminary Results of Antidumping Duty Administrative Review

    Science.gov (United States)

    2010-03-15

    ...'') from India. See Antidumping Duty Orders: Stainless Steel Bar from Brazil, India and Japan, 60 FR 9661... Partial Rescission of Antidumping Duty Administrative Review: Stainless Steel Bar from India, 72 FR 51595... Determination of Sales at Less Than Fair Value: Stainless Steel Bar from India, 59 FR 66915 (December 28,...

  18. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2010-09-28

    ... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY... five-year reviews concerning the countervailing duty order on stainless steel sheet and strip from Korea and the antidumping duty orders on stainless steel sheet and strip from Germany, Italy,...

  19. 78 FR 21596 - Drawn Stainless Steel Sinks From the People's Republic of China: Countervailing Duty Order

    Science.gov (United States)

    2013-04-11

    ... Countervailing Duty Determination, 78 FR 13017 (February 26, 2013). \\2\\ See Drawn Stainless Steel Sinks from... International Trade Administration Drawn Stainless Steel Sinks From the People's Republic of China... duty order on drawn stainless steel sinks (``drawn sinks'') from the People's Republic of China...

  20. 77 FR 39467 - Stainless Steel Bar From India: Final Results of the Antidumping Duty Administrative Review

    Science.gov (United States)

    2012-07-03

    ...: Stainless Steel Bar from India, 59 FR 66915 (December 28, 1994). These cash deposit requirements, when... bar means articles of stainless steel in straight lengths that have been either hot-rolled, forged... International Trade Administration Stainless Steel Bar From India: Final Results of the Antidumping...

  1. Tool degradation during sheet metal forming of three stainless steel alloys

    DEFF Research Database (Denmark)

    Wadman, Boel; Nielsen, Peter Søe; Wiklund, Daniel; Bay, Niels; Madsen, Erik; Schedin, Erik

    To evaluate if changes in tool design and tool surface preparation are needed when low-Ni stainless steels are used instead of austenitic stainless steels, the effect on tool degradation in the form of galling was investigated with three different types of stainless steel. The resistance to tool...

  2. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates...

  3. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  4. Properties of duplex stainless steels made by powder metallurgy

    Directory of Open Access Journals (Sweden)

    M. Rosso

    2007-04-01

    Full Text Available Purpose: of this paper was to examine the mechanical properties of duplex stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies behind the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been sintered in a vacuum furnace with argon backfilling at 1260°C for 1 h. After sintering: rapid cooling have been applied in argon atmosphere. Produced duplex stainless steels have been studied by scanning and optical microscopy. Mechanical properties such as tensile strength, impact energy, hardness and wear rate were evaluated.Findings: According to achieved results, it was affirmed that applied sintering method as well as powder mixes preparation allows for manufacturing the sintered duplex steels with good mechanical properties which depends on austenite/ferrite ratio in the microstructure and elements partitioning between phases. The additions of alloying elements powders (promoting formation ferritic and austenitic phase to master alloy powder, makes possible the formation of structure and properties of sintered duplex stainless steels. Sintered duplex steels obtained starting from austenitic and ferritic powders with admixture of elemental powders achieve lower mechanical properties when compared to composition obtained by mixing ferritic and austenitic powder in equal amounts.Research limitations/implications: According to the powders characteristic, the applied fast cooling rate seems to be a good compromise for mechanical properties and microstructures, nevertheless further tests should be carried out in order to examine different cooling rates.Originality/value: The use of elemental powders added to a stainless steel base showed its potentialities, in terms of fair compressibility and final

  5. A review of hot cracking in austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  6. Low-temperature gaseous surface hardening of stainless steel: the current status

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2009-01-01

    The present review addresses the state of the art of low-temperature gaseous surface engineering of (austenitic) stainless steel and is largely based on the authors' own work in the last 10 years. The main purpose of low temperature gaseous surface engineering of stainless steel is to develop a...... hardened case at the surface, while maintaining the superior corrosion performance. This can be achieved by dissolving colossal amounts of nitrogen and/or carbon without forming nitrides and/or carbides, thus developing so-called expanded austenite. The present work gives an overview over results obtained...... on homogeneous expanded austenite and covers the crystallography for nitrogen- and carbon-stabilised expanded austenite, the solubility for nitrogen and carbon, the diffusion of these interstitials as well as the stability of expanded austenite with respect to nitride and carbide formation...

  7. Microbially induced corrosion of carbon steel in deep groundwater environment

    Science.gov (United States)

    Rajala, Pauliina; Carpén, Leena; Vepsäläinen, Mikko; Raulio, Mari; Sohlberg, Elina; Bomberg, Malin

    2015-01-01

    The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland) for periods of 3 and 8 months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel. PMID:26257707

  8. Microbially induced corrosion of carbon steel in deep groundwater environment

    Directory of Open Access Journals (Sweden)

    Pauliina eRajala

    2015-07-01

    Full Text Available The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland for periods of three and eight months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel.

  9. Microbially induced corrosion of carbon steel in deep groundwater environment.

    Science.gov (United States)

    Rajala, Pauliina; Carpén, Leena; Vepsäläinen, Mikko; Raulio, Mari; Sohlberg, Elina; Bomberg, Malin

    2015-01-01

    The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland) for periods of 3 and 8 months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel. PMID:26257707

  10. Grade A boron-stainless steel: your flexible friend

    International Nuclear Information System (INIS)

    Boron-containing stainless steels were first used for neutron flux control in reactors. Today they are also used as neutron absorbing materials for spent fuel storage pools and transportation casks. These boron-enriched stainless steels provide a higher thermal neutron absorption cross section than conventional Type 304. Up to 2.25% boron may be added, depending upon attenuation requirements. While adding boron increases neutron attenuation, it has an adverse effect on the alloy's ductility and impact resistance. In the past this has limited the use of borated stainless steels as a structural material for the storage and transportation of spent fuel. Growing needs in the industry, along with improvements in speciality steel processing, led to the development of an advanced type of boron stainless steel which combines neutron absorption capability with the ductility and impact resistance needed for structural applications. It is available with total boron contents up to 2.25% of natural boron, the enriched B-10 isotope, or a combination of these. (author)

  11. Bactericidal behavior of Cu-containing stainless steel surfaces

    Science.gov (United States)

    Zhang, Xiangyu; Huang, Xiaobo; Ma, Yong; Lin, Naiming; Fan, Ailan; Tang, Bin

    2012-10-01

    Stainless steels are one of the most common materials used in health care environments. However, the lack of antibacterial advantage has limited their use in practical application. In this paper, antibacterial stainless steel surfaces with different Cu contents have been prepared by plasma surface alloying technology (PSAT). The steel surface with Cu content 90 wt.% (Cu-SS) exhibits strong bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 3 h. Although the Cu-containing surface with Cu content 2.5 wt.% (CuNi-SS) can also kill all tested bacteria, this process needs 12 h. SEM observation of the bacterial morphology and an agarose gel electrophoresis were performed to study the antibacterial mechanism of Cu-containing stainless steel surfaces against E. coli. The results indicated that Cu ions are released when the Cu-containing surfaces are in contact with bacterial and disrupt the cell membranes, killing the bacteria. The toxicity of Cu-alloyed surfaces does not cause damage to the bacterial DNA. These results provide a scientific explanation for the antimicrobial applications of Cu-containing stainless steel. The surfaces with different antibacterial abilities could be used as hygienic surfaces in healthcare-associated settings according to the diverse requirement of bactericidal activities.

