WorldWideScience

Sample records for carbon stainless steel

  1. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  2. Acid neutralisation capacity of accelerated carbonated stainless steel slag.

    Science.gov (United States)

    Johnson, D C; MacLeod, C L; Hills, C D

    2003-05-01

    The acid neutralisation capacity test is widely used to assess the long-term performance of waste materials prior to disposal. Samples of fixed mass are exposed to increasing additions of nitric add in sealed containers and the resultant pH is plotted as a titration curve. In this work, the add neutralisation capacity test was used in the assessment of an accelerated carbonated stainless steel slag. Difficulties arose in applying the test procedure to this material. This was largely because of the raised pressure from significant volumes of released carbon dioxide trapped in the sealed sample containers, causing an alteration to leachate pH values. Consequently, the add neutralisation capacity test was modified to enable testing of samples in equilibrium with the atmosphere. No adverse effects on the results from testing of a carbonate free material were recorded. PMID:12803247

  3. The diffusion of carbon from liquid sodium into stainless steel

    International Nuclear Information System (INIS)

    A theory which describes the diffusion of carbon from liquid sodium into austenitic stainless steels is proposed. It is suggested that diffusion occurs simultaneously along two routes, i.e. the grain boundaries and the grains themselves. The grain boundaries provide a faster route than through the grains. In both routes the diffusion is accompanied by precipitation of iron/chromium carbides. The contributions of each route to the carbon concentration in the steel add together to give the observed profile. Each contribution obeys an equation of the error function type given as a solution to Fick's second law. A method of fitting such an equation to suitable curves using the minimising of sums of squares has been developed. It's application to profiles obtained in the present work has shown them to obey the above theory. The contributions from the two routes could be separated and used to evaluate effective diffusion coefficients. Most of the profiles were obtained from steel samples carburised in small sealed capsules. Constant carbon activities in sodium were ensured by the use of suitable sources, mainly couples consisting of a metal and one of its carbides or two carbides of the same metal. The profiles were mainly obtained from the metal by Glow Discharge Optical Spectroscopy. Work on samples obtained from two flowing sodium loops is reported, and are compared with other profiling techniques. (author)

  4. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  5. Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel%Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    R Paventhan; P R Lakshminarayanan; V Balasubramanian

    2012-01-01

    Friction weIding is a solid state joining process used extensively currently owing to its advantages such as low heat input, high production efficiency, ease of manufacture, and environment friendliness. Materials difficult to be welded by fusion welding processes can be successfully welded by friction welding. An attempt was made to develop an empirical relationship to predict the tensile strength of friction welded AISI 1040 grade medium carbon steel and AISI 304 austenitic stainless steel, incorporating the process parameters such as friction pressure, forging pressure, friction time and forging time, which have great influence on strength of the joints. Response surface methodology was applied to optimize the friction welding process parameters to attain maximum tensile strength of the joint. The maximum tensile strength of 543 MPa could be obtained for the joints fabricated under the welding conditions of friction pressure of 90 MPa, forging pressure of 90 MPa, friction time of 6 s and forging time of 6 s.

  6. Solidification of stainless steel slag by accelerated carbonation.

    Science.gov (United States)

    Johnson, D C; MacLeod, C L; Carey, P J; Hills, C D

    2003-06-01

    On exposure to carbon dioxide (CO2) at a pressure of 3 bars, compacts formed from pressed ground slag, and 12.5 weight percent water, were found to react with approximately 18% of their own weight of CO2. The reaction product formed was calcium carbonate causing the slag to self-cement. Unconfined compressive strengths of 9MPa were recorded in carbonated compacts whereas strengths of < 1 MPa were recorded in non-carbonated slag compacts. As molten stainless steel slag containing dicalcium silicate (C2S) cools it can undergo several phase transitions. The final transformation from the beta-polymorph to gamma-C2S is accompanied by a volume change that causes the slag to self-pulverise or 'dust'. As a consequence of this the fine grained portion of the slag contains more of this phase whilst the coarser particles of the slag contain more of the calcium magnesium silicates that contribute the bulk of the waste. The fine fraction (< 125 microm) of the slag when ground is found to react to the same extent as the ground bulk slag and produces compacts with equivalent strength. A coarser fraction (4-8 mm) when ground to a similar grading does not react as extensively and produces a weaker product. Additions of ordinary Portland cement (OPC) at 5 and 10 percent by weight did not alter the degree of reaction during carbonation of the bulk slag or ground fine fraction, however the strength of the 4-8 mm fraction was increased by this change. PMID:12868521

  7. Welded, sandblasted, stainless steel corrugated bars in non-carbonated and carbonated mortars: A 9-year corrosion study

    OpenAIRE

    Bautista, A.; Paredes, E. C.; Álvarez, S. M.; Velasco, F.

    2016-01-01

    Three different stainless steel corrugated grades (UNS S20430, S30403 and S32205) were similar welded to stainless steel bars with the same composition and dissimilar welded to carbon steel (CS). After cleaning the welding oxides by sandblasting, the reinforcements were embedded in mortar with chlorides and some of the samples were carbonated. Corrosion activity was monitored using corrosion potential (Ecorr) and electrochemical impedance spectroscopy (EIS). After 8 years of exposure, the sam...

  8. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    Science.gov (United States)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  9. Effect of carbon dioxide and temperature on passive film parametersof superduplex stainless steel

    Directory of Open Access Journals (Sweden)

    Emandro Vieira da Costa

    2013-01-01

    Full Text Available Superduplex stainless steel has been frequently employed in new sites of Brazilian Pre-Salt. In these environments, chloride concentration, temperature and carbon dioxide are normally present in higher levels than those at sea water at room temperature. In these conditions, it is expected that the passive films of stainless steel also show modifications. To better understand such modifications, samples of superduplex stainless steel UNS S32750 were submitted to electrochemical impedance measurements in brine media, at two temperatures and under presence/absence of carbon dioxide. The electrochemical impedance results were initially tested using the Kramers-Kronig transform and subsequently fitted by equivalent circuit employing constant phase elements - CPE. Moreover, to quantify the effect of each factor (temperature, chloride, carbon dioxide and microstructure on the equivalent circuit, their parameters were tested applying statistical analysis. Significant effect of carbon dioxide and temperature was found on related parameters of passive film for heat-treated samples.

  10. Stress and Composition of Carbon Stabilized Expanded Austenite on Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2009-01-01

    Low-temperature gaseous carburizing of stainless steel is associated with a colossal supersaturation of the fcc lattice with carbon, without the development of carbides. This article addresses the simultaneous determination of stress and composition profiles in layers of carbon xpanded austenite...

  11. The possibility of tribopair lifetime extending by welding of quenched and tempered stainless steel with quenched and tempered carbon steel

    OpenAIRE

    V. Marušić; I. Samardžić; Budić, I.; Marušić, L.

    2015-01-01

    In the conditions of tribocorrosion wear, extending of parts lifetime could be achieved by using stainless steel,which is hardened to sufficiently high hardness. In the tribosystem bolt/ bushing shell/link plate of the bucket elevator transporter conveyor machine, the previously quenched and tempered martensitic stainless steel for bolts is hardened at ≈47 HRC and welded with the quenched and tempered high yield carbon steel for bolts. Additional material, based on Cr-Ni-Mo (18/8/6) is used. ...

  12. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  13. Advanced manufacturing technologies of large martensitic stainless steel castings with ultra low carbon and high cleanliness

    Directory of Open Access Journals (Sweden)

    Lou Yanchun

    2010-11-01

    Full Text Available The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfied the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.

  14. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng; Jiang, Shuyun, E-mail: jiangshy@seu.edu.cn

    2014-02-15

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (−200 V/80 A, labeled DLC-1, and −100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  15. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Science.gov (United States)

    Cheng, Feng; Jiang, Shuyun

    2014-02-01

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (-200 V/80 A, labeled DLC-1, and -100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  16. Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Sarkari Khorrami, Mahmoud; Mostafaei, Mohammad Ali; Pouraliakbar, Hesam, E-mail: hpouraliakbar@alum.sharif.edu; Kokabi, Amir Hossein

    2014-07-01

    In this work, examinations on the microstructure and mechanical properties of plain carbon steel and AISI 430 ferritic stainless steel dissimilar welds are carried out. Welding is conducted in both autogenous and using ER309L austenitic filler rod conditions through gas tungsten arc welding process. The results indicate that fully-ferritic and duplex ferritic–martensitic microstructures are formed for autogenous and filler-added welds, respectively. Carbide precipitation and formation of martensite at ferrite grain boundaries (intergranular martensite) as well as grain growth occur in the heat affected zone (HAZ) of AISI 430 steel. It is found that weld heat input can strongly affect grain growth phenomenon along with the amount and the composition of carbides and intergranular martensite. Acquired mechanical characteristics of weld in the case of using filler metal are significantly higher than those of autogenous one. Accordingly, ultimate tensile strength (UTS), hardness, and absorbed energy during tensile test of weld metal are increased from 662 MPa to 910 MPa, 140 Hv to 385 Hv, and 53.6 J m{sup −3} to 79 J m{sup −3}, respectively by filler metal addition. From fracture surfaces, predominantly ductile fracture is observed in the specimen welded with filler metal while mainly cleavage fracture occurs in the autogenous weld metal.

  17. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    International Nuclear Information System (INIS)

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 1017 ions-cm− 2, 2.4 × 1017 ions-cm− 2, and 4.8 × 1017 ions-cm− 2. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation

  18. Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld between Austenitic Stainless Steel and Low Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    M.Jafarzadegan; A.Abdollah-zadeh; A.H.Feng; T.Saeid; J.Shen; H.Assadi

    2013-01-01

    Dissimilar fusion welding of austenitic stainless steels to carbon steels has some metallurgical and technical problems.It was suggested that the solid-state nature of friction stir welding (FSW) can overcome these problems and produce a sound weld with reliable mechanical properties.In this study,plates of 304 stainless steel and st37 steel were welded together by FSW at tool rotational speed of 600 r/min and welding speed of 50 mm/min.In the stir zone (SZ) of 304 stainless steel,the results showed a refined grain structure with some features of metadynamic recrystallization.In the SZ of st37 steel,the hot deformation of material in the austenite region produced small austenite grains.These grains transformed to fine ferrite and pearlite by cooling the material after FSW.The production of fine grains increased the hardness and tensile strength in the SZ of both sides with respect to their base metals (BMs).

  19. Three Heavy Reflector Experiments in the IPEN/MB-01 Reactor: Stainless Steel, Carbon Steel, and Nickel

    Science.gov (United States)

    dos Santos, A.; de Andrade e Silva, G. S.; Mura, L. F.; Fuga, R.; Jerez, R.; Mendonça, A. G.

    2014-04-01

    The heavy reflector experiments performed in the IPEN/MB-01 research reactor facility comprise a set of critical configurations employing the standard 28×26-fuel-rod configuration. The heavy reflector, either Stainless Steel, Carbon Steel or Nickel plates, was placed at the west face of this reactor. 32 plates around 3.0 mm thick were used in all the experiments. The aim was to provide high quality experimental data for the interpretation and validation of the SS-304 heavy reflector calculation methods. The experiments of Carbon Steel, which is composed mainly of iron, and Nickel were performed to provide a consistent and an interpretative check to the SS-304 reflector measurements. The experimental data comprise a set of critical control bank positions, temperatures and reactivities as a function of the number of the plates. The competition between the effect of thermal neutron capture in the heavy reflector and the effect of fast neutrons back scattering to the core is highlighted by varying the reflector thickness. For the Carbon Steel case the reactivity gain when all the 32 plates are inserted is the smallest one, thus demonstrating that Carbon Steel or essentially iron does not have the same reflector properties as the Stainless Steel or Nickel plates do. Nickel has the highest reactivity gain, thus demonstrating that this material is better reflector than Iron and Stainless Steel. The theoretical analysis was performed by MCNP-5 with the nuclear data library ENDF/B-VII.0. It was shown that this library has a very good performance up to thirteen plates and overestimates the reactivity for higher number of plates independently of the type of the reflector.

  20. The possibility of tribopair lifetime extending by welding of quenched and tempered stainless steel with quenched and tempered carbon steel

    Directory of Open Access Journals (Sweden)

    V. Marušić

    2015-04-01

    Full Text Available In the conditions of tribocorrosion wear, extending of parts lifetime could be achieved by using stainless steel,which is hardened to sufficiently high hardness. In the tribosystem bolt/ bushing shell/link plate of the bucket elevator transporter conveyor machine, the previously quenched and tempered martensitic stainless steel for bolts is hardened at ≈47 HRC and welded with the quenched and tempered high yield carbon steel for bolts. Additional material, based on Cr-Ni-Mo (18/8/6 is used. The microstructure and hardness of welded samples are tested. On the tensile tester, resistance of the welded joint is tested with a simulated experiment. Dimensional control of worn tribosystem elements was performed after six months of service.

  1. Fatigue of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Solin, J. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2010-05-15

    The 2009b update of ASME III introduces a new set of fatigue design curves. The new curve for austenitic stainless steels is exactly matching with the one endorsed in 2007 by the US NRC for new designs only. This has a notable effect in usage factor calculation at strain amplitudes below 0.5 %. However, experimental results clearly demonstrate that a new air curve would not be needed for the studied stainless steel grades. Our current results suggest arguments for use of stabilized stainless steels in NPP piping components, where high cycle fatigue (epsilon{sub a}<=0.5%) is a concern. (orig.)

  2. Growth of carbon nanotubes and microfibers over stainless steel mesh by cracking of methane

    OpenAIRE

    Gao, L.Z.; Kiwi-Minsker, L.; Renken, A.

    2008-01-01

    The ${La}_{2}{NiO}_{4}$ film was synthesized on the 304 stainless steel (SS) mesh. The hydrogen reduction of La2NiO4 generated homogeneous nanocatalyst particles (probably ${Ni}/{La}_2{O}_{3}$) over which methane was cracked, producing carbon notubes/microfibers and hydrogen. The carbon nanotubes/microfibers were strongly bonded to the SS mesh. It was observed that the methane conversion always reached its maximum at the cracking temperature of 750 °C regardless of its concentration varying f...

  3. Microstructure, mechanical properties and corrosion behavior of laser welded dissimilar joints between ferritic stainless steel and carbon steel

    International Nuclear Information System (INIS)

    Highlights: • Laser welding of ferritic stainless steel to carbon steel joints was made. • The microstructure of this dissimilar joint is lath martensite and ferrite. • Decarburized layer and type II grain boundary was observed in joints. • The hardness distribution of two heat input joints across interface were analyzed. • Ecorr of dissimilar joint is between two base metals and joint has greatest icorr. - Abstract: The joint of dissimilar metals between ferritic stainless steel (FSS) and low carbon steel (CS) are welded by laser beam with two different welding speeds: 12 mm/s and 24 mm/s. Microstructure of dissimilar joint were investigated using optical microscope, X-ray diffraction and scanning electron microscope. The results show that the microstructure of this dissimilar joint is lath martensite and few ferrite, upper bainite and widmanstatten ferrite formed in heat-affected zone (HAZ) of CS. An increase of welding speed leads to narrower HAZ of CS and higher hardness of weld bead close to FSS side. The joints with different welding speed have similar ultimate tensile strength but superior elongation is obtained of high welding speed joint. Electrochemical corrosion test indicates the corrosion potential of dissimilar joint falls in between FSS and CS. And dissimilar joint has greatest corrosion current density which is attributed to the effect of galvanic corrosion

  4. Pyrolytic carbon-coated stainless steel felt as a high-performance anode for bioelectrochemical systems.

    Science.gov (United States)

    Guo, Kun; Hidalgo, Diana; Tommasi, Tonia; Rabaey, Korneel

    2016-07-01

    Scale up of bioelectrochemical systems (BESs) requires highly conductive, biocompatible and stable electrodes. Here we present pyrolytic carbon-coated stainless steel felt (C-SS felt) as a high-performance and scalable anode. The electrode is created by generating a carbon layer on stainless steel felt (SS felt) via a multi-step deposition process involving α-d-glucose impregnation, caramelization, and pyrolysis. Physicochemical characterizations of the surface elucidate that a thin (20±5μm) and homogenous layer of polycrystalline graphitic carbon was obtained on SS felt surface after modification. The carbon coating significantly increases the biocompatibility, enabling robust electroactive biofilm formation. The C-SS felt electrodes reach current densities (jmax) of 3.65±0.14mA/cm(2) within 7days of operation, which is 11 times higher than plain SS felt electrodes (0.30±0.04mA/cm(2)). The excellent biocompatibility, high specific surface area, high conductivity, good mechanical strength, and low cost make C-SS felt a promising electrode for BESs. PMID:27058401

  5. Effect of Carbon and Nitrogen Content on Deformation and Fracture of AISI 304 Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    C. Menapace

    2008-04-01

    Full Text Available The effect of small differences in the content of carbon and nitrogen on the room temperature tensile deformation and fracture behaviour of an AISI 304 stainless steel was studied. In the steel containing the lower amount of carbon and nitrogen, a higher amount of strain induced alfa’ martensite is formed, which increases strain hardening rate and both uniform and total elongation at fracture. The presence of large martensitic areas in the cross section causes strain localization at the austenite/martensite interface, which promotes the nucleation of cracks and their propagation along the interface. This results in a decrease of Ultimate Tensile Strength. Strain induced transformation slightly reduces strain rate sensitivity, as well.

  6. Corrugated stainless steels embedded in carbonated mortars with and without chlorides: 9-year corrosion results

    OpenAIRE

    Bautista, A.; Álvarez, S. M.; Paredes, E. C.; Velasco, F.; Guzmán, S.

    2015-01-01

    The corrosion behavior of 5 corrugated stainless steel bars was evaluated in carbonated mortars: UNS S20430, S30400, S31603, S31635 and S32205. The tests were carried out under 3 different exposure conditions: at high relative humidity (C-HRH); partially immersed in 3.5% NaCl (C-PD; and with CaCl2 added during mortar mixing and exposed to high relative humidity (C-HRHCl). Corrosion potential (Ecorr) measurements and electrochemical impedance spectroscopy (EIS) were used to monitor the behavio...

  7. Articles comprising ferritic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  8. Extended X-Ray Absorption Fine Structure Investigation of Carbon Stabilized Expanded Austenite and Carbides in Stainless Steel AISI 316

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny;

    2011-01-01

    Low temperature carburized AISI 316 stainless steel - carbon expanded austenite - was investigated with EXAFS and synchrotron diffraction together with synthesized carbides of the type M3C2, M7C3 and M23C6. It was found that the chemical environment of carbon expanded austenite is not associated...... with any of the investigated carbides, that carbon has a strong affinity for chromium, i.e. short range order, and that carbon is in solid solution....

  9. Image analysis of corrosion pit initiation on ASTM type A240 stainless steel and ASTM type A 1008 carbon steel

    Science.gov (United States)

    Nine, H. M. Zulker

    The adversity of metallic corrosion is of growing concern to industrial engineers and scientists. Corrosion attacks metal surface and causes structural as well as direct and indirect economic losses. Multiple corrosion monitoring tools are available although those are time-consuming and costly. Due to the availability of image capturing devices in today's world, image based corrosion control technique is a unique innovation. By setting up stainless steel SS 304 and low carbon steel QD 1008 panels in distilled water, half-saturated sodium chloride and saturated sodium chloride solutions and subsequent RGB image analysis in Matlab, in this research, a simple and cost-effective corrosion measurement tool has identified and investigated. Additionally, the open circuit potential and electrochemical impedance spectroscopy results have been compared with RGB analysis to gratify the corrosion. Additionally, to understand the importance of ambiguity in crisis communication, the communication process between Union Carbide and Indian Government regarding the Bhopal incident in 1984 was analyzed.

  10. Secondary electron yields of carbon-coated and polished stainless steel

    International Nuclear Information System (INIS)

    To increase the power throughput to a plasma of an existing lower hybrid waveguide, secondary electron production on the walls and subsequent electron multiplication must be reduced. Since carbon has a low secondary electron coefficient (delta), measurements were performed for several uhv compatible carbon coatings (Aquadag, vacuum pyrolized Glyptal, and lamp black deposited by electrophoresis) as a function of primary beam voltage (35 eV to 10 keV), surface roughness (60 through 600 grit mechanical polishing and electropolishing), coating thickness, and angle of incidence (theta). Also measured were uncoated stainless steel, Mo, Cu, Ti, TiC, C as soot and ATJ graphite. The yields were obtained by varying the sample bias and measuring the collected current while the samples were in the electron beam of a scanning Auger microprobe. This technique allows delta measurements of Auger characterized surfaces with less than or equal to .3 mm spatial resolution

  11. Stainless Steel Mesh Supported Carbon Nanofibers for Electrode in Bioelectrochemical System

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2016-01-01

    Full Text Available We proposed a self-connected carbon nanofiber design for electrode in microbial bioelectrochemical system. This design was realized by direct growth of carbon nanofibers (CNFs onto stainless steel (SSM via a chemical vapor deposition process without addition of any external catalysts. In the CNFs-SSM composite electrode, the SSM acted as the conductive network and ensured efficient substrate and proton transfer, and the CNFs layer served as highly porous habitats for thick biofilm propagation. The current generated by the CNFs-SSM was 200 times higher than the bare SSM under the same experimental conditions. This provided a simple and promising method for preparation of electrode material with high performance and low-cost in bioelectrochemical system.

  12. Refractories for the direct production of low carbon stainless steel with niobium and molybdenum using the double slag technique

    International Nuclear Information System (INIS)

    The direct production of low carbon stainless steel with molybdenum and niobium was studied. Several basic crucibles with different compositions were analyzed to determine their resistance to wearing. The stainless steel was produced in an induction furnace from 1010 steel. The carbon content of the steel was lowered with briquettes containing iron oxide (scales) and lime introduced to the crucible. The first slag was removed and replaced by a second one formed only by pellets of lime; this second slag was removed before the addition of nickel and ferroalloys in the same crucible. The experimental results showed that the best resistance to wearing of the crucible was obtained with a mixture of 80% MAGNARMIX 363 and 20% Harmix Fe. (Author)

  13. Microhardness tests of stainless steel 52100 implanted with nitrogen and carbon dioxide

    CERN Document Server

    Mardanian, M; Taheri, Z

    2003-01-01

    In this research work, samples of stainless steel 52100 disks were implanted with nitrogen and carbon dioxide ions at the energy of 90 keV. Microhardness measurement were performed to determine the hardness of the surface. The N-2 sup + implanted steels at the doses of 1x10 sup 1 8 ions cm sup sub 2 gave the highest hardness of 49.70%, while for the CO sub 2 sup + ions implantation, the hardness of 17% and 5% were obtained at the doses of 3x10 sup 1 8 and 1x10 sup 1 9 ions cm sup - 2, respectively. To support the interpretation of our microhardness results the implanted surface were analyzed by the use of XRD method. Our results indicated that the hardness of the N sub 2 sup + implanted samples are due to formation of beta-Cr N phase in the surface layer, while in the CO sub 2 + implanted samples no observation of carbon as graphite or carbide was made. In addition, the absence of any hump in the XRD spectrum indicating that carbon is not in the amorphous phase either.

  14. Bonding Mechanisms in Resistance Microwelding of 316 Low-Carbon Vacuum Melted Stainless Steel Wires

    Science.gov (United States)

    Khan, M. I.; Kim, J. M.; Kuntz, M. L.; Zhou, Y.

    2009-04-01

    Resistance microwelding (RMW) is an important joining process used in the fabrication of miniature instruments, such as electrical and medical devices. The excellent corrosion resistance of 316 low-carbon vacuum melted (LVM) stainless steel (SS) wire makes it ideal for biomedical applications. The current study examines the microstructure and mechanical properties of crossed resistance microwelded 316LVM wire. Microtensile and microhardness testing was used to analyze the mechanical performance of welds, and fracture surfaces were examined using scanning electron microscopy. Finally, a bonding mechanism is proposed based on optimum joint breaking force (JBF) using metallurgical observations of weld cross sections. Moreover, comparisons with RMWs of Ni, Au-plated Ni, and SUS304 SS wire are discussed.

  15. Rigidity and retention of carbon fibre versus stainless steel root canal posts.

    Science.gov (United States)

    Purton, D G; Love, R M

    1996-07-01

    Two of the main requirements of a root canal post are that it is rigid so as to resist flexing under functional load, and that it is well retained in the root. This study compared these properties in two different 1-mm diameter root canal posts--smooth carbon fibre posts (Endopost) and serrated stainless steel posts (Parapost). Ten posts of each type were tested for rigidity in a three-point bend test. Ten posts of each type were cemented with resin cement into the roots of endodontically treated, extracted teeth. The tensile force required to remove the posts was recorded. The Paraposts proved to be significantly more rigid under load (P canals.

  16. Detection of Signals of Mock-up Pipes of Carbon Steel and Stainless Steel using Guided Ultrasonic Waves due to Magnetostrictive Sensors

    International Nuclear Information System (INIS)

    A piping mock-up with a diameter of 6 inch and schedule number 80 of carbon steel and stainless steel were fabricated. The signals of weldments of these pipes were detected with a torsional vibration mode of frequency of 32 kHz using sensors, such as a pure Ni or a 49Fe-49Co-2V alloy strip. The signals from the 49Fe-49Co-2V alloy strip sensor were more detectable than those from the Ni strip sensor. The signals of 49Fe-49Co-2V alloy strip sensor of tile stainless steel piping mock-up were more detectable than those of 49Fe-49Co-2V alloy strip sensor of the carbon steel piping mock-up.

  17. Decontamination and decarburization of stainless and carbon steel by melt refining

    International Nuclear Information System (INIS)

    With many nuclear reactors and facilities being decommissioned in the next ten to twenty years the concern for handling and storing Radioactive Scrap Metal (RSM) is growing. Upon direction of the DOE Office of Environmental Restoration and Waste Management, Lockheed Idaho Technology Company (LITCO) is developing technologies for the conditioning of spent fuels and high-level wastes for interim storage and repository acceptance, including the recycling of Radioactive Scrap Metals (RSM) for beneficial reuse with the DOE complex. In February 1993, Montana Tech of the University of Montana was contracted to develop and demonstrate technologies for the decontamination of stainless steel RSM. The general objectives of the Montana Tech research program included conducting a literature survey, performing laboratory scale melt refining experiments to optimize decontaminating slag compositions, performing an analysis of preferred melting techniques, coordinating pilot scale and commercial scale demonstrations, and producing sufficient quantities of surrogate-containing material for all of the laboratory, pilot and commercial scale test programs. Later on, the program was expanded to include decontamination of carbon steel RSM. Each research program has been completed, and results are presented in this report

  18. Effect of reactor temperature on direct growth of carbon nanomaterials on stainless steel

    Science.gov (United States)

    Edzatty, A. N.; Syazwan, S. M.; Norzilah, A. H.; Jamaludin, S. B.

    2016-07-01

    Currently, carbon nanomaterials (CNMs) are widely used for various applications due to their extraordinary electrical, thermal and mechanical properties. In this work, CNMs were directly grown on the stainless steel (SS316) via chemical vapor deposition (CVD). Acetone was used as a carbon source and argon was used as carrier gas, to transport the acetone vapor into the reactor when the reaction occurred. Different reactor temperature such as 700, 750, 800, 850 and 900 °C were used to study their effect on CNMs growth. The growth time and argon flow rate were fixed at 30 minutes and 200 ml/min, respectively. Characterization of the morphology of the SS316 surface after CNMs growth using Scanning Electron Microscopy (SEM) showed that the diameter of grown-CNMs increased with the reactor temperature. Energy Dispersive X-ray (EDX) was used to analyze the chemical composition of the SS316 before and after CNMs growth, where the results showed that reduction of catalyst elements such as iron (Fe) and nickel (Ni) at high temperature (700 - 900 °C). Atomic Force Microscopy (AFM) analysis showed that the nano-sized hills were in the range from 21 to 80 nm. The best reactor temperature to produce CNMs was at 800 °C.

  19. Advances in the research of nitrogen containing stainless steels

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The current status of nitrogen containing stainless steels at home and aboard has been introduced. The function and existing forms of nitrogen in the stainless steels, influence of nitrogen on mechanical properties and anti-corrosion properties as well as the application of nitrogen containing cast stainless steels were discussed in this paper. It is clear that nitrogen will be a potential and important alloying element in stainless steels. And Argon Oxygen Decarbonization (AOD) refining can provide an advanced manufacture process for nitrogen containing stainless steels with ultra-low- carbon and high cleanliness.

  20. Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study.

    Science.gov (United States)

    Rezaei, Farshid; Hassani, Kamran; Solhjoei, Nosratollah; Karimi, Alireza

    2015-12-01

    Total hip replacement (THR) has been ranked within the most typical surgical processes in the world. The durability of the prosthesis and loosening of prosthesis are the main concerns that mostly reported after THR surgeries. In THR, the femoral prosthesis can be fixed by either cement or cementless methods in the patient's bones. In both procedures, the stability of the prosthesis in the hosted bone has a key asset in its long-term durability and performance. This study aimed to execute a comparative finite element simulation to assess the load transfer between the prosthesis, which is made of carbon/PEEK composite and stainless steel/titanium, and the femur bone. The mechanical behavior of the cortical bone was assumed as a linear transverse isotropic while the spongy bone was modeled like a linear isotropic material. The implants were made of stainless steel (316L) and titanium alloy as they are common materials for implants. The results showed that the carbon/PEEK composites provide a flatter load transfer from the upper body to the leg compared to the stainless steel/titanium prosthesis. Furthermore, the results showed that the von Mises stress, principal stress, and the strain in the carbon/PEEK composites prosthesis were significantly lower than that made of the stainless steel/titanium. The results also imply that the carbon/PEEK composites can be applied to introduce a new optimum design for femoral prosthesis with adjustable stiffness, which can decrease the stress shielding and interface stress. These findings will help clinicians and biomedical experts to increase their knowledge about the hip replacement.

  1. Carbon diffusion and phase transformations during gas carburizing of high-alloyed stainless steels: Experimental study and theoretical modeling

    Science.gov (United States)

    Turpin, T.; Dulcy, J.; Gantois, M.

    2005-10-01

    Gas carburizing of high-alloyed stainless steels increases surface hardness, as well as the overall mechanical characteristics of the surface. The growth of chromium-rich carbides during carbon transfer into the steel causes precipitation hardening in the surface, but decreases the chromium content in solid solution. In order to maintain a good corrosion resistance in the carburized layer, the stainless steel composition and the carburizing process need to be optimized. To limit the experimental work, a methodology using software for modeling the thermodynamic and kinetic properties in order to simulate carbon diffusion and phase transformations during gas carburizing is presented. Thermodynamic calculations are initially used to find the optimum parameters ( T, carbon wt pct, etc.) in order to maintain the highest Cr and Mo contents in the austenitic solid solution. In a second step, kinetic calculations using the diffusion-controlled transformations (DICTRA) software are used to predict how the amount of the different phases varies and how the carbon profile in the steel changes as a function of time during the process. Experimental carbon profiles were determined using a wavelength-dispersive spectrometer for electron-probe microanalysis (WDS-EPMA), while carbide compositions were measured by energy-dispersive spectroscopy_X (EDS_X) analyses. A good agreement between calculated and experimental values was observed for the Fe-13Cr-5Co-3Ni-2Mo-0.07C and the Fe-12Cr-2Ni-2Mo-0.12C (wt pct) martensitic stainless steels at 955 °C and 980 °C.

  2. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr-Ni stainless steel

    International Nuclear Information System (INIS)

    Research highlights: → Hot-rolled ultra low carbon martensite is characterized by dislocation cells substructure. → The formation of dislocation cells is attributed to high Ms and low interstitial atoms content. → Hot-rolled ultra low carbon 12Cr-Ni stainless steel has excellent impact toughness. → Delta ferrite deteriorates the impact toughness of hot-rolled 12Cr-Ni stainless steel. - Abstract: 12Cr-Ni stainless steels containing different carbon contents from 0.004 wt.% to 0.034 wt.% were hot-rolled and air-cooled. Their corresponding microstructures were observed with optical microscope and transmission electron microscope, and the Vickers hardness, tensile and impact tests were also carried out. It was found that the martensitic morphology was significantly influenced by carbon content. The as-received ultra low carbon martensite in the steel containing 0.004 wt.% C is characterized by dislocation cells substructure. The formation of dislocation cells is attributed to high martensite finishing point (above 400 deg. C) and low interstitial atoms content. On the other hand, the martensite in the steel containing 0.034 wt.% C consists mainly of typical martensite laths because of low martensite finishing point and high interstitial atoms content which hinder dislocation motion. Furthermore, carbon content has an evident effect on the mechanical properties of 12Cr-Ni steels. The hardness and strength of the as-received steels increase with an increase in carbon content, but their elongation and impact toughness decrease with the carbon content. The steel containing 0.004 wt.% C has excellent impact toughness due to the ultra low carbon content in the martensite composed of dislocation cells.

  3. Investigation on carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water

    Energy Technology Data Exchange (ETDEWEB)

    Mu, L.J. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)], E-mail: mulijunxjtu@126.com; Zhao, W.Z. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-01-15

    The carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water is studied by potentiodynamic curve and electrochemical impedance spectroscopy (EIS); the micro-structure and composition of the corrosion scale formed at high-temperature and high-pressure are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that 13Cr stainless steel is in passive state in the stratum water, the passive current density increases and the passive potential region decreases with increasing temperature. The corrosion scale formed at high-temperature and high-pressure is mainly composed of iron/chromium oxides and a little amount of FeCO{sub 3}.

  4. Stainless steel recycle FY94 progress report

    International Nuclear Information System (INIS)

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft3) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program

  5. CASE-HARDENING OF STAINLESS STEEL

    DEFF Research Database (Denmark)

    2004-01-01

    The invention relates to case-hardening of a stainless steel article by means of gas including carbon and/or nitrogen, whereby carbon and/or nitrogen atoms diffuse through the surface into the article. The method includes activating the surface of the article, applying a top layer on the activated...

  6. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates

    Science.gov (United States)

    Liu, Ming; Xu, Hong-feng; Fu, Jie; Tian, Ying

    2016-07-01

    Ni-Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L-1 H2SO4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.

  7. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates

    Institute of Scientific and Technical Information of China (English)

    Ming Liu; Hong-feng Xu; Jie Fu; Ying Tian

    2016-01-01

    Ni–Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was depositedin situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L−1 H2SO4 solution containing 5 ppm F− at 80°C was inves-tigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.

  8. Measurement of contact angle between stainless steel surface and carbon dioxide by pendant drop method

    Institute of Scientific and Technical Information of China (English)

    PEI NianQiang; GUO KaiHua; LIU Jie; LI TingXun

    2008-01-01

    To measure contact angle between CO2 and solid surface,in this study a visual high-pressure vessel has been developed,with a corresponding well-controlled constant temperature system.Pendant drop method is applied to the investigation of the contact angles of CO2 on a stainless steel surface in its own vapor.The image of the pendant drop is recorded by a camera,and a B-Snake method is used to analyze the contour and the contact angle of the droplet.The experimental results have provided a set of well tested data,which show that CO2 has good infiltration into stainless steel surface and the de-veloped method can be used as a standard testing one for measuring the contact angle between high-pressure liquid and solid surface.

  9. Stainless Steel Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Karnesky, Richard A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  10. Stainless steel display evaluation

    Science.gov (United States)

    Hopper, Darrel G.; Meyer, Frederick M.; Longo, Sam J.; Trissell, Terry L.

    2007-04-01

    Active matrix organic light emitting diode (AMOLED) technology is one candidate to become a low power alternative in some applications to the currently dominant, active matrix liquid crystal display (AMLCD), technology. Furthermore, fabrication of the AMOLED on stainless steel (SS) foil rather than the traditional glass substrate, while presenting a set of severe technical challenges, opens up the potential for displays that are both lighter and less breakable. Also, transition to an SS foil substrate may enable rollable displays - large when used but small for stowage within gear already worn or carried or installed. Research has been initiated on AMOLED/SS technology and the first 320 x 240 color pixel 4-in. demonstration device has been evaluated in the AFRL Display Test and Evaluation Laboratory. Results of this evaluation are reported along with a research roadmap.

  11. Comparison of ammonia, morpholine and ethanolamine as conditioning agent on the formation and deposition of iron oxides on stainless steel and carbon steel in conditions of PWR secondary circuits

    International Nuclear Information System (INIS)

    An experimental circulating water loop was built to follow the formation, the transport and the deposition of iron oxides in the feedwater system of the secondary circuit of PWR plants. The test section operated at high temperature (up to 250oC) is made in carbon steel steel and includes three removable segments for characterization, one of which is in stainless steel for comparison, while all the other parts of the loop are made in stainless steel. Tests were performed from 18 to 101 days in one-phase flow conditions at 150 L.h-1 with a linear velocity between 0.92 m/s and 1.1 m/s at 220oC in ammonia/hydrazine, morpholine/hydrazine and ethanolamine/hydrazine media. The obtained results confirm the formation of iron oxide on carbon steel and stainless steel surface in the conditions of PWR secondary circuits. The surface characterizations show that magnetite is the corrosion product formed on carbon steel and stainless steel at 220oC and goethite is formed at room temperature on stainless steel. At high temperature, on carbon steel, the deposit is thicker in the ammonia medium than in the ethanolamine and morpholine medium. (author)

  12. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.;

    2004-01-01

    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding. Th......This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot...

  13. The a.c. response of lithium, stainless steel, and porous carbon electrodes in thionyl chloride solutions

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    1985-01-01

    . Unpolarised stainless steel electrodes show a 67° constant phase angle impedance over a wide frequency range whereas polarised to O mV vs. Li the impedance diagram is very similar to that of Li. Finally, it is found that passivation may develop differently for Li pressed onto stainless steel from that of Li...

  14. Strip casting of stainless steels

    OpenAIRE

    Raabe, D.

    1997-01-01

    FLAT PRODUCTS OF STAINLESS STEELS ARE CONVENTIONALLY MANUFACTURED BY CONTINUOUS CASTING, HOT ROLLING, HOT BAND ANNEALING, PICKLING, COLD ROLLING AND RECRYSTALLISATION. IN THE LAST YEARS STRIP CASTING HAS INCREASINGLY ATTRACTED ATTENTION. IT OFFERS THREE IMPROVEMENTS IN COMPARISON TO THE CONVENTIONAL METHOD.1.) IT ALLOWS TO CAST STEEL SHEETS WITH THE SAME THICKNESS AND WIDTH AS THOSE PRODUCED BY HOT ROLLING. THIS MEANS THAT THE HOT ROLLING PROCESSIS BYPASSED. 2.) THE STRIP CAST STEEL REVEALS A...

  15. Development of a radio frequency atmospheric pressure plasma jet for diamond-like carbon coatings on stainless steel substrates

    Science.gov (United States)

    Sohbatzadeh, F.; Samadi, O.; Siadati, S. N.; Etaati, G. R.; Asadi, E.; Safari, R.

    2016-10-01

    In this paper, an atmospheric pressure plasma jet with capacitively coupled radio frequency discharge was developed for diamond-like carbon (DLC) coatings on stainless steel substrates. The plasma jet was generated by argon-methane mixture and its physical parameters were investigated. Relation between the plasma jet length and width of the powered electrode was discussed. Optical and electrical characteristics were studied by optical emission spectroscopy, voltage and current probes, respectively. The evolutions of various species like ArI, C2 and CH along the jet axis were investigated. Electron temperature and density were estimated by Boltzmann plot method and Saha-Boltzmann equation, respectively. Finally, a diamond-like carbon coating was deposited on stainless steel-304 substrates by the atmospheric pressure radio frequency plasma jet in ambient air. Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy and Vickers hardness test were used to study the deposited films. The length of the jet was increased by increasing the width of the powered electrode. The estimated electron temperature and density were 1.43 eV and 1.39 × 1015 cm-3, respectively. Averaged Vicker's hardness of the coated sample was three times greater than that of the substrate. The SEM images of the deposited thin films revealed a 4.5 μm DLC coated for 20 min.

  16. Effects of silicon, carbon and molybdenum additions on IASCC of neutron irradiated austenitic stainless steels

    Science.gov (United States)

    Nakano, J.; Miwa, Y.; Kohya, T.; Tsukada, T.

    2004-08-01

    To study the effects of minor elements on irradiation assisted stress corrosion cracking (IASCC), high purity type 304 and 316 stainless steels (SSs) were fabricated and minor elements, Si or C were added. After neutron irradiation to 3.5 × 10 25 n/m 2 ( E>1 MeV), slow strain rate tests (SSRTs) of irradiated specimens were conducted in oxygenated high purity water at 561 K. Specimen fractured surfaces were examined using a scanning electron microscope (SEM) after the SSRTs. The fraction of intergranular stress corrosion cracking (IGSCC) on the fractured surface after the SSRTs increased with neutron fluence. In high purity SS with added C, the fraction of IGSCC was the smallest in the all SSs, although irradiation hardening level was the largest of all the SSs. Addition of C suppressed the susceptibility to IGSCC.

  17. Preformed posterior stainless steel crowns: an update.

    Science.gov (United States)

    Croll, T P

    1999-02-01

    For almost 50 years, dentists have used stainless steel crowns for primary and permanent posterior teeth. No other type of restoration offers the convenience, low cost, durability, and reliability of such crowns when interim full-coronal coverage is required. Preformed stainless steel crowns have improved over the years. Better luting cements have been developed and different methods of crown manipulation have evolved. This article reviews stainless steel crown procedures for primary and permanent posterior teeth. Step-by-step placement of a primary molar stainless steel crown is documented and permanent molar stainless steel crown restoration is described. A method for repairing a worn-through crown also is reviewed.

  18. Effect of Welding Current on the Structure and Properties of Resistance Spot Welded Dissimilar (Austenitic Stainless Steel and Low Carbon Steel) Metal Joints

    Science.gov (United States)

    Shawon, M. R. A.; Gulshan, F.; Kurny, A. S. W.

    2015-04-01

    1.5 mm thick sheet metal coupons of austenitic stainless steel and plain low carbon steel were welded by resistance spot welding technique. The effects of welding current in the range 3-9 kA on the structure and mechanical properties of welded joint were investigated. The structure was studied by macroscopic, microscopic and scanning electron microscopy techniques. Mechanical properties were determined by tensile testing and microhardness measurements. Asymmetrical shape weld nugget was found to have formed in the welded joint which increased in size with an increase in welding current. The fusion zone showed cast structure with coarse columnar grain and dendritic with excess delta ferrite in austenitic matrix. Microhardness of the weld nugget was maximum because of martensite formation. An increase in welding current also increased tensile strength of the weld coupon. An attempt has also been made to relate the mode of fracture with the welding current.