  12. Corrosion resistance of stainless steel pipes in soil

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, L.; Camitz, G. [Swerea KIMAB AB, Box 55970, SE-102 16 Stockholm (Sweden); Peultier, J.; Jacques, S.; Baudu, V.; Barrau, F.; Chareyre, B. [Industeel and ArcelorMittal R and D, 56 rue Clemenceau, BP19, FR-71201 le Creusot, Cedex (France); Bergquist, A. [Outokumpu Stainless AB, P.O. Box 74, SE-774 22 Avesta (Sweden); Pourbaix, A.; Carpentiers, P. [Belgian Centre for Corrosion Study, Avenue des Petits-Champs 4A, BE 1410 Waterloo (Belgium)

    2011-04-15

    To be able to give safe recommendations concerning the choice of suitable stainless steel grades for pipelines to be buried in various soil environments, a large research programme, including field exposures of test specimens buried in soil in Sweden and in France, has been performed. Resistance against external corrosion of austenitic, super austenitic, lean duplex, duplex and super duplex steel grades in soil has been investigated by laboratory tests and field exposures. The grades included have been screened according to their critical pitting-corrosion temperature and according to their time-to-re-passivation after the passive layer has been destroyed locally by scratching. The field exposures programme, being the core of the investigation, uses large specimens: 2 m pipes and plates, of different grades. The exposure has been performed to reveal effects of aeration cells, deposits or confined areas, welds and burial depth. Additionally, investigations of the tendency of stainless steel to corrode under the influence of alternating current (AC) have been performed, both in the laboratory and in the field. Recommendations for use of stainless steels under different soil conditions are given based on experimental results and on operating experiences of existing stainless steel pipelines in soil. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Limiting temperatures for rapid pit propagation in stainless steels

    International Nuclear Information System (INIS)

    A decreasing temperature approach was used to determine critical temperatures for propagation of pitting and crevice corrosion in stainless steels in chloride solutions. Localized attack was made to start and propagate under anodic polarization at an elevated temperature. The temperature was then lowered slowly while retaining the constant potential and monitoring the current. A steep decrease in the current indicated a critical temperature for the propagation of rapid corrosion attack. The test arrangement allowed for a simultaneous development of both crevice type and pit type attack. A series of stainless steels were investigated, including several wrought and cast austenitic grades and some cast duplex stainless steels. The results indicate that a critical temperature may be determined for the rapid growth of pitting type attack. This temperature depends on the composition of the steel and possibly on the pit geometry. For crevice corrosion, however, such a sharp temperature limit could not be determined from the results. For the cast duplex stainless steels the critical temperature of pitting is less pronounced than for the purely austenitic grades

  14. Optimization of carbon base tool coatings for forming of stainless steel and aluminium alloys at high internal pressure. Final documentation; Optimierung von kohlenstoffbasierten Werkzeugbeschichtungen fuer das Innenhochdruckumformen von rostfreiem Stahl sowie Aluminiumlegierungen. Abschlussdokumentation

    Energy Technology Data Exchange (ETDEWEB)

    Neugebauer, R.; Klose, L.; Suchmann, P. [Fraunhofer-Institut fuer Werkzeugmaschinen und Umformtechnik (IWU), Chemnitz (Germany); Braeuer, G.; Traube, K.; Bewilogua, K. [Fraunhofer-Institut fuer Schicht- und Oberflaechentechnik, Braunschweig (Germany)

    2001-03-28

    The optimized production and deposition of LDLC coatings on active tool parts under high specific pressure loads and extreme wear conditions were investigated on the basis of a quantitative description of the partial tribological conditions during forming of stainless steels and aluminium alloys at high internal pressure. Information will be aquired on wear reduction, residual material increase and lubricant volume increase. [German] Hauptziel des Forschungsvorhabens war die einsatzoptimierte Herstellung und Aufbringung von Diamant Like Carbon (DLC)-Schichten auf Werkzeugaktivteilen, die hoher spezifischer Druckbelastung und extremer Verschleissneigung unterliegen. Grundlage dafuer bildet die quantitative Erfassung und Beschreibung der partiellen tribologischen Verhaeltnisse beim Innenhochdruckumformen von restfreien Staehlen und Aluminiumlegierungen. Es sollen produktionsverwertbare Aussagen zu Verschleissminderung, Standmengenerhoehung und Schmierstoffmengenminderung erarbeitet werden. (orig.)

  15. Facile, soot free approach toward synthesis of carbon nanoropes via chemical vapor deposition of acetylene in the presence of MnFe2O4 coated on stainless steel

    Science.gov (United States)

    Dhand, Vivek; Bharadwaj, S.; Amareshwari, K.; Himabindu, V.; Rhee, Kyong Yop; Park, Soo-Jin; Hui, David

    2015-12-01

    High density, soot free, novel and a facile approach toward synthesis of carbon nanoropes (CNRs) were successfully carried out in a chemical vapor deposition (CVD) process. Manganese ferrite (MnFe2O4) coated on stainless steel foil (SS 316 grade) was used as a catalyst to initiate the growth of CNR. The coated catalyst was introduced into the CVD and the chamber temperature was set at 700 °C later followed with the release of acetylene (50 sccm) and nitrogen (500 sccm) gas, respectively. Total reaction continued until 30 min. No purification or oxidation process of the soot was involved. Analysis reveals the presence of intermingled CNRs with semi crystalline nature of the sample. The elemental analysis confirms the presence of manganese and iron whereas Raman spectrum shows the characteristic narrow G and D bands. The sample displays a super-paramagnetic behavior and is thermally stable up to 500-550 °C presenting a strong exothermic reaction.

  16. Radio-induced brittleness of austenitic stainless steels at high temperatures

    International Nuclear Information System (INIS)

    In a first part, the author recalls some metallurgical characteristics and properties of iron (atomic properties, crystalline structure, transformation), of iron carbon systems and steels (ferrite, austenite, cementite, martensite, bainite, phase diagrams of iron chromium alloy and iron nickel alloy), aspects regarding the influence of addition elements in the case of stainless steels (mutual interaction of carbon, chromium and nickel in their iron alloys, indication of the various stainless steels, i.e. martensitic, ferritic, austenitic, austenitic-ferritic, and non ferrous), and presents and discusses various mechanical tests (tensile tests, torsion tests, resilience tests, hardness tests, creep tests). In a second part, he discusses the effects of irradiation on austenitic stainless steels: irradiation and deformation under low temperature, irradiation at intermediate temperature, irradiation at high temperature. The third part addresses mechanisms of intergranular fracture in different temperature ranges (400-600, 700-750, and about 800 C). The author then discusses the effect of Helium on the embrittlement of austenitic steels, and finally evokes the perspective of development of a damage model

  17. Estimation of fracture toughness of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the low-temperature embrittlement of cast duplex stainless steels under light water reactor (LWR) operating conditions and to evaluate possible remedies for the embrittlement problem in existing and future plants. The scope of the investigation includes the following goals: develop a methodology and correlations for predicting the toughness loss suffered by cast stainless steel components during normal and extended life of LWRs, validate the simulation of in-reactor degradation by accelerated aging, and establish the effects of key compositional and metallurgical variables on the kinetics and extent of embrittlement. Microstructural and mechanical property data are being obtained on 25 experimental heats (static-cast keel blocks and slabs) and 6 commercial heats (centrifugally cast pipes and a static-cast pump impeller and pump casing ring), as well as on reactor-aged material of CF-3, CF-8, and CF-8M grades of cast stainless steel. The ferrite content of the cast materials ranges from 3 to 30%. Charpy-impact, tensile, and J-R curve tests have been conducted on several experimental and commercial heats of cast stainless steel that were aged up to 30,000 h at temperatures of 290 to 400 degrees C. The results indicate that thermal aging at these temperatures increases the tensile strength and decreases the impact energy and fracture toughness of the steels. In general, the low-carbon CF-3 steels are the most resistant to embrittlement, and the molybdenum-containing high-carbon CF-8M steels are the least resistant. Ferrite morphology has a strong effect on the degree or extent of embrittlement, and the kinetics of embrittlement can vary significantly with small changes in the constituent elements of the cast material

  18. Tensile behavior of irradiated manganese-stabilized stainless steels

    International Nuclear Information System (INIS)

    Seven experimental high-manganese reduced-activation austenitic stainless steels and type 316 stainless steel in the solution-annealed and 20% cold-worked condition were irradiated in the fast flux test facility up to ca. 44 dpa at 420, 520 and 600 C. Tensile tests were conducted at the irradiation temperature. The experimental alloys included an Fe-20Mn-12Cr-0.25C (in wt%) base composition and this composition with combinations of Ti, W, V, P and B. In the solution-annealed condition, the steels hardened at all three temperatures, but hardening occurred at only 420 C in the 20% cold-worked condition. Hardening caused a decrease in ductility. The steel with a combination of all the alloying elements showed the greatest resistance to irradiation-induced hardening and loss of ductility. (orig.)

  19. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    calculations, made by use of the computer programme Thermo-Calc, were also correlated with the observed microstructure. Corrosion measurements by electrochemical techniques show no signs of intergranular corrosion in contrast to the case of AISI 316L based steel. Furthermore most of the material showed......Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition of...... boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless...

  20. Stainless steel weld metal designed to mitigate residual stresses

    OpenAIRE

    Shirzadi, A. A.; Bhadeshia, H. K. D. H.; Karlsson, L.; Withers, P.J.

    2009-01-01

    There have been considerable efforts to create welding consumables which on solid state phase transformation partly compensate for the stresses which develop when a constrained weld cools to ambient temperatures. All of these efforts have focused on structural steels which are ferritic. In the present work, alloy design methods have been used to create a stainless steel welding consumable which solidifies as δ ferrite, transforms almost entirely into austenite which then undergoes martensitic...

  1. High density sintered stainless steels with improved properties

    OpenAIRE

    M. Actis Grande; M. Rosso

    2007-01-01

    Purpose: of this paper is the study of the properties of sintered AISI 316L (1.4404 according to EN 10088. Sintered stainless steels occupy a prominent position in the high alloyed steels, however their properties are limited by the presence of porosity. The improvement of quality and performances of products coupled with a reduction of manufacturing costs calls for high compacting pressures, as well as high sintering temperatures. However, the possibility to fill the open porosity of sintere...

  2. Hydrometallurgical removal of zinc from stainless steel flue dusts

    OpenAIRE

    Järvinen, Outi

    2013-01-01

    Stainless steel flue dusts are problematic to the steel industry because of their chemi-cal composition that makes direct recycling and landfilling impossible. Pyrometallur-gical and hydrometallurgical processes have been tested in dust treatment. At the moment, most of the processes that have reached commercialization have been py-rometallurgical. Still, it is thought that hydrometallurgy could offer solutions espe-cially in small scale on-site treatment as it is less energy intensive and re...

  3. Process-microstructure-corrosion interrelations for stainless steel

    OpenAIRE

    Lindell, David

    2015-01-01

    Stainless steels were first developed in the early 20th century and have since then emerged as a very diverse class of engineering materials. Along with steels having new combinations of properties, there is a continuous development of new technologies allowing the material to be produced in a faster and more energy effcient manner. A prerequisite for new technologies to be adapted quicklyis a fundamental understanding of the microstructure evolution throughout theprocess chain. The first par...

  4. Instrumental Neuron Activation Analysis for certification of stainless steel materials

    International Nuclear Information System (INIS)

    The use of Instrumental Neuron Activation Analysis (INAA) may contribute to improve the certification of the materials, especially in the case of minor and trace elements. In presented paper the INAA method of analysis of stainless steel materials has been elaborated. The obtained results were compared with those of common analytical techniques. The presented results show the usefulness of the INAA method for the certification of CRMs for the iron and steel industry

  5. Mechanical properties of low-nickel stainless steel

    Science.gov (United States)

    Montano, J. W.

    1978-01-01

    Demand for improved corrosion-resistant steels, coupled with increased emphasis on conserving strategic metals, has led to development of family of stainless steels in which manganese and nitrogen are substituted for portion of usual nickel content. Advantages are approximately-doubled yield strength in annealed condition, better resistance to stress-corrosion cracking, retention of low magnetic permeability even after severe cold working, excellent strength and ductility at cryogenic temperatures, superior resistance to wear and galling, and excellent high-temperature properties.

  6. Construction of a stainless steel storage tank for phosphoric acid

    OpenAIRE

    Buh, Igor

    2006-01-01

    The main purpose of this thesis was to get acquainted with all necessary procedures for steel storage tank manufacturing and assembly control. The representative storage tank was built from stainless steel and it was designed to hold 750 m3 of phosphoric acid. In the first section all legally mandatory control procedures are described and they are applied to our storage tank in the second section. Welding control is presented, which consists of destructive and non-destructive inspections of t...

  7. Properties of super stainless steels for orthodontic applications.

    Science.gov (United States)

    Oh, Keun-Taek; Kim, Young-Sik; Park, Yong-Soo; Kim, Kyoung-Nam

    2004-05-15

    Orthodontic stainless-steel appliances are considered to be corrosion resistant, but localized corrosion can occur in the oral cavity. This study was undertaken to evaluate the properties of super stainless steels in orthodontic applications. Accordingly, the metallurgical properties, mechanical properties, corrosion resistance, amount of the released nickel, cytotoxicity, and characteristics of the passive film were investigated. Corrosion resistances of the specimens were high and in the following order: super austenitic stainless steel (SR-50A) > super ferritic stainless steel (SFSS) = super duplex stainless steel (SR-6DX) > 316L SS > super martensitic stainless steel (SR-3Mo) in artificial saliva, 37 degrees C. At 500 mV (SCE), current densities of SR-50A, SFSS, SR-6DX, 316L SS, and SR-3Mo were 5.96 microA/cm(2), 20.3 microA/cm(2), 31.9 microA/cm(2), 805 microA/cm(2), and 5.36 mA/cm(2), respectively. Open circuit potentials of SR-50A, 316L SS, SR-6DX, SR-3Mo, and SFSS were - 0.2, - 0.22, - 0.24, - 0.43, and - 0.46 V (SCE), respectively. SR-50A, SFSS, and SR-6DX released below 3 ng/ml nickel for 8 weeks, and increased a little with immersion time, and 316L SS released about 3.5 ng/ml nickel, but SR-3Mo released a large amount of nickel, which increased with immersion time. The study demonstrated that SR-50A, SR-6DX, and SFSS have high corrosion resistance and mild or no cytotoxicity, due to the passive film enhanced by synergistic effect of Mo + N or by high addition effect of Cr + W. All super stainless steels showed very low cytotoxicity regardless of their nickel contents, although SR-3Mo was found to be relatively cytotoxic. From these studies, these steels are considered suitable for orthodontic applications. PMID:15116408