  19. Fatigue fracture analysis in medium carbon structural steel and austenitic stainless steel by X-ray fractography

    International Nuclear Information System (INIS)

    Apart from the reidual stresses present in the bulk material, a growing fatigue crack may develop its own stress field ahead of the crack tip which in turn could influence the crack propagation behaviour. A fracture surface analysis through measurement of the residual stress of a failed component may provide some additional useful information to that obtained through conventional metallurgical and fracture mechanics investigations. This method of fracture surface analysis using x-ray diffraction technique is known as X-ray Fractography. Residual stress (ρ sub γ) and the full width at half maximum (FWHM) of the x-ray diffraction profile of any reflection are determined at different crack lengths on the fracture surface. These are then corelated to the fracture toughness parameters such as fracture toughness K sub I sub C, the maximum stress intensity factor K sub max and the stress intensity factor range δK. The present investigation aims at detailed x-ray analysis of the fatigue fractured surfaces of the compact tension specimens prepared from ferritic and austenitic stainless steels. The ferritic steel has been subjected to various heat treatments to obtain different microstructures and mechanical properties. The overall observations are analyzed through fatigue (cumulative) damage and material science concepts

  20. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires. PMID:9228844

  1. Stainless steel denitriding with slag

    International Nuclear Information System (INIS)

    Calculation and experimental methods were used to investigate the process of titanium nitride formation when alloying chromium nickel stainless steels with titanium. At common concentrations of titanium and nitrogen, titanium nitrides were observed to be precipitated from the melt into slag in amounts of 0.1% and more. The laboratory study of the slag influence of the process of steel refining from titanium nitrides showed that the slag containing calcium, aluminium and magnesium oxides is favourable to the denitriding of steel. In addition, the possibility of direct transition of dissolved nitrogen from the metal into the slag is revealed. 7 refs., 1 fig., 2 tabs

  2. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  3. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' and Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of G phase to loss of toughness is now known. Microstructural data also indicate that weakening of ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 4500C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 4500C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  4. Electrochemical Impedance and Modelling Studies of the Corrosion of Three Commercial Stainless Steels in Molten Carbonate

    Directory of Open Access Journals (Sweden)

    C. S. Ni

    2014-01-01

    Full Text Available The corrosion induced by molten carbonates on the metallic structure materials is a problem constraining the life span of molten carbonate fuel cell (MCFC at elevated temperatures. The reaction between the outgrowing oxide scale and lithium carbonate in the electrolyte is generally a slow process and very important to the passivation behaviour of the underlying steel. The corrosion behaviour of three commercial alloys (P92, SS304, and SS310 with different Cr contents in molten (0.62Li, 0.38K2CO3 at 650°C was monitored by electrochemical impedance spectroscopy (EIS for 120 hours to investigate the lithiation process. With SEM images and extensive XRD analysis of the oxides, equivalent circuits were proposed to interpret the impedance data and explain the corrosion behaviour of the three alloys at different stage with respect to lithiation process.

  5. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode.

    Science.gov (United States)

    Sharma, Mohita; Jain, Pratiksha; Varanasi, Jhansi L; Lal, Banwari; Rodríguez, Jorge; Lema, Juan M; Sarma, Priyangshu M

    2013-12-01

    An anoxic biocathode was developed using sulfate-reducing bacteria (SRB) consortium on activated carbon fabric (ACF) and the effect of stainless steel (SS) mesh as additional current collector was investigated. Improved performance of biocathode was observed with SS mesh leading to nearly five folds increase in power density (from 4.79 to 23.11 mW/m(2)) and threefolds increase in current density (from 75 to 250 mA/m(2)). Enhanced redox currents and lower Tafel slopes observed from cyclic voltammograms of ACF with SS mesh indicated the positive role of uniform electron collecting points. Differential pulse voltammetry technique was employed as an additional tool to assess the redox carriers involved in bioelectrochemical reactions. SRB biocathode was also tested for reduction of volatile fatty acids (VFA) present in the fermentation effluent stream and the results indicated the possibility of integration of this system with anaerobic fermentation for efficient product recovery.

  6. Evaluation of aging embrittlement of low-carbon austenitic stainless steel weld metal near the BWR operating temperature

    International Nuclear Information System (INIS)

    To evaluate the rate of thermal embrittlement of type 316 low-carbon stainless steel weld metal at BWR operating temperature, aging test at 310degC, 335degC, and 400degC was carried out. Hardness of each ferrite and austenite phase of specimens was measured selectively by microhardness tester. Hardness of ferrite was increased apparently with all three aging temperatures, whereas hardness of austenite was not changed. Changes in the microstructure of ferrite aged at 310degC for 11,000h and 18,000h were analyzed by TEM. It has been revealed that hardening of ferrite with aging at 310degC was result of spinodal decomposition. Arrhenius plots for hardening rate of ferrite at each three aging temperature was plotted, and apparent activation energy was estimated. Using the apparent activation energy, hardening rate at 288degC was discussed. (author)

  7. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  8. Pitting Corrosion Behavior of Stainless Steel 304 in Carbon Dioxide Environments

    Institute of Scientific and Technical Information of China (English)

    LI Guo-min; GUO Xing-peng; ZHENG Jia-shen

    2004-01-01

    The pitting corrosion behavior of stainless steel (SS) 304 in aqueous CO2-H2S-Cl- environment was investigated by potentiodynamic cyclic anodic polarization and electron probe microanalysis (EPMA). The experimental results show that the pitting corrosion susceptivity of SS 304 increases with the increase of temperature. Chlorine ion is the prerequisite for pitting corrosion of SS 304 in H2S-CO2 environments. There is a linear relationship between the pitting corrosion potential (Eb-100) and chlorine ion concentration, and Eb-100 becomes noble with increasing pH value of the solution with or without H2S. pH value has little effect on the protection potential with the presence of H2S. H2S increases strongly the pitting corrosion susceptivity and deteriorates the pitting corrosion resistance of SS 304 in CO2 environments. The observations by EPMA show that SS 304 in CO2-saturated NaCl solution (3 %) with H2S suffers pitting corrosion accompanied with intergranular corrosion.

  9. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    OpenAIRE

    Syed Altaf Khalid; Vadivel Kumar; Prithviraj Jayaram

    2012-01-01

    Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets - titanium, self-ligating stainless steel, and conventional stainless steel - using stainless steel archwires and TMA archwires. An in vitro study of simulated ca...

  10. Microbial corrosion of stainless steel.

    Science.gov (United States)

    Ibars, J R; Moreno, D A; Ranninger, C

    1992-11-01

    Stainless steel, developed because of their greater resistance to corrosion in different aggressive environments, have proved to be affected, however, by various processes and types of corrosion. Some of these types of corrosion, mainly pitting, is activated and developed in the presence of microorganisms, which acting in an isolated or symbiotic way, according to their adaptation to the environment, create a favorable situation for the corrosion of these steel. The microorganisms that are involved, mainly bacteria of both the aerobic and anaerobic type, modify the environment where the stainless steel is found, creating crevices, differential aeration zones or a more aggressive environment with the presence of metabolites. In these circumstances, a local break of the passive and passivating layer is produced, which is proper to these types of steel and impedes the repassivation that is more favorable to corrosion. In the study and research of these types of microbiologically influenced corrosion are found electrochemical techniques, since corrosion is fundamentally an electrochemical process, and microbiological techniques for the identification, culture, and evaluation of the microorganisms involved in the process, as well as in the laboratory or field study of microorganism-metal pairs. Microstructural characterization studies of stainless steel have also been considered important, since it is known that the microstructure of steel can substantially modify their behavior when faced with corrosion. As for surface analysis studies, it is known that corrosion is a process that is generated on and progresses from the surface. The ways of dealing with microbiologically influenced corrosion must necessarily include biocides, which are not always usable or successful, the design of industrial equipment or components that do not favor the adherence of microorganisms, using microstructures in steel less sensitive to corrosion, or protecting the materials. PMID:1492953

  11. The electrochemistry of 13% chromium stainless steel in oilfield brines

    Energy Technology Data Exchange (ETDEWEB)

    Sidorin, Dmitry; Pletcher, Derek [Department of Chemistry, The University of Southampton, Southampton SO17 1BJ (United Kingdom); Hedges, Bill [BP Trinidad Ltd., P.O. Box 714, Port of Spain (Trinidad and Tobago)

    2005-07-25

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel. (author)

  12. The electrochemistry of 13% chromium stainless steel in oilfield brines

    International Nuclear Information System (INIS)

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel

  13. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  14. Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties

    OpenAIRE

    Santos, Rafael; Van Bouwel, Jens; Vandevelde, Ellen; Mertens, Gilles; Elsen, Jan; Van Gerven, Tom

    2013-01-01

    This work explores the mineral carbonation of stainless steel slags in search for a technically and economically feasible treatment solution that steers these waste residues away from costly disposal in landfills and into valuable applications. Argon Oxygen Decarburization (AOD) and Continuous Casting (CC) slags prove ideal for mineral carbonation as their powdery morphology forgoes the need for milling and provides sufficient surface area for high reactivity towards direct aqueous carbonatio...

  15. Microstructure and Properties of Carbon Steel/Stainless Steel Composite Pipe%不锈钢复合钢管组织及其性能

    Institute of Scientific and Technical Information of China (English)

    李玉和; 苟淑云; 邓刚

    2011-01-01

    Composite hollow pipe billet was successfully manufactured by centrifugally pouring 10 type steel on the outer layer firstly and then pouring lCrl8Ni9Ti stainless steel on the inner layer. The pipe billet with inner and outer surface treated, was prepared to the carbon steel /stainless steel composite pipe with 47 mm in diameter and 4. 5 mm in length by hot extrusion and cold rolling, and composite pipe manufactured with stainless steel by centrifugal casting was described. The microstructure, properties and bonding layer of the composite pipe were investigated. The results show that inner and outer layer exhibit desirable metallurgical bonding effects, and grain size is greatly refined. Grain size in the pipe after final rolling is transformed from 3. 0~3. 5 grade at as-cast state into 7. 0~8. 0 grade. Grain-boundary corrosion meets the requirements after bending, flattening and heat treatment.%采取外层先离心浇注10号钢,再浇注内层1Cr18Ni9Ti得到离心复合空心管坯,管坯内外表面加工后进行热挤压和冷轧,试制出了φ47 mm×4.5 mm的碳钢/不锈钢复合钢管,对不锈钢离心复合管坯生产复合钢管工艺路线进行研究,并对复合管金相组织、性能及结合层质量等方面进行分析.结果表明,复合管内外层冶金结合良好,晶粒明显细化,终轧后晶粒由铸态时3.0~3.5级变为7.0~8.0级,复合管压扁、弯曲及热处理后晶界腐蚀检验合格.

  16. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies

    NARCIS (Netherlands)

    Shulga, A. V.

    2013-01-01

    The ring tensile test method was optimized and successfully used to obtain precise data for specimens of the cladding tubes of AISI type 316 austenitic stainless steels and ferritic-martensitic stainless steel. The positive modifications in the tensile properties of the stainless steel cladding tube

  17. Nano-composite stainless steel

    Science.gov (United States)

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  18. Hot workability of duplex stainless steels

    OpenAIRE

    Martin, Guilhem

    2011-01-01

    The Duplex Stainless Steels (DSS) are defined as a family of stainless steels consisting of a two-phase microstructure involving δ-ferrite and γ-austenite. Exceptional combinations of strength and toughness together with good corrosion resistance under critical working conditions designate DSS a suitable alternative to conventional austenitic stainless steels. Unfortunately, the relatively poor hot workability of these alloys makes the industrial processing of flat products particularly criti...

  19. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65

    International Nuclear Information System (INIS)

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  20. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...... by replacement of the nitride ions with oxide ions in the molten carbonate electrolyte....

  1. Evolution of properties and structure of molybdena austenitic stainless steel with low carbon concentration to endure high temperature for a long time

    International Nuclear Information System (INIS)

    Fast sodium cooled reactor vessels are exposed to temperatures up to 550 C, and should therefore be built of stainless austenitic steels. This study presents results of resistance tests and inter-crystalline corrosion performed on two samples of stainless steel 17-13 (with molybdenum and carbon) 15 and 70 mm thick, after spending between 10 and 30,000 hours at temperatures between 400 and 900 C. Principal changes of mechanical properties consisted of small hardening observed at temperatures between 600 and 700 C, and decreasing ductility. Loss of ductility is even greater at temperatures between 550 and 750 C as the temperature or the time spent are higher. A comparison with other stainless steel austenitic steels is performed. An extrapolation of results obtained for two samples, based on diffusion laws, permits to evaluate the level of brittleness at 550 C after a very long time of utilisation. Short performance at higher temperatures lead to comparable brittleness. Structure study (optical microscopy or electronic microscopy) performed in parallel enabled to complete the domains of precipitation observed by B. Weiss and R. Stickler for a steel of the same type and to define the mode of brittleness of material during its exposure to high temperatures

  2. Brazing of stainless steel; Stainless ko no rozuke

    Energy Technology Data Exchange (ETDEWEB)

    Matsu, T.

    1996-04-01

    This paper explains brazing of stainless steel as to its processing materials, brazing materials, brazing methods, and brazing works. When performing brazing at higher than 800{degree}C on a martensite-based stainless steel represented by the 13Cr steel, attention is required on cracking caused by quenching. When a ferrite-based stainless steel represented by the 18Cr steel is heated above 900{degree}C, crystalline particles grow coarser, causing their tenacity and corrosion resistance to decline. High-temperature long-time heating in brazing in a furnace demands cautions. Austenite-based stainless steel represented by the 18Cr-8Ni steel has the best brazing performance. However, since the steel has large thermal expansion coefficient and low thermal conductivity, attention is required on strain and deformation due to heating, and on localized overheating. Deposition hardened stainless steel made of the Cr-Ni alloy steel added with aluminum and titanium has poor wettability in a brazing work, hence pretreatment is required for the purpose of activation. 9 figs., 7 tabs.

  3. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    OpenAIRE

    Yoshiyuki Show; Toshimitsu Nakashima; Yuta Fukami

    2013-01-01

    Composite film of carbon nanotube (CNT) and polytetrafluoroethylene (PTFE) was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS) bipolar plates of the proton exchange membrane fuel cell (PEMFC) as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assemb...

  4. Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF{sub 6} salt

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Seung-Taek [Department of Chemical Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)], E-mail: smyung@iwate-u.ac.jp; Sasaki, Yusuke [Department of Chemical Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Saito, Takamitsu [Nissan Motors, 1 Natsushima, Yokosuka, Kanagawa 273-8523 (Japan); Sun, Yang-Kook [Department of Chemical Engineering, Hanyang University, Seungdong-Gu, Seoul 133-791 (Korea, Republic of); Yashiro, Hitoshi [Department of Chemical Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)], E-mail: yashiro@iwate-u.ac.jp

    2009-10-01

    Passivation behavior of type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF{sub 6} salt was studied using electrochemical polarization, X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectroscopy (ToF-SIMS). Cathodic polarization to 0 V vs. Li/Li{sup +} resulted in most but not complete reduction of the air-formed film from oxides to metal on the stainless steel, as confirmed by XPS. For complete elimination of the air-formed film, the surface of the stainless steel was scratched under anodic polarization conditions. At 3 V vs. Li/Li{sup +} where an anodic current peak appeared, only an indistinct layer was recognized on the newly scratched surface, according to ToF-SIMS analysis. Above 4 V vs. Li/Li{sup +}, substantial passive films were formed, which were composed of oxides and fluorides of iron and chromium. The origin of oxide was due to water contained in the non-aqueous alkyl carbonate solution, and that of fluorides were the result of the decomposition of electrolytic salt, LiPF{sub 6}, especially at higher potential. The resultant passive films were stable in the non-aqueous alkyl carbonate solution containing LiPF{sub 6} salt.

  5. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' phase and the Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of the G phase to loss of toughness is now known. Microstructural data also indicate that weakening of the ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 4500C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 4500C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  6. Fatigue strain-life behavior of carbon and low-alloy steels, austenitic stainless steels, and Alloy 600 in LWR environments

    Energy Technology Data Exchange (ETDEWEB)

    Keisler, J.; Chopra, O.K.; Shack, W.J. [Argonne National Lab., IL (United States)

    1995-08-01

    The existing fatigue strain vs. life (S-N) data, foreign and domestic, for carbon and low-alloy steels, austenitic stainless steels, and Alloy 600 used in the construction of nuclear power plant components have been compiled and categorized according to material, loading, and environmental conditions. Statistical models have been developed for estimating the effects of the various service conditions on the fatigue life of these materials. The results of a rigorous statistical analysis have been used to estimate the probability of initiating a fatigue crack. Data in the literature were reviewed to evaluate the effects of size, geometry, and surface finish of a component on its fatigue life. The fatigue S-N curves for components have been determined by adjusting the probability distribution curves for smooth test specimens for the effect of mean stress and applying design margins to account for the uncertainties due to component size/geometry and surface finish. The significance of the effect of environment on the current Code design curve and on the proposed interim design curves published in NUREG/CR-5999 is discussed. Estimations of the probability of fatigue cracking in sample components from BWRs and PWRs are presented.

  7. Fatigue strain-life behavior of carbon and low-alloy steels, austenitic stainless steels, and Alloy 600 in LWR environments

    International Nuclear Information System (INIS)

    The existing fatigue strain vs. life (S-N) data, foreign and domestic, for carbon and low-alloy steels, austenitic stainless steels, and Alloy 600 used in the construction of nuclear power plant components have been compiled and categorized according to material, loading, and environmental conditions. Statistical models have been developed for estimating the effects of the various service conditions on the fatigue life of these materials. The results of a rigorous statistical analysis have been used to estimate the probability of initiating a fatigue crack. Data in the literature were reviewed to evaluate the effects of size, geometry, and surface finish of a component on its fatigue life. The fatigue S-N curves for components have been determined by adjusting the probability distribution curves for smooth test specimens for the effect of mean stress and applying design margins to account for the uncertainties due to component size/geometry and surface finish. The significance of the effect of environment on the current Code design curve and on the proposed interim design curves published in NUREG/CR-5999 is discussed. Estimations of the probability of fatigue cracking in sample components from BWRs and PWRs are presented

  8. Preparation Femtosecond Laser Prevention for the Cold-Worked Stress Corrosion Crackings on Reactor Grade Low Carbon Stainless Steel

    CERN Document Server

    John Minehara, Eisuke

    2004-01-01

    We report here that the femtosecond lasers like low average power Ti:Sapphire lasers, the JAERI high average power free-electron laser and others could peel off and remove two stress corrosion cracking (SCC) origins of the cold-worked and the cracking susceptible material, and residual tensile stress in hardened and stretched surface of low-carbon stainless steel cubic samples for nuclear reactor internals as a proof of principle experiment except for the third origin of corrosive environment. Because a 143 °C and 43% MgCl2 hot solution SCC test was performed for the samples to simulate the cold-worked SCC phenomena of the internals to show no crack at the laser-peered off strip on the cold-worked side and ten-thousands of cracks at the non-peeled off on the same side, it has been successfully demonstrated that the femtosecond lasers could clearly remove the two SCC origins and could resultantly prevent the cold-worked SCC.

  9. A Physically Based Dynamic Recrystallization Model Considering Orientation Effects for a Nitrogen Alloyed Ultralow Carbon Stainless Steel during Hot Forging

    Institute of Scientific and Technical Information of China (English)

    Gan-lin XIE; An HE; Hai-long ZHANG; Gen-qi WANG; Xi-tao WANG

    2016-01-01

    The nitrogen alloyed ultralow carbon stainless steel is a good candidate material for primary loop pipes of AP1000 nuclear power plant.These pipes are manufactured by hot forging,during which dynamic recrystallization acts as the most important microstructural evolution mechanism.A physically based model was proposed to describe and predict the microstructural evolution in the hot forging process of those pipes.In this model,the coupled effects of dislocation density change,dynamic recovery,dynamic recrystallization and grain orientation function were con-sidered.Besides,physically based simulation experiments were conducted on a Gleeble-3500 thermo-mechanical sim-ulator,and the specimens after deformation were observed by optical metallography (OM)and electron back-scat-tered diffraction (EBSD)method.The results confirm that dynamic recrystallization is easy to occur with increasing deformation temperature or strain rate.The grains become much finer after full dynamic recrystallization.The model shows a good agreement with experimental results obtained by OM and EBSD in terms of stress-strain curves,grain size,and recrystallization kinetics.Besides,this model obtains an acceptable accuracy and a wide applying scope for engineering calculation.

  10. Effect of loading direction on crack growth behavior near fusion line in low carbon stainless steel weld joints

    International Nuclear Information System (INIS)

    SCC growth tests on the specimens machined out from SMAW and TIG weld joints of low carbon type 316L stainless steel were conducted in simulated BWR coolant condition to clarify effect of loading direction on SCC growth behavior near weld fusion line. The results obtained are as follows; (1) IGSCCs from pre-crack tips in base metal propagated toward the weld metal with branching of secondary cracks, and then, the cracks changed direction to avoid the weld metal and propagated along with the fusion line. Tendency of crack behavior of avoiding weld metal was observed remarkably in specimens, which had smaller angle between specimen neutral line and fusion line. (2) Propagation of large crack of IDSCC into weld metal was observed only in a specimen with the crack propagation direction vertical to the fusion line. (3) Result of crack length measurement for 63 secondary cracks, which propagated into weld metal showed that 80% of cracks located within 50 μm from the fusion line, and two cracks with propagation length greater than 150 μm were observed only in the specimens with the crack propagation direction vertical to the fusion line. These results suggested that SCC in the base metal tends to propagate to avoid the weld metal and the relationship between dendrite orientation and loading direction affects SCC propagation behavior into weld metal. (author)

  11. Interaction between stainless steel and plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Dunwoody, John T [Los Alamos National Laboratory; Mason, Richard E [Los Alamos National Laboratory; Freibert, Franz J [Los Alamos National Laboratory; Willson, Stephen P [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Worl, Laura A [Los Alamos National Laboratory; Archuleta, Alonso [Los Alamos National Laboratory; Conger, Donald J [Los Alamos National Laboratory

    2010-01-01

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  12. Studies of diamond-like carbon (DLC) films deposited on stainless steel substrate with Si/SiC intermediate layers

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Liu Gui-Chang; Wang Li-Da; Deng Xin-Lü; Xu Jun

    2008-01-01

    In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and thesp3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp3 bonding and reduced the hardness. The incorporated Si atoms substituted sp2- bond carbon atoms in ring structures, which promoted the formation of sp3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power.

  13. The effect of cobalt and carbon the microstructure and mechanical properties of martensitic precipitation strengthened stainless steels

    Science.gov (United States)

    Komolwit, Piyamanee

    increasing with increasing cobalt content for the same condition. Limited observation on the effects of carbon additions to a 12Cr/12Co/5Mo/4.5Ni martensitic precipitation strengthening stainless steel has been made for carbon levels of 0.005 wt. %, 0.025 wt. % and 0.05 wt. %. A small addition of chromium, one weight percent, to a 0.005C/12Co/5Mo/5Ni martensitic precipitation strengthening stainless steel was found to increase hardness, strength, Charpy impact energy, and ductility. Results on the effects of cobalt, carbon and chromium additions helped in the selection of modified alloys which were used to investigate the effects of composition and heat treatment on strength and toughness. The first set of modified alloys are referred to as the low carbon modified alloys. These alloys have a better Charpy impact energy than the alloys used to investigate the effect of cobalt on strength and the hardness and strength of these alloys are similar to those of alloys used to investigate the effects of cobalt on strength. Fractographs of these alloys show quasi-cleavage fracture, the presence of ductile fracture increases with increasing cobalt content. The martensite start temperature is lowered by the chromium additions and results in the existence of retained austenite even after refrigeration after austenitizing. Refrigeration prior to tempering is not necessary for these alloys to achieve a high yield strength and good Charpy impact energy. The second set of modified alloys are referred to as the carbon-titanium modified alloys. These alloys differ from the first set of modified alloys in that these alloys contain small additions of carbon and titanium and have lower cobalt levels. Lower cobalt levels were required because carbon lowers the martensite start temperature. These alloys have improved Charpy impact energy and ductility. The carbon addition lowers the martensite start temperature and the martensite start temperature of these alloys is sufficiently low that they

  14. Threshold Chloride Concentration of Stainless Steels in Simulated Concrete Pore Solution

    OpenAIRE

    Wang, Hailong; Ling, Jiayan; Sun, Xiaoyan

    2016-01-01

    To evaluate whether stainless steel can replace carbon steel as rebar in reinforced concrete structures exposed to aggressive environment, the threshold chloride concentration of carbon steel, austenitic and duplex stainless steels were experimentally studied in this paper. The solutions with pH ranging from 9.5 to 13.6 were used herein to simulate the pore liquids in both alkaline and carbonated concretes. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests we...

  15. Carburization of stainless steel furnace tubes

    International Nuclear Information System (INIS)

    Stainless steel containing molybdenum are usually recommended to resist naphtenic acid corrosion in vacuum heaters. In 1993 the original 5Cr-1/2Mo roof tubes of the furnace in a vacuum unit were replaced by stainless steel 316 Ti to minimize tube replacement and increase heater reliability. Unexpectedly, some of the new tubes failed after only three years of service and just one year after undergoing the last inspection. The damage occurred in the form of deep holes and perforations, starting from the outside tube surface on the fireside. Coke build-up occurred due to severe operating conditions, overheating the tubes on the fireside, above 675 Centigrade. Metallographic and Scanning Electron Microscopy (Sem) examination revealed internal and external carburization of the material due to the presence of coke and combustion ashes, respectively. The increase in the skin metal temperature facilitated the diffusion of carbon from these carbon-rich deposits into the low carbon content material (0.023%). Depletion of chromium at the grain boundaries due to the massive formation of chromium carbides, resulted in a severe intergranular corrosion attack by molten salts rich in vanadium and sulfur produced by asphalt burning. Normal operating practice demands the use of steam for the heater tubes to control coke build-up. This practice had been first reduced and then eliminated, during the past two years prior to the failure, because of economic incentives. This paper describes the root cause analysis conducted to account for these premature tube failures. (Author)

  16. Carburisation of stainless steel caused by oil in sodium

    International Nuclear Information System (INIS)

    The primary objectives of this work were to investigate the kinetics of austenitic stainless steel carburisation in sodium caused by oil in sodium, and to measure the corresponding 'sodium carbon activity' (a quantitative measure of sodium steel carburisation potential). For comparative purposes, the steel carburising effects of chemically simpler carbon sources have also been studied. The specific experimental investigations have involved: (i) A study of the kinetics of stainless steel carburisation at 5500C caused by oil in sodium; (ii) A determination of the effective steel carburisation potential (carbon activity) arising from oil ingress, and its persistence with time, and (iii) A comparison of oil and chemically simpler carbon sources, namely graphite and cementite (as carburised iron, Fe-Fe3C), with regard to both kinetics of steel carburisation and sodium carbon activities produced. In all cases, the nature and extent of carburisation has been determined by optical metallography, X-ray and nuclear microprobe analysis. Preliminary studies on the mutual effect of steel surfaces in close proximity have also been conducted. Previous studies on steel carburisation in sodium are outlined, and the present results are discussed in the context of available thermodynamic and kinetic data pertaining to the carbon-steel and carbon-sodium systems. (author)

  17. Corrugated stainless steels embedded in mortar for 9 years: corrosion results of non-carbonated, chloride-contaminated samples

    OpenAIRE

    Bautista, A.; Paredes, E. C.; Velasco, F.; Álvarez, S. M.

    2015-01-01

    Mortar samples reinforced with 5 different corrugated stainless steels were tested for 9 years in 2 different conditions: partial immersion (PI) in 3.5% NaCl, and chloride addition to the mortar and exposure to high relative humidity (HRH). The monitoring during the exposures was carried out with corrosion potential (E-corr) and electrochemical impedance spectroscopy (EIS) measurements. A year before finishing (after 8 years of exposure), the reinforced mortar samples were anodically polarise...

  18. Duplex stainless steels for osteosynthesis devices.

    Science.gov (United States)

    Cigada, A; Rondelli, G; Vicentini, B; Giacomazzi, M; Roos, A

    1989-09-01

    The austenitic stainless steels used today for the manufacture of osteosynthesis devices are sensitive to crevice corrosion. In this study the corrosion properties of some duplex stainless steels were evaluated and compared to traditional austenitic stainless steels. According to our results the following ranking was established: 23Cr-4Ni less than AISI 316L less than ASTM F138 less than 22Cr-5Ni-3Mo less than 27Cr-31Ni-3.5Mo less than 25Cr-7Ni-4Mo-N. In particular the results showed that the high-performance 25Cr-7Ni-4Mo-N duplex stainless steel, with high molybdenum and nitrogen contents, can be considered not susceptible to crevice corrosion in the human body. The duplex stainless steels have also better mechanical properties at the same degree of cold working compared with austenitic stainless steels. Hence the 25Cr-7Ni-4Mo-N duplex stainless steel can be considered a convenient substitute of ASTM F138 for orthopedic and osteosynthesis devices. PMID:2777835

  19. Preparation of precursor for stainless steel foam

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiang-yang; LI Shan-ni; LI Jie; LIU Ye-xiang

    2008-01-01

    The effects of polyurethane sponge pretreatment and slurry compositions on the slurry loading in precursor were discussed, and the,performances of stainless steel foams prepared from precursors with different slurry loadings and different particle sizes of the stainless steel powder were also investigated. The experimental results show that the pretreatment of sponge with alkaline solution is effective to reduce the jam of cells in precursor and ensure the slurry to uniformly distribute in sponge, and it is also an effective method for increasing the slurry loading in precursor; the mass fraction of additive A and solid content in slurry greatly affect the slurry loading in precursor, when they are kept in 9%-13% and 52%-75%, respectively, the stainless steel foam may hold excellent 3D open-cell network structure and uniform muscles; the particle size of the stainless steel powder and the slurry loading in precursor have great effects on the bending strength, apparent density and open porosity of stainless steel foam; when the stainless steel powder with particle size of 44 tan and slurry loading of 0.5 g/cm3 in precursor are used, a stainless steel foam can be obtained, which has open porosity of 81.2%, bending strength of about 51.76 MPa and apparent density of about 1.0 g/cm3.

  20. Recycle of radiologically contaminated austenitic stainless steels

    International Nuclear Information System (INIS)

    The United States Department of Energy owns large quantities of radiologically contaminated austenitic stainless steel which could by recycled for reuse if appropriate release standards were in place. Unfortunately, current policy places the formulation of a release standard for USA industry years, if not decades, away. The Westinghouse Savannah River Company, Idaho National Engineering Laboratory and various university and industrial partners are participating in initiative to recycle previously contaminated austenitic stainless steels into containers for the storage and disposal of radioactive wastes. This paper describes laboratory scale experiments which demonstrated the decontamination and remelt of stainless steel which had been contaminated with radionuclides

  1. Microscale investigation of the corrosion performances of low-carbon and stainless steels in highly alkaline concretes

    OpenAIRE

    Itty, Pierre-Adrien

    2012-01-01

    Low-carbon steel shows good stability with respect to corrosion when embedded in ordinary portland cement concrete. This is due to the high alkaline content of the concrete pore solution favoring the formation of an iron oxide film that naturally keeps the steel in a passive state. With the rise of new types of concretes, based on different chemistries, the durability of reinforcements made out of low-carbon steel is at stake. Among the new concrete types, inorganic polymer concretes are char...

  2. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  3. Hydrogen compatibility handbook for stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  4. Horizontal electron beam welding for stainless steels

    International Nuclear Information System (INIS)

    Stainless steel samples have been realized by local vacuum apparatus for electron beam welding applications to reactor core shell realizations. The best welding parameters have been determined by a systematic study. The welds have been characterized by mechanical tests

  5. A Duplex Stainless Steel for Chloride Environments

    Science.gov (United States)

    Sridhar, N.; Kolts, J.; Flasche, L. H.

    1985-03-01

    This paper examines the effects of microstructural changes on the corrosion, stress corrosion cracking and corrosion fatigue resistance of a duplex stainless steel to chloride environments. The microstructural changes can be precipitation of phases such as sigma and carbides, or changes in the distribution of austenite and ferrite. The former can be important in hot forming operations while the latter is important in welding. The methods of minimizing these deleterious effects can sometimes be different from those used for austenitic stainless steel.

  6. Studies of stainless steel exposed to sandblasting

    OpenAIRE

    Horodek Paweł; Eseev Marat K.; Kobets Andrey G.

    2015-01-01

    The influence of sandblasting on surface and subsurface of stainless steel is investigated using variable energy positron beam (VEP), positron annihilation spectroscopy (PAS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Samples of stainless steel were blasted using 110 μm particles of Al2O3 under different pressure and time duration. In the case of sandblasting for 90 s, the reduction of positron diffusion length depending on the applied pressure was observed. Sandb...

  7. Fracture toughness properties of duplex stainless steels

    OpenAIRE

    Sieurin, Henrik

    2006-01-01

    Good toughness properties in base and weld material enable the use of duplex stainless steels (DSS) in critical applications. DSS offer high strength compared to common austenitic stainless steels. The high strength can be utilized to reduce the wall thickness and accordingly accomplish reduction of cost, welding time and transportation weight, contributing to ecological and energy savings. Although DSS have been used successfully in many applications the last decades, the full utilisation in...

  8. Phase transformations in welded supermartensitic stainless steels

    OpenAIRE

    Carrouge, Dominique

    2002-01-01

    Supermartensitic stainless steels have recently been introduced in the oil and gas industries to substitute more expensive duplex stainless steels for onshore and offshore tubing applications. Although easily joined by arc welding processes, the service life of the supermartensitic welded joint in corrosive environments relies to a large extent on the behaviour of the heat-affected zone (HAZ). The microstructure of the HAZ in these new materials has, until now, received little ...

  9. Carbonation of stainless steel slag in the context of in situ Brownfield remediation

    NARCIS (Netherlands)

    Capobianco, O.; Costa, G.; Thuy, L.; Magliocco, E.; Hartog, Niels; Baciocchi, R.

    2014-01-01

    The main aim of this work was to assess the potential of in situ carbonation as a treatment to modify the properties of alkaline materials such as industrial soil in terms of leaching behaviour and mineralogy and to store the CO2 generated by specific treatments applied in the context of Brownfield

  10. Bacterial Adhesion to Diamond-like Carbon as Compared to Stainless Steel

    NARCIS (Netherlands)

    Soininen, Antti; Tiainen, Veli-Matti; Konttinen, Yrjo T.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    2009-01-01

    Recent studies suggest that diamond-like carbon (DLC) coatings are suitable candidates for application on biomedical devices and implants, due to their high hardness, low friction, high wear and corrosion resistance, chemical inertness, smoothness, and tissue and blood compatibility. However, most s

  11. Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel

    Science.gov (United States)

    Feng, Kai; Li, Zhuguo; Lu, Fenggui; Huang, Jian; Cai, Xun; Wu, Yixiong

    2014-03-01

    High electrical conductivity and corrosion resistance are central to advances in wider application of metallic bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). In this study, C/Cr-Ti-N multilayer coatings are deposited by physical vapor deposition and the effect of Cr:Ti ratio on the corrosion resistance and interfacial contact resistance (ICR) are systematically investigated. Scanning electron microscopy (SEM) result shows that the carbon layer is compact and uniform. Excellent corrosion resistance of 0.127 μA cm-2 current density at operating voltage in PEMFC cathode environment and low ICR of 2.03 mΩ-cm2 at compaction force of 150 N cm-2 are achieved when Cr:Ti ratio is 2:4 and 3:3, respectively. The significant enhancement in surface conductivity is probably because that the current comes from carbon paper is homogenized by two electrically conductive layers and flows to the passive film with much more contact area. After polarization, ICR increase to 3.07 mΩ-cm2 and 3.02 mΩ-cm2 in the simulated PEMFC cathode and anode environment, respectively. However, the Raman spectroscopy results disclose that the bonding type of top carbon film before and after polarization shows little difference. The results indicate that C/Cr-Ti-N multilayer coating with Cr:Ti ratio of 2:4 achieves the optimal composition.

  12. The improvement by a CVD silica coating of the oxidation behaviour of a 20%Cr/25%Ni niobium stabilized stainless steel in carbon dioxide

    International Nuclear Information System (INIS)

    The improvement of the oxidation behaviour of the 20%Cr-25%Ni-Nb stabilized (20/25/Nb) austenitic stainless steel, in carbon dioxide, by a silica coating, formed by a vapour reaction upon the pre-oxidized steel surface, has been examined at 8250C. The exposure periods extended to 5975 h duration. The silica coating effectiveness increased with its thickness over the range examined, 0.5 to 27 μm. Coatings > approximately 2 μm thick reduced the extent of oxidation by at least a factor of five by providing a barrier to the diffusion of cations outwards and oxidant inwards responsible for oxide growth on the 20/25/Nb steel. In addition, they completely inhibited oxide spallation because oxidation of the steel constituents occurred primarily within the silica coating whose adherence was maintained throughout the exposure. During the prolonged heat treatment of > approximately 2 μm thick silica coated steel, the iron and nickel constituents in the precoating oxide film were reduced by solid-solid reaction with manganese and probably also chromium from the underlying steel. (author)

  13. Operational experience of stainless steels in seawater-cooled systems

    International Nuclear Information System (INIS)

    A study has been made of chiefly Swedish and Finnish operational experience of stainless steel in seawater and brackish water. A report is given on 23 typical cases, behind which in actual fact a considerably larger number of individual practical cases are concealed. The answer to the primary question why a standard steel of type SS 2343 (AISI 316) sometimes, contrary to expectation, remains unattacked by local corrosion is that there is usually spontaneous cathodic protection by other less noble components of carbon steel, cast iron or some copper alloy in direct contact with the stainless steel. The study confirms in other respects the adverse effect of residual oxides after welding and the beneficial of low temperature, high continuous waterflow and periodic cleaning, and of rinsing with fresh water during out-of service periods. It also verifies the additional advantages of the new high-alloy special steels which have begun to be marketed in recent years for seawater applications. (author)

  14. Resistance microwelding of 316L stainless steel wire to block

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Khan, M.I.; Bay, Niels;

    2011-01-01

    The excellent corrosion resistance of low carbon vacuum melted 316 stainless steel coupled with its non-magnetic properties makes it ideal for biomedical applications. The typical joint geometry for microcomponents, such as medical implants, includes joining of fine wire to a larger block. However...

  15. Dose perturbations and image artifacts caused by carbon-coated ceramic and stainless steel fiducials used in proton therapy for prostate cancer

    Science.gov (United States)

    Cheung, Joey; Kudchadker, Rajat J.; Zhu, X. Ronald; Lee, Andrew K.; Newhauser, Wayne D.

    2010-12-01

    Image-guided radiation therapy using implanted fiducial markers is a common solution for prostate localization to improve targeting accuracy. However, fiducials that are typically used for conventional photon radiotherapy cause large dose perturbations in patients who receive proton radiotherapy. A proposed solution has been to use fiducials of lower atomic number (Z) materials to minimize this effect in tissue, but the effects of these fiducials on dose distributions have not been quantified. The objective of this study was to analyze the magnitude of the dose perturbations caused by select lower-Z fiducials (a carbon-coated zirconium dioxide fiducial and a plastic-coated stainless steel fiducial) and compare them to perturbations caused by conventional gold fiducials. Sets of phantoms were used to assess select components of the effects on dose. First, the fiducials were assessed for radiographic visibility using both conventional computed tomography (CT) and an on-board kilovoltage imaging device at our proton therapy center. CT streak artifacts from the fiducials were also measured in a separate phantom. Second, dose perturbations were measured downstream of the fiducials using radiochromic film. The magnitude of dose perturbation was characterized as a function of marker material, implantation depth and orientation with respect to the beam axis. The radiographic visibility of the markers was deemed to be acceptable for clinical use. The dose measurements showed that the perpendicularly oriented zirconium dioxide and stainless steel fiducials located near the center of modulation of the proton beam perturbed the dose by less than 10%, but that the same fiducials in a parallel orientation near the end of the range of the beam could perturb the dose by as much as 38%. This suggests that carbon-coated and stainless steel fiducials could be used in proton therapy if they are located far from the end of the range of the beam and if they are oriented perpendicular to

  16. High Mn austenitic stainless steel

    Science.gov (United States)

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  17. Review on research and application of stainless steel reinforced concrete

    OpenAIRE

    Gu Li; Meng Xian Hong

    2016-01-01

    For ordinary reinforced under corrosion environment corrosion problems and analysis the main factors affecting ordinary steel corrosion, proposed stainless steel bar rust and corrosion resistance advantages, introduce the related properties of the stainless steel reinforced, combined with the research status of domestic and international stainless steel bar, put forward the research and engineering application of stainless steel rebar for the related problems and direction, the prospects and ...

  18. Radiation-induced sensitisation of stainless steels

    International Nuclear Information System (INIS)

    The book contains the proceedings of a symposium on radiation-induced sensitization of stainless steels, which took place at Berkeley, United Kingdom, 1986. The purpose of the symposium was to examine the mechanism leading to inter-granular corrosion of 20%Cr/25% Ni/Nb stainless steel cladding of AGR fuel following irradiation. Nine papers are presented, of which three are theoretical, two papers are based upon corrosion studies of 20%Cr/25%Ni/Nb steel, and the remaining are concerned with compositional redistribution and its measurement. (U.K.)

  19. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures. PMID:9713683

  20. Aging degradation of cast stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450/sup 0/C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the ..cap alpha..' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450/sup 0/C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450/sup 0/C. 18 refs., 13 figs.

  1. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 4500C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the α' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 4500C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 4500C. 18 refs., 13 figs

  2. Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels

    International Nuclear Information System (INIS)

    Highlights: → LSW of dissimilar SS and CS in overlapped configuration is performed successfully. → Increasing laser power leads to change of welding mode from conduction to keyhole. → Welding mode transition causes a growth of the mechanical strength of joining. -- Abstract: This paper aims at investigating metallurgical and mechanical characterization of dissimilar laser spot welds between low carbon and austenitic stainless steel sheets. Microstructural examination, microhardness test and quasi-static tensile-shear test were performed. Mechanical properties of the welds were described in terms of peak load. The effects of laser mean power on the performance of dissimilar laser spot welds have been studied. It was found that increasing laser mean power leads to the transition of laser welding mode from conduction to keyhole. This transition causes a significant growth of the fusion zone size in the lower sheet, i.e. the low carbon steel sheet; since, the keyhole acts as an effective trap for the laser beam and will greatly increase the energy absorption from the incident laser beam. It is also shown that the fusion zone size in the weaker sheet, i.e. the low carbon steel sheet is the controlling factors in determination of the mechanical strength of dissimilar austenitic/ferritic laser spot welds.

  3. Research on Pitting Corrosion-resistant of Stainless Steel/Carbon Steel Welding Jiont%不锈钢/碳钢复合钢板焊接接头耐点蚀性能研究

    Institute of Scientific and Technical Information of China (English)

    贡志林

    2015-01-01

    The corrosion resistance of bade metal, weld and heat affected zone of stainless steel-carbon steel laminated composite material in 3. 5% NaCl solution, 30% CH3 COOH solution, 60% CH3 COOH solution and 98%CH3 COOH solution was studied respectively through electrochemical test. It was obtained that the corrosion resistance of weld was the better then the base metal, but the corrosion resistance of heat affected zone was the worst. Besides, in the four solution base metal and weld showed poor corrosion resistance in 3. 5%NaCl solution. A theoretical and experimental foundation for stainless steel-carbon steel laminated composite material was supplied.%采用电化学测试方法评价了不锈钢复合板母材、焊缝及热影响区在3.5%NaCl溶液、30%CH3 COOH溶液、60%CH3 COOH溶液、98%CH3 COOH溶液中的耐点蚀性能。结果显示在以上各种溶液中焊缝的抗腐蚀性能最优、母材其次而热影响区抗腐蚀性能最弱。此外在这四种溶液中母材跟焊区在3.5%NaCl溶液溶液中的耐腐蚀性能最弱。

  4. HTPro: Low-temperature Surface Hardening of Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2013-01-01

    Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance.......Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance....