  8. Ultrahigh carbon steels, Damascus steels, and superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Sherby, O.D. [Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Wadsworth, J. [Lawrence Livermore National Lab., CA (United States)

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  9. Behaviour of stainless steels immersed in natural waters: electrochemistry and bacterial adhesion

    International Nuclear Information System (INIS)

    The free corrosion potential of a stainless steel immersed in natural seawater rises quickly until it reaches values ranging between +100 and +350 mV/SCE, which increases the risk of initiation of pitting corrosion. According to literature this phenomenon also occurs in fresh waters. The aim of this study is to confirm or to invalidate this trend; the electrochemical behaviour of samples of stainless steels immersed in river water and the influence of the bio-film formed on the surface of the samples are studied. The free corrosion potentials of three different stainless steels (S30403 or AISI 304L, S31603 or AISI 316L, S31254 or 254SMO) have been measured continuously during their immersion in the Seine river. SEM observations of the samples surface show the presence of a bio-film on the three kinds of stainless steel. The free corrosion potentials increase and end up between +100 and +300 mV/SCE. This increase is not immediate, the latency time being around 20 days. This could be related to an effect of the low temperature of the water during the immersion (8-10 C) and/or to an effect of the Total Organic Carbon (TOC), which would limit the growth rate of the bio-film, hence its influence on the evolution of the free corrosion potential. (authors)

  10. Oxidation protection of 20Cr-25Ni-Nb stainless steel at 1,300C

    International Nuclear Information System (INIS)

    20Cr-25Ni-Nb stabilized stainless steel is used as the fuel cladding in the United Kingdom advanced gas-cooled nuclear power plants. Enhanced environmental protection of chromia-forming advanced metallic alloys at normal operating temperature, typically approx-lt 900C, may be provided by two well-established approaches - incorporation of reactive elements into the protective oxide scale or an amorphous ceramic coating acting as a diffusion barrier. The continued effectiveness of such approaches, namely by cerium and yttrium ion implantation and with a vapor deposited amorphous silica coating, in reducing oxidation of 20Cr-25Ni-Nb stainless steel in a carbon-dioxide-based environment has been examined during 0.5 and 1 hr transients to 1,300C. The influence of pre-oxidation of the ion-implanted, silica-coated, and uncoated steel for extended periods in the same environment at 825-900C has also been established

  11. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders

    DEFF Research Database (Denmark)

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni;

    2015-01-01

    PURPOSE: The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. METHODS: A Danish national company-based historical cohort of 5,303 male ever...... particulates was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95 % confidence...... year). A moderate nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95 % CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel...

  12. Heat treatment method for two-phase stainless steel

    International Nuclear Information System (INIS)

    A two-phase stainless steel the toughness of which is reduced by exposure to a high temperature is kept at from 900degC to 1040degC to be solidified and then quenched. With such procedures, a δ-phase deposited in a ferrite phase can be eliminated to restore the toughness. In the solidification step, the two-phase stainless steel having a plate thickness of 1cm or less is kept for 15mins or more, and is kept for additional 5min on every increase of the thickness of 1cm, and then it is compulsorily cooled with water or air. In the heat treatment comprising such steps, a Cr-depleted layer of the welded portion of the two-phase stainless steel of reduced toughness is eliminated to restore an initial state thereby enabling to maintain the integrity of the welded portion. Since the δ-phase deposited in the ferrite phase can be eliminated by solid-solubilizing the two phase stainless steel of reduced toughness by induction heating, reduced toughness can be restored thereby enabling to keep the integrity. (T.M.)

  13. Monitoring of occupational exposure in manufacturing of stainless steel constructions

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Bencko, V.; Pápayová, A.; Šaligová, D.; Tejral, J.; Borská, L.

    2001-01-01

    Roč. 9, - (2001), s. 171-175. ISSN 1210-7778 R&D Projects: GA ČR GV202/97/K038 Institutional research plan: CEZ:AV0Z1048901 Keywords : occupational exposure * stainless steel construction industry * instrumental neutron activation analysis Subject RIV: FP - Other Medical Disciplines

  14. Fatigue behavior of welded austenitic stainless steel in different environments

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  15. Developments of New Lubricants for Cold Forging of Stainless Steel

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Christensen, Erik; Olesen, P.;

    1997-01-01

    Two new lubricant systems for cold forging of stainless steel have been developed. The main component of these systems are FeCl3 and ZnCa2(PO4)2, respectively. Both lubricant systems have been tested using a backward extrusion test. The results show excellent lubricating properties with respect to...

  16. 77 FR 1504 - Stainless Steel Wire Rod From India

    Science.gov (United States)

    2012-01-10

    ... Commission instituted this review on July 1, 2011 (76 FR 38686) and determined on October 4, 2011, that it would conduct an expedited review (76 FR 64105, October 17, 2011). The Commission transmitted its... COMMISSION Stainless Steel Wire Rod From India Determination On the basis of the record \\1\\ developed in...

  17. Behavior of stainless steels in pressurized water reactor primary circuits

    Science.gov (United States)

    Féron, D.; Herms, E.; Tanguy, B.

    2012-08-01

    Stainless steels are widely used in primary circuits of pressurized water reactors (PWRs). Operating experience with the various grades of stainless steels over several decades of years has generally been excellent. Nevertheless, stress corrosion failures have been reported in few cases. Two main factors contributing to SCC susceptibility enhancement are investigated in this study: cold work and irradiation. Irradiation is involved in the stress corrosion cracking and corrosion of in-core reactor components in PWR environment. Irradiated assisted stress corrosion cracking (IASCC) is a complex and multi-physics phenomenon for which a predictive modeling able to describe initiation and/or propagation is not yet achieved. Experimentally, development of initiation smart tests and of in situ instrumentation, also in nuclear reactors, is an important axis in order to gain a better understanding of IASCC kinetics. A strong susceptibility for SCC of heavily cold worked austenitic stainless steels is evidenced in hydrogenated primary water typical of PWRs. It is shown that for a given cold-working procedure, SCC susceptibility of austenitic stainless steels materials increases with increasing cold-work. Results have shown also strong influences of the cold work on the oxide layer composition and of the maximum stress on the time to fracture.

  18. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...

  19. Controlled dissolution of colossal quantities of nitrogen in stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    The solubility of nitrogen in austenitic stainless steel was investigated thermogravimetrically by equilibrating thin foils of AISI 304 and AISI 316 in ammonia/hydrogen gas mixtures. Controlled dissolution of colossal amounts of nitrogen under metastable equilibrium conditions was realized, with...

  20. Cutting of Stainless Steel With Fiber and Disk Laser

    DEFF Research Database (Denmark)

    Wandera, Catherine; Salminen, Antti; Olsen, Flemming Ove; Kujanpää, Veli

    , the new laser types with a high beam quality, in cutting of austenitic stainless steel. The performance of these new lasers at power level of 4 kW was compared with CO2-laser in respect of cutting speed, kerf width, kerf edge roughness and perpendicularity (squarness) in order to validate the...

  1. Metal release from stainless steel in biological environments: A review.

    Science.gov (United States)

    Hedberg, Yolanda S; Odnevall Wallinder, Inger

    2016-03-01

    Due to its beneficial corrosion resistance, stainless steel is widely used in, e.g., biomedical applications, as surfaces in food contact, and for products intended to come into skin contact. Low levels of metals can be released from the stainless steel surface into solution, even for these highly corrosion resistant alloys. This needs to be considered in risk assessment and management. This review aims to compile the different metal release mechanisms that are relevant for stainless steel when used in different biological settings. These mechanisms include corrosion-induced metal release, dissolution of the surface oxide, friction-induced metal release, and their combinations. The influence of important physicochemical surface properties, different organic species and proteins in solution, and of biofilm formation on corrosion-induced metal release is discussed. Chemical and electrochemical dissolution mechanisms of the surface oxides of stainless steel are presented with a focus on protonation, complexation/ligand-induced dissolution, and reductive dissolution by applying a perspective on surface adsorption of complexing or reducing ligands and proteins. The influence of alloy composition, microstructure, route of manufacture, and surface finish on the metal release process is furthermore discussed as well as the chemical speciation of released metals. Typical metal release patterns are summarized. PMID:26514345

  2. Stainless steel 301 and Inconel 718 hydrogen embrittlement

    Science.gov (United States)

    Allgeier, R. K.; Forman, R.

    1970-01-01

    Conditions and results of tensile tests of 26 Inconel 718 and four cryoformed stainless steel specimens are presented. Conclusions determine maximum safe hydrogen operating pressure for cryogenic pressure vessels and provide definitive information concerning flaw growth characteristics under the most severe temperature and pressure conditions

  3. Laser welding of stainless steel and manufacturing industrial components

    International Nuclear Information System (INIS)

    Both conduction and key-hole laser welding processes are used for industrial manufacturing of stainless steel components, however laser is highly competitive against arc or plasma welding methods only in key-hole processes. The advantages of using laser in conduction model are only limited to the very low thickness sheets. (author)

  4. Effect of pulsating water jet peening on stainless steel

    OpenAIRE

    Hlaváček, Petr

    2015-01-01

    Effects of action of pulsating water jet on polished surface of the stainless steel AISI 316L are presented. Surface slip bands appeared after this treatment. In the most severe conditions, microcracks were formed. Hardness measurement showed that the affected layer was thinner than 60 μm. Application of the pulsating water jet has beneficial effect on the fatigue life of the material.

  5. A new welding technique for stainless steel pipe butt welds

    International Nuclear Information System (INIS)

    A modified TIG welding process which uses an accurately machined consumable weld socket ring for aligning pipes and providing filler material has been developed by British Nuclear Fuels and used successfully at Windscale Site Construction. The technique and its practical application at Windscale for automatic orbital TIG welding of stainless steel pipe is described. (author)

  6. Sticking Phenomenon Occurring during Hot Rolling of Ferritic Stainless Steels

    International Nuclear Information System (INIS)

    Sticking phenomenon occurring during hot rolling of two ferritic stainless steels, STS 430J1L and STS 436L, was investigated in this study. A hot rolling simulation test was carried out using a high-temperature wear tester capable of controlling rolling speed, load, and temperature. The simulation test results at 900 .deg. C and 1000 .deg. C revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation, for the both stainless steels, and that STS 430J1L had a smaller number of sticking nucleation sites than the STS436L because of higher high-temperature hardness, thereby leading to a smaller amount of the sticking. When the test temperature was 1070 .deg. C, the sticking hardly occurred in both stainless steels as Fe-Cr oxide layers were formed on the surface of the rolled materials. These findings suggested that the improvement of high-temperature properties of stainless steels and the appropriate rolling conditions for readily forming oxide layers on the rolled material surface were required in order to prevent or minimize the sticking

  7. Hydrogen embrittlement of super duplex stainless steel in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Elhoud, A.M.; Renton, N.C.; Deans, W.F. [University of Aberdeen, School of Engineering, Aberdeen, AB24 3UE (United Kingdom)

    2010-06-15

    Super duplex stainless steel (SDSS) is a good choice of material when resistance to harsh environments is needed. Despite the material's excellent corrosion resistance and high strength, a number of in-service failures have been recorded. The root cause of these failures was environmentally induced cracking initiated at manufacturing and in-service metallurgical defects. In this study the hydrogen embrittlement of pre-strained super duplex stainless steel specimens was investigated after 48 h cathodic charging in 0.1 M H{sub 2}SO{sub 4}. The metallurgical changes that resulted from four levels of cold work (4, 8, 12, and 16% plastic strain) were considered and their effect on the embrittlement of the SDSS alloy was investigated. After hydrogen charging, the specimens were pulled immediately to failure and the mechanical properties evaluated. The obtaining fracture morphology was investigated using low and high magnification microscopy. Experimental results indicated that charging the super duplex stainless steel alloy with hydrogen caused varying degrees of embrittlement depending on cold work level. Increasing cold work resulted in a reduction of the elongation to failure. Microscopic investigation confirmed the significant effect of cold work on the hydrogen embrittlement susceptibility of the super duplex stainless steel alloy investigated. (author)

  8. Laves intermetallics in stainless steel-zirconium alloys

    International Nuclear Information System (INIS)

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni)2+x, have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni)23Zr6 during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy

  9. Towards commercialization of fast gaseous nitrocarburising stainless steel

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo; Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    A novel method for fast and versatile low temperature nitrocarburising of stainless steel has recently been invented by the present authors. Selected results obtained with this new surface hardening process are presented. It is shown that it is possible to obtain a case thickness of 20 μm on...

  10. Sticking Phenomenon Occurring during Hot Rolling of Ferritic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Son, Chang Young; Kim, Chang Kyu; Ha, Dae Jin; Lee, Sung Hak [Pohang Univ. of Institute of Science and Technology, Pohang (Korea, Republic of); Lee, Jong Seog; Kim, Kwang Tae; Lee, Yong Deuk [POSCO Technical Research Lab., Gwangyang (Korea, Republic of)

    2007-01-15

    Sticking phenomenon occurring during hot rolling of two ferritic stainless steels, STS 430J1L and STS 436L, was investigated in this study. A hot rolling simulation test was carried out using a high-temperature wear tester capable of controlling rolling speed, load, and temperature. The simulation test results at 900 .deg. C and 1000 .deg. C revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation, for the both stainless steels, and that STS 430J1L had a smaller number of sticking nucleation sites than the STS436L because of higher high-temperature hardness, thereby leading to a smaller amount of the sticking. When the test temperature was 1070 .deg. C, the sticking hardly occurred in both stainless steels as Fe-Cr oxide layers were formed on the surface of the rolled materials. These findings suggested that the improvement of high-temperature properties of stainless steels and the appropriate rolling conditions for readily forming oxide layers on the rolled material surface were required in order to prevent or minimize the sticking.

  11. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    V Shankar; T P S Gill; S L Mannan; S Sundaresan

    2003-06-01

    Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.