  5. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular, the...

  6. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present contribtion gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular, the...

  7. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    Science.gov (United States)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  8. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  9. Irradiation effects on 17-7 PH stainless steel, A-201 carbon steel, and titanium-6-percent-aluminum-4-percent-vanadium alloy

    Science.gov (United States)

    Hasse, R. A.; Hartley, C. B.

    1972-01-01

    Irradiation effects on three materials from the NASA Plum Brook Reactor Surveillance Program were determined. An increase of 105 K in the nil-ductility temperature for A-201 steel was observed at a fluence of approximately 3.1 x 10 to the 18th power neutrons/sq cm (neutron energy E sub n greater than 1.0 MeV). Only minor changes in the mechanical properties of 17-7 PH stainless steel were observed up to a fluence of 2 x 10 to the 21st power neutrons/sq cm (E sub n greater than 1.0 MeV). The titanium-6-percent-aluminum-4-percent-vanadium alloy maintained its notch toughness up to a fluence of 1 x 10 to the 21st power neutrons/sq cm (E sub n greater than 1.0 MeV).

  10. Initial oxidation of duplex stainless steel 2205

    Energy Technology Data Exchange (ETDEWEB)

    Donik, E.; Kocijan, A.; Jenko, M. [Institute of metals and technology, Ljubljana (Slovenia)

    2009-07-01

    Due to superior mechanical and corrosion properties of duplex stainless steels which result in weight reduction of the constructions, thus contributing to the decreases in total costs and also due to the large and versatile usage of the alloy, duplex stainless steel is gradually displacing stainless steels of the AISI 300 series. Pickling of duplex stainless steel has proven to be much more difficult than that of standard austenitic grade (AISI 300 series). There is no complete agreement in the literature on scale (high temperature oxidation) dissolution mechanism in neutral pickling solutions. During annealing, duplex stainless steel is heated in annealing furnace up to 1050 C and is kept at this temperature for some time to soften the metal in order to release the work hardening induced by hot and cold rolling. The elimination of surface defects by forming the oxide scale is required to improve the corrosion resistance. Three different techniques were used to produce thin oxide layers on polished and sputter cleaned duplex stainless steel samples. They were exposed to 10{sup -5} mb pure oxygen inside the vacuum chamber, exposed to ambient conditions for 24 hours and plasma oxidized. Oxide layers thus produced were analysed using XPS depth profiling for determination of the oxide layer's composition with depth. It was found that all techniques produce oxide layer with different traces of metallic components and with chromium oxide maximum concentration shifted towards the oxide layer - bulk metal interface. Depletion of Cr in bulk immediately below the interface was also observed. Simplified ARXPS procedure was used to corroborate thickness estimates for thinnest oxide layers. (authors)

  11. Stainless Steel Microstructure and Mechanical Properties Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  12. Measuring secondary phases in duplex stainless steels

    Science.gov (United States)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  13. Embrittlement of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    To prevent hot-cracking, austenitic stainless steel welds generally contain a small percent of delta ferrite. Although ferrite has been found to effectively prevent hot-cracking, it can lead to embrittlement of welds when exposed to elevated temperatures. The aging behavior of type-308 stainless steel weld has been examined over a range of temperatures 475--850 C for times up to 10,000 hrs. Upon aging, and depending on the temperature range, the unstable ferrite may undergo a variety of solid state transformations. These phase changes creep-rupture and Charpy impact properties

  14. 21 CFR 878.4495 - Stainless steel suture.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  15. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  16. Nickel-free austenitic stainless steels for medical applications

    Directory of Open Access Journals (Sweden)

    Ke Yang and Yibin Ren

    2010-01-01

    Full Text Available The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels.

  17. Stainless chromium-nickel steels. Chapter I

    International Nuclear Information System (INIS)

    The chemical composition is tabulated of 90 chromium-nickel stainless steels and alloys given in volume %. The values are also given of the corrosion resistance of the steels and alloys. The tables show data on the surface condition or the methods of material working, types and chemical composition of the medium where corrosion resistance tests were carried out, temperature, pressure, time of tests, corrosion rates, corrosion types, and literature references. A total of 35 references is given. (J.B.)

  18. Influence of metallurgical phase transformation on crack propagation of 15-5PH stainless steel and 16MND5 low carbon steel

    International Nuclear Information System (INIS)

    This study focuses on the effects of phase transformations on crack propagation. We want to understand the changes of fracture toughness during welding. In this work, fracture toughness is expressed by J-integral. There are many experimental methods to obtain the critical toughness JIC but they are impractical for our investigation during phase transformation. That is the reason why we have proposed a method coupling mechanical tests, digital image correlation and finite element simulation. The fracture tests are implemented on pre-cracked single edge notched plate sample which is easy for machining and heat conduct during phase transformation. The tests are conducted at different temperatures until rupture. Digital image correlation gives us the displacement information on every sample. Each test is then simulated by finite element where the fracture toughness is evaluated by the method G-Theta at the crack propagation starting moment found by potential drop method and digital image correlation technical. Two materials have been studied, 15Cr-5Ni martensitic precipitation hardening stainless steel and 16MND5 ferritic low carbon steel. For these two materials, different test temperatures were chosen before, during and after phase transformation for testing and failure characterization of the mechanical behavior. Investigation result shows that metallurgical phase transformation has an influence on fracture toughness and further crack propagation. For 15-5PH, the result of J1C shows that the as received 15-5PH has higher fracture toughness than the one at 200 C. The toughness is also higher than the original material after one cycle heat treatment probably due to some residual austenite. Meanwhile, pure austenite 15-5PH at 200 C has higher fracture toughness than pure martensitic 15-5PH at 200 C. For 16MND5, the result also proves that the phase transformation affects fracture toughness. The as received material has bigger J1C than the situation where it was heated

  19. Sintering and characterization of YAG dispersed ferritic stainless steels

    International Nuclear Information System (INIS)

    The present study investigates the effect of yttrium aluminium garnet (YAG) addition on the densification, mechanical, tribological and corrosion behaviour of ferritic (434L) stainless steels. The composites were sintered at both solid-state (1200 deg. C) and supersolidus (1400 deg. C) sintering conditions. Supersolidus sintering results in superior densification, hardness and corrosion resistance of both straight 434L stainless steel as well as YAG reinforced 434L stainless steels. The addition of YAG to 434L stainless steels at supersolidus sintered conditions improves the strength and wear resistance of 434L stainless steels without significantly degrading the corrosion performance

  20. Stainless steel forgings for nuclear chemical plants

    International Nuclear Information System (INIS)

    This Specification covers detailed requirements for the supply of austenitic stainless steel forgings used in radioactive and corrosive areas within the Nuclear Industry. With the exception of 316S51 the materials specified are all suitable for contact with nitric acid, 316S51 being included as suitable for use in contact with sodium and other alkali metals at elevated temperatures. (author)

  1. Austenitic stainless steels for cryogenic service

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  2. Stabilizing stainless steel components for cryogenic service

    Science.gov (United States)

    Holden, C. F.

    1967-01-01

    Warpage and creep in stainless steel valve components are decreased by a procedure in which components are machined to a semifinish and then cold soaked in a bath of cryogenic liquid. After the treatment they are returned to ambient temperature and machine finished to the final drawing dimensions.

  3. Hydrogen gas embrittlement of selected stainless steels

    International Nuclear Information System (INIS)

    Hydrogen gas embrittlement of selected stainless steels: metastable 18-8, (α+γ) IN 744 and γ' or N-hardened austenites, has been investigated means of the triaxial disk pressure test at various pressure increase rates, at RT or sometimes -500C and +1000C. Test are supplemented with SEM and magnetic phase determination

  4. Ne Implantation Induced Transformation in Stainless Steel

    NARCIS (Netherlands)

    Noordhuis, J.; Hosson, J.Th.M. De

    1990-01-01

    This paper reports a microstructural investigation of the changes induced by Ne implantation in stainless steel of the austenitic type. At a critical dose of 2.3 · 10^17/cm^2 a martensitic phase transformation was observed. In particular, attention has been paid to the effect of the stress held of n

  5. Microbially Influenced Corrosion of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deuk; Ryu, Seung Ki; Kim Young Ho [POSCO Techanical Researh Laboratories, Pohang (Korea, Republic of)

    1996-06-25

    Microbially Influenced Corrosion(MIC) is often a significant factor in controlling the long-term performance of most structural materials in industrial applications. This papers cover MIC mechanism and evaluation of stainless steels in soil and sea water environments. Papers also cover detection, monitoring and mitigation of MIC, biocides and treatments. (author). 28 refs., 2 tabs., 5 figs.

  6. Austenitic stainless steels for cryogenic service

    International Nuclear Information System (INIS)

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K

  7. Granulate of stainless steel as compensator material

    NARCIS (Netherlands)

    J.P.C. van Santvoort (J. P C)

    1995-01-01

    textabstractCompensators produced with computer controlled milling devices usually consist of a styrofoam mould, filled with an appropriate material. We investigated granulate of stainless steel as filling material. This cheap, easy to use, clean and re-usable material can be obtained with an averag

  8. Industrial Experience with Case Hardening of Stainless Steels by Solution Nitriding

    Institute of Scientific and Technical Information of China (English)

    Hans Berns; Bernd Edenhofer; Roland Zaugg

    2004-01-01

    SolNit(R) is a novel heat treatment to case harden stainless steels with nitrogen instead of carbon. The calculated equilibrium pressure of N2 corresponds well with the nitrogen content in the steel surface. The process is carried out in vacuum furnaces with pressurized gas quenching. Numerous parts of different stainless steels have been successfully SolNit(R) treated in industry leading to superior properties in respect to hardness/strength and corrosion resistance

  9. Interaction of bending and axial load for ferritic stainless steel RHS columns

    OpenAIRE

    Arrayago Luquin, Itsaso; Picci, F; Mirambell Arrizabalaga, Enrique; Real Saladrigas, Esther

    2015-01-01

    Stainless steels are ideal for sustainable structural performances due to their excellent corrosion resistance, appropriate mechanical properties, aesthetic appearance and easy maintenance. However, the nonlinear behaviour and strain-hardening effects characterizing these materials make them different from carbon steel and some specific guidance is necessary. Although some investigations regarding the behaviour of stainless steel beam-columns subjected to combined compression and bending mome...

  10. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2013-01-01

    Full Text Available Composite film of carbon nanotube (CNT and polytetrafluoroethylene (PTFE was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS bipolar plates of the proton exchange membrane fuel cell (PEMFC as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.

  11. Experimental and Theoretical Investigations of Hot Isostatically Pressed-Produced Stainless Steel/High Alloy Tool Steel Compound Materials

    Science.gov (United States)

    Lindwall, Greta; Flyg, Jesper; Frisk, Karin; Sandberg, Odd

    2011-05-01

    Consolidation of tool steel powders and simultaneous joining to a stainless 316L steel are performed by hot isostatic pressing (HIP). Two tool steel grades are considered: a high vanadium alloyed carbon tool steel, and a high vanadium and chromium alloyed nitrogen tool steel. The boundary layer arising during diffusion bonding is in focus and, in particular, the diffusion of carbon and nitrogen over the joint. Measurements of the elemental concentration profiles and corrosion tests by the double loop-electrochemical potentiokinetic reactivation (DL-EPR) method are performed. Comparative calculations with the DICTRA software are performed and are found to be in agreement with the experimental results. It is found that the carbon tool steel grade has a more critical influence on the corrosion resistance of the stainless 316L steel in comparison to the nitrogen tool steel grade.

  12. Aging degradation of cast stainless steels: Effects on mechanical properties

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water operating conditions. Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320, and 2900C. The results indicate that thermal aging increases the tensile strength and decreases the impact energy, J/sub IC/, and tearing modulus of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The fracture toughness results are consistent with the Charpy-impact data, i.e., the relative reduction in J/sub IC/ is similar to the relative decrease in impact energy. The ferrite content and concentration of C in the steel have a strong effect on the overall process of low-temperature embrittlement. The low-carbon CF-3 steels are the most resistant and Mo-containing CF-8M steels are most susceptible to embrittlement. Weakening of the ferrite/austenite phase boundaries by carbide precipitates has a significant effect on the kinetics and extent of embrittlement of the high-carbon CF-8 and CF-8M steels, particularly after aging at temperatures ≥4000C. The influence of N content and distribution of ferrite on loss of toughness are discussed. The data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280 to 4500C, i.e., extrapolation of high-temperature data to reactor temperatures may not be valid for some compositions of cast stainless steel

  13. Welding-induced local maximum residual stress in heat affected zone of low-carbon austenitic stainless steel with machined surface layer and its influential factors

    International Nuclear Information System (INIS)

    In this study, the effects of work-hardening and pre-existing stress in the machined surface layer of low-carbon austenitic stainless steel on the welding-induced residual stress were experimentally investigated through the use of weld specimens with three different surface layers; as-cutout, mechanically-polished and electrolytically-polished. The high tensile and compressive stresses exist in the work-hardened surface layer of the as-cutout and mechanically-polished specimens, respectively. Meanwhile, no stress and work-hardened surface layer exist in the electrolytically-polished specimen. TIG bead-on-plate welding under the same welding heat input conditions was performed to introduce the residual stress into these specimens. Using these welded specimens, the distributions of welding-induced residual stress were measured by the X-ray diffraction method. Similarly, the distributions of hardness in welds were estimated by the Vickers hardness test. And then, these distributions were compared with one another. Based on the results, the residual stress in the weld metal (WM) is completely unaffected by the machined surface layer because the work-hardened surface layer disappears through the processes of melting and solidification during welding. The local maximum longitudinal tensile residual stress in the heat affected zone (HAZ) depends on the work-hardening but not on the existing stress, regardless of whether tensile or compressive, in the machined surface layer before welding. At the base metal far from WM and HAZ, the residual stress is formed by the addition of the welding-induced residual stress to the pre-existing stress in the machined surface layer before welding. The features of the welding-induced residual stress in low-carbon austenitic stainless steel with the machined surface layer and their influential factors were thus clarified. (author)

  14. Thermodynamic and electrochemistry analysis of the zinc electrodeposition in NH4Cl–NH3 electrolytes on Ti, Glassy Carbon and 316L Stainless Steel

    International Nuclear Information System (INIS)

    Thermodynamic diagrams, X-ray diffraction and electrochemical analysis are conducted to evaluate the solution chemistry of the Zn(II)–NH4Cl–NH3–H2O system as well as the feasibility of zinc electrorecovery at different pH values. Titanium, Glassy Carbon and 316L Stainless Steel substrates are used as cathode materials. At any region of pH, multiple Zn(II) complexes coexist in solution, but only one predominates. While chloro- (ZnCl42−), ternary (ZnNH3Cl3− and Zn(NH3)3Cl+) and amino-complexes (Zn(NH3)42+) dominate the region of low, neutral and alkaline pH, respectively, the solubility of the system is limited by the formation of two solids, Zn(NH3)1.6Cl0.4(s) and ZnO(s) at neutral and alkaline conditions, respectively. The thermodynamic and electrochemical evaluations reveal that the potential required to deposit Zn(s) becomes more negative as the pH value is increased, whereby the reduction of amino-complexes demand a larger amount of energy compared to the chloro-complexes. This effect is accounted for different ligand substitution mechanisms operating for the chloro- and amino-complexes of Zn(II). The onset of the zinc deposition relies on the cathode material and is accompanied by the HER regardless of the substrate utilized. The surface of Stainless Steel electrode exhibits the smallest overpotential, followed by the Glassy Carbon, and Ti cathodes where the TiO2(s) (native film) plays a determining role during the deposition. Higher current efficiencies are obtained on every substrate as the pH value is increased. Experimental conditions around neutral pHs (5.5 < pH < 8) are potentially suitable to perform the zinc electrodeposition for this system.

  15. Nickel-free austenitic stainless steels for medical applications

    OpenAIRE

    Ke Yang and Yibin Ren

    2010-01-01

    The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainl...

  16. Tensile-property characterization of thermally aged cast stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K. [Argonne National Lab., IL (United States)

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  17. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  18. Production of Ti-containing 316L stainless steel in a crucible induction furnace

    International Nuclear Information System (INIS)

    The production of type 316L stainless steel with titanium was studied. The stainless steel was produced in an induction furnace using 1010 steel as starting material. The carbon and impurities contents of the steel were lowered by means of the addition of iron oxide and lime respectively. Finally, the last slag was removed before adding nickel and ferroalloys. Experimental results showed the wear resistance of the crucibles with different contents of magnamix 363 and the corrosion resistance of the steel obtained caused by a solution of sulfuric acid. (author)

  19. High specialty stainless steels and nickel alloys for FGD dampers

    Energy Technology Data Exchange (ETDEWEB)

    Herda, W.R.; Rockel, M.B.; Grossmann, G.K. [Krupp VDM GmbH, Werdohl (Germany); Starke, K. [Mannesmann-Seiffert GmbH, Beckum (Germany)

    1997-08-01

    Because of process design and construction, FGD installations normally have bypass ducts, which necessitates use of dampers. Due to corrosion from acid dew resulting from interaction of hot acidic flue gases and colder outside environments, carbon steel cannot be used as construction material under these specific conditions. In the past, commercial stainless steels have suffered by pitting and crevice corrosion and occasionally failed by stress corrosion cracking. Only high alloy specialty super-austenitic stainless steels with 6.5% Mo should be used and considered for this application. Experience in Germany and Europe has shown that with regard to safety and life cycle cost analysis as well as providing a long time warranty, a new specialty stainless steel, alloy 31--UNS N08031--(31 Ni, 27 Cr, 6.5 Mo, 0.2 N) has proven to be the best and most economical choice. Hundreds of tons in forms of sheet, rod and bar, as well as strip (for damper seals) have been used and installed in many FGD installations throughout Europe. Under extremely corrosive conditions, the new advanced Ni-Cr-Mo alloy 59--UNS N06059--(59 Ni, 23 Cr, 16 Mo) should be used. This paper describes qualification and workability of these alloys as pertains to damper applications. Some case histories are also provided.

  20. Effects of femoral component material properties on cementless fixation in total hip arthroplasty. A comparison study between carbon composite, titanium alloy, and stainless steel.

    Science.gov (United States)

    Otani, T; Whiteside, L A; White, S E; McCarthy, D S

    1993-02-01

    Carbon-fiber-reinforced-carbon composite material is an attractive implant material because its modulus of elasticity can be made similar to that of cortical bone. This study investigated the effect of femoral prosthesis elastic modulus on cementless implant fixation. Distal, as well as proximal, relative micromovements between implant and bone were measured in two testing protocols (axial-load and torsional-load), comparing identically shaped carbon composite (modulus of elasticity = 18.6 GPa), Ti6Al4V (100 GPa), and 630 stainless steel (200 GPa) prostheses. In the axial-load test, proximal mediolateral micromotions were significantly larger in the flexible composite stem than in the two metals. In the torsional-load test, rotational micromotions and "slop" displacements in the flexible stem were significantly larger proximally and significantly smaller distally than in the two metals. While these results suggest that proximal stress transfer may be improved by a flexible stem, they raise the possibility of increased proximal micromotion, and suggest that improved proximal fixation may be necessary to achieve clinical success with flexible composite femoral components.

  1. Flow Behavior Modeling of a Nitrogen-Alloyed Ultralow Carbon Stainless Steel During Hot Deformation: A Comparative Study of Constitutive Models

    Science.gov (United States)

    Shang, Xuekun; He, An; Wang, Yanli; Yang, Xiaoya; Zhang, Hailong; Wang, Xitao

    2015-10-01

    The present study focuses on comparison of accuracy of Johnson-Cook, modified Johnson-Cook, and modified Zerilli-Armstrong constitutive models to predict flow behavior of a nitrogen-alloyed ultralow carbon stainless steel at evaluated temperature. True strain-true stress data obtained from hot compression experiments performed with temperatures of 1223-1423 K and strain rates of 0.001-10 s-1 on a Gleeble-3500 thermal-simulator were employed to develop these three models. Furthermore, the ability of the three models to predict the outcomes was evaluated by comparing the correlation coefficient, absolute average related error, ability to track the experimental flow stress, numbers of material constants, and computational time required to develop models. The results show that the modified Johnson-Cook has a better description of the flow behaviors of the studied steel than the other two models. However, under certain conditions, the modified Zerilli-Armstrong model has accuracy comparable to the modified Johnson-Cook model.

  2. Phase Transformation in Cast Superaustenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  3. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  4. Studies of stainless steel exposed to sandblasting

    Directory of Open Access Journals (Sweden)

    Horodek Paweł

    2015-12-01

    Full Text Available The influence of sandblasting on surface and subsurface of stainless steel is investigated using variable energy positron beam (VEP, positron annihilation spectroscopy (PAS, scanning electron microscopy (SEM, and atomic force microscopy (AFM. Samples of stainless steel were blasted using 110 μm particles of Al2O3 under different pressure and time duration. In the case of sandblasting for 90 s, the reduction of positron diffusion length depending on the applied pressure was observed. Sandblasting during 30 s leads only to the reduction of positron diffusion length to about 60 nm for all samples. Positron lifetimes close to 170 ps measured using positrons emitted directly from the source point to the presence of vacancies on the dislocation lines. SEM and AFM images show that surface roughness depends rather on pressure of sandblasting than time of exposition.

  5. Weldability of Additive Manufactured Stainless Steel

    Science.gov (United States)

    Matilainen, Ville-Pekka; Pekkarinen, Joonas; Salminen, Antti

    Part size in additive manufacturing is limited by the size of building area of AM equipment. Occasionally, larger constructions that AM machines are able to produce, are needed, and this creates demand for welding AM parts together. However there is very little information on welding of additive manufactured stainless steels. The aim of this study was to investigate the weldability aspects of AM material. In this study, comparison of the bead on plate welds between AM parts and sheet metal parts is done. Used material was 316L stainless steel, AM and sheet metal, and parts were welded with laser welding. Weld quality was evaluated visually from macroscopic images. Results show that there are certain differences in the welds in AM parts compared to the welds in sheet metal parts. Differences were found in penetration depths and in type of welding defects. Nevertheless, this study presents that laser welding is suitable process for welding AM parts.

  6. Tritium Depth Profiles in 316 Stainless Steel

    Science.gov (United States)

    Torikai, Yuji; Murata, Daiju; Penzhorn, Ralf-Dieter; Akaishi, Kenya; Watanabe, Kuniaki; Matsuyama, Masao

    To investigate the behavior of hydrogen uptake and release by 316 stainless steel (SS316), as-received and finely polished stainless steel specimens were exposed at 573 K to tritium gas diluted with hydrogen. Then tritium concentration in the exposed specimens was measured as a function of depth using a chemical etching method. All the tritium concentration profiles showed a sharp drop in the range of 10 μm from the top surface up to the bulk. The amount of tritium absorbed into the polished specimens was three times larger than that into the as-received specimen. However, the polishing effects disappeared by exposing to the air for a long time.

  7. Warm compacting behavior of stainless steel powders

    Institute of Scientific and Technical Information of China (English)

    肖志瑜; 柯美元; 陈维平; 召明; 李元元

    2004-01-01

    The warm compacting behaviors of four different kinds of stainless steel powders, 304L, 316L, 410L and 430L, were studied. The results show that warm compaction can be applied to stainless steel powders. The green densities and strengths of compacts obtained through warm compaction are generally higher than those obtained through cold compaction. The compacting behaviors in warm compaction and cold compaction are similar.Under the compacting pressure of 700 MPa, the warm compacted densities are 0. 10 - 0.22 g/cm3 higher than the cold compacted ones, and the green strengths are 11.5 %-50 % higher. The optimal warm compacting temperature is 100 - 110 ℃. In the die wall lubricated warm compaction, the optimum internal lubricant content is 0.2%.

  8. State on AISI 304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2011-01-01

    Full Text Available The passivity and protective nature of the passive films are essentially related to ionic and electronic transport processes, which are controlled by the optical and electronic properties of passive films. In this study, the electrochemical behavior of passive films anodically formed on AISI 304 stainless steel in sulfuric acid solution has been examined using electrochemical impedance spectroscopy. AISI 304 in sulphuric acid solution is characterized by high interfacial impedance, thereby illustrating its high corrosion resistance. Results showed that the interfacial impedance and the polarization resistance (pol initially increase with applied potential, within the low potential passive. However, at a sufficiently high potential passive (>0.4 V, the interfacial impedance and the polarization resistance decrease with increasing potential. An electrical equivalent circuit based on the impedance analysis, which describes the behavior of the passive film on stainless steel more satisfactorily than the proposed models, is presented.

  9. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadegan, M. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Feng, A.H. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Saeid, T. [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of); Shen, J. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Assadi, H. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  10. Fatigue fracture modes of a stainless steel

    International Nuclear Information System (INIS)

    The influence of strain hardening and martensite phase transformation on the fatigue fracture regions (pulsative tension) of a Stainless Steel type AISI 316 was investigated. This lead to the conclusion that the greater austenite strain hardening level only favours the occurrence of a brittle fracture. Also, in as much as the static induced martensite is concerned, a direct influence on the failure process was not observed, whereas, apparently, the one transformed under cyclic loading has no contribution to the rupture mechanisms. (author)

  11. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  12. Complex Protection of Vertical Stainless Steel Tanks

    OpenAIRE

    Fakhrislamov Radik Zakievich

    2014-01-01

    The authors consider the problem of fail-safe oil and oil products storage in stainless steel tanks and present the patented tank inner side protection technology. The latter provides process, ecological and fire safety and reducing soil evaporation of oil products, which is a specific problem. The above-mentioned technology includes corrosion protection and heat insulation protection providing increase of cover durability and RVS service life in general. The offered technological protection ...

  13. Cyclic deformation of duplex stainless steels

    OpenAIRE

    Mateo García, Antonio Manuel; Gironés, Ana

    2011-01-01

    Duplex stainless steels configure a family of metallic alloys that combined elevated mechanical properties with improved corrosion resistance when compared to standard austenitic grades. This excellent combination of properties leads to their use under many different applications, particularly in the fields of chemical, petrochemical, pulp and paper industries. Moreover, these applications usually involve cyclic loading, and consequently the study of fatigue properties has a great significanc...

  14. Thermal ageing of duplex stainless steels

    International Nuclear Information System (INIS)

    The evolution of the mechanical properties of Mobearing anf Mo-free cast duplex stainless steels, induced by long term ageing in the range 300-400 deg C, has been studied in relation with the evolution of their microstructure. The unmixing of the ferritic Fe-Cr-Ni, solid solution by three-dimensional (sponge-like) spinodal decomposition and the precipitation of intermetallic G-phase particles are the main characteristics of this microstructural evolution

  15. SRS stainless steel beneficial reuse program

    Energy Technology Data Exchange (ETDEWEB)

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  16. SCC of stainless steel under evaporative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, H.; Arnvig, P.E.; Wasielewska, W.; Wegrelius, L.; Wolfe, C. [Avesta Sheffield AB, Avesta (Sweden)

    1998-12-31

    Three different test methods have been used to assess the susceptibility of different stainless steel grades to SCC under evaporative and immersed conditions. The methods employed were the drop evaporation test, the wick test and a high temperature, high pressure test simulating a feedwater heater tubing application in power plants. The alloys investigated were commercially produced austenitic and duplex stainless steels varying in chemical composition, plus one copper-nickel alloy. The resistance of austenitic stainless steels towards SCC increased by increasing the content of Ni, Mo and Cr, thus the super austenitic 654SMO{reg_sign} (uns32654) did not show any cracking in any of the three tests. The super austenitic 254SMO{reg_sign} (UNS31254) revealed only slight SCC in the simulated feed water heater tubing application while the equivalent N08367 revealed severe pitting and cracking. The drop evaporation test exhibited the most severe test conditions characterized by thermally induced fatigue effects, sensibility to onset of corrosion and severe acidic conditions generated under deposits on the test specimen. Some factors in stress corrosion cracking tests such as thermal fatigue, diffusion, heat transfer and stress condition, are discussed with regard to their influence on the test results.

  17. The effects of grain boundary precipitates on cryogenic properties of aged 316-type stainless steels

    International Nuclear Information System (INIS)

    It is documented that sensitization in stainless steels results from the formation of grain boundary carbides that deplete the Cr in the vicinities of the grain boundaries. Sensitized austenitic stainless steels become brittle at cryogenic temperatures. Low carbon stainless steels are considered to be resistant to aging embrittlement. Our study of low carbon stainless steels demonstrates that aging at sensitization temperatures results in the formation of grain boundary intermetallic compounds or nitrides instead of carbides. The aging marginally change the 4 K yield strength, but decreases the 4 K stress intensity factor. The change of the yield strength is related to the pinning of the dislocations by solute atoms. The reduction of the stress intensity factor is attributed to the formation of the grain boundary precipitates. The sizes and amount of the grain boundary precipitate are so small that the 4 K crack growth rate at small ΔK is not affected.

  18. On the Plasma (ion) Carburized Layer of High Nitrogen Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Y. Ueda; N. Kanayama; K. Ichii; T. Oishi; H. Miyake

    2004-01-01

    The manganese concentration of austenitic stainless steel decreases from the inner layer towards the surface of the plasma (ion) carburized layer due to the evaporation of manganese from the specimen surface. The carbon concentration in the carburized layer is influenced by alloyed elements such as Ct, Ni, Si, and Mo, as well as Nitrogen. This study examined the effects of nitrogen on the properties of the carburized layer of high nitrogen stainless steel. Plasma (ion)carburizing was carried out for 14.4 ks at 1303 K in an atmosphere of CH4+H2 gas mixtures under a pressure of 350 Pa. The plasma carburized layer of the high nitrogen stainless steel was thinner than that of an austentric stainless steel containing no nitrogen. This suggested that the nitrogen raised the activity of carbon in the plasma carburized layer, GDOES measurement indicated that the nitrogen level in the layer did not vary after plasma (ion) carburizing.

  19. Grain size distribution after similar and dissimilar gas tungsten arc welding of a ferritic stainless steel

    Directory of Open Access Journals (Sweden)

    Ranjbarnodeh E.

    2015-01-01

    Full Text Available In this study, gas tungsten arc welding of ferritic stainless steel and grain size distribution in heat affected zone of the welded samples were investigated. Both similar and dissimilar arc welding operations were considered where in dissimilar welding joining of stainless steel to mild steel was examined. In the first stage, a three-dimensional model was developed to evaluate temperature field during and after arc welding while the model was performed using finite element software, ANSYS. Then, the effects of welding heat input and dissimilarity of the joint on the weld pool shape and grain growth in HAZ of stainless steel was investigated by means of model predictions and experimental observations. The results show that the similar joint produces wider HAZ and considerably larger grain size structure while in the dissimilar welds, the low carbon part acts as an effective heat sink and prevents the grain growth in the stainless steel side as well reduces the welding maximum temperature.

  20. Corrosion fatigue of a superduplex stainless steel weldment

    OpenAIRE

    Comer, Anthony John

    2004-01-01

    Superduplex stainless steels have superior mechanical and corrosion properties compared to austenitic stainless steels such as the grade 300 series. This is a result of a microstructure consisting of roughly equal percentages of austenite (y) and ferrite (a) and negligible inclusion content. As a result, super duplex stainless steels are increasingly being used in the offshore oil and gas industries. It is also envisaged that they will find application in the emergent renewable energy sec...

  1. Sinter-hardening process applicable to stainless steels

    OpenAIRE

    M. Rosso; Z. Brytan; L.A. Dobrzański

    2007-01-01

    Purpose: of this paper was to describe sintered duplex stainless steels manufactured in sinter-hardening process and its usability in field of stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, ferritic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies apart from the preparation of mixes, Schaeffler’s diagram was taken into consideration. Pr...

  2. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    OpenAIRE

    Oladayo OLANIRAN; Peter Apata OLUBAMBI; Benjamin Omotayo ADEWUYI; Joseph Ajibade OMOTOYINBO; Ayodeji Ebenezar AFOLABI; Davies FOLORUNSO; Adekunle ADEGBOLA; Emanuel IGBAFEN

    2015-01-01

    Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction) dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr) and Nickel (Ni) were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail...

  3. Buckling response of ferritic stainless steel columns at elevated temperatures

    OpenAIRE

    Afshan, S; Gardner, L; Baddoo, NR

    2013-01-01

    This paper presents a numerical study on the buckling behaviour of ferritic stainless steel columns in fire. Finite element models were developed and validated against existing test results to predict the elevated temperature non-linear response of ferritic stainless steel columns. A total of nine austenitic and three ferritic stainless steel column tests were replicated using the finite element analysis package ABAQUS. Parametric studies were performed to investigate the effects of variation...

  4. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode.

    Science.gov (United States)

    Bajracharya, Suman; ter Heijne, Annemiek; Dominguez Benetton, Xochitl; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak

    2015-11-01

    Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3 mM d(-1), along with methane and hydrogen at -1.1 V/Ag/AgCl. Over 160 days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45 days of run-time in the C. ljungdahlii reactor, 2.4 mM d(-1) acetate production was achieved at -0.9 V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates.

  5. Improved 4-chlorophenol dechlorination at biocathode in bioelectrochemical system using optimized modular cathode design with composite stainless steel and carbon-based materials.

    Science.gov (United States)

    Kong, Fanying; Wang, Aijie; Ren, Hong-Yu

    2014-08-01

    This study developed and optimized a modular biocathode materials design in bioelectrochemical system (BES) using composite metal and carbon-based materials. The 4-chlorophenol (4-CP) dechlorination could be improved with such composite materials. Results showed that stainless steel basket (SSB) filled with graphite granules (GG) and carbon brush (CB) (SSB/GG/CB) was optimum for dechlorination, followed by SSB/CB and SSB/GG, with rate constant k of 0.0418 ± 0.0002, 0.0374 ± 0.0004, and 0.0239 ± 0.0002 h(-1), respectively. Electrochemical impedance spectroscopy (EIS) demonstrated that the composite materials with metal can benefit the electron transfer and decrease the charge transfer resistance to be 80.4 Ω in BES-SSB/GG/CB, much lower than that in BES-SSB (1674.3 Ω), BES-GG (387.3 Ω), and BES-CB (193.8 Ω). This modular cathode design would be scalable with successive modules for BES scale-up, and may offer useful information to guide the selection and design of BES materials towards dechlorination improvement in wastewater treatment. PMID:24926596

  6. Electrochemical aspects of stainless steel behaviour in biocorrosive environment

    International Nuclear Information System (INIS)

    Electrochemical measurements have been used to evaluate and follow, to understand and control microbial induced corrosion of stainless steels. Results include seawater loop tests and laboratory-based microbiological experiments. With natural flowing seawater, impedance spectroscopy measurements have been used to evaluate and follow biofilms on stainless steel tube-electrodes. With batch cultures of single bacterial strain (Sulphate Reducing Bacteria), open-circuit potential measurements and polarization curves performed on 316 L and 430 Ti stainless steels, have shown that the corrosion behaviour of these stainless steels is mainly dependent on the sulphide content of the culture media

  7. Structure change of 430 stainless steel in the heating process

    Institute of Scientific and Technical Information of China (English)

    Xinzhong Liu; Jingtao Han; Wanhua Yu; Shifeng Dai

    2008-01-01

    The microstructure analysis was employed for the ferritic stainless steel (SUS430) with the carbon content from 0.029wt% to 0.100wt% under the simulated heating process condition. The higher carbon sample (430H) contains the duplex phase micro-structure at the temperature of 1150℃; on the other hand, the lower carbon content sample (430L) does not touch two phase area even at the temperature of 1450℃ and has the single phase ferritic microstrucmre. The carbon content need be well controlled for the 430 ferritic stainless steel since it can significandy affect the heating process curve, and the heating process may not be done in the two phase area due to the uncontrolled carbon content. With the low carbon content and the proper soaking time, the grain size is not sensitive to the heating process temperature and the soaking time. In the present heat treatment experiments, the soaking time is about 10 rain, and the processing parameters can be chosen according to the requ'trernent of the gross energy, the efficiency and the continual forming.

  8. Complex Protection of Vertical Stainless Steel Tanks

    Directory of Open Access Journals (Sweden)

    Fakhrislamov Radik Zakievich

    2014-03-01

    Full Text Available The authors consider the problem of fail-safe oil and oil products storage in stainless steel tanks and present the patented tank inner side protection technology. The latter provides process, ecological and fire safety and reducing soil evaporation of oil products, which is a specific problem. The above-mentioned technology includes corrosion protection and heat insulation protection providing increase of cover durability and RVS service life in general. The offered technological protection scheme is a collaboration of the author, Steel Paint GmbH firm and JSC “Koksokhimmontazhproyekt”. PU foam unicomponent materials of Steel Paint GmbH firm provide the protection of tank inner side and cover.

  9. Influence of Trace Alloying Elements on Corrosive Resistance of Cast Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    DUAN Han-qiao; YAN Xiang; WEI Bo-kang; LIN Han-tong

    2005-01-01

    The influences of trace alloying elements niobium, vanadium and zirconium on the corrosive resistance of 18-8 type cast stainless steel have been studied in deta() orthogonal design experiments. The results show that zirconium is mainly in the form of compound inclusions, which is unfavorable to promote the corrosive resistance of the cast stainless steel. It can alleviate the disadvantageous influence of carbon addition on corrosive resistance when some elements such as vanadium and niobium exist in the steel, and niobium has a remarkable influence on the intergranular corrosive resistance but unobvious on the pitting corrosion, and vanadium has a slightly favorable influence on the corrosive resistance of the steel.

  10. Bacterial inhibition of silver-containing stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, W.C. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Chang, S.M.; Lin, J.D.; Tseng, I.S.; Wu, J.K. [National Taiwan Ocean Univ., Taiwan (China). Inst. of Materials Engineering

    2010-07-01

    In this study, silver (Ag) was added to AlSl 316 austenitic 2205 duplex and 430 ferritic stainless steels as a means of inhibiting bacterial contamination. Three Ag-containing stainless steels were prepared using vacuum melting techniques. The influence of the Ag addition on corrosion resistance, bacterial inhibition, and mechanical properties was investigated. A study of the Ag-containing stainless steel microstructures demonstrated that Ag precipitates as small particles on the steel matrix surface. The precipitates act as anodes in the local action cell in the presence of bacteria. Ag dissolution mechanisms from the Ag precipitates on the Ag-containing stainless steels in the presence of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were also discussed. Results of the study suggested that Ag-containing stainless steels may be used in areas where hygiene is a significant concern.

  11. Ion nitriding in 316=L stainless steel

    International Nuclear Information System (INIS)

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate CN/CFe near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  12. 不锈钢与耐热钢焊接过渡区的碳迁移现象分析%Analysis on migration phenomena of carbon in welding transition region between stainless steel and heat-resistant steel

    Institute of Scientific and Technical Information of China (English)

    李德元; 娄建新; 王晓宇; 张晶; 谢天男

    2012-01-01

    In order to carry out the quantitative analysis on the migration process of carbon during the welding of dissimilar steels such as both stainless steel and heat-resistant steel and aiming at the carbon migration phenomena occurred in the fusion area,the actual concentration of carbon was firstly converted into the equivalent concentration according to its chemical potential gradient,and then the calculation for the diffusion process was performed with Fick's law.According to the calculated results,the theoretical formula for the diffusion of carbon was derived,and the theoretical diffusion curves were drawn.The component analysis along the direction perpendicular to the fusion line was performed with scanning electron microscope,and the actual diffusion curves of carbon were drawn.The results show that the theoretical and measured curves are basically the same.With the present method,the migration trend of carbon can be derived more accurately.It means that the proposed method can provide the theoretical basis for investigating the diffusion of carbon in dissimilar steels.%为了在理论上对不锈钢和耐热钢异种钢焊接碳迁移过程进行定量分析,针对熔合区产生的碳迁移现象,首先根据化学位梯度将碳元素的实际浓度转换为等效浓度,利用菲克定律对扩散过程进行了计算.根据计算结果推导出碳扩散理论公式并绘制理论曲线,利用电子扫描显微镜对垂直于熔合线的方向进行成分分析并绘制实际碳扩散曲线.结果表明:理论曲线与实测曲线基本相同.通过这种方法可较为准确地推导出碳迁移的趋势,为今后异种钢碳扩散计算提供了理论基础.

  13. Crossed-Wire Laser Microwelding of Pt-10 Pct Ir to 316 Low-Carbon Vacuum Melted Stainless Steel: Part I. Mechanism of Joint Formation

    Science.gov (United States)

    Zou, G. S.; Huang, Y. D.; Pequegnat, A.; Li, X. G.; Khan, M. I.; Zhou, Y.

    2012-04-01

    The excellent biocompatibility and corrosion properties of Pt alloys and 316 low-carbon vacuum melted (LVM) stainless steel (SS) make them attractive for biomedical applications. With the increasing complexity of medical devices and in order to lower costs, the challenge of joining dissimilar materials arises. In this study, laser microwelding (LMW) of crossed Pt-10 pct Ir to 316 LVM SS wires was performed and the weldability of these materials was determined. The joint geometry, joining mechanism, joint breaking force (JBF), and fracture modes were investigated using optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and microtensile testing. It was shown that the mechanisms of joint formation transitioned from (1) brazing, (2) a combination of brazing and fusion welding, and (3) fusion welding with increasing pulsed laser energy. The joints demonstrated various tensile failure modes including (1) interfacial failure below a peak power of 0.24 kW, (2) partial interfacial failure that propagated into the Pt-Ir wire, (3) failure in the Pt-Ir wire, and (4) failure in the SS wire due to porosity and severe undercutting caused by overwelding. During this study, the optimal laser peak power range was identified to produce joints with good joint geometry and 90 pct of the tensile strength of the Pt-10 pct Ir wire.

  14. Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    X.J.Lee; L.Y.Lee; L.P.Y.Foo; K.W.Tan; D.G.Hassell

    2012-01-01

    The present work covers the preparation of carbon-based nanosorbents by ethylene decomposition on stainless steel mesh without the use of external catalyst for the treatment of water containing nickel ions (Ni2+).The reaction temperature was varied from 650 to 850℃,while reaction time and ethylene to nitrogen flow ratio were maintained at 30 min and 1:1 cm3/min,respectively.Results show that nanosorbents synthesised at a reaction temperature of 650℃ had the smallest average diameter (75 nm),largest BET surface area (68.95m2/g) and least amount of impurity (0.98 wt.% Fe).A series of batch sorption tests were performed to evaluate the effects of initial pH,initial metal concentration and contact time on Ni2+ removal by the nanosorbents.The equilibrium data fitted well to Freundlich isotherm.The kinetic data were best correlated to a pseudo second-order model indicating that the process was of chemisorption type.Further analysis by the Boyd kinetic model revealed that boundary layer diffusion was the controlling step.This primary study suggests that the prepared material with Freundlich constants compared well with those in the literature,is a promising sorbent for the sequestration of Ni2+ in aqueous solutions.

  15. Preparation of a polyacrylonitrile/multi-walled carbon nanotubes composite by surface-initiated atom transfer radical polymerization on a stainless steel wire for solid-phase microextraction.