  12. Anomalous kinetics of lath martensite formation in stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen;

    2015-01-01

    The kinetics of lath martensite formation in Fe-17.3 wt-%Cr-7.1 wt-%Ni-1.1 wt-%Al-0.08 wt-%C stainless steel was investigated with magnetometry and microscopy. Lath martensite forms during cooling, heating and isothermally. For the first time, it is shown by magnetometry during extremely slow iso...

  13. Failure Assessment Diagram for Brazed 304 Stainless Steel Joints

    Science.gov (United States)

    Flom, Yory

    2011-01-01

    Interaction equations were proposed earlier to predict failure in Albemet 162 brazed joints. Present study demonstrates that the same interaction equations can be used for lower bound estimate of the failure criterion in 304 stainless steel joints brazed with silver-based filler metals as well as for construction of the Failure Assessment Diagrams (FAD).

  14. Alternative to Nitric Acid for Passivation of Stainless Steel Alloys

    Science.gov (United States)

    Lewis, Pattie L.; Kolody, Mark; Curran, Jerry

    2013-01-01

    Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.

  15. Hot tears in niobium stainless steel investment casting

    International Nuclear Information System (INIS)

    Results concerning hot tears in Niobium stainless steel investment castings were analysed. It was observed that solidification mode is the principal parameter in determining the occurrence of this defect: on the other hand, there was no consistent relationship between Creq/Nieq ratio and its occurrence. (author)

  16. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. PMID:26952459

  17. Reduction mechanism of stainless steelmaking dust and carbon pellets

    Institute of Scientific and Technical Information of China (English)

    PENG Bing; SONG Hai-chen; CHAI Li-yuan; WANG Ja; WANG Yun-yan; MIN Xiao-bo; HE De-wen

    2005-01-01

    The reduction mechanism of stainless steelmaking dust and carbon pellets was investigated. The metal oxides present in the dust were reduced by carbon with a new direct reduction technology. The direct reduction parameters were determined by measuring the rates of dust melting and reduction. The results show that the rate of reduction is faster than that of the melting. Both melting and reduction processes are accelerated by the direct transfer of heat from the smelting slag. The recovery of metals is improved while the pellets were added to argon oxygen decarburization(AOD) or vacuum oxygen decarburization(VOD) vessels in the late period of the first smelting stage. More carbon travels to the slag instead of to the steel because the diffusion coefficient of carbon, impacted by the viscosity of slag and surface tension between slag and melted steel, is larger in the slag than in the steel. The viscosity of slag is about 2.54Pa·s and the surface tension between slag and steel is about 490mN/m.

  18. Phase formation at bonded vanadium and stainless steel interfaces

    International Nuclear Information System (INIS)

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 μm thick was present at the interface. This layer grew to about 50 μm thick during heat treatment at 1000 degrees C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the ω phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000 degrees C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be ω phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000 degrees C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the ω phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications

  19. Thermal fatigue cracking of austenitic stainless steels

    International Nuclear Information System (INIS)

    This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation Ni is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50μm to 150□m long crack is observed. Additional SPLASH tests were performed for N >> Ni, with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the tests confirm that usual

  20. Effect of Silicon on the Microstructures and Tensile Properties of Austenitic ODS Stainless Steels for Fast Reactor Cladding

    International Nuclear Information System (INIS)

    Oxide dispersion strengthened (ODS) steels have excellent high temperature mechanical properties due to the presence of thermally stable nano-scale oxides distributed in their matrix. Therefore, ODS steels are being used for high temperature structural applications and ODS ferritic martensitic steels (FMS) have been considered as candidate cladding and. Generally, fabrication processes of ODS steels have incorporated a mechanical alloying (MA) process, in which repeated fracture and welding of mixed powders occur by a high energy impact of steel balls. Although MA has many advantages in forming a nano-scale microstructure, it is a very long-time expensive process and vulnerable to impurities contamination. High oxygen and carbon contents degrade the high temperature strength and creep strength of ODS steels. To overcome the problem of MA process, AISI 316Lbased austenitic ODS steels were fabricated by a wet mixing of metallic salts. This method dispersed oxide particles by thermal decomposition of metallic salt during fabrication process. Austenitic ODS steel could be fabricated successfully by a wet-mixing process of 316L stainless steel powder in yttrium containing salt solution. Wet-mixed ODS steel had lower carbon and oxygen contents than that of MAODs steel, because minimum inflow of carbon and oxygen during the manufacture process was kept in wet-mixed ODS steel. Ryu. et. al was reported that yttrium silicates were formed by reaction of silicon and yttrium oxide during the fabrication process. In this study, we made simulated 316 stainless steel powder without adding silicon by using MA and then fabricated ODS steel by using a wet process in order to analyze the effect of silicon on the microstructures and tensile properties of the austenitic ODS stainless steels

  1. Stress corrosion cracking susceptibility of dissimilar stainless steels welded joints

    OpenAIRE

    J. Łabanowski

    2007-01-01

    Purpose: The aim of the current study is to reveal the influence of welding conditions on structure and stresscorrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Butt joints between duplex 2205 and austenitic 316L steels were performedwith the use of submerged arc welding (SAW) method. The plates 15 mm in thickness were welded with heatinput in the range of 1.15 – 3.2 kJ/mm using duplex steel filler metal. Microstructure examinations an...

  2. Studies of aged cast stainless steel from the Shippingport reactor

    International Nuclear Information System (INIS)

    The cast stainless steels used for primary coolant piping in many pressurized water reactors and for valve bodies, fittings, and coolant pump casings in most light water reactors are subject to embrittlement after extended service at reactor operating temperatures. Most studies pertaining to embrittlement of cast stainless steels involve simulation of end-of-life reactor conditions by accelerated aging at ≥400 degrees C since the time period for operation of a power plant is far longer than can generally be considered for laboratory studies. Thus, an assessment of the end-of-life mechanical properties is almost always based on an extrapolation of the accelerated test data. Because the embrittlement mechanisms and kinetics are complex, microstructural studies and mechanical testing of actual component materials that have completed long in-reactor service are needed to ensure that the mechanisms observed in accelerated aging experiments are the same as those occurring in reactor. Cast stainless steel materials from the decommissioned Shippingport reactor offered a unique opportunity to validate and benchmark the laboratory studies. Cast stainless steel materials were obtained from four primary coolant system check valves, two manual hot-leg isolation valves, and two pump volutes. Microstructural examination of the cast materials indicates that the primary mechanism of thermal embrittlement is the same as that of laboratory-aged materials, i.e., spinodal decomposition of the ferrite to form chromium-rich α' phase. Other phases, such as nickel- and silicon-rich G phase precipitated in the ferrite, and the presence of carbides at the austenite/ferrite phase boundary also contribute to embrittlement. Charpy-impact, tensile, and J-R curve tests were conducted on several cast stainless steels from the Shippingport reactor

  3. An XPS study on the evolution of type 304 stainless steel surface during routine TCSU operation

    Science.gov (United States)

    Tankut, A.; Miller, K. E.; Vlases, G. C.