    Science.gov (United States)

    Minet, Isabelle; Hevesi, Laszlo; Azenha, Manuel; Delhalle, Joseph; Mekhalif, Zineb

    2010-04-23

    We report on the fabrication and performances of a solid-phase microextraction (SPME) fiber based on a stainless steel wire coated with a covalently attached polyacrylonitrile (PAN)/multi-walled carbon nanotubes (MWCNTs) composite. This new coating is obtained by atom transfer radical polymerization (ATRP) of acrylonitrile mixed with MWCNTs. ATRP is initiated from 11-(2-bromo-2-methylpropionyloxy)-undecyl-phosphonic acid molecules grafted on the wire surface via the phosphonic acid group. The extraction performances of the fibers are assessed on different classes of compounds (polar, non-polar, aromatic, etc.) from water solutions by headspace extraction. The optimization of the parameters affecting the extraction efficiency of the target compounds was studied as well as the reproducibility and the repeatability of the fiber. The fibers sustain more than 200 extractions during which they remain chemically stable and maintain good performances (detection limits lower than 2 microg/l, repeatability, etc.). Considering their robustness together with their easy and inexpensive fabrication, these fibers could constitute promising alternatives to existing products. PMID:20299016

  16. Fatigue properties of duplex stainless steel

    OpenAIRE

    Turrel, Benjamin; Luna Garcia, Jordi; Andraschko, Stephan

    2009-01-01

    PFC presentat a Oslo University College The aim of the project is to study fatigue properties of duplex stainless steel used for a bridge. The samples had to be tested and the results have to be compared with the theory, studied before. Six specimens have been broken by tensile fatigue testing machine in order to get more knowledge about the lifetime and the behavior under dynamic stress and not only for welded parts. Out of this new knowledge a new fatigue curve for this ma...

  17. The diffusivity of hydrogen in Nb stabilized stainless steel

    Science.gov (United States)

    Outlaw, R. A.; Peterson, D. T.

    1983-01-01

    The evolution of hydrogen from 347 stainless steel has been studied by using a real time dynamic technique under ultrahigh vacuum conditions. Auger electron spectroscopy was used to determine the surface composition as a function of time and temperature. The surface film on the electropolished samples was found to be approximately 15 A thick and consisted of a carbon-oxygen complex and a metal oxide (FexOy). Upon heating to 400 C, the carbon-oxygen complex desorbed as CO and the remaining oxygen and carbon began to incorporate. Also at this temperature sulfur began to diffuse out of the bulk to the surface and at approximately 800 C formed a complete monolayer. At 900 C, carbon and oxygen virtually disappeared, leaving the monolayer of sulfur as the only surface contaminant. The hydrogen diffusivity was found to follow closely the equation D = 7.01 x 10 to the -7th exp(-48.0/RT) sq m per second over the entire temperature range studied, thus indicating that hydrogen evolution is not significantly affected by the changing surface composition. The somewhat higher value of the diffusivity obtained in this work compared to past measurements in austenitic stainless steels may indicate the importance of sample preprocessing and ultrahigh vacuum conditions in minimizing the effects of surface layers.

  18. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Directory of Open Access Journals (Sweden)

    Masafumi Matsushita

    2011-07-01

    Full Text Available Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride.

  19. Flow lines and microscopic elemental inhomogeneities in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mosley, Jr, W C

    1982-01-01

    Flow lines in mechanically formed austenitic stainless steels are known to influence fracture behavior. Enhancement of flow lines by chemical etching is evidence of elemental inhomogeneity. This paper presents the results of electron microprobe analyses to determine the nature of flow lines in three austenitic stainless steels: 21Cr-6Ni-9Mn, 304L, and 19Ni-18Cr.

  20. EXAFS investigation of low temperature nitrided stainless steel

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny;

    2008-01-01

    Low temperature nitrided stainless steel AISI 316 flakes were investigated with EXAFS and X-ray diffraction analysis. The stainless steel flakes were transformed into a mixture of nitrogen expanded austenite and nitride phases. Two treatments were carried out yielding different overall nitrogen...

  1. Characterization of silane layers on modified stainless steel surfaces and related stainless steel-plastic hybrids

    International Nuclear Information System (INIS)

    The aim of this work was to characterize silane layers on the modified stainless steel surfaces and relate it to the adhesion in the injection-molded thermoplastic urethane-stainless steel hybrids. The silane layers were characterized with scanning electron microscope and transmission electron microscope, allowing the direct quantization of silane layer thickness and its variation. The surface topographies were characterized with atomic force microscope and chemical analyses were performed with X-ray photoelectron spectroscopy. The mechanical strength of the respective stainless steel-thermoplastic urethane hybrids was determined by peel test. Polishing and oxidation treatment of the steel surface improved the silane layer uniformity compared to the industrially pickled surface and increased the adhesion strength of the hybrids, resulting mainly cohesive failure in TPU. XPS analysis indicated that the improved silane bonding to the modified steel surface was due to clean Fe2O3-type surface oxide and stronger interaction with TPU was due to more amino species on the silane layer surface compared to the cleaned, industrially pickled surface. Silane layer thickness affected failure type of the hybrids, with a thick silane layer the hybrids failed mainly in the silane layer and with a thinner layer cohesively in plastic.

  2. Operational experience with stainless steel condenser tubes

    International Nuclear Information System (INIS)

    Longitudinal seam welded tubes of stainless austenitic 18/8 CrNi and 18/8/2 CrNiMo steels have proved their worth when used in steam condensers with fresh water recooling. However, in water containing a high level of salt, in particular brackish water and seawater, experience to date has not been satisfactory in the case of these materials. High-alloy austenitic, ferritic and austenitic-ferritic steels developed during the last 10 years, on the other hand, have high pitting potentials and, both in the laboratory and in practice, have proved their suitability as heat-exchanger materials for steam condensers. These materials are easily worked to form welded tubes with a longitudinal seam and are therefore a relatively inexpensive design which ensures both plant safety and availability

  3. Low temperature gaseous nitriding and carburising of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A.J.

    2005-01-01

    The response of various austenitic and duplex stainless steel grades to low temperature gaseous nitriding and carburising was investigated. Gaseous nitriding was performed in ammonia/hydrogen mixtures at temperatures ,723 K; gaseous carburising was carried out in carbon monoxide/hydrogen mixtures...... for temperatures (783 K. The case developed by thermochemical treatment was examined using reflected light microscopy, X-ray diffraction analysis and microhardness testing. Both nitriding and carburising led to the development of expanded austenite in the surface adjacent zone, irrespective of the phase...... constitution of the substrate. A two step process, consisting of carburising followed by nitriding, provides great flexibility with regard to adjusting the hardness–depth profile....

  4. Development of a lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Liljas, M.; Johansson, P.; Liu Hui-Ping; Olsson, C.O.A. [Avesta Research Centre, Avesta (Sweden). Outokumpu Stainless

    2008-06-15

    The classic series of duplex stainless steels shows very high corrosion resistance and can be used for very demanding applications. A new lean duplex steel, LDX 2101 {sup registered} (EN 1.4162, UNS S32101), has been developed with corrosion resistance on a par with standard austenitic grades. Application areas include: structural components, chemical industry, tanks and containers. The steel was designed to have equal amounts of ferrite and austenite in annealed condition and with an austenite that is stable against strain-induced martensite. Thanks to its high nitrogen content, the steel has a fast austenite reformation when subjected to thermal cycling, e.g. welding. Unlike conventional duplex grades, the formation of intermetallic phase is very sluggish, although precipitation of nitrides and carbides has a certain impact on material properties after exposure in the temperature range 600 to 800 C. The precipitation behaviour after different isothermal treatments is described and its influence on different product properties is shown. A good agreement was found between impact toughness and corrosion resistance for a wide range of thermal treatments. (orig.)

  5. Citric Acid Passivation of Stainless Steel

    Science.gov (United States)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  6. Fracture toughness of irradiated stainless steel alloys

    International Nuclear Information System (INIS)

    The postirradiation fracture toughness responses of Types 316 and 304 stainless steel (SS) wrought products, cast CF8 SS and Type 308 SS weld deposit were characterized at 4270C using J/sub R/-curve techniques. Fast-neutron irradiation of these alloys caused an order of magnitude reduction in J/sub c/ and two orders of magnitude reduction in tearing modulus at neutron exposures above 10 dpa, where radiation-induced losses in toughness appeared to saturate. Saturation J/sub c/ values for the wrought materials ranged from 28 to 31 kJ/m2; the weld exhibited a saturation level of 11 kJ/m2. Maximum allowable flaw sizes for highly irradiated stainless steel components stressed to 90% of the unirradiated yield strength are on the order of 3 cm for the wrought material and 1 cm for the weld. Electron fractographic examination revealed that irradiation displacement damage brought about a transition from ductile microvoid coalescence to channel fracture, associated with local separation along planar deformation bands. The lower saturation toughness value for the weld relative to that for the wrought products was attributed to local failure of ferrite particles ahead of the advancing crack which prematurely initiated channel fracture

  7. Embrittlement of austenitic stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    David, S.A.; Vitek, J.M. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-31

    The microstructure of type-308 austenitic stainless steel weld metal containing {gamma} and {delta} and ferrite is shown. Typical composition of the weld metal is Cr-20.2, Ni-9.4, Mn-1.7, Si-0.5, C-0.05, N-0.06 and balance Fe (in wt %). Exposure of austenitic stainless steel welds to elevated temperatures can lead to extensive changes in the microstructural features of the weld metal. On exposure to elevated temperatures over a long period of time, a continuous network of M{sub 23}C{sub 6} carbide forms at the austenite/ferrite interface. Upon aging at temperatures between 550--850 C, ferrite in the weld has been found to be unstable and transforms to sigma phase. These changes have been found to influence mechanical behavior of the weld metal, in particular the creep-rupture properties. For aging temperatures below 550 C the ferrite decomposes spinodally into {alpha} and {alpha}{prime} phases. In addition, precipitation of G-phase occurs within the decomposed ferrite. These transformations at temperatures below 550 C lead to embrittlement of the weld metal as revealed by the Charpy impact properties.

  8. Effect of Fabric Cover and Pore Area Distribution of Carbon/Stainless Steel/Polypropylene Hybrid Yarn-Woven Fabric on Electromagnetic Shielding Effectiveness

    Science.gov (United States)

    Krishnasamy, Jagatheesan; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2016-06-01

    The electromagnetic shielding behavior of fabrics woven with carbon/stainless steel/polypropylene (C/SS/PP) hybrid yarns were investigated in the frequency range of 300 kHz to 1.5 GHz. This study mainly emphasizes the electromagnetic shielding behavior of C/SS/PP hybrid yarn fabric and the effect of different fabric parameters such as pick density, fabric architecture and number of fabric layers on shielding effectiveness (SE) of fabrics with C/SS/PP hybrid yarns. The SE of fabric samples were tested by a vector network analyzer using a coaxial transmission line tester. In addition, surface images of different fabric structures were examined to appreciate the effect of yarn floats on the shielding behavior of fabrics. From the SE test, it was observed that an increase in pick density increases the SE of C/SS/PP hybrid yarn fabric due to addition of carbon and SS content in the fabric. Besides, the fabric cover and pore area distribution are also changed for varying pick densities. Essentially, a fabric's architecture plays an important role in the fabric cover and pore area distribution. The one-end float (1/1 plain) fabric of 6.3 ppcm provides higher shielding of 88.44 dB than a 4-end (4/1 twill) or 7-end float (8-end satin) fabrics of 6.3 ppcm. Moreover, an increase in the number of fabric layers also improves the SE of fabrics. The developed C/SS/PP hybrid yarn fabric can be used for shielding wireless transmissions, radar transmissions and for shielding panels.

  9. Plain carbon steel bipolar plates for PEMFC

    Institute of Scientific and Technical Information of China (English)

    WANG Jianli; SUN Juncai; TIAN Rujin; XU Jing

    2006-01-01

    Bipolar plates are a multifunctional component of PEMFC. Comparing with the machined graphite and stainless steels, the plain carbon steel is a very cheap commercial metal material. In this paper, the possibility of applying the plain carbon steels in the bipolar plate for PEMFC was exploited. In order to improve the corrosion resistance of the low carbon steel in the PEMFCs' environments,two surface modification processes was developed and then the electrochemical performances and interfacial contact resistance (ICR) of the surface modified plate of plain carbon steel were investigated. The results show that the surface modified steel plates have good corrosion resistance and relatively low contact resistance, and it may be a candidate material as bipolar plate of PEMFC.

  10. Assessment of thermal embrittlement of cast stainless steels

    International Nuclear Information System (INIS)

    A procedure and correlations are presented for assessing thermal embrittlement and predicting Charpy-impact energy and fracture toughness J-R curve of cast stainless steel components under Light Water Reactor operating conditions from known material information. The ''saturation'' impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Fracture properties as a function of time and temperature of reactor service are estimated from the kinetics of embrittlement, which are also determined from chemical composition. A common ''predicted lower-bound'' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature. Examples of estimating fracture toughness of cast stainless steel components during reactor service are presented

  11. EXPERIMENTAL RESEARCH OF THE DUPLEX STAINLESS STEEL WELDS IN SHIPBUILDING

    OpenAIRE

    Juraga, Ivan; Stojanović, Ivan; Ljubenkov, Boris

    2014-01-01

    Duplex stainless steel is used in shipbuilding increasingly because of its good mechanical properties and marked corrosion resistance. This steel has a two phase structure (austenite-ferrite) which is sensitive on heat input during welding because of the possible ferritisation appearance, that is, increase in ferrite content in the area of heat effected zone (HAZ) which can lead to loss of mechanical and corrosion properties. Work with duplex stainless steel requires special attention in ever...

  12. LOCAL LASER ALLOYING OF STAINLESS STEEL 12H18N10T

    Directory of Open Access Journals (Sweden)

    Mr. Vladimir A. Kim

    2016-06-01

    Full Text Available The article presents the research of local laser alloying of stainless steel 12X18H10T. The steel resists quenching, but it is widely used in food, chemical, oil-processing and other industries. The alloying was carried out by graphite that provided carbon increase in steel and improvement of surface capacity. The article shows details of the structural transformations leading to surfaces hardening, and micro hardness spreading inside the modified layer.

  13. Cleaning the magnesium oxide contaminated stainless steel system using a high temperature decontamination process

    International Nuclear Information System (INIS)

    A high pressure and high temperature (HTHP) system made of stainless steel-316, that simulates the reactor coolant systems of pressurized water reactors has been constructed for carrying out experimental investigations on power reactor water chemistry. After two months of operation at 280 C, magnesium was observed in the coolant. This was attributed to the failure of some heater pins that contained magnesium oxide as insulator. This magnesium oxide got distributed over the entire system. In order to remove the magnesium that had deposited and reacted over the oxide film formed over the stainless steel surfaces, the system was chemically cleaned using a mixture of nitrilo-tri-acetic-acid (NTA) and N2H4 at high temperature. The chromium containing oxide film formed over the stainless steel surfaces are normally removed using oxidizing pretreatment followed by treatment with reducing formulation. A minimum of three such cycles are required to complete the dissolution of contaminated oxide film. It has been proved elsewhere that chromium-containing oxides can be dissolved by simple chelating agents but at a relatively higher temperature (150-180 C) with NTA. Thus, NTA based process was tested for its capability to remove the magnesium contaminated oxide film formed over stainless steel. In addition to stainless steel, the system has few carbon steel areas. Hence, the compatibility of stainless steel and carbon steel to the NTA-N2H4 mixture was determined. Tests were carried out at different concentrations of NTA and at different pH. It was observed that carbon steel corrosion rates were quite high at low pH. With increasing pH, the corrosion rate decreased. The surface roughening observed at low pH was not observed at pH 8.0. Hence, it was decided to carry out the cleaning at pH 7.0 and with NTA concentration of 5 mM. Visual examination of the test flanges after the cleaning indicated complete removal of the oxide film. Results of chemical analysis indicated that

  14. Evaluation of Dry Sliding Wear Behaviour of Plasma Transferred Arc Hardfaced Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    C S Ramachandran; V Balasubramanian; R Varahamoorthy

    2009-01-01

    The effects of different experimental conditions on the dry sliding wear behavior of stainless steel surface produced by plasma transferred arc (PTA) hardfacing process were studied. The wear test was conducted in a pinon-roller wear testing machine, at constant sliding distance of 1 km. Mathematical models were developed to estimate wear rate incorporating with rotational speed, applied load and roller hardness using statistical tools such as design of experiments, regression analysis and analysis of variance. It is found that the wear resistance of the PTA hardfaced stainless steel surface is better than that of the carbon steel substrate.

  15. Beneficially reusing LLRW the Savannah River Site Stainless Steel Program

    International Nuclear Information System (INIS)

    With 68 radioactively contaminated excess Process Water Heat Exchangers the Savannah River Site launched its program to turn potential LLRW metal liabilities into assets. Each Heat Exchanger contains approximately 100 tons of 304 Stainless Steel and could be disposed as LLRW by land burial. Instead the 7000 tons of metal will be recycled into LLRW, HLW, and TRU waste containers thereby eliminating the need for near term land disposal and also eliminating the need to add more clean metal to the waste stream. Aspects of the partnership between DOE and Private Industry necessary to accomplish this new mission are described. A life cycle cost analysis associated with past practices of using carbon steel containers to indefinitely store material (contributing to the creation of today's legacy waste problems) is presented. The avoided cost calculations needed to support the economics of the ''Indifference'' decision process in assessing the Beneficial Reuse option relative to the Burial option are described

  16. Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material

    OpenAIRE

    Salman, Muhammad Salman; Cizer, Özlem; Pontikes, Yiannis; Santos, Rafael; Vandewalle, Lucie; Blanpain, Bart; Van Balen, Koen

    2014-01-01

    Non-stabilized Argon Oxygen Decarburisation (AODNS) slag in powdered form was examined for its carbon dioxide sequestration capacity and for its potential utilization in the fabrication of high value building materials. The curing of the sample was carried out in two accelerated carbonation environments: i) in a carbonation chamber, maintained at atmospheric pressure, 22 °C, 5 vol.% CO2 and 80% RH; and ii) in a carbonation reactor, where the CO2 partial pressure (pCO2) and temperature could b...

  17. Nickel-free Stainless Steel for Medical Applications

    Institute of Scientific and Technical Information of China (English)

    Yibin REN; Ke YANG; Bingchun ZHANG; Yaqing WANG; Yong LIANG

    2004-01-01

    BIOSS4 steel is essentially a nickel-free austenitic stainless steel developed by the Institute of Metal Research, Chinese Academy of Sciences, in response to nickel allergy problems associated with nickel-containing stainless steels that are widely used in medical applications. The high nitrogen content of this steel effectively maintains the austenitic stability and also contributes to the high levels of corrosion resistance and strength. BIOSS4 steel possesses a good combination of high strength and toughness, better corrosion resistance, and better blood compatibility, in comparison with the medical 316L stainless steel. Potential applications of BIOSS4 steel can include medical implantation material and orthodontic or orthopedic devices, as well as jewelries and other decorations.

  18. In vivo behavior of a high performance duplex stainless steel.

    Science.gov (United States)

    Cigada, A; De Santis, G; Gatti, A M; Roos, A; Zaffe, D

    1993-01-01

    An in vivo investigation of a new high molybdenum and nitrogen duplex stainless steel (25Cr--7Ni--4Mo--0.3N) has been performed. Cylindrical pins and specially developed devices, to test in static conditions the in vivo localized corrosion resistance, made of this new duplex steel and of a common austenitic stainless steel were implanted in rabbit's femurs for 6 and 12 months. After sacrifice, SEM observations and EDS microanalyses to detect metallic ion release were carried out on the femur sections surrounding the pins. Morphologic observations with stereoscope and SEM were performed on the metallic surfaces of the special devices in order to detect the presence of localized corrosion. Both ion release and localized corrosion were observed for the specimens made of austenitic stainless steel, but not for those made of 25Cr--7Ni--4Mo--0.3N duplex stainless steel. PMID:10148344

  19. MnO2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries

    Science.gov (United States)

    Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P.

    2016-02-01

    Manganese dioxide (MnO2) has been recognized as an effective catalyst for the oxygen reduction and oxygen evolution reactions in non-aqueous lithium-oxygen batteries. However, a further improvement in battery performance with the MnO2 catalyst is limited by its low electronic conductivity and catalytic activity, which strongly depend on the morphology and composition. In this work, we develop a carbon- and binder-free MnO2-x nanosheets/stainless steel (SS) cathode via a simple and effective electrodeposition-solvothermal route. The created Mn(III) and oxygen vacancy in MnO2-x nanosheets allows an significant increase in the electronic conductivity and catalytic activity. It is experimentally shown that the use of the present nanostructure MnO2-x/SS cathode in a non-aqueous lithium-oxygen battery results in a rechargeable specific capacity of 7300 mAh g-1 at a current density of 200 mA g-1, which is 39% higher than that with the MnO2/SS cathode. In addition, the specific capacities at 400 mA g-1 and 800 mA g-1 reach 5249 mAh g-1 and 2813 mAh g-1, respectively, which are over 30% higher than that with the MnO2/SS cathode. Furthermore, the discharge/charge cycle test shows no degradation for 120 cycles. All the results show that the present nanostructure MnO2-x/SS cathode is a promising candidate for high-performance lithium-oxygen batteries.

  20. Effects of frequency on fatigue behavior of type 316 low-carbon, nitrogen-added stainless steel in air and mercury for the spallation neutron source

    Science.gov (United States)

    Tian, H.; Liaw, P. K.; Fielden, D. E.; Brooks, C. R.; Brotherton, M. D.; Jiang, L.; Yang, B.; Wang, H.; Strizak, J. P.; Mansur, L. K.

    2006-01-01

    The high-cycle fatigue behavior of type 316 low-carbon, nitrogen-added (LN) stainless steel (SS), the prime-candidate target-container material for the spallation neutron source (SNS), was investigated in air and mercury. Test frequencies ranged from 0.2 to 10 Hz with an R ratio of -1, and 10 to 700 Hz with an R ratio of 0.1. During tension-compression fatigue studies, a significant increase in the specimen temperature was observed at 10 Hz in air, which decreased the fatigue life of the 316 LN SS relative to that at 0.2 Hz. Companion tests in air were carried out, while cooling the specimen with nitrogen gas at 10 Hz in air. In these experiments, fatigue lives were comparable at 10 Hz in air with nitrogen cooling and at 0.2 Hz in air. During tension-tension fatigue studies, a higher specimen temperature was observed at 700 than at 10 Hz. After cooling the specimen, comparable fatigue lives were found at 10 and at 700 Hz. The frequency effect on the fatigue life in mercury was found to be much less than that in air, due to the fact that mercury acts as an effective coolant during the fatigue experiment. Striation spacing on the fracture surface at different test frequencies was closely examined, relative to calculated Δ K values, during fatigue of the 316 LN SS. Specimen self-heating has to be considered in understanding fatigue characteristics of 316 LN SS in air and mercury.

  1. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    Directory of Open Access Journals (Sweden)

    Bibo Yao

    2016-03-01

    Full Text Available Powder metallurgy (P/M technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  2. A mortality study among mild steel and stainless steel welders.

    Science.gov (United States)

    Moulin, J J; Wild, P; Haguenoer, J M; Faucon, D; De Gaudemaris, R; Mur, J M; Mereau, M; Gary, Y; Toamain, J P; Birembaut, Y

    1993-03-01

    A mortality study was carried out in conjunction with the European mortality study among welders coordinated by the International Agency for Research on Cancer (IARC). The study was aimed at assessing risks for lung cancer in relation to exposure to asbestos, welding fumes containing chromium and nickel, and tobacco smoke. The study included a cohort of 2721 welders and an internal comparison group of 6683 manual workers employed in 13 factories in France. The mortality of the two cohorts was studied from 1975 to 1988 by the historical prospective method. Job histories of welders were traced including welding processes used, metals welded, and proportion of worktime spent in welding. Data on smoking habits were collected from medical records. The observed number of deaths were compared with those expected (standardised mortality ratio (SMR)) based on national rates with adjustments for age, sex, and calendar time. The smoking habits of 87% of the whole study population were known. The distribution of welders and controls according to smoking was not statistically different. The overall mortality was slightly higher for welders (SMR = 1.02, 95% confidence interval (95% CI) 0.89-1.18) than for controls (SMR = 0.91, 95% CI 0.84-0.99). For lung cancer, the SMR was 1.24 (95% CI 0.75-1.94) for welders, whereas the corresponding value was lower for controls (SMR = 0.94, 95% CI 0.68-1.26). The SMR for lung cancer was 1.59 among non-shipyard mild steel welders (95% CI 0.73-3.02). This contrasted with the results for all stainless steel welders (SMR = 0.92, 95% CI 0.19-2.69), and for stainless steel welders predominantly exposed to chromium VI (SMR = 1.03, 95% CI 0.12-3.71). Moreover, SMRs for lung cancer for mild steel welders tended to increase with duration of exposure and time since first exposure, leading to significant excesses for duration > or = 20 years and latency > or = 20 years. Such a pattern was not found for stainless steel welders.

  3. Nitrogen bearing austenitic stainless steels for surgical implants

    Energy Technology Data Exchange (ETDEWEB)

    Tschiptschin, A.P.; Aidar, C.H.; Alonso-Falleiros, N. [Sao Paulo Univ. (Brazil). Escola Politecnica; Neto, F.B. [Instituto de Pesquisas Tecnologicas, Sao Paulo (Brazil)

    1999-07-01

    Nitrogen addition promotes substantial improvements on general and localized corrosion performance of stainless steels. In recent times high nitrogen (up to 0.6 wt%) and Mn bearing super austenitic stainless steel has been studied for medical applications due to its low Ni content, the so called body friendly alloys. 18%Cr, 0.4%N and 15%Mn stainless steels were cast either from electrolytic or commercial master alloys in induction furnace, forged, solubilized at 1423K for 3 hours and water quenched. Delta ferrite and carbide precipitate free structures were observed. (orig.)

  4. Structural Analysis of Cavitation for Different Stainless Steels

    Directory of Open Access Journals (Sweden)

    Mădălina-Elena Mânzână

    2011-09-01

    Full Text Available The cavitation phenomenon is currently approaching all areas of technology and modern industry, where are fluid in motion. In this paper cavitational erosion was conducted on different samples of stainless steels. The cavitation were performed in magnetostrictive vibrating apparatus at Cavitation Laboratory (Polytechnic University of Timisoara. The present paper intends to identify specific structural features in stainless steels. Several investigations were done: macrostructural analysis (Olympus SZX57, scaning electron microscope (Philips SEM and X-ray diffraction (D8 ADVANCE. After quantitative and qualitative investigations structural features were put in evidence on experimental stainless steels.

  5. Investigation of the Hot Plasticity of Duplex Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    LIN Gang; ZHANG Zhi-xia; SONG Hong-wei; TONG Jun; ZHOU Can-dong

    2008-01-01

    Hot plasticity of a nitrogen alloyed 25Cr-7Ni-4 Mo duplex stainless steel was investigated.The results indicate that thc main factors affecting the hot plasticity of duplex stainless steel are listed as follows:coalescent force of phase interface,microstructure,and the phase ratio and difference between the mechanicsl propertms of ferrite and austenite.The heat treatment and sulphur contents have a notable effect on the hot plasticity.The reasonable heat treatrnents and the irlcreased interfacial coalescent force will effectively enhance the hot plasticity of duplex stainless steel.

  6. Magnetic characterisation of duplex stainless steel

    Science.gov (United States)

    Mészáros, I.

    2006-02-01

    Heat treatment-induced microstructural processes were studied by different non-destructive magnetic and mechanical material testing methods in the present work. A commercial SAF 2507 type superduplex stainless steel was investigated. This alloy contains about 40% metastable ferrite which can decompose to a sigma phase and secondary austenite due to heat treatment. All the mechanical, corrosion resistance and magnetic properties are strongly influenced by this microstructural changes. This study had two aims: to understand better the kinetics of the ferrite decomposition process and to study the application possibilities of the applied magnetic measurements. This paper presents an application possibility of the nonlinear harmonics analysis measurement and demonstrates the possibility to find a quantitative correlation between measured harmonics and mechanical properties obtained from destructive tests.

  7. Electrochemical decontamination of Pu contaminated stainless steel

    International Nuclear Information System (INIS)

    Electrochemical decontamination has been demonstrated to be very effective in removing plutonium nitrate contamination (0.5 μg cm-2) on stainless steels. The amount of metal dissolved to achieve a DF of 102 to 103 was 2 to 7 μm depending on the electrolyte used. In unstirred electrolytes 1M HNO3, 1M HNO3/0.1M NaF, 5M HNO3 perform best. Under stirred electrolyte conditions, there is a general marginal fall in effectiveness except for 5M HNO3 where there is a slight improvement. The optimum performance is a compromise between maximizing the electrolyte throwing power and minimizing substrate surface roughening during decontamination. (author)

  8. MOCVD deposition of YSZ on stainless steels

    Science.gov (United States)

    Chevalier, S.; Kilo, M.; Borchardt, G.; Larpin, J. P.

    2003-01-01

    Yttria stabilized zirconia was deposited on stainless steel using the metal-organic chemical vapor deposition (MOCVD) technique, from β-diketonate precursors. The variation of the evaporation temperatures of yttrium and zirconium precursor allowed to control the level of Y within the film. Over the temperature range 125-150 °C, the Y content increased from 2.5 to 17.6 at.%. X-ray diffraction (XRD) analyses evidenced tetragonal phase of zirconia when the Y content was below 8 at.%, and cubic phase for higher concentration. Sputtered neutral mass spectrometry (SNMS) profiles confirmed that the control and stability of Y precursor temperature were of major importance to guarantee the homogeneity of the deposited films.

  9. A stainless steel bracket for orthodontic application.

    Science.gov (United States)

    Oh, Keun-Taek; Choo, Sung-Uk; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2005-06-01

    Aesthetics has become an essential element when choosing orthodontic fixed appliances. Most metallic brackets used in orthodontic therapy are made from stainless steel (SS) with the appropriate physical properties and good corrosion resistance, and are available as types 304, 316 and 17-4 PH SS. However, localized corrosion of these materials can frequently occur in the oral environment. This study was undertaken to evaluate the accuracy of sizing, microstructure, hardness, corrosion resistance, frictional resistance and cytotoxicity of commercially available Mini-diamond (S17400), Archist (S30403) and experimentally manufactured SR-50A (S32050) brackets. The size accuracy of Mini-diamond was the highest at all locations except for the external horizontal width of the tie wing (P SS brackets. PMID:15947222

  10. MICROSCOPIC CORROSION STUDIES OF DUPLEX STAINLESS STEELS

    Institute of Scientific and Technical Information of China (English)

    C.Leygraf; J.Pan; M.Femenia

    2004-01-01

    Electrochemical scanning tunneling microscopy and scanning electrochemical microscopy have been used for in situ monitoring of localized corrosion processes of different Duplex stainless steels (DSS) in acidic chloride solutions. The techniques allow imaging of local dissolution events with micrometer resolution, as opposed to conventional electrochemical techniques, which only give an overall view of the corrosion behavior. In addition, combined scanning Kelvin probe force microscopy and magnetic force microscopy were used for mapping the Volta potential variation over the surface of DSSs. A significant difference in Volta potential between the austenite and ferrite phases suggests galvanic interaction between the phases. A compositional gradient appears within 2 micrometers across the phase boundary, as seen with scanning Auger microscopy (SAM). In all, the studies suggest that higher alloyed DSS exhibit a more homogeneous dissolution behavior than lower alloyed DSS, due to higher and more similar corrosion resistance of the two phases, and enhanced resistance of the ferrite/austenite phase boundary regions.

  11. Thermal fatigue crack growth in stainless steel

    International Nuclear Information System (INIS)

    A judgment of residual service life of engineering parts exposed to thermal fatigue makes it possible to deal with economic and safety issues in power plants. The aim of this study is to analyze a fatigue crack initiation and propagation in A321 stainless steel bodies subjected to repeated thermal shocks. For this purpose, various methods of crack propagation monitoring were used. The first stage of experiments included mechanical cyclic loading of specimens with the central notch at fixed temperatures ranging from 20 °C to 410 °C. The crack growth rate was only minimally influenced by temperature in this case. Thermal loading of the same specimens with ΔT varying from 150 °C to 340 °C showed very rapid crack initiation in the notches and its asymmetric growth. Metallographic and fractographic analyses of failed specimens were carried out after 1000, 3000 and 6000 thermal cycles. The comparison of the fracture surface micromorphology confirmed the similarity in the mechanism of the thermal and mechanical fatigue crack growth. Stress analysis using the finite element method consisting of transient thermal and mechanical solutions was performed in order to simulate the experiments. Thermal fatigue crack growth assessment was carried out on the basis of the experiments and the computed thermally induced stress intensity factors. This model successfully confirms the discussed analogy of thermal and mechanical stress induced damage. Highlights: ► A fatigue crack initiation and propagation in A321 stainless steel was analyzed. ► Mechanical and thermal experiments were performed, simulated also by FEM. ► Similarity in the mechanism of thermal and mechanical fatigue crack growth found. ► Application of the Paris model for the thermal cycling confirmed.

  12. Behaviour and design of cold-formed lean duplex stainless steel members

    OpenAIRE

    Huang, Yun'er; 黃韵兒

    2013-01-01

    Cold-formed stainless steel sections have been increasingly used in architectural and structural applications. Yet the high price of stainless steel limits the application to construction projects. The lean duplex stainless steel (EN 1.4162) offers an opportunity for stainless steels to be used more widely due to its competitive in price, good mechanical properties and corrosion resistance. The lean duplex stainless steel is a relatively new material, and research on this material is limited....

  13. Effects of Cr2N Precipitation on the Antibacterial Properties of AISI 430 Stainless Steel

    OpenAIRE

    Je-Kang Du; Chih-Yeh Chao; Yu-Ting Jhong; Chung-Hao Wu; Ju-Hui Wu

    2016-01-01

    Based on their mechanical properties and good corrosion resistance, some commercial Ni-Cr stainless steels have been widely applied as biomaterials, including the austenitic 304 stainless steel, the austenitic 316 stainless steel, the duplex 2205 stainless steel, and the ferritic 430 stainless steel. In order to reduce the occurrence of infections resulting from biomaterial implants, instruments, and medical devices, Cu2+ and Ag2+ ions have been added onto biomaterials for increasing the anti...

  14. Stainless steel anodes for alkaline water electrolysis and methods of making

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  15. On the Carbon Solubility in Expanded Austenite and Formation of Hägg Carbide in AISI 316 Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas L.; Ståhl, Kenny; Brink, Bastian K.;

    2016-01-01

    –420 °C and 465–470 °C, respectively. Hägg carbide (x-M5C2)develops when the carbon content in the expanded austenite exceeds the metastable solubility limit; the transformation of carbon expanded austenite into Hägg carbide occurs irrespective of carburizing temperature in the investigated temperature...... range (380–470 °C). The maximum solubility of carbon in expanded austenite (380 °C) is found to correspond to an occupancy (yC) of 0.220 of the interstitial octahedral sites of the austenite lattice (i.e., 4.74wt%C). Decomposition of Hägg carbide into M7C3 occurs upon prolonged carburizing treatment...

  16. Bacterial adhesion on ion-implanted stainless steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Q. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom)]. E-mail: q.zhao@dundee.ac.uk; Liu, Y. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, C. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, S. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Peng, N. [Surrey Ion Beam Centre, University of Surrey, Surrey GU2 7XH (United Kingdom); Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Surrey GU2 7XH (United Kingdom)

    2007-08-31

    Stainless steel disks were implanted with N{sup +}, O{sup +} and SiF{sub 3} {sup +}, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF{sub 3} {sup +}-implanted stainless steel performed much better than N{sup +}-implanted steel, O{sup +}-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  17. Bacterial adhesion on ion-implanted stainless steel surfaces

    International Nuclear Information System (INIS)

    Stainless steel disks were implanted with N+, O+ and SiF3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF3+-implanted stainless steel performed much better than N+-implanted steel, O+-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions

  18. Bacterial adhesion on ion-implanted stainless steel surfaces

    Science.gov (United States)

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  19. Hardness of Carburized Surfaces in 316LN Stainless Steel after Low Temperature Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Byun, TS

    2005-01-31

    A proprietary surface carburization treatment is being considered to minimize possible cavitation pitting of the inner surfaces of the stainless steel target vessel of the SNS. The treatment gives a large supersaturation of carbon in the surface layers and causes substantial hardening of the surface. To answer the question of whether such a hardened layer will remain hard and stable during neutron irradiation, specimens of the candidate materials were irradiated in the High Flux Isotope Reactor (HFIR) to an atomic displacement level of 1 dpa. Considerable radiation hardening occurred in annealed 316LN stainless steel and 20% cold rolled 316LN stainless steel, and lesser radiation hardening in Kolsterised layers on these materials. These observations coupled with optical microscopy examinations indicate that the carbon-supersaturated layers did not suffer radiation-induced decomposition and softening.

  20. Phase Transformations in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  1. Phase transformations in cast duplex stainless steels

    Science.gov (United States)

    Kim, Yoon-Jun

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  2. Eddy sensors for small diameter stainless steel tubes.

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  3. Controlled dissolution of colossal quantities of nitrogen in stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    The solubility of nitrogen in austenitic stainless steel was investigated thermogravimetrically by equilibrating thin foils of AISI 304 and AISI 316 in ammonia/hydrogen gas mixtures. Controlled dissolution of colossal amounts of nitrogen under metastable equilibrium conditions was realized...

  4. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    Directory of Open Access Journals (Sweden)

    Oladayo OLANIRAN

    2015-05-01

    Full Text Available Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr and Nickel (Ni were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail using scanning electron microscopy (SEM and X-ray diffraction (XRD. The microstructural evolution and phase formation during oxide dispersion strengthening of duplex stainless steel composites were investigated. The influence of composition variation of the reinforcements on the microstructural and corrosion behaviour in simulated mine water of the composites were investigated. In this manuscript, it was established that composition has great influence on the structure/properties relationship of the composites developed.

  5. Optimization of welding variables for duplex stainless steel by GTAW and SMAW

    International Nuclear Information System (INIS)

    The main problems faced during the welding of duplex stainless steels are cleanliness and slag inclusions. In the present work the methods to eliminate these problems were studied during the welding of duplex stainless steel by Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW). Since the duplex stainless steel is an expensive material, the initial experiments for optimization of welding variables were. carried out on low carbon steel (CS) plates with duplex consumables. Welding of butt groove joints on CS plates was carried with various sets of welding variables i.e. current, voltage and arc energy using duplex consumables. The. radiographic inspection, micro-structural observations and hardness testing of the welds suggested the welding variables that will produce a sound weld on CS plate. These optimized variables were then used for the welding of edge groove joint and T -joint on duplex stainless steel by GTAW and SMAW processes. The hardness and micro-structural study of the joints produced on duplex stainless steel by GTAW and SMAW with duplex consumables were also studied. No slag inclusions and porosity were observed in the microstructure of these weldments and their properties were found similar to the parent metal. (author)

  6. Influence of Silicon, Carbon and Phosphorus on Intergranular Corrosion of High Purity Austenitic Stainless Steels Under Transpassive Conditions

    OpenAIRE

    Stolarz, J.

    1995-01-01

    Precipitate-free Fe-Cr-Ni f.c.c. alloys exhibit strong intergranular corrosion in acid solutions at electrochemical potentials from the transpassivity range. Segregation of impurity atoms to grain boundaries is generally considered to be responsible for this specific kind of localized damage. A study of the influence of silicon, phosphorus and carbon on the intergranular transpassive corrosion of the solution treated Fe-17Cr-13Ni alloy in the 2N sulphuric acid at a fixed electrochemical poten...

  7. Stainless steels and special grades for specific applications

    International Nuclear Information System (INIS)

    The development of special steels grades with a composition between stainless steels and nickel alloys for localised corrosion resistance applications (steam condenser, combustion products de-pollution...) are shortly presented by family (austenitic and super-austenitic stainless steels of the URANUS family with or without nitrogen additions, austeno-ferritic steels), with electrochemistry corrosion tests evaluation : in standard medium (30 g/l NaCl + 6% FeCl3) or in real medium. (A.B.). 6 refs., 12 figs., 2 tabs

  8. Properties of duplex stainless steels made by powder metallurgy

    OpenAIRE

    M. Rosso; M. Actis Grande; Z. Brytan; L.A. Dobrzański

    2007-01-01

    Purpose: of this paper was to examine the mechanical properties of duplex stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies behind the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been sintered in a vacuu...

  9. Probing the duplex stainless steel phases via magnetic force microscopy

    Science.gov (United States)

    Gheno, S. M.; Santos, F. S.; Kuri, S. E.

    2008-03-01

    Duplex stainless steels are austenitic-ferritic alloys used in many applications, thanks to their excellent mechanical properties and high corrosion resistance. In this work, chemical analyses, x-ray diffraction, and magnetic force microscopy (MFM) were employed to characterize the solution annealed and aged duplex stainless steel. The samples exhibited no changes in lattice parameters and the MFM technique proved successful in clearly imaging the magnetic domain structure of the ferrite phase.

  10. Fatigue curve and stress strain response for stainless steel

    International Nuclear Information System (INIS)

    Applicability of ASME, KTA and RCC-M fatigue design curves for stainless steels is an issue of current debate. Laboratory data have shown environmental effects in coolant waters, but applicability of the proposed new design criteria to current plant components has been questioned. In a Regulatory Guide for new designs, the US NRC endorsed also a new air curve for stainless steels. Aim of the current study is to test applicability of the existing and proposed design criteria

  11. Restorasi Gigi Insisivus Sulung Menggunakan Resin Veneer Mahkota Stainless Steel

    OpenAIRE

    Hilda Shandika P.

    2008-01-01

    Untuk memperbaiki kerusakan gigi yang luas diperlukan restorasi yang tahan lama, retentif, dan estetik. Mahkota stainless steel digunakan untuk merestorasi insisivus sulung yang mengalami karies berat, kelainan bentuk atau akibat trauma. Mahkota ini merupakan restorasi yang kuat, tidak mudah fraktur, dan jarang rusak sampai beberapa tahun selama masih berada di tempatnya. Namun mahkota stainless steel memiliki kekurangan dari segi estetik karena warna peraknya yang mengganggu perhatian pada w...

  12. Thermal fatigue of austenitic and duplex stainless steels

    OpenAIRE

    Virkkunen, Iikka

    2001-01-01

    Thermal fatigue behavior of AISI 304L, AISI 316, AISI 321, and AISI 347 austenitic stainless steels as well as 3RE60 and ACX-100 duplex stainless steels was studied. Test samples were subjected to cyclic thermal transients in the temperature range 20 - 600°C. The resulting thermal strains were analyzed with measurements and numerical calculations. The evolution of thermal fatigue damage was monitored with periodic residual stress measurements and replica-assisted microscopy. The elastic strai...

  13. Corrosion resistance properties of sintered duplex stainless steel

    OpenAIRE

    L.A. Dobrzański; Z. Brytan; M. Actis Grande; M. Rosso

    2006-01-01

    Purpose: of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the ...