    2010-10-01

    A surface analysis study was carried out to monitor the first-wall evolution in the Translation, Confinement, and Sustainment Upgrade (TCSU) experiment. A type 304 stainless steel sample was exposed to processes including the standard ex-situ surface preparation, helium glow discharge cleaning (He-GDC), plasma discharges, and backfilling the vacuum chamber with filtered N 2. After each process, the sample was carried to a surface analysis chamber for X-ray photoelectron spectroscopy (XPS), using a custom designed in-vacuum transfer device. Results indicated that He-GDC was effective in removing both physically and chemically bound carbon and oxygen on the stainless steel surfaces due to the physical impact of the glow. The plasma discharges resulted in oxidation on the surface. The use of filtered nitrogen during vacuum breaks was verified as an effective method for minimizing carbon and oxygen contamination.

  4. An XPS study on the evolution of type 304 stainless steel surface during routine TCSU operation

    International Nuclear Information System (INIS)

    A surface analysis study was carried out to monitor the first-wall evolution in the Translation, Confinement, and Sustainment Upgrade (TCSU) experiment. A type 304 stainless steel sample was exposed to processes including the standard ex-situ surface preparation, helium glow discharge cleaning (He-GDC), plasma discharges, and backfilling the vacuum chamber with filtered N2. After each process, the sample was carried to a surface analysis chamber for X-ray photoelectron spectroscopy (XPS), using a custom designed in-vacuum transfer device. Results indicated that He-GDC was effective in removing both physically and chemically bound carbon and oxygen on the stainless steel surfaces due to the physical impact of the glow. The plasma discharges resulted in oxidation on the surface. The use of filtered nitrogen during vacuum breaks was verified as an effective method for minimizing carbon and oxygen contamination.

  5. The law of structure formation in sheet stainless steels of the ferrite class

    International Nuclear Information System (INIS)

    The effect of metallurgical redistribution on the structure in the stainless steels of the ferrite class is studied. The regularities of the solid solution state change in dependence on the sheet rolling temperature-deformation conditions are established. It is shown, that the rolling, produced from the stainless steels of the ferrite class, is delivered for hot rolling in the cold-hardened state when there is heavy supersaturation of the solid solution with the carbon and nitrogen atoms. The conclusion is made, that for improving the structure and properties of the cold-rolled sheet it is advisable to subject the rolling to the special recrystallization annealing for separating the carbon and nitrogen atoms in the secondary phase composition

  6. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  7. Dilution and Ferrite Number Prediction in Pulsed Current Cladding of Super-Duplex Stainless Steel Using RSM

    Science.gov (United States)

    Eghlimi, Abbas; Shamanian, Morteza; Raeissi, Keyvan

    2013-12-01

    Super-duplex stainless steels have an excellent combination of mechanical properties and corrosion resistance at relatively low temperatures and can be used as a coating to improve the corrosion and wear resistance of low carbon and low alloy steels. Such coatings can be produced using weld cladding. In this study, pulsed current gas tungsten arc cladding process was utilized to deposit super-duplex stainless steel on high strength low alloy steel substrates. In such claddings, it is essential to understand how the dilution affects the composition and ferrite number of super-duplex stainless steel layer in order to be able to estimate its corrosion resistance and mechanical properties. In the current study, the effect of pulsed current gas tungsten arc cladding process parameters on the dilution and ferrite number of super-duplex stainless steel clad layer was investigated by applying response surface methodology. The validity of the proposed models was investigated by using quadratic regression models and analysis of variance. The results showed an inverse relationship between dilution and ferrite number. They also showed that increasing the heat input decreases the ferrite number. The proposed mathematical models are useful for predicting and controlling the ferrite number within an acceptable range for super-duplex stainless steel cladding.

  8. Chemical resistance of the stainless REMANIT steels

    International Nuclear Information System (INIS)

    The leaflet contains tables showing the corrosion behaviour of the REMANIT steels in various media, as e.g. in acids, brines, salty solutions, or in organic environments. The data given include information on the composition and concentration of the attacking agent, and on temperatures. The documentation is intended to serve as a guide for selecting the suitable steel quality for intended applications. (MM)

  9. Optimisation of welding procedures for duplex and superduplex stainless steels

    International Nuclear Information System (INIS)

    Austenitic stainless steels are increasingly being replaced by duplex grades that can offer similar corrosion resistance with far higher strength. This increased strength makes it possible to reduce material consumption whilst also decreasing transport and construction costs. Although established welding methods used for austenitic steels can be used for duplex steels, modification of the procedures can lead to improved results. This paper reviews the welding of duplex stainless steel and examines precautions that may be required. The advantages and disadvantages of different welding methods are highlighted and some high productivity solutions are presented. The application of a more efficient process with a high deposition rate (e.g. flux- cored arc welding) can decrease labour costs. Further close control of heat input and interpass temperature can result in more favourable microstructures and final properties. Although welding adversely affects the corrosion resistance of austenitic and duplex stainless steels, particularly the pitting resistance, relative to the parent material, this problem can be minimised by proper backing gas protection and subsequent pickling.

  10. Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels

    Science.gov (United States)

    Mitelea, Ion; Micu, Lavinia Mădălina; Bordeaşu, Ilare; Crăciunescu, Corneliu Marius

    2016-05-01

    During processing or use, duplex steels can be subjected to heating at high temperatures that can affect their behavior. This work aims to correlate the influence of the sensitization treatment on the ultrasonic cavitation erosion behavior of a UNS S31803 (X2CrNiMoN22-5-3) duplex stainless steel. Duplex stainless steels, formed as a result of rapid cooling after solution annealing, are sensitized at temperatures of 475 and 850 °C, respectively, leading to hardening and embrittlement due to the spinodal decomposition of the ferrite and the precipitation of secondary phases. The ultrasonic cavitation erosion experiments showed that the sensitization at 850 °C reduced the mean depth of erosion by about 11% and the mean depth of erosion rate by 28%. By contrast, the sensitization at 475 °C deteriorates the cavitation erosion resistance, increasing the erosion parameters by up to 22%, compared to the solution annealed state.

  11. Inorganic coatings on stainless steel for protection against crevice corrosion

    International Nuclear Information System (INIS)

    In order to create protection against crevice corrosion stainless steel test specimens of type 316 steel with various inorganic coatings applied on crevice surfaces were tested for 3-50 months at 25 and 30 degree C in natural seawater containing 0.2-1.5 ppm free chlorine. Various metallic coatings, Ni base alloys with Cr and Mo, Ni with W, pure Ag and pure Mo, as well as ceramic coatings - Cr2O3, TiO2 and Al2O3 - were studied. All the coatings tested, except pure Molybdenum applied by plasma spraying in a max 0.1 mm thick layer were found to promote crevice corrosion of the stainless steel. A significant reduction of the crevice corrosion susceptibility was obtained with Molybdenum. The result is considered promising enough to justify full scale tests in seawater on flange joints of pipes, valves or pumps. (author)

  12. Neutron and deuteron irradiation creep in stainless steel alloys

    International Nuclear Information System (INIS)

    Irradiation rigs have been developed for HFR in Petten in which 49 specimens at a time can be irradiated in uniaxial tension. The creep elongations of AMCR type steels and of 20% cold-worked US 316 stainless steels were measured at intervals of irradiation for tensile stresses varying between 100 and 130 MPa and for temperatures between 350 and 4200C. Deuteron irradiation creep of 0.13 mm thick and 20% cold-worked 316 stainless steel alloys was investigated for an irradiation temperature of 3000C by means of a torsional creep facility installed at the Ispra Cyclotron. It was found that the creep rate increases linearly with the displacement rate in the range between 10-6 to 10-5 dpa.s-1. The stress dependence of the irradiation creep rate is quadratic for stresses between 50 and 100 MPa and linear for stresses ranging between 100 and 150 MPa

  13. Neutron and deuteron irradiation creep in stainless steel alloys

    International Nuclear Information System (INIS)

    Irradiation rigs have been developed for HFR in Petten in which 49 specimens at a time can be irradiated in uniaxial tension. The creep elongations of AMCR type steels and of 20% cold-worked US 316 stainless steels were measured at intervals of irradiation for tensile stresses varying between 100 and 130 MPa and or temperatures between 350 and 4200C. Deuteron irradiation creep of 0.13 mm thick and 20% cold-worked 316 stainless steel alloys was investigated for an irradiation temperature of 3000C by means of a torsional creep facility installed at the Ispra Cyclotron. It was found that the creep rate increases linearly with the displacement rate in the range between 10-6 to 10-5 dpa.s-1. The stress dependence of the irradiation creep rate is quadratic for stresses between 50 and 100 MPa and linear for stresses ranging between 100 and 150 MPa. (author)

  14. Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels

    Science.gov (United States)

    Mitelea, Ion; Micu, Lavinia Mădălina; Bordeaşu, Ilare; Crăciunescu, Corneliu Marius

    2016-04-01

    During processing or use, duplex steels can be subjected to heating at high temperatures that can affect their behavior. This work aims to correlate the influence of the sensitization treatment on the ultrasonic cavitation erosion behavior of a UNS S31803 (X2CrNiMoN22-5-3) duplex stainless steel. Duplex stainless steels, formed as a result of rapid cooling after solution annealing, are sensitized at temperatures of 475 and 850 °C, respectively, leading to hardening and embrittlement due to the spinodal decomposition of the ferrite and the precipitation of secondary phases. The ultrasonic cavitation erosion experiments showed that the sensitization at 850 °C reduced the mean depth of erosion by about 11% and the mean depth of erosion rate by 28%. By contrast, the sensitization at 475 °C deteriorates the cavitation erosion resistance, increasing the erosion parameters by up to 22%, compared to the solution annealed state.

  15. Thermal stability of manganese-stabilized stainless steels

    International Nuclear Information System (INIS)

    Previous work on experimental high-manganese reduced-activation austenitic stainless steels demonstrated that they had improved tensile properties relative to type 316 stainless steel (316 SS) in both the annealed and 20% cold-worked conditions. Seven steels were tested, which included an Fe-20Mn-12Cr-0.25C (in wt%) base composition, and this composition with various combinations of Ti, W, V, P, and B. Tensile tests have now been completed on these steels after thermal aging to 5000 h at 600 C. Thermal stability varied with composition, but the alloys were as stable or more stable than 316 SS. After aging to 5000 h at 600 C, the strength of the annealed steels increased slightly, and the strength of the cold-worked steels decreased. In both conditions, a steel with a combination of all the alloying elements had the best strength after thermal aging. Despite having higher strength than 316 SS after aging, the ductility of the strongest alloy was still as good as that of 316 SS. ((orig.))

  16. CE8N -- A new generation of HF modified stainless steel for refinery service

    Energy Technology Data Exchange (ETDEWEB)

    Gapinski, G.E. [Wisconsin Centrifugal, Waukesha, WI (United States)

    1995-11-01

    A new generation of HF Modified stainless steel has been developed for hydrocracker/hydrotreater transfer line piping system applications. The new alloy, CE8N, contains lower carbon and higher nitrogen than previous versions of HF Modified. This new alloy offers improved aged toughness, increased resistance to sensitization, and enhanced polythionic acid-stress corrosion cracking resistance. Strength levels of the new alloy are somewhat below CE20N at temperatures up to 850 F (454 C).

  17. Corrosion of Stainless-Steel Tubing in a Spacecraft Launch Environment

    Science.gov (United States)

    Barile, Ronald G.; MacDowell, Louis G.; Curran, Joe; Calle, Luz Maria; Hodge, Timothy

    2001-01-01

    This is a report of exposure of various metal tubing to oceanfront launch environments. The objective is to examine various types of corrosion-resistant tubing for Space Shuttle launch sites. The metals were stainless steels (austenitic, low-carbon, Mo-alloy, superaustenitic, duplex, and superferritic), Ni-Cr-Mo alloy, Ni-Mo-Cr-Fe-W alloy, and austenitic Ni-base superalloy.

  18. Microstruture and mechanical properties of a stainless steel 18 Cr 11Ni with niobium high content

    International Nuclear Information System (INIS)

    The microstructure and mechanical properties of low carbon (0,02% weight) and high Niobium content (2% weight) austenitic stainless steel, obtained in a vacuum induction furnace were studied. It was observed that the yied proof stress and the ultimate tensile stress increase with the Niobium content but with a great ductility loss, mainly in the samples annealed in high temperatures, due to the presence of delta-ferrite. (Author)

  19. Corrosion rate of carbon steel in NS tank water

    International Nuclear Information System (INIS)

    Neutron shield tank (NST) is an open tank 12.5 meters in height and 12 meters dia constructed around the research reactor. It is filled with water to (i) provide shielding from the neutron radiation, (ii) to remove the heat from the Pressure suppression system during LOCA and (iii) to act as a heat sink. NST is made of IS2062 carbon steel and it contains the stainless steel tanks, CS support structures, forged carbon steel gas cylinders, steel containment and its supports and emergency cooling down system condensers made of ASTM 350 grade LF2 carbon steel. All the equipments/systems located inside NST are painted with epoxy paint. NST is filled up 12 meters ie with 1200 m3 of water. The water chemistry parameters and microbiological parameters and corrosion rate of carbon steel materials in NST water at various water chemistry and various depths are discussed in the paper. (author)

  20. Duplex stainless steels. A review after DSS '07 held in Grado

    Energy Technology Data Exchange (ETDEWEB)

    Charles, J. [ARCELOR MITTAL, La Plaine Saint-Denis (France)

    2008-06-15

    Duplex stainless have always been an exiting area of interest for researchers, stainless steel producers, fabricators and end users. They present very diversified technical challenges and simultaneously attractive in-service properties at excellent cost/properties ratios, particularly in critical markets including oil and gas, chemical industry, pulp and paper industry, water systems, desalination plants, pollution control equipments, chemical tankers, etc. This explains why although they still remain a marginal production in the stainless steel business (less than 1%) dedicated international conferences have been organised since about 25 years. The purpose of this paper is to present a review of the 100 scientific contributions presented during the latest international duplex stainless steel conference witch took place in Grado, Italy, on 18-20 June 2007. The main topics concerned microstructure and mechanical properties, weldability, corrosion resistance and in-service properties. The ''standard'' duplex stainless steels, i.e. the 2304, 2205, and the family of 2507 (Cu,W,..) grades were confirmed as very valuable grades with outstanding performances proven in more than 20 years successful in-service applications. New grades including the so-called lean duplex dedicated to volume oriented markets (possible replacement of 304/316 grades) and some ''niche'' grades dedicated to very specific markets were presented. It was pointed out that the duplex grades start to be well established products particularly suitable for corrosion resistance applications. They show a two-digit yearly growth thanks to the production of new grades and production ranges (coils and bars) targeting the replacement of the more costly 300 series including 304 but also rusty carbon steel in e.g. structural application. (orig.)