  14. Stainless steel reinforcement for durability in concrete structures

    International Nuclear Information System (INIS)

    Stainless steels and concrete are materials which the nuclear industry, more than any other, has given special attention to over the years. It is the intention of this paper to inform congress about developments outside the nuclear industry, in the use of stainless steel as reinforcement (rebar) in concrete structures. It is left to individual engineers within the industry to assess the implications of this information to applications with which they will be familiar. (author)

  15. Long-term aging of cast stainless steels: Mechanisms and resulting properties

    International Nuclear Information System (INIS)

    Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320 and 290 deg. C. The results indicate that thermal aging increases the tensile strength and decreases the impact energy, JIC, and tearing modules of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The ferrite content and concentration of carbon in the steel have a strong effect on the overall process of low-temperature embrittlement. The low-carbon CF-3 steels are the most resistant and the molybdenum-containing high-carbon CF-8M steels are the most susceptible to low-temperature embrittlement. Microstructural data indicate that three processes contribute to embrittlement of cast stainless steels, viz., Cr-rich α' and G-phase precipitation in the ferrite, and carbide precipitation on the austenite/ferrite phase boundary. The influence of nitrogen content and ferrite distribution on loss of toughness are discussed. The data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280-450 deg. C, i.e., extrapolation of high temperature data to reactor temperatures may not be valid for some compositions of cast stainless steel. (author)

  16. Copper contamination in thin stainless steel sheet

    International Nuclear Information System (INIS)

    The standard welding technique used at Oak Ridge Y-12 Plant for joining thin stainless sheet is the gas tungsten arc (GTA) welding process. One of the reoccurring problems with the sheet welds is surface cracking in the heat-affected zone (HAZ). Metallography shows that the cracks are only about 0.05 mm (0.002 in.) deep which is significant in a 0.25 mm (0.01 in.) thick sheet. Thus, welding requirements do not permit any surfacing cracking as detected by a fluorescent dye penetrant test conducted on every part after welding. Surface cracks have been found in both of the two most common weld designs in the thin sheet fabricated at the Oak Ridge Y-12 Plant. These butt joints are welded between two 0.25 mm thick stainless steel sheets and a tube with eyelet welded to a 25 mm (0.98 in.) thick sheet. The weld between the two sheets is made on a semiautomatic seam welding unit, whereas the tube-to-eyelet-to-sheet welds are done manually. The quality of both welds is very dependent on the welding procedure and the way the parts are placed in the weld fixturing. Metallographic examination has indicated that some welded parts with surface cracking in the weld region had copper particles on the surface, and the question of copper contamination has been raised. With the aid of a scanning electron microscope and an electron microprobe, the existence of copper in an around the surface cracks has been verified. The copper is on the surface of the parts prior to welding in the form of small dust particles

  17. Application of Carbon Steel Welded with Stainless Steel Using Nickel Base Alloy%镍基合金在碳钢与不锈钢焊接中的应用

    Institute of Scientific and Technical Information of China (English)

    于景刚

    2015-01-01

    Dissimilar material welding applied in the petrochemical industry,electric power in-dustries is very extensive;its weldability is complex,easy to produce weld defects.The weld-ability of dissimilar material welding joint between pearlitic type carbon steel and austenitic stain-less steel is analyzed.The problems that welding joint will be appeared using 309 type welding material under high temperature for a long time are expounded.The parameters with nickel base welding material for dissimilar material is determined by welding test and the results show weld-ing joints can obtain good quality using established procedure.%异种钢焊接在石油化工、电力等行业中应用极为广泛,其焊接性较为复杂,焊接中容易产生各种缺陷。对珠光体型碳钢与奥氏体不锈钢异种接头的焊接性进行了分析,阐述了采用309型焊接材料焊接的异种钢接头在长期高温作用下容易出现的问题。通过焊接试验确定了采用镍基焊接材料焊接异种钢的工艺参数,焊接试验结果表明,采用所制定的焊接工艺可以获得质量良好的焊接接头。

  18. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    OpenAIRE

    Prabhu Paulraj; Rajnish Garg

    2015-01-01

    Duplex Stainless Steels (DSS) and Super Duplex Stainless Steel (SDSS) have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic pha...

  19. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  20. Surface modifications of stainless steel to minimise contamination in mass spectrometers

    Science.gov (United States)

    Abda, J.; Douce, D.; Jones, G.; Skeldon, P.; Thompson, G. E.

    2015-12-01

    The effect of electrochemically grown and vapour deposited coatings on the build-up of contamination on stainless steel surfaces in the electrospray ionisation source of a mass spectrometer is investigated, together with their influence on the robustness of the instrument response. Quantification of the contamination build-up on flat samples, using white light interferometry, allowed the identification of the most beneficial treatments. Coating with electrochemically-grown anodic oxide and cathodic oxide films and amorphous carbon films doped with silicon or nitrogen resulted in reduced contamination compared with the uncoated stainless steel surface, and provided improved robustness of the instrument response.

  1. Surface stability and conductivity of a high Cr and Ni austenitic stainless steel plates for PEMFC

    Institute of Scientific and Technical Information of China (English)

    TIAN Rujin; SUN Juncai; WANG Jianli

    2006-01-01

    In order to use stainless steel as bipolar plate for PEMFC, electrochemical behavior of a high Cr and Ni austenitic stainless steel was studied in the solutions containing different concentration of H2SO4 and 2 mg·L-1 F-, and interfacial contact resistance was measured after corrosion tests. The experimental results show that the passive current density lowers with decreasing the concentration of H2SO4. The interfacial contact resistance between carbon paper and passive film formed in the simulated PEMFC environment is higher than the goal of bipolar plate for PEMFC. Surface conductivity should be further reduced by surface modification.

  2. Preparation and Characterization of Stainless Steel/TiC Nanocomposite Particles by Ball-milling Method

    Institute of Scientific and Technical Information of China (English)

    CHEN Wenyi; ZHOU Jian

    2009-01-01

    A stainless steel/10wt%TiC nanocomposite particles were prepared by high-energy ball-milling method using stainless steel, carbon and titanium as raw materials. The evolution of phase composition, microstructure and specific surface area of the stainless steel/TiC nanocomposite particles with increasing ball-milling time in the range of 0-100 h were investigated by XRD, SEM, TEM and BET techniques. The results showed that the stainless steel/TiC nano-composite particles were fabricated when the ball-milling time was longer than 20 h. However, the nanocomposite particles were soldered and agglomerated again when the ball-milling time was longer than 60 h. The microstructure of the composite particles transformed from lamellar structure to nanostructure during the repeated process of the cold welding and cracking. TEM image reveals clearly that the in-situ TiC nanoparticles with grain size of 3-8 nm are in the interior of the stainless steel/TiC nanocomposite particles obtained by ball-milling 100 h.

  3. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    Science.gov (United States)

    Adhe, K. M.; Kain, V.; Madangopal, K.; Gadiyar, H. S.

    1996-08-01

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 °C for 30 min to 10 h. The heat-treated samples then undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 °C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted.

  4. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    International Nuclear Information System (INIS)

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 C for 30 min to 10 h. The heat-treated samples than undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted

  5. Experimental study on ferritic stainless steel RHS and SHS cross-sectional resistance under combined loading

    OpenAIRE

    Arrayago Luquin, Itsaso; Real Saladrigas, Esther

    2015-01-01

    The excellent corrosion resistance presented by all stainless steel grades, together with their appropriate mechanical properties, aesthetic appearance and easy maintenance , make s these metallic alloys perfect for sustainable structural performances. However, their nonlinear stress - strain behaviour together with the ir strong strain hardening features, make s them different from carbon steel and makes the development of some specific guidance necessary . Although the compressive and flexu...

  6. Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This article addresses simultaneous bulk precipitation hardening and low temperature surface engineering of two commercial precipitation hardening stainless steels: Sandvik Nanoflex® and Uddeholm Corrax®. Surface engineering comprised gaseous nitriding or gaseous carburising. Microstructural char....... The duration and temperature of the nitriding/carburising surface hardening treatment can be chosen in agreement with the thermal treatment for obtaining optimal bulk hardness in the precipitation hardening stainless steel.......This article addresses simultaneous bulk precipitation hardening and low temperature surface engineering of two commercial precipitation hardening stainless steels: Sandvik Nanoflex® and Uddeholm Corrax®. Surface engineering comprised gaseous nitriding or gaseous carburising. Microstructural...... characterisation of the cases developed included X-ray diffraction analysis, reflected light microscopy and micro-hardness testing. It was found that the incorporation of nitrogen or carbon resulted in a hardened case consisting of a combination of (tetragonal) martensite and expanded (cubic) austenite...

  7. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...

  8. Fracture toughness of stainless steel welds

    International Nuclear Information System (INIS)

    The effects of temperature, composition and weld-process variations on the fracture toughness behavior for Types 308 and 16-8-2 stainless steel (SS) welds were examined using the multiple-specimen J/sub R/-curve procedure. Fracture characteristics were found to be dependent on temperature and weld process but not on filler material. Gas-tungsten-arc (GTA) welds exhibited the highest fracture toughness, a shielded metal-arc (SMA) weld exhibited an intermediate toughness and submerged-arc (SA) welds yielded the lowest toughness. Minimum-expected fracture properties were defined from lower-bound J/sub c/ and tearing modulus values generated here and in previous studies. Fractographic examination revealed that microvoid coalescence was the operative fracture mechanism for all welds. Second phase particles of manganese silicide were found to be detrimental to the ductile fracture behavior because they separated from the matrix during the initial stages of plastic straining. In SA welds, the high density of inclusions resulting from silicon pickup from the flux promoted premature dimple rupture. The weld produced by the SMA process contained substantially less manganese silicide, while GTA welds contained no silicide inclusions. Delta ferrite particles present in all welds were substantially more resistant to local failure than the silicide phase. In welds containing little or no manganese silicide, delta ferrite particles initiated microvoid coalescence but only after extensive plastic straining

  9. Martensite transformation in antimony implanted stainless steel

    International Nuclear Information System (INIS)

    The authors have used Rutherford backscattering analysis (RBS) and transmission electron microscopy (TEM) and diffraction to investigate austenitic stainless steel crystals implanted at room temperature with 80 keV Sb+ ions to a fluence of 5 x 1020 ions/m2, thus providing implantation with a heavy group V element. RBS channeling spectra from implanted crystals show a damage peak which approaches the height of the random level and therefore indicates a very high degree of disorder in the implanted layers. The distribution of the disorder extends to a depth 3-5 times the depth of the primary radiation damage. The Sb peaks under channeling as well as random conditions are indistinguishable, confirming that substitutionality during implantation is negligible. To establish the nature of the disorder which cannot be assessed from the RBS analysis alone, and in particular to assess whether an amorphous alloy is formed in the implanted layer as indicated from the RBS spectra, samples implanted under similar conditions were investigated in the TEM. Significant extra spots in the patterns can be ascribed to the presence of a radiation induced b.c.c. phase of martensitic origin. The result that a significant amount of martensite can be induced by antimony implantation seems to indicate that the main driving force for the transition is due to damage induced stress concentrations. (Auth.)

  10. Corrosion behavior of duplex stainless steel in sulphuric acid

    International Nuclear Information System (INIS)

    Duplex stainless steels are alloyed and processed to develop microstructure of roughly equal amounts of ferrite and austenite. Duplex stainless steel constitute a new class of materials because they have balanced amounts of ferrite and austenite. Since they have high content of chromium and molybdenum present, thus they have good corrosion resistance. Their corrosion resistance is double to that of annealed austenitic stainless steels with regard to pitting, crevice corrosion, sulphide stress corrosion, and chloride stress corrosion environments. The corrosion behavior of duplex stainless steel in various concentrations of sulphuric acid was studied. The reactions were carried out by placing the steel specimen in a beaker containing a known concentration of sulphuric acid at room temperature for a definite period. Pits were initiated in duplex stainless steel specimen and the propagation of pits depends upon the concentration of the acid solution in which the sample is in contact. The weight loss for definite period of time were measured and corrosion rates were calculated in millimetres per year. The corrosion rates increases with an increase in acid concentration at room temperature. A comparison of the results obtained from various concentrations of sulphuric acid with the same concentrations of nitric acid is also discussed. (author)

  11. Activating Flux Design for Laser Welding of Ferritic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    马立; 胡绳荪; 胡宝; 申俊琦; 王勇慧

    2014-01-01

    The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investi-gated in this study. Some conventional oxides, halides and carbonates were applied in laser welding. The results showed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved the penetration more effectively at low power than that at high power. The uniform design was adopted to arrange the formula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to 2.23 times as large as that without flux, including 50%ZrO2, 12.09%CaCO3, 10.43%CaO and 27.48%MgO. Through the high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the pene-tration capability.

  12. Automatic orbital TIG-welding of small bore austenitic stainless steel tubes for nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Traditionally, manual welding techniques have been employed for shop and site fabrication of small bore austenitic stainless steel tubes in the nuclear fuel reprocessing plant of British Nuclear Fuels Limited (BNFL). This Paper describes an evaluation programme carried out to develop welding procedures for both 18Cr-13Ni-1Nb and 18Cr-10Ni low carbon stainless steel small bore tubing, the type of equipment used, and the modifications required for application to shop and site environments. (author)

  13. Stainless steel tube-based cell cryopreservation containers.

    Science.gov (United States)

    Shih, Wei-Hung; Yu, Zong-Yan; Wu, Wei-Te

    2013-12-01

    This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the

  14. High surface area stainless steel brushes as cathodes in microbial electrolysis cells.

    Science.gov (United States)

    Call, Douglas F; Merrill, Matthew D; Logan, Bruce E

    2009-03-15

    Microbial electrolysis cells (MECs) are an efficient technology for generating hydrogen gas from organic matter, but alternatives to precious metals are needed for cathode catalysts. We show here that high surface area stainless steel brush cathodes produce hydrogen at rates and efficiencies similar to those achieved with platinum-catalyzed carbon cloth cathodes in single-chamber MECs. Using a stainless steel brush cathode with a specific surface area of 810 m2/m3, hydrogen was produced at a rate of 1.7 +/- 0.1 m3-H2/m3-d (current density of 188 +/- 10 A/m3) at an applied voltage of 0.6 V. The energy efficiency relative to the electrical energy input was 221 +/- 8%, and the overall energy efficiency was 78 +/- 5% based on both electrical energy and substrate utilization. These values compare well to previous results obtained using platinum on flat carbon cathodes in a similar system. Reducing the cathode surface area by 75% decreased performance from 91 +/- 3 A/m3 to 78 +/- 4 A/m3. A brush cathode with graphite instead of stainless steel and a specific surface area of 4600 m2/m3 generated substantially less current (1.7 +/- 0.0 A/m3), and a flat stainless steel cathode (25 m2/m3) produced 64 +/- 1 A/m3, demonstrating that both the stainless steel and the large surface area contributed to high current densities. Linear sweep voltammetry showed that the stainless steel brush cathodes both reduced the overpotential needed for hydrogen evolution and exhibited a decrease in overpotential over time as a result of activation. These results demonstrate for the first time that hydrogen production can be achieved at rates comparable to those with precious metal catalysts in MECs without the need for expensive cathodes. PMID:19368232

  15. Modern high strength QT, TM and duplex-stainless steels

    International Nuclear Information System (INIS)

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  16. 77 FR 28568 - Grant of Authority for Subzone Status; North American Stainless, (Stainless Steel), Ghent, KY

    Science.gov (United States)

    2012-05-15

    ... public comment has been given in the Federal Register (76 FR 66684-66685, 10-27-2011) and the application... Steel), Ghent, KY Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as... authority to establish a special-purpose subzone at the stainless steel mill of North American...

  17. Effect of tin addition on the microstructure and properties of ferritic stainless steel

    Institute of Scientific and Technical Information of China (English)

    Yang Li; Ji-peng Han; Zhou-hua Jiang; Pan He

    2015-01-01

    This article reports the effects of Sn on the inclusions as well as the mechanical properties and hot workability of ferritic stainless steel. Precipitation phases and inclusions in Sn-bearing ferritic stainless steel were observed, and the relationship between the workability and the microstructure of the steel was established. Energy-dispersive X-ray spectroscopic analysis of the steel reveals that an almost pure Sn phase forms and MnS–Sn compound inclusions appear in the steel with a higher Sn content. Little Sn segregation was observed in grain boundaries and in the areas around sulfide inclusions;however, the presence of Sn does not adversely affect the workability of the steel con-taining 0.4wt%Sn. When the Sn content is 0.1wt%–0.4wt%, Sn improves the tensile strength and the plastic strain ratio and also improves the plasticity with increasing temperature. A mechanism of improving the workability of ferritic stainless steel induced by Sn addition was discussed:the presence of Sn lowers the defect concentration in the ultra-pure ferritic lattice and the good distribution of tin in the lattice overcomes the problem of hot brittleness that occurs in low-carbon steel as a result of Sn segregation.

  18. Experimental study on the emissivity of stainless steel

    International Nuclear Information System (INIS)

    The emissivity of material is a very important parameter for thermal radiative heat transfer. The emissivities of stainless steel 316L and 304 were measured as a fuction of surface temperature and heating time of test section by indirect method using the infrared thermometer. The error range of experiment is within 3∼10% and most of errors were occurred in measuring the surface temperature by thermocouple. The range of temperature for the experiment was 50∼540.deg. C and the emissivities of stainless steel 316L and 304 were increased along with the increase of surface temperature, and the increase rates for two materials were approximately the same and the value was about 1.31x10-4(1/.deg. C). The emissivity of stainless steel 316L with surface roughness 4.1μm was between 0.44 and 0.51, and the emissivity of stainless steel 304 with surface roughness 2.0μm was between 0.32 and 0.38 in this temperature range. The emissivity of stainless steel 304 was gradually increased by a value of 0.03 at 395.deg. C for 266 hours

  19. Aging of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70,000 h at 300, 350, and 4000C reveals the formation of four different types of precipitates that are not α'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after approx. 8 y at 3000C and shows cleavage fracture. Examination of the fracture surfaces of the impact-test specimens indicates that the toughness of the long-term aged material is determined by the austenite phase. 8 figures, 3 tables

  20. Compresibility and sinterability of HCx PM steel diluted with stainless steels

    OpenAIRE

    Gordo Elena; Khattab Nermein Hamid; Ruiz-Navas Elisa María

    2003-01-01

    HCx powder metallurgy steel contains in its composition high contents of Cr and C, and significant quantities of alloy elements typical of tool steels (Mo, V, W), to provide the corrosion resistance of stainless steel with wear resistance of tool steels. HCx appears to be a suitable material for applications in aggressive environments, as valve seat inserts in automotive engines. However, this steel presents a low compressibility leading to high production costs. In this work, some results ca...

  1. Corrosion resistance of kolsterised austenitic 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Abudaia, F. B., E-mail: fabudaia@yahoo.com; Khalil, E. O., E-mail: ekhalil9@yahoo.com; Esehiri, A. F., E-mail: Hope-eseheri@hotmail.co.uk; Daw, K. E., E-mail: Khawladaw@yahoo.com [University of Tripoli Department of Materials and Metallurgical Eng, Tripoli-Libya P.O.Box13589 (Libya)

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  2. Tensile properties of the modified 13Cr martensitic stainless steels

    Science.gov (United States)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  3. Thermal Induced Processes in Laminar System of Stainless Steel - Beryllium

    International Nuclear Information System (INIS)

    The paper reports on investigation of the laminar system 'stainless steel 12Cr18Ni10Ti - Be' at thermal treatment. There have been determined sequences of phase transformations along with relative amount of iron-containing phases in the samples subjected to thermal beryllization. It has been revealed that thermal beryllization of stainless steel thin foils results in γ→α transformation and formation of the beryllides NiBe and FeBe2. It has also been revealed that direct γ→α- and reverse α→γ-transformations are accompanied by, correspondingly, formation and decomposition of the beryllide NiBe. It is shown that distribution of the formed phases within sample bulk is defined by local concentration of beryllium. Based on obtained experimental data there is proposed a physical model of phase transformations in stainless steel at thermal beryllization.

  4. Depth distribution of martensite in xenon implanted stainless steels

    International Nuclear Information System (INIS)

    The amount of stress-induced martensite and its distribution in depth in xenon implanted austenitic stainless steel poly- and single crystals have been measured by Rutherford backscattering and channeling analysis, depth selective conversion electron Moessbauer spectroscopy, cross-sectional transmission electron microscopy and x-ray diffraction analysis. In low nickel 17/7, 304 and 316 commercial stainless steels and in 17:13 single crystals the martensitic transformation starts at the surface and develops towards greater depth with increasing xenon fluence. The implanted layer is nearly completely transformed, and the interface between martensite and austenite is rather sharp and well defined. In high nickel 310 commercial stainless steel and 15:19 and 20:19 single crystals, on the other hand, only insignificant amounts of martensite are observed. (orig.)

  5. Highly robust stainless steel tips as microelectrospray emitters.

    Science.gov (United States)

    Ishihama, Yasushi; Katayama, Hiroyuki; Asakawa, Naoki; Oda, Yoshiya

    2002-01-01

    Tapered stainless steel spray tips for sheathless microelectrospray ionization (microESI) have been developed. The fabrication procedure for the tapered stainless steel tips was optimized using an electropolishing technique followed by removal of the burr. Using the tip as the microESI emitter, a stable ESI spray was obtained at a flow rate of 20 nL/min. The sensitivity of the microESI system was almost two orders greater than that of the conventional ion spray system. The tip was highly stable, and was successfully used for over 1000 h. Moreover, these stainless steel tips were suitable for use with sheathless capillary electrophoresis/mass spectrometry (CE/MS) and capillary liquid chromatography/mass spectrometry (LC/MS) for routine analysis in proteomic and pharmaceutical applications. PMID:11968120

  6. Microbially influenced corrosion of stainless steels in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, U.P.; Wolfram, J.H.; Rogers, R.D.

    1990-01-01

    This paper reviews the components, causative agents, corrosion sites, and potential failure modes of stainless steel components susceptible to microbially influenced corrosion (MIC). The stainless steel components susceptible to MIC are located in the reactor coolant, emergency, and reactor auxiliary systems, and in many plants, in the feedwater train and condenser. The authors assessed the areas of most high occurrence of corrosion and found the sites most susceptible to MIC to the heat-affected zones in the weldments of sensitized stainless steel. Pitting is the predominant MIC corrosion mechanisms, caused by sulfur reducing bacteria (SRB). Also discussed is the current status of the diagnostic, preventive, and mitigation techniques, including use of improved water chemistry, alternate materials, and improved thermomechanical treatments. 37 refs., 3 figs.

  7. Embrittlement of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Mechanical property data from Charpy-impact and J-R curve tests are presented for several experimental and commercial heats, as well as reactor-aged material of CF-3, CF-8, and CF-8M grades of cast stainless steel. The effects of material variables on the embrittlement of cast stainless steels are evaluated. The chemical composition and ferrite morphology have a strong effect on the extent and kinetics of embrittlement. The data are analyzed to establish the mechanisms of embrittlement. The procedure and correlations for predicting the impact strength and fracture toughness of cast components during reactor service are described. The lower bound values of impact strength and fracture toughness for low-temperature aged cast stainless steel are defined. 13 refs., 13 figs., 3 tabs

  8. Evaluation of Additive Manufacturing for Stainless Steel Components

    Energy Technology Data Exchange (ETDEWEB)

    Peter, William H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lou, Xiaoyuan [General Electric (GE), Wilmington, NC (United States); List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Webber, David [General Electric (GE), Wilmington, NC (United States)

    2016-09-01

    This collaboration between Oak Ridge National Laboratory and General Electric Company aimed to evaluate the mechanical properties, microstructure, and porosity of the additively manufactured 316L stainless steel by ORNL’s Renishaw AM250 machine for nuclear application. The program also evaluated the stress corrosion cracking and corrosion fatigue crack growth rate of the same material in high temperature water environments. Results show the properties of this material to be similar to the properties of 316L stainless steel fabricated additively with equipment from other manufacturers with slightly higher porosity. The stress corrosion crack growth rate is similar to that for wrought 316L stainless steel for an oxygenated high temperature water environment and slightly higher for a hydrogenated high temperature water environment. Optimized heat treatment of this material is expected to improve performance in high temperature water environments.

  9. Mechanical properties of duple stainless steels laser joints

    International Nuclear Information System (INIS)

    The welded joints of stainless steels always present problems for the microstructural modifications that occur in the heat affected zone. Particularly, duplex stainless steels present very important changes when the weld pool solidifies forming fundamentally ferritic structures with some austenite in grain boundaries. These microstructural modifications, and those which occur in the HAZ, justify the mechanical properties of the joint and mainly those of plasticity, being all of them influenced by the processing conditions. In this work the influence of the laser welding speed on the tensile behaviour od duplex stainless steel welded joints is presented. The microstructure of the obtained seams and of the heat affected zone will be evaluated by means of optic and scanning electron microscopy. Also, different microhardness profiles have been obtained to evaluate the modifications in the mechanical properties both in the seam and the zone of thermal affection. (Author) 23 refs

  10. The effect of rolling on carbon steel and stainless steel metallurgy composite panels%轧制对碳钢不锈钢冶金结合的影响

    Institute of Scientific and Technical Information of China (English)

    杏玮

    2014-01-01

    With the rapid development of the global economy and the extensive use of land resource,exploitation of ocean energy has been more and more attention. The harsh environment of the ocean put forward higher requirements to the equipment and materials. Faced with this complex environment,the characteristics of bimetallic composite materials have a huge advantage. The composite-material which consist of carbon steel,brazing layer and stainless steel was investigated in order to reveal the change on the bonding strength of the binding layer after rolling. Then, the change on microstructure which was in the vicinity of the weld was analyzed by metallurgical microscope. The tensile fracture of interface before and after rolling was also characterized by scanning electron microscope to analyze the its bonding strength. Finally,we could come some expectant conclusions.%随着全球经济的飞速发展和对陆地资源的大量使用,更深更远的海洋中的能源开采受到了越来越多的重视,而海洋的苛刻环境就对设备材料提出了更高的要求。面对这种复杂的环境时,双金属复合材料的特性就有了巨大的优势。本文针对在碳钢表面预镀镍钼磷合金钎料制备出的碳钢+中间钎焊层+外层不锈钢的复合材料,研究经过轧制处理后其结合层结合强度的变化,利用金相显微镜分析焊缝附近组织的变化,扫描电子显微镜分析拉伸断口以此来对轧制前后结合强度进行分析。

  11. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Directory of Open Access Journals (Sweden)

    ZHOU Shu-cai

    2007-08-01

    Full Text Available An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.

  12. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT ) in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer

  13. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

    Directory of Open Access Journals (Sweden)

    Massimiliano Filippi

    2009-03-01

    Full Text Available The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing, in comparison with those obtained under standard/conventional process (EP conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material - medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES and X-ray photoelectron spectroscopy (XPS were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size, EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.

  14. Sinter-hardening process applicable to stainless steels

    Directory of Open Access Journals (Sweden)

    M. Rosso

    2007-10-01

    Full Text Available Purpose: of this paper was to describe sintered duplex stainless steels manufactured in sinter-hardening process and its usability in field of stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, ferritic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies apart from the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been compacted at 800 MPa and sintered in a vacuum furnace with argon backfilling at temperatures from 1200°C to 1285°C for 0.5, 1 and 2 h. After sintering different cooling cycles were applied using nitrogen under pressure from 0.6 MPa to 0.002 MPa in argon atmosphere. Produced duplex stainless steels have been studied by scanning and optical microscopy and EDS chemical analysis of microstructure components.Findings: Obtained microstructure and mechanical properties of sintered duplex stainless steel strictly depend on the density and the pore morphology present in the microstructure and especially on cooling rate directly from sintering temperature in sinter-hardening process. The lowest cooling rate - applied gas pressure, the mechanical properties and corrosion resistance decrease due to precipitation of sigma phase. Proper bi-physic microstructure was obtained using nitrogen under pressure of 0.6 and 0.2 MPa.Research limitations/implications: Applied fast cooling rate seems to be a good compromise for mechanical properties and obtained microstructures, nevertheless further tests should be carried out in order to examine its influence on corrosion properties.Originality/value: The utilization of sinter-hardening process combined with use of elemental powders added to a stainless steel base powder shows its potentialities in terms of good microstructural homogeneity and especially working with cycles possible to introduce in

  15. Failure of austenitic stainless steel tubes during steam generator operation

    OpenAIRE

    M. Głowacka; J. Łabanowski; S. Topolska

    2012-01-01

    Purpose: of this study is to analyze the causes of premature failure of steam generator coil made of austenitic stainless steel. Special attention is paid to corrosion damage processes within the welded joints.Design/methodology/approach: Examinations were conducted several segments of the coil made of seamless cold-formed pipes Ø 23x2.3 mm, of austenitic stainless steel grade X6CrNiTi18-10 according to EN 10088-1:2007. The working time of the device was 6 months. The reason for the withdrawa...

  16. Fatigue behavior of welded austenitic stainless steel in different environments

    OpenAIRE

    D. S. Yawas; S.Y. Aku; S.O. Aluko

    2014-01-01

    The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat...

  17. Impact toughness of tungsten films deposited on martensite stainless steel

    Institute of Scientific and Technical Information of China (English)

    HUANG Ning-kang; YANG Bin; WANG De-zhi

    2005-01-01

    Tungsten films were deposited on stainless steel Charpy specimens by magnetron sputtering followed by electron beam heat treatment. Charpy impact tests and scanning electron microscopy were used to investigate the ductile-brittle transition behavior of the specimens. With decreasing test temperature the fracture mode was transformed from ductile to brittle for both kinds of specimens with and without W films. The data of the crack initiation energy, crack propagation energy, impact absorbing energy, fracture time and deflection as well as the fracture morphologies at test temperature of -70 ℃ show that W films can improve the impact toughness of stainless steel.

  18. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    Science.gov (United States)

    Michalska, J.

    2011-05-01

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  19. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Michalska, J, E-mail: joanna.k.michalska@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  20. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Cornelia Bellmann

    2012-12-01

    Full Text Available Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.

  1. Deformation and rupture of stainless steel under cyclic, torsional creep

    OpenAIRE

    Rees, DWA

    2008-01-01

    Copyright 2008 @ Engineering Integrity Society. Recent results from a long-term, strain-limited, cyclic creep test program upon stainless steel tubes are given. The test conditions employed were: constant temperature 500 °C, shear stress Ƭ = ± 300 MPa and shear strain limits ƴ = ± 4%. It is believed that a cyclic creep behaviour for the material has been revealed that has not been reported before in the literature. That is, the creep curves for stainless steel under repeated, shear stress...

  2. Comparison of antibacterial ability of copper and stainless steel

    Institute of Scientific and Technical Information of China (English)

    GENG Ping; ZHANG Wen; TANG Hui; ZHANG Xinai; JIN Litong; FENG Zhen; WU Zirong

    2007-01-01

    In this paper,the electro-analysis and spectrophotometric analysis methods were used to study the antibacterial ability of copper and stainless steel materials.When Escherichia coli (E.coli) and photo-bacteria were used as samples,the antibacterial effect of stainless steel was very weak,while the percentage of bacteria dying from exposure to metallic copper for 30 min was over 90%.The antibacterial ability of copper has a potential application in the field of disinfection,food packaging and piping of drinking water.

  3. Development status of ultrasonic test techniques for cast stainless steel

    International Nuclear Information System (INIS)

    Ultrasonic testing has been thought to be difficult to apply to cast stainless steel which is used as the material for the main coolant pipes in pressurized water reactors (PWRs). An ultrasonic testing technique using large aperture twin crystal transducers was developed in INSS for application to inspection of the main coolant pipes. The method was evaluated in an application to detect circumferential and axial defects in the cast stainless steel pipes. It was found that (1) the defects could be detected which had a depth that was so small that their evaluation was not required; and (2) depth sizing and length sizing of detected defects were also possible. (author)

  4. Corrosion of 316L stainless steels MAVL wastes containers

    International Nuclear Information System (INIS)

    The long lived and medium activity wastes are conditioned or could be re-conditioned in primary drums of 316L stainless steels. In the framework of wastes storage, these drums will be placed in concrete containers; each containers would contain one or more drums. This document recalls global information on the corrosion of stainless steels, analyzes specific conditions bond to the drums conditioning in concrete containers and the nature of the wastes, and details the consequences on the possible risks of external and internal corrosion of the drums. (A.L.B.)

  5. Intergranular stress corrosion in soldered joints of stainless steel 304

    International Nuclear Information System (INIS)

    The intergranular stress cracking of welded joints of austenitic stainless steel, AISI 304, is a serious problem in BWR type reactors. It is associated with the simultaneous presence of three factors; stress, a critical media and sensibilization (DOS). EPR technique was used in order to verify the sensibilization degree in the base metal, and the zone affected by heat and welding material. The characterization of material was done. The objective of this work is the study of microstructure and the evaluation of EPR technique used for the determination of DOS in a welded plate of austenitic stainless steel AISI 304. (Author)

  6. Ozone decay on stainless steel and sugarcane bagasse surfaces

    Science.gov (United States)

    Souza-Corrêa, Jorge A.; Oliveira, Carlos; Amorim, Jayr

    2013-07-01

    Ozone was generated using dielectric barrier discharges at atmospheric pressure to treat sugarcane bagasse for bioethanol production. It was shown that interaction of ozone molecules with the pretreatment reactor wall (stainless steel) needs to be considered during bagasse oxidation in order to evaluate the pretreatment efficiency. The decomposition coefficients for ozone on both materials were determined to be (3.3 ± 0.2) × 10-8 for stainless steel and (2.0 ± 0.3) × 10-7 for bagasse. The results have indicated that ozone decomposition has occurred more efficiently on the biomass material.

  7. Evaluation of the thermal ageing of duplex stainless steels

    International Nuclear Information System (INIS)

    Three methods have been investigated to follow up the thermal ageing of duplex stainless steels: microhardness tests, instrumented ultramicrohardness tests and Small Angle Neutron Scattering (SANS) techniques. The values measured with these methods have been correlated with pertinent parameters of the metallurgical ageing phenomenon determined by Atom-Probe. These methods seem to be sensitive and reproducible enough to detect and follow up the ageing of duplex stainless steels. They can be applied on small samples (chips) drawn from in-service components. (authors). 10 refs., 9 figs., 3 tabs

  8. Application and development of stainless steel reinforced concrete structure

    Directory of Open Access Journals (Sweden)

    Meng Xian Hong

    2016-01-01

    Full Text Available Now reinforced concrete structure in our country develops very fast, and reinforced concrete structure has been widely applied by various buildings. But with the deepening of the research experts and scholars, they found in some areas where high corrosion of reinforced concrete structure with the increase of service time, the concrete cracks, and led to the internal steel bar corrosion conditions. In the face of these problems, the experts used stainless steel applied to the study of concrete. In this paper, the stainless stell reinforced concrete structure of the application and development status of made briefly.

  9. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG) 1.31, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This... content in stainless steel weld metal. It updates the guide to remove references to outdated standards...

  10. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates...

  11. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  12. Properties of duplex stainless steels made by powder metallurgy

    Directory of Open Access Journals (Sweden)

    M. Rosso

    2007-04-01

    Full Text Available Purpose: of this paper was to examine the mechanical properties of duplex stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies behind the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been sintered in a vacuum furnace with argon backfilling at 1260°C for 1 h. After sintering: rapid cooling have been applied in argon atmosphere. Produced duplex stainless steels have been studied by scanning and optical microscopy. Mechanical properties such as tensile strength, impact energy, hardness and wear rate were evaluated.Findings: According to achieved results, it was affirmed that applied sintering method as well as powder mixes preparation allows for manufacturing the sintered duplex steels with good mechanical properties which depends on austenite/ferrite ratio in the microstructure and elements partitioning between phases. The additions of alloying elements powders (promoting formation ferritic and austenitic phase to master alloy powder, makes possible the formation of structure and properties of sintered duplex stainless steels. Sintered duplex steels obtained starting from austenitic and ferritic powders with admixture of elemental powders achieve lower mechanical properties when compared to composition obtained by mixing ferritic and austenitic powder in equal amounts.Research limitations/implications: According to the powders characteristic, the applied fast cooling rate seems to be a good compromise for mechanical properties and microstructures, nevertheless further tests should be carried out in order to examine different cooling rates.Originality/value: The use of elemental powders added to a stainless steel base showed its potentialities, in terms of fair compressibility and final

  13. A review of hot cracking in austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  14. Corrosion resistance of stainless steel pipes in soil

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, L.; Camitz, G. [Swerea KIMAB AB, Box 55970, SE-102 16 Stockholm (Sweden); Peultier, J.; Jacques, S.; Baudu, V.; Barrau, F.; Chareyre, B. [Industeel and ArcelorMittal R and D, 56 rue Clemenceau, BP19, FR-71201 le Creusot, Cedex (France); Bergquist, A. [Outokumpu Stainless AB, P.O. Box 74, SE-774 22 Avesta (Sweden); Pourbaix, A.; Carpentiers, P. [Belgian Centre for Corrosion Study, Avenue des Petits-Champs 4A, BE 1410 Waterloo (Belgium)

    2011-04-15

    To be able to give safe recommendations concerning the choice of suitable stainless steel grades for pipelines to be buried in various soil environments, a large research programme, including field exposures of test specimens buried in soil in Sweden and in France, has been performed. Resistance against external corrosion of austenitic, super austenitic, lean duplex, duplex and super duplex steel grades in soil has been investigated by laboratory tests and field exposures. The grades included have been screened according to their critical pitting-corrosion temperature and according to their time-to-re-passivation after the passive layer has been destroyed locally by scratching. The field exposures programme, being the core of the investigation, uses large specimens: 2 m pipes and plates, of different grades. The exposure has been performed to reveal effects of aeration cells, deposits or confined areas, welds and burial depth. Additionally, investigations of the tendency of stainless steel to corrode under the influence of alternating current (AC) have been performed, both in the laboratory and in the field. Recommendations for use of stainless steels under different soil conditions are given based on experimental results and on operating experiences of existing stainless steel pipelines in soil. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Electrochemically induced annealing of stainless-steel surfaces

    Science.gov (United States)

    Burstein, G. T.; Hutchings, I. M.; Sasaki, K.

    2000-10-01

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  16. Estimation of fracture toughness of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the low-temperature embrittlement of cast duplex stainless steels under light water reactor (LWR) operating conditions and to evaluate possible remedies for the embrittlement problem in existing and future plants. The scope of the investigation includes the following goals: develop a methodology and correlations for predicting the toughness loss suffered by cast stainless steel components during normal and extended life of LWRs, validate the simulation of in-reactor degradation by accelerated aging, and establish the effects of key compositional and metallurgical variables on the kinetics and extent of embrittlement. Microstructural and mechanical property data are being obtained on 25 experimental heats (static-cast keel blocks and slabs) and 6 commercial heats (centrifugally cast pipes and a static-cast pump impeller and pump casing ring), as well as on reactor-aged material of CF-3, CF-8, and CF-8M grades of cast stainless steel. The ferrite content of the cast materials ranges from 3 to 30%. Charpy-impact, tensile, and J-R curve tests have been conducted on several experimental and commercial heats of cast stainless steel that were aged up to 30,000 h at temperatures of 290 to 400 degrees C. The results indicate that thermal aging at these temperatures increases the tensile strength and decreases the impact energy and fracture toughness of the steels. In general, the low-carbon CF-3 steels are the most resistant to embrittlement, and the molybdenum-containing high-carbon CF-8M steels are the least resistant. Ferrite morphology has a strong effect on the degree or extent of embrittlement, and the kinetics of embrittlement can vary significantly with small changes in the constituent elements of the cast material

  17. Process-microstructure-corrosion interrelations for stainless steel

    OpenAIRE

    Lindell, David

    2015-01-01

    Stainless steels were first developed in the early 20th century and have since then emerged as a very diverse class of engineering materials. Along with steels having new combinations of properties, there is a continuous development of new technologies allowing the material to be produced in a faster and more energy effcient manner. A prerequisite for new technologies to be adapted quicklyis a fundamental understanding of the microstructure evolution throughout theprocess chain. The first par...

  18. High density sintered stainless steels with improved properties

    OpenAIRE

    M. Actis Grande; M. Rosso

    2007-01-01

    Purpose: of this paper is the study of the properties of sintered AISI 316L (1.4404 according to EN 10088. Sintered stainless steels occupy a prominent position in the high alloyed steels, however their properties are limited by the presence of porosity. The improvement of quality and performances of products coupled with a reduction of manufacturing costs calls for high compacting pressures, as well as high sintering temperatures. However, the possibility to fill the open porosity of sintere...

  19. Hydrometallurgical removal of zinc from stainless steel flue dusts

    OpenAIRE

    Järvinen, Outi

    2013-01-01

    Stainless steel flue dusts are problematic to the steel industry because of their chemi-cal composition that makes direct recycling and landfilling impossible. Pyrometallur-gical and hydrometallurgical processes have been tested in dust treatment. At the moment, most of the processes that have reached commercialization have been py-rometallurgical. Still, it is thought that hydrometallurgy could offer solutions espe-cially in small scale on-site treatment as it is less energy intensive and re...

  20. Construction of a stainless steel storage tank for phosphoric acid

    OpenAIRE

    Buh, Igor

    2006-01-01

    The main purpose of this thesis was to get acquainted with all necessary procedures for steel storage tank manufacturing and assembly control. The representative storage tank was built from stainless steel and it was designed to hold 750 m3 of phosphoric acid. In the first section all legally mandatory control procedures are described and they are applied to our storage tank in the second section. Welding control is presented, which consists of destructive and non-destructive inspections of t...

  1. Stainless steel weld metal designed to mitigate residual stresses

    OpenAIRE

    Shirzadi, A. A.; Bhadeshia, H. K. D. H.; Karlsson, L.; Withers, P.J.

    2009-01-01

    There have been considerable efforts to create welding consumables which on solid state phase transformation partly compensate for the stresses which develop when a constrained weld cools to ambient temperatures. All of these efforts have focused on structural steels which are ferritic. In the present work, alloy design methods have been used to create a stainless steel welding consumable which solidifies as δ ferrite, transforms almost entirely into austenite which then undergoes martensitic...

  2. Instrumental Neuron Activation Analysis for certification of stainless steel materials

    International Nuclear Information System (INIS)

    The use of Instrumental Neuron Activation Analysis (INAA) may contribute to improve the certification of the materials, especially in the case of minor and trace elements. In presented paper the INAA method of analysis of stainless steel materials has been elaborated. The obtained results were compared with those of common analytical techniques. The presented results show the usefulness of the INAA method for the certification of CRMs for the iron and steel industry

  3. Mechanical properties of low-nickel stainless steel

    Science.gov (United States)

    Montano, J. W.

    1978-01-01

    Demand for improved corrosion-resistant steels, coupled with increased emphasis on conserving strategic metals, has led to development of family of stainless steels in which manganese and nitrogen are substituted for portion of usual nickel content. Advantages are approximately-doubled yield strength in annealed condition, better resistance to stress-corrosion cracking, retention of low magnetic permeability even after severe cold working, excellent strength and ductility at cryogenic temperatures, superior resistance to wear and galling, and excellent high-temperature properties.

  4. Properties of super stainless steels for orthodontic applications.

    Science.gov (United States)

    Oh, Keun-Taek; Kim, Young-Sik; Park, Yong-Soo; Kim, Kyoung-Nam

    2004-05-15

    Orthodontic stainless-steel appliances are considered to be corrosion resistant, but localized corrosion can occur in the oral cavity. This study was undertaken to evaluate the properties of super stainless steels in orthodontic applications. Accordingly, the metallurgical properties, mechanical properties, corrosion resistance, amount of the released nickel, cytotoxicity, and characteristics of the passive film were investigated. Corrosion resistances of the specimens were high and in the following order: super austenitic stainless steel (SR-50A) > super ferritic stainless steel (SFSS) = super duplex stainless steel (SR-6DX) > 316L SS > super martensitic stainless steel (SR-3Mo) in artificial saliva, 37 degrees C. At 500 mV (SCE), current densities of SR-50A, SFSS, SR-6DX, 316L SS, and SR-3Mo were 5.96 microA/cm(2), 20.3 microA/cm(2), 31.9 microA/cm(2), 805 microA/cm(2), and 5.36 mA/cm(2), respectively. Open circuit potentials of SR-50A, 316L SS, SR-6DX, SR-3Mo, and SFSS were - 0.2, - 0.22, - 0.24, - 0.43, and - 0.46 V (SCE), respectively. SR-50A, SFSS, and SR-6DX released below 3 ng/ml nickel for 8 weeks, and increased a little with immersion time, and 316L SS released about 3.5 ng/ml nickel, but SR-3Mo released a large amount of nickel, which increased with immersion time. The study demonstrated that SR-50A, SR-6DX, and SFSS have high corrosion resistance and mild or no cytotoxicity, due to the passive film enhanced by synergistic effect of Mo + N or by high addition effect of Cr + W. All super stainless steels showed very low cytotoxicity regardless of their nickel contents, although SR-3Mo was found to be relatively cytotoxic. From these studies, these steels are considered suitable for orthodontic applications. PMID:15116408

  5. Facile, soot free approach toward synthesis of carbon nanoropes via chemical vapor deposition of acetylene in the presence of MnFe2O4 coated on stainless steel

    Science.gov (United States)

    Dhand, Vivek; Bharadwaj, S.; Amareshwari, K.; Himabindu, V.; Rhee, Kyong Yop; Park, Soo-Jin; Hui, David

    2015-12-01

    High density, soot free, novel and a facile approach toward synthesis of carbon nanoropes (CNRs) were successfully carried out in a chemical vapor deposition (CVD) process. Manganese ferrite (MnFe2O4) coated on stainless steel foil (SS 316 grade) was used as a catalyst to initiate the growth of CNR. The coated catalyst was introduced into the CVD and the chamber temperature was set at 700 °C later followed with the release of acetylene (50 sccm) and nitrogen (500 sccm) gas, respectively. Total reaction continued until 30 min. No purification or oxidation process of the soot was involved. Analysis reveals the presence of intermingled CNRs with semi crystalline nature of the sample. The elemental analysis confirms the presence of manganese and iron whereas Raman spectrum shows the characteristic narrow G and D bands. The sample displays a super-paramagnetic behavior and is thermally stable up to 500-550 °C presenting a strong exothermic reaction.

  6. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Jorgensen, R.L.;

    2009-01-01

    to stainless steel. Attachment of Pseudomonas fluorescens AH2 to stainless steel coated with water-soluble coatings of animal origin was significantly reduced as compared with noncoated stainless steel or stainless steel coated with laboratory substrate or extracts of plant origin. Coating with animal extracts...... also decreases adhesion of other food-relevant bacteria. The manipulation of adhesion was not attributable to growth inhibitory effects. Chemical analysis revealed that the stainless steels were covered by homogenous layers of adsorbed proteins. The presence of tropomyocin was indicated by appearance...

  7. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. PMID:26952459

  8. Ionic bombardment of stainless steel by nitrogen and nickel ions immersion

    Institute of Scientific and Technical Information of China (English)

    XIONG Ling; HU Yong-jun; XU jian; MENG Ji-long

    2008-01-01

    A new nitriding process was used to carry out the ionic bombardment, in which nickel ion was introduced. The microstructure, composition and properties of the treated stainless steel were studied by means of scanning electron microscopy(SEM), micro-hardness test and electrochemistry method. The results show that the hardness of the stainless steel is greatly increased after ionic bombardment under nitrogen and nickel ions immersion. Vickers' hardness as high as Hv1268 is obtained. The bombarded stainless steel is of a little reduction in corrosion resistance, as compared with the original stainless steel. However, as compared with the traditional ion-nitriding stainless steel, the corrosion resistance is greatly improved.

  9. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution.

  10. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders

    DEFF Research Database (Denmark)

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni;

    2015-01-01

    PURPOSE: The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. METHODS: A Danish national company-based historical cohort of 5,303 male ever...... was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95 % confidence intervals (CIs) were...... nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95 % CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95 % CI 1...

  11. Oxidation protection of 20Cr-25Ni-Nb stainless steel at 1,300C

    International Nuclear Information System (INIS)

    20Cr-25Ni-Nb stabilized stainless steel is used as the fuel cladding in the United Kingdom advanced gas-cooled nuclear power plants. Enhanced environmental protection of chromia-forming advanced metallic alloys at normal operating temperature, typically approx-lt 900C, may be provided by two well-established approaches - incorporation of reactive elements into the protective oxide scale or an amorphous ceramic coating acting as a diffusion barrier. The continued effectiveness of such approaches, namely by cerium and yttrium ion implantation and with a vapor deposited amorphous silica coating, in reducing oxidation of 20Cr-25Ni-Nb stainless steel in a carbon-dioxide-based environment has been examined during 0.5 and 1 hr transients to 1,300C. The influence of pre-oxidation of the ion-implanted, silica-coated, and uncoated steel for extended periods in the same environment at 825-900C has also been established

  12. Effect of pulsating water jet peening on stainless steel

    OpenAIRE

    Hlaváček, Petr

    2015-01-01

    Effects of action of pulsating water jet on polished surface of the stainless steel AISI 316L are presented. Surface slip bands appeared after this treatment. In the most severe conditions, microcracks were formed. Hardness measurement showed that the affected layer was thinner than 60 μm. Application of the pulsating water jet has beneficial effect on the fatigue life of the material.

  13. Fatigue behavior of welded austenitic stainless steel in different environments

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  14. Failure Assessment Diagram for Brazed 304 Stainless Steel Joints

    Science.gov (United States)

    Flom, Yory

    2011-01-01

    Interaction equations were proposed earlier to predict failure in Albemet 162 brazed joints. Present study demonstrates that the same interaction equations can be used for lower bound estimate of the failure criterion in 304 stainless steel joints brazed with silver-based filler metals as well as for construction of the Failure Assessment Diagrams (FAD).

  15. Sticking Phenomenon Occurring during Hot Rolling of Ferritic Stainless Steels

    International Nuclear Information System (INIS)

    Sticking phenomenon occurring during hot rolling of two ferritic stainless steels, STS 430J1L and STS 436L, was investigated in this study. A hot rolling simulation test was carried out using a high-temperature wear tester capable of controlling rolling speed, load, and temperature. The simulation test results at 900 .deg. C and 1000 .deg. C revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation, for the both stainless steels, and that STS 430J1L had a smaller number of sticking nucleation sites than the STS436L because of higher high-temperature hardness, thereby leading to a smaller amount of the sticking. When the test temperature was 1070 .deg. C, the sticking hardly occurred in both stainless steels as Fe-Cr oxide layers were formed on the surface of the rolled materials. These findings suggested that the improvement of high-temperature properties of stainless steels and the appropriate rolling conditions for readily forming oxide layers on the rolled material surface were required in order to prevent or minimize the sticking

  16. Hydrogen embrittlement of super duplex stainless steel in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Elhoud, A.M.; Renton, N.C.; Deans, W.F. [University of Aberdeen, School of Engineering, Aberdeen, AB24 3UE (United Kingdom)

    2010-06-15

    Super duplex stainless steel (SDSS) is a good choice of material when resistance to harsh environments is needed. Despite the material's excellent corrosion resistance and high strength, a number of in-service failures have been recorded. The root cause of these failures was environmentally induced cracking initiated at manufacturing and in-service metallurgical defects. In this study the hydrogen embrittlement of pre-strained super duplex stainless steel specimens was investigated after 48 h cathodic charging in 0.1 M H{sub 2}SO{sub 4}. The metallurgical changes that resulted from four levels of cold work (4, 8, 12, and 16% plastic strain) were considered and their effect on the embrittlement of the SDSS alloy was investigated. After hydrogen charging, the specimens were pulled immediately to failure and the mechanical properties evaluated. The obtaining fracture morphology was investigated using low and high magnification microscopy. Experimental results indicated that charging the super duplex stainless steel alloy with hydrogen caused varying degrees of embrittlement depending on cold work level. Increasing cold work resulted in a reduction of the elongation to failure. Microscopic investigation confirmed the significant effect of cold work on the hydrogen embrittlement susceptibility of the super duplex stainless steel alloy investigated. (author)

  17. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE presen...

  18. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    V Shankar; T P S Gill; S L Mannan; S Sundaresan

    2003-06-01

    Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.

  19. 77 FR 1504 - Stainless Steel Wire Rod From India

    Science.gov (United States)

    2012-01-10

    ... Commission instituted this review on July 1, 2011 (76 FR 38686) and determined on October 4, 2011, that it would conduct an expedited review (76 FR 64105, October 17, 2011). The Commission transmitted its... COMMISSION Stainless Steel Wire Rod From India Determination On the basis of the record \\1\\ developed in...

  20. Alternative to Nitric Acid for Passivation of Stainless Steel Alloys

    Science.gov (United States)

    Lewis, Pattie L.; Kolody, Mark; Curran, Jerry

    2013-01-01

    Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.

  1. Elaboration of selective solar energy absorbers beginning with stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Aries, L.; Bonino, J.P.; Benavente, R.; Laaouini, A.; Traverse, J.P.

    1981-01-01

    An original simple and cheap method of elaboration of selective surfaces is described. The method involves anodic oxydation of stainless steel in acid solution with addition of sulfides; chemical conversion of the metallic surface is achieved. The selective surfaces exhibit an excellent thermal stability.

  2. Metal release from stainless steel in biological environments: A review.

    Science.gov (United States)

    Hedberg, Yolanda S; Odnevall Wallinder, Inger

    2016-03-01

    Due to its beneficial corrosion resistance, stainless steel is widely used in, e.g., biomedical applications, as surfaces in food contact, and for products intended to come into skin contact. Low levels of metals can be released from the stainless steel surface into solution, even for these highly corrosion resistant alloys. This needs to be considered in risk assessment and management. This review aims to compile the different metal release mechanisms that are relevant for stainless steel when used in different biological settings. These mechanisms include corrosion-induced metal release, dissolution of the surface oxide, friction-induced metal release, and their combinations. The influence of important physicochemical surface properties, different organic species and proteins in solution, and of biofilm formation on corrosion-induced metal release is discussed. Chemical and electrochemical dissolution mechanisms of the surface oxides of stainless steel are presented with a focus on protonation, complexation/ligand-induced dissolution, and reductive dissolution by applying a perspective on surface adsorption of complexing or reducing ligands and proteins. The influence of alloy composition, microstructure, route of manufacture, and surface finish on the metal release process is furthermore discussed as well as the chemical speciation of released metals. Typical metal release patterns are summarized. PMID:26514345

  3. Transformation in Austenitic Stainless Steel Sheet under Different Loading Directions

    NARCIS (Netherlands)

    Boogaard, van den A.H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress tr

  4. Heat treatment method for two-phase stainless steel

    International Nuclear Information System (INIS)

    A two-phase stainless steel the toughness of which is reduced by exposure to a high temperature is kept at from 900degC to 1040degC to be solidified and then quenched. With such procedures, a δ-phase deposited in a ferrite phase can be eliminated to restore the toughness. In the solidification step, the two-phase stainless steel having a plate thickness of 1cm or less is kept for 15mins or more, and is kept for additional 5min on every increase of the thickness of 1cm, and then it is compulsorily cooled with water or air. In the heat treatment comprising such steps, a Cr-depleted layer of the welded portion of the two-phase stainless steel of reduced toughness is eliminated to restore an initial state thereby enabling to maintain the integrity of the welded portion. Since the δ-phase deposited in the ferrite phase can be eliminated by solid-solubilizing the two phase stainless steel of reduced toughness by induction heating, reduced toughness can be restored thereby enabling to keep the integrity. (T.M.)

  5. Towards commercialization of fast gaseous nitrocarburising stainless steel

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo; Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    A novel method for fast and versatile low temperature nitrocarburising of stainless steel has recently been invented by the present authors. Selected results obtained with this new surface hardening process are presented. It is shown that it is possible to obtain a case thickness of 20 μm on...

  6. Sticking Phenomenon Occurring during Hot Rolling of Ferritic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Son, Chang Young; Kim, Chang Kyu; Ha, Dae Jin; Lee, Sung Hak [Pohang Univ. of Institute of Science and Technology, Pohang (Korea, Republic of); Lee, Jong Seog; Kim, Kwang Tae; Lee, Yong Deuk [POSCO Technical Research Lab., Gwangyang (Korea, Republic of)

    2007-01-15

    Sticking phenomenon occurring during hot rolling of two ferritic stainless steels, STS 430J1L and STS 436L, was investigated in this study. A hot rolling simulation test was carried out using a high-temperature wear tester capable of controlling rolling speed, load, and temperature. The simulation test results at 900 .deg. C and 1000 .deg. C revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation, for the both stainless steels, and that STS 430J1L had a smaller number of sticking nucleation sites than the STS436L because of higher high-temperature hardness, thereby leading to a smaller amount of the sticking. When the test temperature was 1070 .deg. C, the sticking hardly occurred in both stainless steels as Fe-Cr oxide layers were formed on the surface of the rolled materials. These findings suggested that the improvement of high-temperature properties of stainless steels and the appropriate rolling conditions for readily forming oxide layers on the rolled material surface were required in order to prevent or minimize the sticking.

  7. Microbially induced corrosion of carbon steel in deep groundwater environment

    Directory of Open Access Journals (Sweden)

    Pauliina eRajala

    2015-07-01

    Full Text Available The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland for periods of three and eight months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel.

  8. Microbially induced corrosion of carbon steel in deep groundwater environment

    Science.gov (United States)

    Rajala, Pauliina; Carpén, Leena; Vepsäläinen, Mikko; Raulio, Mari; Sohlberg, Elina; Bomberg, Malin

    2015-01-01

    The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland) for periods of 3 and 8 months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel. PMID:26257707

  9. Welding Characteristics of Nitrogen Added Stainless Steels for Nuclear Application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. D. [Pohang Iron and Steel Co., Ltd, Pohang (Korea, Republic of)

    1997-07-01

    Characteristics of properties and manufacturing process was evaluated in development of high strength and corrosion resistant stainless steel. The continuous cast structure of STS 316L was similar to that of STS 304. The most of residual {delta}-ferrite of STS 316L was vermicular type. The residual {delta}-ferrite content increased from the surface towards the center of the slab and after reaching a maximum value at about 50mm distance from surface and steeply decreased towards the center itself. Hot ductility of STS 304L and STS 316L stainless steels containing below 1000 ppm N was appeared to be reasonably good in the range of hot rolling temperature. In case of the steels containing over 1000 ppm N, the hot ductility was decreased rapidly when sulfur content of the steel was above 20 ppm. Therefore, to achieve good hot ductility of the high nitrogen containing steel, reduction of sulfur contents is required as low as possible. The inter granular corrosion resistance and impact toughness of STS 316L were increased with increasing the nitrogen contents. Yield strength and tensile strength of 304 and 316 stainless steels are increased linearly with increasing the nitrogen contents but their elongations are decreased with increasing the nitrogen contents. Therefore, the mechanical properties of these stainless steels could be controlled with variation of nitrogen. The effects of nitrogen on the resistance of stress corrosion cracking (SCC) can be explained by improvement of the load bearing capacity with increasing tensile strength rather than inhibition of trans granular SCC crack generation and propagation. 101 refs., 17 tabs., 105 figs. (author)

  10. Phase formation at bonded vanadium and stainless steel interfaces

    International Nuclear Information System (INIS)

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 μm thick was present at the interface. This layer grew to about 50 μm thick during heat treatment at 1000 degrees C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the ω phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000 degrees C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be ω phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000 degrees C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the ω phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications

  11. Behaviour of cold-formed stainless steel beams at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Ju CHEN; Wei-liang JIN

    2008-01-01

    A study of the behaviour of constructional cold-formed stainless steel beams at elevated temperatures was conducted in this paper.An accurate finite element model(FEM)for stainless steel beams was developed using the finite element program ABAQUS.Stainless steel beams having different cross-sections were simulated in this study.The nonlinear FEM was verified against the experimental results.Generally,the developed FEM could accurately simulate the stainless steel beams.Based on the high temperature stainless steel material test results,a parametric study was carried out on stainless steel beams at elevated tem-peratures using the verified FEM.Both high strength stainless steel EN 1.4462 and normal strength stainless steel EN 1.4301 were considered.A total of 42 stainless steel beams were simulated in the parametric study.The effect of temperatures on the behaviour of stainless steel beams was investigated.In addition,a limiting temperature for stainless steel beams was also proposed.

  12. Effect of Silicon on the Microstructures and Tensile Properties of Austenitic ODS Stainless Steels for Fast Reactor Cladding

    International Nuclear Information System (INIS)

    Oxide dispersion strengthened (ODS) steels have excellent high temperature mechanical properties due to the presence of thermally stable nano-scale oxides distributed in their matrix. Therefore, ODS steels are being used for high temperature structural applications and ODS ferritic martensitic steels (FMS) have been considered as candidate cladding and. Generally, fabrication processes of ODS steels have incorporated a mechanical alloying (MA) process, in which repeated fracture and welding of mixed powders occur by a high energy impact of steel balls. Although MA has many advantages in forming a nano-scale microstructure, it is a very long-time expensive process and vulnerable to impurities contamination. High oxygen and carbon contents degrade the high temperature strength and creep strength of ODS steels. To overcome the problem of MA process, AISI 316Lbased austenitic ODS steels were fabricated by a wet mixing of metallic salts. This method dispersed oxide particles by thermal decomposition of metallic salt during fabrication process. Austenitic ODS steel could be fabricated successfully by a wet-mixing process of 316L stainless steel powder in yttrium containing salt solution. Wet-mixed ODS steel had lower carbon and oxygen contents than that of MAODs steel, because minimum inflow of carbon and oxygen during the manufacture process was kept in wet-mixed ODS steel. Ryu. et. al was reported that yttrium silicates were formed by reaction of silicon and yttrium oxide during the fabrication process. In this study, we made simulated 316 stainless steel powder without adding silicon by using MA and then fabricated ODS steel by using a wet process in order to analyze the effect of silicon on the microstructures and tensile properties of the austenitic ODS stainless steels

  13. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  14. Low temperature surface hardening of stainless steel; the role of plastic deformation

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jespersen, Freja Nygaard; Hattel, Jesper Henri;

    2016-01-01

    Thermochemical surface engineering by nitriding of austenitic stainless steel transforms the surface zone into expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. As a consequence of the thermochemical surface engineering, huge......: - plastic deformation of metastable austenitic stainless steels leads to the development of strain-induced martensite, which compromises the uniformity and the homogeneity of the expanded austenite zone. - during low temperature surface engineering composition and stress profiles develop. On numerical...

  15. Stress corrosion cracking susceptibility of dissimilar stainless steels welded joints

    OpenAIRE

    J. Łabanowski

    2007-01-01

    Purpose: The aim of the current study is to reveal the influence of welding conditions on structure and stresscorrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Butt joints between duplex 2205 and austenitic 316L steels were performedwith the use of submerged arc welding (SAW) method. The plates 15 mm in thickness were welded with heatinput in the range of 1.15 – 3.2 kJ/mm using duplex steel filler metal. Microstructure examinations an...

  16. Dilution and Ferrite Number Prediction in Pulsed Current Cladding of Super-Duplex Stainless Steel Using RSM

    Science.gov (United States)

    Eghlimi, Abbas; Shamanian, Morteza; Raeissi, Keyvan

    2013-12-01

    Super-duplex stainless steels have an excellent combination of mechanical properties and corrosion resistance at relatively low temperatures and can be used as a coating to improve the corrosion and wear resistance of low carbon and low alloy steels. Such coatings can be produced using weld cladding. In this study, pulsed current gas tungsten arc cladding process was utilized to deposit super-duplex stainless steel on high strength low alloy steel substrates. In such claddings, it is essential to understand how the dilution affects the composition and ferrite number of super-duplex stainless steel layer in order to be able to estimate its corrosion resistance and mechanical properties. In the current study, the effect of pulsed current gas tungsten arc cladding process parameters on the dilution and ferrite number of super-duplex stainless steel clad layer was investigated by applying response surface methodology. The validity of the proposed models was investigated by using quadratic regression models and analysis of variance. The results showed an inverse relationship between dilution and ferrite number. They also showed that increasing the heat input decreases the ferrite number. The proposed mathematical models are useful for predicting and controlling the ferrite number within an acceptable range for super-duplex stainless steel cladding.

  17. Optimisation of welding procedures for duplex and superduplex stainless steels

    International Nuclear Information System (INIS)

    Austenitic stainless steels are increasingly being replaced by duplex grades that can offer similar corrosion resistance with far higher strength. This increased strength makes it possible to reduce material consumption whilst also decreasing transport and construction costs. Although established welding methods used for austenitic steels can be used for duplex steels, modification of the procedures can lead to improved results. This paper reviews the welding of duplex stainless steel and examines precautions that may be required. The advantages and disadvantages of different welding methods are highlighted and some high productivity solutions are presented. The application of a more efficient process with a high deposition rate (e.g. flux- cored arc welding) can decrease labour costs. Further close control of heat input and interpass temperature can result in more favourable microstructures and final properties. Although welding adversely affects the corrosion resistance of austenitic and duplex stainless steels, particularly the pitting resistance, relative to the parent material, this problem can be minimised by proper backing gas protection and subsequent pickling.

  18. The law of structure formation in sheet stainless steels of the ferrite class

    International Nuclear Information System (INIS)

    The effect of metallurgical redistribution on the structure in the stainless steels of the ferrite class is studied. The regularities of the solid solution state change in dependence on the sheet rolling temperature-deformation conditions are established. It is shown, that the rolling, produced from the stainless steels of the ferrite class, is delivered for hot rolling in the cold-hardened state when there is heavy supersaturation of the solid solution with the carbon and nitrogen atoms. The conclusion is made, that for improving the structure and properties of the cold-rolled sheet it is advisable to subject the rolling to the special recrystallization annealing for separating the carbon and nitrogen atoms in the secondary phase composition

  19. Ultrahigh carbon steels, Damascus steels, and superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Sherby, O.D. [Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Wadsworth, J. [Lawrence Livermore National Lab., CA (United States)

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  20. Reduction mechanism of stainless steelmaking dust and carbon pellets

    Institute of Scientific and Technical Information of China (English)

    PENG Bing; SONG Hai-chen; CHAI Li-yuan; WANG Ja; WANG Yun-yan; MIN Xiao-bo; HE De-wen

    2005-01-01

    The reduction mechanism of stainless steelmaking dust and carbon pellets was investigated. The metal oxides present in the dust were reduced by carbon with a new direct reduction technology. The direct reduction parameters were determined by measuring the rates of dust melting and reduction. The results show that the rate of reduction is faster than that of the melting. Both melting and reduction processes are accelerated by the direct transfer of heat from the smelting slag. The recovery of metals is improved while the pellets were added to argon oxygen decarburization(AOD) or vacuum oxygen decarburization(VOD) vessels in the late period of the first smelting stage. More carbon travels to the slag instead of to the steel because the diffusion coefficient of carbon, impacted by the viscosity of slag and surface tension between slag and melted steel, is larger in the slag than in the steel. The viscosity of slag is about 2.54Pa·s and the surface tension between slag and steel is about 490mN/m.

  1. Microstruture and mechanical properties of a stainless steel 18 Cr 11Ni with niobium high content

    International Nuclear Information System (INIS)

    The microstructure and mechanical properties of low carbon (0,02% weight) and high Niobium content (2% weight) austenitic stainless steel, obtained in a vacuum induction furnace were studied. It was observed that the yied proof stress and the ultimate tensile stress increase with the Niobium content but with a great ductility loss, mainly in the samples annealed in high temperatures, due to the presence of delta-ferrite. (Author)

  2. Hydrogen shielding film with self-healing function coated on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, K.; Yamazaki, T.; Ikeshoji, T.T.; Suzumura, A.; Noko, M. [Tokyo Inst. of Technology, Tokyo (Japan)

    2007-07-01

    It is important to prevent hydrogen gas from permeating through stainless steel substances, and especially from penetrating into them In order to establish infrastructure for hydrogen energy resource. Characteristics of hydrogen permeation for the 316 stainless steel with different surface coating films are investigated in this study. Examined surfaces are natural iron and chromium oxide films, chromium oxide films formed by low concentrated oxygen, and carbon films. The low concentrated oxide films and carbon films were deposited by glow discharge plasma after annealing and ion sputter cleaning. A stationary hydrogen flux from the stainless steel surface was measured by using a system with an orifice. The pressure difference of the specimen was maintained to be constant by controlling the gas flow rate from the orifice in low pressure vessel. The calculated value of hydrogen permeability, K, for natural oxide films on the 316 stainless steel substrate was 0.75 x 10{sup -12}. It was 2.37 times smaller than that of the chromium oxide films. The natural oxide film is considered to play the desorption-role as a hydrogen shielding film rather than adsorption-role, since the specimen with carbon film on high pressure side and natural oxide film on low pressure side had lower hydrogen permeation than the inverted specimen setting. Throughout these experiments, it had come up that the diamond-like carbon film would function as an effective hydrogen shielding film. It is also expected for the film to have a self-healing capacity when it is used under hydrogenous ambient. Small defects for hydrogen gas in the films might be healed promptly with replenishing hydrogen atoms from the atmosphere. We also attempted the hydrogen permeation test for this film, and high performance was obtained. Self-healing possibility was also indicated for this film over these permeation tests. (orig.)

  3. Duplex stainless steels. A review after DSS '07 held in Grado

    Energy Technology Data Exchange (ETDEWEB)

    Charles, J. [ARCELOR MITTAL, La Plaine Saint-Denis (France)

    2008-06-15

    Duplex stainless have always been an exiting area of interest for researchers, stainless steel producers, fabricators and end users. They present very diversified technical challenges and simultaneously attractive in-service properties at excellent cost/properties ratios, particularly in critical markets including oil and gas, chemical industry, pulp and paper industry, water systems, desalination plants, pollution control equipments, chemical tankers, etc. This explains why although they still remain a marginal production in the stainless steel business (less than 1%) dedicated international conferences have been organised since about 25 years. The purpose of this paper is to present a review of the 100 scientific contributions presented during the latest international duplex stainless steel conference witch took place in Grado, Italy, on 18-20 June 2007. The main topics concerned microstructure and mechanical properties, weldability, corrosion resistance and in-service properties. The ''standard'' duplex stainless steels, i.e. the 2304, 2205, and the family of 2507 (Cu,W,..) grades were confirmed as very valuable grades with outstanding performances proven in more than 20 years successful in-service applications. New grades including the so-called lean duplex dedicated to volume oriented markets (possible replacement of 304/316 grades) and some ''niche'' grades dedicated to very specific markets were presented. It was pointed out that the duplex grades start to be well established products particularly suitable for corrosion resistance applications. They show a two-digit yearly growth thanks to the production of new grades and production ranges (coils and bars) targeting the replacement of the more costly 300 series including 304 but also rusty carbon steel in e.g. structural application. (orig.)

  4. Thermal stability of ultrafine-grained austenitic stainless steels

    International Nuclear Information System (INIS)

    Ultrafine-grained 316 and 304 austenitic stainless steel samples have been produced by high pressure torsion. Their microstructure, after deformation and annealing at a temperature in the 350-900 deg. C range, has been characterized using several techniques (transmission electron microscopy, X-ray diffraction, Moessbauer spectroscopy). The average grain size in the ultrafine-grained 316 is about 40 nm while it is larger in the ultrafine-grained 304 due to a smaller deformation. Results show the formation of α'-martensite during deformation in both steels while ε-martensite is formed only in the 304 steel. Annealing at 350 deg. C induces the decrease of α'-martensite content in the 316 steel. The trend is different in the 304 steel, in which the α'-martensite content increases. Recrystallization of grains is observed from 700 deg. C. Moessbauer spectroscopy shows a reduction of the level of solute atoms in α'-martensite during annealing.

  5. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M.

    2013-01-31

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on “Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5) Published report on “The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels”. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  6. Corrosion Behavior of Austenitic and Duplex Stainless Steels in Lithium Bromide

    OpenAIRE

    Ayo Samuel AFOLABI; Alaneme, K.K.; Samson Oluwaseyi BADA

    2009-01-01

    The corrosion behavior of austenitic and duplex stainless steels in various concentrations of lithium, bromide solution was investigated by using the conventional weight loss measurement method. The results obtained show that corrosion of these steels occurred due to the aggressive bromide ion in the medium. Duplex stainless steel shows a greater resistance to corrosion than austenitic stainless steel in the medium. This was attributed to equal volume proportion of ferrite and austenite in th...

  7. Toughness of welded stainless steels sheets for automotive industry

    Directory of Open Access Journals (Sweden)

    E. Bayraktar

    2011-01-01

    Full Text Available Purpose: In the automotive industry, more and more it is compulsory to develop new grades of stainless steels, such as high resistant Martensitic Stainless Steels (MA-SS and Ferritic Stainless Steels (FSS in order to realise certain or many complex deep drawn pieces. For these grades, resistance spot welding (RSW is the most widespread process used largely for many parts of the car body in the automotive industry. This paper aims to characterise mechanical behaviour (toughness of the different steel grades under dynamic test conditions.Design/methodology/approach: A special crash test device is used in different temperatures and the simulated crash tests are performed at a constant speed of 5.52 m/s.Findings: The specimen is submitted to impact tensile test at different temperatures. According to testing temperature, fracture mode varies: At low temperatures, brittle fracture occurs: due to stress concentration, fracture always occurs in the notched section. At high temperatures, the specimen fails by ductile fracture. Toughness of the steel sheets (base metals, BM or welded parts is well compared at different materials and test conditions.Research limitations/implications: Evaluation of welded thin sheets submitted to the dynamic loading in order to correlate in real service conditions in order to realize a useful correlation between the transition temperature and deep drawability can be used for evaluating of the welding conditions and also of the material characteristics. For detail study, this type of the test needs a standard formulation.Practical implications: This is a new conception of specimen and of the impact/crash machine. It is widely used in automotive industry for practical and economic reason to give rapid answers to designer and also steel makers for ranking the materials.Originality/value: New developed test called impact crash test for evaluating the toughness of thin welded joints (tailored blanks / mechanical assemblies in

  8. Failure of austenitic stainless steel tubes during steam generator operation

    Directory of Open Access Journals (Sweden)

    M. Głowacka

    2012-12-01

    Full Text Available Purpose: of this study is to analyze the causes of premature failure of steam generator coil made of austenitic stainless steel. Special attention is paid to corrosion damage processes within the welded joints.Design/methodology/approach: Examinations were conducted several segments of the coil made of seamless cold-formed pipes Ø 23x2.3 mm, of austenitic stainless steel grade X6CrNiTi18-10 according to EN 10088-1:2007. The working time of the device was 6 months. The reason for the withdrawal of the generator from the operation was leaks in the coil tube caused by corrosion damage. The metallographic investigations were performed with the use of light microscope and scanning electron microscope equipped with the EDX analysis attachment.Findings: Examinations of coil tubes indicated severe corrosion damages as pitting corrosion, stress corrosion cracking, and intergranular corrosion within base material and welded joints. Causes of corrosion was defined as wrong choice of austenitic steel grade, improper welding technology, lack of quality control of water supply and lack of surface treatment of stainless steel pipes.Research limitations/implications: It was not known the quality of water supply of steam generator and this was the reason for some problems in the identification of corrosion processes.Practical implications: Based on the obtained research results and literature studies some recommendations were formulated in order to avoid failures in the application of austenitic steels in the steam generators. These recommendations relate to the selection of materials, processing technology and working environment.Originality/value: Article clearly shows that attempts to increase the life time of evaporator tubes and steam coils by replacing non-alloy or low alloy structural steel by austenitic steel, without regard to restrictions on its use, in practice often fail.

  9. Deformation behavior of open-cell stainless steel foams

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, A.C., E-mail: a.kaya@campus.tu-berlin.de; Fleck, C.

    2014-10-06

    This study presents the deformation and cell collapse behavior of open-cell stainless steel foams. 316L stainless-steel open-cell foams with two porosities (30 and 45 pores per inch, ppi) were produced with the pressureless powder metallurgical method, and tested in quasi-static compression. As a result of the manufacturing technique, 316L stainless steel open-cell foams have a high amount of microporosity. The deformation behavior was investigated on a macroscopic scale by digital image correlation (DIC) evaluation of light micrographs and on the microscopic scale by in situ loading of cells in the scanning electron microscope. The deformation behavior of the metal foams was highly affected by microstructural features, such as closed pores and their distribution throughout the foam specimen. Moreover, the closed pores made a contribution to the plateau stress of the foams through cell face stretching. Strut buckling and bending are the dominant mechanisms in cell collapse. Although there are edge defects on the struts, the struts have an enormous plastic deformation capability. The cell size of the steel foams had no significant effect on the mechanical properties. Due to the inhomogeneities in the microstructure, the measured plateau stresses of the foams showed about 20% scatter at the same relative density.

  10. Field welding of hydraulic turbines made of martensitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, A.

    1982-06-15

    Field welding of hydraulic turbines made of 13 Cr-Ni martensitic stainless steels was investigated. Two shielded metal arc welding electrodes, one containing 15 Cr-25 Ni and the other with 50% cobalt, were studied with respect to the criteria of weldability, structural integrity and cavitation erosion resistance. The cavitation erosion resistance of the 15 Cr-25 Ni material, evaluated with an ultrasonic vibratory test method, was found to be poor, being comparable to that of mild steel. Although the 50% cobalt alloy possesses excellent cavitation erosion properties, its cost is ca 10 times higher than that of austenitic stainless steels. Under certain welding conditions, the 50% cobalt alloy produces a hard interface with the martensitic stainless steel base material. These interfaces were systematically investigated using microhardness measurement and scanning electron microscopy. The interfaces between the base metal and the weld deposits as well as that between the two weld metals were subjected to measurements of Charpy impact energy, corrosion fatigue tests and an elastoplastic fracture mechanics analysis. It is concluded that the presence of the hard zone is not detrimental to structural integrity. A field welding procedure is proposed on the basis of these findings. The shallow cavitation damaged areas may be repaired with the 50% cobalt containing material. The cheaper 15 Cr-25 Ni material may be used for the filling of deep cavitation damaged areas and for the repair of cracks followed by an overlay of 50% cobalt weld metal. 20 refs., 22 figs., 7 tabs.

  11. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  12. Residual stresses and fatigue in a duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Johan

    1999-05-01

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  13. Residual stresses and fatigue in a duplex stainless steel

    International Nuclear Information System (INIS)

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  14. High density sintered stainless steels with improved properties

    Directory of Open Access Journals (Sweden)

    M. Actis Grande

    2007-04-01

    Full Text Available Purpose: of this paper is the study of the properties of sintered AISI 316L (1.4404 according to EN 10088. Sintered stainless steels occupy a prominent position in the high alloyed steels, however their properties are limited by the presence of porosity. The improvement of quality and performances of products coupled with a reduction of manufacturing costs calls for high compacting pressures, as well as high sintering temperatures. However, the possibility to fill the open porosity of sintered parts by infiltration process with a metal alloy or by the use of reactive sintering techniques can favour the production of stainless steel parts with enhanced mechanical properties and good corrosion resistance. Design/methodology/approach: Sintered AISI 316L (1.4404 according to EN 10088 stainless steel samples have been manufactured using different combinations of compacting pressure and sintering parameters (time, temperature, atmosphere, or a modified composition able to allow reactive sintering process, as well as the contact infiltration with bronze.Findings: The studies have been forwarded towards the statical and dynamic mechanical properties, as well as the corrosion behavior. Lowering the porosity level and increasing the sintering degree, by use of higher compacting pressure or sintering temperature, is of great effectiveness, especially from the point of view of mechanical properties and fatigue endurance.Practical implications: the obtained results demonstrate the benefits of contact infiltration and of reactive sintering techniques to sinter stainless steels components having higher density and better mechanical and corrosion resistance properties than the traditional compositions, compacted at high pressure and sintered at elevated temperature.Originality/value: very promising results have been also obtained with a modified composition able to allow reactive sintering process.

  15. Metallurgical and acoustical characterization of a hydroformed, 304 stainless steel, Caribbean-style musical pan

    International Nuclear Information System (INIS)

    We report herein the metallurgical and acoustical characterization of hydroformed 304 stainless steel, Caribbean pans. These pans were fully tuned to chromatic tones and compared to a manufactured, low-carbon, Caribbean steel pan standard. Hydroformed platforms had a Vickers microindentation hardness of HV 345, which was reduced by annealing during pan fabrication to HV 270. Skirts welded to the hydroformed head had a microindentation hardness of HV 440. Microstructural characterization by light optical metallography and transmission electron microscopy illustrated microstructures (including grain structures) characteristic of these pan microindentation hardnesses

  16. Microstructure and antibacterial property of stainless steel implanted by Cu ions

    Institute of Scientific and Technical Information of China (English)

    XU Bo-fan; NI Hong-wei; XIONG Ping-yuan; XIONG Juan; DAN Zhi-gang

    2004-01-01

    Copper ions were implanted into AISI 304 austenitic stainless steel by metal vapor vacuum are (MEVVA) with 60 - 100 keV energy and a dose range (0.2 - 5.0) × 1017 cm-2. Then Cu-implanted stainless steel was treated by a special antibacterial treatment. Antibacterial rates of Cu-implanted stainless steel, Cu-implanted stainless steel with special antibacterial treatment and un-implanted stainless steel were obtained by agar plate method. Phase composition in the implanted layer was analyzed by glancing X-ray diffraction (GXRD). Microstructure of antibacterial stainless steel was observed with transmission electron microscopy (TEM), and changes of the bacterium appearance after 24 h antibacterial action on the surface of un-implanted and Cu-implanted stainless steel with antibacterial treatment were observed with bio-TEM respectively. The results show that stainless steel obtains antibacterial property against E. coli when the Cu ions dose approaches to the saturated one. A suitable amount of Cu-rich phase uniformly disperses on the surface of Cu-implanted stainless steel that is treated by the special antibacterial treatment. The Cu-rich phase naked on the surface has a function of damage to pericellular membrane and cell wall,the pericellular membrane is thickened and the karyon degraded, and finally, bacteria die. Cu-rich phase naked on the surface endows stainless steel with best antibacterial property.

  17. Long-term aging of cast stainless steels: Mechanisms and resulting properties

    International Nuclear Information System (INIS)

    Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320, and 2900C. The results indicate that thermal aging increases the tensile strength and decreases the impactenergy, J/sub IC/ and tearing modulus of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The low-carbon CF-3 steels were the most resistant and the molybdenum-containing high-carbon CF-8M steels were the most susceptible to low-temperature embrittlement. The influence of nitrogen content and distribution of ferrite on loss of toughness are discussed. Data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280 to 4500C, i.e., extrapolation of high-temperature data to reactor temperatures may not be valid for some compositions of cast stainless steels. 13 refs., 13 figs., 2 tabs

  18. Fracture Behavior of Cold Sprayed 304 Stainless Steel Coating During Cold Rolling

    Institute of Scientific and Technical Information of China (English)

    MENG Xian-ming; ZHANG Jun-bao; HAN Wei; ZHAO Jie

    2012-01-01

    The fracture behavior of cold sprayed 304 stainless steel coating in cold rolling process was studied. The 304 stainless steel coatings were deposited on low carbon steel substrate by cold gas dynamic spray (CGDS) and then cold rolled, respectively. The fracture morphology of the coatings was observed and analyzed, and the crack distri- butions along the longitudinal rolling direction of the coatings were also investigated and discussed. The results showed that the cohesive strength of the cold sprayed 304 stainless steel coating was too low to be cold rolled. Mi crocracks were formed in the as-sprayed coatings and ran perpendicularly to the rolling direction. The spacing dis- tance between these cracks decreased with the increase of the cold rolling reduction. In addition, it was also found that the initial crack generated at the surface of the coating and propagated from the surface to the interface along the weakly bonded particles. A theoretical analysis was developed for the coating fracture. It gave a critical minimum cohesive bonding strength of the coating for non-breaking in cold rolling process. The crack propagation manner of the cold rolled coatings was also discussed.

  19. Stress corrosion cracking susceptibility of dissimilar stainless steels welded joints

    Directory of Open Access Journals (Sweden)

    J. Łabanowski

    2007-01-01

    Full Text Available Purpose: The aim of the current study is to reveal the influence of welding conditions on structure and stresscorrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Butt joints between duplex 2205 and austenitic 316L steels were performedwith the use of submerged arc welding (SAW method. The plates 15 mm in thickness were welded with heatinput in the range of 1.15 – 3.2 kJ/mm using duplex steel filler metal. Microstructure examinations and corrosiontests were carried out. Slow strain rate tests (SSRT were performed in inert (glycerin and aggressive (boiling35% MgCl2 solution environments.Findings: It was shown that place of the lowest resistance to stress corrosion cracking is heat affected zone atduplex steel side of dissimilar joins. That phenomenon was connected with undesirable structure of that zoneconsisted of great amount of coarse ferrite grains and acicular austenite precipitates. High welding inputs do notdeteriorate stress corrosion cracking resistance of welds.Research limitations/implications: High welding heat inputs should enhance the precipitation process ofintermetallic phases in the HAZ. It is necessary to continue the research to determine the relationship betweenwelding parameters, obtained structures, and corrosion resistance of dissimilar stainless steels welded joints.Practical implications: Application of more productive joining process for dissimilar welds like submerged arcwelding instead of currently employed gas metal arc welding (GMAW method will be profitable in terms ofreduction the welding costs.Originality/value: The stress corrosion cracking resistance of dissimilar stainless steel welded joints wasdetermined. The zone of the weaker resistance to stress corrosion cracking was pointed out.

  20. Super austenitic stainless steels - a promising replacement for the currently used type 316L stainless steel as the construction material for flue-gas desulphurization plant

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, N.; Rajeswari, S. [University of Madras, Madras (India). Dept. of Analytical Chemistry

    1996-12-15

    Potentiodynamic anodic cyclic polarization experiments on type 316L stainless steel and 6Mo super austenitic stainless steels were carried out in simulated flue-gas desulphurization (FGD) environment in order to assess the localized corrosion resistance. The pitting corrosion resistance was higher in the case of the super austenitic stainless steel containing 6Mo and a higher amount of nitrogen. The accelerated leaching study conducted for the alloys showed that the super austenitic stainless steels have a little tendency for leaching of metal ions such as iron, chromium and nickel at different impressed potentials. This may be due to surface segregation of nitrogen as CrN, which would, in turn, enrich a chromium and molybdenum mixed oxide film and thus impede the release of metal ions. The present study indicates that the 6Mo super austenitics can be adopted as a promising replacement for the currently used type 316L stainless steel as the construction material for FGD plants.

  1. Mechanical and physical properties of irradiated type 348 stainless steel

    International Nuclear Information System (INIS)

    A type 348 stainless steel in-pile tube irradiated to a fluence of 3 x 1022 n/cm2, E > 1 MeV (57 dpa), was destructively examined. The service had resulted in a maximum total creep of 1.8% at the high fluence. The metal temperature ranged between 623 and 6520K, hence the thermal creep portion of the total was negligible. Total creep was greater than had been anticipated from creep data for austenitic stainless steels irradiated in other reactors. The objectives of the destructive examination were to determine the service-induced changes of mechanical and physical properties, and to assess the possibility of adverse effects of both these changes and the greater total creep on the prospective service life of other tubes

  2. Interaction between Lubricants Containing Phosphate Ester Additives and Stainless Steels

    Directory of Open Access Journals (Sweden)

    David W. Johnson

    2013-05-01

    Full Text Available One way to improve fuel efficiency in today’s jet aircraft engines is to create an environment for higher operating temperatures and speeds. New and improved lubricants and bearing materials must be developed to remain stable in these elevated operating temperatures. Three lubricants, with varying amounts of tricresyl phosphate added as an anti-wear/extreme pressure additive were tested on two different stainless steels at varying temperatures ranging from 300 °C to 350 °C in vacuum. Significant decomposition of the lubricant base-stocks and the phosphate ester additive did occur in most of the trials resulting in the formation of carboxylic acids and phenols. In these cases a film containing phosphorus was deposited onto the stainless steel substrate.

  3. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Tania M. [San Jose State Univ., CA (United States)

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  4. COLD ROLLING ORTHODONTIC WIRES OF AUSTENITIC STAINLESS STEEL AISI 304

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos Messner

    2013-03-01

    Full Text Available Austenitic stainless steels wires are widely used in the final stages of orthodontic treatment. The objective of this paper is to study the process of conformation of rectangular wires from round wires commercial austenitic stainless steel AISI 304 by the process of cold rolling. The wire quality is evaluated by means of dimensional analysis, microhardness measurements, tensile strength and fractographic analysis of the wires subjected to tensile tests. Also a study on the application of finite element method to simulate the process, comparing the force and rolling stress obtained in the rolling is done. The simulation results are consistent with those obtained in the actual process and the rolled wires show ductile fracture, tensile strength and dimensional variations appropriate to orthodontic standards. The fracture morphology shows the model cup-cone type besides the high deformation and hardness inherent in the cold rolling process.

  5. Long-Term Underground Corrosion of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Adler Flitton; T. S. Yoder

    2007-03-01

    In 1970, the National Institute of Standards and Technology (NIST) implemented the most ambitious and comprehensive long-term corrosion behavior test to date for stainless steels in soil environments. Over thirty years later, one of the six test sites was targeted to research subsurface contamination and transport processes in the vadose and saturated zones. This research directly applies to environmental management operational corrosion issues and long term stewardship scientific needs for understanding the behavior of waste forms and their near-field contaminant transport of chemical and radiological contaminants at nuclear disposal sites. This paper briefly describes the ongoing research and the corrosion analysis results of the stainless steel plate specimens recovered from the partial recovery of the first test site.

  6. Multilayer modelling of stainless steel with a nanocrystallised superficial layer

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J. [Laboratoire Energetique Mecanique Electromagnetisme (LEME), EA4416, Universite Paris Ouest, 92410 Ville d' Avray (France); Waltz, L., E-mail: laurent.waltz@univ-montp2.fr [Laboratoire de Mecanique et Genie Civil de Montpellier (LMGC), University of Montpellier II, Place Eugene Bataillon, 34000 Montpellier (France); Montay, G.; Retraint, D.; Roos, A.; Francois, M. [Institut Charles Delaunay - LASMIS, UMR CNRS 6279, University of Technology of Troyes, 10010 Troyes (France)

    2012-02-28

    Highlights: Black-Right-Pointing-Pointer SMAT has been used for nanocrystallisation of an austenitic stainless steel. Black-Right-Pointing-Pointer The mechanical response of the nano-phase has been obtained by an indirect method. Black-Right-Pointing-Pointer Minimisation of a stress formulated objective function. Black-Right-Pointing-Pointer The model predicts the strain at which diffuse necking occurs. - Abstract: In order to obtain the macroscopic mechanical response of a 316L stainless steel, nanocrystallised by Surface Mechanical Attrition Treatment (SMAT), a multilayer model is proposed. The constitutive behaviour of each layer is determined from tensile tests or by an inverse method and its thickness is evaluated from Scanning and Transmission Electron Microscopy (SEM and TEM) analyses and local hardness measurements. The consistency of the model is verified by its ability to predict the strain at which diffuse necking occurs.

  7. PITTING CORROSION OF STAINLESS STEEL AT THE VARIOUS SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    Viera Zatkalíková

    2011-09-01

    Full Text Available The stainless steel surface treatment is very important with regard to its pitting corrosion susceptibility. An effect of various types surfacing on pitting corrosion resistance of AISI 304stainless steel is investigated in this work. The samples of the tested material are turned, blasted, peened, grinded and a half of them are pickled to achieve higher purity of surfaces and better quality of passive film. Eight types of different finished surfaces are tested by electrochemical and immersion tests to determine corrosion behaviour in conditions where pitting is evoked by controlled potential and second by solution with high redox potential. By this way the effect of mechanical and chemical surface treatment on the resistance to pitting corrosion, character, size and shape of pits are compared in the conditions of different mechanisms of corrosion process.

  8. New hermetic sealing material for vacuum brazing of stainless steels

    Science.gov (United States)

    Hildebrandt, S.; Wiehl, G.; Silze, F.

    2016-03-01

    For vacuum brazing applications such as in vacuum interrupter industry Hermetic Sealing Materials (HSM) with low partial pressure are widely used. AgCu28 dominates the hermetic sealing market, as it has a very good wetting behavior on copper and metallized ceramics. Within recent decades wetting on stainless steel has become more and more important. However, today the silver content of HSMs is more in focus than in the past decades, because it has the biggest impact on the material prices. Umicore Technical Materials has developed a new copper based HSM, CuAg40Ga10. The wettability on stainless steel is significantly improved compared to AgCu28 and the total silver content is reduced by almost 44%. In this article the physical properties of the alloy and its brazed joints will be presented compared to AgCu28.

  9. Mechanical properties and corrosion resistance of dissimilar stainless steel welds

    OpenAIRE

    J. Łabanowski

    2007-01-01

    Purpose: The purpose of this paper is to determine the influence of welding on microstructure, mechanical properties, and stress corrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Duplex 2205 and austenitic 316L steels were used. Butt joints of plates 15 mm in thickness were performed with the use of submerged arc welding (SAW) method. The heat input was in the range of 1.15 – 3.2 kJ/mm. Various plates’ edge preparation...

  10. Corrosion Behavior of Austenitic and Duplex Stainless Steels in Lithium Bromide

    Directory of Open Access Journals (Sweden)

    Ayo Samuel AFOLABI

    2009-07-01

    Full Text Available The corrosion behavior of austenitic and duplex stainless steels in various concentrations of lithium, bromide solution was investigated by using the conventional weight loss measurement method. The results obtained show that corrosion of these steels occurred due to the aggressive bromide ion in the medium. Duplex stainless steel shows a greater resistance to corrosion than austenitic stainless steel in the medium. This was attributed to equal volume proportion of ferrite and austenite in the structure of duplex stainless steel coupled with higher content of chromium in its composition. Both steels produced electrochemical noise at increased concentrations of lithium bromide due to continuous film breakdown and repair caused by reduction in medium concentration by the alkaline corrosion product while surface passivity observed in duplex stainless steel is attributed to film stability on this steel.

  11. Surface nanocrystallization of stainless steel for reduced biofilm adherence.

    Science.gov (United States)

    Yu, Bin; Davis, Elisabeth M; Hodges, Robert S; Irvin, Randall T; Li, D Y

    2008-08-20

    Stainless steel is one of the most common metallic biomedical materials. For medical applications, its resistance to the adherence of biofilms is of importance to the elimination or minimization of bacterial infections. In this study, we demonstrate the effectiveness of a process combining surface nanocrystallization and thermal oxidation (or a recovery heat treatment in air) for reducing the biofilm's adherence to stainless steel. During this treatment, a target surface was sandblasted and the resultant dislocation cells in the surface layer were turned into nanosized grains by a subsequent recovery treatment in air. This process generated a more protective oxide film that blocked the electron exchange or reduced the surface activity more effectively. As a result, the biofilm's adherence to the treated surface was markedly minimized. A synthetic peptide was utilized as a substitute of biofilms to evaluate the adhesion between a treated steel surface and biofilms using an atomic force microscope (AFM) through measuring the adhesive force between the target surface and a peptide-coated AFM tip. It was shown that the adhesive force decreased with a decrease in the grain size of the steel. The corresponding surface electron work function (EWF) of the steel was also measured, which showed a trend of variation in EWF with the grain size, consistent with corresponding changes in the adhesive force. PMID:21730615

  12. Ionic nitriding of high chromium martensitic stainless steels

    International Nuclear Information System (INIS)

    Martensitic stainless steels are used in industrial applications where resistance to corrosion and mechanical resistance are needed simultaneously. These steels are normally used in tempering and annealing condition which gives them hardnesses of 500 and 600 HV (about 54 HRC). Ionic nitriding is an assisted diffusion technique that has recently been successfully applied to harden austenitic stainless steels without reducing their resistance to corrosion. The application with AISI 420 martensitic steels has not given good results yet, because in most cases, it affects their corrosion resistance. This work presents the results of the pulsed nitriding of martensitic steels with a higher chrome content, such as the M340 and M333 Boehler steels and they are compared with the same materials after tempering and annealing, without nitriding. The influence of the variations in the parameters of the process, such as the percentage of active time in the pulsed wave, partial nitrogen pressure, current density and effective tension in the microstructure, hardness and wear and corrosion resistance was studied. The microstructure was studied with an optic microscope; the wear resistance with abrasion tests following ASTM G-65 and corrosion with 100 hour long saline haze tests, in a device built according to ASTM B117. Hardness was found to rise to values of 1000 to 1350 HV in all the steels after ionic nitriding, the modified layers oscillated from 3 to 15 microns. As a result, wear resistance also increased, with differences depending on the microstructure and the thickness of the modified layer. However, corrosion resistance was not good, except in the case of the M333 steel test piece with less hardness and a less thick nitrided layer without a noticeable interphase (au)

  13. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    XUE Qi; JIN Yong; HU Dong-ping; HUANG Ben-sheng; DENG Bai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported.The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainless steel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2to 2.0. The Ti [C, N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion between the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  14. Highly alloyed stainless steels for sea water applications

    Energy Technology Data Exchange (ETDEWEB)

    Audouard, J.P.; Verneau, M. [Creusot-Loire Industrie, Le Creusot (France). Research Centre for Materials

    1996-10-01

    Natural sea water is known as a very aggressive environment which generates pitting and crevice corrosion on stainless steels. High chromium grades with sufficient molybdenum and nitrogen additions (PREN > 40) are generally recognized as resistant materials in natural sea water bu the material selection criteria must be improved to take into account the effect of climatic conditions and of biocide treatments which are widely used as anti-fouling agents in sea water circuits. The paper deals with the localized corrosion properties of conventional stainless steels (SS), duplex and superaustenitic alloys. The results of laboratory investigations conducted in more or less oxidizing chloride containing media are discussed. Then, immersion tests carried out in natural sea waters in different climatic conditions are presented and discussed. Finally, the effect of biocide addition on fouling and its consequences on corrosion is investigated. The results are interpreted taking into account the chemical composition of the stainless steels and biofilm criteria. The results showed the Mediterranean Sea to be slightly more aggressive than other European seas but a PREN value higher than 40 is sufficient for stainless steels to withstand localized corrosion in European natural sea waters. A residual chlorine level around 0.3--0.4 ppm was found to be very effective to limit the fouling and to avoid localized corrosion on SS. Nevertheless, due to difficulties in monitoring chlorine addition, PREN values higher than 50 are recommended to withstand localized corrosion in treated sea waters. As an example, the new super-austenitic grade 25Cr-22Ni-5.8Mo-1.5Cu-2W-0.45N with a PRENW value of 54 was found to be perfectly resistant to crevice corrosion with 0.5 ppm free chlorine at ambient temperature.

  15. Adhesive bonding of stainless steel : strength and durability

    OpenAIRE

    Boyes, Robert

    1998-01-01

    Adhesive bonding as an alternative method of joining materials together has many advantages over the more conventional joining methods such as fusion and spot welding, bolting and riveting. For example, adhesives can be used to bond dissimilar materials, adhesive joints have a high stiffness to weight ratio and the stress distribution within the joint is much improved. Stainless steels are commonly used in applications that would clearly benefit from adhesive bonding; architectural cladding, ...

  16. Modeling and optimization of turning duplex stainless steels

    OpenAIRE

    Ali, Rastee Dalshad

    2015-01-01

    In the present dissertation, machining investigations into duplex stainless steels are performed under different and systematically well-structured modeling and optimization frameworks. Focusing on the main objective of finding optimum machining process parameters and com-prehensively applying the statistical design of experiments to design the experiments, the study tackles the challenge of integrating modeling and optimization algorithms using six different approaches. Firstly, sets of non-...

  17. Manifestations of DSA in austenitic stainless steels and inconel alloys

    International Nuclear Information System (INIS)

    The aim of the investigation was to examine and compare different types of DSA (Dynamic Strain Aging) manifestations in AISI 316 austenitic stainless steel (SS) and Inconel 600 and Inconel 690 alloys by means of slow strain rate tensile testing, mechanical loss spectrometry (internal friction) and transmission electron microscopy (TEM). Another aim was to determine differences in the resulting dislocation structures and internal friction response of materials showing and not showing DSA behaviour

  18. Stainless steel: Recovery of properties after exposure to detrimental phases

    OpenAIRE

    Skaare, Andreas

    2015-01-01

    High alloyed stainless steel provides a desirable combination of corrosion resistance and mechanical properties, being a preferred material when ductility, overall strength and resistance to harsh environments are required. High service temperatures where alloy elements, as chromium and molybdenum, are present, is a well-known recipe for the precipitation of detrimental phases in the material. Even a small amount of these precipitations may impair the mechanical and corrosion properties. T...

  19. Hyperbaric welding of duplex stainless steel pipelines offshore.

    OpenAIRE

    Farrell, J.

    1996-01-01

    Three duplex stainless steels (Avesta 2205, Sandvik SAF2507 and Zeron 100) were successfully welded automatically at a range of pressures from 1 to 32bar. The gas tungsten arc (GTA) welding process was chosen as it allows a high degree of control to be exercised during welding. Initial autogenous bead on plate welds established the effects of pressure on the welding process and allowed the process parameters to be determined for subsequent experiments. Analysis of the eff...

  20. Intragranular Chromium Nitride Precipitates in Duplex and Superduplex Stainless Steel

    OpenAIRE

    Iversen, Torunn Hjulstad

    2012-01-01

    Intragranular chromium nitrides is a phenomenon with detrimental effects on material properties in superduplex stainless steels which have not received much attention. Precipitation of nitrides occurs when the ferritic phase becomes supersaturated with nitrogen and there is insufficient time during cooling for diffusion of nitrogen into austenite. Heat treatment was carried out at between 1060◦C and 1160◦C to study the materials susceptibility to nitride precipitation with...

  1. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  2. Chromium reduction from slag on electromelting of stainless steel

    International Nuclear Information System (INIS)

    Specific features of chromium reduction from the slag on electromelting of stainless steel type Kh18N10T according to one- or two-slag procedure were studied. It was shown that one-slag melting technology allows double decrease of chromium losses in the form of incompletely reduced oxides. This occurs due to additional chemical reactions between metal and slag on their combined pouring into the ladle. 1 ref.; 3 figs

  3. Increase of chromium utilization in stainless steel melting

    International Nuclear Information System (INIS)

    The processes of deoxidizing when melting stainless 18-10 steels in electric are furnaces by the method of remelting with wastes are investigated. The dependences of amount of reduced chromium on silicon consumption are made more precise. It is shown that it is useful to apply aluminium for deoxidation of acid high-chromium slags. Based on the data on pilot melts the extent to which aluminium can be used as a reducing agent for chromium is estimated. 3 refs., 2 figs

  4. Stabilization of final titanium concentration in stainless steel

    International Nuclear Information System (INIS)

    The technology of combined alloying of stainless steel type 08-12Kh18N10T with 30%-ferrotitanium and metallic spongy titanium is developed and put into practice. This permits to stabilize titanium assimilation at the level of 40-60 % in two-slag melting process and to increase chromium recovering from the slag. Stabilization of titanium assimilation promotes its homogeneous distribution in final metal after electroslag remelting. 2 refs. 3 figs

  5. 75 FR 67689 - Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review

    Science.gov (United States)

    2010-11-03

    ... Brazil. See Antidumping Duty Orders: Stainless Steel Bar from Brazil, India and Japan, 60 FR 9661... Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review, 74 FR 10022 (March... market. \\2\\ These results were unchanged in the final results of review (Stainless Steel Bar From...

  6. 46 CFR 148.04-13 - Ferrous metal borings, shavings, turnings, or cuttings (excluding stainless steel).

    Science.gov (United States)

    2010-10-01

    ... (excluding stainless steel). 148.04-13 Section 148.04-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... stainless steel). (a) This section applies to the stowage and transportation in bulk of hazardous materials... steel). However, unmanned barges on which the article is stowed for or transported on a voyage...

  7. Corrosion resistance properties of sintered duplex stainless steel

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2006-09-01

    Full Text Available Purpose: of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies behind the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been compacted at 800 MPa and sintered in a vacuum furnace with argon backfilling at 1260°C for 1 h. After sintering two different cooling cycles were applied: rapid cooling with an average cooling rate of 245 °C/min and slow cooling of 5 °C/min in argon atmosphere. Produced duplex stainless steels have been studied by scanning and optical microscopy and EDS chemical analysis of microstructure components. Corrosion properties have been studied through electrochemical methods in 1M NaCl water solutionFindings: According to achieved results, it was affirmed that applied sintering method as well as powder mixes preparation allows for manufacturing the sintered duplex steels with good corrosion properties which depends on austenite/ferrite ratio in the microstructure and elements partitioning between phases. Corrosion resistance of sintered stainless steels is strictly connected with the density and the pore morphology present in the microstructure too. The highest resistance to pitting corrosion in 1M NaCl solution was achieved for composition with approximate balance of ferrite and austenite in the microstructure.Research limitations/implications: According to the powders characteristic, the applied fast cooling rate seems to be a good compromise for corrosion properties and microstructures, nevertheless further tests should be carried out in

  8. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Science.gov (United States)

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  9. Thermo-mechanical behavior of stainless steel knitted structures

    Science.gov (United States)

    Hamdani, Syed Talha Ali; Fernando, Anura; Maqsood, Muhammad

    2016-09-01

    Heating fabric is an advanced textile material that is extensively researched by the industrialists and the scientists alike. Ability to create highly flexible and drapeable heating fabrics has many applications in everyday life. This paper presents a study conducted on the comparison of heatability of knitted fabric made of stainless steel yarn. The purpose of the study is to find a suitable material for protective clothing against cold environments. In the current research the ampacity of stainless steel yarn is observed in order to prevent the overheating of the heating fabrics. The behavior of the knitted structure is studied for different levels of supply voltage. Infrared temperature sensing is used to measure the heat generated from the fabrics in order to measure the temperature of the fabrics without physical contact. It is concluded that interlock structure is one of the most suited structures for knitted heating fabrics. As learnt through this research, fabrics made of stainless steel yarn are capable of producing a higher level of heating compared to that of knitted fabric made using silver coated polymeric yarn at the same supply voltage.

  10. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang; Yang, Ying; Overman, Nicole R.; Busby, Jeremy T.

    2016-02-28

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr–rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  11. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    Science.gov (United States)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-01

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  12. Adsorption of ammonia on treated stainless steel and polymer surfaces

    Science.gov (United States)

    Vaittinen, O.; Metsälä, M.; Persijn, S.; Vainio, M.; Halonen, L.

    2014-05-01

    Adsorption of dynamically diluted ammonia at part-per-billion to low part-per-million concentrations in dry nitrogen was studied with treated and non-treated stainless steel and polymer test tubes. The treatments included electropolishing and two types of coatings based on amorphous silicon. Cavity ring-down spectroscopy with an external cavity diode laser operating in the near-infrared wavelength range was used to monitor the adsorption process in real time in continuous-flow conditions to obtain quantitative assessment of the adsorptive properties of the studied surfaces. The investigated polymers were all less adsorptive than any of the treated or non-treated stainless steel surfaces. Some of the commercial coatings reduced the adsorption loss of stainless steel by a factor of ten or more. Polyvinylidene fluoride was found to be superior (less adsorption) to the four other studied polymer coatings. The number of adsorbed ammonia molecules per surface area obtained at different ammonia gas phase concentrations was modeled with Langmuir and Freundlich isotherms. The time behavior of the adsorption-desorption process occurring in the time scale of seconds and minutes was simulated with a simple kinetic model.

  13. [Clinical evaluation of gingival tissue restored with stainless steel crown].

    Science.gov (United States)

    Chao, D D; Tsai, T P; Chen, T C

    1992-12-01

    The use of stainless steel crown for the restoration of primary molars is widely accepted in pediatric dentistry. There has been a concern regarding their effect on the health of the gingival tissue. It is a possibility that the preformed crown may be a contributing cause of gingivitis. This study evaluated one hundred and thirty-seven crowns in forty-five patients who had received pedodontic treatment at Chang Gung Memorial Hospital. The results indicated that the majority of stainless steel crowns had one or more defects, with crown crimping being the most common error. According to what the paired t-test showed, non-ideal crowns indicated that the gingival index was significantly higher than the entire mouth and control teeth. However the supragingival plaque accumulation of these teeth was significant lower than the entire mouth and control teeth. There was only a moderate positive correlation between supragingival plaque and gingivitis. The operator is necessary to adapt the stainless steel crown margin as closely as possible to the tooth and to avoid the mechanical defect of a crown. It minimizes the irritation of gingival tissue and diminishes the bacterial adherence of subgingival plaque, therefore preserving the health of gingival tissue.

  14. Surface interactions of cesium and boric acid with stainless steel

    International Nuclear Information System (INIS)

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction

  15. Simulation of Friction Stir Processing in 304L Stainless Steel

    Directory of Open Access Journals (Sweden)

    MilesM.P.

    2016-01-01

    Full Text Available A major dilemma facing the nuclear industry is repair or replacement of stainless steel reactor components that have been exposed to neutron irradiation. When conventional fusion welding is used for weld repair, the high temperatures and thermal stresses inherent in the process enhance the growth of helium bubbles, causing intergranular cracking in the heat-affected zone (HAZ. Friction stir processing (FSP has potential as a weld repair technique for irradiated stainless steel, because it operates at much lower temperatures than fusion welding, and is therefore less likely to cause cracking in the HAZ. Numerical simulation of the FSP process in 304L stainless steel was performed using an Eulerian finite element approach. Model input required flow stresses for the large range of strain rates and temperatures inherent in the FSP process. Temperature predictions in three locations adjacent to the stir zone were accurate to within 4% of experimentally measure values. Prediction of recrystallized grain size at a location about 6mm behind the tool center was less accurate, because the empirical model employed for the prediction did not account for grain growth that occurred after deformation in the experiment was halted.

  16. Crevice Corrosion of 321 Stainless Steel in Sodium Chloride Solutions

    International Nuclear Information System (INIS)

    Electrochemical techniques have been applied to study the crevice corrosion behaviour of stabilized 321 stainless steel in both 0.5, 1 and 2 M sodium chloride solutions at 25 and 80 degree . This type of stainless steel enjoys a good corrosion resistance especially in the heat affected zone (Haz) of welds. In this investigation the crevice corrosion of 321 stainless steel was studied in both bulk solution environments as well as in chloride solutions simulating those formed inside crevices. A metal-to-nonmetal crevice assembly, in which disc type specimens were faced to a PTFE crevice former, is used for bulk solution tests. Crevice-free specimens of solutions formed inside crevices (known as the critical crevice solutions, CCS). Cyclic potentiodynamic technique was used in evaluating the electrochemical corrosion performance of the alloy in bulk (0.5 and 1 M Nacl) environment. This revealed that both chloride ion concentration and temperature have a marked effect on the electrochemical parameters generally used for the evaluation of the crevice corrosion susceptibility. This included the corrosion potential. E corr. The passivity breakdown potential, Eb, and the protection potential, E p

  17. Long term thermal aging of cast duplex stainless steels

    International Nuclear Information System (INIS)

    Cast duplex stainless steels of CF8M and CF8 are used in major components because of their superior characteristics, such as corrosion resistance, weldability and so on. But, these stainless steels are known to have tendency of thermal aging embrittlement after long term service. Therefore, mechanical properties and metallurgical structure were investigated using materials aged at 290--400 C up to 30,000 hours. As the results show, effects of thermal aging on mechanical properties and metallurgical behavior were identified. In addition, prediction method for Charpy absorbed energy and fracture toughness was established. The following results have been obtained: (1) it was recognized that Charpy absorbed energy and fracture toughness tend to decrease and the tensile strength tend to increase with the increasing aging time; (2) it was confirmed that thermal aging embrittlement was caused by the phase separation in ferrite from the test results of APFIM; (3) in the degradation prediction model development the prediction model was applied to the material test data, including materials aged for 30,000 hours. As the results, the degradation prediction formulas for CVRT, CVHT, JIC and J6 were obtained. The toughness of cast duplex stainless steels during service could be estimated from chemical composition using this method

  18. Long term thermal aging of cast duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Isao; Koyama, Masakuni [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Kawaguchi, Seiichi [Mitsubishi Heavy Industries, Ltd., Takasago (Japan); Mimaki, Hidehito [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Akiyama, Mamoru; Mishima, Yoshitsugu [Univ. of Tokyo (Japan); Okubo, Tadatsune [Sophia Univ., Tokyo (Japan); Mager, T.R.

    1996-09-01

    Cast duplex stainless steels of CF8M and CF8 are used in major components because of their superior characteristics, such as corrosion resistance, weldability and so on. But, these stainless steels are known to have tendency of thermal aging embrittlement after long term service. Therefore, mechanical properties and metallurgical structure were investigated using materials aged at 290--400 C up to 30,000 hours. As the results show, effects of thermal aging on mechanical properties and metallurgical behavior were identified. In addition, prediction method for Charpy absorbed energy and fracture toughness was established. The following results have been obtained: (1) it was recognized that Charpy absorbed energy and fracture toughness tend to decrease and the tensile strength tend to increase with the increasing aging time; (2) it was confirmed that thermal aging embrittlement was caused by the phase separation in ferrite from the test results of APFIM; (3) in the degradation prediction model development the prediction model was applied to the material test data, including materials aged for 30,000 hours. As the results, the degradation prediction formulas for CVRT, CVHT, J{sub IC} and J{sub 6} were obtained. The toughness of cast duplex stainless steels during service could be estimated from chemical composition using this method.

  19. Industrial Experience on the Caustic Cracking of Stainless Steels and Nickel Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2005-10-09

    Caustic environments are present in several industries, from nuclear power generation to the fabrication of alkalis and alumina. The most common material of construction is carbon steel but its application is limited to a maximum temperature of approximately 80 C. The use of Nickel (Ni) alloys is recommended at higher temperatures. Commercially pure Ni is the most resistant material for caustic applications both from the general corrosion and the stress corrosion cracking (SCC) perspectives. Nickel rich alloys also offer a good performance. The most important alloying elements are Ni and chromium (Cr). Molybdenum (Mo) is not a beneficial alloying element and it dissolves preferentially from the alloy in presence of caustic environments. Austenitic stainless steels such as type 304 and 316 seem less resistant to caustic conditions than even plain carbon steel. Experimental evidence shows that the most likely mechanism for SCC is anodic dissolution.

  20. The compatibility of stainless steels with particles and powders of uranium carbide and low-sulphur UCS fuels

    International Nuclear Information System (INIS)

    Slightly hyperstoichiometric (U,Pu)C is a potential nuclear fuel for fast breeder reactors. The excess carbon above the stoichiometric amount results in a higher carbon activity in the fuel, and carbon is transferred to the stainless steel cladding, resulting in embrittlement of the cladding. It is with this problem of carbon transfer from the fuel to the cladding that this thesis is concerned. For practical reasons, UC and not (U,Pu)C was used as the fuel. The theory of decarburisation of carbide fuel and the carburisation of stainless steel, the facilities constructed for the project at the Atomic Energy Board, and the experimental techniques used, including preparation of the fuels, are discussed. The effect of a number of variables of uranium carbide fuel on its compatibility behaviour with stainless steels was investigated, as well as the effect om microstructure and type of stainless steel (304, 304 L and 316) on the rate of carburisation. These studies can be briefly summarised under the following headings: powder-particle size; surface oxidation of uranium carbide; preparation temperature of uranium carbide; low sulfur UCS fuels; uranium sulfide and the microstructure and type of steel. The author concludes that: the effect of surface oxidation and particle size must be taken into account when evaluating out-of-pile tests; the possible effects of surface oxidation must be taken into account when considering vibro-compacted carbide fuels; there is no advantage in replacing a fraction of the carbon atoms by sulphur atoms in slightly hyperstoichiometric carbide fuels, and the type and thermo-mechanical treatment of the stainless steel used as cladding material in a fuel pin is not important as far as the rate of carburisation by the fuel is concerned

  1. Passivation of duplex stainless steel in solutions simulating chloride-contaminated concrete

    OpenAIRE

    Takenouti, H.; Soriano, L; Palacín, S.; Gutiérrez, A.; Velasco, F.; Blanco, G; Bautista, A.

    2007-01-01

    Most studies published to date on the corrosion behaviour of stainless reinforcing steel are based on austenitic steel. The market presence of corrugated duplex steel is growing, however. The present study compared passivity in 2205 type duplex and 304 type austenitic stainless steel. Polarization tests in chloride-containing Ca(OH)2 solutions confirmed the exceptional performance of duplex steels. X-ray photoelectronic spectroscopy (XPS) showed that the passive layer generated on duplex stai...

  2. Microbially influenced corrosion of stainless steels; Stainless ko no biseibutsu fushoku ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Misawa, M. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1998-11-30

    It is generally known, though not fully clarified, that stainless steel pipes, particularly those exposed to natural sea water; are susceptible to microbially influenced corrosion (MIC) at welded joints. In an effort to gain a better understanding of the mechanism, factors affecting the MIC behavior in welded stainless steel pipe joints were experimentally investigated. Results of the study indicate there are two major contributing factors to MIC development in the weld region. One is the circumferentially protruding shape effect of the deposited metal, provinding an environment that allows aquatic microorganisms to adhere to the downstream side of the welded bead surface. The other factor is the declining corrosion resistance in the welded joint due to the oxide film formation caused by insufficient shielding during welding. There factors, if combined, produce higher susceptibility to MIC in the weld than in the base metal. (author)

  3. Microstructure and properties of composite of stainless steel and partially stabilized zirconia

    Institute of Scientific and Technical Information of China (English)

    张文泉; 谢建新; 杨志国; 王从曾

    2003-01-01

    To fabricate the metal-ceramics multi-layer hollow functionally gradient materials(FGMs) that mightmeet the requirement of repeated service and long working time of high temperature burners, such as spacecraft en-gine, the microstructure and properties of composite of stainless steel and partially stabilized zirconia were investiga-ted. Samples of different proportions of stainless steel to partially yttria-stabilized zirconia were fabricated by powderextrusion and sintering method. Shrinkage, relative density, microstructure, micro-Vickers hardness, compressionstrength, bending strength, fractography morphology and electrical resistivity of sintered samples with differentproportions of stainless steel were measured. The results show that threshold of metallic matrix composite(MMC)is approximately equal to 60 % (volume fraction) stainless steel. The samples with 0 to 50% (volume fraction) stain-less steel indicate ceramic brittleness and non cutability, and the samples with 70% to 100% (volume fraction) stain-less steel indicate metallic plasticity and cutability.

  4. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Prabhu Paulraj

    2015-08-01

    Full Text Available Duplex Stainless Steels (DSS and Super Duplex Stainless Steel (SDSS have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic phases and their effects on corrosion and mechanical properties. First the effect of various alloying elements on DSS and SDSS has been discussed followed by formation of various intermetallic phases. The intermetallic phases affect impact toughness and corrosion resistance significantly. Their deleterious effect on weldments has also been reviewed.

  5. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru; Shulepov, M. A.; Erofeev, M. V. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)

    2015-12-15

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  6. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars

    International Nuclear Information System (INIS)

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  7. The influence of sintering time on the properties of PM duplex stainless steel

    OpenAIRE

    Z. Brytan; L.A. Dobrzański; M. Actis Grande; M. Rosso

    2009-01-01

    Purpose: The purpose of this paper is to analyse the effect of sintering time on the pore morphology, microstructural changes, tensile properties and corrosion resistance of vacuum sintered duplex stainless steel.Design/methodology/approach: In presented study PM duplex stainless steels were obtained through mixing base ferritic stainless steel powder with controlled addition of elemental alloying powders and then sintered in a vacuum furnace with argon backfilling at 1250°C for different tim...

  8. Marine microbial fuel cell : use of stainless steel electrodes as anode and cathode materials

    OpenAIRE

    Dumas, Claire; Mollica, Alfonso; Féron, Damien; Basséguy, Régine; Etcheverry, Luc; Bergel, Alain

    2007-01-01

    Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cath...

  9. Microstructure and wear resistance of spray-formed supermartensitic stainless steel

    OpenAIRE

    Guilherme Zepon; Claudio Shyinti Kiminami; Walter José Botta Filho; Claudemiro Bolfarini

    2013-01-01

    Since the early 90's the oil industry has been encouraging the development of corrosion and wear resistant alloys for onshore and offshore pipeline applications. In this context supermartensitic stainless steel was introduced to replace the more expensive duplex stainless steel for tubing applications. Despite the outstanding corrosion resistance of stainless steels, their wear resistance is of concern. Some authors reported obtaining material processed by spray forming, such as ferritic stai...

  10. Influence of hydrogen on corrosion and stress induced cracking of stainless steel

    OpenAIRE

    Kivisäkk, Ulf

    2010-01-01

    Hydrogen is the smallest element in the periodical table. It has been shown in several studies that hydrogen has a large influence on the corrosion and cracking behaviour of stainless steels. Hydrogen is involved in several of the most common cathode reactions during corrosion and can also cause embrittlement in many stainless steels. Some aspects of the effect of hydrogen on corrosion and hydrogen-induced stress cracking, HISC, of stainless steels were studied in this work. These aspects rel...

  11. 77 FR 16207 - Stainless Steel Bar From Brazil, India, Japan, and Spain: Final Results of the Expedited Third...

    Science.gov (United States)

    2012-03-20

    ... Steel Bar From Spain, 60 FR 11656 (March 2, 1995). The Department received a notice of intent to.... Stainless steel bar means articles of stainless steel in straight lengths that have been either hot-rolled... International Trade Administration Stainless Steel Bar From Brazil, India, Japan, and Spain: Final Results...

  12. Tensile behavior of irradiated manganese-stabilized stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Tensile tests were conducted on seven experimental, high-manganese austenitic stainless steels after irradiation up to 44 dpa in the FFTF. An Fe-20Mn-12Cr-0.25C base composition was used, to which various combinations of Ti, W, V, B, and P were added to improve strength. Nominal amounts added were 0.1% Ti, 1% W, 0.1% V, 0.005% B, and 0.03% P. Irradiation was carried out at 420, 520, and 600{degrees}C on the steels in the solution-annealed and 20% cold-worked conditions. Tensile tests were conducted at the irradiation temperature. Results were compared with type 316 SS. Neutron irradiation hardened all of the solution-annealed steels at 420, 520, and 600{degrees}C, as measured by the increase in yield stress and ultimate tensile strength. The steel to which all five elements were added to the base composition showed the least amount of hardening. It also showed a smaller loss of ductility (uniform and total elongation) than the other steels. The total and uniform elongations of this steel after irradiation at 420{degrees}C was over four times that of the other manganese-stabilized steels and 316 SS. There was much less difference in strength and ductility at the two higher irradiation temperatures, where there was considerably less hardening, and thus, less loss of ductility. In the cold-worked condition, hardening occured only after irradiation at 420{degrees}C, and there was much less difference in the properties of the steels after irradiation. At the 420{degrees}C irradiation temperature, most of the manganese-stabilized steels maintained more ductility than the 316 SS. After irradiation at 420{degrees}C, the temperature of maximum hardening, the steel to which all five of the elements were added had the best uniform elongation.

  13. Improved corrosion resistance of 316L stainless steel by nanocrystalline and electrochemical nitridation in artificial saliva solution

    Science.gov (United States)

    Lv, Jinlong; Liang, Tongxiang

    2015-12-01

    The fluoride ion in artificial saliva significantly changed semiconductor characteristic of the passive film formed on the surface of 316L stainless steels. The electrochemical results showed that nanocrystalline α‧-martensite improved corrosion resistance of the stainless steel in a typical artificial saliva compared with coarse grained stainless steel. Moreover, comparing with nitrided coarse grained stainless steel, corrosion resistance of the nitrided nanocrystalline stainless steel was also improved significantly, even in artificial saliva solution containing fluoride ion. The present study showed that the cryogenic cold rolling and electrochemical nitridation improved corrosion resistance of 316L stainless steel for the dental application.

  14. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media.

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2015-12-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other properties. The good corrosion resistance of the stainless steel is due to the formation of passive film. While, there is little literature about the electrochemical and passive behavior of ferritic stainless steel in the concrete environments. So, here, we present the several corrosion testing methods, such as the potentiodynamic measurements, EIS and Mott-Schottky approach, and the surface analysis methods like XPS and AES to display the passivation behavior of 430 ferritic stainless steel in alkaline solution with the presence of chloride ions. These research results illustrated a simple and facile approach for studying the electrochemical and passivation behavior of stainless steel in the concrete pore environments. PMID:26501086

  15. NDE of explosion welded copper stainless steel first wall mock-up

    International Nuclear Information System (INIS)

    The study showed that reflection type C-mode scanning acoustic microscope (C-SAM) and internal ultrasonic inspection (IRIS) equipment can be applied for ultrasonic examination of copper stainless steel compound structures of ITER first wall mock-ups. Explosive welding can be applied to manufacture fully bonded copper stainless steel compound plates. However, explosives can be applied only for mechanical tightening of stainless steel cooling tubes within copper plate. If metallurgical bonding between stainless steel tubes and copper plate is required Hot Isostatic Pressing (HIP) method can be applied. (orig.)

  16. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media.

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2015-12-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other properties. The good corrosion resistance of the stainless steel is due to the formation of passive film. While, there is little literature about the electrochemical and passive behavior of ferritic stainless steel in the concrete environments. So, here, we present the several corrosion testing methods, such as the potentiodynamic measurements, EIS and Mott-Schottky approach, and the surface analysis methods like XPS and AES to display the passivation behavior of 430 ferritic stainless steel in alkaline solution with the presence of chloride ions. These research results illustrated a simple and facile approach for studying the electrochemical and passivation behavior of stainless steel in the concrete pore environments.

  17. Corrosion of nickel alloys and stainless steels in polluted or confined PWR environments

    International Nuclear Information System (INIS)

    This document addresses the issue of corrosion of materials used in PWR nuclear reactors, notably in steam generators which have been particularly affected by this kind of degradation due to a progressive accumulation of impurities. The authors first present the different materials used in secondary circuit and in auxiliary circuits of PWRs: carbon steels and low alloyed steels, nickel alloys, stainless steels, and other materials. They discuss the degradation of steam generator tubes by corrosion: corrosion environments, types of corrosion (wastage, pitting, intergranular stress corrosion cracking), and influence of the environment and of the microstructure. They also propose a brief overview of modelling efforts in the case of the 600 alloy, and indicates measures to mitigate the tube degradation by corrosion (water treatment, better design of steam generators and secondary circuit, improvement of corrosion resistance). The next part addresses the degradation by stress corrosion cracking of stainless steels in polluted environments in PWRs reactors: return on experience, stress corrosion cracking in media contaminated by impurities (intergranular corrosion of sensitized or work hardened steels, transgranular corrosion by chloride ions, corrosion by diluted sulphate + chloride, corrosion in concentrated boric acid solutions)

  18. CO2 laser welding of AISI 321stainless steel

    International Nuclear Information System (INIS)

    CO2 laser welding of AISI 321austenitic stainless steel has been carried out. Bead on plate welds on 2 mm thick steel were performed with 450W CO2 laser at speeds ranging from 200 to 900 mm/min. It was observed that weld depth and width was decreased with increasing the speed at constant laser power. Butt welds on different sheet thickness of 1, 2 and 2.5 mm were performed with laser power of 450 W and at speed 750, 275 and 175 mm/min, respectively. The microstructures of the welded joints and the heat affected zones (HAZ) were examined by optical microscopy and SEM. The austenite/delta ferrite microstructure was reported in the welded zone. The microhardness and tensile strength of the welded joints were measured and found almost similar to base metal due to austenitic nature of steel

  19. History of ultrahigh carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  20. Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility.

    Science.gov (United States)

    Nagarajan, Srinivasan; Mohana, Marimuthu; Sudhagar, Pitchaimuthu; Raman, Vedarajan; Nishimura, Toshiyasu; Kim, Sanghyo; Kang, Yong Soo; Rajendran, Nallaiyan

    2012-10-24

    The 316 L stainless steel is one of the most commonly available commercial implant materials with a few limitations in its ease of biocompatibility and long-standing performance. Hence, porous TiO(2)/ZrO(2) nanocomposite coated over 316 L stainless steels was studied for their enhanced performance in terms of its biocompatibility and corrosion resistance, following a sol-gel process via dip-coating technique. The surface composition and porosity texture was studied to be uniform on the substrate. Biocompatibility studies on the TiO(2)/ZrO(2) nanocomposite coatings were investigated by placing the coated substrate in a simulated body fluid (SBF). The immersion procedure resulted in the complete coverage of the TiO(2)/ZrO(2) nanocomposite (coated on the surface of 316 L stainless steel) with the growth of a one-dimensional (1D) rod-like carbonate-containing apatite. The TiO(2)/ZrO(2) nanocomposite coated specimens showed a higher corrosion resistance in the SBF solution with an enhanced biocompatibility, surpassing the performance of the pure oxide coatings. The cell viability of TiO(2)/ZrO(2) nanocomposite coated implant surface was examined under human dermal fibroblasts culture, and it was observed that the composite coating enhances the proliferation through effective cellular attachment compared to pristine 316 L SS surface. PMID:22967070

  1. Joining dissimilar stainless steels for pressure vessel components

    International Nuclear Information System (INIS)

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCrl3Ni4Mo) and AISI 347, respectively. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. Based on the weldability tests, a welding procedure - tungsten inert gas (TIG) welding for root passes with HNiCrMo-2B wire followed by manual metal arc (MMA) welding using coated electrode ENiCrFe-3B - was developed and a PWHT at 600 deg C/2h was recommended. Furthermore, the welding of tube/tube joints between these dissimilar steels is described. (21 refs., 11 figs., 14 tabs.)

  2. The interaction between nitride uranium and stainless steel

    Science.gov (United States)

    Shornikov, D. P.; Nikitin, S. N.; Tarasov, B. A.; Baranov, V. G.; Yurlova, M. S.

    2016-04-01

    Uranium nitride is most popular nuclear fuel for Fast Breeder Reactor New Generation. In-pile experiments at reactor BOR-60 was shown an interaction between nitride fuel and stainless steel in the range of 8-11% burn up (HA). In order to investigate this interaction has been done diffusion tests of 200 h and has been shown that the reaction occurs in the temperature range 1000-1100 ° C. UN interacted with steel in case of high pollution oxygen (1000-2000 ppm). Also has been shown to increase interaction UN with EP-823 steel in the presence of cesium. In this case the interaction layer had a thickness about 2-3 μm. Has been shown minimal interaction with new ODS steel EP-450. The interaction layer had a thickness less then 2 μm. Did not reveal the influence of tellurium and iodine increased interaction. It was show compatibility at 1000 °C between UN and EP-450 ODS steel, chrome steel, alloying aluminium and silicium.

  3. Investigations on the Corrosion Behaviour and Structural Characteristics of Low Temperature Nitrided and Carburised Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    D. M(u)nter; H.-J. Spies; H. Biermann; Chr. Eckstein

    2004-01-01

    The wear resistance of austenitic stainless steels can be improved by thermo-chemical surface treatment with nitrogen and carbon. However, it is possible that the corrosion resistance will be impaired by the precipitation of chromiumnitrid or -carbide. The present contribution deals with investigations of the corrosion behaviour and structural characteristics of a low temperature nitrided and carburised austenitic stainless steel.The material investigated was AISI 316L (X2CrNiMo17-12-2) austenitic stainless steel. A commercial plasma-nitriding unit (pulsed dc) was used for the nitriding and carburising process. Additional samples were treated by the gasoxinitriding process for a comparison between plasma- and gasoxinitriding. The nitrided and carburised layer of austenltic stainless steel consists of the nitrogen or carbon S-phase (expanded austenite), respectively. X-ray diffraction investigations show the typical shift of the peaks to lower angles, indicating expansion of the fcc lattice. Also the X-ray diffraction technique was employed to study the residual stresses in the nitrogen and carbon S-phase. The corrosion behaviour of surface engineered samples was investigated with electrochemical methods. Anodic potentiodynamic polarisation curves were recorded for testing the resistance against general corrosion (in H2SO4) and pitting corrosion (in NaCl).

  4. Laser surface alloying of sintered stainless steels with SiC powder

    Directory of Open Access Journals (Sweden)

    Z. Brytan

    2011-07-01

    Full Text Available Purpose: The goal of this study is to investigate effects of laser surface alloying with SiC powder on microstructural changes and properties of vacuum sintered austenitic X2CrNiMo17-12-2, ferritic X6Cr13 and duplex X2CrNiMo22-8-2 stainless steels.Design/methodology/approach: Surface modification of sintered stainless steels was carried out by laser surface alloying with SiC powder using high power diode laser (HPDL. The influence of laser alloying conditions, the laser beam power (between 0.7 and 2.1 kW at constant scanning rate on the width of alloyed surface layer and penetration depth were studied. The resulting microstructure in laser alloyed surface layer was examined using light and scanning electron microscopy. Phase composition was determined by the X-ray diffraction method. The microhardness results of modified surface layer were also studied.Findings: The alloyed surface layer has a fine dendritic microstructure with iron-chromium carbides precipitations. The surface layer was enriched in silicon and carbon that produced microstructural changes and resulting microhardness increase. Beside studied stainless steels the duplex one revealed highest hardening effect by laser alloying with SiC powder, where related microhardness was about 500-600 HV.Practical implications: Laser surface alloying with SiC powder can be an efficient method of surface layer hardening of sintered stainless steels and produce significant improvement of surface layer properties in terms of hardness and wear resistance.Originality/value: Application of high power diode laser can guarantee uniform heating of treated surface, thus uniform thermal cycle across processed area and uniform penetration depth of alloyed surface layer.

  5. Fabrication of high nitrogen austenitic stainless steels with excellent mechanical and pitting corrosion properties

    Institute of Scientific and Technical Information of China (English)

    Hua-bing Li; Zhou-hua Jiang; Yang Cao; Zu-rui Zhang

    2009-01-01

    18Cr18Mn2Mo0.9N high nitrogen austenitic stainless steel exhibits high strength and good ductility at room temperature. The steel shows typical duc-tile-brittle transition behavior and excellent pitting corrosion resistance properties.

  6. The influence of cold work on the oxidation behaviour of stainless steel

    International Nuclear Information System (INIS)

    In this thesis the study of the interaction of oxygen gas with stainless steel surfaces is described. Thermogravimetry, microscopy and ellipsometry have been used to follow the oxidation in situ, while EDX, AES and XPS have been used to determine the oxide compositions. The aim of this thesis is to reveal the influence on the oxidation behaviour of stainless steel of i) cold work (rolling, drawing, milling, polishing and Ar ion bombardment) ii) the initially formed oxide and iii) the experimental conditions. Two types of stainless steels have been used (AISI 304 (a 18/8 Cr/Ni steel) and Incoloy 800 H (a 20/30 Cr/Ni steel)). (Auth.)

  7. Microstructure and Mechanical Properties of Martensitic Stainless Steel 6Crl5MoV

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Martensitic stainless steel containing Cr of 12% to 18%(mass percent) are common utilized in quenching and tempering processes for knife and cutlery steel. The properties obtained in these materials are significantly influ- enced by matrix composition after heat treatment, especially as Cr and C content. Comprehensive considered the hardness and corrosion resistance, a new type martensitic stainless steel 6Crl5MoV has been developed. The effect of heat treatment processes on microstructure and mechanical properties of 6Crl5MoV martensitic stainless steel is emphatically researched. Thermo-Calc software has been carried out to thermodynamic calculation; OM, SEM and TEM have been carried out to microstructure observation; hardness and impact toughness test have been carried out to evaluate the mechanical properties. Results show that the equilibrium carbide in 6Cr15MoV steel is M23 C6 car- bide, and the M23 C6 carbides finely distributed in annealed microstructure. 6Crl5MoV martensitic stainless steel has a wider quenching temperature range, the hardness value of steel 6Cr15MoV can reach to HRC 60.8 to HRC 61.6 when quenched at 1 060 to 1 100 ℃. Finely distributed carbides will exist in quenched microstructure, and effectively inhabit the growth of austenite grain. With the increasing of quenching temperature, the volume fraction of undis- solved carbides will decrease. The excellent comprehensive mechanical properties can be obtained by quenched at 1 060 to 1 100℃ with tempered at 100 to 150 ℃, and it is mainly due to the high carbon martensite and fine grain size. At these temperature ranges, the hardness will retain about HRC 59.2 to HRC 61.6 and the Charpy U-notch impact toughness will retain about 17.3 to 20 J. A lot of M23C6 carbides precipitated from martensite matrix, at the same time along the boundaries of martensite lathes which leading to the decrease of impact toughness when tempered at 500 to 540 ℃. The MaC precipitants also existed in the

  8. Effect of Deleterious Phases on Corrosion Resistance of Duplex Stainless Steel (2205)

    OpenAIRE

    AbdulKadar M. Godil; Hitesh A. Narsia; M. N. Patel; Mr. Paresh U. Haribhakti

    2013-01-01

    Duplex stainless steel is a Ferritic(BCC)-Austenitic(FCC) steel, covers the advantages of both Austenitic and Ferritic Stainless steels. They having good mechanical and corrosion resistance properties are widely used in many industries like chemical plants, refineries for critical equipments such as pressure vessels, heatexchangers, water heaters. Major problem occurs with duplex steels when they are worked or heated above about temperature of 280°C. Detrimental phases like Sigma, Chi, Laves ...

  9. Arc discharge deposition of stainless steel coatings at different nitrogen pressures

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, J. [VTT Manufacturing Technology (Finland); Torri, P. [Helsinki Univ. (Finland). Dept. of Physics; Hirvonen, J.P. [VTT Manufacturing Technology (Finland); Mahiout, A. [VTT Manufacturing Technology (Finland); Stanishevsky, A. [Plasmoteg Engineering Centre, Minsk (Belarus)

    1996-03-01

    A filtered arc discharge process was employed to deposit stainless steel films using an AISI316 cathode. In this procedure, macroparticles and droplets, which are the most serious drawback of arc deposition processes especially in corrosion applications, are mostly filtered out. Films were deposited in vacuum or in the presence of a nitrogen plasma at different partial pressures. Low carbon steel and silicon single crystals were employed as substrates. Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA) and X-ray diffraction (XRD) were used to characterize the films. The corrosion properties were examined using electrochemical polarization measurements. The corrosion current density was clearly lower than that of bulk steel, but higher than that of bulk AISI316. Increasing the film thickness and nitrogen content lowered the corrosion current density. (orig.)

  10. Separation by transportation in vapor phase of stainless steels components

    International Nuclear Information System (INIS)

    A procedure for separating cobalt from other constituents of radioactive stainless steel is proposed in order to condition material originating from dismantling of reactor pressure vessels. The procedure is based on the transport in the vapour phase, under the presence of an appropriate carrier gas and a thermal gradient in a sealed device. By calculation, iodine was found to be the most appropriate carrier gas. Tests carried out at 50 mg to 2 g scale in quartz ampoules permitted to determine parameters, i.e. temperature range and gradient, pressure, and the effectiveness. It was shown that steel turnings may be treated efficiently. The procedure achieves well a partition of stainless steel into two metal masses: one containing the bulk of cobalt and radioactivity, the other depleted of cobalt and suitable for recycling. There is few or no secondary waste created, but the costs of the procedure are estimated to be high, i.e. between 100 and 1,000 ECU/kg

  11. Stable phases in aged type 321 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, J.; Leitnaker, J.M.

    1978-01-01

    X-ray diffraction and Analytical Electron Microscopy have been used to characterize the precipitate phases present in type 321 stainless steel after 17 years of service at approximately 600/sup 0/C. The morphology, crystallography, and orientation relationships with the matrix of the precipitates have been determined along with the chemical composition of several of the phases. Long-term aging of type 321 stainless steel indicates TiC, not M/sub 23/C/sub 6/, is the stable carbide phase. A theory is developed to explain appearance of M/sub 23/C/sub 6/ at intermediate times. The theory also indicates the means for preventing M/sub 23/C/sub 6/ formation and hence sensitization of the steel to intergranular corrosion. The amount of sigma found correlates well with results from shorter time studies. Ti/sub 4/C/sub 2/S/sub 2/ and a complex phosphide-arsenide were also present.

  12. High-pressure stainless steel active membrane microvalves

    Science.gov (United States)

    Sharma, G.; Svensson, S.; Ogden, S.; Klintberg, L.; Hjort, K.

    2011-07-01

    In this work, high-pressure membrane microvalves have been designed, manufactured and evaluated. The valves were able to withstand back-pressures of 200 bar with a response time of less than 0.6 s. These stainless steel valves, manufactured with back-end batch production, utilize the large volume expansion coupled to the solid-liquid phase transition in paraffin wax. When membrane materials were evaluated, parylene coated stainless steel was found to be the best choice as compared to polydimethylsiloxane and polyimide. Also, the influence of the orifice placement and diameter is included in this work. If the orifice is placed too close to the rim of the membrane, the valve can stay sealed even after turning the power off, and the valve will not open until the pressure in the system is released. The developed steel valves, evaluated for both water and air, provide excellent properties in terms of mechanical stability, ease of fabrication, and low cost. Possible applications include sampling at high pressures, chemical microreactors, high performance liquid chromatography, pneumatics, and hydraulics.

  13. Malfunction analysis of OPGW of stainless steel-unit structure

    Institute of Scientific and Technical Information of China (English)

    李星梅; 张素芳; 王旭锋; 乞建勋

    2008-01-01

    Composite fiber optic overhead ground wire (OPGW) is increasingly applied in China’s overhead transmission lines. The stainless steel structure is adopted by most OPGWs as it is very small and easy to match the existing ground wire. The malfunction of OPGW in Beijing-Shanghai Optical Communication Project was analyzed through the chemical composition method and spectrum semi-quantitative method. The analysis indicates that the cable fault was due to the failure of seepage and irregular holes in the steel pipe of the optical unit. The rain water and the watery air entered into the optical units, and the water in turn became ice when temperature dropped. The occurrence of ice led to the acceleration of attenuation of the fiber. The results show that the rupture of stainless steel tube is mainly due to the instability of welding technique. The malfunction of OPGW is due to the local defects of welding seam because of local stress concentration in the manufacturing process.

  14. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    Science.gov (United States)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  15. Cold Spray Repair of Martensitic Stainless Steel Components

    Science.gov (United States)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  16. THE EFFECT OF W ON THE REPASSIVATION BEHAVIOR OF Ni-ADDED STAINLESS STEELS

    Institute of Scientific and Technical Information of China (English)

    J.X. Pan; K. Y. Kim

    2005-01-01

    The effect of W on the repassivation behavior of Ni-added stainless steels was investigated with respect to the repassivation rate and the SCC susceptibility. It was found that more stable passive film was formed on the W-modified stainless steels than that of steels without W-modification, and the repassivation rate was faster for W-modified stainless steels in acidic chloride solution (0.5M H2SO4+3.5% Cl-). In neutral chloride solution (1M MgCl2), there were no significant differences on both passivation properties and the repassivation rates for duplex stainless steels,while W-modified austenite stainless steel showed faster repassivation rate. The SCC tests verified that W-modified Ni-added stainless steels exhibited better SCC resistance than steels without W in chloride solution. Moreover, W-modification in higher Ni-added stainless steels exhibited more remarkable SCC resistance than steels with lower Ni content in chloride solution.

  17. Influence of surface finish on the cleanability of stainless steel.

    Science.gov (United States)

    Frank, J F; Chmielewski, R

    2001-08-01

    Stainless steel for fabricating food processing equipment is available with various surface finishes. The objective of this research was to determine the effect of surface finish on cleanability. Nine samples of stainless steel, type 304, from various manufacturers including no finish (hot rolled and pickled), #4 finish, 2B mechanical polished, and electropolished were tested. Cleanability was assessed by using coupon samples soiled with either cultured milk inoculated with spores of Bacillus stearothermophilus or by growth of a Pseudomonas sp. biofilm. Samples were cleaned by immersion in a turbulent bath of 1.28% sodium hydroxide at 66 degrees C for 3 min followed by a sterile water rinse, neutralizing in 0.1% phosphoric acid for 30 s, rinsing in phosphate buffer, sanitizing in 100 ppm hypochlorite, neutralizing in sodium thiosulfate, and drying. To determine residual milk soil, coupon samples were covered with PM indicator agar and incubated for 25 h at 58 degrees C. Other coupons were subjected to an additional 10 soiling or cleaning cycles, and the residual protein was measured by using epifluorescent microscopy and image analysis. Results indicate that the spore count was more precise for measuring initial cleanability of the finished samples, and the protein residue determination was useful for determining the effect of repeated cleaning. Data on the removal of milk soil suggest that stainless steel should be purchased based on measures of surface defects rather than finish type. Surface defects, as determined using a surface roughness gauge, produced a correlation of 0.82 with spore counts. Data also indicated that biofilm was more difficult to remove than milk-based soil. PMID:11510656

  18. A study on laser welding deformation of 304 stainless steel

    International Nuclear Information System (INIS)

    In heavy industries, 304 austenitic stainless steel is the most popular material which is used for nuclear equipment, chemical vessels, vacuum vessels and so on. On the fabrication, not only a joint quality but also severe dimensional accuracy is required. To keep dimensional accuracy, considerable cost and efforts are requested, because the welding deformation of austenitic stainless steel is deeply depended on the physical properties of material itself. To decrease welding deformation, big jigs or water cooling method are commonly used which lead to the high cost. In general, the fusion welding by high energy density heat source results in less distortion. Today, laser welding technology has grown up to the stage that enables to weld thick plate with small deformation. The researches of welding deformation have been conducted intensively, but they are mainly concerned for arc welding, and studies for laser welding are very few. In this report, the authors will show the test results of deformation behavior in laser welding of 304 stainless steel. Also, they will discuss the deformation behavior comparing to that in arc welding. The main results of this study are as follows. 1. The angular distortion of laser welding can be unified by heat input parameter (Hp) which is used for arc welding deformation. 2. The angular distortion are same under the condition of Hp3 in spite of different welding method, however under the condition of Hp>6-9 J/mm3 the angular distortion is quite different depending on the power density of welding method. 3. Pure angular distortion seemed to complete just after welding, but following longitudinal distortion took place for long period. 4. The critical value of longitudinal distortion can be estimated from heat input parameter. The transverse deformation can be also estimated by heat input parameter. (author)

  19. Aging and Embrittlement of High Fluence Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  20. Chromium-nickel stainless steel and method of its manufacture

    International Nuclear Information System (INIS)

    The chromium-nickel stainless steel is designed for the production of rolled bands to be welded onto the primary circuit component surfaces. The invention claims the steel composition. Phosphorus content is restricted to an amount of 0.005 to 0.025%, sulfur to 0.001 to 0.012%, oxygen to 0.001 to 0.008% aluminium to 0.005 to 0.05%, and titanium to 0.02 to 0.20%. The steel may also contain 0.01 to 0.15% of cerium, 0.01 to 0.15% of zirconium and 0.0001 to 0.005% of boron while the overall combined content of cerium, zirconium and boron does not exceed 0.25%. The initial material is nonalloyed waste, nickel metal and ferroalloys. The steel is deoxidized with aluminium and its chemical composition is adjusted with an addition of ferrochrome or nickel. The steel is then vacuum processed and after standing, it is cast at a temperature of 1520 to 1580 degC. (J.P.)

  1. Joining dissimilar stainless steels for pressure vessel components

    Science.gov (United States)

    Sun, Zheng; Han, Huai-Yue

    1994-03-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCr13Ni4Mo) and AISI 347, respectively. Such joints are important parts in, e.g. the primary circuit of a pressurized water reactor (PWR). This kind of joint requires both good mechanical properties, corrosion resistance and a stable magnetic permeability besides good weldability. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. The results of various tests indicated that the quality of the tube/tube joints is satisfactory for meeting all the design requirements.

  2. Thermal stability of ultrafine-grained austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, A.; Radiguet, B.; Genevois, C.; Le Breton, J.-M. [Groupe de Physique des Materiaux, Universite et INSA de Rouen, UMR CNRS 6634, BP 12, 76 801 Saint Etienne du Rouvray Cedex (France); Valiev, R. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12K. Marx Street, 450000 Ufa (Russian Federation); Pareige, P., E-mail: philippe.pareige@univ-rouen.fr [Groupe de Physique des Materiaux, Universite et INSA de Rouen, UMR CNRS 6634, BP 12, 76 801 Saint Etienne du Rouvray Cedex (France)

    2010-08-20

    Ultrafine-grained 316 and 304 austenitic stainless steel samples have been produced by high pressure torsion. Their microstructure, after deformation and annealing at a temperature in the 350-900 deg. C range, has been characterized using several techniques (transmission electron microscopy, X-ray diffraction, Moessbauer spectroscopy). The average grain size in the ultrafine-grained 316 is about 40 nm while it is larger in the ultrafine-grained 304 due to a smaller deformation. Results show the formation of {alpha}'-martensite during deformation in both steels while {epsilon}-martensite is formed only in the 304 steel. Annealing at 350 deg. C induces the decrease of {alpha}'-martensite content in the 316 steel. The trend is different in the 304 steel, in which the {alpha}'-martensite content increases. Recrystallization of grains is observed from 700 deg. C. Moessbauer spectroscopy shows a reduction of the level of solute atoms in {alpha}'-martensite during annealing.

  3. Correlation of the surface composition of degassed 347 stainless steel with thermally desorbed H2 and CO

    International Nuclear Information System (INIS)

    Variations in the surface composition of stainless steel after a 24 h, 250 deg. C bakeout over the temperature range of room temperature to 800 deg. C have been correlated with desorption of H2 and CO. The surface composition of the 347 stainless steel was monitored by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) and desorption kinetics were determined from temperature desorption spectroscopy (TDS). Non-linear TDS was used to resolve the surface hydrogen from the bulk hydrogen. H2 and CO were observed to desorb from degassed 347 stainless steel by second-order kinetics, i.e., the gases were generated from atoms at the surface. The oxygen exchange from the surface CrxOy, FexOy to the residing carbon in the surface complex appears to control the CO generation. The onset of H2 desorption occurred slightly ahead of the CO, reached a maximum almost simultaneously (∼420 deg. C) and then declined in concert with the AES detected surface C and O. Non-linear TDS applied to large, cylindrical samples of 347 stainless steel showed H2 and CO surface desorption completely resolved from H2 bulk desorption. The steady state hydrogen desorption rate following the bakeout is bulk diffusion limited and was found to be 5.6x10-12 Torr l/(s cm2). Some discussion of the surface complex stress on the aforementioned oxide decomposition with temperature is also presented. Similar experiments on 304L stainless steel gave the same results as were observed on 347 stainless steel

  4. Microbial corrosion in weld zone of stainless steel. Stainless ko yosetsubu no biseibutsu fushoku

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, E. (National Chemical Laboratory for Industry, Tsukuba (Japan)); Nishimura, M. (Mitsubishi Kakoki Kaisha, Ltd., Tokyo (Japan))

    1992-10-15

    Microbial corrosion may happen wherever water is treated in many kinds of practical metal except titan, such as common steel, copper alloy, stainless steel, and high-nickel alloy. Although microbes causing microbial corrosion are not limited to specified microbes, specially affecting microbes are iron bacteria, iron-oxidizing bacteria, and sulfate-reducing bacteria. mechanism in these microbial corrosion, which is fundamentally caused through formation of oxygen concentration cells and production of metabolites, is complex and different by each microbe. In the case of stainless steel, the corrosion is located mainly in weld zones or heat affected zones, the shape of corrosion is like a pot, and the pattern is a type of pitting corrosion. Microbes are apt to adhere to the surface near weld zones, then oxygen becomes consequently insufficient beneath the surface, where the self-mending capacity of passive films is deprived, resulting in occurrence of pitting corrosion. For protection of microbial corrosion, it is essential to control water so that habitation of microbes is not formed. 9 refs., 3 figs.

  5. Characteristics of residual stresses of water jet peened stainless steel

    International Nuclear Information System (INIS)

    The material of the specimen was austenitic stainless steel, SUS316L. The residual stresses in the specimen was introduced by a water jet peening (WJP). The change in the residual stress with thermal aging at 773K was measured by an X-ray stress measurement. The WJP residual stresses were an equi-biaxial stress state, and the compressive residual stress did not decrease against the thermal aging. To investigate dependence of the residual stress on a lattice plane, the WJP residual stresses were measured using hard synchrotron X-rays. (author)

  6. Thermal aging evaluation of casting stainless steel under BWR environment

    International Nuclear Information System (INIS)

    Effect of thermal aging under BWR condition on material properties of casting stainless steel were evaluated by such as Charpy impact test, using replaced BWR component material. Solution heat treatment was performed to the same material and the material properties were obtained. Comparing each material test results, impact value of thermal aging material was lower than solution heat treatment material. By the results, thermal aging effect on material properties under BWR condition was confirmed. The material properties were compared with model equation using PLM evaluation and conservativeness of model equation was confirmed. (author)

  7. Analysis of ridging in ferritic stainless steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P.D. [Novelis Inc., Novelis Global Technology Centre, 945 Princess Street, Kingston, Ont., K7L 5L9 (Canada)]. E-mail: wupeidong@hotmail.com; Jin, H. [Novelis Inc., Novelis Global Technology Centre, 945 Princess Street, Kingston, Ont., K7L 5L9 (Canada); Shi, Y. [Novelis Inc., Novelis Global Technology Centre, 945 Princess Street, Kingston, Ont., K7L 5L9 (Canada); Lloyd, D.J. [Novelis Inc., Novelis Global Technology Centre, 945 Princess Street, Kingston, Ont., K7L 5L9 (Canada)

    2006-05-15

    The finite element method is used to numerically simulate the development of ridging/roping in ferritic stainless steel sheet under stretching. The measured electron backscattered diffraction (EBSD) data (grain orientations and their spatial distributions) are directly incorporated into the finite element model and the constitutive response at an integration point is described by the single crystal plasticity theory. The effects of spatial orientation distribution, imposed deformation path, and inhomogeneous deformation within individual grains on the roping are discussed. It is found that the initial texture and its spatial distribution are the predominant factors for the development of ridging.

  8. Femtosecond laser color marking stainless steel surface with different wavelengths

    Science.gov (United States)

    Li, Guoqiang; Li, Jiawen; Hu, Yanlei; Zhang, Chenchu; Li, Xiaohong; Chu, Jiaru; Huang, Wenhao

    2015-03-01

    The femtosecond laser color marking stainless steel surfaces with different incident wavelengths were investigated theoretically and experimentally. It indicates that the spectral regions of the colors firstly increase and then reduce with increasing spatial periods of the ripples induced by laser irradiation. Additionally, the colors are gradually changed from blue to red due to the elongation of the diffracted light wavelengths. As a result, the color effects are distinctly different. This study offers a new controllable parameter to produce diverse colors, which may find a wide range of applications in the laser color marking, art designing and so on.

  9. Laser-induced color marking of stainless steel

    Science.gov (United States)

    Antonczak, Arkadiusz J.; Nowak, Maciej; Koziol, Pawel; Kaczmarek, Pawel R.; Waz, Adam T.; Abramski, Krzysztof M.

    2013-01-01

    This paper presents the analysis of the impact of selected process parameters on the resulting laser color marking. The study was conducted for AISI 304 multipurpose stainless steel using a commercially available industrial fiber laser. It was determined how various process parameters, such as laser power, scanning speed of the laser beam, temperature of the material, location of the sample relative to the focal plane, affect the repeatability of the colors obtained. For objective assessment of color changes, an optical spectrometer and the CIE color difference parameter ΔEab * were used.

  10. General and Localized Corrosion of Borated Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    T.E. Lister; Ronald E. Mizia; A.W. Erickson; T.L. Trowbridge; B. S. Matteson

    2008-03-01

    The Transportation, Aging and Disposal (TAD) canister-based system is being proposed to transport and store spent nuclear fuel at the Monitored Geologic Repository (MGR) located at Yucca Mountain, Nevada. The preliminary design of this system identifies borated stainless steel as the neutron absorber material that will be used to fabricate fuel basket inserts for nuclear criticality control. This paper discusses corrosion test results for verifying the performance of this material manufactured to the requirements of ASTM A887, Grade A, under the expected repository conditions.

  11. NARROW GAP LASER WELDING OF THICK SECTION STAINLESS STEEL

    OpenAIRE

    2012-01-01

    Laser welding of metals typically has a weld penetration of 1-2 mm/kW laser power. Therefore laser welding of thick section materials would require very high power lasers. In this paper we report an investigation into multi-pass laser welding of 316L stainless steel sheets of 5-10 mm thickness, based on narrow gap (1.5 mm) approach using a 1 kW single mode fibre laser. A filler wire of 316L with a 0.8 mm diameter was used in the welding process. The integrity of the weld, microstructure and h...

  12. Glow Discharge Plasma Nitriding of AISI 304 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    A.QAYYUM; M.A.NAVEED; S.ZEB; G.MURTAZA; M.ZAKAULLAH

    2007-01-01

    Glow discharge plasma nitriding of AISI 304 austenitic stainless steel has been carried out for different processing time under optimum discharge conditions established by spectroscopic analysis.The treated samples were analysed by X-ray diffraction(XRD)to explore the changes induced in the crystallographic structure.The XRD pattern confirmed the formation of an expanded austenite phase(γN)owing to incorporation of nitrogen as an interstitial solid solution in the iron lattice.A Vickers microhardness tester was used to evaluate the surface hardness as a function of indentation depth(μm).The results showed clear evidence of surface changes with substantial increase in surface hardness.

  13. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    Science.gov (United States)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  14. Stainless steel clad for light water reactor fuels. Final report

    International Nuclear Information System (INIS)

    Proper reactor operation and design guidelines are necessary to assure fuel integrity. The occurrence of fuel rod failures for operation in compliance with existing guidelines suggests the need for more adequate or applicable operation/design criteria. The intent of this study is to develop such criteria for light water reactor fuel rods with stainless steel clad and to indicate the nature of uncertainties in its development. The performance areas investigated herein are: long term creepdown and fuel swelling effects on clad dimensional changes and on proximity to clad failure; and short term clad failure possibilities during up-power ramps

  15. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  16. Shrinkage Prediction for the Investment Casting of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  17. Hardening of aged duplex stainless steels by spinodal decomposition.

    Science.gov (United States)

    Danoix, F; Auger, P; Blavette, D

    2004-06-01

    Mechanical properties, such as hardness and impact toughness, of ferrite-containing stainless steels are greatly affected by long-term aging at intermediate temperatures. It is known that the alpha-alpha' spinodal decomposition occurring in the iron-chromium-based ferrite is responsible for this aging susceptibility. This decomposition can be characterized unambiguously by atom probe analysis, allowing comparison both with the existing theories of spinodal decomposition and the evolution of some mechanical properties. It is then possible to predict the evolution of hardness of industrial components during service, based on the detailed knowledge of the involved aging process. PMID:15233853

  18. Dependence of Radiation Damage in Stainless Steel on Irradiation Dose

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The accelerator driven radioactive clean nuclear power system (ADS) is a novel innovative idea forthe sustainable development of nuclear power system. The spallation neutron source system is one of thethree key parts of ADS, which provides source neutrons of about 1018 s-1 for the burning-up of fuels.Stainless steel (SS) is used for the beam window and target materials of the spallation neutron sourcesystem. It is irradiated by high-energy and intense protons and/or neutrons during operation. Theaccumulated displacement damage dose could reach a couple of hundred dpa (displacement per atom) per

  19. Effect of Austenitizing Heat Treatment on the Microstructure and Hardness of Martensitic Stainless Steel AISI 420

    Science.gov (United States)

    Barlow, L. D.; Du Toit, M.

    2012-07-01

    The effect of austenitizing on the microstructure and hardness of two martensitic stainless steels was examined with the aim of supplying heat-treatment guidelines to the user that will ensure a martensitic structure with minimal retained austenite, evenly dispersed carbides and a hardness of between 610 and 740 HV (Vickers hardness) after quenching and tempering. The steels examined during the course of this examination conform in composition to medium-carbon AISI 420 martensitic stainless steel, except for the addition of 0.13% vanadium and 0.62% molybdenum to one of the alloys. Steel samples were austenitized at temperatures between 1000 and 1200 °C, followed by oil quenching. The as-quenched microstructures were found to range from almost fully martensitic structures to martensite with up to 35% retained austenite after quenching, with varying amounts of carbides. Optical and scanning electron microscopy was used to characterize the microstructures, and X-ray diffraction was employed to identify the carbide present in the as-quenched structures and to quantify the retained austenite contents. Hardness tests were performed to determine the effect of heat treatment on mechanical properties. As-quenched hardness values ranged from 700 to 270 HV, depending on the amount of retained austenite. Thermodynamic predictions (using the CALPHAD™ model) were employed to explain these microstructures based on the solubility of the carbide particles at various austenitizing temperatures.

  20. Effect of slag on decarburization reaction of stainless steel melt. Stainless ko dattan hanno ni oyobosu suragu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, R.; Tanaka, S. (Nippon Steel Corp., Tokyo (Japan). Hikari R and D Lab.); Takano, H. (Nippon Steel Corp., Tokyo (Japan))

    1994-01-01

    Effect of slag on decarburization reaction of stainless steel was studied by carrying out static experiment adding Cr2O3 content slag using 15kg high frequency induction melting furnace. Decarburization adding slag is divided into two steps. In the first step, the decarburization rate was constant independent to [C] concentration in high carbon region ([C]in metal[ge]0.5 mass%), and in the second step, sudden decrease in decarburization rate was observed in low carbon region ([C][le]0.4 mass%). The decarburization rate in the high carbon region was not dependent on solid or melt condition of slag, but increased with the increase of Cr2O3, where as the effect of Al2O3 concentration was small. The decarburization rate of low carbon region was 1/4 of the rate in high carbon region, and the effect of slag composition was small. The decarburization limit by slag decreased with the increase of activity of Cr2O3. Further, decarburization reaction in high carbon region was explained by reaction model by assuming oxygen supply rate-determination, and it was thought that the supply rate of oxygen was proportional to Cr2O3 concentration in slag. 16 refs., 16 figs., 2 tabs.

  1. Fiber-laser welding for ultra-high tensile strength steel and stainless steel

    International Nuclear Information System (INIS)

    Ultra-high tensile strength steel of 980 or 1150 MPa class has been often used for a large scale construction machine with lightweight parts because of transport weight limit. This steel needs its pre-processing before welding and has a tendency of delayed cracking, that requests a high welding technique with qualified welders. Austenitic stainless steel frequency used for nuclear energy related equipments has much strains caused by welding because of a large coefficient of thermal expansion. As a welding with small amount of its heat input and without a large size facility like a vacuum chamber, a fiber-laser welding was chosen to apply to equipments made of ultra-high tensile strength steel and stainless steel. Tensile and bending tests for I-butt and around 2mm root gap welded joints of high strength steel of 980 MPa showed their mechanical properties were similar to those of base metal. I-butt welded joints of high strength steel of 1150 MPa showed similar mechanical properties of base metal but as for root gap welded joint, a filler metal was not available. With filler metal of 980 MPa instead, the welded joints showed similar tensile strength of base metal but a crack occurred at the bending test according to the JIS welding procedure qualification specification. Application of fiber laser welding to stainless steel had been conducted successfully for I-butt welded joints of good penetration up to the plate thickness of 8mm. As an example, T-joint of mercury target vessel for J-PARC was produced by fiber laser welding, that became to apply to other nuclear equipments. (T. Tanaka)

  2. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51

    OpenAIRE

    Carlos Eduardo Pinedo; André Paulo Tschiptschin

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  3. 78 FR 45271 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam

    Science.gov (United States)

    2013-07-26

    ... Commission, Washington, DC, and by publishing the notice in the Federal Register of May 24, 2013 (78 FR 31574... COMMISSION Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam Determination On the... injured by reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel pressure...

  4. Male-mediated spontaneous abortion among spouses of stainless steel welders

    DEFF Research Database (Denmark)

    Hjollund, N H; Bonde, Jens Peter; Jensen, Tina Kold;

    2000-01-01

    Male-mediated spontaneous abortion has never been documented for humans. The welding of stainless steel is associated with the pulmonary absorption of hexavalent chromium, which has genotoxic effects on germ cells in rodents. Clinical and early subclinical spontaneous abortions were examined among...... spouses of stainless-steel welders....

  5. 75 FR 76025 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Science.gov (United States)

    2010-12-07

    ... party responded to the sunset review notice of initiation by the applicable deadline * * *'' (75 FR... COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan AGENCY: United States... stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan would be likely to lead...

  6. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2010-09-28

    ... group response to its notice of institution (75 FR 30437, June 1, 2010) was adequate and that the... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY... Korea and the antidumping duty orders on stainless steel sheet and strip from Germany, Italy,...

  7. 75 FR 53714 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Science.gov (United States)

    2010-09-01

    ... imports of stainless steel butt-weld pipe fittings from Japan (53 FR 9787). On February 23, 1993, Commerce... on imports of stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan (65 FR 11766... Japan, Korea, and Taiwan (70 FR 61119). The Commission is now conducting third reviews to...

  8. 77 FR 41969 - Stainless Steel Bar From Japan: Rescission of Antidumping Duty Administrative Review

    Science.gov (United States)

    2012-07-17

    ... Revocation in Part, and Deferral of Administrative Review, 77 FR 19179, 19181 (March 30, 2012). Based on a... International Trade Administration Stainless Steel Bar From Japan: Rescission of Antidumping Duty Administrative...) initiated an administrative review of the antidumping duty order on stainless steel bar from Japan...

  9. Microstructure and wear resistance of spray-formed supermartensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Guilherme Zepon

    2013-06-01

    Full Text Available Since the early 90's the oil industry has been encouraging the development of corrosion and wear resistant alloys for onshore and offshore pipeline applications. In this context supermartensitic stainless steel was introduced to replace the more expensive duplex stainless steel for tubing applications. Despite the outstanding corrosion resistance of stainless steels, their wear resistance is of concern. Some authors reported obtaining material processed by spray forming, such as ferritic stainless steel, superduplex stainless steel modified with boron, and iron-based amorphous alloys, which presented high wear resistance while maintaining the corrosion performance1,2. The addition of boron to iron-based alloys promotes the formation of hard boride particles (M2B type which improve their wear resistances3-9. This work aimed to study the microstructure and wear resistance of supermartensitic stainless steel modified with 0.3 wt. (% and 0.7 wt. (% processed by spray forming (SF-SMSS 0.3%B and SF-SMSS 0.7%B, respectively. These boron contents were selected in order to improve the wear resistance of supermartensitic stainless steel through the formation of uniformly distributed borides maintaining the characteristics of the corrosion resistant matrix. SF-SMSS 0.7%B presents an abrasive wear resistance considerably higher than spray-formed supermartensitic stainless steel without boron addition (SF-SMSS.

  10. Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Bagge-Ravn, Dorthe; Kold, John;

    2003-01-01

    Abstract The aim of this study was to evaluate if hygienic characteristics of stainless steel used in the food industry could be improved by smoothing surface roughness from an Ra of 0.9 to 0.01 ƒÝm. The adherence of Pseudomonas sp., Listeria monocytogenes and Candida lipolytica to stainless steel...

  11. 75 FR 67110 - Forged Stainless Steel Flanges From India and Taiwan

    Science.gov (United States)

    2010-11-01

    ... stainless steel flanges from India and Taiwan (65 FR 49964). Following second five-year reviews by Commerce... duty orders on imports of forged stainless steel flanges from India and Taiwan (71 FR 3457, January 23... part 201), and part 207, subparts A, D, E, and F (19 CFR part 207), as most recently amended at 74...

  12. On the Development of the Brass-Type Texture in Austenitic Stainless Steel

    OpenAIRE

    Singh, C. D.

    1993-01-01

    It has been clarified and demonstrated that the conclusions drawn by Singh, Ramaswamy and Suryanarayana (1992) in an investigation of development of rolling textures in an austenitic stainless steel are correct. The observations and reinterpretations drawn by Leffers (1993) are without any proper scientific basis and do not hold good at least in austenitic stainless steel.

  13. Stress corrosion cracking of stainless steels in NaCl solutions

    Science.gov (United States)

    Speidel, Markus O.

    1981-05-01

    The metallurgical influences on the stress corrosion resistance of many commercial stainless steels have been studied using the fracture mechanics approach. The straight-chromium ferritic stainless steels, two-phase ferritic-austenitic stainless steels and high-nickel solid solutions (like alloys 800 and 600) investigated are all fully resistant to stress corrosion cracking at stress intensity (K1) levels ≤ MN • m-3/2 in 22 pct NaCl solutions at 105 °C. Martensitic stainless steels, austenitic stainless steels and precipitation hardened superalloys, all with about 18 pct chromium, may be highly susceptible to stress corrosion cracking, depending on heat treatment and other alloying elements. Molybdenum additions improve the stress corrosion cracking resistance of austenitic stainless steels significantly. The fracture mechanics approach to stress corrosion testing of stainless steels yields results which are consistent with both the service experience and the results from testing with smooth specimens. In particular, the well known “Copson curve” is reproduced by plotting the stress corrosion threshold stress intensity (ATISCC) vs the nickel content of stainless steels with about 18 pct chromium.

  14. Internal attachment of laser beam welded stainless steel sheathed thermocouples into stainless steel upper end caps in nuclear fuel rods for the LOFT Reactor

    International Nuclear Information System (INIS)

    The Exxon Nuclear Company, Inc., acting as a subcontractor to EG and G Idaho Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho, conducted a laser beam welding study to attach internal stainless steel thermocouples into stainless steel upper end caps in nuclear fuel rods. The objective of this study was to determine the feasibility of laser welding a single 0.063 inch diameter stainless steel (304) sheathed thermocouple into a stainless steel (316) upper end cap for nuclear fuel rods. A laser beam was selected because of the extremely high energy input in unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A special weld fixture was designed and fabricated to hold the end cap and the thermocouple with angular and rotational adjustment under the laser beam. A commercial pulsed laser and energy control system was used to make the welds

  15. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, R.E. [ed.] [Westinghouse Idaho Nuclear Co., Idaho Falls, ID (United States). Metal Recycle; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L. [Oregon Graduate Institute of Science and Technology, Portland, OR (United States). Dept. of Materials Science and Engineering

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.

  16. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    International Nuclear Information System (INIS)

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel open-quotes scrapclose quotes metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques

  17. Nanoindentation Size Effect on Type 316 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    YAOYuan; QIAOLi-jie; QiangShi-san; CAOXian-kun; CHUWu-yan

    2004-01-01

    Nanoinlentation size effect was investigated under very low loads on type 316 stainless steel.Nanoindentation measurements were carried out on the samples surfaces with a Berkovich pytamidal diamond in-denter applying loads in the range of 25-1000μN. Simultaneously, AFM images of the sample surface were recorded before and after indentation process. For type 316 stairdess steel, the indentation size effect was found.The results were discussed in the terms of the model of geometrically necessary dislocations proposed to interpret the indentation size effect. It can be seen that the square of the nanohardness, H2, vs the ineerse of indentation depth, 1/h, is linearly dependent on the indented depth in the range of 25-150nm, which is a good qualitative agreement with the predictions of the model. However, for shallow indents, the slope of the line severely changes.Some possible mechanisms for this change were proposed.

  18. Small punch creep test in a 316 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Munoz, M. L.; Komazaki, S. I.; Hashida, T.; Lopez-Hirata, V. M.

    2015-03-30

    The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 degree centigrade. The small punch test was carried out using a creep tester with a specimen size of 10x10x0.3 mm at 650, 675 and 700 degree centigrade using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens. (Author)

  19. Corrosion of AISI 304 stainless steel in polluted seawater

    International Nuclear Information System (INIS)

    The sequence of microbiofouling settlement on AISI 304 stain steel samples exposed to polluted harbor sea water of a power cooling water intake is studied. The firts sates of bacterial colonization are followed by means of scanning electron microscopy during two weeks of exposure. The relation between microbiofouling and corrosion is also followed by scanning electron microscopy and evaluated through electrochemical polarization experiments. The results obtained show that microbial colonization and extracellular polimeric substances forming the biofilms have a marked influence on the electrochemical behaviour of stainless steel in sea water. Laboratory experiments using inorganic chloride solutions or artificial sea water show a considerably lesser attack of the metal than those performed 'in situ' with natural sea water. Passivity breadown is highly facilitated when complex biological and inorganic deposits (fouling) have settled on the metal surface. (Author)

  20. Stress corrosion cracking of duplex stainless steels in caustic solutions

    Science.gov (United States)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC