WorldWideScience

Sample records for carbon oxide sulfide

  1. Phosphorus mobilization by sulfide oxidation in carbonate sediments from seagrass and unvegetated sites in the US Virgin Islands

    DEFF Research Database (Denmark)

    Jensen, Henning; Pedersen, Ole; Koch, M. R.;

    oxidation, as well as metabolic acids from aerobic respiration, has the potential to mobilize solid phase phosphorus (P) pools in support of seagrass nutrition. Fresh sediments from four US Virgin Islands sites were modestly acidified to near-neutral pH in slurries. Following sulfuric acid amendments......PHOSPHORUS MOBILIZATION BY SULFIDE OXIDATION IN CARBONATE SEDIMENTS FROM SEAGRASS AND UNVEGETATED SITES IN THE US VIRGIN ISLANDS Sulfide produced by sulfate reduction (SR) can be oxidized by seagrass root O2 flux in shallow carbonate sediments low in Fe. The sulfuric acid produced from sulfide......, the mobilized P pools in the slurry water and the sediment-adsorbed pools were quantified. P mobilization rates in the field were also calculated using field estimates of SR rates applying 35SO43-. Phosphorus release was significantly higher in seagrass than bare sediment, and at sites close to anthropogenic...

  2. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    Directory of Open Access Journals (Sweden)

    Shiue-Lin eLi

    2015-02-01

    Full Text Available Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at + mV (vs. SHE at all pH ranges tested (from pH = 4 to 8, while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte equipped with carbon-felt electrodes. In both cases, when potentials of +630 or 130 mV (vs. SHE were applied, currents were consistently higher at +630 then at 0 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter not well known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes.

  3. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen;

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide o...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  4. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen;

    2012-01-01

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide o...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  5. Developing sulfide-oxidizing biofilm on H2S-exhausted carbon for sustainable bio-regeneration and biofiltration.

    Science.gov (United States)

    Jiang, Xia; Yan, Rong; Tay, Joo Hwa

    2009-05-30

    The feasibility of developing biofilm on exhausted carbon using pre-deposited sulfur compounds as the sole energy source was studied, aiming to re-use them in odor biofiltration. The exhausted carbon with different properties, including surface pH, sulfur content and porosity, was used. A series of off-line trials were conducted to investigate the release of sulfur compounds from the exhausted carbon and the attachment of sulfide-oxidizing bacteria on the exhausted carbon. Without any pre-treatment, a few bacteria attachment on exhausted carbon was observed by SEM, due to possibly the limitation of reduced sulfur compounds release for bacterial growth. The biofilm development was much improved by adding NaOH solution to partially pre-desorb the deposited sulfur into liquid phase, which provided initial energy for bacterial growth. With the attached bacteria, the further significant release of the deposited sulfur was achieved through an additional driving force: biodegradation. The key issues for developing biofilm on exhausted carbon were concluded, which mainly concerned of desorption of pre-deposited reduced sulfur compounds and porosity of carbon. The sulfur-associated reactions occurring in developing biofilm on exhausted carbon was proposed. Bio-regeneration of exhausted carbon in the course of biofilm development was also preliminarily assessed.

  6. Prevention of sulfide oxidation in sulfide-rich waste rock

    Science.gov (United States)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  7. Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal.

    Science.gov (United States)

    De Gusseme, Bart; De Schryver, Peter; De Cooman, Michaël; Verbeken, Kim; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2009-01-01

    The emission of hydrogen sulfide into the atmosphere of sewer systems induces the biological production of sulfuric acid, causing severe concrete corrosion. As a possible preventive solution, a microbial consortium of nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) was enriched in a continuously stirred tank reactor in order to develop a biological technique for the removal of dissolved sulfide. The consortium, dominated by Arcobacter sp., was capable of removing 99% of sulfide. Stable isotope fractioning of the sulfide indicated that the oxidation was a biological process. The capacity of the NR-SOB consortium for rapid removal of sulfide was demonstrated by using it as an inoculum in synthetic and real sewage. Removal rates up to 52 mg sulfide-S g VSS(-1) h(-1) were achieved, to our knowledge the highest removal rate reported so far for freshwater species in the absence of molecular oxygen. Further long-term incubation experiments revealed the capacity of the bacteria to oxidize sulfide without the presence of nitrate, suggesting that an oxidized redox reserve is present in the culture.

  8. A physiologically based kinetic model for bacterial sulfide oxidation

    NARCIS (Netherlands)

    Klok, J.B.; Graaff, M. de; Bosch, P.L. van den; Boelee, N.C.; Keesman, K.J.; Janssen, A.J.W.M.

    2013-01-01

    In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concl

  9. Evaluation of microwave irradiation for analysis of carbonyl sulfide, carbon disulfide, cyanogen, ethyl formate, methyl bromide, sulfuryl fluoride, propylene oxide, and phosphine in hay.

    Science.gov (United States)

    Ren, Yonglin; Mahon, Daphne

    2007-01-10

    Fumigant residues in hay were "extracted" by microwave irradiation. Hay, in gastight glass flasks, was placed in a domestic microwave oven, and fumigants were released into the headspace by microwave irradiation. Power settings for maximum release of fumigants were determined for carbonyl sulfide (COS), carbon disulfide (CS(2)), cyanogen (C(2)N(2)), ethyl formate (EF), methyl bromide (CH(3)Br), sulfuryl fluoride (SF), propylene oxide (PPO), and phosphine (PH(3)). Recoveries of fortified samples were >91% for COS, CS(2), CH(3)Br, SF, PPO, and PH(3) and >76% for C(2)N(2) and EF. Completeness of extraction was assessed from the amount of fumigant retained by the microwaved hay. This amount was determined from further microwave irradiation and was always small (<5% of the amount obtained from the initial procedure). Limits of quantification were <0.1 mg/kg for COS, CS(2), C(2)N(2), EF, and PH(3) and <0.5 mg/kg for CH(3)Br, SF, and PPO. These low limits were essentially due to the absence of interference from solvents and no necessity to inject large-volume gas samples. The microwave method is rapid and solvent-free. However, care is required in selecting the appropriate power setting. The safety implications of heating sealed flasks in microwave ovens should be noted.

  10. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2013-01-01

    A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts satisfact......A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts...... by the competition between chain‐branching and ‐propagating steps; modeling predictions are particularly sensitive to the branching fraction for the OCS + O reaction to form CO + SO or CO2 + S....

  11. Hydrogen Sulfide Induces Oxidative Damage to RNA and DNA in a Sulfide-Tolerant Marine Invertebrate

    OpenAIRE

    Joyner-Matos, Joanna; Predmore, Benjamin L.; Stein, Jenny R.; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes ...

  12. Effects of Tai Chi exercise on blood pressure and plasma levels of nitric oxide, carbon monoxide and hydrogen sulfide in real-world patients with essential hypertension.

    Science.gov (United States)

    Pan, Xiaogui; Zhang, Yi; Tao, Sai

    2015-01-01

    Objective was to investigate the effects of Tai Chi exercise on nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) levels, and blood pressure (BP) in patients with essential hypertension (EH). EH patients were assigned to the Tai Chi exercise group (HTC, n = 24), and hypertension group (HP, n = 16) by patients' willingness. Healthy volunteers matched for age and gender were recruited as control (NP, n = 16). HTC group performed Tai Chi (60 min/d, 6 d/week) for 12 weeks. Measurements (blood glucose, cholesterol, NO, CO, H2S and BP) were obtained at week 0, 6, and 12. SBP, MAP, and low-density lipoprotein cholesterol levels decreased, and high-density lipoprotein cholesterol levels increased by week 12 in the HTC group (all p < 0.05 versus baseline). Plasma NO, CO, and H2S levels in the HTC group were increased after 12 weeks (all p < 0.05 versus baseline). SBP, DBP and MAP levels were significantly lower in the HTC than in the HP group (all p < 0.05). However, no changes were observed in the HP and NP groups. Correlations were observed between changes in SBP and changes in NO, CO and H2S (r = -0.45, -0.51 and -0.46, respectively, all p < 0.05), and between changes in MAP and changes in NO, CO and H2S (r = -0.36, -0.45 and -0.42, respectively, all p < 0.05). In conclusion, Tai Chi exercise seems to have beneficial effects on BP and gaseous signaling molecules in EH patients. However, further investigation is required to understand the exact mechanisms underlying these observations, and to confirm these results in a larger cohort.

  13. Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate.

    Science.gov (United States)

    Joyner-Matos, Joanna; Predmore, Benjamin L; Stein, Jenny R; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0-3 mmol L(-1) for 1 h) showed dose-dependent increases in oxidative stress (as 2',7'-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L(-1) for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2'-deoxyguanosine). Worms exposed in vivo to sulfide (0-10 mmol L(-1) for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates.

  14. Mechanism of heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    Science.gov (United States)

    Liu, Yongchun; He, Hong; Xu, Wenqing; Yu, Yunbo

    2007-05-24

    Heterogeneous reaction of carbonyl sulfide (OCS) on magnesium oxide (MgO) under ambient conditions was investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), quadrupole mass spectrometer (QMS), and density functional theory (DFT) calculations. It reveals that OCS can be catalytically hydrolyzed by surface hydroxyl on MgO to produce carbon dioxide (CO2) and hydrogen sulfide (H2S), and then H2S can be further catalytically oxidized by surface oxygen or gaseous oxygen on MgO to form sulfite (SO3(2-)) and sulfate (SO4(2-)). Hydrogen thiocarbonate (HSCO2-) was found to be the crucial intermediate. Surface hydrogen sulfide (HS), sulfur dioxide (SO2), and surface sulfite (SO3(2-)) were also found to be intermediates for the formation of sulfate. Furthermore, the surface hydroxyl contributes not only to the formation of HSCO2- but also to HSCO2- decomposition. On the basis of experimental results, the heterogeneous reaction mechanism of OCS on MgO was discussed.

  15. Oxidation and Precipitation of Sulfide in Sewer Networks

    DEFF Research Database (Denmark)

    Nielsen, A. H.

    calibrated and validated against field data. In the extension to the WATS model, sulfur transformations were described by six processes: 1. Sulfide production taking place in the biofilm and sediments covering the permanently wetted sewer walls; 2. Biological sulfide oxidation in the permanently wetted...... on oxidation and precipitation of sulfide, which are considered important processes in the sulfur cycle in wastewater and biofilms of sewer networks. Based on experimental studies, it was the objective to establish kinetics and stoichiometry of oxidation and precipitation of sulfide and to integrate...... the processes in an already existing sewer process model, thereby improving its capabilities for prediction of sulfide buildup in wastewater and atmosphere of sewer networks. Accordingly, efforts were made to develop experimental procedures for estimation of model parameters. Sulfide oxidation in both...

  16. Organization of the human mitochondrial hydrogen sulfide oxidation pathway.

    Science.gov (United States)

    Libiad, Marouane; Yadav, Pramod Kumar; Vitvitsky, Victor; Martinov, Michael; Banerjee, Ruma

    2014-11-07

    Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.

  17. Sulfide oxidation as a process for the formation of copper-rich magmatic sulfides

    Science.gov (United States)

    Wohlgemuth-Ueberwasser, Cora C.; Fonseca, Raúl O. C.; Ballhaus, Chris; Berndt, Jasper

    2013-01-01

    Typical magmatic sulfides are dominated by pyrrhotite and pentlandite with minor chalcopyrite, and the bulk atomic Cu/Fe ratio of these sulfides is typically less than unity. However, there are rare magmatic sulfide occurrences that are dominated by Cu-rich sulfides (e.g., bornite, digenite, and chalcopyrite, sometimes coexisting with metallic Cu) with atomic Cu/Fe as high as 5. Typically, these types of sulfide assemblages occur in the upper parts of moderately to highly fractionated layered mafic-ultramafic intrusions, a well-known example being the Pd/Au reef in the Upper Middle Zone of the Skaergaard intrusion. Processes proposed to explain why these sulfides are so unusually rich in Cu include fractional crystallization of Fe/(Ni) monosulfide and infiltration of postmagmatic Cu-rich fluids. In this contribution, we explore and experimentally evaluate a third possibility: that Cu-rich magmatic sulfides may be the result of magmatic oxidation. FeS-dominated Ni/Cu-bearing sulfides were equilibrated at variable oxygen fugacities in both open and closed system. Our results show that the Cu/Fe ratio of the sulfide melt increases as a function of oxygen fugacity due to the preferential conversion of FeS into FeO and FeO1.5, and the resistance of Cu2S to being converted into an oxide component even at oxygen fugacities characteristic of the sulfide/sulfate transition (above FMQ + 1). This phenomenon will lead to an increase in the metal/S ratio of a sulfide liquid and will also depress its liquidus temperature. As such, any modeling of the sulfide liquid line of descent in magmatic sulfide complexes needs to address this issue.

  18. The mechanism of the catalytic oxidation of hydrogen sulfide *1: III. An electron spin resonance study of the sulfur catalyzed oxidation of hydrogen sulfide

    NARCIS (Netherlands)

    Steijns, M.; Koopman, P.; Nieuwenhuijse, B.; Mars, P.

    1976-01-01

    ESR experiments on the oxidation of hydrogen sulfide were performed in the temperature range 20–150 °C. Alumina, active carbon and molecular sieve zeolite 13X were investigated as catalysts. For zeolite 13X it was demonstrated that the reaction is autocatalytic and that sulfur radicals are the activ

  19. An eco-friendly oxidation of sulfide compounds

    Indian Academy of Sciences (India)

    RAVINDRA B WAGH; SITARAM H GUND; JAYASHREE M NAGARKAR

    2016-08-01

    An improved green route has been developed for the oxidation of sulfide compounds. Albendazole is converted to ricobendazole or albendazole sulfone using H₂O₂ as an oxidant and H₂O as the solvent. High yields of the corresponding products were obtained by carrying out the reaction at room temperature. This synthetic method is environmentally clean and safe, operationally simple for the oxidation of other benzimidazole anthelmintics and various sulfide compounds.

  20. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    Science.gov (United States)

    Luc, Wesley; Jiao, Feng

    2016-07-19

    Nanoporous metal-based solids are of particular interest because they combine a large quantity of surface metal sites, interconnected porous networks, and nanosized crystalline walls, thus exhibiting unique physical and chemical properties compared to other nanostructures and bulk counterparts. Among all of the synthetic approaches, nanocasting has proven to be a highly effective method for the syntheses of metal oxides with three-dimensionally ordered porous structures and crystalline walls. A typical procedure involves a thermal annealing process of a porous silica template filled with an inorganic precursor (often a metal nitrate salt), which converts the precursor into a desired phase within the silica pores. The final step is the selective removal of the silica template in either a strong base or a hydrofluoric acid solution. In the past decade, nanocasting has become a popular synthetic approach and has enabled the syntheses of a variety of nanoporous metal oxides. However, there is still a lack of synthetic methods to fabricate nanoporous materials beyond simple metal oxides. Therefore, the development of new synthetic strategies beyond nanocasting has become an important direction. This Account describes new progress in the preparation of novel nanoporous metal-based solids for heterogeneous catalysis. The discussion begins with a method called dealloying, an effective method to synthesize nanoporous metals. The starting material is a metallic alloy containing two or more elements followed by a selective chemical or electrochemical leaching process that removes one of the preferential elements, resulting in a highly porous structure. Nanoporous metals, such as Cu, Ag, and CuTi, exhibit remarkable electrocatalytic properties in carbon dioxide reduction, oxygen reduction, and hydrogen evolution reactions. In addition, the syntheses of metal oxides with hierarchical porous structures are also discussed. On the basis of the choice of hard template, nanoporous

  1. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Science.gov (United States)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  2. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Liu, Xue; Huang, Jia-Qi; Zhang, Qiang; Mai, Liqiang

    2017-02-03

    Lithium-sulfur (Li-S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li-S battery systems. The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li-S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li-S batteries are discussed. Nanostructured metal oxides/sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium-metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li-S batteries with nanostructured metal oxides/sulfides are also discussed.

  3. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    Science.gov (United States)

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  4. Heterogeneous oxidation of carbonyl sulfide on mineral oxides

    Institute of Scientific and Technical Information of China (English)

    LIU YongChun; LIU JunFeng; HE Hong; YU YunBo; XUE Li

    2007-01-01

    Heterogeneous oxidation of carbonyl sulfide (OCS) on mineral oxides including SiO2, Fe2O3, CaO, MgO, ZnO and TiO2, which are the main components of atmospheric particles, were investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), ion chromatography (IC), temperature-programmed desorption (TPD), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) methods. The main products and intermediates of the heterogeneous oxidation of OCS on these oxides were identified with in situ DRIFTS and IC. The reaction mechanism and kinetics were also discussed. It is found that the reaction mechanism on these mineral oxides is the same as that on Al2O3 for the same final products and the intermediates at room temperature. Namely, OCS can be catalytically oxidized to produce surface SO42- species and gaseous CO2 through the surface hydrogen thiocarbonate (HSCO2-) and HSO3- species. The activity series for heterogeneous oxidation of OCS follows: Al2O3 ≈ CaO>MgO>TiO2 ≈ ZnO>Fe2O3>SiO2. The specific area, basic hydroxyl and surface basicity of these oxides have effect on the reactivity. This study suggests that heterogeneous reactions of OCS on mineral dust may be an unneglectable sink of OCS.

  5. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring.

    Science.gov (United States)

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-06-25

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ.

  6. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review

    Science.gov (United States)

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H2S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H2S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H2S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  7. Sulfide oxidation in fluidized bed bioreactor using nylon support material

    Institute of Scientific and Technical Information of China (English)

    Varsha Midha; M K Jha; Apurba Dey

    2012-01-01

    A continuous fluidized bed bioreactor(FBBR)with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25,50 and 75 min and upflow velocity of 14,17 and 20 m/hr.The effects of upflow velocity,hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model.Mixed culture obtained from the activated sludge,taken from tannery effluent treatment plant,was used as a source for microorganisms.The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3,respectively.Experiments were carried out in the reactor at a temperature of(30± 2)℃,at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles.Biofilm thickness reached(42±3)μm after 15 days from reactor start-up.The sulfide oxidation,sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities.The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times.Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate.The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  8. Sulfide oxidation in fluidized bed bioreactor using nylon support material.

    Science.gov (United States)

    Midha, Varsha; Jha, M K; Dey, Apurba

    2012-01-01

    A continuous fluidized bed bioreactor (FBBR) with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25, 50 and 75 min and upflow velocity of 14, 17 and 20 m/hr. The effects of upflow velocity, hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model. Mixed culture obtained from the activated sludge, taken from tannery effluent treatment plant, was used as a source for microorganisms. The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3, respectively. Experiments were carried out in the reactor at a temperature of (30 +/- 2) degrees C, at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles. Biofilm thickness reached (42 +/- 3) microm after 15 days from reactor start-up. The sulfide oxidation, sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities. The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times. Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate. The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  9. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    Science.gov (United States)

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg(-1) and 47.5 Wh kg(-1) at a power density of 400 W kg(-1), respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  10. The Sulfide Capacity of Iron Oxide-Rich Slags

    Science.gov (United States)

    Motlagh, M.

    1988-03-01

    The relationship between the sulfide capacity of slags rich in iron oxide and the sulfur partition ratio between the metal and slag is strongly related to the slag's iron oxide concentration. For slags containing little or no lime, this relationship is linear for a constant concentration of iron oxide in the slag. The effect of silica on changes in the sulfide capacity of slags rich in iron oxide is similar to that of basic steel-making slags, particularly at low activity of silica in slag.

  11. Sulfide Oxidation in the Anoxic Black-Sea Chemocline

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; FOSSING, H.; WIRSEN, CO;

    1991-01-01

    The depth distributions of O2 and H2S and of the activity of chemical or bacterial sulfide oxidation were studied in the chemocline of the central Black Sea. Relative to measurements from earlier studies, the sulfide zone had moved upwards by 20-50 m and was now (May 1988) situated at a depth of 81......-99 m. Oxygen in the water column immediately overlying the sulfide zone was depleted to undetectable levels resulting in a 20-30-m deep intermediate layer of O2- and H2S-free water. Radiotracer studies with S-35-labelled H2S showed that high rates of sulfide oxidation, up to a few micromoles per liter...... to a maximum of 200 nmol l-1 at the top of the sulfide zone. Sulfide oxidation was stimulated by particles suspended at the chemocline, probably by bacteria. Green phototrophic sulfur bacteria were abundant in the chemocline, suggesting that photosynthetic H2S oxidation took place. Flux calculations showed...

  12. Catalytic effect of activated carbon on bioleaching of low-grade primary copper sulfide ores

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The catalytic effect of activated carbon on the bioleaching of low-grade primary copper sulfide ores using mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was investigated. The results show that the addition of activated carbon can greatly accelerate the rate and efficiency of copper dissolution from low-grade primary copper sulfide ores. The solution with the concentration of 3.0 g/L activated carbon is most beneficial to the dissolution of copper. The resting time of the mixture of activated carbon and ores has an impact on the bioleaching of low-grade primary copper sulfide ores. The 2 d resting time is most favorable to the dissolution of copper. The enhanced dissolution rate and efficiency of copper can be attributed to the galvanic interaction between activated carbon and chalcopyrite. The addition of activated carbon obviously depresses the dissolution of iron and the bacterial oxidation of ferrous ions in solution. The lower redox potentials are more favorable to the copper dissolution than the higher potentials for low-grade primary copper sulfide ores in the presence of activated carbon.

  13. High conducting oxide--sulfide composite lithium superionic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  14. Transformation and destabilization of graphene oxide in reducing aqueous solutions containing sulfide.

    Science.gov (United States)

    Fu, Heyun; Qu, Xiaolei; Chen, Wei; Zhu, Dongqiang

    2014-12-01

    The colloidal stability of carbon nanomaterials is a key factor controlling their fate and bioavailability in natural aquatic systems. The authors report that graphene oxide nanoparticles could be destabilized in reducing aqueous solutions containing a low concentration (0.5 mM) of sulfide, a naturally occurring reductant. Spectroscopic characterization using combined X-ray photoelectron, Fourier-transform infrared, X-ray diffraction, and Raman analyses revealed that the surface oxygen-containing groups (mainly epoxy groups) of graphene oxide were significantly reduced after reacting with sodium sulfide. The destabilization of graphene oxide was likely caused by the enhanced surface hydrophobicity of the reduced graphene oxide, whereas electrostatic repulsion played a minimal role. Solution pH was found to affect both the deoxygenation process and the aggregation behavior of graphene oxide. Coexisting humic acid reduced the reaction efficiency and stabilized graphene oxide through steric hindrance. These findings suggest for the first time that the colloidal behavior of carbon nanomaterials might change drastically when they enter natural reducing environments containing sulfide such as anaerobic aquifers and sediments.

  15. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides

    Science.gov (United States)

    Placencia-Gómez, Edmundo; Slater, Lee; Ntarlagiannis, Dimitrios; Binley, Andrew

    2013-05-01

    Oxidation of metal sulfide minerals is responsible for the generation of acidic waters rich in sulfate and metals. When associated with the oxidation of sulfide ore mine waste deposits the resulting pore water is called acid mine drainage (AMD); AMD is a known environmental problem that affects surface and ground waters. Characterization of oxidation processes in-situ is challenging, particularly at the field scale. Geophysical techniques, spectral induced polarization (SIP) in particular, may provide a means of such investigation. We performed laboratory experiments to assess the sensitivity of the SIP method to the oxidation mechanisms of common sulfide minerals found in mine waste deposits, i.e., pyrite and pyrrhotite, when the primary oxidant agent is dissolved oxygen. We found that SIP parameters, e.g., phase shift, the imaginary component of electrical conductivity and total chargeability, decrease as the time of exposure to oxidation and oxidation degree increase. This observation suggests that dissolution-depletion of the mineral surface reduces the capacitive properties and polarizability of the sulfide minerals. However, small increases in the phase shift and imaginary conductivity do occur during oxidation. These transient increases appear to correlate with increases of soluble oxidizing products, e.g., Fe2 + and Fe3 + in solution; precipitation of secondary minerals and the formation of a passivating layer to oxidation coating the mineral surface may also contribute to these increases. In contrast, the real component of electrical conductivity associated with electrolytic, electronic and interfacial conductance is sensitive to changes in the pore fluid chemistry as a result of the soluble oxidation products released (Fe2 + and Fe3 +), particularly for the case of pyrrhotite minerals.

  16. Self-assembly of biomorphic carbon/sulfur microstructures in sulfidic environments

    Science.gov (United States)

    Cosmidis, Julie; Templeton, Alexis S.

    2016-09-01

    In natural and laboratory-based environments experiencing sustained counter fluxes of sulfide and oxidants, elemental sulfur (S0)--a key intermediate in the sulfur cycle--can commonly accumulate. S0 is frequently invoked as a biomineralization product generated by enzymatic oxidation of hydrogen sulfide and polysulfides. Here we show the formation of S0 encapsulated in nanometre to micrometre-scale tubular and spherical organic structures that self-assemble in sulfide gradient environments in the absence of any direct biological activity. The morphology and composition of these carbon/sulfur microstructures so closely resemble microbial cellular and extracellular structures that new caution must be applied to the interpretation of putative microbial biosignatures in the fossil record. These reactions between sulfide and organic matter have important implications for our understanding of S0 mineralization processes and sulfur interactions with organic carbon in the environment. They furthermore provide a new pathway for the synthesis of carbon-sulfur nanocomposites for energy storage technologies.

  17. Mineralogy and Geochemical Processes of Carbonate Mineral-rich Sulfide Mine Tailings, Zimapan, Mexico

    Science.gov (United States)

    McClure, R. J.; Deng, Y.; Loeppert, R.; Herbert, B. E.; Carrillo, R.; Gonzalez, C.

    2009-12-01

    Mining for silver, lead, zinc, and copper in Zimapan, Hidalgo State, Mexico has been ongoing since 1576. High concentrations of heavy metals have been found in several mine tailing heaps in the Zimapan area, with concentrations of arsenic observed as high as 28,690 mg/kg and levels of Pb as high as 2772 mg/kg. Unsecured tailings heaps and associated acid mine drainage has presented tremendous problems to revegetation, water quality, and dust emission control in the Zimapan area. Although acid mine drainage problems related to weathering of sulfide minerals have been extensively studied and are well known, the weathering products of sulfides in areas with a significant presence of carbonate minerals and their effect on the mobility of heavy metals warrant further study. Carbonate minerals are expected to neutralize sulfuric acid produced from weathering of sulfide minerals, however, in the Zimapan area localized areas of pH as low as 1.8 were observed within carbonate mineral-rich tailing heaps. The objectives of this study are to characterize (1) the heavy metal-containing sulfide minerals in the initial tailing materials, (2) the intermediate oxidation products of sulfide minerals within the carbonate-rich tailings, (3) chemical species of heavy metals within pH gradients between 1.8 and 8.2, the approximate natural pH of limestone, and (4) the mobility of soluble and colloidal heavy metals and arsenic within the carbonate-rich tailings. Representative mine tailings and their intermediate oxidation products have been sampled from the Zimapan area. Mineralogical characterization will be conducted with X-ray diffraction, infrared spectroscopy, electron microscopes and microprobes, and chemical methods. Chemical species will be extracted by selective dissolution methods. Preliminary results have identified calcite as the dominant mineral in the tailing heaps with a pH of 7, suggesting non-equilibrium with the acidic weathering products. Other minerals identified in

  18. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    could perform under specific variable effect on sulfide oxidation. The viability of the cells environmental conditions such as varying concentrations of and efficiency of oxidation increased in the presence of sulfide, or elevated temperature... that performed better than the others. Simulta- and Kuenen 1992): neously, experiments set up with temperature increasing up to 508C showed that 29 was among those that could with- 5H 2 S 1 8KNO 3 r 4K 2 SO 4 1 H 2 SO 4 1 4N 2 1 4H 2 O stand and oxidize sulfide...

  19. Water purification by sulfide-containing activated carbon.

    Science.gov (United States)

    Oeste, F D; Haas, R; Kaminski, L

    2000-03-01

    We investigated a new kind of activated carbon named gaiasafe-Formstoff as an agent for powerful heavy metal reduction. This activated carbon contains highly dispersed sulfide compounds. Our investigations with lead containing wastewaters showed an outstanding metal sulfide precipitation power of the new agent. The lead reduction rates are independent of wastewater parameters like lead concentration and complexing agent concentration. Contacted as powder or as a fixed bed with wastewater gaiasafe-Formstoff showed the best cleaning capacity in comparison to all other agents tested. Investigations with gaiasafe-Formstoff about its ability to reduce the contents of further heavy metals in wastewater are under way. The gaiasafe-Formstoff reaction products with wastewater represent an energy-rich and raw material-rich resource when fed to metallurgical processes.

  20. The role of sulfur trapped in micropores in the catalytic partial oxidation of hydrogen sulfide with oxygen

    NARCIS (Netherlands)

    Steijns, M.; Mars, P.

    1974-01-01

    The catalytic oxidation of hydrogen sulfide into sulfur with molecular oxygen has been studied in the temperature range 130–200 °C. Active carbon, molecular sieve 13X and liquid sulfur were used as catalysts. Sulfur is adsorbed in the micropores (3 < r < 40 Å) of the catalysts. Experiments with a su

  1. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide

    Science.gov (United States)

    Plummer, Patrick; Tobias, Craig; Cady, David

    2015-10-01

    Potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped across the entire Niantic River Estuary, CT, USA, at 100-200 m scale resolution consisting of 60 stations. On the estuary scale, denitrification accounted for ~ 90% of the nitrogen reduction, followed by DNRA and anammox. However, the relative importance of these reactions to each other was not evenly distributed through the estuary. A Nitrogen Retention Index (NIRI) was calculated from the rate data (DNRA/(denitrification + anammox)) as a metric to assess the relative amounts of reactive nitrogen being recycled versus retained in the sediments following reduction. The distribution of rates and accompanying sediment geochemical analytes suggested variable controls on specific reactions, and on the NIRI, depending on position in the estuary and that these controls were linked to organic carbon abundance, organic carbon source, and pore water sulfide concentration. The relationship between NIRI and organic carbon abundance was dependent on organic carbon source. Sulfide proved the single best predictor of NIRI, accounting for 44% of its observed variance throughout the whole estuary. We suggest that as a single metric, sulfide may have utility as a proxy for gauging the distribution of denitrification, anammox, and DNRA.

  2. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    Science.gov (United States)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  3. Modeling of hydrogen sulfide oxidation in concrete corrosion products from sewer pipes.

    Science.gov (United States)

    Jensen, Henriette Stokbro; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2009-04-01

    Abiotic and biotic oxidation of hydrogen sulfide related to concrete corrosion was studied in corrosion products originating from a sewer manhole. The concrete corrosion products were suspended in an acidic solution, mimicking the conditions in the pore water of corroded concrete. The removal of hydrogen sulfide and dissolved oxygen was measured in parallel in the suspension, upon which the suspension was sterilized and the measurement repeated. The results revealed the biotic oxidation to be fast compared with the abiotic oxidation. The stoichiometry of the hydrogen sulfide oxidation was evaluated using the ratio between oxygen and hydrogen sulfide uptake. The ratio for the biotic oxidation pointed in the direction of elemental sulfur being formed as an intermediate in the oxidation of hydrogen sulfide to sulfuric acid. The experimental results were applied to suggest a hypothesis and a mathematical model describing the hydrogen sulfide oxidation pathway in a matrix of corroded concrete.

  4. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  5. The Sulfidation of gamma-Alumina and Titania Supported (Cobalt) Molybdenum Oxide Catalysts Monitored by EXAFS.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Leliveld, R.G.; Dillen, A.J. van; Geus, John W.

    1997-01-01

    The sulfidation of @c-alumina- and titania-supported(cobalt)molybdenum oxide catalysts has been studied with X-rayabsorption spectroscopy and temperature programmed sulfidation (TPS).The catalysts were stepwise sulfided at temperatures between 298 and673 K and their structure was determined with EXA

  6. SULFIDE OXIDATION UNDER OXYGEN LIMITATION BY A THIOBACILLUS-THIOPARUS ISOLATED FROM A MARINE MICROBIAL MAT

    NARCIS (Netherlands)

    VANDENENDE, FP; VANGEMERDEN, H

    1993-01-01

    The colorless sulfur bacterium Thiobacillus thioparus T5, isolated from a marine microbial mat, was grown in continuous culture under conditions ranging from sulfide limitation to oxygen limitation. Under sulfide-limiting conditions, sulfide was virtually completely oxidized to sulfate. Under oxygen

  7. Microbial Oxidation of Iron Sulfides in Anaerobic Environments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka

    . Under anaerobic conditions FeSx serves as an electron donor in nitrate (NO3-) reduction processes. In this PhD thesis, unknown controls of microbial FeSx oxidation by NO3- (MISON), as a potentially important NO3- reducing process, were investigated. The importance of understanding the NO3- removal...... environments including sandy aquifer, freshwater peatland and moderately brackish muddy marine sediment. An apparent salinity limitation of MISON was shown in heavily brackish sediment, where FeSx oxidation was inhibited while other NO3-reduction processes did not appear to be affected by the salinity levels......Abstract (shortened): Iron sulfides (FeSx), representing 0.04-10 % of Danish dry soil weight, oxidize in a presence of oxygen, releasing sulfuric acid and free iron. Environmental impact of FeSx oxidation is commonly seen on agricultural sites cultivated by drainage as acid sulfate soil formation...

  8. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    OpenAIRE

    Rao, A.M.F.; Malkin, S.Y.; Hidalgo-Martinez, S.; Meysman, Filip

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly discovered microbial process, referred to as electrogenic sulfide oxidation (e-SOx), may alter elemental cycling in sediments, but the nature and rates of the resulting biogeochemical transformatio...

  9. Nanostructured Oxides and Sulfides for Thermoelectrics

    Science.gov (United States)

    Koumoto, Kunihito

    2011-03-01

    Thermoelectric power generation can be applied to various heat sources, both waste heat and renewable energy, to harvest electricity. Even though each heat source is of a small scale, it would lead to a great deal of energy saving if they are combined and collected, and it would greatly contribute to reducing carbon dioxide emission. We have been engaged in developing novel thermoelectric materials to be used for energy saving and environmental protection and are currently developing nanostructured ceramics for thermoelectric conversion. We have demonstrated a quantum confinement effect giving rise to two dimensional electron gas (2DEG) in a 2D superlattice, STO/STO:Nb (STO: strontium titanate), which could generate giant thermopower while keeping high electrical conductivity. One unit-cell thick Nb-doped well layer was estimated to show ZT=2.4 at 300K. Then, a ``synergistic nanostructuring'' concept incorporating 2DEG grain boundaries as well as nanosizing of grains has been applied to our STO material and 3D superlattice ceramics was designed and proposed. It was verified by numerical simulation that this 3D superlattice ceramics should be capable of showing ZT=1.0 at 300K which is comparable to or even higher than that of conventional bismuth telluride-based thermoelectrics. We have recently proposed titanium disulfide-based misfit-layered compounds as novel TE materials. Insertion of misfit-layers into the van der Waals gaps in layer-structured titanium disulfide thus forming a natural superlattice gives rise to internal nanointerfaces and dramatically reduces its lattice thermal conductivity. ZT value reaches 0.37 at 673 K even without optimization of electronic properties. Our challenge to further increase ZT by controlling their electronic system and superlattice structures will be presented.

  10. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways.

    Science.gov (United States)

    Mishanina, Tatiana V; Libiad, Marouane; Banerjee, Ruma

    2015-07-01

    The chemical species involved in H2S signaling remain elusive despite the profound and pleiotropic physiological effects elicited by this molecule. The dominant candidate mechanism for sulfide signaling is persulfidation of target proteins. However, the relatively poor reactivity of H2S toward oxidized thiols, such as disulfides, the low concentration of disulfides in the reducing milieu of the cell and the low steady-state concentration of H2S raise questions about the plausibility of persulfide formation via reaction between an oxidized thiol and a sulfide anion or a reduced thiol and oxidized hydrogen disulfide. In contrast, sulfide oxidation pathways, considered to be primarily mechanisms for disposing of excess sulfide, generate a series of reactive sulfur species, including persulfides, polysulfides and thiosulfate, that could modify target proteins. We posit that sulfide oxidation pathways mediate sulfide signaling and that sulfurtransferases ensure target specificity.

  11. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    Science.gov (United States)

    Rao, Alexandra M. F.; Malkin, Sairah Y.; Hidalgo-Martinez, Silvia; Meysman, Filip J. R.

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly discovered microbial process, referred to as electrogenic sulfide oxidation (e-SOx), may alter elemental cycling in sediments, but the nature and rates of the resulting biogeochemical transformations and their influence on benthic-pelagic coupling remain largely unknown. Here we quantify changes in sediment geochemistry and solute fluxes at the sediment-water interface as e-SOx develops and declines over time in laboratory incubations of organic-rich sediments from a seasonally hypoxic coastal basin (Marine Lake Grevelingen, The Netherlands). Our results show that e-SOx enhanced sediment O2 consumption and acidified subsurface sediment, resulting in the dissolution of calcium carbonate and iron sulfide minerals in deeper sediment horizons and the associated accumulation of dissolved iron, manganese, and calcium in porewater. Remobilized Fe diffusing upward was reoxidized at the sediment-water interface, producing an amorphous Fe oxide crust, while dissolved Fe diffusing downward was reprecipitated in the form of FeS as it encountered the free sulfide horizon. The development of e-SOx enhanced the diffusive release of dissolved Mn at the sediment-water interface, capped the phosphate efflux, generated a buildup of organic matter in surface sediments, and strongly stimulated the release of alkalinity from the sediment. About 75% of this alkalinity production was associated with net CaCO3 dissolution, while the remaining 25% was attributed to a pumping mechanism that transfers alkalinity from anodic H2S oxidation (an alkalinity sink) in deeper sediments to cathodic O2 reduction (an alkalinity source) near the sediment-water interface. The resulting sediment alkalinity

  12. Oxidation sulfidation resistance of Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, Ken (Naperville, IL); Baxter, David J. (Woodridge, IL)

    1984-01-01

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.

  13. Microfabric analysis of Mn-carbonate laminae deposition and Mn-sulfide formation in the Gotland Deep, Baltic Sea

    Science.gov (United States)

    Burke, Ian T.; Kemp, Alan E. S.

    2002-05-01

    The manganese carbonate deposits of the anoxic Littorina sediments of the Gotland Deep have been commonly related to the periodic renewal of deep water by inflowing saline water from the North Sea. The use of scanning electron microscopy-based techniques allows identification of small-scale sedimentary and geochemical features associated with Mn-carbonate laminae, which has significant implications for models of Mn-carbonate formation. Varves occurring in the Littorina sequence contain up to four laminae that may be placed in a seasonal cycle, and kutnahorite laminae occur within varves only as a winter-early spring deposit. This kutnahorite laminae seasonality is in agreement with the seasonal distribution of major Baltic inflow events recorded in historical records, and a direct causal link between inflows and kutnahorite deposition is implied. Benthic foraminifera tests are found to be heavily encrusted in kutnahorite, implying that benthic recolonization during oxidation events occurs concurrently with kutnahorite formation. The relatively common occurrence of small (50 to 100 μm) hexagonal γ-Mn-sulfide pseudomorphs, associated with 13% of kutnahorite laminae studied, is reported in Gotland Deep sediments for the first time. Although Mn-sulfide crystals are not usually preserved in the sediment, the discovery of Mn-sulfide pseudomorphs suggests that initial formation of Mn-sulfide in the Gotland Deep may occur much more commonly during the process of kutnahorite formation than previous reports of Mn-sulfide occurrence have implied.

  14. Self-assembly of biomorphic carbon/sulfur microstructures in sulfidic environments

    OpenAIRE

    Cosmidis, Julie; Templeton, Alexis S.

    2016-01-01

    In natural and laboratory-based environments experiencing sustained counter fluxes of sulfide and oxidants, elemental sulfur (S0)—a key intermediate in the sulfur cycle—can commonly accumulate. S0 is frequently invoked as a biomineralization product generated by enzymatic oxidation of hydrogen sulfide and polysulfides. Here we show the formation of S0 encapsulated in nanometre to micrometre-scale tubular and spherical organic structures that self-assemble in sulfide gradient environments in t...

  15. Corrosion of concrete sewers--the kinetics of hydrogen sulfide oxidation.

    Science.gov (United States)

    Vollertsen, Jes; Nielsen, Asbjørn Haaning; Jensen, Henriette Stokbro; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild

    2008-05-01

    Hydrogen sulfide absorption and oxidation by corroding concrete surfaces was quantified in a test rig consisting of 6 concrete pipes operated under sewer conditions. The test rig was placed in an underground sewer monitoring station with access to fresh wastewater. Hydrogen sulfide gas was injected into the pipe every 2nd hour to peak concentrations around 1000 ppm. After some months of operation, the hydrogen sulfide became rapidly oxidized by the corroding concrete surfaces. At hydrogen sulfide concentrations of 1000 ppm, oxidation rates as high as 1 mg S m(-2) s(-1) were observed. The oxidation process followed simple nth order kinetics with a process order of 0.45-0.75. Extrapolating the results to gravity sewer systems showed that hydrogen sulfide oxidation by corroding concrete is a fast process compared to the release of hydrogen sulfide from the bulk water, resulting in low gas concentrations compared with equilibrium. Balancing hydrogen sulfide release with hydrogen sulfide oxidation at steady state conditions demonstrated that significant corrosion rates--several millimeters of concrete per year--can potentially occur at hydrogen sulfide gas phase concentrations well below 5-10 ppm. The results obtained in the study advances the knowledge on prediction of sewer concrete corrosion and the extent of odor problems.

  16. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    NARCIS (Netherlands)

    Rao, A.M.F.; Malkin, S.Y.; Hidalgo-Martinez, S.; Meysman, Filip

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly

  17. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria.

    Science.gov (United States)

    Hildebrandt, Tatjana M; Grieshaber, Manfred K

    2008-07-01

    Hydrogen sulfide is a potent toxin of aerobic respiration, but also has physiological functions as a signalling molecule and as a substrate for ATP production. A mitochondrial pathway catalyzing sulfide oxidation to thiosulfate in three consecutive reactions has been identified in rat liver as well as in the body-wall tissue of the lugworm, Arenicola marina. A membrane-bound sulfide : quinone oxidoreductase converts sulfide to persulfides and transfers the electrons to the ubiquinone pool. Subsequently, a putative sulfur dioxygenase in the mitochondrial matrix oxidizes one persulfide molecule to sulfite, consuming molecular oxygen. The final reaction is catalyzed by a sulfur transferase, which adds a second persulfide from the sulfide : quinone oxidoreductase to sulfite, resulting in the final product thiosulfate. This role in sulfide oxidation is an additional physiological function of the mitochondrial sulfur transferase, rhodanese.

  18. Metal oxide and mercuric sulfide nanoparticles synthesis and characterization

    Science.gov (United States)

    Xu, Xin

    Commercially available and laboratory-synthesized metal based nanoparticles (NPs), iron oxide (Fe2O3), copper oxide (CuO), titanium dioxide (TiO2), zinc oxide (ZnO) and mercuric sulfide (HgS) were studied by comprehensive characterizations methods. The general synthesis process was modified sol-gel method. The size and morphology of NPs could be influenced by temperature, sonication, calcination, precursor concentration, pH and types of reaction media. All types of the laboratory-synthesized or commercially available NPs were characterized by physical and chemical processes. One characteristic of NP that can lead to ambiguous toxicity test results was the effect of agglomeration of primary nano-sized particles. Laser light scattering was used to measure the aggregated and particle size distribution. Aggregation effects were apparent and often extensive in some synthesis approaches. Electron microscopy (SEM and TEM) gave the images of those laboratory-synthesized particles and aggregation. The average single particle was about 5-20 nm of ZnO; 20-40 nm of CuO; 10-20 nm of TiO2; 20-35 nm of Fe2O3; 10-15 nm of HgS, while the aggregate size was in the range of a hundred nanometers or more. These five types of NPs were obtained with spherical and oblong formation and the agglomeration of ZnO, CuO, HgS and TiO2 was random, but Fe2O3 has web-like aggregation. Other measurements performed on the particles and aggregates include bandgap energies, surface composition, surface area, hydrodynamic radius, and particle surface charge. In aqueous environment, NPs are subject to processes such as solubilization and aggregation. These processes can be controlling factors in the fate of nanomaterials in environmental settings, including bioavailability to organisms. This study has focused primarily on measurement of the solubility in aqueous media of varying composition (pH, ionic strength, and organic carbon), sedimentation and stability. The aggregate size distribution was

  19. Aerobic addition of secondary phosphine oxides to vinyl sulfides: a shortcut to 1-hydroxy-2-(organosulfanylethyl(diorganylphosphine oxides

    Directory of Open Access Journals (Sweden)

    Svetlana F. Malysheva

    2015-10-01

    Full Text Available Secondary phosphine oxides react with vinyl sulfides (both alkyl- and aryl-substituted sulfides under aerobic and solvent-free conditions (80 °C, air, 7–30 h to afford 1-hydroxy-2-(organosulfanylethyl(diorganylphosphine oxides in 70–93% yields.

  20. Removals of aqueous sulfur dioxide and hydrogen sulfide using CeO2-NiAl-LDHs coating activated carbon and its mix with carbon nano-tubes

    KAUST Repository

    Li, Jing

    2015-07-01

    Ce-doped NiAl/layered double hydroxide was coated at activated carbon by urea hydrolysis method (CeO2-NiAl-LDHs/AC) in one pot, which was characterized by X-ray diffraction, infrared spectra, field emission scanning electron microscope and electrochemical techniques. CeO2-NiAl-LDHs/AC shows good uptake for aqueous sulfur dioxide (483.09mg/g) and hydrogen sulfide (181.15mg/g), respectively at 25°C. Meanwhile, the electrochemical removals of aqueous sulfur dioxide and hydrogen sulfide were respectively investigated at the mix of CeO2-NiAl-LDHs/AC and carbon nano-tubes modified homed paraffin-impregnated electrode. Both sulfur dioxide and hydrogen sulfide could be effectively oxidized to sulfuric acid at 1.0V in alkaline aqueous solution. © 2015 Elsevier B.V.

  1. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    Science.gov (United States)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  2. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers.

    Science.gov (United States)

    Jensen, Henriette Stokbro; Lens, Piet N L; Nielsen, Jeppe L; Bester, Kai; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-05-30

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d(-1) and 1.33 d(-1) as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  3. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Henriette Stokbro, E-mail: h.s.jensen@sheffield.ac.uk [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, 9000 Aalborg (Denmark); Lens, Piet N.L. [Sub-department of Environmental Technology, Agricultural University of Wageningen, Bomenweg 2, NL-6700-EV Wageningen (Netherlands); Nielsen, Jeppe L.; Bester, Kai; Nielsen, Asbjorn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, 9000 Aalborg (Denmark)

    2011-05-30

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d{sup -1} and 1.33 d{sup -1} as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  4. Role of black carbon electrical conductivity in mediating hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transformation on carbon surfaces by sulfides.

    Science.gov (United States)

    Xu, Wenqing; Pignatello, Joseph J; Mitch, William A

    2013-07-01

    Recent research has demonstrated that black carbons catalyze the transformation of a range of nitrated explosives sorbed to the carbon surfaces in the presence of sulfides. Although surface oxygenated functional groups, particularly quinones, and electrical conductivity have both been hypothesized to promote these reactions, the importance of these properties has not been tested. In this work, the importance of electrical conductivity was addressed by producing chars of increasing electrical conductivity via pyrolysis of wood shavings at increasing temperature. The reactivity of chars with respect to transformation of the explosive RDX in the presence of sulfides correlated with electrical conductivity. Oxygenated functional groups were apparently not involved, as demonstrated by the elimination of reactivity of an activated carbon after ozone treatment or sorption of model quinones to the activated carbon surface. Although RDX transformation correlated with char electrical conductivity, no RDX transformation was observed when RDX was physically separated from sulfides but electrically connected through an electrochemical cell. RDX transformation occurred in the presence of a surface-associated sulfur species. The correlation with char electrical conductivity suggests that sulfides are oxidized on carbon surfaces to products that serve as potent nucleophiles promoting RDX transformation.

  5. High Temperature Corrosion of Fe-C-S Cast Irons in Oxidizing and Sulfidizing Atmospheres

    Institute of Scientific and Technical Information of China (English)

    Thuan-Dinh NGUYEN; Dong-Bok LEE

    2008-01-01

    The corrosion behavior of spheroidal graphite and flake graphite cast irons was studied in oxidizing and sulfidizing atmospheres between 600 and 800℃ for 50 h. The corrosion rate in the sulfidizing atmosphere was faster than that in air above 700℃, due to the formation of the Feo.975S sulfide. The corrosion rate of the spheroidal graphite cast iron was similar to that of the flake graphite cast iron.

  6. Carbon dioxide and hydrogen sulfide associations with regional bacterial diversity patterns in microbially induced concrete corrosion.

    Science.gov (United States)

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2014-07-01

    The microbial communities associated with deteriorating concrete corrosion fronts were characterized in 35 samples taken from wastewater collection and treatment systems in ten utilities. Bacterial communities were described using Illumina MiSeq sequencing of the V1V2 region of the small subunit ribosomal ribonucleic acid (SSU-rRNA) gene recovered from fresh corrosion products. Headspace gas concentrations (hydrogen sulfide, carbon dioxide, and methane), pore water pH, moisture content, and select mineralogy were tested for correlation to community outcomes and corrosion extent using pairwise linear regressions and canonical correspondence analysis. Corroding concrete was most commonly characterized by moisture contents greater than 10%, pore water pH below one, and limited richness (100 ppm) and carbon dioxide (>1%) gases, conditions which also were associated with low diversity biofilms dominated by members of the acidophilic sulfur-oxidizer genus Acidithiobacillus.

  7. Microbial oxidation of soluble sulfide in produced water from the Bakkeen Sands

    Energy Technology Data Exchange (ETDEWEB)

    Gevertz, D.; Zimmerman, S. [Agouron Institute, La Jolla, CA (United States); Jenneman, G.E. [Phillips Petroleum Company, Bartlesville, OK (United States)] [and others

    1995-12-31

    The presence of soluble sulfide in produced water results in problems for the petroleum industry due to its toxicity, odor, corrosive nature, and potential for wellbore plugging. Sulfide oxidation by indigenous nitrate-reducing bacteria (NRB) present in brine collected from wells at the Coleville Unit (CVU) in Saskatchewan, Canada, was investigated. Sulfide oxidation took place readily when nitrate and phosphate were added to brine enrichment cultures, resulting in a decrease in sulfide levels of 99-165 ppm to nondetectable levels (< 3.3 ppm). Produced water collected from a number of producing wells was screened to determine the time required for complete sulfide oxidation, in order to select candidate wells for treatment. Three wells were chosen, based on sulfide removal in 48 hours or less. These wells were treated down the backside of the annulus with a solution containing 10 mM KNO{sub 3} and 100 {mu}M NaH{sub 2}PO{sub 4}. Following a 24- to 72-hour shut-in, reductions in pretreatment sulfide levels of greater than 90% were observed for two of the wells, as well as sustained sulfide reductions of 50% for at least two days following startup. NRB populations in the produced brine were observed to increase significantly following treatment, but no significant increases in sulfate-reducing bacteria were observed. These results demonstrate the technical feasibility of stimulating indigenous populations of NRB to remediate and control sulfide in produced brine.

  8. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part II. the regeneration of copper sulfide to copper oxide - An experimental study

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    Aim of this study was to investigate the possibilities for a selective and efficient method to convert copper(II) sulfide (CuS) into copper(II) oxide (CuO). The oxidation of copper sulfide has been studied experimentally using a thermogravimetric analyzer (TGA) at temperatures ranging from 450 to 75

  9. Description of a redox-controlled sulfidostat for the growth of sulfide-oxidizing phototrophs

    NARCIS (Netherlands)

    Sanchez, O; vanGemerden, H; Mas, J

    1996-01-01

    This paper describes a novel type of continuous culture for the growth of phototrophic sulfur oxidizers under constant concentrations of hydrogen sulfide, The culture maintains a constant concentration of sulfide despite possible variations in external factors likely to affect photosynthetic activit

  10. Stable isotopes of carbon dioxide in soil gas over massive sulfide mineralization at Crandon, Wisconsin

    Science.gov (United States)

    Alpers, C.N.; Dettman, D.L.; Lohmann, K.C.; Brabec, D.

    1990-01-01

    Stable isotope ratios of oxygen and carbon were determined for CO2 in soil gas in the vicinity of the massive sulfide deposit at Crandon, Wisconsin with the objective of determining the source of anomalously high CO2 concentrations detected previously by McCarthy et al. (1986). Values of ??13C in soil gas CO2 from depths between 0.5 and 1.0 m were found to range from -12.68??? to -20.03??? (PDB). Organic carbon from the uppermost meter of soil has ??13C between -24.1 and -25.8??? (PDB), indicating derivation from plant species with the C3 (Calvin) type of photosynthetic pathway. Microbial decomposition of the organic carbon and root respiration from C3 and C4 (Hatch-Slack) plants, together with atmospheric CO2 are the likely sources of carbon in soil gas CO2. Values of ??18O in soil-gas CO2 range from 32 to 38??? (SMOW). These ??18O values are intermediate between that calculated for CO2 gas in isotopic equilibrium with local groundwaters and that for atmospheric CO2. The ??18O data indicate that atmospheric CO2 has been incorporated by mixing or diffusion. Any CO2 generated by microbial oxidation of organic matter has equilibrated its oxygen isotopes with the local groundwaters. The isotopic composition of soil-gas CO2 taken from directly above the massive sulfide deposit was not distinguishable from that of background samples taken 1 to 2 km away. No enrichment of the ??13C value of soil-gas CO2 was observed, contrary to what would be expected if the anomalous CO2 were derived from the dissolution of Proterozoic marine limestone country rock or of Paleozoic limestone clasts in glacial till. Therefore, it is inferred that root respiration and decay of C3 plant material were responsible for most CO2 generation both in the vicinity of the massive sulfide and in the "background" area, on the occasion of our sampling. Interpretation of our data is complicated by the effects of rainfall, which significantly reduced the magnitude of the CO2 anomaly. Therefore, we cannot

  11. When can Electrochemical Techniques give Reliable Corrosion Rates on Carbon Steel in Sulfide Media?

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, Tor; Nielsen, Lars Vendelbo

    2005-01-01

    Effects of film formation on carbon steel in hydrogen sulfide media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from hydrogen sulfide solutions, biological sulfide media and natural sulfide containing geothermal water have been collected and the process...... corrosion rates, but this effect may not be detected if rates are already overestimated. It is concluded that electrochemical techniques can be used for corrosion rate monitoring in som hydrogen sulfide media, but care must be taken when choosing the scan rates, and it is important to realize when direct...... in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Oxygen entering the system accelerates...

  12. Sulfide treatment to inhibit mercury adsorption onto activated carbon in carbon-in-pulp gold recovery circuits

    Energy Technology Data Exchange (ETDEWEB)

    Touro, F.J.; Lipps, D.A.

    1988-03-29

    A process for treating a mercury-contaminated, precious metal-containing ore slurry is described comprising: (a) reacting sulfide anions in an aqueous ore slurry of a mercury and precious metal-containing carbonaceous ore, and (b) conducting a simultaneous cyanide leach and carbon-in-pulp adsorption of the precious metal from the carbonaceous ore in the sulfide-containing ore slurry.

  13. Sulfur speciation and sulfide oxidation in the water column of the Black Sea

    Science.gov (United States)

    Luther, George W., III; Church, Thomas M.; Powell, David

    We have applied sulfur speciation techniques to understand the chemistry and cycling of sulfur in Black Sea waters. The only reduced dissolved inorganic sulfur species detected (above the low minimum detection limits of the voltammetric methods employed) in the water column was hydrogen sulfide. The maximum concentration of sulfide (423 μM) is similar to previous reports. Using a cathodic stripping square wave voltammetry (CSSWV) method for nanomolar levels of sulfide, we determined the precise boundary between the "free" hydrogen sulfide (sulfidic) zone and the upper (oxic/suboxic) water column at the two stations studied. This boundary has apparently moved up by about 50 m in the past 20 years. Our results help demonstrate three chemically distinct zones of water in the central basin of the Black Sea: (1) the oxic [0-65 m], (2) the anoxic/nonsulfidic [65-100 m] and (3) the sulfidic [>100 m]. Sulfide bound to metals ("complexed" sulfide) is observed in both the oxic and anoxic/nonsulfidic zones of the water column. This supports previous studies on metal sulfide forms. From the electrochemical data, it is possible to estimate the strength of the complexation of sulfide to metals (log K = 10 to 11). Thiosulfate and sulfite were below our minimum detectable limit (MDL) of 50 nM using CSSWV. Elemental sulfur (MDL 5 nM) was detected below the onset of the hydrogen sulfide zone (90-100 m) with a maximum of 30-60 nM near 120 m. The sulfur speciation results for the Black Sea are lower by one order of magnitude or more than other marine systems such as the Cariaco Trench and salt marshes. New HPLC techniques were applied to detect thiols at submicromolar levels. The presence of thiols (2-mercaptoethylamine, 2-mercaptoethanol, N-acetylcysteine and glutathione) is correlated with the remineralization of organic matter at the oxic and anoxic/nonsulfidic interface. Water samples collected from the upper 50 m of the sulfidic zone showed significant sulfide oxidation on

  14. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECT OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    Science.gov (United States)

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and Cu, Mo, V, Cr and Mn metal oxides, and mixed metal oxides support on y-alumina as catalysts ov...

  15. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECTS OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    Science.gov (United States)

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and activities of Cu, Mo, Cr and Mn oxides, and mixed metal oxides supported on -alumina, were tes...

  16. Selective oxidation of glycosyl sulfides to sulfoxides using magnesium monoperoxyphthalate and microwave irradiation.

    Science.gov (United States)

    Chen, Ming-Yi; Patkar, Laxmikant Narhari; Lin, Chun-Cheng

    2004-04-16

    A protocol that uses moist magnesium monoperoxyphthalate (MMPP) as an oxidant under microwave irradiation rapidly yields a variety of glycosyl sulfoxides from corresponding sulfides in high yields with high selectivity.

  17. Synthesis and characterisation: Zinc oxide-sulfide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prinsa, E-mail: prinsa.verma@gmail.co [Nanophosphor Application Center, Allahabad University (India); Satish Dhawan Space Center, ISRO (India); Pandey, Avinash C. [Nanophosphor Application Center, Allahabad University (India); Bhargava, R.N. [Nanocrystal Technology, New York (United States)

    2009-11-15

    A novel synthesis method is presented for the preparation of nanosized-semiconductor zinc oxide-sulphide (ZnO/ZnS) core-shell nanocomposites, both formed sequentially from a single-source solid precursor. ZnO nanocrystals were synthesized by a simple co-precipitation method and ZnO/ZnS core-shell nanocomposites were successfully fabricated by sulfidation of ZnO nanocrystals via a facile chemical synthesis at room temperature. The as-obtained samples were characterized by X-ray diffraction and transmission electron microscopy. The results showed that the pure ZnO nanocrystals were hexagonal wurtzite crystal structures and the ZnS nanoparticles were sphalerite structure with the size of about 10 nm grown on the surface of the ZnO nanocrystals. Optical properties measured reveal that ZnO/ZnS core-shell nanocomposites have integrated the photoluminescent effect of ZnO and ZnS. Based on the results of the experiments, a possible formation mechanism of ZnO/ZnS core-shell nanocomposites was also suggested. This treatment is suggested to improve various properties of optoelectronically valuable ZnO/ZnS nanocomposites. These nanosized semiconductor nanocomposites can form a new class of luminescent materials for various applications.

  18. New nitric oxide or hydrogen sulfide releasing aspirins.

    Science.gov (United States)

    Lazzarato, Loretta; Chegaev, Konstantin; Marini, Elisabetta; Rolando, Barbara; Borretto, Emily; Guglielmo, Stefano; Joseph, Sony; Di Stilo, Antonella; Fruttero, Roberta; Gasco, Alberto

    2011-08-11

    A new series of (((R-oxy)carbonyl)oxy)methyl esters of aspirin (ASA), bearing nitric oxide (NO) or hydrogen sulfide (H(2)S) releasing groups, was synthesized, and the compounds were evaluated as new ASA co-drugs. All the products were quite stable in buffered solution at pH 1 and 7.4. Conversely, they were all rapidly metabolized, producing ASA and the NO/H(2)S releasing moiety used for their preparation. Consequent on ASA release, the compounds were capable of inhibiting collagen-induced platelet aggregation of human platelet-rich plasma (PRP). The simple NO/H(2)S donor substructures were able to relax contracted rat aorta strips, with a NO- and H(2)S-dependent mechanism, respectively, but they either did not trigger antiaggregatory activity or displayed antiplatelet potency markedly below that of the related co-drug. The new products might provide a safer and improved alternative to the use of ASA principally in its anti-inflammatory and antithrombotic applications.

  19. Carbonyl Sulfide for Tracing Carbon Fluxes Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. Elliott [Univ. of California, Merced, CA (United States); Berry, Joseph A. [Carnegie Inst. of Science, Stanford, CA (United States); Billesbach, Dave [Univ. of Nebraska, Lincoln, NE (United States); Torn, Margaret S [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zahniser, Mark [Aerodyne Research, Inc., Billerica, MA (United States); Seibt, Ulrike [Univ. of California, Los Angeles, CA (United States); Maseyk, Kadmiel [Pierre and Marie Curie Univ., Paris (France)

    2016-04-01

    The April-June 2012 campaign was located at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site Central Facility and had three purposes. One goal was to demonstrate the ability of current instrumentation to correctly measure fluxes of atmospheric carbonyl sulfide (COS). The approach has been describe previously as a critical approach to advancing carbon cycle science1,2, but requires further investigation at the canopy scale to resolve ecosystem processes. Previous canopy-scale efforts were limited to data rates of 1Hz. While 1 Hz measurements may work in a few ecosystems, it is widely accepted that data rates of 10 to 20 Hz are needed to fully capture the exchange of traces gases between the atmosphere and vegetative canopy. A second goal of this campaign was to determine if canopy observations could provide information to help interpret the seasonal double peak in airborne observations at SGP of CO2 and COS mixing ratios. A third goal was to detect potential sources and sinks of COS that must be resolved before using COS as a tracer of gross primary productivity (GPP).

  20. Regional-Scale Carbon Flux Partitioning Using Atmospheric Carbonyl Sulfide

    Science.gov (United States)

    Abu-Naser, M.; Campbell, J. E.; Berry, J. A.

    2011-12-01

    Simultaneous analysis of atmospheric concentrations of carbonyl sulfide (COS) and carbon dioxide (CO2) has been proposed as an approach to partitioning gross primary production and respiration fluxes at regional and global scales. The basis for this approach was that the observation and regional gradients in atmospheric CO2 are dominated by net ecosystem fluxes while regional gradients in atmospheric COS are dominated by GPP-related plant uptake. Here we investigate the spatial and temporal gradients in airborne COS and CO2 measurements in comparison to flux estimates from ecosystem models and eddy covariance methods over North America. The spatial gradients in the ecosystem relative uptake (ERU), the normalized ratio of COS and CO2 vertical gradients, were consistent with the theoretical relationship to flux estimates from ecosystem models and eddy covariance methods. The seasonality of the gross primary productivity flux estimates was consistent with airborne observations in the midwestern region but had mixed results in the southeastern region. Inter-annual changes in the ERU and regional drought index data suggested a potential relationship between drought stress and low ratios of gross primary production to net ecosystem exchange.

  1. Carbonyl sulfide as an inverse tracer for biogenic organic carbon in gas and aerosol phases

    Science.gov (United States)

    de Gouw, J. A.; Warneke, C.; Montzka, S. A.; Holloway, J. S.; Parrish, D. D.; Fehsenfeld, F. C.; Atlas, E. L.; Weber, R. J.; Flocke, F. M.

    2009-03-01

    Carbonyl sulfide (COS) is a long-lived trace gas in the atmosphere with an oceanic source and a surface sink through the uptake by vegetation and soils. We demonstrate the use of COS as an inverse tracer for the impact of biogenic emissions on an air mass including the formation of secondary organic aerosol (SOA). Using airborne data from the summer of 2004 over the northeastern U.S., we find that air masses with reduced COS in the continental boundary layer had on average higher mixing ratios of biogenic VOCs (isoprene, monoterpenes, methanol) and their photo-oxidation products (methacrolein, methyl vinyl ketone, methyl furan and MPAN, a peroxyacyl nitrate derived from isoprene). Measurements of water-soluble organic carbon were only weakly correlated with COS, indicating that SOA formation from biogenic precursors was a small contribution to the total.

  2. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    NARCIS (Netherlands)

    Jensen, H.S.; Lens, P.N.L.; Nielsen, J.L.; Bester, K.; Nielsen, A.H.; Hvitved-Jacobsen, Th.; Vollertsen, J.

    2011-01-01

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria,

  3. Test of oxidation behavior of sulfide ores at ambient temperature for fire control

    Institute of Scientific and Technical Information of China (English)

    WU Chao; LI Zi-jun; LI Ming; WU Guo-min

    2007-01-01

    The coincidence of relevant factors, e.g. oxygen absorption quantity, weight increment, water soluble iron ions and sulfate ion of sulfide ore samples in the oxidation process, was tested through experiment. Based on a large number of tests for a group sample of sulfide ores from a mine, some important conclusions were obtained. The results obtained by the investigation indicate that there is no general interpretation relative to the oxygen absorption and the formation products of sulfate ion and water soluble iron ions during the oxidation process of sulfide ores at ambient temperature. However, the weight increment of the sulfide ore samples in the oxidation process at ambient temperature has a linear relationship with the quantity of oxygen absorption.

  4. Tracking photosynthetic sulfide oxidation in a meromictic lake using sulfate δ34S and δ18O

    Science.gov (United States)

    Gilhooly, W. P.; Reinhard, C.; Lyons, T. W.; Glass, J. B.

    2012-12-01

    Phototrophic sulfur bacteria oxidize sulfide and fix carbon dioxide in the presence of sunlight without producing oxygen. Environmental conditions in the Paleo- and Mesoproterozoic, when atmospheric oxygen concentrations were at low levels and portions of the oceans were anoxic and sulfidic (euxinic), were conducive to widespread carbon fixation by anoxygenic photosynthesis. This pathway may have helped sustain euxinic conditions in the Proterozoic water column. With limited organic biomarker and geochemical evidence for widespread production of anoxygenic phototrophs, however, additional proxies are needed to fingerprint paleoecological and biogeochemical signals associated with photic zone euxinia. Paired δ34S and δ18O from ancient sulfates (gypsum, barite, or CAS) may offer an added constraint on the history and ecological dominance of photosynthetic S-oxidation. Sulfate-oxygen can fractionate during sulfate reduction, but the extent of isotopic enrichment is controlled either by kinetic isotope effects imparted during intracellular enzymatic steps or equilibrium oxygen exchange with ambient water. An improved understanding of these processes can be gained from modern natural environments. Mahoney Lake is a density-stratified lake located within the White Lake Basin of British Columbia. The euxinic water column supports a dense plate of purple sulfur bacteria (Amoebobacter purpureus) that thrives where free sulfide intercepts the photic zone at ~7 m water depth. We analyzed the isotopic composition of sulfate (δ34SSO4 and δ18OSO4), sulfide (δ34SH2S), and water (δ18OH2O) to track the potentially coupled processes of dissimilatory sulfate reduction and phototrophic sulfide oxidation within this meromictic lake. Large isotopic offsets observed between sulfate and sulfide within the monimolimnion (δ34SSO4-H2S = 51‰) and within pore waters along the oxic margin (δ34SSO4-H2S >50‰) are consistent with sulfate reduction in both the sediments and the anoxic

  5. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell.

    Science.gov (United States)

    Sun, Min; Tong, Zhong-Hua; Sheng, Guo-Ping; Chen, Yong-Zhen; Zhang, Feng; Mu, Zhe-Xuan; Wang, Hua-Lin; Zeng, Raymond J; Liu, Xian-Wei; Yu, Han-Qing; Wei, Li; Ma, Fang

    2010-10-15

    Simultaneous electricity generation and sulfide removal can be achieved in a microbial fuel cell (MFC). In electricity harvesting from sulfide oxidation in such an MFC, various microbial communities are involved. It is essential to elucidate the microbial communities and their roles in the sulfide conversion and electricity generation. In this work, an MFC was constructed to enrich a microbial consortium, which could harvest electricity from sulfide oxidation. Electrochemical analysis demonstrated that microbial catalysis was involved in electricity output in the sulfide-fed MFC. The anode-attached and planktonic communities could perform catalysis independently, and synergistic interactions occurred when the two communities worked together. A 16S rRNA clone library analysis was employed to characterize the microbial communities in the MFC. The anode-attached and planktonic communities shared similar richness and diversity, while the LIBSHUFF analysis revealed that the two community structures were significantly different. The exoelectrogenic, sulfur-oxidizing and sulfate-reducing bacteria were found in the MFC anodic chamber. The discovery of these bacteria was consistent with the community characteristics for electricity generation from sulfide oxidation. The exoelectrogenic bacteria were found both on the anode and in the solution. The sulfur-oxidizing bacteria were present in greater abundance on the anode than in the solution, while the sulfate-reducing bacteria preferably lived in the solution.

  6. Removal of hydrogen sulfide and sulfur dioxide by carbons impregnated with triethylenediamine.

    Science.gov (United States)

    Wu, Li-Chun; Chang, Tsu-Hua; Chung, Ying-Chien

    2007-12-01

    Activated carbon (AC) adsorption has long been considered to be a readily available technology for providing protection against exposure to acutely toxic gases. However, ACs without chemical impregnation have proven to be much less efficient than impregnated ACs in terms of gas removal. The impregnated ACs in current use are usually modified with metalloid impregnation agents (ASC-carbons; copper, chromium, or silver) to simultaneously enhance the chemical and physical properties of the ACs in removing specific poisonous gases. These metalloid agents, however, can cause acute poisoning to both humans and the environment, thereby necessitating the search for organic impregnation agents that present a much lower risk. The aim of the study reported here was to assess AC or ASC-carbon impregnated with triethylenediamine (TEDA) in terms of its adsorption capability for simulated hydrogen sulfide (H2S) and sulfur dioxide (SO2) gases. The investigation was undergone in a properly designed laboratory-scale and industrial fume hood evaluation. Using the system reported here, we obtained a significant adsorption: the removal capability for H2S and SO2 was 375 and 229 mg/g-C, respectively. BET measurements, element analysis, scanning electron microscopy, and energy dispersive spectrometry identified the removal mechanism for TEDA-impregnated AC to be both chemical and physical adsorption. Chemical adsorption and oxidation were the primary means by which TEDA-impregnated ASC-carbons removed the simulated gases.

  7. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  8. Vibrational Spectroscopic Studies of Hydrogen, Carbon-Monoxide and Thiophene Adsorption on Ruthenium-Sulfide and Sulfided Ruthenium Catalysts.

    Science.gov (United States)

    Heise, William Herbert

    The "working surface" of ruthenium hydrodesulfurization (HDS) catalysts has been modeled by preadsorption of sulfur, carbon and carbon plus sulfur on Ru(0001). Adsorption and decomposition of thiophene over these surfaces have been investigated using TDS/TPRS, XPS and EELS. Thiophene is proposed to decompose via a three-step mechanism involving: (i) initial thiophene cracking at 120 K yielding surface sulfur and hydrocarbon species, (ii) hydrogen desorption near 230 K providing additional decomposition ensembles and (iii) continued decomposition to form "metallocycle -like" intermediates which retain EELS features similar to thiophene. Preadsorbed carbon or carbon plus sulfur are not as effective for passivation of the surface toward metallocycle formation as preadsorbed sulfur alone. This result is attributed to the fact that carbon deposited from butadiene annealed and decomposed at 700 K forms islands, while sulfur establishes a well-ordered superlattice on the surface. The decrease in metallocycle formation with increasing poison levels appears to explain HDS selectivity and specific activity trends observed in our laboratory from mildly sulfided (10% H_2S/H_2 , 673 K, 2h) ruthenium catalysts retaining submonolayers of sulfur. Incoherent inelastic neutron scattering (IINS) has been used to characterize hydrogen adsorption sites on ruthenium sulfide. Hydrogen resides on sulfur anions to form SH groups, yielding two non-degenerate bending modes at 600 and 710 cm^{-1}. Complementary hydrogen adsorption and H_2/D _2 exchange data suggest that the active sites for hydrogen adsorption may be coordinatively unsaturated S-S anion pairs. Comparison of CO adsorption on sulfided Ru/Al _2O_3 to sulfur precovered Ru(0001) reveals an adsorption site related to edge/corner atoms directly perturbed by sulfur, consistent with previous kinetic studies demonstrating higher specific activity for thiophene HDS over smaller ruthenium crystallites.

  9. The lithiation and acyl transfer reactions of phosphine oxides, sulfides and boranes in the synthesis of cyclopropanes

    DEFF Research Database (Denmark)

    Clarke, Celia; Fox, David J; Pedersen, Daniel Sejer;

    2009-01-01

    Phosphine oxides are lithiated much faster than phosphine sulfides and phosphine boranes. Phosphine sulfides are in turn lithiated much more readily than phosphine boranes. It was possible to trap a phosphine sulfide THF in one case which upon treatment with t-BuOK gave cyclopropane, showing that...

  10. Oxidation of chlorinated olefins by Escherichia coli transformed with dimethyl sulfide monooxygenase genes or cumene dioxygenase genes.

    Science.gov (United States)

    Takami, Wako; Yoshida, Takako; Nojiri, Hideaki; Yamane, Hisakazu; Omori, Toshio

    1999-04-01

    In the present work, it was shown that the dimethyl sulfide (DMS) monooxygenase and the cumene dioxygenase catalyzed oxidation of various chlorinated ethenes, propenes, and butenes. The specific activities of these oxygenases were determined for C(2) to C(4) chlorinated olefins, and the oxidation rates ranged from 0.19 to 4.18 nmol.min(-1).mg(-1) of dry cells by the DMS monooxygenase and from 0.19 to 1.29 nmol.min(-1).mg(-1) of dry cells by the cumene dioxygenase. The oxidation products were identified by gas chromatography-mass spectrometry. Most chlorinated olefins were monooxygenated by the DMS monooxygenase to yield chlorinated epoxides. In the case of the cumene dioxygenase, the substrates lacking any chlorine atom on double-bond carbon atoms were dioxygenated, and those with chlorine atoms attaching to double-bond carbon atoms were monooxygenated to yield allyl alcohols.

  11. Kinetics and correlation analysis of reactivity in the oxidation of organic sulfides by butyltriphenylphosphonium dichromate

    Indian Academy of Sciences (India)

    K M Dilsha; Seema Kothari

    2009-03-01

    The oxidation of a number of monosubstituted aryl methyl, alkyl phenyl, dialkyl, and diphenyl sulfides by butyltriphenylphosphonium dichromate (BTPPD), to the corresponding sulfoxides, is first order with respect to BTPPD and is second order with respect to sulfide. The reaction is catalysed by hydrogen ions and the dependence is of second order. The oxidation of meta- and para-substituted aryl methyl sulfides correlated best in terms of Hammett equation, the reactions exhibited negative polar reaction constant. The ortho-substituted compounds correlated best in terms of Charton’s triparametric equation with negative polar constant and a small degree of steric hindrance. The oxidation of alkyl phenyl sulfides exhibited a good correlation in terms of Pavelich-Taft equation confirming that the electron-donating power of the alkyl group increases the rate, however, the reactivity is not markedly controlled by the bulkiness of the alkyl group. The rates of oxidation of sulfides were determined in nineteen organic solvents. An analysis of the solvent effect by multi-parametric equations indicated the relatively greater importance of the cation-solvating power of the solvents. A mechanism involving a single-step electrophilic oxygen transfer from BTPPD to the sulfide leading to polar transition state has been proposed.

  12. Sulphidization flotation for recovery of lead and zinc from oxide-sulfide ores

    Institute of Scientific and Technical Information of China (English)

    FA Keqing; Jan D.Miller; JIANG Tao; LI Guang-hui

    2005-01-01

    A new flowsheet was developed to recover the valuable minerals from oxide or oxide-sulfide ores of lead and zinc. The flowsheet consisted of flotation of sulfide minerals, desliming and sulphidization-flotation of oxide minerals. The corresponding reagent system and techniques to the flowsheet were investigated. Batch and continuous tests show that the dosage of sodium sulfide, temperature, and collector type are main affecting factors on the recovery of smithsonite and cerussite. For the flotation of cerussite, there is an appropriate dosage of sodium sulfide at which the recovery reaches its maximum value. The required sodium sulfide for smithsonite flotation is higher than that for cerussite and the recovery of smithsonite flotation increases with the dosage of sodium sulfide at low level and becomes insensitive at high dosage. The appropriate temperature for smithsonite and cerussite flotation is found to be 25 - 40 ℃. Amines are found to be the effective collectors for the flotation of smithsonite after sulphidization. Investigation also shows that desliming prior to sulphidization-flotation is essential to the effective recovery of smithsonite and cerussite, and the desliming process of two-stage hydrocyclon is well feasible and effective for the treatment of lead-zinc oxide ores. A further treatment on the cerussite flotation concentrate by shaking table is proposed to obtain higher lead grade.

  13. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    Science.gov (United States)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our results provide new empirical data that should allow for more precise quantitative constraints on atmospheric pO2 based on the sedimentary rock record. 1Anbar, A.D. et al., 2007. Science, 317, i. 5846: 1903-1906. 2Williamson & Rimstidt, 1994. Geochim. et Cosmochim. Acta, 58, n. 24: 5443-5454. 3Lehner et al., 2015. PLoS ONE, 10, n. 6: 1-15.

  14. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms

    Science.gov (United States)

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  15. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms.

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    Full Text Available Nitrate decreases sulfide release in wastewater treatment plants (WWTP, but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm showed low sulfide production (0.31 μmol cm-3 h-1 and oxygen consumption rates (0.01 μmol cm-3 h-1. The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1. Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB. This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1 an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2 a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR

  16. Determination of kinetics and stoichiometry of chemical sulfide oxidation in wastewater of sewer networks

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Vollertsen, Jes; Hvitved-jacobsen, Thorkild

    2003-01-01

    A method for determination of kinetics and stoichiometry of chemical sulfide oxidation by dissolved oxygen (DO) in wastewater is presented. The method was particularly developed to investigate chemical sulfide oxidation in wastewater of sewer networks at low DO concentrations. The method is based...... parameters determined in a triplicate experiment. The kinetic parameters determined in 25 experiments on wastewater samples from a single site exhibited good constancy with a variation of the same order of magnitude as the precision of the method. It was found that the stoichiometry of the reaction could...... be considered constant during the course of the experiments although intermediates accumulated. This was explained by an apparent slow oxidation rate of the intermediates. The method was capable of determining kinetics and stoichiometry of chemical sulfide oxidation at DO concentrations lower than 1 g of O2 m...

  17. Correlations among factors of sulfide ores in oxidation process at ambient temperature

    Institute of Scientific and Technical Information of China (English)

    吴超; 李孜军; 周勃

    2004-01-01

    Spontaneous combustion is one of the serious problems in the mining of sulfide ore deposits. The relevant factors, e. G. Oxygen absorption quantity, mass increase, contents of water soluble iron ions and sulfate ion of sulfide ore samples in the oxidation process were investigated both in theory and experiment. The results from the investigation show that there is no general interpretation relation among the oxygen absorption quantity, the contents of sulfate ion and water soluble iron ions during the oxidation process of sulfide ores at ambient temperature.However, there is a linear relationship between the mass increase of the sulfide ore samples in the oxidation process at ambient temperature and the quantity of oxygen absorption. Therefore, the simple and cheap mass scaling method is suitable for predicting the oxygen absorption performance of sulfide ores at ambient temperature in place of the expensive and complicated chemical method used hitherto. Furthermore, combined with other items of breeding-fire test, the mass increase potential can also be used to predict the spontaneous combustion tendency of sulfide ores.

  18. Assaying the catalytic potential of transition metal sulfides for abiotic carbon fixation

    Science.gov (United States)

    Cody, G. D.; Boctor, N. Z.; Brandes, J. A.; Filley, T. R.; Hazen, R. M.; Yoder, H. S.

    2004-05-01

    A suite of nickel, cobalt, iron, copper, and zinc containing sulfides are assayed for the promotion of a model carbon fixation reaction with relevance to local reducing environments of the early Earth. The assay tests the promotion of hydrocarboxylation (the Koch reaction) wherein a carboxylic acid is synthesized via carbonyl insertion at a metal-sulfide-bound alkyl group. The experimental conditions are chosen for optimal assay, i.e., high reactant concentrations and pressures (200 MPa) to enhance chemisorption, and high temperature (250°C) to enhance reaction kinetics. All of the metal sulfides studied, with the exception CuS, promote hydrocarboxylation. Two other significant reactions involve the catalytic reduction of CO to form a surface-bound methyl group, detected after nucleophilic attack by nonane thiol to form methyl nonyl sulfide, and the formation of dinonyl sulfide via a similar reaction. Estimation of the catalytic turnover frequencies for each of the metal sulfides with respect to each of the primary reactions reveals that NiS, Ni 3S 2, and CoS perform comparably to commonly employed industrial catalysts. A positive correlation between the yield of primary product to NiS and Ni 3S 2 surface areas provides strong evidence that the reactions are surface catalytic in these cases. The sulfides FeS and Fe (1-x)S are unique in that they exhibit evidence of extensive dissolution, thus, complicating interpretation regarding heterogeneous vs. homogeneous catalysis. With the exception of CuS, each of the metal sulfides promotes reactions that mimic key intermediate steps manifest in the mechanistic details of an important autotrophic enzyme, acetyl-CoA synthase. The relatively high temperatures chosen for assaying purposes, however, are incompatible with the accumulation of thioesters. The results of this study support the hypothesis that transition metal sulfides may have provided useful catalytic functionality for geochemical carbon fixation in a prebiotic

  19. Pathways of sulfide oxidation by haloalkaliphilic bacteria in limited-oxygen gas lift bioreactors.

    Science.gov (United States)

    Klok, Johannes B M; van den Bosch, Pim L F; Buisman, Cees J N; Stams, Alfons J M; Keesman, Karel J; Janssen, Albert J H

    2012-07-17

    Physicochemical processes, such as the Lo-cat and Amine-Claus process, are commonly used to remove hydrogen sulfide from hydrocarbon gas streams such as landfill gas, natural gas, and synthesis gas. Biodesulfurization offers environmental advantages, but still requires optimization and more insight in the reaction pathways and kinetics. We carried out experiments with gas lift bioreactors inoculated with haloalkaliphilic sulfide-oxidizing bacteria. At oxygen-limiting levels, that is, below an O(2)/H(2)S mole ratio of 1, sulfide was oxidized to elemental sulfur and sulfate. We propose that the bacteria reduce NAD(+) without direct transfer of electrons to oxygen and that this is most likely the main route for oxidizing sulfide to elemental sulfur which is subsequently oxidized to sulfate in oxygen-limited bioreactors. We call this pathway the limited oxygen route (LOR). Biomass growth under these conditions is significantly lower than at higher oxygen levels. These findings emphasize the importance of accurate process control. This work also identifies a need for studies exploring similar pathways in other sulfide oxidizers such as Thiobacillus bacteria.

  20. Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride.

    Science.gov (United States)

    Rajendran, Kamalraj V; Gilheany, Declan G

    2012-01-21

    A variety of phosphine oxides and sulfides can be efficiently converted directly to the corresponding phosphine boranes using oxalyl chloride followed by sodium borohydride. Optically active P-stereogenic phosphine oxides can be converted stereospecifically to phosphine boranes with inversion of configuration by treatment with Meerwein's salt followed by sodium borohydride.

  1. Reliability of Electrochemical Techniques for Determining Corrosion Rates on Carbon Steel in Sulfide Media

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, T.; Nielsen, Lars Vendelbo

    2007-01-01

    Effects of film formation on carbon steel in hydrogen sulfide (H2S) media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from H2S solutions, biological sulfide media, and natural sulfide containing geothermal water have been collected, and the process...... if the biofilm in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemicel impedance spectroscopy (EIS). Oxygen entering the system...... accelerates corrosion rates, but this effect may not be detected if rates are already overestimated. It is concluded that electrochemical techniques can be used for corrosion reate monitoring in some H2S media, but care must be taken in the choice of scan ratre; it is important to realize when direct...

  2. Hydrogen sulfide poisoning in solid oxide fuel cells under accelerated testing conditions

    Science.gov (United States)

    Li, Ting Shuai; Wang, Wei Guo; Chen, Tao; Miao, He; Xu, Cheng

    This study investigates the 0.2% hydrogen sulfide poisoning of Ni/YSZ anode-supported solid oxide fuel cells (SOFCs). The deterioration degrees and recovery extents of the cell current density, cell voltage and operation temperature are monitored. The results of impedance spectroscopy analysis show that hydrogen sulfide poisoning behavior may affect oxygen ion migration and gas diffusion and conversion on the anode side. Microstructural inspection reveals sulfur or sulfide formed on the anode-active area, which accounts for the immediate and severe cell power drop upon the injection of H 2S. The nickel sulfide in the anodic functional layer cannot be completely removed after long-term regeneration and thus may be a key factor in the permanent degradation of the cell.

  3. The sulfide ore looping oxidation process: An alternative to current roasting and smelting practice

    Science.gov (United States)

    McHugh, Larry F.; Balliett, Robert; Mozolic, Jean A.

    2008-07-01

    This novel method utilizes the reactions of metal sulfides and metal oxides. It is applicable to single-metal systems such as Mo, Cu, Co, Ni, Fe, and Zn individual sulfides and to mixed sulfides such as chalcopyrite and Mo/Fe. In addition to primary ores, waste stream products such as spent catalysts can be effectively processed. The benchmark work done on MoS2/MoO3 resulted in an MoO2 product with less than 0.095 wt.% sulfur. Other sulfide concentrate materials showed similar results. In the first stage of the looping process, a highly concentrated SO2 off-gas stream is produced that could be directed to an acid plant or converted to liquid. The products from the first process step can be directed down line for further processing or can be used as is. In the second step of looping oxidation, the product is oxidized back to its fully oxidized state and is mainly looped back to drive the oxidation process in the first reaction. There are also several opportunities for energy recovery and conversion, making looping oxidation an energy-efficient process.

  4. Environmentally Benign Oxidation of Some Organic Sulfides with 34% Hydrogen Peroxide Catalyzed by Simple Heteropolyoxometalates

    Institute of Scientific and Technical Information of China (English)

    TAYEBEE,Reza; ALIZADEH,Moharnmad Hassan

    2007-01-01

    An environmentally benign oxygenation protocol was developed for selective oxidation of some types of aromatic and aliphatic sulfides in good to excellent yields utilizing 34% hydrogen peroxide catalyzed by simple heteropolyoxometalates in normal drinking water at room temperature. The catalysts could be recovered and reused for at least seven reaction cycles under the described reaction conditions without considerable loss of reactivity. This procedure introduced a new insight into the use of simple heteropolyanions as recoverable catalysts for the oxidation of organic sulfides by an environmentally acceptable protocol.

  5. Pt(II) coordination complexes as visible light photocatalysts for the oxidation of sulfides using batch and flow processes

    OpenAIRE

    Casado-Sánchez, A.; Gómez-Ballesteros, R.; Tato, F.; Soriano, F.J.; Pascual-Coca, G.; Cabrera, S.; J. Alemán

    2016-01-01

    A new catalytic system for the photooxidation of sulfides based on Pt(ii) complexes is presented. The catalyst is capable of oxidizing a large number of sulfides containing aryl, alkyl, allyl, benzyl, as well as more complex structures such as heterocycles and methionine amino acid, with complete chemoselectivity. In addition, the first sulfur oxidation in a continuous flow process has been developed

  6. Thermodynamic Model and Database for Sulfides Dissolved in Molten Oxide Slags

    Science.gov (United States)

    Kang, Youn-Bae; Pelton, Arthur D.

    2009-12-01

    A thermodynamic model has been developed in the framework of the modified quasichemical model in the quadruplet approximation to permit the calculation of solubilities of various gaseous species (sulfide, sulfate, nitride, carbide, water, etc.) in molten slags. The model calculates the solubilities solely from knowledge of the thermodynamic activities of the component oxides and the Gibbs energies of the pure liquid components (oxides, sulfides, sulfates, etc.). In the current article, it is shown that solubilities of sulfur as sulfide in Al2O3-CaO-FeO-Fe2O3-MgO-MnO-SiO2-TiO2-Ti2O3 multicomponent slags, which are predicted from the current model with no adjustable model parameters, are in good agreement with all available experimental data. The article also provides a thorough review of experimental sulfide capacity data for this system. The model applies at all compositions from pure oxides to pure sulfides and from basic to acidic slags. By coupling this database with other evaluated databases, such as those for molten metal and gaseous phases, and with general software for Gibbs energy minimization, practically important slag/metal/gas/solid equilibria can be computed such as S-distribution ratios.

  7. Kinetic Constants for Biological Ammonium and Nitrite Oxidation Processes Under Sulfide Inhibition.

    Science.gov (United States)

    Bejarano-Ortiz, Diego Iván; Huerta-Ochoa, Sergio; Thalasso, Frédéric; Cuervo-López, Flor de María; Texier, Anne-Claire

    2015-12-01

    Inhibition of nitrification by sulfide was assessed using sludge obtained from a steady-state nitrifying reactor. Independent batch activity assays were performed with ammonium and nitrite as substrate, in order to discriminate the effect of sulfide on ammonium and nitrite oxidation. In the absence of sulfide, substrate affinity constants (K S,NH4  = 2.41 ± 0.11 mg N/L; K s, NO2  = 0.74 ± 0.03 mg N/L) and maximum specific rates (q max,NH4  = 0.086 ± 0.008 mg N/mg microbial protein h; q max,NO2  = 0.124 ± 0.001 mg N/mg microbial protein h) were determined. Inhibition of ammonium oxidation was no-competitive (inhibition constant (K i , NH4 ) of 2.54 ± 0.12 mg HS(-)-S/L) while inhibition of nitrite oxidation was mixed (competitive inhibition constant (K' i , NO2 ) of 0.22 ± 0.03 mg HS(-)-S/L and no-competitive inhibition constant (K i , NO2 ) of 1.03 ± 0.06 mg HS(-)-S/L). Sulfide has greater inhibitory effect on nitrite oxidation than ammonium oxidation, and its presence in nitrification systems should be avoided to prevent accumulation of nitrite. By simulating the effect of sulfide addition in a continuous nitrifying reactor under steady-state operation, it was shown that the maximum sulfide concentration that the sludge can tolerate without affecting the ammonium consumption efficiency and nitrate yield is 1 mg HS(-)-S/L.

  8. Oxygen and sulfur isotope fractionation during sulfide oxidation by anoxygenic phototrophic bacteria

    Science.gov (United States)

    Brabec, Michelle Y.; Lyons, Timothy W.; Mandernack, Kevin W.

    2012-04-01

    Sulfide-mediated anoxygenic photosynthesis (SMAP) carried out by anaerobic phototrophic bacteria may have played an important role in sulfur cycling, formation of sulfate, and, perhaps, primary production in the Earth’s early oceans. Determination of ε34SSO4-Sulfide- and ε18OSO4-H2O values for bacterial sulfide oxidation will permit more refined interpretation of the δ34S and δ18OSO4 values measured in modern anoxic environments, such as meromictic lakes where sulfide commonly extends into the photic zone, and in the ancient rock record, particularly during periods of the Precambrian when anoxic and sulfidic (euxinic) conditions were believed to be more pervasive than today. Laboratory experiments with anaerobic purple and green sulfur phototrophs, Allochromatium vinosum and Chlorobaculum tepidum, respectively, were conducted to determine the sulfur and oxygen isotope fractionation during the oxidation of sulfide to sulfate. Replicate experiments were conducted at 25 °C for A. vinosum and 45 °C for C. tepidum, and in duplicate at three different starting oxygen isotope values for water to determine sulfate-water oxygen isotope fractionations accurately (ε18OSO4-H2O). ε18OSO4-H2O values of 5.6 ± 0.2‰ and 5.4 ± 0.1‰ were obtained for A. vinosum and C. tepidum, respectively. Temperature had no apparent effect on the ε18OSO4-H2O values. By combining all data from both cultures, an average ε18OSO4-H2O value of 5.6 ± 0.3‰ was obtained for SMAP. This value falls between those previously reported for bacterial oxidation of sphalerite and elemental sulfur (7-9‰) and abiotic and biotic oxidation of pyrite and chalcopyrite (2-4‰). Sulfur isotope fractionation between sulfide and sulfate formed by A.vinosum was negligible (0.1 ± 0.2‰) during all experiments. For C. tepidum an apparent fractionation of -2.3 ± 0.5‰ was observed during the earlier stages of oxidation based on bulk δ34S measurements of sulfate and sulfide and became smaller (-0.7

  9. Observed and calculated 1H and 13C chemical shifts induced by the in situ oxidation of model sulfides to sulfoxides and sulfones.

    Science.gov (United States)

    Dracínský, Martin; Pohl, Radek; Slavetínská, Lenka; Budesínský, Milos

    2010-09-01

    A series of model sulfides was oxidized in the NMR sample tube to sulfoxides and sulfones by the stepwise addition of meta-chloroperbenzoic acid in deuterochloroform. Various methods of quantum chemical calculations have been tested to reproduce the observed (1)H and (13)C chemical shifts of the starting sulfides and their oxidation products. It has been shown that the determination of the energy-minimized conformation is a very important condition for obtaining realistic data in the subsequent calculation of the NMR chemical shifts. The correlation between calculated and observed chemical shifts is very good for carbon atoms (even for the 'cheap' DFT B3LYP/6-31G* method) and somewhat less satisfactory for hydrogen atoms. The calculated chemical shifts induced by oxidation (the Delta delta values) agree even better with the experimental values and can also be used to determine the oxidation state of the sulfur atom (-S-, -SO-, -SO(2)-).

  10. Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats.

    Directory of Open Access Journals (Sweden)

    Gang Tan

    Full Text Available BACKGROUND: Hydrogen sulfide (H(2S displays vasodilative, anti-oxidative, anti-inflammatory and cytoprotective activities. Impaired production of H(2S contributes to the increased intrahepatic resistance in cirrhotic livers. The study aimed to investigate the roles of H(2S in carbon tetrachloride (CCl(4-induced hepatotoxicity, cirrhosis and portal hypertension. METHODS AND FINDINGS: Sodium hydrosulfide (NaHS, a donor of H(2S, and DL-propargylglycine (PAG, an irreversible inhibitor of cystathionine γ-lyase (CSE, were applied to the rats to investigate the effects of H(2S on CCl(4-induced acute hepatotoxicity, cirrhosis and portal hypertension by measuring serum levels of H(2S, hepatic H(2S producing activity and CSE expression, liver function, activity of cytochrome P450 (CYP 2E1, oxidative and inflammatory parameters, liver fibrosis and portal pressure. CCl(4 significantly reduced serum levels of H(2S, hepatic H(2S production and CSE expression. NaHS attenuated CCl(4-induced acute hepatotoxicity by supplementing exogenous H(2S, which displayed anti-oxidative activities and inhibited the CYP2E1 activity. NaHS protected liver function, attenuated liver fibrosis, inhibited inflammation, and reduced the portal pressure, evidenced by the alterations of serum alanine aminotransferase (ALT, aspartate aminotransferase (AST, hyaluronic acid (HA, albumin, tumor necrosis factor (TNF-α, interleukin (IL-1β, IL-6 and soluble intercellular adhesion molecule (ICAM-1, liver histology, hepatic hydroxyproline content and α-smooth muscle actin (SMA expression. PAG showed opposing effects to NaHS on most of the above parameters. CONCLUSIONS: Exogenous H(2S attenuates CCl(4-induced hepatotoxicity, liver cirrhosis and portal hypertension by its multiple functions including anti-oxidation, anti-inflammation, cytoprotection and anti-fibrosis, indicating that targeting H(2S may present a promising approach, particularly for its prophylactic effects, against liver

  11. Transition-Metal-Free Highly Efficient Aerobic Oxidation of Sulfides to Sulfoxides under Mild Conditions

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2009-12-01

    Full Text Available A highly efficient transition-metal-free catalytic system Br2/NaNO2/H2O has been developed for a robust and economic acid-free aerobic oxidation of sulfides. It is noteworthy that the sulfide function reacts under mild conditions without over-oxidation to sulfone. The role of NaNO2as an efficient NO equivalent for the activation of molecular oxygen was identified. Under the optimal conditions, a broad range of sulfide substrates were converted into their corresponding sulfoxides in high yields by molecular oxygen. The present catalytic system utilizes cheap and readily available agents as the catalysts, exhibits high selectivity for sulfoxide products and releases only innocuous water as the by-products.

  12. Oxidation of sulfides and rapid weathering in recent landslides

    Science.gov (United States)

    Emberson, Robert; Hovius, Niels; Galy, Albert; Marc, Odin

    2016-09-01

    Linking together the processes of rapid physical erosion and the resultant chemical dissolution of rock is a crucial step in building an overall deterministic understanding of weathering in mountain belts. Landslides, which are the most volumetrically important geomorphic process at these high rates of erosion, can generate extremely high rates of very localised weathering. To elucidate how this process works we have taken advantage of uniquely intense landsliding, resulting from Typhoon Morakot, in the T'aimali River and surrounds in southern Taiwan. Combining detailed analysis of landslide seepage chemistry with estimates of catchment-by-catchment landslide volumes, we demonstrate that in this setting the primary role of landslides is to introduce fresh, highly labile mineral phases into the surface weathering environment. There, rapid weathering is driven by the oxidation of pyrite and the resultant sulfuric-acid-driven dissolution of primarily carbonate rock. The total dissolved load correlates well with dissolved sulfate - the chief product of this style of weathering - in both landslides and streams draining the area (R2 = 0.841 and 0.929 respectively; p governed by the same weathering reactions. The predominance of coupled carbonate-sulfuric-acid-driven weathering is the key difference between these sites and previously studied landslides in New Zealand (Emberson et al., 2016), but in both settings increasing volumes of landslides drive greater overall solute concentrations in streams. Bedrock landslides, by excavating deep below saprolite-rock interfaces, create conditions for weathering in which all mineral phases in a lithology are initially unweathered within landslide deposits. As a result, the most labile phases dominate the weathering immediately after mobilisation and during a transient period of depletion. This mode of dissolution can strongly alter the overall output of solutes from catchments and their contribution to global chemical cycles if

  13. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon Sub [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Park, Moon Gyu [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Croiset, Eric, E-mail: ecroiset@uwaterloo.ca [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Chen, Zhongwei [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Nam, Sung Chan; Ryu, Ho-Jung [Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of)

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H{sub 2}S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H{sub 2}S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H{sub 2}S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H{sub 2} and CO{sub 2} on H{sub 2}S adsorption was also investigated. The presence of hydrogen in the H{sub 2}S stream had a positive effect on the removal of H{sub 2}S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn{sup 2+}) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO{sub 2}) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H{sub 2}S and CO{sub 2}.

  14. Effect of Additional Sulfide and Thiosulfate on Corrosion of Q235 Carbon Steel in Alkaline Solutions

    Directory of Open Access Journals (Sweden)

    Bian Li Quan

    2016-01-01

    Full Text Available This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM equipped with EDS, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2− and S2O32- are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2− and S2O32- is different for the corrosion of Q235 carbon steel.

  15. Electrochemical properties of tungsten sulfide-carbon composite microspheres prepared by spray pyrolysis.

    Science.gov (United States)

    Choi, Seung Ho; Boo, Sung Jin; Lee, Jong-Heun; Kang, Yun Chan

    2014-01-01

    Tungsten sulfide (WS2)-carbon composite powders with superior electrochemical properties are prepared by a two-step process. WO3-carbon composite powders were first prepared by conventional spray pyrolysis, and they were then sulfidated to form WS2-carbon powders. Bare WS2 powders are also prepared by sulfidation of bare WO3 powders obtained by spray pyrolysis. Stacked graphitic layers could not be found in the bare WS2 and WS2-carbon composite powders. The amorphous bare WS2 and WS2-carbon composite powders have Brunauer-Emmett-Teller (BET) surface areas of 2.8 and 4 m(2) g(-1), respectively. The initial discharge and charge capacities of the WS2-carbon composite powders at a current density of 100 mA g(-1) are 1055 and 714 mA h g(-1), respectively, and the corresponding initial Coulombic efficiency is 68%. On the other hand, the initial discharge and charge capacities of the bare WS2 powders are 514 and 346 mA h g(-1), respectively. The discharge capacities of the WS2-carbon composite powders for the 2(nd) and 50(th) cycles are 716 and 555 mA h g(-1), respectively, and the corresponding capacity retention measured after first cycle is 78%.

  16. Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell

    DEFF Research Database (Denmark)

    Zong, Xu; Chen, Hongjun; Seger, Brian;

    2014-01-01

    A solar-to-chemical conversion process is demonstrated using a photoelectrochemical cell without external bias for selective oxidation of hydrogen sulfide (H2S) to produce hydrogen peroxide (H2O2) and sulfur (S). The process integrates two redox couples anthraquinone/anthrahydroquinone and I−/I3...

  17. Selenium sorption and isotope fractionation: Iron(III) oxides versus iron(II) sulfides

    NARCIS (Netherlands)

    Mitchell, K.; Couture, R.-M.; Johnson, T.M.; Mason, P.R.D.; Van Cappellen, P.

    2013-01-01

    Sorption and reduction are important processes influencing the environmental mobility and cycling of Se. In this study, we determined the rates of reaction and isotopic fractionations of Se(IV) and Se(VI) during sorption to iron oxides (2-line ferrihydrite, hematite and goethite) and iron sulfides (

  18. Effect of copper dosing on sulfide inhibited reduction of nitric and nitrous oxide

    NARCIS (Netherlands)

    Manconi, I.; Maas, van der P.M.F.; Lens, P.N.L.

    2006-01-01

    The stimulating effect of copper addition on the reduction rate of nitrous oxide (N2O) to dinitrogen (N2) in the presence of sulfide was investigated in batch experiments (pH 7.0; 55 °C). N2O was dosed either directly as a gas to the headspace of the bottles or formed as intermediate during the deni

  19. Is carbonyl sulfide a precursor for carbon disulfide in vegetation and soil? Interconversion of carbonyl sulfide and carbon disulfide in fresh grain tissues in vitro.

    Science.gov (United States)

    Ren, Y

    1999-05-01

    The interconversion of carbonyl sulfide (COS) and carbon disulfide (CS(2)) was studied in the roots and shoots of barley and chickpeas. Ratios of conversion gases, K, 40 h after the addition of COS or CS(2) are recorded. The proportion of COS converted to each of CS(2), CO, and H(2)S and the proportion of CS(2) converted to COS were greater in roots than in shoots. More COS was converted to CS(2) than CS(2) to COS in roots and shoots of barley and chickpeas. The amount of COS converted to H(2)S and CO was 8 times the amount converted to CS(2) in barley and 3-4 times the amount in chickpeas. Carbonyl sulfide may be a precursor for CS(2) in vegetation and soil, just as the reverse is true in the atmosphere. These two different results might form a cycle of COS and CS(2).

  20. Photocatalytic oxidation of diethyl sulfide vapor over TiO2-based composite photocatalysts.

    Science.gov (United States)

    Selishchev, Dmitry; Kozlov, Denis

    2014-12-19

    Composite TiO2/activated carbon (TiO2/AC) and TiO2/SiO2 photocatalysts with TiO2 contents in the 10 to 80 wt. % range were synthesized by the TiOSO4 thermal hydrolysis method and characterized by AES, BET, X-ray diffraction and FT-IR ATR methods. All TiO2 samples were in the anatase form, with a primary crystallite size of about 11 nm. The photocatalytic activities of the TiO2/AC and TiO2/SiO2 samples were tested in the gas-phase photocatalytic oxidation (PCO) reaction of diethyl sulfide (DES) vapor in a static reactor by the FT-IR in situ method. Acetaldehyde, formic acid, ethylene and SO2 were registered as the intermediate products which finally were completely oxidized to the final oxidation products - H2O, CO2, CO and SO42- ions. The influence of the support on the kinetics of DES PCO and on the TiO2/AC and TiO2/SiO2 samples' stability during three long-term DES PCO cycles was investigated. The highest PCO rate was observed for TiO2/SiO2 photocatalysts. To evaluate the activity of photocatalysts the turnover frequency values (TOF) were calculated for three photocatalysts (TiO2, TiO2/AC and TiO2/SiO2) for the same amount of mineralized DES. It was demonstrated that the TOF value for composite TiO2/SiO2 photocatalysts was 3.5 times higher than for pure TiO2.

  1. Photocatalytic Oxidation of Diethyl Sulfide Vapor over TiO2-Based Composite Photocatalysts

    Directory of Open Access Journals (Sweden)

    Dmitry Selishchev

    2014-12-01

    Full Text Available Composite TiO2/activated carbon (TiO2/AC and TiO2/SiO2 photocatalysts with TiO2 contents in the 10 to 80 wt. % range were synthesized by the TiOSO4 thermal hydrolysis method and characterized by AES, BET, X-ray diffraction and FT-IR ATR methods. All TiO2 samples were in the anatase form, with a primary crystallite size of about 11 nm. The photocatalytic activities of the TiO2/AC and TiO2/SiO2 samples were tested in the gas-phase photocatalytic oxidation (PCO reaction of diethyl sulfide (DES vapor in a static reactor by the FT-IR in situ method. Acetaldehyde, formic acid, ethylene and SO2 were registered as the intermediate products which finally were completely oxidized to the final oxidation products – H2O, CO2, CO and SO42− ions. The influence of the support on the kinetics of DES PCO and on the TiO2/AC and TiO2/SiO2 samples’ stability during three long-term DES PCO cycles was investigated. The highest PCO rate was observed for TiO2/SiO2 photocatalysts. To evaluate the activity of photocatalysts the turnover frequency values (TOF were calculated for three photocatalysts (TiO2, TiO2/AC and TiO2/SiO2 for the same amount of mineralized DES. It was demonstrated that the TOF value for composite TiO2/SiO2 photocatalysts was 3.5 times higher than for pure TiO2.

  2. Aerobic addition of secondary phosphine oxides to vinyl sulfides: a shortcut to 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides.

    Science.gov (United States)

    Malysheva, Svetlana F; Artem'ev, Alexander V; Gusarova, Nina K; Belogorlova, Nataliya A; Albanov, Alexander I; Liu, C W; Trofimov, Boris A

    2015-01-01

    Secondary phosphine oxides react with vinyl sulfides (both alkyl- and aryl-substituted sulfides) under aerobic and solvent-free conditions (80 °C, air, 7-30 h) to afford 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides in 70-93% yields.

  3. Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride

    OpenAIRE

    2012-01-01

    A variety of phosphine oxides and sulfides can be efficiently converted directly to the corresponding phosphine boranes using oxalyl chloride followed by sodium borohydride. Optically active P-stereogenic phosphine oxides can be converted stereospecifically to phosphine boranes with inversion of configuration by treatment with Meerwein's salt followed by sodium borohydride.

  4. Pyrolytically grown indium sulfide sensitized zinc oxide nanowires for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Komurcu, Pelin; Can, Emre Kaan; Aydin, Erkan; Semiz, Levent [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Gurol, Alp Eren; Alkan, Fatma Merve [Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Sankir, Mehmet; Sankir, Nurdan Demirci [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey)

    2015-11-15

    Zinc oxide (ZnO) nanowires, sensitized with spray pyrolyzed indium sulfide, were obtained by chemical bath deposition. The XRD analysis indicated dominant evolution of hexagonal ZnO phase. Significant gain in photoelectrochemical current using ZnO nanowires is largely accountable to enhancement of the visible light absorption and the formation of heterostructure. The maximum photoconversion efficiency of 2.77% was calculated for the indium sulfide sensitized ZnO nanowire photoelectrodes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Effect of pre-oxidation on high temperature sulfidation behavior of FeCr and FeCrAl alloys

    Directory of Open Access Journals (Sweden)

    Pillis Marina Fuser

    2004-01-01

    Full Text Available High temperature corrosion of structural alloys in sulfur bearing environments is many orders of magnitude higher than in oxidizing environments. Efforts to increase sulfidation resistance of these alloys include addition of alloying elements. Aluminum additions to iron-chromium alloys bring about increase in sulfidation resistance. This paper reports the effect of pre-oxidation on the sulfidation behavior of Fe-20Cr and Fe-20Cr-5Al alloys in H2-2% H2S environment at 800 °C. The surfaces of sulfidized specimens were also examined. Pre-oxidation of the two alloys results in an incubation period during subsequent sulfidation. After this incubation period, the Fe-20Cr alloy showed sulfidation behavior similar to that when the alloy was not pre-oxidized. The incubation period during sulfidation of the Fe-20Cr-5Al alloy was significantly longer, over 45 h, compared to 2 h for the Al free alloy. Based on the microscopic and gravimetric data a mechanism for sulfidation of these alloys with pre-oxidation has been proposed.

  6. Alteration of Mantle Sulfides: the Effects of Oxidation and Melt Infiltration in a Kilbourne Hole Harzburgite Xenolith

    Science.gov (United States)

    Barrett, T. J.; Harvey, J.; Warren, J. M.; Klein, F.; Walshaw, R.

    2013-12-01

    Sulfides, while commonly present in volumetrically minor amounts (account for up to 22 weight % of the sulfide. Critically, no fresh, unaltered sulfides were recovered and in all of the sulfides there is evidence for at least two secondary processes. EDS mapping of the sulfides reveals pervasive, but incomplete, oxidation in all of the grains; Raman spectroscopy reveals this oxide to be goethite. In addition, there is also evidence for the interaction of many of the sulfides with a volatile-rich silicate melt. Silicate melt veins cross-cut the original sulfide mineralogy in some areas of the sulfide grain, while leaving other areas virtually untouched. The degree of oxidation and sulfide-melt interaction varies from slight to almost complete alteration amongst the 24 sulfide grains. Remarkably, in some grains, the melt infiltration, which could be due either to metasomatism before the xenolith was entrained or occurred during transport to the surface, appears to cross-cut some of the oxidation features, i.e. at least some of the oxidation features appear to pre-date the melt-rock interaction. This makes it difficult to attribute all of the oxidation to supergene weathering and suggests that some of the oxidation occurred before melt-rock interaction and must therefore have occurred within the sub-continental lithospheric mantle. [1] Luguet et al. (2001) Earth Planet. Sci. Lett. 189, 285-294. [2] Burton et al. (1999) Earth Planet. Sci. Lett. 172, 311-322. [3] Harvey et al. (2011) Geochim. Cosmochim. Acta 75, 5574-5596. [4] Alard et al. (2011) J. Petrol. 52, 2009-2045. [5] Lorand et al. (2003) 67, 4137-4151. [6] Handler & Bennett (1999) Geology 27, 75-78.

  7. Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide

    Directory of Open Access Journals (Sweden)

    Jack N. Blandy

    2015-04-01

    Full Text Available Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides.

  8. THE SULFIDATION/OXIDATION RESISTANCE OF TWO Ni-Cr-Al-Y ALLOYS AT 700℃

    Institute of Scientific and Technical Information of China (English)

    Y.X.Lu; W.X.Chen; R.Eadie

    2004-01-01

    The high temperature corrosion resistance of Ni-25.gCr-13.5Al-1.2Y-0.6Si and Ni-10.2Co-12.4 Cr-16.0A l-0.5 Y-0.2Hf alloys was assessed in sulfidation/oxidation environments.In the environment with a sulfur partial pressure of 1Pa.and an oxygen partial pressure of 10-19Pa,both these alloys exhibited three distinct stages in the weight gain-time curve when tested at 700℃.In the initial stage,selective sulfidation of Cr suppressed the formation of the other metal sulfides,resulting in lower weight gains.In the transient stage,breakdown and cracking of Cr sulfides and insufficient concentration of Cr at the outer zone led to the rapid formation of Ni sulfides and a rapid increase in weight.In the steady-state stage,corrosion was controlled by the diffusion of anions and/or cations,which led to a parabolic rate law.

  9. Thermodynamics of Modifying Effect of Rare Earth Oxide on Inclusions in Hardfacing Metal of Medium—High Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    杨庆祥; 赵研辉; 等

    2002-01-01

    The modifying effect of rare earth(RE)oxide on inclusions in hardfacing metals of medium-high carbon steel was investigated by means of thermodynamics,The thermodynamic analsys for inclusion formation shows that RE oxide can be reduced to RE element by carbon,then the RE element can react with oxygen and sulfur to form the RE oxide,RE sulfide and RE oxide-sulfide in hardfacing molten pool.The deoxidization and the desulphurization can be carried otu and the liquid metal can be purified.In addition,RE oxide can also react with sulfur to form RE oxide-sulfide dirdctly.Therefore,the harmful effect of sulfur can be decreased.

  10. Ionic liquid-modified metal sulfides/graphene oxide nanocomposites for photoelectric conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Zhang, Yù; Pei, Qi; Feng, Ting; Mao, Hui; Zhang, Wei; Wu, Shuyao; Liu, Daliang; Wang, Hongyu; Song, Xi-Ming, E-mail: songlab@lnu.edu.cn

    2015-08-15

    Graphical abstract: - Highlights: • Metal sulfide (CdS, ZnS, Ag{sub 2}S)/GO nanocomposites were prepared by electrostatic adherence. • Ionic liquid was used to link the metal sulfide and GO in the electrostatic adherence process. • The as-prepared samples showed enhanced photocurrent and highly efficient photocatalytic activity under visible light irradiation. - Abstract: Ionic liquid-modified metal sulfides/graphene oxide nanocomposites are prepared via a facile electrostatic adsorption. Ionic liquid (IL) is firstly used as surface modifier and structure-directing agent of metal sulfide (MS) crystallization process, obtaining ionic liquid modified-MS (IL-MS) nanoparticles with positive charges on surface. IL-MS/GO is obtained by electrostatic adherence between positively charged IL-MS and negatively charged graphene oxide (GO). The as-prepared sample shows enhanced photocurrent and highly efficient photocatalytic activity under visible light irradiation, indicating IL-MS/GO nanocomposites greatly promoted the separation of photogenerated electron–hole pairs.

  11. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments

    DEFF Research Database (Denmark)

    Schippers, A.; Jørgensen, BB

    2002-01-01

    Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments, They may be buried in the sediment or oxidized by O-2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3......-, Fe(III) oxides, or MnO2 are available as potential electron acceptors. In chemical experiments, FeS2 and FeS were oxidized by MnO2 but not with NO3- or amorphous Fe(III) oxide (Schippers and Jørgensen, 2001). Here we also show that in experiments with anoxic sediment slurries, a dissolution of tracer......-marked (FeS2)-Fe-55 occurred with MnO2 but not with NO3- or amorphous Fe(III) oxide as electron acceptor. To study a thermodynamically possible anaerobic microbial FeS, and FeS oxidation with NO3- or amorphous Fe(III) oxide as electron acceptor, more than 300 assays were inoculated with material from several...

  12. Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide

    Science.gov (United States)

    Berkelhammer, M.; Asaf, D.; Still, C.; Montzka, S.; Noone, D.; Gupta, M.; Provencal, R.; Chen, H.; Yakir, D.

    2014-02-01

    Understanding the processes that control the terrestrial exchange of carbon is critical for assessing atmospheric CO2 budgets. Carbonyl sulfide (COS) is taken up by vegetation during photosynthesis following a pathway that mirrors CO2 but has a small or nonexistent emission component, providing a possible tracer for gross primary production. Field measurements of COS and CO2 mixing ratios were made in forest, senescent grassland, and riparian ecosystems using a laser absorption spectrometer installed in a mobile trailer. Measurements of leaf fluxes with a branch-bag gas-exchange system were made across species from 10 genera of trees, and soil fluxes were measured with a flow-through chamber. These data show (1) the existence of a narrow normalized daytime uptake ratio of COS to CO2 across vascular plant species of 1.7, providing critical information for the application of COS to estimate photosynthetic CO2 fluxes and (2) a temperature-dependent normalized uptake ratio of COS to CO2 from soils. Significant nighttime uptake of COS was observed in broad-leafed species and revealed active stomatal opening prior to sunrise. Continuous high-resolution joint measurements of COS and CO2 concentrations in the boundary layer are used here alongside the flux measurements to partition the influence that leaf and soil fluxes and entrainment of air from above have on the surface carbon budget. The results provide a number of critical constraints on the processes that control surface COS exchange, which can be used to diagnose the robustness of global models that are beginning to use COS to constrain terrestrial carbon exchange.

  13. High-temperature oxidation/sulfidation resistance of iron-aluminide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; Wright, I.G.; Goodwin, G.M.; Howell, M.

    1996-04-01

    Iron aluminides containing > 20-25 at. % Al have oxidation and sulfidation resistance at temperatures well above those at which these alloys have adequate mechanical strength. Accordingly, these alloys may find application as coatings or claddings on more conventional higher-strength materials which are generally less corrosion-resistant at high temperatures. To this end, iron-aluminide coatings were prepared by gas tungsten arc and gas metal arc weld-overlay techniques. Specimens were cut from weld deposits and exposed to a highly aggressive oxidizing-sulfidizing (H2S-H2-H2O-Ar) environment at 800 C. All the weld overlayers showed good corrosion behavior under isothermal conditions, including a gas metal arc-produced deposit with only 21 at. % Al. Rapid degradation in corrosion resistance was observed under thermal cycling conditions when the initally grown scales spalled and the rate of reaction was then not controlled by formation of slowly growing Al oxide. Higher starting Al concentrations (> {approximately} 25 at. %) are needed to assure overall oxidation-sulfidation resistance of the weld overlays, but hydrogen cracking susceptibility must be minimized in order to physically separate the corrosive species from the reactive substrate material.

  14. Sulfide oxidation and nitrate reduction for potential mitigation of H2S in landfills.

    Science.gov (United States)

    Fang, Yuan; Du, Yao; Feng, Huan; Hu, Li-Fang; Shen, Dong-Sheng; Long, Yu-Yang

    2015-04-01

    Because H2S emitted by landfill sites has seriously endangered human health, its removal is urgent. H2S removal by use of an autotrophic denitrification landfill biocover has been reported. In this process, nitrate-reducing and sulfide-oxidizing bacteria use a reduced sulfur source as electron donor when reducing nitrate to nitrogen gas and oxidizing sulfur compounds to sulfate. The research presented here was performed to investigate the possibility of endogenous mitigation of H2S by autotrophic denitrification of landfill waste. The sulfide oxidation bioprocess accompanied by nitrate reduction was observed in batch tests inoculated with mineralized refuse from a landfill site. Repeated supply of nitrate resulted in rapid oxidation of the sulfide, indicating that, to a substantial extent, the bioprocess may be driven by functional microbes. This bioprocess can be realized under conditions suitable for the autotrophic metabolic process, because the process occurred without addition of acetate. H2S emissions from landfill sites would be substantially reduced if this bioprocess was introduced.

  15. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    Science.gov (United States)

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  16. Hydrogen Sulfide Induced Carbon Dioxide Activation by Metal-Free Dual Catalysis.

    Science.gov (United States)

    Kumar, Manoj; Francisco, Joseph S

    2016-03-18

    The role of metal free dual catalysis in the hydrogen sulfide (H2S)-induced activation of carbon dioxide (CO2) and subsequent decomposition of resulting monothiolcarbonic acid in the gas phase has been explored. The results suggest that substituted amines and monocarboxylic type organic or inorganic acids via dual activation mechanisms promote both activation and decomposition reactions, implying that the judicious selection of a dual catalyst is crucial to the efficient C-S bond formation via CO2 activation. Considering that our results also suggest a new mechanism for the formation of carbonyl sulfide from CO2 and H2S, these new insights may help in better understanding the coupling between the carbon and sulfur cycles in the atmospheres of Earth and Venus.

  17. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides

    Science.gov (United States)

    Hébert, S.; Berthebaud, D.; Daou, R.; Bréard, Y.; Pelloquin, D.; Guilmeau, E.; Gascoin, F.; Lebedev, O.; Maignan, A.

    2016-01-01

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of ‘rattlers’…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites).

  18. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides.

    Science.gov (United States)

    Hébert, S; Berthebaud, D; Daou, R; Bréard, Y; Pelloquin, D; Guilmeau, E; Gascoin, F; Lebedev, O; Maignan, A

    2016-01-13

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of 'rattlers'…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites).

  19. Decomposition kinetic study of nanostructured composites of poly (phenylene sulfide) reinforced with carbon nanotubes

    OpenAIRE

    Bruno Ribeiro; Edson C. Botelho; Michelle L. Costa

    2014-01-01

    The aim of this work is to obtain nanostructured composites of poly (phenylene sulfide), PPS, reinforced with multiwalled carbon nanotubes, MWCNT, by melt mixing technique and further characterization of their morphological and thermal properties. Transmission Electron Microscopy analysis was carried out to evaluate the quality of MWCNT dispersion throughout the PPS matrix. Thermogravimetry shows an increase in the maximum degradation temperature by the addition of the nanofiller to the polym...

  20. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    OpenAIRE

    M. E. Whelan; Hilton, T. W.; Berry, J. A.; M. Berkelhammer; A. R. Desai; Campbell, J. E.

    2015-01-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil-COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been ...

  1. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    OpenAIRE

    Whelan, Mary E.; Hilton, Timothy W; Berry, Joseph A; Berkelhammer, Max; Desai, Ankur R; Campbell, J. Elliott

    2016-01-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil–COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show smal...

  2. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  3. Controlling sulfidic tailings oxidation with surface application of crude glycerol : column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Behrooz, M.; Borden, R.C. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Civil, Construction and Environmental Engineering

    2010-07-01

    In this study, crude glycerol was used to control acid mine drainage (AMD) production in sulfidic tailings samples obtained from the Ore Knob tailings pile in Ash County, North Carolina (NC). AMD is produced when mining activities expose sulfidic materials to a moist, oxidative environment. The tailings release high sulfate heavy metal-laden effluents into the New River basin. Four experimental columns were installed in the field for a 15-month period. The glycerol was applied to the surface of unweathered sulfidic tailings. The columns were left exposed to the atmosphere at the surface and buried within the existing tailings pile to simulate naturally occurring variations in temperature and rainfall. Platinum redox electrodes and porous cup lysimeters were installed to monitor redox and geochemical conditions within the unsaturated tailings. Water samples were collected throughout the experimental period and monitored for dissolved oxygen (DO), hydrogen sulfide (H{sub 2}S), and pH. Major cations and metals were analyzed using inductively coupled plasma spectroscopy. Results of the pilot tests demonstrated that the glycerol additions resulted in large and statistically significant decreases in Fe, sulfate (SO{sub 4}), and hot acidity. Changes in sodium (Na) and potassium (K) were limited. The glycerol additions reduced the rate of AMD production and treated the AMD after it was formed through H{sub 2}S production. Results of the study will be used to create a geochemical model for characterizing AMD production in the vadose zone of the tailing pile. 10 refs., 1 tab., 2 figs.

  4. Combining electrospinning and sputtering to improve rechargeable lithium battery cathodes: coating carbon fibre felt with nickel sulfide

    Science.gov (United States)

    Lee, Dong Kyu; Ryu, Ho Suk; Ahn, Chi Won; Jeon, Hwan-Jin

    2016-11-01

    Various nickel sulfide nanostructures have been developed for the fabrication of high surface area electrodes for rechargeable lithium batteries. In this study, we fabricated a nickel sulfide covered carbon fibre felt with high uniformity, high density, and large area for cathode materials for use in rechargeable lithium batteries, by using a combined electrospinning and sputtering deposition technique. In particular, the nickel sulfide/carbon fibre felt is a multi-functional material that can act as a conducting electrode itself without the use of binders and conductive materials owing to the high conductivity of the interlinked carbon fibre structures. A Li/nickel sulfide cell with current density of 100 mA g-1 exhibits good cycle performance and high first discharge capacity (970.46 mAh g-1) and good coulombic efficiency of 99% at 20 cycles. This electrode has good structural and electrochemical properties and has a potential to be commercialized when the properties are matured.

  5. Hydrogen sulfide in signaling pathways.

    Science.gov (United States)

    Olas, Beata

    2015-01-15

    For a long time hydrogen sulfide (H₂S) was considered a toxic compound, but recently H₂S (at low concentrations) has been found to play an important function in physiological processes. Hydrogen sulfide, like other well-known compounds - nitric oxide (NO) and carbon monoxide (CO) is a gaseous intracellular signal transducer. It regulates the cell cycle, apoptosis and the oxidative stress. Moreover, its functions include neuromodulation, regulation of cardiovascular system and inflammation. In this review, I focus on the metabolism of hydrogen sulfide (including enzymatic pathways of H₂S synthesis from l- and d-cysteine) and its signaling pathways in the cardiovascular system and the nervous system. I also describe how hydrogen sulfide may be used as therapeutic agent, i.e. in the cardiovascular diseases.

  6. Kinetics of the dissolution of zinc sulfide in an oxidizing slag

    Science.gov (United States)

    Gupta, Suresh K.

    1990-10-01

    A new concept has been developed for the production of zinc from zinc and complex zinc concentrates. It is a two-stage process involving oxidation of zinc sulfide to oxide and dissolution into slag and the fuming of zinc from the slag by injecting carbonaceous materials into it to produce zinc vapors which can be subsequently condensed in a lead-splash condenser such as those used in the Imperial Smelting Process (ISP). In this paper, the effects of the quantity of air, temperature, and concentrate feed rate have been discussed on the production of zinc-rich slag, which is the first stage of the proposed process.

  7. Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters.

    Science.gov (United States)

    Mora, Mabel; Fernández, Maikel; Gómez, José Manuel; Cantero, Domingo; Lafuente, Javier; Gamisans, Xavier; Gabriel, David

    2015-01-01

    Monitoring the biological activity in biotrickling filters is difficult since it implies estimating biomass concentration and its growth yield, which can hardly be measured in immobilized biomass systems. In this study, the characterization of a sulfide-oxidizing nitrate-reducing biomass obtained from an anoxic biotrickling filter was performed through the application of respirometric and titrimetric techniques. Previously, the biomass was maintained in a continuous stirred tank reactor under steady-state conditions resulting in a growth yield of 0.328 ± 0.045 g VSS/g S. To properly assess biological activity in respirometric tests, abiotic assays were conducted to characterize the stripping of CO2 and sulfide. The global mass transfer coefficient for both processes was estimated. Subsequently, different respirometric tests were performed: (1) to solve the stoichiometry related to the autotrophic denitrification of sulfide using either nitrate or nitrite as electron acceptors, (2) to evaluate the inhibition caused by nitrite and sulfide on sulfide oxidation, and (3) to propose, calibrate, and validate a kinetic model considering both electron acceptors in the overall anoxic biodesulfurization process. The kinetic model considered a Haldane-type equation to describe sulfide and nitrite inhibitions, a non-competitive inhibition to reflect the effect of sulfide on the elemental sulfur oxidation besides single-step denitrification since no nitrite was produced during the biological assays.

  8. Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments

    DEFF Research Database (Denmark)

    Schippers, A.; Jørgensen, BB

    2001-01-01

    in the sediment. FeS2 and iron sulfide (FeS) were oxidized chemically at pH 8 by MnO2 but not by nitrate or amorphic Fe(III) oxide. Elemental sulfur and sulfate were the only products of FeS oxidation, whereas FeS2 was oxidized to a variety of sulfur compounds, mainly sulfate plus intermediates......, 1999). The processes are summarized by the overall equations: FeS2 + 7.5 MnO2 + 11 H+ --> Fe(OH)(3) + 2 SO42- + 7.5 Mn2+ + 4 H2O (1) FeS + 1.5 MnO2 + 3 H+ --> Fe(OH)(3) + S-o + 1.5 Mn2+ (2) For FeS2 oxidation the reaction rates related to the mineral surface area were 1.02 and 1.12 nmol m(-2) s(-1...... in the presence of MnO2. At the iron sulfide surface, Fe(III) is reduced to Fe(II) which is reoxidized to Fe(III) by MnO2. Thus, an Fe(II)/Fe(III) shuttle should transport electrons between the surfaces of the two solid compounds. Copyright (C) 2001 Elsevier Science Ltd....

  9. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    Science.gov (United States)

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-08-24

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation.

  10. Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms

    Directory of Open Access Journals (Sweden)

    Vacek TP

    2015-02-01

    Full Text Available Thomas P Vacek, Shahnaz Rehman, Diana Neamtu, Shipeng Yu, Srikanth Givimani, Suresh C Tyagi Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA Abstract: Atherosclerosis is an inflammatory process that involves activation of matrix metalloproteinases (MMPs; MMPs degrade collagen and allow for smooth-muscle cell migration within a vessel. Moreover, this begets an accumulation of other cellular material, resulting in occlusion of the vessel and ischemic events to tissues in need of nutrients. Homocysteine has been shown to activate MMPs via an increase in oxidative stress and acting as a signaling molecule on receptors like the peroxisome proliferator activated receptor- and N-methyl-d-aspartate receptor. Nitric oxide has been shown to be beneficial in some cases of deactivating MMPs. However, in other cases, it has been shown to be harmful. Further studies are warranted on the scenarios that are beneficial versus destructive. Hydrogen sulfide (H2S has been shown to decrease MMP activities in all cases in the literature by acting as an antioxidant and vasodilator. Various MMP-knockout and gene-silencing models have been used to determine the function of the many different MMPs. This has allowed us to discern the role that each MMP has in promoting or alleviating pathological conditions. Furthermore, there has been some study into the MMP polymorphisms that exist in the population. The purpose of this review is to examine the role of MMPs and their polymorphisms on the development of atherosclerosis, with emphasis placed on pathways that involve nitric oxide, hydrogen sulfide, and homocysteine. Keywords: homocysteine, matrix metalloproteinases, oxidative stress, bone remodeling, collagen cross-linking, hydrogen sulfide, nitric oxide

  11. Zinc Oxide Hydrogen Sulfide Removal Catalyst/ Preparation, Activity Test and Kinetic Study

    Directory of Open Access Journals (Sweden)

    Ameel. M. Rahman

    2008-01-01

    Full Text Available Hydrogen sulfide removal catalyst was prepared chemically by precipitation of zinc bicarbonate at a controlled pH. The physical and chemical catalyst characterization properties were investigated. The catalyst was tested for its activity in adsorption of H2S using a plant that generates the H2S from naphtha hydrodesulphurization and a unit for the adsorption of H2S. The results comparison between the prepared and commercial catalysts revealed that the chemical method can be used to prepare the catalyst with a very good activity.It has observed that the hydrogen sulfide removal over zinc oxide catalyst follows first order reaction kinetics with activation energy of 19.26 kJ/mole and enthalpy and entropy of activation of 14.49 kJ/mole and -220.41 J/mole respectively.

  12. Use of sulfur-oxidizing bacteria as recognition elements in hydrogen sulfide biosensing system.

    Science.gov (United States)

    Janfada, Behdokht; Yazdian, Fatemeh; Amoabediny, Ghassem; Rahaie, Mahdi

    2015-01-01

    Four sulfur-oxidizing bacteria (Thiobacillus thioparus, Acidithiobacillus thiooxidans PTCC1717, Acidithiobacillus ferrooxidans PTCC1646, and Acidithiobacillus ferrooxidans PTCC1647) were used as biorecognition elements in a hydrogen sulfide biosensing system. All the experiments were performed in 0.1 M phosphate buffer solution containing 1-20 ppm H2S with optimum pH and temperature for each species. Although H2 S was applied to the biosensing system, the dissolved O2 content decreased. Dissolved O2 consumed by cells in both free and immobilized forms was measured using a dissolved oxygen sensor. Free bacterial cells exhibit fast response (thiooxidans retained more than 50% of activity after 30 days of immobilization. According to the data, A. thiooxidans and A. ferrooxidans are appropriate species for hydrogen sulfide biosensor.

  13. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    Science.gov (United States)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  14. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation.

    Science.gov (United States)

    Nason, Peter; Johnson, Raymond H; Neuschütz, Clara; Alakangas, Lena; Öhlander, Björn

    2014-02-28

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.

  15. Selective catalytic reduction of sulfur dioxide by carbon monoxide over iron oxide supported on activated carbon

    OpenAIRE

    2014-01-01

    The selective reduction of sulfur dioxide with carbon monoxide to elemental sulfur was studied over AC-supported transition-metal oxide catalysts. According to the study, Fe2O3/AC was the most active catalyst among the 4 AC-supported catalysts tested. By using Fe2O3/AC, the best catalyst, when the feed conditions were properly optimized (CO/SO2 molar ratio = 2:1; sulfidation temperature, 400 °C; Fe content, 20 wt%; GHSV = 7000 mL g-1 h-1), 95.43% sulfur dioxide conversion and 86.59% sulfur yi...

  16. Highly Efficient Biomimetic Oxidation of Sulfide to Sulfone by Hydrogen Peroxide in the Presence of Manganese meso-Tetraphenylporphyrin

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Xian-Tai; JI,Hong-Bing; YUAN,Qiu-Lan; XU,Jian-Chang; PEI,Li-Xia; WANG,Le-Fu

    2008-01-01

    Low amount of manganese meso-tetraphenyl porphyrin [Mn(TPP)] was used for highly efficient selective oxidation of sulfide to sulfone by hydrogen peroxide at room temperature.Sulfones were produced directly with yields generally around 90% while the catalyst concentration was only 4 ×10-5 mol·L-1.In a large-scale experiment of thioanisole oxidation,the isolated yield of sulfone (87%) was obtained and the turnover number (TON) reached up to 8×106,which is the highest TON for the oxidation systems of sulfide to sulfone catalyzed by metalloporphyrins.

  17. Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Micheal Roberts; Robert Zabransky; Shain Doong; Jerry Lin

    2008-05-31

    The objective of the project was to develop a novel complementary membrane reactor process that can consolidate two or more downstream unit operations of a coal gasification system into a single module for production of a pure stream of hydrogen and a pure stream of carbon dioxide. The overall goals were to achieve higher hydrogen production efficiencies, lower capital costs and a smaller overall footprint than what could be achieved by utilizing separate components for each required unit process/operation in conventional coal-to-hydrogen systems. Specifically, this project was to develop a novel membrane reactor process that combines hydrogen sulfide removal, hydrogen separation, carbon dioxide separation and water-gas shift reaction into a single membrane configuration. The carbon monoxide conversion of the water-gas-shift reaction from the coal-derived syngas stream is enhanced by the complementary use of two membranes within a single reactor to separate hydrogen and carbon dioxide. Consequently, hydrogen production efficiency is increased. The single membrane reactor configuration produces a pure H{sub 2} product and a pure CO{sub 2} permeate stream that is ready for sequestration. This project focused on developing a new class of CO{sub 2}-selective membranes for this new process concept. Several approaches to make CO{sub 2}-selective membranes for high-temperature applications have been tested. Membrane disks using the technique of powder pressing and high temperature sintering were successfully fabricated. The powders were either metal oxide or metal carbonate materials. Experiments on CO{sub 2} permeation testing were also performed in the temperature range of 790 to 940 C for the metal carbonate membrane disks. However, no CO{sub 2} permeation rate could be measured, probably due to very slow CO{sub 2} diffusion in the solid state carbonates. To improve the permeation of CO{sub 2}, one approach is to make membranes containing liquid or molten carbonates

  18. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.

    Science.gov (United States)

    Hiller, Edgar; Petrák, Marián; Tóth, Roman; Lalinská-Voleková, Bronislava; Jurkovič, L'ubomír; Kučerová, Gabriela; Radková, Anežka; Sottník, Peter; Vozár, Jaroslav

    2013-11-01

    mineral assemblage and their occurrence follows the order: chalcopyrite > pyrite > tetrahedrite>arsenopyrite. The mineralogical composition of the tailings corresponds well to the primary mineralization mined. The neutralization capacity of the tailings is high, as confirmed by the values of neutralization potential to acid generation potential ratio, ranging from 6.7 to 63.9, and neutral to slightly alkaline pH of the tailings (paste pH 7.16-8.12) and the waters (pH 7.00-8.52). This is explained by abundant occurrence of carbonate minerals in the tailings, which readily neutralize the acidity generated by sulfide oxidation. The total solid-phase concentrations of metal(loid)s decrease as Cu>Sb>Hg>As and reflect the proportions of sulfides present in the tailings. Sulfide oxidation generally extends to a depth of 2 m. μ-XRD and EMPA were used to study secondary products developed on the surface of sulfide minerals and within the tailings. The main secondary minerals identified are goethite and X-ray amorphous Fe oxyhydroxides and their occurrence decreases with increasing tailings depth. Secondary Fe phases are found as mineral coatings or individual grains and retain relatively high amounts of metal(loid)s (up to 57.6 wt% Cu, 1.60 wt% Hg, 23.8 wt% As, and 2.37 wt% Sb). Based on batch leaching tests and lysimeter results, the mobility of potentially toxic elements in the tailings is low. The limited mobility of metals and metalloids is due to their retention by Fe oxyhydroxides and low solubilities of metal(loid)-bearing sulfides. The observations are consistent with PHREEQC calculations, which predict the precipitation of Fe oxyhydroxides as the main solubility-controlling mineral phases for As, Cu, Hg, and Sb. Waters discharging from tailings impoundment are characterized by a neutral to slightly alkaline pH (7.52-7.96) and low concentrations of dissolved metal(loid)s (<5-7.0 μg/L Cu, <0.1-0.3 μg/L Hg, 5.0-16 μg/L As, and 5.0-43 μg/L Sb). Primary factors

  19. Microbial Diversity and Population Structure of Extremely Acidic Sulfur-Oxidizing Biofilms From Sulfidic Caves

    Science.gov (United States)

    Jones, D.; Stoffer, T.; Lyon, E. H.; Macalady, J. L.

    2005-12-01

    Extremely acidic (pH 0-1) microbial biofilms called snottites form on the walls of sulfidic caves where gypsum replacement crusts isolate sulfur-oxidizing microorganisms from the buffering action of limestone host rock. We investigated the phylogeny and population structure of snottites from sulfidic caves in central Italy using full cycle rRNA methods. A small subunit rRNA bacterial clone library from a Frasassi cave complex snottite sample contained a single sequence group (>60 clones) similar to Acidithiobacillus thiooxidans. Bacterial and universal rRNA clone libraries from other Frasassi snottites were only slightly more diverse, containing a maximum of 4 bacterial species and probably 2 archaeal species. Fluorescence in situ hybridization (FISH) of snottites from Frasassi and from the much warmer Rio Garrafo cave complex revealed that all of the communities are simple (low-diversity) and dominated by Acidithiobacillus and/or Ferroplasma species, with smaller populations of an Acidimicrobium species, filamentous fungi, and protists. Our results suggest that sulfidic cave snottites will be excellent model microbial ecosystems suited for ecological and metagenomic studies aimed at elucidating geochemical and ecological controls on microbial diversity, and at mapping the spatial history of microbial evolutionary events such as adaptations, recombinations and gene transfers.

  20. An Enzymatic Glucose Sensor Composed of Carbon-Coated Nano Tin Sulfide

    Science.gov (United States)

    Chung, Ren-Jei; Wang, An-Ni; Peng, Shiuan-Ying

    2017-01-01

    In this study, a biosensor, based on a glucose oxidase (GOx) immobilized, carbon-coated tin sulfide (SnS) assembled on a glass carbon electrode (GCE) was developed, and its direct electrochemistry was investigated. The carbon coated SnS (C-SnS) nanoparticle was prepared through a simple two-step process, using hydrothermal and chemical vapor deposition methods. The large reactive surface area and unique electrical potential of C-SnS could offer a favorable microenvironment for facilitating electron transfer between enzymes and the electrode surface. The structure and sensor ability of the proposed GOx/C-SnS electrode were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and cyclic voltammetry study (CV).

  1. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    Science.gov (United States)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  2. First-principles search for n -type oxide, nitride, and sulfide thermoelectrics

    Science.gov (United States)

    Garrity, Kevin F.

    2016-07-01

    Oxides have many potentially desirable characteristics for thermoelectric applications, including low cost and stability at high temperatures, but thus far there are few known high z T n -type oxide thermoelectrics. In this work, we use high-throughput first-principles calculations to screen transition metal oxides, nitrides, and sulfides for candidate materials with high power factors and low thermal conductivity. We find a variety of promising materials, and we investigate these materials in detail in order to understand the mechanisms that cause them to have high power factors. These materials all combine a high density of states near the Fermi level with dispersive bands, reducing the trade-off between the Seebeck coefficient and the electrical conductivity, but they do so for several different reasons. In addition, our calculations indicate that many of our candidate materials have low thermal conductivity.

  3. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D F; Thompson, D N; Noah, K S

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  4. Geochemistry of arsenic in low sulfide-high carbonate coal waste rock, Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Biswas, Ashis; Hendry, M Jim; Essilfie-Dughan, Joseph

    2017-02-01

    This study investigated the geochemistry of arsenic (As) in low sulfide-high carbonate coal waste rock of the Elk Valley, British Columbia, Canada. Its abundance and mineralogical associations in waste rock of different placement periods were determined in addition to its mobilization into porewater and rock-drain effluent. The mean (5.34mg/kg; 95% confidence interval: 4.95-5.73mg/kg) As concentration in the waste rock was typical of sedimentary rock. Electron microprobe and As K-edge X-ray absorption near-edge spectroscopic analyses showed the As is predominantly associated with primary pyrites in both source and freshly blasted waste rock. However, in aged waste rock the As is associated with both primary pyrites and secondary Fe oxyhydroxides. Oxidation of pyrite in waste rock dumps was reflected by the presence of high concentrations of SO4(2-) in porewater and oxidation rims of Fe oxyhydroxides around pyrite grains. Acid released from pyrite oxidation to Fe oxyhydroxides is neutralized by carbonate mineral dissolution that buffers the pH in the waste rock to circumneutral values. Adsorption of As onto secondary Fe oxyhydroxides provides an internal geochemical control on As release during pyrite oxidation and porewater flushing from the dump, resulting in the low As concentrations observed in porewater (median: 9.91μg/L) and rock-drain effluent (median: 0.31μg/L). Secondary Fe oxyhydroxides act as a long-term sink for As under present day hydrologic settings in waste rock dumps in the Elk Valley.

  5. Hollow nanoparticles of metal oxides and sulfides: fast preparation via laser ablation in liquid.

    Science.gov (United States)

    Niu, K Y; Yang, J; Kulinich, S A; Sun, J; Du, X W

    2010-11-16

    In this work, diverse hollow nanoparticles of metal oxides and sulfides were prepared by simply laser ablating metal targets in properly chosen liquids. The Kirkendall voiding and the selective heating with an infrared laser were shown to work as two independent mechanisms for the formation of such hollow nanoparticles in only one- or two-step synthesis approaches. One of the prepared materials, ZnS hollow nanoparticles, showed high performance in gas sensing. The simple, fast, inexpensive technique that is proposed demonstrates very promising perspectives.

  6. The Anarraaq Zn-Pb-Ag and barite deposit, northern Alaska: Evidence for replacement of carbonate by barite and sulfides

    Science.gov (United States)

    Kelley, K.D.; Dumoulin, J.A.; Jennings, S.

    2004-01-01

    The Anarraaq deposit in northern Alaska consists of a barite body, estimated to be as much as 1 billion metric tons, and a Zn-Pb-Ag massive sulfide zone with an estimated resource of about 18 Mt at 18 percent Zn, 5.4 percent Pb, and 85 g/t Ag. The barite and sulfide minerals are hosted by the uppermost part of the Mississippian Kuna Formation (Ikalukrok unit) that consists of carbonaceous and siliceous mudstone or shale interbedded with carbonate. The amount of interbedded carbonate in the Anarraaq deposit is atypical of the district as a whole, comprising as much as one third of the section. The total thickness of the Ikalukrok unit is considerably greater in the area of the deposit (210 to almost 350 m) than to the north and south (maximum of 164 m). The mineralized zone at Anarraaq is lens shaped and has a relatively flat top and a convex base. It also ranges greatly in thickness, from a few meters to more than 100 m. Textures of some of the carbonate layers are distinctive, consisting of nodules within siliceous mudstone or layers interbedded with shale. Many of the layers contain calcitized sponge spicules or radiolarians in a carbonate matrix. Textures of barite and sulfide minerals mimic those of carbonate and provide unequivocal evidence that replacement of precursor carbonate was an important process. Barite and sulfide textures include either nodular, bladed grains of various sizes that resemble spicules (observed only with iron sulfides) or well-rounded forms that are replaced radiolarians. Mineralization at Anarraaq probably occurred in a fault-bounded Carboniferous basin during early diagenesis in the shallow subsurface. The shape and size of the mineralized body suggest that barite and sulfides replaced calcareous mass flow deposits in a submarine channel. The distribution of biogenic and/or early diagenetic silica may have served as impermeable barriers to the fluids, thereby focusing and controlling fluid flow through unreplaced carbonate layers

  7. Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia.

    Science.gov (United States)

    Bos, Eelke M; van Goor, Harry; Joles, Jaap A; Whiteman, Matthew; Leuvenink, Henri G D

    2015-03-01

    Hydrogen sulfide (H2 S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2 S, focusing upon the protective effects of hydrogen sulfide in models of hypoxia and ischaemia.

  8. Cobalt (hydr)oxide/graphite oxide composites: importance of surface chemical heterogeneity for reactive adsorption of hydrogen sulfide.

    Science.gov (United States)

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-07-15

    Composites of cobalt (hydr)oxide and graphite oxide (GO) were obtained and evaluated as adsorbents of hydrogen sulfide at ambient conditions. The surface properties of the initial and exhausted samples were studied by FTIR, TEM, SEM/EDX, XRD, adsorption of nitrogen, potentiometric titration, and thermal analysis. The results obtained show a significant improvement in their adsorption capacities compared to parent compounds. The importance of the OH groups of cobalt (hydr)oxide/GO composites and new interface chemistry for the adsorption of hydrogen sulfide on these materials is revealed. The oxygen activation by the carbonaceous component resulted in formation of sulfites. Water enhanced the removal process. This is the result of the basic environment promoting dissociation of H(2)S and acid-base reactions. Finally, the differences in the performance of the materials with different mass ratios of GO were linked to the availability of active sites on the surface of the adsorbents, dispersion of these sites, their chemical heterogeneity, and location in the pore system.

  9. Vasoactivity of the gasotransmitters hydrogen sulfide and carbon monoxide in the chicken ductus arteriosus.

    Science.gov (United States)

    van der Sterren, Saskia; Kleikers, Pamela; Zimmermann, Luc J I; Villamor, Eduardo

    2011-10-01

    Besides nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H(2)S) is a third gaseous messenger that may play a role in controlling vascular tone and has been proposed to serve as an O(2) sensor. However, whether H(2)S is vasoactive in the ductus arteriosus (DA) has not yet been studied. We investigated, using wire myography, the mechanical responses induced by Na(2)S (1 μM-1 mM), which forms H(2)S and HS(-) in solution, and by authentic CO (0.1 μM-0.1 mM) in DA rings from 19-day chicken embryos. Na(2)S elicited a 100% relaxation (pD(2) 4.02) of 21% O(2)-contracted and a 50.3% relaxation of 62.5 mM KCl-contracted DA rings. Na(2)S-induced relaxation was not affected by presence of the NO synthase inhibitor l-NAME, the soluble guanylate cyclase (sGC) inhibitor ODQ, or the K(+) channel inhibitors tetraethylammonium (TEA; nonselective), 4-aminopyridine (4-AP, K(V)), glibenclamide (K(ATP)), iberiotoxin (BK(Ca)), TRAM-34 (IK(Ca)), and apamin (SK(Ca)). CO also relaxed O(2)-contracted (60.8% relaxation) and KCl-contracted (18.6% relaxation) DA rings. CO-induced relaxation was impaired by ODQ, TEA, and 4-AP (but not by L-NAME, glibenclamide, iberiotoxin, TRAM-34 or apamin), suggesting the involvement of sGC and K(V) channel stimulation. The presence of inhibitors of H(2)S or CO synthesis as well as the H(2)S precursor L-cysteine or the CO precursor hemin did not significantly affect the response of the DA to changes in O(2) tension. Endothelium-dependent and -independent relaxations were also unaffected. In conclusion, our results indicate that the gasotransmitters H(2)S and CO are vasoactive in the chicken DA but they do not suggest an important role for endogenous H(2)S or CO in the control of chicken ductal reactivity.

  10. INVESTIGATION ON DURABILITY AND REACTIVITY OF PROMISING METAL OXIDE SORBENTS DURING SULFIDATION AND REGENERATION. QUARTERLY AND FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    K.C. KWON

    1998-08-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Experiments on removal reaction of H{sub 2}S from coal gas mixtures with formulated metal oxide sorbents were conducted in a batch reactor or a differential reactor. The objectives of this research project are to formulate promising metal oxide sorbents for removal of sulfur from coal gas mixtures, to find initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of hydrogen, nitrogen and moisture on dynamic absorption and equilibrium absorption at various absorption temperatures. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders, and calcining these powder mixtures. The Research Triangle Institute (RTI), a sub-contractor of this research project, will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide, and review experimental results.

  11. Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance

    Science.gov (United States)

    He, Zhanjun; Zhu, Yabo; Xing, Zheng; Wang, Zhengyuan

    2016-01-01

    The cuprous sulfide nanoparticles (CuS NPs)-decorated reduced graphene oxide (rGO) nanocomposites have been successfully prepared via a facile and efficient solvothermal synthesis method. Scanning electron microscopy and transmission electron microscopy images demonstrated that CuS micronspheres composed of nanosheets and distributed on the rGO layer in well-monodispersed form. Fourier-transform infrared spectroscopy analyses and x-ray photoelectron spectroscopy showed that graphene oxide (GO) had been reduced to rGO. The electrochemical performances of CuS/rGO nanocomposites were investigated by cyclic voltammetry and charge/discharge techniques, which showed that the specific capacitance of CuS/rGO nanocomposites was enhanced because of the introduction of rGO.

  12. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas

    Energy Technology Data Exchange (ETDEWEB)

    Krischan, J., E-mail: jutta_krischan@hotmail.com [Vienna University of Technology, Institute of Chemical Engineering, Getreidemarkt 9/166, 1060 Vienna (Austria); Makaruk, A., E-mail: aleksander.makaruk@tuwien.ac.at [Vienna University of Technology, Institute of Chemical Engineering, Getreidemarkt 9/166, 1060 Vienna (Austria); Harasek, M., E-mail: michael.harasek@tuwien.ac.at [Vienna University of Technology, Institute of Chemical Engineering, Getreidemarkt 9/166, 1060 Vienna (Austria)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Alkaline oxidative scrubbing proved for biogas desulfurization Black-Right-Pointing-Pointer Effect of operating conditions on hydrogen sulfide removal efficiency. Black-Right-Pointing-Pointer Minimization of caustic and oxidant consumption. Black-Right-Pointing-Pointer Process control via pH, redox potential and conductivity measurement. Black-Right-Pointing-Pointer Investigation of long-term behavior of pilot plant operation. - Abstract: Reliable and selective removal of hydrogen sulfide (H{sub 2}S) is an essential part of the biogas upgrading procedure in order to obtain a marketable and competitive natural gas substitute for flexible utilization. A promising biogas desulfurization technology has to ensure high separation efficiency regardless of process conditions or H{sub 2}S load without the use or production of toxic or ecologically harmful substances. Alkaline oxidative scrubbing is an interesting alternative to existing desulfurization technologies and is investigated in this work. In experiments on a stirred tank reactor and a continuous scrubbing column in laboratory-scale, H{sub 2}S was absorbed from a gas stream containing large amounts of carbon dioxide (CO{sub 2}) into an aqueous solution prepared from sodium hydroxide (NaOH), sodium bicarbonate (NaHCO{sub 3}) and hydrogen peroxide (H{sub 2}O{sub 2}). The influence of pH, redox potential and solution aging on the absorption efficiency and the consumption of chemicals was investigated. Because of the irreversible oxidation reactions of dissolved H{sub 2}S with H{sub 2}O{sub 2}, high H{sub 2}S removal efficiencies were achieved while the CO{sub 2} absorption was kept low. At an existing biogas upgrading plant an industrial-scale pilot scrubber was constructed, which efficiently desulfurizes 180 m{sup 3}/h of raw biogas with an average removal efficiency of 97%, even at relatively high and strongly fluctuating H{sub 2}S contents in the crude gas.

  13. Iron-sulfides, iron-oxides and aqueous processing of organic materials in CM and CI meteorites and IDPs

    Science.gov (United States)

    Rietmeijer, F. J.

    Why do CM meteorites have such a rich variety of organics? D/H isotope ratios prove an interstellar component of the organic matter in CM and CI carbonaceous meteorites wherein the complex ``organics'' could in part be due to Fischer-Tropsch type (FTT) processes and processing of organic precursors on Fe-sulfide, Fe-oxide or clay catalysts. ``Origin of Life'' scenarios refer to the richly varied organics in CM (Murchison) meteorites as the precursor materials delivered to the Earth 4.2-3.9 Gyrs ago. Aggregate interplanetary dust particles (IDPs) have more carbon, incl. an interstellar component, than CI and CM meteorites but their original ``organics'' and amounts are modified by pyrolysis during atmospheric entry. Here, I will assume that anhydrous aggregate IDPs formed the originally anhydrous CI and CM matrix. These IDPs contain submicron CHON, mixed and `silicate' principal components (PCs), e.g. Fe-rich serpentine dehydroxylate, (Mg,Fe)3Si2O7, PCs [Fe/(Mg+Fe)(fe) = 0.3-0.8], and micron-size Fe-sulfides, olivine and pyroxenes. In a Mg-Fe-Si diagram with an Fe-apex, these PC compositions plot on a serpentine, (Mg,Fe)/Si line. The hydrated CI matrix compositions also define a straight line that, anchored at serpentine, fe = 0.3, is rotated towards higher (Mg,Fe)/Si ratios with increasing serpentine fe-ratio when during hydration of an initially ``serpentine dehydroxylate PC'' CI matrix reacted with Fe-sulfide, Fe-oxide, or both. The straight line defining hydrated CM matrix compositions is rotated even more towards higher (Mg,Fe)/Si ratios when hydrated CI-like material continued reacting with Fe-oxide and Fe-sulfide and formed tochilinite, a mineral unique to CM meteorites. Continuous hydration of IDP-like material with an ample supply of Fe-minerals acting as catalysts for formation and processing ``organics'' would have affected the redox conditions of a buffered C-H-O-S aqueous fluid during the time ``organics' were modified to the unique mélanges of CM

  14. Photooxidation of carbonyl sulfide in the presence of the typical oxides in atmospheric aerosol

    Institute of Scientific and Technical Information of China (English)

    WU; Hongbo; WANG; Xiao; CHEN; Jianmin

    2005-01-01

    Photooxidation of carbonyl sulfide (COS) under UV irradiation and the role of the oxides such as SiO2, Al2O3 and Fe2O3 were investigated by in situ FTIR in a long optical path cell. The major products were identified as SO2 and CO2 by means of IR spectra and GC-MS. SO2 was partially oxidized into SO42- on the surface of the oxides and interior wall of the reactor, which was determined by XPS. The photooxidation is pseudo first order with respect to COS, and the apparent rate constant is approximately 9.30×10-4·s-1. SiO2 and Al2O3 promote the photooxida- tion of COS significantly, but Fe2O3 has no obvious influence on the reaction. The reaction rates in the presence of the oxides or not, rank as: UV + SiO2 > UV + Al2O3 > UV, UV + Fe2O3. The potentiality of the oxides for promoting the photooxidation of COS implicates that the aerosol particles may contribute to the photooxidation of COS in the atmosphere.

  15. Hydrogen Sulfide--Mechanisms of Toxicity and Development of an Antidote.

    Science.gov (United States)

    Jiang, Jingjing; Chan, Adriano; Ali, Sameh; Saha, Arindam; Haushalter, Kristofer J; Lam, Wai-Ling Macrina; Glasheen, Megan; Parker, James; Brenner, Matthew; Mahon, Sari B; Patel, Hemal H; Ambasudhan, Rajesh; Lipton, Stuart A; Pilz, Renate B; Boss, Gerry R

    2016-02-15

    Hydrogen sulfide is a highly toxic gas-second only to carbon monoxide as a cause of inhalational deaths. Its mechanism of toxicity is only partially known, and no specific therapy exists for sulfide poisoning. We show in several cell types, including human inducible pluripotent stem cell (hiPSC)-derived neurons, that sulfide inhibited complex IV of the mitochondrial respiratory chain and induced apoptosis. Sulfide increased hydroxyl radical production in isolated mouse heart mitochondria and F2-isoprostanes in brains and hearts of mice. The vitamin B12 analog cobinamide reversed the cellular toxicity of sulfide, and rescued Drosophila melanogaster and mice from lethal exposures of hydrogen sulfide gas. Cobinamide worked through two distinct mechanisms: direct reversal of complex IV inhibition and neutralization of sulfide-generated reactive oxygen species. We conclude that sulfide produces a high degree of oxidative stress in cells and tissues, and that cobinamide has promise as a first specific treatment for sulfide poisoning.

  16. In-Situ Incubation of Iron-Sulfide Mineral in Seawater Reveals Colonization by Iron-Oxidizing Gammaproteobacteria and Zetaproteobacteria.

    Science.gov (United States)

    Barco, R. A.; Ramírez, G. A.; Sylvan, J. B.; Edwards, K. J.

    2015-12-01

    Sulfide mineral precipitation occurs at mid-ocean ridge (MOR) spreading centers, both in the form of plume particles and massive sulfide structures. A common constituent of MOR sulfide mineral is pyrrhotite (Fe1-xS). This mineral was chosen as a substrate for in-situ incubation studies in the shallow waters of Catalina Islands, CA to investigate the colonization of iron-oxidizing bacteria. Gammaproteobacteria and Alphaproteobacteria largely dominated the bacterial community on pyrrhotite samples incubated in the water column. Pyrrhotite samples incubated at the sediment/water column interface showed more even dominance by Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria and Bacteroidetes. Cultivations that originated from these pyrrhotite samples resulted in the enrichment of Zetaproteobacteria with either twisted-stalks (Mariprofundus) or sheath structures. Additionally, a candidate novel Gammaproteobacterium was isolated and shown to grow autotrophically via the oxidation of iron.

  17. Reversible Oxidative Addition at Carbon.

    Science.gov (United States)

    Eichhorn, Antonius F; Fuchs, Sonja; Flock, Marco; Marder, Todd B; Radius, Udo

    2017-04-07

    The reactivity of N-heterocyclic carbenes (NHCs) and cyclic alkyl amino carbenes (cAACs) with arylboronate esters is reported. The reaction with NHCs leads to the reversible formation of thermally stable Lewis acid/base adducts Ar-B(OR)2 ⋅NHC (Add1-Add6). Addition of cAAC(Me) to the catecholboronate esters 4-R-C6 H4 -Bcat (R=Me, OMe) also afforded the adducts 4-R-C6 H4 Bcat⋅cAAC(Me) (Add7, R=Me and Add8, R=OMe), which react further at room temperature to give the cAAC(Me) ring-expanded products RER1 and RER2. The boronate esters Ar-B(OR)2 of pinacol, neopentylglycol, and ethyleneglycol react with cAAC at RT via reversible B-C oxidative addition to the carbene carbon atom to afford cAAC(Me) (B{OR}2 )(Ar) (BCA1-BCA6). NMR studies of cAAC(Me) (Bneop)(4-Me-C6 H4 ) (BCA4) demonstrate the reversible nature of this oxidative addition process.

  18. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, Debby Fox; Thompson, David Neal; Noah, Karl Scott

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, “Leptospirillum”, “Ferromicrobium”, and Acidiphilium. Two temperatures (30°C and 45°C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to low the pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  19. Measurement of low concentration and nano-quantity hydrogen sulfide in sera using unfunctionalized carbon nanotubes

    Science.gov (United States)

    Wu, X. C.; Zhang, W. J.; Sammynaiken, R.; Meng, Q. H.; Wu, D. Q.; Yang, Q.; Yang, W.; Zhang, Edwin M.; Wang, R.

    2009-10-01

    Hydrogen sulfide (H2S) is produced in small amounts by certain cells in the mammalian body and has a number of biological functions. H2S gas naturally produced by the body is not simply a toxic gas; it could be a vascular dilator and play a physiological role in regulating cardiovascular functions. In order to know the effects of H2S, it is necessary to accurately know its concentrations in the body. Conventional measurement methods have their limitations concerning the small amount and low concentration of H2S in the body. A new paradigm of using carbon nanotubes in H2S measurement expresses its potential. However, the influence of proteins in the mammalian body must be studied in the measurement of H2S by carbon nanotubes. In this paper, we demonstrate a successful measurement of low concentration (20 µM) and nano-quantity (0.5 µg) H2S in the serum by using carbon nanotubes and further with the fluorescence of confocal laser scanning microscopy and the luminescence of Raman microscopy. Statistical analysis of the experimental data shows that the relationship between concentrations and intensities is linear, which thus makes the carbon nanotube sensor highly promising for the measurement of H2S in sera.

  20. Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide

    Science.gov (United States)

    Mitchell, Joshua K.; Arcibar-Orozco, Javier A.; Bandosz, Teresa J.

    2016-12-01

    Highly porous cerium oxide modified Zr(OH)4 samples were synthesized using a simple one stage urea precipitation method. The amorphicity level of zirconium hydroxide did not change upon addition of cerium oxide particles. A unique aspect of the cerium oxide-modified materials is the presence of both the oxide (CeO2) and hydroxide (Zr(OH)4) phases resulting in a unique microporous structure of the final material. Extensive characterization using various chemical and physical methods revealed significant differences in the surface features. All synthesized materials were microporous and small additions of cerium oxide affected the surface chemistry. These samples were found as effective catalysts for a decontamination of mustard gas surrogate, 2-chloroethyl ethyl sulfide (CEES). Cerium oxide addition significantly decreased the band gap of zirconium hydroxide. Ethyl vinyl sulfide and 1,2-bis (Ethyl thio) ethane were identified as surface reaction products.

  1. Nonequilibrium Thermodynamic Model of Manganese Carbonate Oxidation

    Institute of Scientific and Technical Information of China (English)

    郝瑞霞; 彭省临

    1999-01-01

    Manganese carbonate can be converted to many kinds of manganese oxides when it is aerated in air and oxygen.Pure manganese carbonate can be changed into Mn3O4 and γ-MnOOH,and manganese carbonate ore can be converted to MnO2 under the air-aerating and oxygen-aerating circumstances.The oxidation process of manganese carbonate is a changing process of mineral association,and is also a converting process of valence of manganese itself.Not only equilibrium stat,but also nonequilibrium state are involved in this whole process,This process is an irreversible heterogeneous complex reaction,and oberys the nonequilibrium thermodynamic model,The oxidation rate of manganese cabonate is controlled by many factors,especially nonmanganese metallic ions which play an important role in the oxidation process of manganese carbonate.

  2. Growth mechanisms of zinc oxide and zinc sulfide films by mist chemical vapor deposition

    Science.gov (United States)

    Uno, Kazuyuki; Yamasaki, Yuichiro; Tanaka, Ichiro

    2017-01-01

    The growth mechanisms of zinc oxide and zinc sulfide films by mist chemical vapor deposition (mist-CVD) were experimentally investigated from the viewpoint of mist behaviors and chemical reactions. The proper growth model, either vaporization or the Leidenfrost model, was studied by supplying two kinds of mists with different kinds of sources, such as H2 16O and H2 18O for ZnO growth and ZnCl2 and thiourea for ZnS growth. Moreover, the origin of the oxygen atoms of ZnO was investigated using a quantitative analysis. The role of chloro complex of zinc in the growth of ZnS from aqueous solutions was also examined by systematic studies.

  3. Coating and enhanced photocurrent of vertically aligned zinc oxide nanowire arrays with metal sulfide materials.

    Science.gov (United States)

    Volokh, Michael; Diab, Mahmud; Magen, Osnat; Jen-La Plante, Ilan; Flomin, Kobi; Rukenstein, Pazit; Tessler, Nir; Mokari, Taleb

    2014-08-27

    Hybrid nanostructures combining zinc oxide (ZnO) and a metal sulfide (MS) semiconductor are highly important for energy-related applications. Controlled filling and coating of vertically aligned ZnO nanowire arrays with different MS materials was achieved via the thermal decomposition approach of single-source precursors in the gas phase by using a simple atmospheric-pressure chemical vapor deposition system. Using different precursors allowed us to synthesize multicomponent structures such as nanowires coated with alloy shell or multishell structures. Herein, we present the synthesis and structural characterization of the different structures, as well as an electrochemical characterization and a photovoltaic response of the ZnO-CdS system, in which the resulting photocurrent upon illumination indicates charge separation at the interface.

  4. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.

    Science.gov (United States)

    Nielsen, A H; Yongsiri, C; Hvitved-Jacobsen, T; Vollertsen, J

    2005-01-01

    A model concept for prediction of sulfide buildup in sewer networks is presented. The model concept is an extension to--and a further development of--the WATS model (Wastewater Aerobic-anaerobic Transformations in Sewers), which has been developed by Hvitved-Jacobsen and co-workers at Aalborg University. In addition to the sulfur cycle, the WATS model simulates changes in dissolved oxygen and carbon fractions of different biodegradability. The sulfur cycle was introduced via six processes: 1. sulfide production taking place in the biofilm covering the permanently wetted sewer walls; 2. biological sulfide oxidation in the permanently wetted biofilm; 3. chemical and biological sulfide oxidation in the water phase; 4. sulfide precipitation with metals present in the wastewater; 5. emission of hydrogen sulfide to the sewer atmosphere and 6. adsorption and oxidation of hydrogen sulfide on the moist sewer walls where concrete corrosion may take place.

  5. Carbon Xerogel Catalyst for NO Oxidation

    Directory of Open Access Journals (Sweden)

    Manuel F. R. Pereira

    2012-10-01

    Full Text Available Carbon xerogels were prepared by the polycondensation of resorcinol and formaldehyde using three different solution pH values and the gels were carbonized at three different temperatures. Results show that it is possible to tailor the pore texture of carbon xerogels by adjusting the pH of the initial solution and the carbonization temperature. Materials with different textural properties were obtained and used as catalysts for NO oxidation at room temperature. The NO conversions obtained with carbon xerogels were quite high, showing that carbon xerogels are efficient catalysts for NO oxidation. A maximum of 98% conversion for NO was obtained at initial concentration of NO of 1000 ppm and 10% of O2. The highest NO conversions were obtained with the samples presenting the highest surface areas. The temperature of reaction has a strong influence on NO oxidation: the conversion of NO decreases with the increase of reaction temperature.

  6. Gaseous Mediators Nitric Oxide and Hydrogen Sulfide in the Mechanism of Gastrointestinal Integrity, Protection and Ulcer Healing

    Directory of Open Access Journals (Sweden)

    Marcin Magierowski

    2015-05-01

    Full Text Available Nitric oxide (NO and hydrogen sulfide (H2S are known as biological messengers; they play an important role in human organism and contribute to many physiological and pathophysiological processes. NO is produced from l-arginine by constitutive NO synthase (NOS and inducible NOS enzymatic pathways. This gaseous mediator inhibits platelet aggregation, leukocyte adhesion and contributes to the vessel homeostasis. NO is known as a vasodilatory molecule involved in control of the gastric blood flow (GBF and the maintenance of gastric mucosal barrier integrity in either healthy gastric mucosa or that damaged by strong irritants. Biosynthesis of H2S in mammals depends upon two enzymes cystathionine-β-synthase and cystathionine γ-lyase. This gaseous mediator, similarly to NO and carbon monoxide, is involved in neuromodulation, vascular contractility and anti-inflammatory activities. For decades, H2S has been known to inhibit cytochrome c oxidase and reduce cell energy production. Nowadays it is generally considered to act through vascular smooth muscle ATP-dependent K+ channels, interacting with intracellular transcription factors and promote sulfhydration of protein cysteine moieties within the cell, but the mechanism of potential gastroprotective and ulcer healing properties of H2S has not been fully explained. The aim of this review is to compare current results of the studies concerning the role of H2S and NO in gastric mucosa protection and outline areas that may pose new opportunities for further development of novel therapeutic targets.

  7. Effects of Sodium Thiosulfate and Sodium Sulfide on the Corrosion Behavior of Carbon Steel in an MDEA-Based CO2 Capture Process

    Science.gov (United States)

    Emori, W.; Jiang, S. L.; Duan, D. L.; Zheng, Y. G.

    2016-12-01

    The corrosion behavior of carbon steel has been tested in the presence of sodium thiosulfate and sodium sulfide in an MDEA-based CO2 capture system using electrochemical methods, weight loss measurements and surface analysis. The results of electrochemical measurements revealed that both thiosulfate and sulfide showed corrosion resistance properties to carbon steel corrosion. The corrosion resistance for the system with thiosulfate increased with concentration, while the system with sulfide yielded better corrosion resistance to carbon steel at lower concentrations as increase in sulfide concentration decreased the corrosion resistance. The corrosion inhibition behaviors for both systems at 0.05 M salt concentrations were confirmed by weight loss measurement, and the solution with sodium sulfide exhibited a better inhibition with time.

  8. Effects of Sodium Thiosulfate and Sodium Sulfide on the Corrosion Behavior of Carbon Steel in an MDEA-Based CO2 Capture Process

    Science.gov (United States)

    Emori, W.; Jiang, S. L.; Duan, D. L.; Zheng, Y. G.

    2017-01-01

    The corrosion behavior of carbon steel has been tested in the presence of sodium thiosulfate and sodium sulfide in an MDEA-based CO2 capture system using electrochemical methods, weight loss measurements and surface analysis. The results of electrochemical measurements revealed that both thiosulfate and sulfide showed corrosion resistance properties to carbon steel corrosion. The corrosion resistance for the system with thiosulfate increased with concentration, while the system with sulfide yielded better corrosion resistance to carbon steel at lower concentrations as increase in sulfide concentration decreased the corrosion resistance. The corrosion inhibition behaviors for both systems at 0.05 M salt concentrations were confirmed by weight loss measurement, and the solution with sodium sulfide exhibited a better inhibition with time.

  9. Carbonyl sulfide (COS) as a tracer to constrain surface carbon fluxes

    Science.gov (United States)

    Yakir, Dan; Berkelhammer, Max; Miller, John; Montzka, Steve; Chen, Huilin

    2014-05-01

    provide additional constraints on the differential responses of photosynthesis and respiration, such as associated with C3 and C4 vegetation. Developing the use of COS as a powerful tracer of photosynthetic CO2 fluxes at all scales can help improve prediction of future responses of the terrestrial biosphere to changing environmental conditions. Key words Carbonyl sulfide, COS, Carbonic anhydrase, CA, ecosystem respiration, GPP, Biosphere-atmosphere interactions, soil COS uptake. References Asaf D, Rotenberg E, Tatarinov T, Dicken U, Montzka SA & Yakir D (2013) Ecosystem photosynthesis inferred from carbonyl sulfide flux measurements. Nature GeoScience, 6, 186-190; DOI: 10.1038/NGEO1730 Berry J, Wolf A, Campbell E, Baker I, Blake N, Blake D, Denning AS, Kawa SR, Montzka SA, Seibt UY, Stimler K, Yakir D Zhu Z (2013) A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle. J. Geophys. Res.: Biogeochem. 118, doi 10.1002/jgrg.20068, 2013 Stimler K, Berry JA, Montzka S, Yakir D (2011) Association between COS uptake and 18D during gas exchange in C3 and C4 leaves. Plant Physiol. Doi 10.1104/pp.111.176578

  10. Molybdatophosphoric acid as an efficient catalyst for the catalytic and chemoselective oxidation of sulfides to sulfoxides using urea hydrogen peroxide as a commercially available oxidant

    Directory of Open Access Journals (Sweden)

    ALIREZA HASANINEJAD

    2010-03-01

    Full Text Available An efficient procedure for the chemoselective oxidation of alkyl (aryl sulfides to the corresponding sulfoxides using urea hydrogen peroxide (UHP in the presence of a catalytic amount of molybdatophosphoric acid at room temperature is described. The advantages of described method are: generality, high yield and chemoselectivity, short reaction time, low cost and compliment with green chemistry protocols.

  11. Observations of the uptake of carbonyl sulfide (COS by trees under elevated atmospheric carbon dioxide concentrations

    Directory of Open Access Journals (Sweden)

    L. Sandoval-Soto

    2012-02-01

    Full Text Available Global change affects ecosystems to adapt to elevated atmospheric concentrations of carbon dioxide (CO2. We understand that carbonyl sulfide (COS, a trace gas which is involved in building up the stratospheric sulfate aerosol layer, is taken up by vegetation with the same triad of the enzmyes which are metabolizing the CO2, i.e. Ribulose-1,5-bisphosphate Carboxylase-Oxygenase (Rubisco, Phosphoenolpyruvate Carboxylase (PEP-Co and carbonic anhydrase (CA. Therefore, we discuss a physiological/biochemical adaptation of these enzymes to affect the sink strength of vegetation for COS. We investigated the adaption of two European tree species, Fagus sylvatica and Quercus ilex, grown inside chambers under elevated CO2 and determined the exchange characteristics and the content of CA after a 1–2 yr period of adaption from 350 ppm to 800 ppm CO2. We could demonstrate that the COS compensation point, the CA activity and the deposition velocities may change and cause a decrease of the COS uptake by plant ecosystems. As a consequence, the atmospheric COS level may rise leading to higher input of this trace gas into the stratosphere and causing a higher energy reflection by the stratospheric sulfur aerosol into space, thus counteracting the direct radiative forcing by the tropospheric COS.

  12. Hydrogen sulfide increases nitric oxide production from endothelial cells by an Akt-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Arturo J Cardounel

    2011-12-01

    Full Text Available Hydrogen sulfide (H2S and nitric oxide (NO are both gasotransmitters that can elicit synergistic vasodilatory responses in the in the cardiovascular system, but the mechanisms behind this synergy are unclear. In the current study we investigated the molecular mechanisms through which H2S regulates endothelial NO production. Initial studies were performed to establish the temporal and dose-dependent effects of H2S on NO generation using EPR spin trapping techniques. H2S stimulated a two-fold increase in NO production from endothelial nitric oxide synthase (eNOS, which was maximal 30 min after exposure to 25-150 µM H2S. Following 30 min H2S exposure, eNOS phosphorylation at Ser 1177 was significantly increased compared to control, consistent with eNOS activation. Pharmacological inhibition of Akt, the kinase responsible for Ser 1177 phosphorylation, attenuated the stimulatory effect of H2S on NO production. Taken together, these data demonstrate that H2S up-regulates NO production from eNOS through an Akt-dependent mechanism. These results implicate H2S in the regulation of NO in endothelial cells, and suggest that deficiencies in H2S signaling can directly impact processes regulated by NO.

  13. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System.

    Science.gov (United States)

    Nagpure, B V; Bian, Jin-Song

    2016-01-01

    Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, "gasotransmitters" in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress.

  14. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    B. V. Nagpure

    2016-01-01

    Full Text Available Historically acknowledged as toxic gases, hydrogen sulfide (H2S and nitric oxide (NO are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO, which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress.

  15. Compositional Fragmentation Model for the Oxidation of Sulfide Particles in a Flash Reactor

    Science.gov (United States)

    Parra-Sánchez, Víctor Roberto; Pérez-Tello, Manuel; Duarte-Ruiz, Cirilo Andrés; Sohn, Hong Yong

    2014-04-01

    A mathematical model to predict the size distribution and chemical composition of a cloud of sulfide particles during high-temperature oxidation in a flash reactor is presented. The model incorporates the expansion and further fragmentation of the reacting particles along their trajectories throughout the reaction chamber. A relevant feature of the present formulation is its flexibility to treat a variety of flash reacting systems, such as the flash smelting and flash converting processes. This is accomplished by computing the chemical composition of individual particles and the size distribution and overall composition of the particle cloud in separate modules, which are coupled through a database of particle properties previously stored on disk. The flash converting of solid copper mattes is considered as an example. The model predictions showed good agreement with the experimental data collected in a large laboratory reactor in terms of particle size distribution and sulfur remaining in the population of particles. The cumulative contribution and distribution coefficients are introduced to quantify the relationship between specific particle sizes in the feed and those in the reacted products upon oxidation, the latter of which has practical implications on the amount and chemical composition of dust particles produced during the industrial operation.

  16. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment

    Science.gov (United States)

    Ayswarya, A.; Kurian, G. A.

    2016-01-01

    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the

  17. Sensitivity of interfibrillar and subsarcolemmal mitochondria to cobalt chloride-induced oxidative stress and hydrogen sulfide treatment

    Directory of Open Access Journals (Sweden)

    A Ayswarya

    2016-01-01

    Full Text Available Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment. Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co

  18. Oxidation Microstructure Studies of Reinforced Carbon/Carbon

    Science.gov (United States)

    Jacobson, Nathan S.; Curry, Donald M.

    2006-01-01

    Laboratory oxidation studies of reinforced carbon/carbon (RCC) are discussed with particular emphasis on the resulting microstructures. This study involves laboratory furnace (500-1500 C deg) and arc-jet exposures (1538 C deg) on various forms of RCC. RCC without oxidation protection oxidized at 800 and 1100 C deg exhibits pointed and reduced diameter fibers, due to preferential attack along the fiber edges. RCC with a SiC conversion coating exhibits limited attack of the carbon substrate at 500, 700 and 1500 C deg. However samples oxidized at 900, 1100, and 1300 C deg show small oxidation cavities at the SiC/carbon interface below through-thickness cracks in the SiC coating. These cavities have rough edges with denuded fibers and can be easily distinguished from cavities created in processing. Arc-jet tests at 1538 C deg show limited oxidation attack when the SiC coating and glass sealants are intact. When the SiC/sealant protection system is damaged, attack is extensive and proceeds through matrix cracks, creating denuded fibers on the edges of the cracks. Even at 1538 C deg, where diffusion control dominates, attack is non-uniform with fiber edges oxidizing in preference to the bulk fiber and matrix.

  19. Hydrogen sulfide and translational medicine

    OpenAIRE

    Guo, Wei; Cheng, Ze-yu; Zhu, Yi-Zhun

    2013-01-01

    Hydrogen sulfide (H2S) along with carbon monoxide and nitric oxide is an important signaling molecule that has undergone large numbers of fundamental investigations. H2S is involved in various physiological activities associated with the regulation of homeostasis, vascular contractility, pro- and anti-inflammatory activities, as well as pro- and anti-apoptotic activities etc. However, the actions of H2S are influenced by its concentration, reaction time, and cell/disease types. Therefore, H2S...

  20. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment

    DEFF Research Database (Denmark)

    Preisler, André; de Beer, Dirk; Lichtschlag, Anna;

    2007-01-01

    gradient and corresponding high sulfide flux, a typical characteristic of Beggiatoa habitats, is not needed for their metabolic performance, but rather used as a chemotactic cue by the highly motile filaments to avoid getting lost at depth in the sediment. Indeed sulfide is a repellant for Beggiatoa...... and corresponding high sulfide flux, a typical characteristic of Beggiatoa habitats, is not needed for their metabolic performance, but rather used as a chemotactic cue by the highly motile filaments to avoid getting lost at depth in the sediment. Indeed sulfide is a repellant for Beggiatoa...

  1. Quantifying Carbon-Climate Processes at the Regional Scale Using Atmospheric Carbonyl Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Elliott [Univ. of California, Merced, CA (United States); Berry, Joe [Carnegie Inst. of Washington, Washington, DC (United States); Torn, Margaret [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); David, Billesbach [Univ. of Nebraska, Lincoln, NE (United States); Seibt, Ulrike [Univ. of California, Los Angeles, CA (United States)

    2013-10-08

    Atmospheric carbonyl sulfide (COS) analysis has the potentially transformative capability for partitioning the regional carbon flux into respiration and photosynthesis components. This emerging approach is based on the observation that continental atmospheric CO2 gradients are dominated by net ecosystem fluxes while continental atmospheric COS gradients are dominated by photosynthesis-related plant uptake. Regional flux partitioning represents a critical knowledge gap due to a lack of robust methods for regional-scale flux partitioning and large uncertainties in forecasting carbon-climate feedbacks. Our completed project characterized the relationship between COS and CO2 surface fluxes using a novel measurement and modeling system in a winter wheat field at the U.S. Department of Energy?s Atmospheric and Radiation Measurement program Central Facility (DOE-ARM CF). The scope of this project included canopy flux measurements, soil flux measurements, regional atmospheric modeling, and analysis of COS and CO2 airborne observations at SGP. Three critical discoveries emerged from this investigation: (1) the new measurement system provided the first field evidence of a robust relationship between COS leaf fluxes and GPP; (2) a previously unknown seasonal soil source of COS was observed and characterized; (3) the regional atmospheric analysis of airborne measurements provided the first COS-based constraints on GPP parameterizations used in earth systems models. Dissemination of these results includes three publications [Billesbach et al., In Press; Campbell et al., In Preparation; Seibt et al., In Review], three presentations at the AGU Fall Meeting (2012), and four invited presentations to department seminars. We have leveraged this foundational project to continue our work on understanding carbon cycle processes at large scales through one funded project (DOE Lab Fee, 2012-2015) and one proposal that is under review (DOE/NASA/USDA/NOAA, 2014-2016).

  2. Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness.

    Science.gov (United States)

    Zhang, Pengyu; Li, Feng; Wiegman, Coen H; Zhang, Min; Hong, Yan; Gong, Jicheng; Chang, Yan; Zhang, Junfeng Jim; Adcock, Ian; Chung, Kian Fan; Zhou, Xin

    2015-01-01

    Exposure to ozone has been associated with airway inflammation, oxidative stress, and bronchial hyperresponsiveness. The goal of this study was to examine whether these adverse effects of ozone could be prevented or reversed by hydrogen sulfide (H2S) as a reducing agent. The H2S donor sodium (NaHS) (2 mg/kg) or vehicle (PBS) was intraperitoneally injected into mice 1 hour before and after 3-hour ozone (2.5 ppm) or air exposure, and the mice were studied 24 hours later. Preventive and therapeutic treatment with NaHS reduced the ozone-induced increases in the total cells, including neutrophils and macrophages; this treatment also reduced levels of cytokines, including TNF-α, chemokine (C-X-C motif) ligand 1, IL-6, and IL-1β levels in bronchial alveolar lavage fluid; inhibited bronchial hyperresponsiveness; and attenuated ozone-induced increases in total malondialdehyde in bronchoalveolar lavage fluid and decreases in the ratio of reduced glutathione/oxidized glutathione in the lung. Ozone exposure led to decreases in the H2S production rate and in mRNA and protein levels of cystathionine-β-synthetase and cystathionine-γ-lyase in the lung. These effects were prevented and reversed by NaHS treatment. Furthermore, NaHS prevented and reversed the phosphorylation of p38 mitogen-activated protein kinase and heat shock protein 27. H2S may have preventive and therapeutic value in the treatment of airway diseases that have an oxidative stress basis.

  3. Catalytic graphitization of carbon/carbon composites by lanthanum oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Can; LU Guimin; SUN Ze; YU Jianguo

    2012-01-01

    Graphitized carbon/carbon composites were prepared by the process of catalytic graphitization with the rare-earth catalyst,lanthanum oxide (La2O3),in order to increase the degree of graphitization and reduce the electrical resistivity.The modified coal tar pitch and coal-based needle coke were used as carbon source,and a small amount of La2O3 was added to catalyze the graphitization of the disordered carbon materials.The effects of La2O3 catalyst on the graphitization degree and microstructure oftbe carbon/carbon composites were investigated by X-ray diffraction,scanning electron microscopy,and Raman spectroscopy.The results showed that La2O3 promoted the formation of more perfect and larger crystallites,and improved the electrical/mechanical properties of carbon/carbon composites.Carbon/carbon composites with a lower electrical resistivity (7.0 μΩ·m) could be prepared when adding 5 wt.% La2O3 powder with heating treatment at 2800 ℃.The catalytic effect of La2O3 for the graphitization of carbon/carbon composites was analyzed.

  4. Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples.

    Science.gov (United States)

    Sivakumar, Mani; Sakthivel, Mani; Chen, Shen-Ming

    2017-03-15

    Well-defined CoS nanorods (NR) were synthesized using a simple hydrothermal method, and were tested as an electrode material for electro-oxidation of vanillin. The NR material was characterized with regard to morphology, crystallinity, and electro-activity by use of appropriate analytical techniques. The resulting CoS NR@Nafion modified glassy carbon electrode (GCE) exhibited efficient electro-oxidation of vanillin with a considerable linear range of current-vs-concentration (0.5-56μM vanillin) and a detection limit of 0.07μM. Also, food samples containing vanillin were studied to test suitability for commercial applications.

  5. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    Science.gov (United States)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  6. Adsorption immobilization of sulfide-oxidizing bacteria in the mass of the support medium made of phosphogypsum

    OpenAIRE

    Черныш, Елизавета Юрьевна; Пляцук, Леонид Дмитриевич

    2015-01-01

    The basic patterns and mechanisms of adsorption immobilization of sulfide-oxidizing bacteria in the mass of mineral support medium made of phosphogypsum were determined for gas purification system. The advantage of the adsorption method on the granulated support medium of phosphogypsum is that it allows to bind the bacteria in the granules with the bioactive layer formation. Granules based on phosphogypsum are characterized by permeability to Thiobacillus sp. and contain useful minerals for b...

  7. The Effect of Oxidation on the Surface Chemistry of Sulfur-Containing Carbons and their Arsine Adsorption Capacity

    Science.gov (United States)

    2010-01-01

    hydrogen sulfide . Carbon 2004;42(3):469–76. Fig. 6 – Water adsorption isotherms of the samples studied. 1786 C A R B O N 4 8 ( 2 0 1 0 ) 1 7 7 9 –1 7 8...that oxygen- and sulfur-containing groups participate in arsine oxida- tion to arsenic tri- and pentoxide and/or in the formation of arsenic sulfides ...technological difficulties, arsine is also a powerful toxin susceptible to oxidation with a strong exothermic effect. Of all the methods to separate

  8. Different distribution of in-situ thin carbon layer in hollow cobalt sulfide nanocages and their application for supercapacitors

    Science.gov (United States)

    Jin, Meng; Lu, Shi-Yu; Ma, Li; Gan, Meng-Yu; Lei, Yao; Zhang, Xiu-Ling; Fu, Gang; Yang, Pei-Shu; Yan, Mao-Fa

    2017-02-01

    Recently, cobalt sulfides emerge as a candidate for energy reserve and conversation. However, the problem of poor stability and low rate capability for cobalt sulfides restrict its practical application. Thin carbon layer (TCL) coated has been regarded as a promising constructing strategy for high performance supercapacitors, because TCL can promote the tremendous properties of bare materials. In this literature, we report a very interesting phenomenon that different distribution of in-situ carbon coated hollow CoS2 nanocages (external and both external and interior) can be synthesized only by adjusting sulfuration time, followed by calcination. Moreover, it is clearly observed that CoS2-C@TCL exhibits significant improvement for specific capacitance and good stability (better than CoS2@TCL and CoS2). These results compel us to design a series of experiments to figure out the reason and the more detailed mechanism is discussed in paper. More importantly, it will provide a new strategy for synthesis of special structure with in-situ carbon coated sulfide for energy conversion.

  9. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway

    Energy Technology Data Exchange (ETDEWEB)

    Módis, Katalin [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Asimakopoulou, Antonia [Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras (Greece); Coletta, Ciro [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Papapetropoulos, Andreas [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras (Greece); Szabo, Csaba, E-mail: szabocsaba@aol.com [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States)

    2013-04-19

    Highlights: •Oxidative stress impairs 3-MST-derived H{sub 2}S production in isolated enzyme and in isolated mitochondria. •This impairs the stimulatory bioenergetic effects of H{sub 2}S in hepatocytes. •This has implications for the pathophysiology of diseases with oxidative stress. -- Abstract: Recent data show that lower concentrations of hydrogen sulfide (H{sub 2}S), as well as endogenous, intramitochondrial production of H{sub 2}S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H{sub 2}S pathway in vitro. Hydrogen peroxide (H{sub 2}O{sub 2}, 100–500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H{sub 2}O{sub 2} (50–500 μM) caused a concentration-dependent decrease in production of H{sub 2}S from 3-MP. In cultured murine hepatoma cells H{sub 2}O{sub 2}, (3–100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100–300 nM) was completely abolished by pre-treatment of the cells with H{sub 2}O{sub 2} (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H{sub 2}S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging.

  10. Graphene oxide assisted hydrothermal carbonization of carbon hydrates.

    Science.gov (United States)

    Krishnan, Deepti; Raidongia, Kalyan; Shao, Jiaojing; Huang, Jiaxing

    2014-01-28

    Hydrothermal carbonization (HTC) of biomass such as glucose and cellulose typically produces micrometer-sized carbon spheres that are insulating. Adding a very small amount of Graphene oxide (GO) to glucose (e.g., 1:800 weight ratio) can significantly alter the morphology of its HTC product, resulting in more conductive carbon materials with higher degree of carbonization. At low mass loading level of GO, HTC treatment results in dispersed carbon platelets of tens of nanometers in thickness, while at high mass loading levels, free-standing carbon monoliths are obtained. Control experiments with other carbon materials such as graphite, carbon nanotubes, carbon black, and reduced GO show that only GO has significant effect in promoting HTC conversion, likely due to its good water processability, amphiphilicity, and two-dimensional structure that may help to template the initially carbonized materials. GO offers an additional advantage in that its graphene product can act as an in situ heating element to enable further carbonization of the HTC products very rapidly upon microwave irradiation. Similar effect of GO is also observed for the HTC treatment of cellulose.

  11. Assessment of carbon fiber-reinforced polyphenylene sulfide by means of laser ultrasound

    Science.gov (United States)

    Kalms, Michael; Peters, Christian; Wierbos, Ronald

    2011-04-01

    From automobile industry to aerospace, thermoformed composites are more and more in use. Thermoplastics offer a number of attractive applications in commercial use like short production times, tailored solutions, recyclability and lower cost. The thermoforming process allows for producing carbon fiber-reinforced parts in a wide range of different geometric shapes. On the other hand this benefit requires a demanding nondestructive testing procedure especially for security relevant parts. A contactless method which is able to fulfil this requirement is the extension of the ultrasound technique with laser technology. It opens up new opportunities for quality assessment during manufacturing like inspection of complex surfaces including small radii, remote observation and nondestructive testing of hot items directly after the thermal forming process. We describe the successful application of laser-based ultrasound on small complex thermoformed composite parts (Cetex® PPS). Cetex consists of semicrystalline polyphenylene sulfide thermoplastics providing outstanding toughness and excellent chemical and solvent resistance. It is qualified in aircraft industry for multiple structural applications. For instance, Cetex is used in the Airbus A380 engine air intakes and the wing fixed leading edge (J-Nose). We investigated several test samples with intentionally introduced defects. The smallest flaw size detected was 2 mm in diameter for delaminations and 6 mm in diameter for porosity.

  12. The flux of carbonyl sulfide and carbon disulfide between the atmosphere and a spruce forest

    Directory of Open Access Journals (Sweden)

    X. Xu

    2002-01-01

    Full Text Available Turbulent fluxes of carbonyl sulfide (COS and carbon disulfide (CS2 were measured over a spruce forest in Central Germany using the relaxed eddy accumulation (REA technique. A REA sampler was developed and validated using simultaneous measurements of CO2 fluxes by REA and by eddy correlation. REA measurements were conducted during six campaigns covering spring, summer, and fall between 1997 and 1999. Both uptake and emission of COS and CS2 by the forest were observed, with deposition occurring mainly during the sunlit period and emission mainly during the dark period. On the average, however, the forest acts as a sink for both gases. The average fluxes for COS and CS2 are  -93 ± 11.7 pmol m-2 s-1 and  -18 ± 7.6 pmol m-2 s-1, respectively. The fluxes of both gases appear to be correlated to photosynthetically active radiation and to the CO2 and chem{H_2O} fluxes, supporting the idea that the air-vegetation exchange of both gases is controlled by stomata. An uptake ratio COS/CO2 of 10 ± 1.7 pmol m mol-1 has been derived from the regression line for the correlation between the COS and CO2 fluxes. This uptake ratio, if representative for the global terrestrial net primary production, would correspond to a sink of 2.3 ± 0.5 Tg COS yr-1.

  13. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

    2014-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  14. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots.

    Science.gov (United States)

    Li, Le; Wang, Yanqin; Shen, Wenbiao

    2012-06-01

    Despite hydrogen sulfide (H(2)S) and nitric oxide (NO) are important endogenous signals or bioregulators involved in many vital aspects of plant growth and responses against abiotic stresses, little information was known about their interaction. In the present study, we evaluated the effects of H(2)S and NO on alfalfa (Medicago sativa L.) plants exposed to cadmium (Cd) stress. Pretreatment with an H(2)S donor sodium hydrosulfide (NaHS) and well-known NO donor sodium nitroprusside (SNP) decreased the Cd toxicity. This conclusion was supported by the decreases of lipid peroxidation as well as the amelioration of seedling growth inhibition and Cd accumulation, in comparison with the Cd-stressed alone plants. Total activities and corresponding transcripts of antioxidant enzymes, including superoxide dismutase, peroxidase and ascorbate peroxidase were modulated differentially, thus leading to the alleviation of oxidative damage. Effects of H(2)S above were reversed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), the specific scavenger of NO. By using laser confocal scanning microscope combined with Greiss reagent method, further results showed that NO production increased significantly after the NaHS pretreatment regardless of whether Cd was applied or not, all of which were obviously inhibited by cPTIO. These decreases of NO production were consistent with the exaggerated syndromes associated with Cd toxicity. Together, above results suggested that NO was involved in the NaHS-induced alleviation of Cd toxicity in alfalfa seedlings, and also indicated that there exists a cross-talk between H(2)S and NO responsible for the increased abiotic stress tolerance.

  15. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    Science.gov (United States)

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems.

  16. Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery.

    Science.gov (United States)

    Sun, Ruimin; Wei, Qiulong; Li, Qidong; Luo, Wen; An, Qinyou; Sheng, Jinzhi; Wang, Di; Chen, Wei; Mai, Liqiang

    2015-09-23

    As an alternative system of rechargeable lithium ion batteries, sodium ion batteries revitalize researchers' interest due to the low cost, abundant sodium resources, and similar storage mechanism to lithium ion batteries. VS4 has emerged as a promising anode material for SIBs due to low cost and its unique linear chains structure that can offer potential sites for sodium storage. Herein, we present the growth of VS4 on reduced graphene oxide (rGO) as SIBs anode for the first time. The VS4/rGO anode exhibits promising performance in SIBs. It delivers a reversible capacity of 362 mAh g(-1) at 100 mA g(-1) and a good rate performance. We also investigate the sodium storage behavior of the VS4/rGO. Different than most transition metal sulfides, the VS4/rGO composite experiences a three-step separation mechanism during the sodiation process (VS4 to metallic V and Na2S, then the electrochemical mechanism is akin to Na-S). The VS4/rGO composite proves to be a promising material for rechargeable SIBs.

  17. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: effect of pH, mixing and aeration

    DEFF Research Database (Denmark)

    Dai, Xiao-Rong; Blanes-Vidal, Victoria

    2013-01-01

    This study aimed at evaluating the effect of swine slurry acidification and acidification-aeration treatments on ammonia (NH(3)), carbon dioxide (CO(2)) and hydrogen sulfide (H(2)S) emissions during slurry treatment and subsequent undisturbed storage. The study was conducted in an experimental...... setup consisting of nine dynamic flux chambers. Three pH levels (pH = 6.0, pH = 5.8 and pH = 5.5), combined with short-term aeration and venting (with an inert gas) treatments were studied. Acidification reduced average NH(3) emissions from swine slurry stored after acidification treatment compared...... on average NH(3), CO(2) and H(2)S emissions both during the process and from stored slurry after venting treatments. During aeration treatment, the NH(3), CO(2) and H(2)S release pattern observed was related to the liquid turbulence caused by the gas bubbles rather than to biological oxidation processes...

  18. Observations of the uptake of carbonyl sulfide (COS by trees under elevated atmospheric carbon dioxide concentrations

    Directory of Open Access Journals (Sweden)

    L. Sandoval-Soto

    2012-08-01

    Full Text Available Global change forces ecosystems to adapt to elevated atmospheric concentrations of carbon dioxide (CO2. We understand that carbonyl sulfide (COS, a trace gas which is involved in building up the stratospheric sulfate aerosol layer, is taken up by vegetation with the same triad of the enzymes which are metabolizing CO2, i.e. ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, phosphoenolpyruvate carboxylase (PEP-Co and carbonic anhydrase (CA. Therefore, we discuss a physiological/biochemical acclimation of these enzymes affecting the sink strength of vegetation for COS. We investigated the acclimation of two European tree species, Fagus sylvatica and Quercus ilex, grown inside chambers under elevated CO2, and determined the exchange characteristics and the content of CA after a 1–2 yr period of acclimation from 350 ppm to 800 ppm CO2. We demonstrate that a compensation point, by definition, does not exist. Instead, we propose to discuss a point of uptake affinity (PUA. The results indicate that such a PUA, the CA activity and the deposition velocities may change and may cause a decrease of the COS uptake by plant ecosystems, at least as long as the enzyme acclimation to CO2 is not surpassed by an increase of atmospheric COS. As a consequence, the atmospheric COS level may rise causing an increase of the radiative forcing in the troposphere. However, this increase is counterbalanced by the stronger input of this trace gas into the stratosphere causing a stronger energy reflection by the stratospheric sulfur aerosol into space (Brühl et al., 2012. These data are very preliminary but may trigger a discussion on COS uptake acclimation to foster measurements with modern analytical instruments.

  19. Continuous In-situ Measurements of Carbonyl Sulfide to Constrain Ecosystem Carbon and Water Exchange

    Science.gov (United States)

    Rastogi, B.; Kim, Y.; Berkelhammer, M. B.; Noone, D. C.; Lai, C. T.; Hollinger, D. Y.; Bible, K.; Leen, J. B.; Gupta, M.; Still, C. J.

    2014-12-01

    Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf-level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from three heights to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.

  20. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    Science.gov (United States)

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  1. Hydrogen sulfide in hemostasis: friend or foe?

    Science.gov (United States)

    Olas, Beata

    2014-06-25

    Hydrogen sulfide (H2S) is a well known toxic gas that is synthesized from the amino acids: cysteine (Cys) and homocysteine (Hcy) by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and mercaptopyruvate sulfurtransferase (3-MST). Hydrogen sulfide, like carbon monoxide (CO) or nitric oxide (NO) is a signaling molecule in different biological systems, including the cardiovascular system. Moreover, hydrogen sulfide plays a role in the pathogenesis of various cardiovascular diseases. It modulates different elements of hemostasis (activation of blood platelet, and coagulation process) as well as proliferation and apoptosis of vascular smooth muscle cells. However, the biological role and the therapeutic potential of H2S is not clear. This review summarizes the different functions of hydrogen sulfide in hemostasis.

  2. Arsenic mobilization from sulfidic materials from gold mines in Minas Gerais State

    Directory of Open Access Journals (Sweden)

    Renato Pereira de Andrade

    2008-01-01

    Full Text Available Acid drainage results from exposition of sulfides to the atmosphere. Arsenopyrite is a sulfide that releases arsenic (As to the environment when oxidized. This work evaluated the As mobility in six sulfidic geomaterials from gold mining areas in Minas Gerais State, Brazil. Grained samples (<2 mm were periodically leached with distilled water, during 70 days. Results suggested As sorption onto (hydroxides formed by oxidation of arsenopyrite. Low pH accelerated the acid generation, dissolving Fe oxihydroxides and releasing As. Presence of carbonates decreased oxidation rates and As release. On the other hand, lime added to a partially oxidized sample increased As mobilization.

  3. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  4. Metabolism in the Uncultivated Giant Sulfide-Oxidizing Bacterium Thiomargarita Namibiensis Assayed Using a Redox-Sensitive Dye

    Science.gov (United States)

    Bailey, J.; Flood, B.; Ricci, E.

    2014-12-01

    The colorless sulfur bacteria are non-photosynthetic chemolithotrophs that live at interfaces between nitrate, or oxygen, and hydrogen sulfide. In sulfidic settings such as cold seeps and oxygen minimum zones, these bacteria are thought to constitute a critical node in the geochemical cycling of carbon, sulfur, nitrogen, and phosphorous. Many of these bacteria remain uncultivated and their metabolisms and physiologies are incompletely understood. Thiomargarita namibiensis is the largest of these sulfur bacteria, with individual cells reaching millimetric diameters. Despite the current inability to maintain a Thiomargarita culture in the lab, their large size allows for individual cells to be followed in time course experiments. Here we report on the novel use of a tetrazolium-based dye that measures the flux of NADH production from catabolic pathways via a colorimetric response. Staining with this dye allows for metabolism to be detected, even in the absence of observable cell division. When coupled to microscopy, this approach also allows for metabolism in Thiomargaritato be differentiated from that of epibionts or contaminants in xenic samples. The results of our tetrazolium dye-based assay suggests that Thiomargarita is the most metabolically versatile under anoxic conditions where it appears capable of using acetate, succinate, formate, thiosulfate, citrate, thiotaurine, hydrogen sulfide, and perhaps hydrogen as electron donors. Under hypoxic conditions, staining results suggest the utilization of acetate, citrate, and hydrogen sulfide. Cells incubated under oxic conditions showed the weakest tetrazolium staining response, and then only to hydrogen sulfide and questionably succinate. These initial results using a redox sensitive dye suggest that Thiomargarita is most metabolically versatile under anaerobic and hypoxic conditions. The results of this assay can be further evaluated using molecular approaches such as transcriptomics, as well as provide cultivation

  5. Metal sulfide coated multiwalled carbon nanotubes synthesized by an in situ method and their optical limiting properties

    Science.gov (United States)

    Wu, Hui-Xia; Cao, Wei-Man; Chen, Qiang; Liu, Miao-Miao; Qian, Shi-Xiong; Jia, Neng-Qin; Yang, Hong; Yang, Shi-Ping

    2009-05-01

    A metal sulfide such as ZnS, CdS, Ag2S or PbS was coated on the sidewall of multiwalled carbon nanotubes (MWCNTs) by an in situ wet chemical synthesis approach via noncovalent functionalization of MWCNTs with a polyelectrolyte (polyethylenimine or poly(diallyldimethylammonium chloride)) without causing significant electronic and structural modification of the carbon nanotubes. Extensive characterizations of the fabricated nanocomposites have been performed using x-ray diffraction, transmission electron microscopy (TEM), high resolution TEM, energy dispersive x-ray spectroscopy, selected area electron diffraction, thermal gravimetric analysis, Fourier transform IR spectra, UV-vis spectra and x-ray photoelectron spectroscopy. The coating layers were composed of metal sulfide nanoparticles with a mean size of less than 10 nm. The optical limiting property measurements for some metal sulfide coated MWCNTs were carried out by the open-aperture z-scan technique. The results demonstrate that the samples suspended in water showed optical limiting behavior better than that of purified MWCNTs.

  6. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts

    Science.gov (United States)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-10-01

    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  7. Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the Dead Sea.

    Science.gov (United States)

    Häusler, Stefan; Weber, Miriam; Siebert, Christian; Holtappels, Moritz; Noriega-Ortega, Beatriz E; De Beer, Dirk; Ionescu, Danny

    2014-12-01

    Abundant microbial mats, recently discovered in underwater freshwater springs in the hypersaline Dead Sea, are mostly dominated by sulfur-oxidizing bacteria. We investigated the source of sulfide and the activity of these communities. Isotopic analysis of sulfide and sulfate in the spring water showed a fractionation of 39-50‰ indicative of active sulfate reduction. Sulfate reduction rates (SRR) in the spring sediment (Dead Sea water are responsible for the abundant microbial biomass around the springs. The springs flow is highly variable and accordingly the local salinities. We speculate that the development of microbial mats dominated by either Sulfurimonas/Sulfurovum-like or Thiobacillus/Acidithiobacillus-like sulfide-oxidizing bacteria, results from different mean salinities in the microenvironment of the mats. SRR of up to 10 nmol cm(-3) day(-1) detected in the Dead Sea sediment are surprisingly higher than in the less saline springs. While this shows the presence of an extremely halophilic sulfate-reducing bacteria community in the Dead Sea sediments, it also suggests that extensive salinity fluctuations limit these communities in the springs due to increased energetic demands for osmoregulation.

  8. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation.

    Science.gov (United States)

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors as a result of hydrogen sulfide (H2S) and low-molecular-weight thiols are commonly encountered in wine production. These odors are usually removed by the process of Cu(II) fining, a process that remains poorly understood. The present study aims to elucidate the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds (RSH) under wine-like conditions. Copper complex formation was monitored along with H2S, thiol, oxygen, and acetaldehyde concentrations after the addition of Cu(II) (50 or 100 μM) to air-saturated model wine solutions containing H2S, cysteine, 6-sulfanylhexan-1-ol, or 3-sulfanylhexan-1-ol (300 μM each). The presence of H2S and thiols in excess to Cu(II) led to the rapid formation of ∼1.4:1 H2S/Cu and ∼2:1 thiol/Cu complexes, resulting in the oxidation of H2S and thiols and reduction of Cu(II) to Cu(I), which reacted with oxygen. H2S was observed to initially oxidize rather than form insoluble copper sulfide. The proposed reaction mechanisms provide insight into the extent to which H2S can be selectively removed in the presence of thiols in wine.

  9. Origin and fate of sulfide liquids in hotspot volcanism (La Réunion): Pb isotope constraints from residual Fe-Cu oxides

    Science.gov (United States)

    Vlastélic, I.; Gannoun, A.; Di Muro, A.; Gurioli, L.; Bachèlery, P.; Henot, J. M.

    2016-12-01

    Immiscible sulfide liquids in basaltic magmas play an important role in trace metal transport and the sulfur budget of volcanic eruptions. However, sulfides are transient phases, whose origin and fate are poorly constrained. We address these issues by analyzing sulfide destabilization products preserved in lavas from La Réunion Island. Iron oxide globules and coatings, typically 20-80 μm in size, were found to occur in vesicles of differentiated lavas from Piton des Neiges, and recent pumice samples from Piton de la Fournaise. Field and mineralogical evidence indicates that the iron oxides are syn-eruptive phases not resulting from hydrothermal processes. Samples were first studied by Scanning Electron Microscopy. The globules were separated, whereas the smaller spherules and coatings were concentrated by magnetic sorting and acid leaching, and samples were processed through wet chemistry. The Fe oxide phases comprise 49-74 wt.% Fe, 26-40 wt.% O, and up to 6 wt.% Cu, 811 ppm Ni, 140 ppm Bi, and 8.5 ppm Pb. Compared to the host lava, Cu, Ni, and Bi are enriched by a factor of 101-103. Systematic Pb isotope disequilibrium (between 500 ppm and 2.9% for 206Pb/204Pb) exists between Fe oxides and host rocks, with Fe oxides generally displaying less radiogenic ratios. Unradiogenic Pb is a typical signature of sulfide, which tends to concentrate Pb, but not its parent elements U and Th. Thus, both the chemical and isotopic compositions of the vesicle-hosted Fe oxides suggest that they are more or less direct products of the destabilization of immiscible sulfide liquids. Although Pb dominantly partitions into the gas phase during sulfide breakdown, the original Pb isotope signature of sulfide is preserved in the residual oxide. The composition estimated for the parent sulfides (206Pb/204Pb = 18.20-18.77, 207Pb/204Pb = 15.575, and 208Pb/204Pb = 38.2-38.8) precludes a genetic link with the La Réunion plume, and suggests a lithospheric or crustal origin. It is estimated

  10. Sulfide oxidation and distribution of metals near abandoned copper mines in coastal environments, Prince William Sound, Alaska, USA

    Science.gov (United States)

    Koski, R.A.; Munk, L.; Foster, A.L.; Shanks, Wayne C.; Stillings, L.L.

    2008-01-01

    The oxidation of sulfide-rich rocks, mostly leftover debris from Cu mining in the early 20th century, is contributing to metal contamination of local coastal environments in Prince William Sound, Alaska. Analyses of sulfide, water, sediment, precipitate and biological samples from the Beatson, Ellamar, and Threeman mine sites show that acidic surface waters generated from sulfide weathering are pathways for redistribution of environmentally important elements into and beyond the intertidal zone at each site. Volcanogenic massive sulfide deposits composed of pyrrhotite and (or) pyrite + chalcopyrite + sphalerite with subordinate galena, arsenopyrite, and cobaltite represent potent sources of Cu, Zn, Pb, As, Co, Cd, and Hg. The resistance to oxidation among the major sulfides increases in the order pyrrhotite ??? sphalerite Hg (to 4100 ng/L) in the pore waters probably result from oxidation of sphalerite-rich rocks. The low-pH and high concentrations of dissolved Fe, Al, and SO4 are conducive to precipitation of interstitial jarosite in the intertidal gravels. Although pore waters from the intertidal zone at the Threeman mine site have circumneutral pH values, small amounts of dissolved Fe2+ in the pore waters are oxidized during mixing with seawater, resulting in precipitation of Fe-oxyhydroxide flocs along the beach-seawater interface. At the Beatson site, surface waters funneled through the underground mine workings and discharged across the waste dumps have near-neutral pH (6.7-7.3) and a relatively small base-metal load; however, these streams probably play a role in the physical transport of metalliferous particulates into intertidal and offshore areas during storm events. Somewhat more acidic fluids, to pH 5.3, occur in stagnant seeps and small streams emerging from the Beatson waste dumps. Amorphous Fe precipitates in stagnant waters at Beatson have high Cu (5.2 wt%) and Zn (2.3 wt%) concentrations that probably reflect adsorption onto the extremely high

  11. Removal of antimony (Sb(V)) from Sb mine drainage: biological sulfate reduction and sulfide oxidation-precipitation.

    Science.gov (United States)

    Wang, Huawei; Chen, Fulong; Mu, Shuyong; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong; Chang, Jo-Shu

    2013-10-01

    Antimony (Sb(V)) in Sb mine drainage has adverse effects on the receiving water environments. This study for the first time demonstrated the feasibility of using sulfate-reducing bacteria (SRB) to convert sulfate ions in SMD into sulfides that reduce Sb(V) to Sb(III) and to form complex with Sb(III) as precipitate. The principal compound in the precipitate was stibnite (Sb2S3) at pH 7 and pH 9. The Sb(V) removal mechanism is sulfate-reduction and sulfide oxidization-precipitation, different from the conventional SRB-precipitation processes for heavy metals. The Sb(V)/sulfate ratio is noted an essential parameter affecting the Sb removal efficiency from SMD.

  12. The Diversity of Sulfide Oxidation and Sulfate Reduction Genes Expressed by the Bacterial Communities of the Cariaco Basin, Venezuela.

    Science.gov (United States)

    Rodriguez-Mora, Maria J; Edgcomb, Virginia P; Taylor, Craig; Scranton, Mary I; Taylor, Gordon T; Chistoserdov, Andrei Y

    2016-01-01

    Qualitative expression of dissimilative sulfite reductase (dsrA), a key gene in sulfate reduction, and sulfide:quinone oxidoreductase (sqr), a key gene in sulfide oxidation was investigated. Neither of the two could be amplified from mRNA retrieved with Niskin bottles but were amplified from mRNA retrieved by the Deep SID. The sqr and sqr-like genes retrieved from the Cariaco Basin were related to the sqr genes from a Bradyrhizobium sp., Methylomicrobium alcaliphilum, Sulfurovum sp. NBC37-1, Sulfurimonas autotrophica, Thiorhodospira sibirica and Chlorobium tepidum. The dsrA gene sequences obtained from the redoxcline of the Cariaco Basin belonged to chemoorganotrophic and chemoautotrophic sulfate and sulfur reducers belonging to the class Deltaproteobacteria (phylum Proteobacteria) and the order Clostridiales (phylum Firmicutes).

  13. Selective Oxidation of Soft Grade Carbon

    Directory of Open Access Journals (Sweden)

    Zecevic, N.

    2007-12-01

    Full Text Available Oil-furnace carbon black is produced by pyrolysis of gaseous or liquid hydrocarbons or their mixtures. The oil feedstock for the production of oil-furnace carbon black is mainly composed of high-boiling aromatic hydrocarbons, which are residues of petroleum cracking, while the gaseous raw material is commonly natural gas. Most of the oil-furnace carbon black production (> 99 % is used as a reinforcing agent in rubber compounds. Occasionally, oil-furnace carbon blacks are used in contact with other rubber compounds and fillers that have different pigments, particularly with the color white. It has been observed that frequently a migrating rubber soluble colorant would enter the white or light colored rubber composition from the adjacent carbon black filled rubber, resulting in a highly undesirable staining effect. Methods for determining non-oxidized residue on the surface of the oil-furnace carbon black include extraction of carbon black with the appropriate organic solvent, and measuring the color of the organic solvent by means of a colorimeter on 425 nm (ASTM D 1618-99. Transmittance values of 85 % or more are indicative of a practically non-staining carbon black, while transmittance values below 50 % generally lead to a carbon black with pronounced staining characteristics. Many oil-furnace carbon blacks, particularly those with a larger particle size (dp > 50 nm which are produced by pyrolysis, have strongly adsorbed non-reacted oil on their surfaces. Upon incorporation in a rubber compound, the colored materials are gradually dissolved by the rubber matrix and migrate freely into adjacent light colored rubber compounds, causing a highly objectionable staining effect. Adjusting furnace parameters in the industrial process of producing specific soft grades of carbon black cannot obtain minimal values of toluene discoloration. The minimal value of toluene discoloration is very important in special applications. Therefore, after-treatment of

  14. Diffusion of insoluble carbon in zirconium oxides

    CERN Document Server

    Vykhodets, V B; Koester, U; Kondrat'ev, V V; Kesarev, A G; Hulsen, C; Kurennykh, T E

    2011-01-01

    The diffusion coefficient of insoluble carbon in zirconium oxides has been obtained for the temperature range of 900-1000A degrees C. There are no published data on the diffusion of insoluble impurities; these data are of current interest for the diffusion theory and nuclear technologies. Tracer atoms 13C have been introduced into oxides by means of ion implantation and the kinetics of their emission from the samples in the process of annealing in air has been analyzed. The measurements have been performed using the methods of nuclear microanalysis and X-ray photoelectron spectroscopy. The diffusion activation energy is 2.7 eV and the carbon diffusion coefficient is about six orders of magnitude smaller than that for oxygen self-diffusion in the same systems. This result indicates the strong anomaly of the diffusion properties of carbon in oxides. As a result, zirconium oxides cannot be used in some nuclear technologies, in particular, as a material of sources for accelerators of short-lived carbon isotopes.

  15. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    Directory of Open Access Journals (Sweden)

    M. E. Whelan

    2015-08-01

    Full Text Available Carbonyl sulfide (COS measurements are one of the emerging tools to better quantify gross primary production (GPP, the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil-COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show small uptake of atmospheric COS. Recently, a series of studies at an agricultural site in the central United States found soil COS production under hot conditions an order of magnitude greater than fluxes at other sites. To investigate the extent of this phenomenon, soils were collected from 5 new sites and incubated in a variety of soil moisture and temperature states. We found that soils from a desert, an oak savannah, a deciduous forest, and a rainforest exhibited small COS fluxes, behavior resembling previous studies. However, soil from an agricultural site in Illinois, > 800 km away from the initial central US study site, demonstrated comparably large soil fluxes under similar conditions. These new data suggest that, for the most part, soil COS interaction is negligible compared to plant uptake of COS. We present a model that anticipates the large agricultural soil fluxes so that they may be taken into account. While COS air-monitoring data are consistent with the dominance of plant uptake, improved interpretation of these data should incorporate the soil flux parameterizations suggested here.

  16. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    Science.gov (United States)

    Whelan, Mary E.; Hilton, Timothy W.; Berry, Joseph A.; Berkelhammer, Max; Desai, Ankur R.; Campbell, J. Elliott

    2016-03-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil-COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show small uptake of atmospheric COS. Recently, a series of studies at an agricultural site in the central United States found soil COS production under hot conditions an order of magnitude greater than fluxes at other sites. To investigate the extent of this phenomenon, soils were collected from five new sites and incubated in a variety of soil moisture and temperature states. We found that soils from a desert, an oak savannah, a deciduous forest, and a rainforest exhibited small COS fluxes, behavior resembling previous studies. However, soil from an agricultural site in Illinois, > 800 km away from the initial central US study site, demonstrated comparably large soil fluxes under similar conditions. These new data suggest that, for the most part, soil COS interaction is negligible compared to plant uptake of COS. We present a model that anticipates the large agricultural soil fluxes so that they may be taken into account. While COS air-monitoring data are consistent with the dominance of plant uptake, improved interpretation of these data should incorporate the soil flux parameterizations suggested here.

  17. Temperature dependence of the heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    Science.gov (United States)

    Liu, Yongchun; He, Hong; Ma, Qingxin

    2008-04-03

    The experimental determination of rate constants for atmospheric reactions and how these rate constants vary with temperature remain a crucially important part of atmosphere science. In this study, the temperature dependence of the heterogeneous reaction of carbonyl sulfide (COS) on magnesium oxide (MgO) has been investigated using a Knudsen cell reactor and a temperature-programmed reaction apparatus. We found that the adsorption and the heterogeneous reaction are sensitive to temperature. The initial uptake coefficients (gammat(Ini)) of COS on MgO decrease from 1.07 +/- 0.71 x 10-6 to 4.84 +/- 0.60 x 10-7 with the increasing of temperature from 228 to 300 K, and the steady state uptake coefficients (gammat(SS)) increase from 5.31 +/- 0.06 x 10-8 to 1.68 +/- 0.41 x 10-7 with the increasing of temperature from 240 to 300 K. The desorption rate constants (kdes) were also found to increase slightly with the enhancement of temperature. The empirical formula between the uptake coefficients, desorption rate constants and temperature described in the form of Arrhenius expression were obtained. The activation energies for the heterogeneous reaction and desorption of COS on MgO were measured to be 11.02 +/- 0.34 kJ.mol-1 and 6.30 +/- 0.81 kJ.mol-1, respectively. The results demonstrate that the initial uptake of COS on MgO is mainly contributed by an adsorption process and the steady state uptake is due to a catalytic reaction. The environmental implication was also discussed.

  18. Hydrogen sulfide protects HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Ya-Dan Wen

    Full Text Available BACKGROUND: Hydrogen sulfide (H₂S has been shown to have cytoprotective effects in models of hypertension, ischemia/reperfusion and Alzheimer's disease. However, little is known about its effects or mechanisms of action in atherosclerosis. Therefore, in the current study we evaluated the pharmacological effects of H₂S on antioxidant defenses and mitochondria protection against hydrogen peroxide (H₂O₂ induced endothelial cells damage. METHODOLOGY AND PRINCIPAL FINDINGS: H₂S, at non-cytotoxic levels, exerts a concentration dependent protective effect in human umbilical vein endothelial cells (HUVECs exposed to H₂O₂. Analysis of ATP synthesis, mitochondrial membrane potential (ΔΨm and cytochrome c release from mitochondria indicated that mitochondrial function was preserved by pretreatment with H₂S. In contrast, in H₂O₂ exposed endothelial cells mitochondria appeared swollen or ruptured. In additional experiments, H₂S was also found to preserve the activities and protein expressions levels of the antioxidants enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase in H₂O₂ exposed cells. ROS and lipid peroxidation, as assessed by measuring H₂DCFDA, dihydroethidium (DHE, diphenyl-l-pyrenylphosphine (DPPP and malonaldehyde (MDA levels, were also inhibited by H₂S treatment. Interestingly, in the current model, D, L-propargylglycine (PAG, a selective inhibitor of cystathionine γ-lyase (CSE, abolished the protective effects of H₂S donors. INNOVATION: This study is the first to show that H₂S can inhibit H₂O₂ mediated mitochondrial dysfunction in human endothelial cells by preserving antioxidant defences. SIGNIFICANCE: H₂S may protect against atherosclerosis by preventing H₂O₂ induced injury to endothelial cells. These effects appear to be mediated via the preservation of mitochondrial function and by reducing the deleterious effects of oxidative stress.

  19. Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene.

    Science.gov (United States)

    Seredych, Mykola; Mabayoje, Oluwaniyi; Bandosz, Teresa J

    2012-01-17

    Composites of zinc(oxy)hydroxide-graphite oxide and of zinc(oxy)hydroxide-graphene were used as adsorbents of hydrogen sulfide under ambient conditions. The initial and exhausted samples were characterized by XRD, FTIR, potentiometric titration, EDX, thermal analysis, and nitrogen adsorption. An increase in the amount of H(2)S adsorbed/oxidized on their surfaces in comparison with that of pure Zn(OH)(2) is linked to the structure of the composite, the relative number of terminal hydroxyls, and the kind of graphene-based phase used. Although terminal groups are activated by a photochemical process, the graphite oxide component owing to the chemical bonds with the zinc(oxy)hydroxide phase and conductive properties helps in electron transfer, leading to more efficient oxygen activation via the formation of superoxide ions. Elemental sulfur, zinc sulfide, sulfite, and sulfate are formed on the surface. The formation of sulfur compounds on the surface of zinc(oxy)hydroxide during the course of the breakthrough experiments and thus Zn(OH)(2)-ZnS heterojunctions can also contribute to the increased surface activity of our materials. The results show the superiority of graphite oxide in the formation of composites owing to its active surface chemistry and the possibility of interface bond formation, leading to an increase in the number of electron-transfer reactions.

  20. Structural Evolution of Carbon During Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adel F. Sarofim; Angelo Kandas

    1998-10-28

    The examination of the structural evolution of carbon during oxidation has proven to be of scientific interest. Early modeling work of fluidized bed combustion showed that most of the reactions of interest occurs iOn the micropores, and this work has concentrated on these pores. This work has concentrated on evolution of macroporosity and rnicroporosity of carbons during kinetic controlled oxidation using SAXS, C02 and TEM analysis. Simple studies of fluidized bed combustion of coal chars has shown that many of the events considered fragmentation events previously may in fact be "hidden" or nonaccessible porosity. This makes the study of the microporous combustion characteristics of carbon even more important. The generation of a combustion resistant grid, coupled with measurements of the SAXS and C02 surface areas, fractal analysis and TEM studies has confined that soot particles shrink during their oxidation, as previously suspected. However, this shrinkage results in an overall change in structure. This structure becomes, on a radial basis, much more ordered near the edges, while the center itself becomes transparent to the TEM beam, implying a total lack of structure in this region. Although complex, this carbon structure is probably burning as to keep the density of the soot particles nearly the same. The TEM techniques developed for examination of soots has also been applied to Spherocarb. The Spherocarb during oxidation also increases its ordering,. This ordering, by present theories, would imply that the reactivity would go. However, the reactivity goes up, implying that structure of carbon is secondary in importance to catalytic effects.

  1. Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides.

    Science.gov (United States)

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-06-27

    Composites of copper (hydr)oxychlorides with graphite oxide or graphene were synthesized and used as adsorbents of hydrogen sulfide at dynamic conditions at ambient temperatures. The materials were extensively characterized before and after adsorption in order to link their performance to the surface features. X-ray diffraction, FTIR, thermal analysis, TEM, SEM/EDX, and adsorption of nitrogen were used. It was found that the composite with graphene has the most favorable surface features enhancing reactive adsorption of hydrogen sulfide. The presence of moisture in the H2S stream has a positive effect on the removal process owing to the dissociation process. H2S is retained on the surface via a direct replacement of OH groups and via acid-base reactions with the copper (hydr)oxide. Highly dispersed reduced copper species on the surface of the composite with graphene enhance activation of oxygen and cause formation of sulfites and sulfates. Higher conductivity of the graphene phase than that of graphite oxide helps in electron transfer in redox reactions.

  2. Oxidation does not (always) kill reactivity of transition metals: solution-phase conversion of nanoscale transition metal oxides to phosphides and sulfides.

    Science.gov (United States)

    Muthuswamy, Elayaraja; Brock, Stephanie L

    2010-11-17

    Unexpected reactivity on the part of oxide nanoparticles that enables their transformation into phosphides or sulfides by solution-phase reaction with trioctylphosphine (TOP) or sulfur, respectively, at temperatures of ≤370 °C is reported. Impressively, single-phase phosphide products are produced, in some cases with controlled anisotropy and narrow polydispersity. The generality of the approach is demonstrated for Ni, Fe, and Co, and while manganese oxides are not sufficiently reactive toward TOP to form phosphides, they do yield MnS upon reaction with sulfur. The reactivity can be attributed to the small size of the precursor particles, since attempts to convert bulk oxides or even particles with sizes approaching 50 nm were unsuccessful. Overall, the use of oxide nanoparticles, which are easily accessed via reaction of inexpensive salts with air, in lieu of organometallic reagents (e.g., metal carbonyls), which may or may not be transformed into metal nanoparticles, greatly simplifies the production of nanoscale phosphides and sulfides. The precursor nanoparticles can easily be produced in large quantities and stored in the solid state without concern that "oxidation" will limit their reactivity.

  3. Coating Carbon Nanotubes with Europium Oxide

    Institute of Scientific and Technical Information of China (English)

    Hui Qun CAO; Guang Yan HONG; Jing Hui YAN; Ji Lin ZHANG; Gui Xia LIU

    2003-01-01

    Carbon nanotubes (CNTS) coating with europium oxide by a simple method is reported in this letter for the first time. The CNTS were refluxed in a solution of nitric acid containing europium nitrate, and the pH value was subsequently ajusted with ammonia solution. At last, the mixture was filtered and annealed. The TEM micrograph showed that the CNTS were covered with a uniform thin layer with thickness of about 15 nm. The XRD results revealed that the CNTS were coated with europium oxide.

  4. Carbonyl sulfide, dimethyl sulfide and carbon disulfide in the Pearl River Delta of southern China: Impact of anthropogenic and biogenic sources

    Science.gov (United States)

    Guo, H.; Simpson, I. J.; Ding, A. J.; Wang, T.; Saunders, S. M.; Wang, T. J.; Cheng, H. R.; Barletta, B.; Meinardi, S.; Blake, D. R.; Rowland, F. S.

    2010-10-01

    Reduced sulfur compounds (RSCs) such as carbonyl sulfide (OCS), dimethyl sulfide (DMS) and carbon disulfide (CS 2) impact radiative forcing, ozone depletion, and acid rain. Although Asia is a large source of these compounds, until now a long-term study of their emission patterns has not been carried out. Here we analyze 16 months of RSC data measured at a polluted rural/coastal site in the greater Pearl River Delta (PRD) of southern China. A total of 188 canister air samples were collected from August 2001 to December 2002. The OCS and CS 2 mixing ratios within these samples were higher in autumn/winter and lower in summer due to the influence of Asian monsoon circulations. Comparatively low DMS values observed in this coastal region suggest a relatively low biological productivity during summer months. The springtime OCS levels in the study region (574 ± 40 pptv) were 25% higher than those on other East Asia coasts such Japan, whereas the springtime CS 2 and DMS mixing ratios in the PRD (47 ± 38 pptv and 22 ± 5 pptv, respectively) were 3-30 times lower than elevated values that have been measured elsewhere in East Asia (Japan and Korea) at this time of year. Poor correlations were found among the three RSCs in the whole group of 188 samples, suggesting their complex and variable sources in the region. By means of backward Lagrangian particle release simulations, air samples originating from the inner PRD, urban Hong Kong and South China Sea were identified. The mean mixing ratio of OCS in the inner PRD was significantly higher than that in Hong Kong urban air and South China Sea marine air ( p 0.05). Using a linear regression method based on correlations with the urban tracer CO, the estimated OCS emission in inner PRD (49.6 ± 4.7 Gg yr -1) was much higher than that in Hong Kong (0.32 ± 0.05 Gg yr -1), whereas the estimated CS 2 and DMS emissions in the study region accounted for a very few percentage of the total CS 2 and DMS emission in China. These

  5. Pathways of sulfide oxidation by haloalkaliphilic bacteria in limited-oxygen gas lift bioreactors

    NARCIS (Netherlands)

    Klok, J.B.; Bosch, van den P.L.F.; Buisman, C.J.N.; Stams, A.J.M.; Keesman, K.J.; Janssen, A.J.H.

    2012-01-01

    Physicochemical processes, such as the Lo-cat and Amine-Claus process, are commonly used to remove hydrogen sulfide from hydrocarbon gas streams such as landfill gas, natural gas, and synthesis gas. Biodesulfurization offers environmental advantages, but still requires optimization and more insight

  6. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect

    Science.gov (United States)

    Park, G. D.; Cho, J. S.; Kang, Y. C.

    2015-10-01

    Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the 150th cycle of the nickel sulfide/rGO composite powders prepared by sulfidation of the Ni/rGO composite and nickel acetate/GO composite powders at a current density of 0.3 A g-1 are 449 and 363 mA h g-1, respectively; their capacity retentions, calculated from the tenth cycle, are 100 and 87%. The nickel sulfide hollow nanospheres/rGO composite powders possess structural stability over repeated Na-ion insertion and extraction processes, and also show excellent rate performance for Na-ion storage.Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the

  7. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Solehudin, Agus, E-mail: asolehudin@upi.edu [Department of Mechanical Engineering Education, Indonesia University of Education (UPI), Bandung, West Java (Indonesia); Nurdin, Isdiriayani [Department of Chemical Engineering, Bandung Institute of Technology, Bandung, West Java (Indonesia)

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  8. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-01

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  9. Diallyl Trisulfide Suppresses Oxidative Stress-Induced Activation of Hepatic Stellate Cells through Production of Hydrogen Sulfide.

    Science.gov (United States)

    Zhang, Feng; Jin, Huanhuan; Wu, Li; Shao, Jiangjuan; Zhu, Xiaojing; Chen, Anping; Zheng, Shizhong

    2017-01-01

    Accumulating data reveal that garlic has beneficial effects against chronic liver disease. We previously reported that diallyl trisulfide (DATS), the primary organosulfur compound in garlic, reduced fibrosis and attenuated oxidative stress in rat fibrotic liver. The present study was aimed at elucidating the underlying mechanisms. The primary rat hepatic stellate cells (HSCs) were cultured and stimulated with hydrogen peroxide (H2O2) for inducing HSC activation under oxidative stress. We examined the effects of DATS on the profibrogenic properties and oxidative stress in H2O2-treated HSCs. The results showed that DATS suppressed and reduced fibrotic marker expression in HSCs. DATS arrested cell cycle at G2/M checkpoint associated with downregulating cyclin B1 and cyclin-dependent kinase 1, induced caspase-dependent apoptosis, and reduced migration in HSCs. Moreover, intracellular levels of reactive oxygen species and lipid peroxide were decreased by DATS, but intracellular levels of glutathione were increased in HSCs. Furthermore, DATS significantly elevated hydrogen sulfide (H2S) levels within HSCs, but iodoacetamide (IAM) reduced H2S levels and significantly abrogated DATS production of H2S within HSCs. IAM also abolished all the inhibitory effects of DATS on the profibrogenic properties and oxidative stress in HSCs. Altogether, we demonstrated an H2S-associated mechanism underlying DATS inhibition of profibrogenic properties and alleviation of oxidative stress in HSCs. Modulation of H2S production may represent a therapeutic remedy for liver fibrosis.

  10. Impact of sulfide-oxidizing bacteria on the phosphorus cycle in marine sediments

    OpenAIRE

    Brock, Jörg

    2011-01-01

    Studies with the marine Beggiatoa strain 35Flor revealed that intracellular polyphosphate is rapidly degraded and phosphate is released in response to a switch from oxic to anoxic conditions at high sulfide concentrations. This new mode of polyphosphate usage drastically increases phosphate concentrations in the surrounding medium and helps to explain high phosphate concentrations in organic rich sediments of coastal upwelling areas, which enhance the chance of apatite precipitation. The unus...

  11. Methods to Characterize Oxidation Resistance for Magnesia—carbon Refractories

    Institute of Scientific and Technical Information of China (English)

    LIXiang-min; MichelReigaud

    1996-01-01

    The parameters influencing the process of carbon oxidation in magnesia-carbon refracto-ries are reviewed.A typology of their oxidation resistance measurements is then presented;four different method are discussed in details.No agreement has been reached yet on a standard-ized test method.So far,oxidation resistance describes a process more than a property.

  12. Catalytic systems of cumene oxidation based on multiwalled carbon nanotubes

    Science.gov (United States)

    Kobotaeva, N. S.; Skorokhodova, T. S.; Ryabova, N. V.

    2015-03-01

    Catalytic systems for cumene oxidation were prepared on the basis of silver-activated carbon nanotubes. Silver lies on the surface of the carbon nanotubes in the nanocrystalline state and has a size of 15-20 nm. The use of the obtained catalytic systems in cumene oxidation with molecular oxygen allowed a considerable decrease in the oxidation temperature and an increase in selectivity.

  13. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation

    DEFF Research Database (Denmark)

    Revsbech, Inge G; Shen, Xinggui; Chakravarti, Ritu

    2014-01-01

    inhibitors of mitochondrial respiration, hydrogen sulfide (H2S) and nitric oxide (NO), in winter-hibernating and summer-active free-ranging Scandinavian brown bears. We found that levels of sulfide metabolites were overall similar in summer-active and hibernating bears but their composition in the plasma...... differed significantly, with a decrease in bound sulfane sulfur in hibernation. High levels of unbound free sulfide correlated with high levels of cysteine (Cys) and with low levels of bound sulfane sulfur, indicating that during hibernation H2S, in addition to being formed enzymatically from the substrate...... Cys, may also be regenerated from its oxidation products, including thiosulfate and polysulfides. In the absence of any dietary intake, this shift in the mode of H2S synthesis would help preserve free Cys for synthesis of glutathione (GSH), a major antioxidant found at high levels in the red blood...

  14. COMPOSITE MATERIALS BASED ON ZINC SULFIDE AND ZINC OXIDE: STRUCTURAL AND BIOCIDAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Sukhodub L.B

    2016-12-01

    Full Text Available Introduction. The widespread use of drugs with antimicrobial action has led to the formation of microorganism resistance against wide range of antibiotics. One of the approaches to dissolving this problem is the substances modification by inorganic bioactive ions in oder to initiate a controlled reaction in the bone tissues and provision of antimicrobial activity. It is known that ZnO-based materials have a pronounced biocompatibility, they are characterized by high limit strength, absolute mechanical hardness, as well as the ability to withstand the harsh operating conditions. The aim of this work is the study of structural and biocidal properties of composite material based on zinc oxide and zinc sulfide (ZnS-ZnO and its complex with an organic substance - sodium alginate (ZnS-ZnO-Alg for use in biomedical purpose. Materials and methods. For the synthesis of ZnS-ZnO composite 50 ml 0.2M solution zinc nitrate was added to the 50 ml 0.2M thiourea CS (NH ₂ ₂ solution and stirred in a shaker for 60 minutes. The formation of the compound took place when added to a mixture of 25 mas.% solution of ammonia with the subsequent heating at 80 oC for 30 minutes. Synthesis of the metalorganic complex of ZnS-ZnO-Alg was performed by above mentioned procedure, but to the thiourea solution was previously added 1 ml of 3 mas.% solution of sodium alginate under ultrasonic mixing.. For the next research composites were dried or lyophilized. Study of antibacterial activity of the ZnS-ZnO and ZnS-ZnO-Alg particles was carried out with the use of nutrient mediums: Muller Hinton, meat-pepton nutrient (MPN. As the reference cultures were used E. coli ATCC 25922, S. aureus ATCC 25923, S. aureus ATSS 29213, S. aureus ATSS-6538, C albicans ATCC 885-653. Determination of the minimum bactericidal concentration (MBC was carried out by a modified serial diluted method in liquid nutrient broth followed plating on solid Muller Hinton nutrient medium. In addition, the

  15. Adsorption/oxidation of sulfur-containing gases on nitrogen-doped activated carbon

    Directory of Open Access Journals (Sweden)

    Liu Qiang

    2016-01-01

    Full Text Available Coconut shell-based activated carbon (CAC was used for the removal of methyl mercaptan (MM. CAC was modified by urea impregnation and calcined at 450°C and 950°C. The desulfurization activity was determined in a fixed bed reactor under room temperature. The results showed that the methyl mercaptan adsorption/oxidation capacity of modified carbon caicined at 950°C is more than 3 times the capacity of original samples. On the other hand, the modified carbon caicined at 950°C also has a high capacity for the simultaneous adsorption/oxidation of methyl mercaptan and hydrogen sulfide.The introduce of basic nitrogen groups siginificantly increases the desulfurization since it can facilitate the electron transfer process between sulfur and oxygen. The structure and chemical properties are characterized using Boehm titration, N2 adsorption-desorption method, thermal analysis and elemental analysis. The results showed that the major oxidation products were dimethyl disulfide and methanesulfonic acid which adsorbed in the activated carbon.

  16. Hydrogen sulfide prodrugs—a review

    Directory of Open Access Journals (Sweden)

    Yueqin Zheng

    2015-09-01

    Full Text Available Hydrogen sulfide (H2S is recognized as one of three gasotransmitters together with nitric oxide (NO and carbon monoxide (CO. As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.

  17. Hydrogen sulfide prodrugs—a review

    Science.gov (United States)

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-01-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  18. Hydrogen sulfide : physiological properties and therapeutic potential in ischaemia

    NARCIS (Netherlands)

    Bos, Eelke M.; van Goor, Harry; Joles, Jaap A.; Whiteman, Matthew; Leuvenink, Henri G. D.

    2015-01-01

    Hydrogen sulfide (H2S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2S, focusing upon the

  19. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  20. Investigation of Hydrogen Sulfide Gas as a Treatment against P. falciparum, Murine Cerebral Malaria, and the Importance of Thiolation State in the Development of Cerebral Malaria

    DEFF Research Database (Denmark)

    Dellavalle, Brian; Staalsoe, Trine; Kurtzhals, Jørgen Anders;

    2013-01-01

    Cerebral malaria (CM) is a potentially fatal cerebrovascular disease of complex pathogenesis caused by Plasmodium falciparum. Hydrogen sulfide (HS) is a physiological gas, similar to nitric oxide and carbon monoxide, involved in cellular metabolism, vascular tension, inflammation, and cell death...

  1. Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea : a biogeochemical model of the whole water column coupling the oxic and anoxic parts

    NARCIS (Netherlands)

    Grégoire, M.; Soetaert, K.E.R.

    2010-01-01

    Carbon, nitrogen, oxygen and sulfide budgets are derived for the Black Sea water column from a coupled physical–biogeochemical model. The model is applied in the deep part of the sea and simulates processes over the whole water column including the anoxic layer that extends from similar, equals115 m

  2. Mineral systems and the thermodynamics of selenites and selenates in the oxidation zone of sulfide ores - a review

    Science.gov (United States)

    Charykova, Marina V.; Krivovichev, Vladimir G.

    2016-08-01

    Contemporary mineralogy and geochemistry are concerned with understanding and deciphering processes that occur near the surface of the Earth. These processes are especially important for resolving ecological challenges and developing principles of good environmental management. Selenium oxysalts, selenites and selenates, are relatively rare as minerals; there are presently only 34 known mineral species. Thirty-one "pure" selenites, which contain only selenite anionic groups, are known to occur naturally. The other three minerals each contain two anionic groups: selenate and selenite (schmiederite), selenate and sulphate (olsacherite), and selenate and iodate (carlosruizite). This work is intended to provide a classification of natural selenium oxysalts based on their chemical composition. Selenites belong to a particular mineral system, whose components are chemical elements required to construct the crystal structure of a mineral (species-defining constituents). The number of components represents the minimum number of independent elements necessary to define the composition of the system. All selenites and selenates are divided into two groups: anhydrous selenites (I) and hydrous selenites and selenates (II). The paper also presents systematized data published on the thermodynamics of selenites, which are formed in the weathering zone of sulfide and selenide ores, and determines approaches to the quantitative physicochemical modeling of formation conditions. The Eh-pH diagrams of the Me-Se-H2O systems (Me = Cu, Co, Ni, Fe, Zn, Ca, Al) were calculated and plotted for the average contents of these elements in aqueous weathering solutions in sulfide deposit oxidation zones.

  3. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles.

    Science.gov (United States)

    Babaahamdi-Milani, Majid; Nezamzadeh-Ejhieh, Alireza

    2016-11-15

    The Ni(II)-Pb(II) exchanged clinoptilolite nanoparticles (NCP) were transformed to corresponding oxides and sulfides via calcination and sulfiding processes, respectively. The obtained catalysts were characterized by XRD, FT-IR, TEM and DRS and used in photodegradation of p-nitrophenol (4-NP) aqueous solution under Hg-lamp irradiation. Results showed considerable increase in activity of the coupled semiconductors with respect to monocomponent one. In NiO-PbO-NCP system, conduction band (CB) of NiO is enough negative for easily migration of photogenerated electrons to CB-PbO level, while such phenomena take place from more negative CB-PbS level to CB-NiS level in NiS-PbS-NCP. These phenomena significantly prevented from electron-hole recombination which increased photocatalytic activity of the coupled semiconductors. Best photodegradation activities obtained by NiO1.3%-PbO14.7%-NCP and NiS2.1%-PbS10.0%-NCP, confirming semiconductors' mass-ratio dependence of the photocatalytic process. The supported coupled semiconductors showed blue shifts in band gap energies with respect to the bulk semiconductors which confirm formation of semiconductors nanoparticles inside the zeolite framework. The highest degradation percentage of 4-NP was obtained at: 0.5gL(-1) photocatalysts, 15mgL(-1) 4-NP at pH 7.5.

  4. Experimental and theoretical study of hydrogen thiocarbonate for heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    Science.gov (United States)

    Liu, Yongchun; He, Hong

    2009-04-09

    In situ diffuse reflectance infrared Fourier transform spectroscopy combined with derivative spectroscopy analysis, two-dimensional correlation spectroscopy analysis, and quantum chemical calculations were used to investigate the infrared absorbance assignment and the molecular structure of hydrogen thiocarbonate on magnesium oxide. The bands at 1283 and 1257 cm(-1), which had the typical characteristic of intermediate, were observed in experiments for the heterogeneous reaction of COS on MgO. On the basis of two-dimensional correlation spectroscopy analysis and quantum chemical calculations, the band at 1283 cm(-1) was assigned to the v(s) band of bridged thiocarbonate which formed on the two neighboring Mg atoms in the (100) face of MgO crystal, and the band at 1257 cm(-1) was the v(s) band of monodentate thiocarbonate on MgO. The v(as)(OCO) band of thiocarbonates was invisible in the experiment due to their weak absorbance and the interruption of surface carbonate. The formation mechanism of thiocarbonates is proposed, which occurred through a nucleophilic attack of preadsorbed COS by surface -OH groups followed by hydrogen atom transfer from the -OH group to the sulfur atom of preadsorbed COS. The activation energy for the intramolecular proton-transfer reaction of bridged thiocarbonate was calculated to be 18.52 kcal x mol(-1) at the B3LYP/6-31+G(d,p) level of theory.

  5. Purification of carbon nanotube by wet oxidation; Shisshiki sanka ni yoru carbon nanotube no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, K.; Takarada, T. [Gunma University, Gunma (Japan)

    1997-07-10

    In order to efficiently recover carbon nanotubes, the purification method by wet oxidation with orthoperiodic acid and perchloric acid is investigated. The reactivity of the carbonaceous material toward the acids depends on the type of carbon. Carbon nanotubes are selectively recovered under the mild oxidation conditions. The degree of purification depends on the concentration of orthoperiodic acid. It is suggested that wet oxidation is an effective method for purification of carbon nanotubes. 17 refs., 6 figs.

  6. Harnessing Evolutionary Toxins for Signaling: Reactive Oxygen Species, Nitric Oxide and Hydrogen Sulfide in Plant Cell Regulation

    Science.gov (United States)

    Hancock, John T.

    2017-01-01

    During the early periods of evolution, as well as in niche environments today, organisms have had to learn to tolerate the presence of many reactive compounds, such as reactive oxygen species, nitric oxide, and hydrogen sulfide. It is now known that such compounds are instrumental in the signaling processes in plant cells. There are enzymes which can make them, while downstream of their signaling pathways are coming to light. These include the production of cGMP, the activation of MAP kinases and transcription factors, and the modification of thiol groups on many proteins. However, organisms have also had to tolerate other reactive compounds such as ammonia, methane, and hydrogen gas, and these too are being found to have profound effects on signaling in cells. Before a holistic view of how such signaling works, the full effects and interactions of all such reactive compounds needs to be embraced. A full understanding will be beneficial to both agriculture and future therapeutic strategies. PMID:28239389

  7. XAFS study on the sulfidation mechanisms of Co-Mo catalysts supported on activated carbon and alumina: effect of complexing agent.

    Science.gov (United States)

    Tsuji, K; Umeki, T; Yokoyama, Y; Kitada, T; Iwanami, Y; Nonaka, O; Shimada, H; Matsubayashi, N; Nishijima, A; Nomura, M

    2001-03-01

    The effect of nitrilotriacetic acid (NTA) as a complexing agent on the sulfidation mechanisms of Co-Mo catalysts supported on activated carbon and alumina was examined by the XAFS technique. The XAFS results revealed that NTA interacted with Co atoms and formed the Co-NTA interaction, while it showed almost no influence on the local structures around Mo atoms. The Co-NTA interaction suppressed the aggregation of cobalt atoms and the interaction between cobalt and alumina during sulfiding, and consequently promoted the formation of the Co-Mo-S phase.

  8. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: effect of pH, mixing and aeration.

    Science.gov (United States)

    Dai, X R; Blanes-Vidal, V

    2013-01-30

    This study aimed at evaluating the effect of swine slurry acidification and acidification-aeration treatments on ammonia (NH(3)), carbon dioxide (CO(2)) and hydrogen sulfide (H(2)S) emissions during slurry treatment and subsequent undisturbed storage. The study was conducted in an experimental setup consisting of nine dynamic flux chambers. Three pH levels (pH = 6.0, pH = 5.8 and pH = 5.5), combined with short-term aeration and venting (with an inert gas) treatments were studied. Acidification reduced average NH(3) emissions from swine slurry stored after acidification treatment compared to emissions during storage of non-acidified slurry. The reduction were 50%, 62% and 77% when pH was reduce to 6.0, 5.8 and 5.5, respectively. However, it had no significant effect on average CO(2) and H(2)S emissions during storage of slurry after acidification. Aeration of the slurry for 30 min had no effect on average NH(3), CO(2) and H(2)S emissions both during the process and from stored slurry after venting treatments. During aeration treatment, the NH(3), CO(2) and H(2)S release pattern observed was related to the liquid turbulence caused by the gas bubbles rather than to biological oxidation processes in this study.

  9. Triggers on sulfide saturation in Fe-Ti oxide-bearing, mafic-ultramafic layered intrusions in the Tarim large igneous province, NW China

    Science.gov (United States)

    Cao, Jun; Wang, Christina Yan; Xu, Yi-Gang; Xing, Chang-Ming; Ren, Ming-Hao

    2016-08-01

    Three Fe-Ti oxide-bearing layered intrusions (Mazaertag, Wajilitag, and Piqiang) in the Tarim large igneous province (NW China) have been investigated for understanding the relationship of sulfide saturation, Platinum-group element (PGE) enrichment, and Fe-Ti oxide accumulation in layered intrusions. These mafic-ultramafic layered intrusions have low PGE concentrations (convecting mantle, without appreciable input of lithospheric mantle. The Mazaertag and Wajilitag intrusions have near-chondritic γOs(t) values (+13 to +60) against restricted ɛ Nd(t) values (-0.4 to +2.8), indicating insignificant crustal contamination. Rocks of the Piqiang intrusion have relatively low ɛ Nd(t) values of -3.1 to +1.0, consistent with ˜15 to 25 % assimilation of the upper crust. The rocks of the Mazaertag and Wajilitag intrusions have positive correlation of PGE and S, pointing to the control of PGE by sulfide. Poor correlation of PGE and S for the Piqiang intrusion is attributed to the involvement of multiple sulfide-stage liquids with different PGE compositions or sulfide-oxide reequilibration on cooling. These three layered intrusions have little potential of reef-type PGE mineralization. Four criteria are summarized in this study to help discriminate between PGE-mineralized and PGE-unmineralized mafic-ultramafic intrusions.

  10. Oxidation Through Coating Cracks of SiC-Protected Carbon/Carbon

    Science.gov (United States)

    Jacobson, Nathan S.; Roth, Don J.; Rauser, Richard W.; Cawley, James D.; Curry, Donald M.

    2008-01-01

    The oxidation of SiC-protected carbon/carbon through machined slots and naturally occurring craze cracks in the SiC was studied. The slot and crack geometries were characterized, and the subsurface oxidation of the carbon/carbon substrate at temperatures of 1000 to 1300 C in air was assessed using weight change, x-ray computed tomography, and optical microscopy of sections. Rate constants were derived from these measurements and compared with a two-step diffusion control model of carbon oxidation. Oxidation kinetic measurements on both the specimens with machined slots and with naturally occurring craze cracks showed good agreement with the model.

  11. A supercritical oxidation system for the determination of carbon isotope ratios in marine dissolved organic carbon

    NARCIS (Netherlands)

    Le Clercq, Martijn; Van der Plicht, Johannes; Meijer, Harro A.J.

    1998-01-01

    An analytical oxidation system employing supercritical oxidation has been developed. It is designed to measure concentration and the natural carbon isotope ratios (C-13, C-14) Of dissolved organic carbon (DOC) and is especially suited for marine samples. The oxidation takes place in a ceramic tube a

  12. Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution.

    Science.gov (United States)

    Esmaili-Hafshejani, Javad; Nezamzadeh-Ejhieh, Alireza

    2016-10-05

    Photocatalytic activity of the coupled ZnO-CuO and ZnS-CuS semiconductors supported onto clinoptilolite nanoparticles (CNP) and micronized one (CMP) was studied in photodegradation of benzophenone (BP) aqueous solution. The ZnO-CuO/CNP (or MCP) and ZnS-CuS/CNP (or MCP) catalysts were prepared via calcination and sulfiding of their Zn(II)-Cu(II) ion-exchanged samples, respectively. XRD patterns confirmed loading of the mentioned semiconductors onto the zeolite, and nano dimension of the catalysts was confirmed by XRD and TEM results. Typical Tauc plots obtained from UV-vis DRS spectra showed red shifts for the band gap energies of the supported coupled semiconductors with respect to the supported monocomponent ones especially for ZnO/NCP and ZnS/NCP catalysts. Also, in both indirect and direct transitions, these red shifts were more considerable in the oxidic systems with respect to the sulfidic systems. Accordingly, the supported oxidic systems showed better photocatalytic activity than the sulfidic one. In the oxidic systems changing the dose of CuO played important role while in the sulfidic systems ZnS played considerable role in the degradation of BP. In the used systems, CuO and ZnS played the main e/h generators in the oxidic and sulfidic systems, respectively, while ZnO and CuS played the preventer e/h recombination. Based on the results, production of e/h is the rate limiting step in the used systems. The maximum degradation activity of the catalysts was obtained at: 0.12gL(-1) of ZnO0.80-CuO3.18/NCP and 0.10gL(-1) of ZnS1.39-CuS2.88/NCP catalysts, initial BP concentration of 30mgL(-1) at pH 7.5.

  13. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.

    Science.gov (United States)

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors arising during wine production are frequently removed by Cu(II) fining. In part 1 of this study ( 10.1021/acs.jafc.6b00641 ), the reaction of H2S and thiols with Cu(II) was examined; however, the interaction of iron and copper is also known to play an important synergistic role in mediating non-enzymatic wine oxidation. The interaction of these two metals in the oxidation of H2S and thiols (cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol) was therefore examined under wine-like conditions. H2S and thiols (300 μM) were reacted with Fe(III) (100 or 200 μM) alone and in combination with Cu(II) (25 or 50 μM), and concentrations of H2S and thiols, oxygen, and acetaldehyde were monitored over time. H2S and thiols were shown to be slowly oxidized in the presence of Fe(III) alone and were not bound to Fe(III) under model wine conditions. However, Cu(II) added to model wine containing Fe(III) was quickly reduced by H2S and thiols to form Cu(I) complexes, which then rapidly reduced Fe(III) to Fe(II). Oxidation of Fe(II) in the presence of oxygen regenerated Fe(III) and completed the iron redox cycle. In addition, sulfur-derived oxidation products were observed, and the formation of organic polysulfanes was demonstrated.

  14. Formation of "Chemically Pure" Magnetite from Mg-Fe-Carbonates Implications for the Exclusively Inorganic Origin of Magnetite and Sulfides in Martian Meteorite ALH84001

    Science.gov (United States)

    Golden, D. C.; Ming, Douglas W.; Lauer, H. V., Jr.; Morris, R. V.; Trieman, A. H.; McKay, G. A.

    2006-01-01

    Magnetite and sulfides in the black rims of carbonate globules in Martian meteorite ALH84001 have been studied extensively because of the claim by McKay et al. that they are biogenic in origin. However, exclusively inorganic (abiotic) processes are able to account for the occurrence of carbonate-sulfide-magnetite assemblages in the meteorite. We have previously precipitated chemically zoned and sulfide-bearing carbonate globules analogous to those in ALH84001 (at less than or equal to 150 C) from multiple fluxes of variable-composition Ca-Mg-Fe-CO2-S-H2O solutions. Brief heating of precipitated globules to approx. 470 C produced magnetite and pyrrhotite within the globules by thermal decomposition of siderite and pyrite, respectively. We have also shown that morphology of magnetite formed by inorganic thermal decomposition of Fe-rich carbonate is similar to the morphology of so-called biogenic magnetite in the carbonate globules of ALH84001. Magnetite crystals in the rims of carbonate globules in ALH84001 are chemically pure [Note: "Chemically pure" is defined here as magnetite with Mg at levels comparable or lower than Mg detected by [8] in ALH84001 magnetite]. A debate continues on whether or not chemically pure magnetite can form by the thermal decomposition of mixed Mg-Fe-carbonates that have formed under abiotic conditions. Thomas-Keprta et al. argue that it is not possible to form Mg-free magnetite from Mg-Fe-carbonate based on thermodynamic data. We previously suggested that chemically pure magnetite could form by the thermal decomposition of relatively pure siderite in the outer rims of the globules. Mg-Fe-carbonates may also thermally decompose under conditions conducive for formation of chemically pure magnetite. In this paper we show through laboratory experiments that chemically pure magnetite can form by an inorganic process from mixed Mg-Fe-carbonates.

  15. Iron sulfide attenuates the methanogenic toxicity of elemental copper and zinc oxide nanoparticles and their soluble metal ion analogs.

    Science.gov (United States)

    Gonzalez-Estrella, Jorge; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A

    2016-04-01

    Elemental copper (Cu(0)) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu(0) and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25-75μm) and coarse (500 to 1200μm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu(0) and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu(0) NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excess of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu(0) and ZnO NPs and their soluble ion analogs to methanogens.

  16. Sulfide elimination by intermittent nitrate dosing in sewer sediments

    Institute of Scientific and Technical Information of China (English)

    Yanchen Liu; Chen Wu; Xiaohong Zhou; David Z.Zhu; Hanchang Shi

    2015-01-01

    The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards,and requires expensive programs for its prevention.The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments.The study was carried out based on lab-scale experiments and batch tests using real sewer sediments.The intermittent nitrate dosing mode and the optimal control condition were investigated.The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment.The oxidation-reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S (nitrate/sulfide)ratio with slight excess nitrate is necessary for optimal conditions ofefficient sulfide control with lower carbon source loss.The opth-nal control condition is feasible for the sulfide elimination in sewer systems.

  17. Influence of increasing dissolved inorganic carbon concentrations and decreasing pH on chemolithoautrophic bacteria from oxic-sulfidic interfaces

    Directory of Open Access Journals (Sweden)

    K. Mammitzsch

    2012-12-01

    Full Text Available Increases in the dissolved inorganic carbon (DIC concentration are expected to cause a decrease in the pH of ocean waters, a process known as ocean acidification. In oxygen-deficient zones this will add to already increased DIC and decreased pH values. It is not known how this might affect microbial communities and microbially mediated processes. In this study, the potential effects of ocean acidification on chemolithoautotrophic prokaryotes of marine oxic-anoxic transition zones were investigated, using the chemoautotrophic denitrifying ε-proteobacterium "Sulfurimonas gotlandica" strain GD1 as a model organism. This and related taxa use reduced sulfur compounds, e.g. sulfide and thiosulfate, as electron donors and were previously shown to be responsible for nitrate removal and sulfide detoxification in redox zones of the Baltic Sea water column but occur also in other oxygen-deficient marine systems. Bacterial cell growth within a broad range of DIC concentrations and pH values was monitored and substrate utilization was determined. The results showed that the DIC saturation concentration for growth was already reached at 800 μM, which is well below in situ DIC levels. The pH optimum was between 6.6 and 8.0. Within a pH range of 6.6–7.1 there was no significant difference in substrate utilization; however, at lower pH values cell growth decreased sharply and cell-specific substrate consumption increased. These findings suggest that a direct effect of ocean acidification, with the predicted changes in pH and DIC, on chemolithoautotrophic bacteria such as "S. gotlandica" str. GD1 is generally not very probable.

  18. Hydrogen polysulfide (H2S n ) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO).

    Science.gov (United States)

    Kimura, Hideo

    2016-11-01

    Hydrogen sulfide (H2S) is a physiological mediator with various roles, including neuro-modulation, vascular tone regulation, and cytoprotection against ischemia-reperfusion injury, angiogenesis, and oxygen sensing. Hydrogen polysulfide (H2S n ), which possesses a higher number of sulfur atoms than H2S, recently emerged as a potential signaling molecule that regulates the activity of ion channels, a tumor suppressor, transcription factors, and protein kinases. Some of the previously reported effects of H2S are now attributed to the more potent H2S n . H2S n is produced by 3-mercaptopyruvate sulfurtransferase (3MST) from 3-mercaptopyruvate (3MP) and is generated by the chemical interaction of H2S with nitric oxide (NO). H2S n sulfhydrates (sulfurates) cysteine residues of target proteins and modifies their activity, whereas H2S sulfurates oxidized cysteine residues as well as reduces cysteine disulfide bonds. This review focuses on the recent progress made in studies concerning the production and physiological roles of H2S n and H2S.

  19. A novel mechanism of formaldehyde neurotoxicity: inhibition of hydrogen sulfide generation by promoting overproduction of nitric oxide.

    Directory of Open Access Journals (Sweden)

    Xiao-Qing Tang

    Full Text Available BACKGROUND: Formaldehyde (FA induces neurotoxicity by overproduction of intracellular reactive oxygen species (ROS. Increasing studies have shown that hydrogen sulfide (H(2S, an endogenous gastransmitter, protects nerve cells against oxidative stress by its antioxidant effect. It has been shown that overproduction of nitric oxide (NO inhibits the activity of cystathionine-beta-synthase (CBS, the predominant H(2S-generating enzyme in the central nervous system. OBJECTIVE: We hypothesize that FA-caused neurotoxicity involves the deficiency of this endogenous protective antioxidant gas, which results from excessive generation of NO. The aim of this study is to evaluate whether FA disturbs H(2S synthesis in PC12 cells, and whether this disturbance is associated with overproduction of NO. PRINCIPAL FINDINGS: We showed that exposure of PC12 cells to FA causes reduction of viability, inhibition of CBS expression, decrease of endogenous H(2S production, and NO production. CBS silencing deteriorates FA-induced decreases in endogenous H(2S generation, neurotoxicity, and intracellular ROS accumulation in PC12 cells; while ADMA, a specific inhibitor of NOS significantly attenuates FA-induced decreases in endogenous H(2S generation, neurotoxicity, and intracellular ROS accumulation in PC12 cells. CONCLUSION/SIGNIFICANCE: Our data indicate that FA induces neurotoxicity by inhibiting the generation of H(2S through excess of NO and suggest that strategies to manipulate endogenous H(2S could open a suitable novel therapeutic avenue for FA-induced neurotoxicity.

  20. Facile covalent immobilization of cadmium sulfide quantum dots on graphene oxide nanosheets: preparation, characterization, and optical properties

    Science.gov (United States)

    Pham, Tuan Anh; Choi, Byung Choon; Jeong, Yeon Tae

    2010-11-01

    A facile approach for the preparation of a novel hybrid material containing graphene and an inorganic semiconducting material, cadmium sulfide quantum dots (CdS QDs), is demonstrated for the first time. First, amino-functionalized CdS QDs were prepared by modifications of the kinetic trapping method. Then, pristine graphite was oxidized and exfoliated to obtain graphene oxide nanosheets (GONS), which were then acylated with thionyl chloride to introduce acyl chloride groups on their surface. Subsequently, immobilization of the CdS QDs on the GONS surface was achieved through an amidation reaction between the amino groups located on the CdS QDs surface and the acyl chloride groups bound to the GONS surface. Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H-NMR), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and energy dispersive x-ray (EDX) spectroscopy were employed to investigate the changes in the surface functionalities, while high resolution transmission electron microscopy (HR-TEM) and field emission scanning electronic microscopy (FE-SEM) were used to study the morphologies and distribution of the CdS QDs on the GONS surface. Thermogravimetric analysis (TGA) was employed to characterize the weight loss of the samples on heating. Photoluminescence (PL) measurements were used to study the optical properties of the prepared CdS QDs and the CdS-graphene hybrid material.

  1. Copper-cerium oxides supported on carbon nanomaterial for preferential oxidation of carbon monoxide

    Institute of Scientific and Technical Information of China (English)

    高美怡; 江楠; 赵宇宏; 徐长进; 苏海全; 曾尚红

    2016-01-01

    The CuxO-CeO2/Fe@CNSs, CuxO-CeO2/MWCNTs-Co and CuxO-CeO2/MWCNTs-Ni catalysts were prepared by the im-pregnation method and characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffrac-tion, H2-temperature programmed reduction and N2 adsorption-desorption techniques. It was found that the Fe nanoparticles were encapsulated into the multi-layered carbon nanospheres (CNSs). However, the multi-wall carbon nanotubes (MWCNTS) were generated on the Co/Al2O3 and Ni/Al2O3 precursor. The addition of carbon nanomaterial as supports could improve structural properties and low-temperature activity of the CuO-CeO2 catalyst, and save the used amount of metal catalysts in the temperature range with high selectivity for CO oxidation. The copper-cerium oxides supported on carbon nanomaterial had good resistence to H2O and CO2.

  2. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation.

    Science.gov (United States)

    Jones, Christopher; Taylor, Stuart H; Burrows, Andrew; Crudace, Mandy J; Kiely, Christopher J; Hutchings, Graham J

    2008-04-14

    Low levels of cobalt doping (1 wt%) of copper manganese oxide enhances its activity for carbon monoxide oxidation under ambient conditions and the doped catalyst can display higher activity than current commercial catalysts.

  3. Preparation and mechanism of Fe-K/AC for catalytic oxidation of hydrogen sulfide%Fe-K/AC催化氧化脱硫剂制备及反应机理研究

    Institute of Scientific and Technical Information of China (English)

    方惠斌; 赵建涛; 王胜; 黄戒介; 房倚天

    2012-01-01

    Modified activated carbon Fe-K/AC (activated carbon supported iron and potassium) was used as an oxidation catalyst for low concentration hydrogen sulfide (H2S) removed. The orthogonal design method was introduced in the research of Fe-K/AC preparation to determine the optimum condition and to measure the impact of different factors. Then, catalytic activity and mechanism on Fe-K/AC catalyst for oxidation of hydrogen sulfide was investigated. The optimum preparation condition of Fe-K/AC with high sulfur capacity and selectivity is that the iron and potassium content is 0. 5% and 5. 0% , respectively; and the calcination temperature and the Fe2VFe3+ atomic ratio is 600°C and 0. 5, respectively. The order of their influences is potassium content > iron content > calcination temperature > Fe2+/Fe3+ atomic ratio. Results from structural parameters and surface morphology of sorbents reveal that iron metal oxide loaded on the surface of activated carbon has the selective catalytic oxidation activity of hydrogen sulfide to element sulfur. Alkali metal oxide, which changes basic surface groups, has a synergistic effect on the catalytic oxidation of hydrogen sulfide. However,the catalytic activity decreases due to excessive metal oxides loadings that may block the accessibility of micropores and reduce the surface area.%采用正交实验法制备了负载铁、钾的活性炭(Fe-K/AC)热煤气催化氧化脱硫剂,考察了活性组分铁、钾含量、二价铁和三价铁比例、煅烧温度对催化氧化脱硫反应活性的影响.由正交实验极差分析可知,各因素影响程度依次为:钾含量>铁含量>煅烧温度> Fe2+/Fe3+,最优制备条件为,铁含量0.5%、钾含量5.0%、煅烧温度600℃、Fe2+/Fe3+比0.5.通过对脱硫剂的孔隙结构和表面形貌分析可知,活性炭表面负载的铁金属氧化物具有催化氧化硫化氢生成单质硫的活性,碱金属氧化物具有协同作用,可以改变表面酸碱性,促进硫化

  4. Hydrogen Sulfide Promotes Wheat Seed Germination and Alleviates Oxidative Damage against Copper Stress

    Institute of Scientific and Technical Information of China (English)

    Hua Zhang; Lan-Ying Hu; Kang-Di Hu; Yun-Dong He; Song-Hua Wang; Jian-Ping Luo

    2008-01-01

    With the enhancement of copper (Cu) stress, the germination percentage of wheat seeds decreased gradually. Pretreatment with sodium hydrosulfide (NaHS), hydrogen sulfide (H2S) donor alleviated the inhibitory effect of Cu stress in a dose-dependent manner; whereas little visible symptom was observed in germinating seeds and radicle tips cultured in NaHs solutions. It was verified that H2S or HS- rather than other sulfur-containing components derived from NaHs attribute to the potential role in promoting seed germination against Cu stress. Further studies showed that NaHS could promote amylase and esterase activities, reduce Cu-induced disturbance of plasma membrane integrity in the radicle tips, and sustain lower levels of malondialdehyde and H2O2 in germinating seeds. Furthermore, NaHs pretreatment increased activities of superoxide dismutase and catalase and decreased that of lipoxygenase, but showed no significant effect on ascorbate peroxidase. Alternatively, NaHs prevented uptake of Cu and promoted the accumulation of free amino acids in seeds exposed to Cu. In addition, a rapid accumulation of endogenous H2S in seeds was observed at the early stags of germination, and higher level of H2S in NaHS-pretreated seeds. These data indicated that H2S was involved in the mechanism of germinating seeds' responses to Cu stress.

  5. Carbon mediated catalysis:A review on oxidative dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    De Chen; Anders Holmen; Zhijun Sui; Xinggui Zhou

    2014-01-01

    Carbon mediated catalysis has gained an increasing attention in both areas of nanocatalysis and nanomaterials. The progress in carbon nanomaterials provides many new opportunities to manip-ulate the types and properties of active sites of catalysts through manipulating structures, function-alities and properties of carbon surfaces. The present review focuses on progresses in carbon medi-ated oxidative dehydrogenation reactions of ethylbenzene, propane, and butane. The state-of-the-art of the developments of carbon mediated catalysis is discussed in terms of fundamental studies on adsorption of oxygen and hydrocarbons, reaction mechanism as well as effects of carbon nano-material structures and surface functional groups on the catalytic performance. We highlight the importance and challenges in tuning of the electron density of carbon and oxygen on carbon surfac-es for improving selectivity in oxidative dehydrogenation reactions.

  6. Template-free formation of carbon nanotube-supported cobalt sulfide@carbon hollow nanoparticles for stable and fast sodium ion storage

    Science.gov (United States)

    Han, Fei; Jun Tan, Clara Yi; Gao, Zhiqiang

    2017-01-01

    Carbon-coated cobalt sulfide (CoS) hollow nanoparticles on carbon nanotube (CNT) networks are synthesized by combining three simple approaches: direct growth of Co3O4 nanocrystals on the CNT backbones, chemical conversion of the Co3O4 nanocrystals to CoS hollow nanoparticles, and the spatial introduction of conformal surface modification by carbon. It is noteworthy that the CoS hollow nanoparticles with inner cavity of <50 nm and an average wall thickness of 6-8 nm are derived from a template-free method. Such a template-free-derived multifunctional nanostructure design achieves the amalgamation of the favorite traits of one-dimensional conducting networks, hollow nanoparticles, and surface modification, thus resulting in much enhanced charge transfer, ion transport, and upholding the integrity of the electrode and electrode/electrolyte interface. When applied the synthesized CoS-based material as anodes in sodium-ion batteries (SIBs), excellent performance is observed. For instance, a reversible specific capacity of 562 mAh g-1 at 100 mA g-1 and a capacity retention rate of 90% after 200 cycles at a higher current density of 500 mA g-1 are obtained. Moreover, a superior rate capability is observed with reversible specific capacities of 341 and 276 mAh g-1 at 2000 and at 5000 mA g-1, respectively.

  7. OXIDATION AND CHARACTERIZATION OF ACTIVE CARBON AG-5

    Directory of Open Access Journals (Sweden)

    Tatiana Goreacioc

    2015-06-01

    Full Text Available The surface chemistry of the commercial active carbon AG-5 has been modified by oxidation with concentrated nitric acid. The structural changes caused by oxidative treatment were estimated on the basis of nitrogen adsorption-desorption isotherms and thermal analysis. Boehm titration method and infrared spectral analysis have been used in order to evaluate surface chemistry characteristics of active carbon samples. After oxidation process the amount of total acidic groups on oxidized active carbon surface (AG-5ox increases by about 6 times in comparison with unmodified sample (AG-5. The concentration of the acidic groups on the oxidized active carbon surface (AG-5ox was in the following order: strong acidic >>> weak acidic > phenolic.

  8. Design and synthesis of chiral Ti-1,1'-bi-2-naphthol coordination polymers for heterogeneous catalytic asymmetric oxidation of sulfides

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-ya; WANG Xiao-tian

    2008-01-01

    Polymer-immobilized catalysis has many advantages such as easy recovery and reuse of catalyst. We prepared three novel chiral 1,1'-bi-2-naphthol-Ti coordination polymers with properly designed ligands and Ti(OiPr)4 under mild conditions. The prepared polymers exhibited good activity and excellent enantioselectivity (over 99%ee) in catalyzing the asymmetric oxidation of sulfides. The bridge linker in the polymer and the reaction solvent noticeably affected the enantioselectivity. The chiral coordination polymer was very stable and easy to separate from catalyzed reaction systems, with no significant loss of activity or enantioselectivity after reuse for at least ten times. These findings suggest a promising type of catalysts for synthesizing the widely used sulfoxides by asymmetrically oxidizing sulfides.

  9. Oxidation of ultra low carbon and silicon bearing steels

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Lucia [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: lucia.suarez@ctm.com.es; Rodriguez-Calvillo, Pablo [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: pablo.rodriguez@ctm.com.es; Houbaert, Yvan [Department of Materials Science and Engineering, University of Ghent (Belgium)], E-mail: Yvan.Houbaert@UGent.be; Colas, Rafael [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)], E-mail: rcolas@mail.uanl.mx

    2010-06-15

    Oxidation tests were carried out in samples from an ultra low carbon and two silicon bearing steels to determine the distribution and morphology of the oxide species present. The ultra low carbon steel was oxidized for short periods of time within a chamber designed to obtain thin oxide layers by controlling the atmosphere, and for longer times in an electric furnace; the silicon steels were reheated only in the electric furnace. The chamber was constructed to study the behaviour encountered during the short period of time between descaling and rolling in modern continuous mills. It was found that the oxide layers formed on the samples reheated in the electric furnace were made of different oxide species. The specimens treated in the chamber had layers made almost exclusively of wustite. Selected oxide samples were studied by scanning electron microscopy to obtain electron backscattered diffraction patterns, which were used to identify the oxide species in the layer.

  10. Electrosprayed Metal Oxide Semiconductor Films for Sensitive and Selective Detection of Hydrogen Sulfide

    Science.gov (United States)

    Ghimbeu, Camelia Matei; Lumbreras, Martine; Schoonman, Joop; Siadat, Maryam

    2009-01-01

    Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO2), tungsten oxide (WO3) and indium oxide (In2O3) were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD). The morphology studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD) proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H2S (10 ppm) at low operating temperatures (100 and 200 °C) and the best response in terms of Rair/Rgas is given by Cu-SnO2 films (2500) followed by WO3 (1200) and In2O3 (75). Moreover, all the films exhibit no cross-sensitivity to other reducing (SO2) or oxidizing (NO2) gases. PMID:22291557

  11. Photocatalytic Oxidation of Hydrosulfide Ions by Molecular Oxygen Over Cadmium Sulfide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Raevskaya, A. E., E-mail: photochem@e-mail.ru; Stroyuk, A.L., E-mail: photochem@e-mail.ru; Kuchmii, S.Ya. [National Academy of Sciences of Ukraine, L. V. Pysarzhevsky Institute of Physical Chemistry (Ukraine)], E-mail: photochem@e-mail.ru

    2004-06-15

    Photocatalytic activity of CdS nanoparticles in hydrosulfide-ions air oxidation was revealed and thoroughly investigated. HS{sup -} photooxidation in the presence of CdS nanoparticles results predominantly in the formation of SO{sub 3}{sup 2-} and SO{sub 4}{sup 2-} ions. Photocatalytic activity of ultrasmall CdS crystallites in HS{sup -} photooxidation is much more pronounced as compared to bulk CdS crystals due to high surface area of nanoparticles, their negligible light scattering, improved separation of photogenerated charge carriers etc. It was shown that hydrosulfide ions can be oxidized in two ways. The first is HS{sup -} oxidation by the CdS valence band holes. This process rate depends on the rate of comparatively slow reaction between molecular oxygen and CdS conduction band electrons. The second reaction route is the chain-radical HS{sup -} oxidation induced by photoexcited CdS nanoparticles and propagating in the bulk of a solution. In conditions favourable to chain-radical oxidation of HS{sup -}(i.e. at low light intensities and CdS concentration and high oxygen and Na{sub 2}S concentrations) quantum yields of the photoreaction reach 2.5.

  12. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  13. Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soojung; Bajaj, Bharat [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Byun, Chang Ki; Kwon, Soon-Jin [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Joh, Han-Ik [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Lee, Sungho, E-mail: sunghol@kist.re.kr [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Department of Nano Material Engineering, University of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-11-30

    Graphical abstract: - Highlights: • Polyacrylonitrile (PAN) and zinc precursor were electrospun and heat-treated for preparing zinc oxide (ZnO) modified carbon nanofibers (CNF). • A facile synthesis of composite webs resulted in uniformly loaded ZnO on the surface of CNFs. • The composites showed significant hydrogen sulfide adsorption efficiency at 300 °C. • The flexible webs can be applied for mid-temperature desulfurization. - Abstract: Polyacrylonitrile (PAN) derived carbon nanofiber (CNF) webs loaded with zinc oxide (ZnO) were synthesized using electrospinning and heat treatment at 600 °C. Uniformly dispersed ZnO nanoparticles, clarified by X-ray diffraction and scanning electron microscopy, were observed on the surface of the nanofiber composites containing 13.6–29.5 wt% of ZnO. The further addition of ZnO up to 34.2 wt% caused agglomeration with a size of 50–80 nm. Higher ZnO contents led the concentrated ZnO nanoparticles on the surface of the nanofibers rather than uniform dispersion along the cross-section of the fiber. The flexible composite webs were crushed and tested for hydrogen sulfide (H{sub 2}S) adsorption at 300 °C. Breakthrough experiments with the ZnO/CNF composite containing 25.7 wt% of ZnO for H{sub 2}S adsorption showed three times higher ZnO utilization efficiency compared to pure ZnO nano powders, attributed to chemisorption of the larger surface area of well dispersed ZnO particles on nanofibers and physical adsorption of CNF.

  14. Comparative DEMS study on the electrochemical oxidation of carbon blacks

    DEFF Research Database (Denmark)

    Ashton, Sean James; Arenz, Matthias

    2012-01-01

    heat-treated between 2100 and 3200 °C, such as those typically used as corrosion resistant carbon (CRC) supports for polymer electrolyte membrane fuel cell (PEMFC) catalysts. A methodology combining cyclic voltammetry (CV) and differential electrochemical mass spectrometry (DEMS) is used, which allows...... the characterisation and comparison of the complete electrochemical oxidation rates and behaviours of the various carbon blacks. It is observed that the behaviour of the carbon black towards electrochemical oxidation is highly dynamic, and dependent on the properties of the pristine carbon back, the degree...

  15. Altered Sulfide (H2S) Metabolism in Ethylmalonic Encephalopathy

    OpenAIRE

    2013-01-01

    Hydrogen sulfide (sulfide, H2S) is a colorless, water-soluble gas with a typical smell of rotten eggs. In the past, it has been investigated for its role as a potent toxic gas emanating from sewers and swamps or as a by-product of industrial processes. At high concentrations, H2S is a powerful inhibitor of cytochrome c oxidase; in trace amounts, it is an important signaling molecule, like nitric oxide (NO) and carbon monoxide (CO), together termed “gasotransmitters.” This review will cover th...

  16. Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanced visible light driven photocatalytic performance.

    Science.gov (United States)

    Chen, Xi; Li, Huankun; Wu, Yuxin; Wu, Hanshuo; Wu, Laidi; Tan, Pengfei; Pan, Jun; Xiong, Xiang

    2016-08-15

    In this work, a novel organic-inorganic heterostructured photocatalyst: porous graphitic carbon nitride (g-C3N4) hybrid with copper sulfide (CuS) had been synthesized via a precipitation-deposition method at low temperature for the first time. UV-vis spectroscopy revealed the porous g-C3N4/CuS nanocomposites showed a strong and broad visible light absorption. Furthermore, the g-C3N4/CuS nanocomposites showed higher photocatalytic activity in the photodegradation of various organic dyes than that of pure g-C3N4 and CuS, and the selected sample of g-C3N4/CuS-2 exhibited the best photocatalytic activity under visible light. The good photocatalytic activity could be ascribed to the matching of the g-C3N4 and CuS band gap energies. Besides, photoluminescent spectra and photoelectrochemical measurements also proved that the CuS/g-C3N4 could greatly enhance the charge generation and suppress the charge recombination of photogenerated carriers. According to the experimental result, a possible photocatalytic mechanism has been proposed. Due to the high stability, the porous g-C3N4/CuS could be applied in the field of environmental remediation. Our work highlights that coupling semiconductors with well-matched band energies provides a facile way to improve the photocatalytic activity.

  17. Diurnal odor, ammonia, hydrogen sulfide, and carbon dioxide emission profiles of confined swine grower/finisher rooms.

    Science.gov (United States)

    Sun, Gang; Guo, Huiqing; Peterson, Jonathan; Predicala, Bernardo; Laguë, Claude

    2008-11-01

    The objective of this study was to obtain diurnal variation profiles of odor and gas (ammonia [NH3], hydrogen sulfide [H2S], carbon dioxide [CO2]) concentrations and emission rate (OGCER) from confined swine grower/ finisher rooms under three typical weather conditions (warm, mild, and cold weather) in a year. Two grower/ finisher rooms, one with a fully slatted floor and the other with partially slatted floors, were measured for 2 consecutive days under each weather condition. The results revealed that the diurnal OGCER in the room with a fully slatted floor was 9.2-39.4% higher than that with a partially slatted floor; however, no significant differences in the diurnal OGCER were found between these two rooms, except for the NH3 concentrations in August, the NH3 and H2S concentrations and emissions in October, and odor concentrations and emissions in February (p > 0.05). The OGCER variations presented different diurnal patterns as affected by time of day, season, type of floor, ventilation rate, animal growth cycles, in-house manure storage, and weather conditions. Significant diurnal fluctuations in the OGCER (except for the odor concentrations and H2S emissions) were observed in August (p dispersion modeling to decrease the great incertitude of setback determination using randomly measured data.

  18. Seasonal odor, ammonia, hydrogen sulfide, and carbon dioxide concentrations and emissions from swine grower-finisher rooms.

    Science.gov (United States)

    Sun, Gang; Guo, Huiqing; Peterson, Jonathan

    2010-04-01

    Seasonal odor and gas (ammonia [NH3], hydrogen sulfide [H2S], and carbon dioxide [CO2]) concentrations and emission rates (OGCERs) from swine facilities are vital for providing accurate source emissions and reducing the uncertainty of setback distances on the basis of emission data. In this study, a repeated measurement experimental method and a split-block statistical model were used to obtain seasonal OGCER profiles from two types of swine grower-finisher rooms in Saskatchewan, Canada, over a 12-month period. The results indicate that the OGCERs were significantly affected by the sampling month and ambient temperature (P dispersion models to reduce uncertainties in setback calculations. It was also found that the seasonal OGCERs from the rooms with fully slatted floors were 6.3-40.6% higher than those with partially slatted floors. The seasonal OGCERs (except for the NH3 concentrations in October, November, and January; the CO2 concentrations in August; and the CO2 emission rates in December) between these two rooms for each measuring month did not differ significantly (P > 0.05). The measured gas concentrations were generally below the permissible exposure limits (PELs) established by the Occupational Safety and Health Administration (OSHA) throughout the year except for the NH3 concentrations in cold weather (December, January, and February).

  19. Development of carbon nanotube and graphite filled polyphenylene sulfide based bipolar plates for all-vanadium redox flow batteries

    Science.gov (United States)

    Caglar, Burak; Fischer, Peter; Kauranen, Pertti; Karttunen, Mikko; Elsner, Peter

    2014-06-01

    In this study, synthetic graphite and carbon nanotube (CNT) filled polyphenylene sulfide (PPS) based bipolar plates are produced by using co-rotating twin-screw extruder and injection molding. Graphite is the main conductive filler and CNTs are used as bridging filler between graphite particles. To improve the dispersion of the fillers and the flow behavior of the composite, titanate coupling agent (KR-TTS) is used. The concentration effect of CNTs and coupling agent on the properties of bipolar plates are examined. At 72.5 wt.% total conductive filler concentration, by addition of 2.5 wt.% CNT and 3 wt.% KR-TTS; through-plane and in-plane electrical conductivities increase from 1.42 S cm-1 to 20 S cm-1 and 6.4 S cm-1 to 57.3 S cm-1 respectively compared to sample without CNTs and additive. Extruder torque value and apparent viscosity of samples decrease significantly with coupling agent and as a result; the flow behavior is positively affected. Flexural strength is improved 15% by addition of 1.25 wt.% CNT. Differential scanning calorimeter (DSC) analysis shows nucleating effect of conductive fillers on PPS matrix. Corrosion measurements, cyclic voltammetry and galvanostatic charge-discharge tests are performed to examine the electrochemical stability and the performance of produced bipolar plates in all-vanadium redox flow battery.

  20. Degradation of carbonyl sulfide by Actinomycetes and detection of clade D of β-class carbonic anhydrase.

    Science.gov (United States)

    Ogawa, Takahiro; Kato, Hiromi; Higashide, Mitsuru; Nishimiya, Mami; Katayama, Yoko

    2016-09-25

    Carbonyl sulfide (COS) is an atmospheric trace gas and one of the sources of stratospheric aerosol contributing to climate change. Although one of the major sinks of COS is soil, the distribution of COS degradation ability among bacteria remains unclear. Seventeen out of 20 named bacteria belonging to Actinomycetales had COS degradation activity at mole fractions of 30 parts per million by volume (ppmv) COS. Dietzia maris NBRC 15801(T) and Mycobacterium sp. THI405 had the activity comparable to a chemolithoautotroph Thiobacillus thioparus THI115 that degrade COS by COS hydrolase for energy production. Among 12 bacteria manifesting rapid degradation at 30 ppmv COS, Dietzia maris NBRC 15801(T) and Streptomyces ambofaciens NBRC 12836(T) degraded ambient COS (∼500 parts per trillion by volume). Geodermatophilus obscurus NBRC 13315(T) and Amycolatopsis orientalis NBRC 12806(T) increased COS concentrations. Moreover, six of eight COS degrading bacteria isolated from soils had partial nucleotide sequences similar to that of the gene encoding clade D of β-class carbonic anhydrase, which included COS hydrolase. These results indicate the potential importance of Actinomycetes in the role of soils as sinks of atmospheric COS.

  1. Highly efficient and selective photocatalytic oxidation of sulfide by a chromophore-catalyst dyad of ruthenium-based complexes.

    Science.gov (United States)

    Li, Ting-Ting; Li, Fu-Min; Zhao, Wei-Liang; Tian, Yong-Hua; Chen, Yong; Cai, Rong; Fu, Wen-Fu

    2015-01-05

    Electronic coupling across a bridging ligand between a chromophore and a catalyst center has an important influence on biological and synthetic photocatalytic processes. Structural and associated electronic modifications of ligands may improve the efficiency of photocatalytic transformations of organic substrates. Two ruthenium-based supramolecular assemblies based on a chromophore-catalyst dyad containing a Ru-aqua complex and its chloro form as the catalytic components were synthesized and structurally characterized, and their spectroscopic and electrochemical properties were investigated. Under visible light irradiation and in the presence of [Co(NH3)5Cl]Cl2 as a sacrificial electron acceptor, both complexes exhibited good photocatalytic activity toward oxidation of sulfide into the corresponding sulfoxide with high efficiency and >99% product selectivity in neutral aqueous solution. The Ru-aqua complex assembly was more efficient than the chloro complex. Isotopic labeling experiments using (18)O-labeled water demonstrated the oxygen atom transfer from the water to the organic substrate, likely through the formation of an active intermediate, Ru(IV)═O.

  2. Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides

    Science.gov (United States)

    Mikhlin, Yuri; Tomashevich, Yevgeny; Vorobyev, Sergey; Saikova, Svetlana; Romanchenko, Alexander; Félix, Roberto

    2016-11-01

    Hard X-ray photoelectron spectroscopy (HAXPES) using an excitation energy range of 2 keV to 6 keV in combination with Fe K- and S K-edge XANES, measured simultaneously in total electron (TEY) and partial fluorescence yield (PFY) modes, have been applied to study near-surface regions of natural polycrystalline pyrite FeS2 and pyrrhotite Fe1-xS before and after etching treatments in an acidic ferric chloride solution. It was found that the following near-surface regions are formed owing to the preferential release of iron from oxidized metal sulfide lattices: (i) a thin, no more than 1-4 nm in depth, outer layer containing polysulfide species, (ii) a layer exhibiting less pronounced stoichiometry deviations and low, if any, concentrations of polysulfide, the composition and dimensions of which vary for pyrite and pyrrhotite and depend on the chemical treatment, and (iii) an extended almost stoichiometric underlayer yielding modified TEY XANES spectra, probably, due to a higher content of defects. We suggest that the extended layered structure should heavily affect the near-surface electronic properties, and processes involving the surface and interfacial charge transfer.

  3. In site bioimaging of hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral root formation.

    Directory of Open Access Journals (Sweden)

    Yan-Jun Li

    Full Text Available Hydrogen sulfide (H2S is an important gasotransmitter in mammals. Despite physiological changes induced by exogenous H2S donor NaHS to plants, whether and how H2S works as a true cellular signal in plants need to be examined. A self-developed specific fluorescent probe (WSP-1 was applied to track endogenous H2S in tomato (Solanum lycopersicum roots in site. Bioimaging combined with pharmacological and biochemical approaches were used to investigate the cross-talk among H2S, nitric oxide (NO, and Ca(2+ in regulating lateral root formation. Endogenous H2S accumulation was clearly associated with primordium initiation and lateral root emergence. NO donor SNP stimulated the generation of endogenous H2S and the expression of the gene coding for the enzyme responsible for endogenous H2S synthesis. Scavenging H2S or inhibiting H2S synthesis partially blocked SNP-induced lateral root formation and the expression of lateral root-related genes. The stimulatory effect of SNP on Ca(2+ accumulation and CaM1 (calmodulin 1 expression could be abolished by inhibiting H2S synthesis. Ca(2+ chelator or Ca(2+ channel blocker attenuated NaHS-induced lateral root formation. Our study confirmed the role of H2S as a cellular signal in plants being a mediator between NO and Ca(2+ in regulating lateral root formation.

  4. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.).

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2014-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are important gaseous molecules, serving as important secondary messengers in plant response to various biotic and abiotic stresses. However, the interaction between NO and H2S in plant stress response was largely unclear. In this study, endogenous NO and H2S were evidently induced by cadmium stress treatment in bermudagrass, and exogenous applications of NO donor (sodium nitroprusside, SNP) or H2S donor (sodium hydrosulfide, NaHS) conferred improved cadmium stress tolerance. Additionally, SNP and NaHS treatments alleviated cadmium stress-triggered plant growth inhibition, cell damage and reactive oxygen species (ROS) burst, partly via modulating enzymatic and non-enzymatic antioxidants. Moreover, SNP and NaHS treatments also induced the productions of both NO and H2S in the presence of Cd. Interestingly, combined treatments with inhibitors and scavengers of NO and H2S under cadmium stress condition showed that NO signal could be blocked by both NO and H2S inhibitors and scavengers, while H2S signal was specifically blocked by H2S inhibitors and scavengers, indicating that NO-activated H2S was essential for cadmium stress response. Taken together, we assigned the protective roles of endogenous and exogenous NO and H2S in bermudagrass response to cadmium stress, and speculated that NO-activated H2S might be essential for cadmium stress response in bermudagrass.

  5. Changes in plasma hydrogen sulfide and nitric oxide levels and their clinical significance in children with Kawasaki disease

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hui; ZHANG Chao-ying; WU Jian-xin; ZHANG Ting

    2011-01-01

    Background Cardiac involvement is the most common complication of Kawasaki disease (KD); however,the underlying mechanisms are not understood.The present study was designed to investigate changes in plasma hydrogen sulfide (H2S) and nitric oxide (NO) levels in the acute and recovery stages of KD children and to examine their clinical significance.Methods Thirty-five KD patients and 32 healthy children were enrolled in the study.KD patients were divided into two subgroups:a non-cardiac involvement group and a cardiac involvement group.Plasma H2S levels were measured using the sulfur-sensitive electrode method and plasma NO levels and NO synthase activity were determined using the nitrate reductase method both before and after intravenous immune globulin (IVIG) therapy.Results Plasma H2S levels significantly decreased in KD patients during the acute phase of the disease and NO levels were significantly increased,compared with the control group (P <0.01).After treatment with IVIG,both plasma H2S and NO levels significantly increased (P <0.01).The plasma levels of H2S were significantly lower in the cardiac involvement group compared with the non-cardiac involvement group (P<0.05).Conclusion H2S and NO may play a role in the pathophysiological process of inflammation during the acute phase of KD.Endogenous H2S may exert protective effects with respect to cardiac complications in KD.

  6. Hydrogen sulfide oxidation in novel Horizontal-Flow Biofilm Reactors dominated by an Acidithiobacillus and a Thiobacillus species.

    Science.gov (United States)

    Gerrity, S; Kennelly, C; Clifford, E; Collins, G

    2016-09-01

    Hydrogen Sulfide (H2S) is an odourous, highly toxic gas commonly encountered in various commercial and municipal sectors. Three novel, laboratory-scale, Horizontal-Flow Biofilm Reactors (HFBRs) were tested for the removal of H2S gas from air streams over a 178-day trial at 10°C. Removal rates of up to 15.1 g [H2S] m(-3) h(-1) were achieved, demonstrating the HFBRs as a feasible technology for the treatment of H2S-contaminated airstreams at low temperatures. Bio-oxidation of H2S in the reactors led to the production of H(+) and sulfate (SO(2-)4) ions, resulting in the acidification of the liquid phase. Reduced removal efficiency was observed at loading rates of 15.1 g [H2S] m(-3) h(-1). NaHCO3 addition to the liquid nutrient feed (synthetic wastewater (SWW)) resulted in improved H2S removal. Bacterial diversity, which was investigated by sequencing and fingerprinting 16S rRNA genes, was low, likely due to the harsh conditions prevailing in the systems. The HFBRs were dominated by two species from the genus Acidithiobacillus and Thiobacillus. Nonetheless, there were significant differences in microbial community structure between distinct HFBR zones due to the influence of alkalinity, pH and SO4 concentrations. Despite the low temperature, this study indicates HFBRs have an excellent potential to biologically treat H2S-contaminated airstreams.

  7. Carbon dioxide and nitrous oxide in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Naqvi, S.W.A.; Jayakumar, D.A.; George, M.D.; Narvekar, P.V.; DeSousa, S.N.

    The understanding of biogeochemical cycling of carbon dioxide and nitrous oxide in the oceans is essential for predicting the fate of anthropogenically emitted components. The North Indian Ocean, with its diverse regimes, provides us with a natural...

  8. Thief carbon catalyst for oxidation of mercury in effluent stream

    Science.gov (United States)

    Granite, Evan J.; Pennline, Henry W.

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  9. Carbon Nanotube/Graphene Supercapacitors Containing Manganese Oxide Nanoparticles

    Science.gov (United States)

    2012-12-01

    electrolytes : 0.5 M K2SO4, 1 M sodium chloride (NaCl), and 1 M calcium chloride (CaCl2). The qualitative CV behavior of the three electrolytes can be seen...Carbon Nanotube/ Graphene Supercapacitors Containing Manganese Oxide Nanoparticles by Matthew Ervin, Vinay Raju, Mary Hendrickson, and...Laboratory Adelphi, MD 20783-1197 ARL-TR-6289 December 2012 Carbon Nanotube/ Graphene Supercapacitors Containing Manganese Oxide

  10. Effect of Oxidation on Fracture Toughness of a Carbon/Carbon Composite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chengyun; YAN Kefei; QIAO Shengru; LI Mei; HAN Dong; GUO Yong

    2012-01-01

    The fracture toughness of a carbon/carbon composites oxidized at different temperature for 1 h was measured.The fracture surfaces were examined by scanning electron microscopy (SEM).The results indicate that oxidation temperature has significant effects on the fracture toughness.Fracture toughness decreases with the increase of the weight loss.The SEM images reveal that the decrease of fracture toughness was mainly attributed to the oxidation of the interface in the composite.

  11. Selective Oxidation of Soft Grade Carbon

    OpenAIRE

    Zecevic, N

    2007-01-01

    Oil-furnace carbon black is produced by pyrolysis of gaseous or liquid hydrocarbons or their mixtures. The oil feedstock for the production of oil-furnace carbon black is mainly composed of high-boiling aromatic hydrocarbons, which are residues of petroleum cracking, while the gaseous raw material is commonly natural gas. Most of the oil-furnace carbon black production (> 99 %) is used as a reinforcing agent in rubber compounds. Occasionally, oil-furnace carbon blacks are used in contact with...

  12. Depositional environments inferred from variations of calcium carbonate, organic carbon, and sulfide sulfur: a core from southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A; Iyer, S.D.; Chauhan, O; PrakashBabu, C.

    The variations in CaCO3 and organic carbon and their inter-relationship in a core from the southeastern Arabian Sea (water depth 2,212 m) have been used to demarcate the Holocene/Pleistocene boundary; an increased terrigenous deposition during Late...

  13. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  14. 极谱法测定钼矿石中的总钼氧化钼硫化钼%Determination of Total Molybdenum, Molybdic Oxide and Molybdenum Sulfide in Molybdenum Ore by Polarography

    Institute of Scientific and Technical Information of China (English)

    薛静

    2012-01-01

    Molybdenite is the major mineral in molybdenum ore. The phase analysis of molybdenum ore is required to determine sulfide minerals and oxide minerals. The phase analyses of molybdenum ores such as molybdenite, molybdite, powellite and molybdate galena were taken by photometry and Inductively Coupled Plasma-Atomic Emission Spectrometry ( ICP-AES). In this paper, the molybdenum ore sample was dissolved with aqua regia-sulfuric acid. The total molybdenum was extracted by alkali solution and the majority of the other elements were separated by precipitation. Molybdic oxides were leached by sodium carbonate and ammonium hydroxide solution. Molybdenum sulfides were obtained to dissolve residue. The contents of total molybdenum, molybdic oxide and molybdenum sulfide were determined by rapid polarography in a sulfuric acid-potassium chlorate-diphenyl glycollic acid system. The linear range of the method was 0. 04 -0. 4 mg/L, and the detection limit was 0. 028 mg/L. Three molybdenum ore samples were carried on phase analysis and the results were consistent with those obtained by photometry. The sum contents of molybdic oxide and molybdenum sulfide conformed to the total molybdenum content. RSDs (n=8) were 1.69% -3.56% for total molybdenum, molybdic oxide and molybdenum sulfide. This method was fast and suitable for practical batch samples.%钼的物相分析要求测定硫化矿物相和氧化矿物相,常用比色法和电感耦合等离子体发射光谱法等对辉钼矿、钼华矿、钼钨钙矿、钼酸铅矿等钼矿石进行物相分析,但分离物相的品种较多,方法繁琐耗时.本文用王水-硫酸消解钼矿石样品,碱溶液复溶浸提得到钼总量,使其他大多数元素形成沉淀而分离,用碳酸钠-氢氧化铵混合溶液浸取钼的氧化矿物,将残渣进一步溶解得到硫化矿物含量,在硫酸-氯酸钾-二苯羟乙酸体系中用极谱法简单快速测定钼总量、氧化钼和硫化钼含量.方法的线性范围为0.04~0

  15. Anode materials for hydrogen sulfide containing feeds in a solid oxide fuel cell

    Science.gov (United States)

    Roushanafshar, Milad

    SOFCs which can directly operate under high concentration of H2S would be economically beneficial as this reduces the cost of gas purification. H2S is highly reactive gas specie which can poison most of the conventional catalysts. As a result, developing anode materials which can tolerate high concentrations of H2S and also display high activity toward electrochemical oxidation of feed is crucial and challenging for this application. The performance of La0.4Sr0.6TiO3+/-delta -Y0.2Ce0.8O2-delta (LST-YDC) composite anodes in solid oxide fuel cells significantly improved when 0.5% H2 S was present in syngas (40% H2, 60% CO) or hydrogen. Gas chromatography and mass spectrometry analyses revealed that the rate of electrochemical oxidation of all fuel components improved when H2S containing syngas was present in the fuel. Electrochemical stability tests performed under potentiostatic condition showed that there was no power degradation for different feeds, and that there was power enhancement when 0.5% H2S was present in various feeds. The mechanism of performance improvement by H2S was discussed. Active anodes were synthesized via wet chemical impregnation of different amounts of La0.4Ce0.6O1.8 (LDC) and La 0.4Sr0.6TiO3 (L4ST) into porous yttria-stabilized zirconia (YSZ). Co-impregnation of LDC with LS4T significantly improved the performance of the cell from 48 mW.cm-2 (L4ST) to 161 mW.cm -2 (LDC-L4ST) using hydrogen as fuel at 900 °C. The contribution of LDC to this improvement was investigated using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM). EIS measurements using symmetrical cells showed that the polarization resistance decreased from 3.1¦O.cm 2 to 0.5 O.cm2 when LDC was co-impregnated with LST, characterized in humidified H2 (3% H2O) at 900 °C. In addition, the microstructure of the cell was modified when LDC was impregnated prior to L4ST into the porous YSZ. TEM and SEM

  16. Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    was investigated using current-potential-power density curves. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, and Mn3O4) and dopedceria (CeO2, Ce1-xGdxO2-x/2, Ce1-xRExO2-delta (RE = Pr, Sm)), the effectiveness......Hybrid direct carbon fuel cells consisting of a solid carbon (carbon black)-molten carbonate ((62-38 wt% Li-K)(2)CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell type full-cell are tested for their electrochemical performance between 700 and 800 degrees C. Performance...

  17. Nitric oxide and carbon monoxide diffusing capacity of the lung

    NARCIS (Netherlands)

    Lee, I. van der

    2006-01-01

    The single breath diffusion capacity of the lung for carbon monoxide (DLCO) is measure for gas uptake by the lung, and consists of a membrane and a vascular component. Nitric oxide (NO) binds 400 times faster to hemoglobin than carbon monoxide, thus the uptake of NO by the blood is very large. There

  18. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation.

    Science.gov (United States)

    Revsbech, Inge G; Shen, Xinggui; Chakravarti, Ritu; Jensen, Frank B; Thiel, Bonnie; Evans, Alina L; Kindberg, Jonas; Fröbert, Ole; Stuehr, Dennis J; Kevil, Christopher G; Fago, Angela

    2014-08-01

    During winter hibernation, brown bears (Ursus arctos) lie in dens for half a year without eating while their basal metabolism is largely suppressed. To understand the underlying mechanisms of metabolic depression in hibernation, we measured type and content of blood metabolites of two ubiquitous inhibitors of mitochondrial respiration, hydrogen sulfide (H2S) and nitric oxide (NO), in winter-hibernating and summer-active free-ranging Scandinavian brown bears. We found that levels of sulfide metabolites were overall similar in summer-active and hibernating bears but their composition in the plasma differed significantly, with a decrease in bound sulfane sulfur in hibernation. High levels of unbound free sulfide correlated with high levels of cysteine (Cys) and with low levels of bound sulfane sulfur, indicating that during hibernation H2S, in addition to being formed enzymatically from the substrate Cys, may also be regenerated from its oxidation products, including thiosulfate and polysulfides. In the absence of any dietary intake, this shift in the mode of H2S synthesis would help preserve free Cys for synthesis of glutathione (GSH), a major antioxidant found at high levels in the red blood cells of hibernating bears. In contrast, circulating nitrite and erythrocytic S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase, taken as markers of NO metabolism, did not change appreciably. Our findings reveal that remodeling of H2S metabolism and enhanced intracellular GSH levels are hallmarks of the aerobic metabolic suppression of hibernating bears.

  19. Electrochemical water oxidation with carbon-grafted iridium complexes.

    Science.gov (United States)

    deKrafft, Kathryn E; Wang, Cheng; Xie, Zhigang; Su, Xin; Hinds, Bruce J; Lin, Wenbin

    2012-02-01

    Hydrogen production from water splitting provides a potential solution to storing harvested solar energy in chemical fuels, but this process requires active and robust catalysts that can oxidize water to provide a source of electrons for proton reduction. Here we report the direct, covalent grafting of molecular Ir complexes onto carbon electrodes, with up to a monolayer coverage. Carbon-grafted Ir complexes electrochemically oxidize water with a turnover frequency of up to 3.3 s(-1) and a turnover number of 644 during the first hour. Electrochemical water oxidation with grafted catalysts gave enhanced rates and stability compared to chemically driven water oxidation with the corresponding molecular catalysts. This strategy provides a way to systematically evaluate catalysts under tunable conditions, potentially providing new insights into electrochemical water oxidation processes and water oxidation catalyst design.

  20. Pathways of organic carbon oxidation in three continental margin sediments

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Jørgensen, Bo Barker; Fossing, Henrik;

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude...... that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...

  1. Hollow-spherical composites of Polyaniline/Cobalt Sulfide/Carbon nanodots with enhanced magnetocapacitance and electromagnetic wave absorption capabilities

    Science.gov (United States)

    Ge, Chuanjun; Zhang, Xiang; Liu, Jian; Jin, Feng; Liu, Jichang; Bi, Hong

    2016-08-01

    Hollow-spherical composites of polyaniline/cobalt sulfide/carbon nanodots (PANI/CoS/CDs-0.5T) have been synthesized by in situ polymerization under an applied magnetic field (MF) of 0.5 T. As a control, PANI/CoS/CDs-0T composites have been synthesized without a MF. Both composites acting as electrodes present obvious magnetocapacitances at a scan rate of 100 mV s-1 while the electrochemical cell tested under an external MF of 0.5 T. Notably, PANI/CoS/CDs-0.5T composites show larger magnetocapacitances than PANI/CoS/CDs-0T composites at different scan rates from 5 to 100 mV s-1. Electrochemical impedance spectroscopy (EIS) results indicate that MF can reduce charge transfer resistance at electrode/electrolyte interface. More importantly, PANI/CoS/CDs-0.5T composites show a much stronger electromagnetic wave (EMW) absorbing capability than PANI/CoS/CDs-0T in the range of 2-18 GHz which is attributed to an increased dielectric loss and a magnetic loss in low frequency range of 2-12.5 GHz. MF-induced ferromagnetic nanodomains of Co2+ clusters in the PANI/CoS/CDs-0.5T composites increase the complex permittivity and create more interfacial polarizations or the Maxwell-Wagner effect, which leads to increased dielectric loss. Compared with PANI/CoS/CDs-0T composites with diamagnetic behaviour, MF-induced weak ferromagnetism of CoS in the PANI/CoS/CDs-0.5T composites has caused additional magnetic loss. This work provides an efficient way for modulating electrochemical or electromagnetic properties of inorganic/polymer nanocomposites by employing an external MF.

  2. Exhaled hydrogen sulfide in patients with chronic obstructive pulmonary disease and its correlation with exhaled nitric oxide

    Institute of Scientific and Technical Information of China (English)

    SUN Yun; WANG Xin-mao; CHEN Ya-hong; ZHU Rui-xia; LIAO Cheng-cheng

    2013-01-01

    Background Exhaled nitric oxide (NO) is a noninvasive biomarker of airway inflammation in pulmonary diseases.Hydrogen sulfide (H2S),as the third member of the gasotransmitter family,is involved in the pathophysiological process in lung diseases.H2S also exists in exhaled breath and can be sampled non-invasively.The study investigated the level of exhaled H2S in patients with chronic obstructive pulmonary disease (COPD) and its correlation with exhaled NO.Methods Levels of exhaled NO and H2S,lung function,and cell differential counts in induced sputum were studied in 19patients with acute exacerbation of COPD (AECOPD),19 patients with stable COPD and seven healthy smoke controls.Results Exhaled H2S levels were similar in patients with AECOPD (10.0 parts per billion (ppb),8.0-13.0 ppb),stable COPD (10.0 ppb,9.0-12.0 ppb),and healthy controls (9.0 ppb,8.0-16.0 ppb) (P >0.05).Exhaled NO levels were similar in patients with AECOPD (155.0 ppb,129.0-190.0 ppb),stable COPD (154.0 ppb,133.0-175.0 ppb) and healthy controls (165.0 ppb,112.0-188.0 ppb) (P >0.05).Exhaled H2S levels correlated positively with exhaled NO in all healthy controls and patients with COPD (r=0.467,P <0.01).No significant correlation was found between the exhaled H2S level and percentage of predicted FEV1 (P >0.05) and proportion of different cell types in induced sputum (P >0.05).Conclusions There is a correlation between exhaled H2S and exhaled NO.The role of exhaled H2S in airway inflammation in COPD still needs further investigation.

  3. Graphene oxide-facilitated reduction of nitrobenzene in sulfide-containing aqueous solutions.

    Science.gov (United States)

    Fu, Heyun; Zhu, Dongqiang

    2013-05-07

    The main objective of this study was to test the possibility that graphene-based nanomaterials can mediate environmentally relevant abiotic redox reactions of organic contaminants. We investigated the effect of graphene oxide (GO) on the reduction of nitrobenzene by Na2S in aqueous solutions. With the presence of GO (typically 5 mg/L), the observed pseudofirst-order rate constant (kobs) for the reduction of nitrobenzene was raised by nearly 2 orders of magnitude (from 7.83 × 10(-5) h(-1) to 7.77 × 10(-3) h(-1)), strongly suggesting reaction mediation by GO. As reflected by the combined spectroscopic analyses, GO was reduced in the beginning of the reaction, and hence the reduced GO (RGO) mediated the reduction of nitrobenzene. It was proposed that the zigzag edges of RGO acted as the catalytic active sites, while the basal plane of RGO served as the conductor for the electron transfer during the catalytic process. Furthermore, changing the pH (5.9-9.1) and the presence of dissolved humic acid (10 mg TOC/L) were found to greatly influence the catalytic activity of RGO. The results imply that graphene-based nanomaterials may effectively mediate the reductive transformation of nitroaromatic compounds and can contribute to the natural attenuation and remediation of these chemicals.

  4. Catalytic Formation of Propylene Carbonate from Supercritical Carbon Dioxide/Propylene Oxide Mixture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Propylene carbonate was synthesized from supercritical carbon dioxide (SC-CO2)/ propylene oxide mixture with phthalocyaninatoaluminium chloride (ClAlPc)/ tetrabutylammon-ium bromide (n-Bu4NBr) as catalyst. The high rate of reaction was attributed to rapid diffusion and the high miscibility of propylene oxide in SC-CO2 under employed conditions. Various reaction periods present different formation rate of propylene carbonate, mainly due to the existence of phase change during the reaction. The experimental results demonstrate that SC-CO2 could be used as not only an environmentally benign solvent but also a carbon precursor in synthesis.

  5. Fluid phase equilibria during propylene carbonate synthesis from propylene oxide in carbon dioxide medium

    DEFF Research Database (Denmark)

    Gharnati, Loubna; Musko, Nikolai; Jensen, Anker Degn

    2013-01-01

    In the present study the influence of the amount of carbon dioxide on the catalytic performance during the propylene carbonate synthesis from propylene oxide and CO2 was investigated. The reaction was performed in high-pressure batch autoclaves using immobilized 1-hydroxyethyl-9-propyl-cyclic gua......In the present study the influence of the amount of carbon dioxide on the catalytic performance during the propylene carbonate synthesis from propylene oxide and CO2 was investigated. The reaction was performed in high-pressure batch autoclaves using immobilized 1-hydroxyethyl-9-propyl...

  6. Impact of sulfur oxides on mercury capture by activated carbon.

    Science.gov (United States)

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  7. Renewable-surface sol-gel derived carbon ceramic electrode fabricated by [Ru(bpy)(tpy)Cl]PF6 and its application as an amperometric sensor for sulfide and sulfur oxoanions.

    Science.gov (United States)

    Salimi, Abdollah; Pourbeyram, Sima; Amini, Mohamad Kazem

    2002-12-01

    A highly sensitive and fast responding sensor for the determination of thiosulfate, sulfite, sulfide and dithionite is described. It consists of a chemically modified carbon ceramic composite electrode (CCE) containing [Ru(bpy)(tpy)Cl]PF6 complex that was constructed by the sol-gel technique. A reversible redox couple of Ru(II)/Ru(III) was observed as a solute in acetonitrile solution and as a component of carbon based conducting composite electrode. Electrochemical behavior and stability of modified CCE were investigated by cyclic voltametry, the apparent electron transfer rate constant (kappa(S)) and transfer coefficient (a) were determined by cyclic voltametry which were about 28 s(-1) and 0.43 respectively. Electrocatalytic oxidation of S(2-), SO3(2-), S2O4(2-) and S2O3(2-) were effective at the modified electrode at significantly reduced overpotentials and in the pH range 1-11. Optimum pH values for amperometric detection of thiosulfate, dithionite, sulfide and sulfite are 7, 9, 2 and 2. Under the optimized conditions the calibration curves are linear in the concentration ranges 1-500, 3-80, 2-90 and 1-100 microM for S2O3(2-), SO3(2-), S2- and S2O4(2-) determination. The detection limit (signal to noise is 3) and sensitivity are 0.5 and 12, 2.8 and 6, 1.6 and 8, and 0.65 microM and 80 nA microM(-1) for thiosulfate, sulfite, sulfide and dithionite detection. The modified carbon ceramic electrode doped with Ru-complex shows good reproducibility, a short response time (t 6 month) and especially good surface renewability by simple mechanical polishing (RSD for eight successive polishing is 2%). The advantages of this sulfur compound amperometric detector based on ruthenium doped CCE are high sensitivity, inherent stability at a broader pH range, excellent catalytic activity, less expense and simplicity of preparation in comparison with recently published papers. This sensor can be used as a chromatographic detector for analysis of sulfur derivatives.

  8. Oxidation of carbon monoxide by perferrylmyoglobin

    DEFF Research Database (Denmark)

    Libardi, Silvia H; Skibsted, Leif Horsfelt; Cardoso, Daniel R

    2014-01-01

    Perferrylmyoglobin is found to oxidize CO in aerobic aqueous solution to CO2. Tryptophan hydroperoxide in the presence of tetra(4-sulfonatophenyl)-porphyrinate-iron(III) or simple iron(II)/(III) salts shows similar reactivity against CO. The oxidation of CO is for tryptophan hydroperoxide conclud...

  9. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    Science.gov (United States)

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma.

  10. Oxidation behavior of a kind of carbon black

    Institute of Scientific and Technical Information of China (English)

    TANG JunShi; SONG Qiang; HE BaiLei; YAO Qiang

    2009-01-01

    The DTG curves of a kind of carbon black during TPO tests were found to have multiple peaks with an unusual sharp peak after the main peak. TPO tests with different sample loads, oxygen fractions and heating rates were carried out to study the influence of the experimental parameters on the sharp peak. The results show that the sharp peak is not caused by heat and mass transfer limitations, but by the intrinsic oxidation kinetics of the carbon black. The evolution of the specific surface area during the intrinsic kinetic controlled oxidation process was then analyzed using isothermal oxidation at low temperatures which showed that the sharp peak is caused by the increase of the specific surface area. The pore structure changes greatly influence the oxidation process when the reaction is controlled by the intrinsic kinetics. When there were no heat and mass transfer limitations, the different oxidation processes result in the same specific surface area evolution.

  11. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m.

    OpenAIRE

    Kanagawa, T; Mikami, E.

    1989-01-01

    Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day.

  12. Altered Sulfide (H2S) Metabolism in Ethylmalonic Encephalopathy

    Science.gov (United States)

    Tiranti, Valeria; Zeviani, Massimo

    2013-01-01

    Hydrogen sulfide (sulfide, H2S) is a colorless, water-soluble gas with a typical smell of rotten eggs. In the past, it has been investigated for its role as a potent toxic gas emanating from sewers and swamps or as a by-product of industrial processes. At high concentrations, H2S is a powerful inhibitor of cytochrome c oxidase; in trace amounts, it is an important signaling molecule, like nitric oxide (NO) and carbon monoxide (CO), together termed “gasotransmitters.” This review will cover the physiological role and the pathogenic effects of H2S, focusing on ethylmalonic encephalopathy, a human mitochondrial disorder caused by genetic abnormalities of sulfide metabolism. We will also discuss the options that are now conceivable for preventing genetically driven chronic H2S toxicity, taking into account that a complete understanding of the physiopathology of H2S has still to be achieved. PMID:23284046

  13. Altered sulfide (H(2)S) metabolism in ethylmalonic encephalopathy.

    Science.gov (United States)

    Tiranti, Valeria; Zeviani, Massimo

    2013-01-01

    Hydrogen sulfide (sulfide, H(2)S) is a colorless, water-soluble gas with a typical smell of rotten eggs. In the past, it has been investigated for its role as a potent toxic gas emanating from sewers and swamps or as a by-product of industrial processes. At high concentrations, H(2)S is a powerful inhibitor of cytochrome c oxidase; in trace amounts, it is an important signaling molecule, like nitric oxide (NO) and carbon monoxide (CO), together termed "gasotransmitters." This review will cover the physiological role and the pathogenic effects of H(2)S, focusing on ethylmalonic encephalopathy, a human mitochondrial disorder caused by genetic abnormalities of sulfide metabolism. We will also discuss the options that are now conceivable for preventing genetically driven chronic H(2)S toxicity, taking into account that a complete understanding of the physiopathology of H(2)S has still to be achieved.

  14. Estudo da oxidação dos sulfetos sintéticos molibdenita (MoS2 e covelita (CuS por Acidithiobacillus ferrooxidans via respirometria celular Oxidation study of the synthetic sulfides molybdenite (MoS2 and covellite (CuS by Acidithiobacillus ferrooxidans using respirometric experiments

    Directory of Open Access Journals (Sweden)

    Wilmo E. Francisco Junior

    2009-01-01

    Full Text Available This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe3+ did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations.

  15. Oxidation study of the synthetic sulfides molybdenite (MoS{sub 2}) and covellite (CuS) by acidithiobacillus ferrooxidants using respirometric experiments; Estudo da oxidacao dos sulfetos sinteticos molibdenita (MoS2) e covelita (CuS) por Acidithiobacillus ferrooxidans via respirometria celular

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Junior, Wilmo E. [Universidade Federal de Rondonia (UFRO), Porto Velho, RO (Brazil). Dept. de Quimica; Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Bioquimica e Tecnologia Quimica], e-mail: wilmojr@bol.com.br; Bevilaqua, Denise; Garcia Junior, Oswaldo [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Bioquimica e Tecnologia Quimica

    2009-07-01

    This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe{sup 3+} did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations. (author)

  16. A paradox resolved: Sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy

    Science.gov (United States)

    Freytag, John K.; Girguis, Peter R.; Bergquist, Derk C.; Andras, Jason P.; Childress, James J.; Fisher, Charles R.

    2001-01-01

    Vestimentiferan tubeworms, symbiotic with sulfur-oxidizing chemoautotrophic bacteria, dominate many cold-seep sites in the Gulf of Mexico. The most abundant vestimentiferan species at these sites, Lamellibrachia cf. luymesi, grows quite slowly to lengths exceeding 2 meters and lives in excess of 170–250 years. L. cf. luymesi can grow a posterior extension of its tube and tissue, termed a “root,” down into sulfidic sediments below its point of original attachment. This extension can be longer than the anterior portion of the animal. Here we show, using methods optimized for detection of hydrogen sulfide down to 0.1 μM in seawater, that hydrogen sulfide was never detected around the plumes of large cold-seep vestimentiferans and rarely detectable only around the bases of mature aggregations. Respiration experiments, which exposed the root portions of L. cf. luymesi to sulfide concentrations between 51–561 μM, demonstrate that L. cf. luymesi use their roots as a respiratory surface to acquire sulfide at an average rate of 4.1 μmol⋅g−1⋅h−1. Net dissolved inorganic carbon uptake across the plume of the tubeworms was shown to occur in response to exposure of the posterior (root) portion of the worms to sulfide, demonstrating that sulfide acquisition by roots of the seep vestimentiferan L. cf. luymesi can be sufficient to fuel net autotrophic total dissolved inorganic carbon uptake. PMID:11687647

  17. Adequate hydrogen sulfide, healthy circulation

    Institute of Scientific and Technical Information of China (English)

    DU Jun-bao; CHEN Stella; JIN Hong-fang; TANG Chao-shu

    2011-01-01

    Previously,hydrogen sulfide (H2S) was considered to be a toxic gas.However,recently it was discovered that it could be produced in mammals and even in plants,throughtheproductionandmetabolismof sulfur-containing amino acids.In mammals,H2S is mainly catalyzed by cystathionine-γ-lyase (CSE),cystathionin-β-lyase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST) with the substrate of L-cysteine.Endogenous H2S exerts many important physiological and pathophysiological functions,including hypotensive action,vasorelaxation,myocardial dilation,inhibition of smooth muscle cell proliferation,and antioxidatve actions.Importantly,it plays a very important role in the pathogenesis of systemic hypertension,pulmonary hypertension,atherosclerosis,myocardialinjury,angiogenesis,hyperhomocysteinemi aandshock.Therefore,H2S is now being considered to be a novel gasotransmitter after nitric oxide and carbon monoxide in the regulation of circulatory system.

  18. Oxidation of Carbon Fibers in Water Vapor Studied

    Science.gov (United States)

    Opila, Elizabeth J.

    2003-01-01

    T-300 carbon fibers (BP Amoco Chemicals, Greenville, SC) are a common reinforcement for silicon carbide composite materials, and carbon-fiber-reinforced silicon carbide composites (C/SiC) are proposed for use in space propulsion applications. It has been shown that the time to failure for C/SiC in stressed oxidation tests is directly correlated with the fiber oxidation rate (ref. 1). To date, most of the testing of these fibers and composites has been conducted in oxygen or air environments; however, many components for space propulsion, such as turbopumps, combustors, and thrusters, are expected to operate in hydrogen and water vapor (H2/H2O) environments with very low oxygen contents. The oxidation rate of carbon fibers in conditions representative of space propulsion environments is, therefore, critical for predicting component lifetimes for real applications. This report describes experimental results that demonstrate that, under some conditions, lower oxidation rates of carbon fibers are observed in water vapor and H2/H2O environments than are found in oxygen or air. At the NASA Glenn Research Center, the weight loss of the fibers was studied as a function of water pressure, temperature, and gas velocity. The rate of carbon fiber oxidation was determined, and the reaction mechanism was identified.

  19. Hydrogen sulfide in renal physiology, disease and transplantation - The smell of renal protection

    NARCIS (Netherlands)

    Koning, Anne M.; Frenay, Anne-Roos S.; Leuvenink, Henri G. D.; van Goor, Harry

    2015-01-01

    Hydrogen sulfide (H2S), the third gasotransmitter, next to nitric oxide and carbon monoxide, is a key mediator in physiology and disease. It is involved in homeostatic functions, such as blood pressure control, electrolyte balance and apoptosis, and regulates pathological mechanisms, including oxida

  20. Ammonia, total reduced sulfides, and greenhouse gases of pine chip and corn stover bedding packs

    Science.gov (United States)

    Bedding materials may affect air quality in livestock facilities. The objective of this study was to compare headspace concentrations of ammonia (NH3), total reduced sulfides (TRS), carbon dioxide (CO2),methane (CH4), and nitrous oxide (N2O) when pine wood chips and corn stover were mixed in various...

  1. "Smart poisoning" of Co/SiO2 catalysts by sulfidation for chirality-selective synthesis of (9,8) single-walled carbon nanotubes.

    Science.gov (United States)

    Yuan, Yang; Karahan, H Enis; Yıldırım, Cansu; Wei, Li; Birer, Özgür; Zhai, Shengli; Lau, Raymond; Chen, Yuan

    2016-10-14

    The chirality-selective synthesis of relatively large (diameter > 1 nm) single-walled carbon nanotubes (SWCNTs) is of great interest for a variety of practical applications, but only a few catalysts are available so far. Previous studies suggested that S (compounds) can enhance the chirality-selectivity of Co catalysts in SWCNT synthesis, however, the mechanism behind is not fully understood, and no tailorable methodology has yet been developed. Here, we demonstrate a facile approach to achieve the chirality-selective synthesis of SWCNTs by the sulfidation-based poisoning of silica-supported Co catalysts using a mixture of H2S and H2. The UV-vis-NIR, photoluminescence, and Raman spectroscopy results together show that the resulting SWCNTs have a narrow diameter distribution of around 1.2 nm, and (9,8) nanotubes have an abundance of ∼38% among the semiconducting species. More importantly, the carbon yield achieved by the sulfided catalyst (2.5 wt%) is similar to that of the nonsulfided one (2.7 wt%). The characterization of the catalysts by X-ray diffraction, X-ray photoelectron spectroscopy, X-ray fluorescence, and H2 temperature-programmed reduction shows that the sulfidation leads to the formation of Co9S8 nanoparticles. However, Co9S8 nanoparticles are reduced back to regenerate metallic Co nanoparticles during the synthesis of SWCNTs, which maintain a high carbon yield. In this process, Co9S8 nanoparticles seemingly intermediate the production of Co nanoparticles with narrow size distribution. Due to the fact that the poisoning step improves the quality of the end-product rather than hampering the growth process, we have coined the process developed as "smart poisoning". This study not only reveals the mechanism behind the beneficial role of S in the selective synthesis of relatively large SWCNTs but also presents a promising method to create chirality-selective catalysts with high activity for scalable synthesis.

  2. A Novel Catalytic Method for the Oxidation of Sulfides to Sulfoxides with Silica Sulfuric Acid and Sodium Nitrite in the Presence of KBr and/or NaBr as Catalyst

    Institute of Scientific and Technical Information of China (English)

    GOUDARZIAFSHAR Hamid; GHORBANI-CHOGHAMARANI Arash; NIKOORAZM Mohsen; NASERIFAR Zahra

    2009-01-01

    Highly efficient selective oxidation of sulfides to sulfoxides by NaNO2 and silica sulfuric acid catalyzed with KBr or NaBr has been reported.This oxidation was carried out in the presence of wet SiO2(50% w/w)in acetonitrile at room temperature with good to excellent yields.

  3. Pretreatment of refinery waste water by wet oxidation. LOPROX {sup registered} procedure: Alternative treatment of sulfidic waste lyes by wet oxidation; Vorbehandlung von Raffinerieabwasser durch Nassoxidation. LOPROX {sup registered} -Verfahren: Alternative Behandlung von sulfidischen Ablaugen durch Nassoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Leonhaeuser, Johannes; Weissenberg, Dirk; Birkenbeul, Udo [Bayer Technology Services GmbH (BTS), Leverkusen (Germany). Technology Development and Engineering; Bloecher, Christoph [Currenta (Germany)

    2012-05-15

    The authors of the contribution under consideration report on the treatment of refinery wastewater by means of the wet oxidation. The authors present the LOPROX {sup registered} method as an alternative treatment of sulfidic waste lyes. This method can not only treat successfully organic polluted wastewater from the chemical industry, but also various waste lyes from refinery processes. Based on a customer-specific process optimization in pilot scale, a cost-effective treatment can be achieved.

  4. Molybdenum oxides versus molybdenum sulfides: geometric and electronic structures of Mo₃X(y)⁻ (X = O, S and y = 6, 9) clusters.

    Science.gov (United States)

    Mayhall, Nicholas J; Becher, Edwin L; Chowdhury, Arefin; Raghavachari, Krishnan

    2011-03-24

    We have conducted a comparative computational investigation of the molecular structure and water adsorption properties of molybdenum oxide and sulfide clusters using density functional theory methods. We have found that while Mo₃O₆⁻ and Mo₃S₆⁻ assume very similar ring-type isomers, Mo₃O₉⁻ and Mo₃S₉⁻ clusters are very different with Mo₃O₉⁻ having a ring-type structure and Mo₃S₉⁻ having a more open, linear-type geometry. The more rigid ∠(Mo-S-Mo) bond angle is the primary geometric property responsible for producing such different lowest energy isomers. By computing molecular complexation energies, it is observed that water is found to adsorb more strongly to Mo₃O₆⁻ than to Mo₃S₆⁻, due to a stronger oxide-water hydrogen bond, although dispersion effects reduce this difference when molybdenum centers contribute to the binding. Investigating the energetics of dissociative water addition to Mo₃X₆⁻ clusters, we find that, while the oxide cluster shows kinetic site-selectivity (bridging position vs terminal position), the sulfide cluster exhibits thermodynamic site-selectivity.

  5. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Qian Huang

    Full Text Available Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4 and inducible nitric oxide synthase (iNOS protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM and high glucose (25 mM. ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor, all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM. ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM. In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known

  6. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells.

    Science.gov (United States)

    Huang, Qian; Sparatore, Anna; Del Soldato, Piero; Wu, Lingyun; Desai, Kaushik

    2014-01-01

    Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4) and inducible nitric oxide synthase (iNOS) protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM) and high glucose (25 mM). ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor), all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM). ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM). In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known deleterious effects

  7. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; JØRGENSEN, BB

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO4(2-) reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100-mu-m) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured......, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying...... water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO4(2-) or organic substrate...

  8. Ferrous ion oxidation by Thiobacillus ferrooxidans immobilized on activated carbon

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ji-kui; QIN Wen-qing; NIU Yin-jian; LI Hua-xia

    2006-01-01

    The immobilization of Thiobacillus ferrooxidans on the activated carbon particles as support matrix was investigated. Cycling batch operation results in the complete oxidation of ferrous iron in 8 d when the modified 9 K medium is set to flow through the mini-bioreactor at a rate of 0.104 L/h at 25 ℃. The oxidation rate of ferrous iron with immobilized T. ferrooxidans is 9.38 g/(L·h). The results show that the immobilization of T. ferrooxidans on activated carbon can improve the rate of oxidation of ferrous iron. The SEM images show that a build-up of cells of T. ferrooxidans and iron precipitates is formed on the surface of activated carbon particles.

  9. Increased oxidative stress and cytotoxicity by hydrogen sulfide in HepG2 cells overexpressing cytochrome P450 2E1.

    Science.gov (United States)

    Caro, Andres A; Thompson, Sarah; Tackett, Jonathan

    2011-12-01

    The main objectives of this work were to evaluate the effects of hydrogen sulfide on oxidative stress and cytotoxicity parameters in HepG2 cells and to assess the extent to which cytochrome P450 2E1 (CYP2E1) activity modulates the effects of hydrogen sulfide on oxidative stress and cytotoxicity. Sodium hydrosulfide (NaHS) caused time- and concentration-dependent cytotoxicity in both non-P450-expressing HepG2 cells (C34 cells) and CYP2E1-overexpressing HepG2 cells (E47 cells); however, NaHS-dependent cytotoxicity was higher in E47 than C34 cells. Cytotoxicity by NaHS in C34 and E47 cells was mainly necrotic in nature and associated with an early decrease in mitochondrial membrane potential. NaHS caused increased oxidation of lipophilic (C11-BODIPY(581/591)) and hydrophilic (DCFH-DA) probes only in E47 cells, at a time point prior to overt cytotoxicity. Trolox, an amphipathic antioxidant, partially inhibited both the cytotoxicity and the increased oxidative stress detected in E47 cells exposed to NaHS. Cell-permeable iron chelators and CYP2E1 inhibitors significantly inhibited the oxidation of C11-BODIPY(581/591) in E47 cells in the presence of NaHS. NaHS produced lipid peroxidation and cytotoxicity in E47 cells supplemented with a representative polyunsaturated fatty acid (docosahexaenoic acid) but not in C34 cells; these effects were inhibited by α-tocopherol, a lipophilic antioxidant. These data suggest that CYP2E1 enhances H(2)S-dependent cytotoxicity in HepG2 cells through the generation of iron-dependent oxidative stress and lipid peroxidation.

  10. Surface State of Carbon Fibers Modified by Electrochemical Oxidation

    Institute of Scientific and Technical Information of China (English)

    Yunxia GUO; Jie LIU; Jieying LIANG

    2005-01-01

    Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5%which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.

  11. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy.

    Directory of Open Access Journals (Sweden)

    Harald Schunck

    Full Text Available In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ. OMZs can sporadically accumulate hydrogen sulfide (H2S, which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2, which contained ∼2.2×10(4 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that

  12. Characterization and Oxidation Behavior of Rayon-Derived Carbon Fibers

    Science.gov (United States)

    Jacobson, Nathan; Hull, David

    2010-01-01

    Rayon-derived fibers are the central constituent of reinforced carbon/ carbon (RCC) composites. Optical, scanning electron, and transmission electron microscopy were used to characterize the as-fabricated fibers and the fibers after oxidation. Oxidation rates were measured with weight loss techniques in air and oxygen. The as-received fibers are approximately 10 micron in diameter and characterized by grooves or crenulations around the edges. Below 800 C, in the reaction-controlled region, preferential attack began in the crenulations and appeared to occur down fissures in the fibers.

  13. The Role of Amines, Hydrogen Sulfide and Carbon Dioxide in the Formation of Prebiotic Macromolecules Surrounded by Membranes

    Science.gov (United States)

    Rajen, Gaurav

    2016-04-01

    Amphiphilic compounds are known to self-assemble into membranous structures when exposed to alternate dry and wet conditions. This paper presents a model of how such structures could form near hydrothermal vents while containing macromolecules such as amino acids. The formation of amino acids near deep ocean hydrothermal vents as precursors for the origins of life is problematic as amino acids degrade from thermal energy. In the model proposed here, amino acids would degrade into amines (near hydrothermal vents). Amines have an affinity to interact with carbon dioxide (CO2) and hydrogen sulfide (H2S), form weak heat-unstable salts, and then through exposure to thermal energy release the acid gases and regenerate back to amines. Amines carrying and releasing H2S and CO2 would help other macromolecules form along with amino acids within protected cell-like structures; the cyclical release and recapture of acid gases would subsequently help the amino acids form bonds; further thermal action would degrade some of the amines into polymers that provide more strength and rigidity to the membrane walls; and also enable escaping gases to form tubes within the surrounding membranes for inlet and outlet of chemicals. Consider that liquids and gases are undergoing thermal convection inside a porous medium, and the convecting liquids contain some amines. Consider now that an amine weak salt carrying H2S and another carrying CO2 is inside a vesicle that formed through self-assembly. As this vesicle moves around in the thermal convection cell it will come close to the heat source and release the H2S and CO2 inside the vesicle. As the vesicle moves away from the heat source, the gases would be reabsorbed into the amines. This process would create stability and a repeating set of reactions, reactants, and products forming and reforming - cyclical stability is a key criterion for more complex reactions to occur. Some of the amines present would reform into an amino acid (as occurs

  14. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

    Science.gov (United States)

    Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.

    1990-01-01

    Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.

  15. Catalytic properties of carbon materials for wet oxidation of aniline.

    Science.gov (United States)

    Gomes, Helder T; Machado, Bruno F; Ribeiro, Andreia; Moreira, Ivo; Rosário, Márcio; Silva, Adrián M T; Figueiredo, José L; Faria, Joaquim L

    2008-11-30

    A mesoporous carbon xerogel with a significant amount of oxygen functional groups and a commercial activated carbon, were tested in the catalytic wet air oxidation of aniline at 200 degrees C and 6.9 bar of oxygen partial pressure. Both carbon materials showed high activity in aniline and total organic carbon removal, a clear increase in the removal efficiency relatively to non-catalytic wet air oxidation being observed. The best results in terms of aniline removal were obtained with carbon xerogel, an almost complete aniline conversion after 1h oxidation with high selectivity to non-organic compounds being achieved. The materials were characterized by thermogravimetric analysis, temperature programmed desorption, N(2) adsorption and scanning electron microscopy, in order to relate their performances to the chemical and textural characteristics. It was concluded that the removal efficiency, attributed to both adsorption and catalytic activity, is related to the mesoporous character of the materials and to the presence of specific oxygen containing functional groups at their surface. The effect of catalytic activity was found to be more important in the removal of aniline than the effect of adsorption at the materials surface. The results obtained indicate that mesoporous carbon xerogels are promising catalysts for CWAO processes.

  16. Catalytic properties of carbon materials for wet oxidation of aniline

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Helder T. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Departamento de Tecnologia Quimica e Biologica, Escola Superior de Tecnologia e de Gestao, Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-857 Braganca (Portugal); Machado, Bruno F.; Ribeiro, Andreia; Moreira, Ivo; Rosario, Marcio; Silva, Adrian M.T.; Figueiredo, Jose L. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Faria, Joaquim L. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: jlfaria@fe.up.pt

    2008-11-30

    A mesoporous carbon xerogel with a significant amount of oxygen functional groups and a commercial activated carbon, were tested in the catalytic wet air oxidation of aniline at 200 deg. C and 6.9 bar of oxygen partial pressure. Both carbon materials showed high activity in aniline and total organic carbon removal, a clear increase in the removal efficiency relatively to non-catalytic wet air oxidation being observed. The best results in terms of aniline removal were obtained with carbon xerogel, an almost complete aniline conversion after 1 h oxidation with high selectivity to non-organic compounds being achieved. The materials were characterized by thermogravimetric analysis, temperature programmed desorption, N{sub 2} adsorption and scanning electron microscopy, in order to relate their performances to the chemical and textural characteristics. It was concluded that the removal efficiency, attributed to both adsorption and catalytic activity, is related to the mesoporous character of the materials and to the presence of specific oxygen containing functional groups at their surface. The effect of catalytic activity was found to be more important in the removal of aniline than the effect of adsorption at the materials surface. The results obtained indicate that mesoporous carbon xerogels are promising catalysts for CWAO processes.

  17. Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    data as a function of temperature, anode and cathode atmospheres, and their flow rates are discussed. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, and Mn3O4, Fig. 1) and doped-ceria (CeO2, Ce1-xGdxO2, Ce1-x......Hybrid direct carbon fuel cells (HDCFCs) consisting of a solid carbon (carbon black)-molten carbonate ((62-38 wt% Li-K)2CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell (SOFC)-type full-cell (NiO-yttria-stablized zirconia (YSZ)|YSZ|lanthanum strontium manganite (LSM......RExO2 (RE = Pr, Gd, Sm, etc.)), the effectiveness of these families of catalysts are discussed with respect to electrochemical, chemical and post-mortem analysis. Fig. 1. Current-potential-power density curves acquired for a blank (SiC) and manganese oxide (MnO2, Mn2O3, Mn3O4) catalysts suspended...

  18. Investigation of Structure and Oxidation Behavior of Pitch and Resin Resultant Carbon

    Institute of Scientific and Technical Information of China (English)

    ZHUBo-quan; LINan

    1996-01-01

    The structure and oxidation behaviors of pitch carbon,resin carbon and their mixture re-sultant carbon have been investigated.The results indicate that the pitch carbon has relative higher true specific gravity,well developed crystalline and better oxidation resistance than resin carbon,With 20%-35% resin added to pitch,the structure of the resultant carbon can be modified and oxidation resistance will be improved significantly.

  19. USE OF CARBON CATALYSTS FOR OXIDATIVE DESTRUCTION OF WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Svetlana S. Stavitskaya

    2007-06-01

    Full Text Available The paper considers a possibility of using the catalytic action of the carbonaceous adsorbents modified by different ways for the purification of various solutions, natural and wastewaters. It has been found that the oxidative destruction of organic (phenols, dyes, pesticides, etc. and inorganic (H2S contaminants in water solutions is considerably intensified in the presence of both ordinary activated carbons and especially, carbons with specially introduced catalytic additives. It is shown that the sewage treatment level is strongly affected by the amount and nature of a modifying agent introduced on the carbon surface.

  20. Oxidation of fluorinated amorphous carbon (a-CF(x)) films.

    Science.gov (United States)

    Yun, Yang; Broitman, Esteban; Gellman, Andrew J

    2010-01-19

    Amorphous fluorinated carbon (a-CF(x)) films have a variety of potential technological applications. In most such applications these films are exposed to air and undergo partial surface oxidation. X-ray photoemission spectroscopy has been used to study the oxidation of fresh a-CF(x) films deposited by magnetron sputtering. The oxygen sticking coefficient measured by exposure to low pressures (<10(-3) Torr) of oxygen at room temperature is on the order of S approximately 10(-6), indicating that the surfaces of these films are relatively inert to oxidation when compared with most metals. The X-ray photoemission spectra indicate that the initial stages of oxygen exposure (<10(7) langmuirs) result in the preferential oxidation of the carbon atoms with zero or one fluorine atom, perhaps because these carbon atoms are more likely to be found in configurations with unsaturated double bonds and radicals than carbon atoms with two or three fluorine atoms. Exposure of the a-CF(x) film to atmospheric pressures of air (effective exposure of 10(12) langmuirs to O(2)) results in lower levels of oxygen uptake than the low pressure exposures (<10(7) langmuirs). It is suggested that this is the result of oxidative etching of the most reactive carbon atoms, leaving a relatively inert surface. Finally, low pressure exposures to air result in the adsorption of both nitrogen and oxygen onto the surface. Some of the nitrogen adsorbed on the surface at low pressures is in a reversibly adsorbed state in the sense that subsequent exposure to low pressures of O(2) results in the displacement of nitrogen by oxygen. Similarly, when an a-CF(x) film oxidized in pure O(2) is exposed to low pressures of air, some of the adsorbed oxygen is displaced by nitrogen. It is suggested that these forms of nitrogen and oxygen are bound to free radical sites in the film.

  1. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas.

    Science.gov (United States)

    Fernandes, António Maximiano; Abdalhai, Mandour H; Ji, Jian; Xi, Bing-Wen; Xie, Jun; Sun, Jiadi; Noeline, Rasoamandrary; Lee, Byong H; Sun, Xiulan

    2015-01-15

    In this paper, we reported the construction of new high sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth complex (MWCNT-Chi-Bi) and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Lead sulfide nanoparticles capped with 5'-(NH2) oligonucleotides thought amide bond was used as signalizing probe DNA (sz-DNA) and thiol-modified oligonucleotides sequence was used as fixing probe DNA (fDNA). The two probes hybridize with target Aeromonas DNA (tDNA) sequence (fDNA-tDNA-szDNA). The signal of hybridization is detected by differential pulse voltammetry (DPV) after electrodeposition of released lead nanoparticles (PbS) from sz-DNA on the surface of glass carbon electrode decorated with MWCNT-Chi-Bi, which improves the deposition and traducing electrical signal. The optimization of incubation time, hybridization temperature, deposition potential, deposition time and the specificity of the probes were investigated. Our results showed the highest sensibility to detect the target gene when compared with related biosensors and polymerase chain reaction (PCR). The detection limit for this biosensor was 1.0×10(-14) M. We could detect lower than 10(2) CFU mL(-1) of Aeromonas in spiked tap water. This method is rapid and sensitive for the detection of pathogenic bacteria and would become a potential application in biomedical diagnosis, food safety and environmental monitoring.

  2. Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor

    Science.gov (United States)

    Yang, Xijia; Zhao, Lijun; Lian, Jianshe

    2017-03-01

    One-dimensional (1D) hierarchical structures composed of nickel sulfides/MoS2 (NMS) supported on carbon nanotube (CNT) are fabricated through a one-step facile glucose-assisted hydrothermal method (NMS/CNT). The curled and tangled 1D structure is intertwined with each other and constructs three-dimensional (3D) porous networks, providing easy access of electrolyte. Meanwhile, the formation of metallic 1T-2H hybridized MoS2 and the synergistic effect between the MoS2 layers and nickel sulfides (NS) nanoparticles promotes the ions diffusion on the surface of the electrode, and the void space formed between NMS sheets can endure volume change in redox process for more stable structures. Therefore, the assembled NMS/CNT//activated carbon (AC) asymmetric supercapacitor manifests favorable specific capacitance of 108 F g-1 at 0.5 A g-1, along with a high energy density of 40 Wh kg-1 and good cycling stability of almost 100% capacity maintained after 10,000 cycles, implying it's the promising candidate for energy storage.

  3. Pudding-typed cobalt sulfides/nitrogen and sulfur dual-doped hollow carbon spheres as a highly efficient and stable oxygen reduction electrocatalyst

    Science.gov (United States)

    Xiao, Junwu; Zhao, Chen; Hu, Chencheng; Xi, Jiangbo; Wang, Shuai

    2017-04-01

    Metal organic frameworks (MOFs) are rarely reported to be grown at the templates due to the strong inherent driving force for crystallization. Herein, we report a pathway to successfully synthesize Zeolitic imidazolate framework-67 (ZIF-67) grown at the unmodified SiO2 spheres from amorphous precursors, and further construct Pudding-typed electrocatalysts, where cobalt sulfides (CoSx) nanocrystals are embedded into nitrogen and sulfur dual-doped hollow carbon spheres (N, S-HCS). CoSx/N, S-HCS show good catalytic activity toward the oxygen reduction reaction (ORR), and the optimized performance is achieved with (CoSx/N, S-HCS)700 with the positive half-wave potentials of 0.90 V vs RHE, high selectivity, good long-term stability, and excellent tolerance against methanol-crossover effect in alkaline medium, which are even superior to that of the as-reported MOFs-derived catalysts and commercial Pt/C catalysts. The remarkable catalytic performance is originated from high reactivity of catalytic active sites composed of cobalt sulfides and nitrogen and sulfur dual-doped carbon matrices, and Pudding-typed hollow structure with proper graphitization degree to facilitate fast electron and ion transport and limit the dissolution and agglomeration of active sites during long-term operation.

  4. Reduced Graphene Oxide and Its Natural Counterpart Shungite Carbon

    CERN Document Server

    Sheka, Elena F

    2016-01-01

    Large variety of structure and chemical-composition of reduced graphene oxide (RGO) is explained from a quantum-chemical standpoint. The related molecular theory of graphene oxide, supported by large experience gained by the modern graphene science, has led the foundation of the concept of a multi-stage graphene oxide reduction. This microscopic approach has found a definite confirmation when analyzing the available empirical data concerning both synthetic and natural RGO products, the latter in view of shungite carbon, suggesting the atomic-microscopic model for its structure.

  5. Synthesis, Characterization, and Catalytic Activity of Sulfided Silico-Alumino-Titanate (Si-Al-Ti) Mixed Oxides Xerogels Supported Ni-Mo Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Al-Adwani, H.A.; Anthony, R.G.; Gardner, T.J.; Thammachote, N.

    1999-02-24

    Layered semicrystalline silico-alumino-titanate (Si-Al-Ti) mixed oxides were synthesized by a modified sol-gel method with hydrothermal synthesis temperatures less than 200 C and autogenic pressure. The solid products are semicrystalline materials with a surface area of 136-367 m{sup 2}/g and a monomodal pore size distribution with an average pore diameter of 3.6-4.7 nrn. The catalytic activity for pyrene hydrogenation in a batch reactor at 300 C and 500 psig was determined for sulfided Ni-Mo supported on the Si-Al-Ti mixed oxide. The activity was a function of the support composition the heat treatment before and after loading the active metals, the addition of organic templates, and different methods of metal loading. The most active sulfided Ni-Mo/Si-Al-Ti catalyst has an activity in the same range as the commercial catalyst, Shell 324, but the metal loading is 37% less than the commercial catalyst.

  6. The Oxidant Budget of Dissolved Organic Carbon Driven Isotope Excursions

    Science.gov (United States)

    Bristow, T. F.; Kennedy, M. J.

    2008-12-01

    Negative carbon isotope values, falling below the mantle average of about -5 per mil, in carbonate phases of Ediacaran age sedimentary rocks are widely regarded as reflecting negative excursions in the carbon isotopic composition of seawater lasting millions of years. These isotopic signals form the basis of chemostratigraphic correlations between Ediacaran aged sections in different parts of the world, and have been used to track the oxidation of the biosphere. However, these isotopic values are difficult to accommodate within limits prescribed by the current understanding of the carbon cycle, and a hypothetical Precambrian ocean dissolved organic carbon (DOC) pool 100 to 1000 times the size of the modern provides a potential source of depleted carbon not considered in Phanerozoic carbon cycle budgets. We present box model results that show the remineralization of such a DOC pool to drive an isotope excursion of the magnitude observed in the geological record exhausts global budgets of free oxygen and sulfate in 800 k.y. These results are incompatible with the estimated duration of late Ediacaran isotope excursions of more than 10 m.y., as well as geochemical and biological indicators that oceanic sulfate and oxygen levels were maintained or even increased at the same time. Therefore the carbon isotope record is probably not a useful tool for monitoring oxygen levels in the atmosphere and ocean. Covariation between the carbon and oxygen isotope records is often observed during negative excursions and is indicative of local processes or diagenetic overprinting.

  7. Nanostructured metal sulfides for energy storage.

    Science.gov (United States)

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-09-07

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  8. Aerobic Oxidation of Methyl Vinyl Ketone in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    OUYANG,Xiao-Yue(欧阳小月); JIANG,Huan-Feng(江焕峰); CHENG,Jin-Sheng(程金生); ZHANG,Qun-Jian(张群健)

    2002-01-01

    Aerobic oxidation of methyl vinyl ketone to acetal in supercritical carbon dioxide are achieved in high conversion and high selectivity when oxygen pressure reaches 0.5MPa. The effects of cocatalysts,additive, pressure and temperature of the reaction are studied in detail.

  9. Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune; Mogensen, Mogens Bjerg

    2009-01-01

    Carbon dioxide electrolysis was studied in Ni/YSZ electrode supported Solid Oxide Electrolysis Cells (SOECs) consisting of a Ni-YSZ support, a Ni-YSZ electrode layer, a YSZ electrolyte, and a LSM-YSZ O2 electrode (YSZ = Yttria Stabilized Zirconia). The results of this study show that long term CO2...

  10. Cryotherapy gas--to use nitrous oxide or carbon dioxide?

    Science.gov (United States)

    Maiti, H; Cheyne, M F; Hobbs, G; Jeraj, H A

    1999-02-01

    Cryotherapy is regularly used in our clinic for treating genital warts. Nitrous oxide was used as the cryogenic gas. Following a health and safety review it was decided to monitor the nitrous oxide levels in the treatment room under different conditions. The Occupational Exposure Standard for nitrous oxide is 100 parts per million (PPM) (8-h time weighted average) and an indicative short-term exposure limit of 300 PPM (15-min reference period). High levels of gas were detected, especially when the exhaust was not vented to the outside. Venting of the gas to the outside could also present a hazard to adjacent areas. The situation was considered to be unacceptable and carbon dioxide was proposed as an alternative. The Occupational Exposure Standard for carbon dioxide is 5000 PPM (8-h time weighted average) and a short-term limit of 15,000 PPM (15-min reference period). Carbon dioxide levels were found to be within the Occupational Exposure Standard. There is no noticeable difference in the cryogenic efficacy of the 2 gases. Carbon dioxide is, therefore, a safer alternative. It also offers significant savings when compared with nitrous oxide.

  11. Carbon monoxide-induced reduction and healing of graphene oxide

    NARCIS (Netherlands)

    Narayanan, B.; Weeks, S. L.; Jariwala, B. N.; Macco, B.; Weber, J.; Rathi, S. J.; M. C. M. van de Sanden,; Sutter, P.; Agarwal, S.; Ciobanu, C. V.

    2013-01-01

    Graphene oxide holds promise as a carbon-based nanomaterial that can be produced inexpensively in large quantities. However, its structural and electrical properties remain far from those of the graphene sheets obtained by mechanical exfoliation or by chemical vapor deposition unless efficient reduc

  12. Inhibition of Frying Oil Oxidation by Carbon Dioxide Blanketing.

    Science.gov (United States)

    Totani, Nagao; Inoue, Ryota; Yawata, Miho

    2016-06-01

    The oxidation of oil starts, in general, from the penetration of atmospheric oxygen into oil. Inhibition of the vigorous oxidation of oil at deep-frying temperature under carbon dioxide flow, by disrupting the contact between oil and air, was first demonstrated using oil in a round bottom flask. Next, the minimum carbon dioxide flow rate necessary to blanket 4 L of frying oil in an electric fryer (surface area 690 cm(2)) installed with nonwoven fabric cover, was found to be 40 L/h. Then deep-frying of potato was done accordingly; immediately after deep-frying, an aluminum cover was placed on top of the nonwoven fabric cover to prevent the loss of carbon dioxide and the carbon dioxide flow was shut off. In conclusion, the oxidation of oil both at deep-frying temperature and during standing was remarkably inhibited by carbon dioxide blanketing at a practical flow rate and volume. Under the deep-frying conditions employed in this study, the increase in polar compound content was reduced to half of that of the control.

  13. Carbon nanotube transistors with graphene oxide films as gate dielectrics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Carbon nanomaterials,including the one-dimensional(1-D) carbon nanotube(CNT) and two-dimensional(2-D) graphene,are heralded as ideal candidates for next generation nanoelectronics.An essential component for the development of advanced nanoelectronics devices is processing-compatible oxide.Here,in analogy to the widespread use of silicon dioxide(SiO2) in silicon microelectronic industry,we report the proof-of-principle use of graphite oxide(GO) as a gate dielectrics for CNT field-effect transistor(FET) via a fast and simple solution-based processing in the ambient condition.The exceptional transistor characteristics,including low operation voltage(2 V),high carrier mobility(950 cm2/V-1 s-1),and the negligible gate hysteresis,suggest a potential route to the future all-carbon nanoelectronics.

  14. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon (RCC)

    Science.gov (United States)

    Roth, Don J.; Rauser, Richard W.; Jacobson, Nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  15. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon

    Science.gov (United States)

    Roth, Don J.; Jacobson, Nathan S.; Rauser, Richard W.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2010-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 C and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3mm. Single-sided NDE methods were used because they might be practical for on-wing inspection, while X-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally cracked coating and subsequent oxidation damage was also studied with X-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  16. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: characterization, pathway, and microbial community analysis.

    Science.gov (United States)

    Wang, Xiaowei; Zhang, Yu; Zhang, Tingting; Zhou, Jiti

    2016-03-01

    Microaerobic bioreactor treatment for enriched sulfide and nitrate has been demonstrated as an effective strategy to improve the efficiencies of elemental sulfur (S(0)) generation, sulfide oxidation, and nitrate reduction. However, there is little detailed information for the effect and mechanism of dissolved oxygen (DO) on the variations of microbial community in sulfur generation, sulfide oxidation, and nitrate reduction systems. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was employed to evaluate the variations of microbial community structures in a sulfide oxidation and nitrate reduction reactor under different DO conditions (DO 0-0.7 mg · L(-1)). Experimental results revealed that the activity of sulfide-oxidizing bacteria (SOB) and nitrate-reducing bacteria (NRB) could be greatly stimulated in 0.1-0.3 mg-DO · L(-1). However, when the DO concentration was further elevated to more than 0.5 mg · L(-1), the abundance of NRB was markedly decreased, while the heterotrophic microorganisms, especially carbon degradation species, were enriched. The reaction pathways for sulfide and nitrate removal under microaerobic conditions were also deduced by combining batch experiments with functional species analysis. It was likely that the oxidation of sulfide to sulfur could be performed by both aerobic heterotrophic SOB and sulfur-based autotrophic denitrification bacteria with oxygen and nitrate as terminal electron acceptor, respectively. The nitrate could be reduced to nitrite by both autotrophic and heterotrophic denitrification, and then the generated nitrite could be completely converted to nitrogen gas via heterotrophic denitrification. This study provides new insights into the impacts of microaerobic conditions on the microbial community functional structures of sulfide-oxidizing, nitrate-reducing, and sulfur-producing bioreactors, which revealing the potential linkage between functional microbial communities and

  17. Hydrogen and Sulfur from Hydrogen Sulfide. 5. Anodic Oxidation of Sulfur on Activated Glassy Carbon

    Science.gov (United States)

    1988-12-05

    Electrochemistry of he& Elements, Chapter IV-6, Allen J. Bard ed., M. Dekker, New York, (1973-1984.) 14. Encyclopedia of Chemical Tecnology , Vol. 22...Washington, D.C. 20380 U.S. Army Research Office Defense Technical Information Center 12 Attn: CRD-AA-IP Building 5, Cameron Station high P.O. Box 12211

  18. Atmospheric oxidation of carbon disulfide (CS2)

    Science.gov (United States)

    Zeng, Zhe; Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.

    2017-02-01

    This contribution investigates primary steps governing the OH-initiated atmospheric oxidation of CS2. Our approach comprises high-level density functional theory calculation of energies and optimisation of molecular structures as well as RRKM-ME analysis for estimating pressure-dependent reaction rate constants. We find the overall reaction OH + CS2 → OCS + SH too slow to account for the formation of the reported experimental products. The initial reaction of OH with CS2 proceeds to produce an S-adduct, SCS(OH). Species-formation history for the system OH + CS2 indicates that, the S-adduct represents the most plausible product with a barrier-less addition process and a stability amounting to 48.5 kJ/mol, in reference to the separated reactants. This adduct then undergoes a bimolecular reaction with atmospheric O2 yielding OCS and HOSO, rather than dissociating back into its separated reactants. We also find that further atmospheric oxidation of the C-adduct (if formed) yields two of the major experimental products namely OCS and SO2. The kinetic analysis provided in this study explains the atmospheric fate of reduced sulfur species, an important S-bearing group in the global cycle of sulfur.

  19. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    Science.gov (United States)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  20. Sources and sinks of carbonyl sulfide in a mountain grassland and relationships to the carbon dioxide exchange

    Science.gov (United States)

    Spielmann, Felix M.; Kitz, Florian; Hammerle, Albin; Gerdel, Katharina; Wohlfahrt, Georg

    2016-04-01

    The trace gas carbonyl sulfide (COS) has been proposed as a tracer for canopy gross primary production (GPP), canopy transpiration and stomatal conductance of plant canopies in the last few years. COS enters the plant leaf through the stomata and diffuses through the intercellular space, the cell wall, the plasma membrane and the cytosol like CO2. It is then catalyzed by the enzyme carbonic anhydrase (CA) in a one-way reaction to H2S and CO2. This one-way flux into the leaf makes COS a promising tracer for the GPP. However there is growing evidence, that plant leaves aren't the only contributors to the ecosystem flux of COS. Therefor the COS uptake of soil microorganisms also containing CA and abiotic COS production might have to be accounted for when using COS as a tracer at the ecosystem scale. The overarching objective of this study was to quantify the relationship between the ecosystem-scale exchange of COS, CO2 and H2O and thus to test for the potential of COS to be used as a tracer for the plant canopy CO2 and H2O exchange. More specifically we aimed at quantifying the contribution of the soil to the ecosystem-scale COS exchange in order to understand complications that may arise due to a non-negligible soil COS exchange. In May 2015 we set up our quantum cascade laser (QCL) (Aerodyne Research Inc., MA, USA) at a temperate mountain grassland in Stubai Valley close to the village of Neustift, Austria. Our site lies at the valley bottom and is an intensively managed mountain grassland, which is cut 3-4 times a year. With the QCL we were able to measure concurrently the concentrations of COS, CO2, H2O (and CO) at a frequency of 10 Hz with minimal noise. This allowed us to conduct ecosystem-scale eddy covariance measurements. The eddy covariance flux measurements revealed that the COS uptake continues at night, which we confirmed was not caused by soil microorganisms, as the soil exchange was close to neutral during nighttime. Instead, the nocturnal COS uptake

  1. Nonaqueous System of Iron-Based Ionic Liquid and DMF for the Oxidation of Hydrogen Sulfide and Regeneration by Electrolysis.

    Science.gov (United States)

    Guo, Zhihui; Zhang, Tingting; Liu, Tiantian; Du, Jun; Jia, Bing; Gao, Shujing; Yu, Jiang

    2015-05-05

    To improve the hydrogen sulfide removal efficiency with the application of an iron-based imidazolium chloride ionic liquid (Fe(III)-IL) as desulfurizer, Fe(II) and N,N-dimethylformamide (DMF) are introduced to Fe(III)-IL to construct a new nonaqueous desulfurization system (Fe(III/II)-IL/DMF). Following desulfurization, the system can be regenerated using the controlled-potential electrolysis method. The addition of Fe(II) in Fe(III)-IL is beneficial for the hydrogen sulfide removal and the electrochemical regeneration of the desulfurizer. The addition of DMF in Fe(III/II)-IL does not change the structure of Fe(III/II)-IL but clearly decreases the acidity, increases the electrolytic current, and decreases the stability of the Fe-Cl bond in Fe(III/II)-IL. Fe(III/II)-IL/DMF can remove hydrogen sulfide and can be regenerated through an electrochemical method more efficiently than can Fe(III/II)-IL. After six cycles, the desulfurization efficiency remains higher than 98%, and the average conversion rate of Fe(II) is essentially unchanged. No sulfur peroxidation occurs, and the system remains stable. Therefore, this new nonaqueous system has considerable potential for removing H2S in pollution control applications.

  2. Hydrogen Sulfide Removal by Wet Oxidation Method in a Cross-Flow Rotating Packed Bed%错流旋转填料床中湿式氧化法脱除气体中硫化氢

    Institute of Scientific and Technical Information of China (English)

    祁贵生; 刘有智; 潘红霞; 焦纬洲

    2012-01-01

    A wet oxidation method, in which a mixture of hydrogen sulfide and air was employed to play a role of sulfur-containing industrial gases, was carried out to study removal of hydrogen sulfide in a cross-flow rotating packed bed. The influences of gas/liquid volume ratio, gas flow rate, high gravity factor, concentration of sodium carbonate and hydrogen sulfide content in feed gas on H2S removal efficiency and gas-phase overall volumetric mass transfer coefficients were investigated in details. It was illustrated that H2S removal efficiency was more than 95% and the contact time between gas and liquid was less than 1 s. Further, such a cross-flow rotating packed bed desulphurization method showed a potential industrial application due to its great advantages of smaller volume, higher desulphurization efficiency, lower liquid/gas volume ratio, larger operating flexibility, lower energy consumption, etc. .%以H2S和空气模拟含硫工业气体,以错流旋转填料床为脱硫设备,采用湿式氧化法进行脱硫实验.考察了气/液体积比、气体流量、超重力因子、Na2CO2浓度、原料气中H2S含量等工艺参数对脱硫率和气相总体积传质系数的影响规律.研究结果表明,在气液接触时间小于1 s的情况下,脱硫率达到95%以上.错流旋转填料床湿式氧化法脱硫工艺可实现快速、高效脱硫,且脱硫设备体积小、操作弹性大、节能降耗,具有工业化应用潜力.

  3. Acetic Acid bacteria: physiology and carbon sources oxidation.

    Science.gov (United States)

    Mamlouk, Dhouha; Gullo, Maria

    2013-12-01

    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called "oxidative fermentations", especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.

  4. Structural evolution of carbon during oxidation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, A.F.

    1998-04-01

    The examination of the structural evolution of carbon during oxidation has proven to be of scientific interest. Early modeling work of fluidized bed combustion showed that most of the reactions of interest occurs in the micropores, and this work has concentrated on these pores. This work has concentrated on evolution of macroporosity and microporosity of carbons during kinetic controlled oxidation using SAXS, CO{sub 2} and TEM analysis. Simple studies of fluidized bed combustion of coal chars has shown that many of the events considered fragmentation events previously may in fact be {open_quotes}hidden{close_quotes} or nonaccessible porosity. This makes the study of the microporous combustion characteristics of carbon even more important. The generation of a combustion resistant grid, coupled with measurements of the SAXS and CO{sub 2} surface areas, fractal analysis and TEM. Studies has confirmed that soot particles shrink during their oxidation, as previously suspected. However, this shrinkage results in an overall change in structure. This structure becomes, on a radial basis, much more ordered near the edges, while the center itself becomes transparent to the TEM beam, implying a total lack of structure in this region. Although complex, this carbon structure is probably burning as to keep the density of the soot particles nearly the same. The TEM techniques developed for examination of soots has also been applied to Spherocarb. The Spherocarb during oxidation also increases its ordering. This ordering, by present theories, would imply that the reactivity would go. However, the reactivity goes up, implying that structure of carbon is secondary in importance to catalytic effects.

  5. W-Mo-Si/SiC Oxidation Protective Coating for Carbon/Carbon Composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A W-Mo-Si/SiC double-layer oxidation protective coating for carbon/carbon (C/C) composites was prepared by a two-step pack cementation technique. XRD (X-ray diffraction) and SEM (scanning electron microscopy)results show that the coating obtained by the first step pack cementation was a thin inner buffer layer of SiC with some cracks and pores, and a new phase of (WxMo1-x)Si2 appeared after the second step pack cementation. Oxidation test shows that, after oxidation in air at 1773 K for 175 h and thermal cycling between 1773 K and room temperature for 18 times, the weight loss of the W-Mo-Si/SiC coated C/C composites was only 2.06%. The oxidation protective failure of the W-Mo-Si/SiC coating was attributed to the formation of some penetrable cracks in the coating.

  6. Replacement of hazardous chromium impregnating agent from silver/copper/chromium-impregnated active carbon using triethylenediamine to remove hydrogen sulfide, trichloromethane, ammonia, and sulfur dioxide.

    Science.gov (United States)

    Wu, Li-Chun; Chung, Ying-Chien

    2009-03-01

    Activated carbon (AC) is widely used as an effective adsorbent in many applications, including industrial-scale air purification systems and air filter systems in gas masks. In general, ACs without chemical impregnation are good adsorbents of organic vapors but poor adsorbents of low-molecular-weight or polar gases such as chlorine, sulfur dioxide (SO2), formaldehyde, and ammonia (NH3). Impregnated ACs modified with metallic impregnating agents (ASC-carbons; e.g., copper, chromium, and silver) enhance the adsorbing properties of the ACs for simultaneously removing specific poisonous gases, but disposal of the chromium metal salt used to impregnate the ACs has the potential to result in situations that are toxic to both humans and the environment, thereby necessitating the search for replaceable organic impregnating agents that represent a much lower risk. The aim of this study was to assess the gas removal efficiency of an AC in which the organic impregnating agent triethylenediamine (TEDA) largely replaced the metallic impregnating agent chromium. We assessed batch and continuous adsorption capacities in situ for removing simulated hydrogen sulfide (H2S), trichloromethane (CHCl3), NH3, and SO2 gases. Brunauer-Emmet-Teller measurements and scanning electron microscopy analyses identified the removal mechanism by which TEDA-impregnated AS-carbon (dechromium ASC-carbon) adsorbs gases and determined the removal capacity for H2S, CHCl3, NH3, and SO2 to be 311, 258, 272, and 223 mg/g-C, respectively. These results demonstrate that TEDA-impregnated AS-carbon is significantly more efficient than ASC-carbon in adsorbing these four gases. Organic TEDA-impregnating agents have also been proven to be a reliable and environmental friendly agent and therefore a safe replacement of the hazardous chromium found in conventional ASC-carbon used in removing toxic gases from the airstream.

  7. 一氧化碳和硫化氢在颈动脉体缺氧反应中的调节作用%Hypoxia responses led by carotid body is regulated by carbon monoxide and hydrogen sulfide

    Institute of Scientific and Technical Information of China (English)

    黄跃宇; 夏建华; 石学银

    2008-01-01

    传统认为一氧化碳和硫化氢为有毒气体,但近年的研究表明在颈动脉体感受低氧的过程中,这两种气体起重要的调节作用.一氧化碳通过增加内向钾离子电流抑制窦神经;硫化氢供体硫氢化钠则呈剂量依赖性兴奋窦神经.并且一氧化碳供体能完全逆转硫化氢对窦神经的兴奋作用.因而,一氧化碳和硫化氢共同调节颈动脉体对低氧状态反应的信号转导.%Carbon monoxide and hydrogen sulfide, both of which are well known toxic agents, are now demonstrated as critical gaseous mediators in carotid body when it responds to hypoxia. While carbon monoxide reduces sinus nerve impulses by decreasing inward potassium ion flux, sodium hydrosulfide, a donor of hydrogen sulfide, exerts an opposite effect in a dose - dependent manner.However, the exciting effect of hydrogen sulfide will be reversed completely after the donor of carbon monoxide is subjected. In this way, carbon monoxide and hydrogen sulfide intermingle into the regulation to the hypoxic information transduetion.

  8. Exploring the main function of reduced graphene oxide nano-flakes in a nickel cobalt sulfide counter electrode for dye-sensitized solar cell

    Science.gov (United States)

    Lu, Man-Ning; Lin, Jeng-Yu; Wei, Tzu-Chien

    2016-11-01

    Addition of carbonaceous materials into transition metal sulfide counter electrode (CE) of a dye-sensitized solar cell (DSSC) is a common method to improve the performance of the CE and consequent photovoltaic performance. This improvement is almost without exception attributed to the improvement of overall conductivity after the carbonaceous material addition; however, the root function of these carbonaceous materials in promoting the solar cell efficiency is seldom discussed. In this study, highly crystallized nickel cobalt sulfide (NCS) micro-particles were mixed with a small portion of home-made reduced graphene oxide (rGO) nano-flakes. This NCS/rGO hybrid is subjected to extensive characterizations including X-ray diffraction, Raman spectroscopy, field emission scanning microscopy and electrochemical impedance spectroscopy. It is found that the rGO acts bi-functionally including a co-catalyst in accelerating the tri-iodide reduction for the main NCS catalysts, conductivity promotor to decrease the series resistance of the CE. Proved by electrochemical impedance spectroscopy, it is confirmed that the decrease in series resistance is less insignificant than that in charge transfer resistance, indicating rGO functions more profoundly as a co-catalyst than as a conductivity promotor. Moreover, an argument to highlight the requirement of a CE in a dim-light optimized DSSC is also proposed.

  9. Oxidation behavior of a kind of carbon black

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The DTG curves of a kind of carbon black during TPO tests were found to have multiple peaks with an unusual sharp peak after the main peak.TPO tests with different sample loads,oxygen fractions and heating rates were carried out to study the influence of the experimental parameters on the sharp peak.The results show that the sharp peak is not caused by heat and mass transfer limitations,but by the intrinsic oxidation kinetics of the carbon black.The evolution of the specific surface area during the intrinsic kinetic controlled oxidation process was then analyzed using isothermal oxidation at low temperatures which showed that the sharp peak is caused by the increase of the specific surface area.The pore structure changes greatly influence the oxidation process when the reaction is controlled by the intrinsic kinetics.When there were no heat and mass transfer limitations,the different oxidation processes result in the same specific surface area evolution.

  10. Nickel Oxide/Carbon Nanotubes Nanocomposite for Electrochemical Capacitance

    Institute of Scientific and Technical Information of China (English)

    Kui LIANG; Kayhyeok AN; Younghee LEE

    2005-01-01

    A nanocomposite of nickel oxide/carbon nanotubes was prepared through a simple chemical precipitation followed by thermal annealing. The electrochemical capacitance of this electrode material was studied. When the mass fraction of CNTs (carbon nanotubes) in NiO/CNT composites increases, the electrical resistivity of nanocomposites decreases and becomes similar to that of pure CNTs when it reaches 30%. The specific surface area of composites increases with increasing CNT mass fraction and the specific capacitance reaches 160 F/g under 10 mA/g discharge current density at CNT mass fraction of 10%.

  11. Tailoring oxidation of aluminum nanoparticles reinforced with carbon nanotubes

    Science.gov (United States)

    Sharma, Manjula; Sharma, Vimal

    2016-05-01

    In this report, the oxidation temperature and reaction enthalpy of Aluminum (Al) nanoparticles has been controlled by reinforcing with carbon nanotubes. The physical mixing method with ultrasonication was employed to synthesize CNT/Al nanocomposite powders. The micro-morphology of nanoconmposite powders has been analysed by scanning electron microscopy, energy dispersive spectroscopy, raman spectroscopy and X-ray diffraction techniques. The oxidation behavior of nanocomposite powders analyzed by thermogravimetry/differential scanning calorimertry showed improvement in the exothermic enthalpy. Largest exothermic enthalpy of-1251J/g was observed for CNT (4 wt%)/Al nanocomposite.

  12. Indium Tin Oxide@Carbon Core–Shell Nanowire and Jagged Indium Tin Oxide Nanowire

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2010-01-01

    Full Text Available Abstract This paper reports two new indium tin oxide (ITO-based nanostructures, namely ITO@carbon core–shell nanowire and jagged ITO nanowire. The ITO@carbon core–shell nanowires (~50 nm in diameter, 1–5 μm in length, were prepared by a chemical vapor deposition process from commercial ITO nanoparticles. A carbon overlayer (~5–10 in thickness was observed around ITO nanowire core, which was in situ formed by the catalytic decomposition of acetylene gas. This carbon overlayer could be easily removed after calcination in air at an elevated temperature of 700°C, thus forming jagged ITO nanowires (~40–45 nm in diameter. The growth mechanisms of ITO@carbon core–shell nanowire and jagged ITO nanowire were also suggested.

  13. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  14. Carbon and Nickel Oxide/Carbon Composites as Electrodes for Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    Liutauras Marcinauskas; Zydrunas Kavaliauskas; Vitas Valincius

    2012-01-01

    The carbon and nickel oxide/carbon composite electrodes were prepared by plasma jet and magnetron sput-tering techniques. The investigations were performed to evaluate the influence of the Ar/C2H2 ratio on the specific capacitance values of carbon and NiO/carbon electrodes. The obtained electrodes were investigated by scanning electron microscopy, Raman scattering spectroscopy (RS), and X-ray diffraction techniques. The surface of the carbon electrodes became less porous and more homogenous with increasing Ar/C2H2. The RS results indicated that the fraction of the sp2 carbon sites increased with increasing Ar/C2H2 ratio. The increase of the Ar/C2H2 ratio increased the capacitance values from 0.73 up to 3.8 F/g. Meanwhile, after the deposition of the nickel oxide on the carbon, the capacitance increased ten and more times and varied in the range of 7.6-86.1 F/g.

  15. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries

    Science.gov (United States)

    Qin, Wei; Chen, Taiqiang; Lu, Ting; Chua, Daniel H. C.; Pan, Likun

    2016-01-01

    Layered nickel sulfide (NS)-reduced graphene oxide (RGO) composites are prepared via a simple microwave-assisted method and subsequent annealing in N2/H2 atmosphere. A detailed array of characterization tools are used to study their morphology, structure and electrochemical performance. It was found that these composites exhibit significantly improved sodium-ion storage ability as compared with pure NS under galvanostatic cycling at a specific current of 100 mA g-1 in a potential limitation of 0.005-3.0 V. Furthermore, the composite with the RGO content of 35 wt.% achieves a high maximum reversible specific capacity of about 391.6 mAh g-1 at a specific current of 100 mA g-1 after 50 cycles. These results prove that NS-RGO composites are highly promising when applied directly as anode materials in sodium-ion batteries.

  16. Oxidation of Carbon Supports at Fuel Cell Cathodes: Differential Electrochemical Mass Spectrometric Study

    Science.gov (United States)

    Li, Ming-fang; Tao, Qian; Liao, Ling-wen; Xu, Jie; Cai, Jun; Chen, Yan-xia

    2010-08-01

    The effects of O2 and the supported Pt nano-particles on the mechanisms and kinetics of the carbon support corrosion are investigated by monitoring the CO2 production using differential electrochemical mass spectrometry in a dual-thin layer flow cell. Carbon can be oxidized in different distinct potential regimes; O2 accelerates carbon oxidation, the rates of CO2 production from carbon oxidation in O2 saturated solution are two times of that in N2 saturated solution at the same potential; Pt can catalyze the carbon oxidation, with supported Pt nanoparticles, the overpotential for carbon oxidation is much smaller than that without loading in the carbon electrode. The mechanism for the enhanced carbon oxidation by Pt and O2 are discussed.

  17. Sulfur Dioxide Enhances Endogenous Hydrogen Sulfide Accumulation and Alleviates Oxidative Stress Induced by Aluminum Stress in Germinating Wheat Seeds

    Directory of Open Access Journals (Sweden)

    Dong-Bo Zhu

    2015-01-01

    Full Text Available Aluminum ions are especially toxic to plants in acidic soils. Here we present evidences that SO2 protects germinating wheat grains against aluminum stress. SO2 donor (NaHSO3/Na2SO3 pretreatment at 1.2 mM reduced the accumulation of superoxide anion, hydrogen peroxide, and malondialdehyde, enhanced the activities of guaiacol peroxidase, catalase, and ascorbate peroxidase, and decreased the activity of lipoxygenase in germinating wheat grains exposed to Al stress. We also observed higher accumulation of hydrogen sulfide (H2S in SO2-pretreated grain, suggesting the tight relation between sulfite and sulfide. Wheat grains geminated in water for 36 h were pretreated with or without 1 mM SO2 donor for 12 h prior to exposure to Al stress for 48 h and the ameliorating effects of SO2 on wheat radicles were studied. SO2 donor pretreatment reduced the content of reactive oxygen species, protected membrane integrity, and reduced Al accumulation in wheat radicles. Gene expression analysis showed that SO2 donor pretreatment decreased the expression of Al-responsive genes TaWali1, TaWali2, TaWali3, TaWali5, TaWali6, and TaALMT1 in radicles exposed to Al stress. These results suggested that SO2 could increase endogenous H2S accumulation and the antioxidant capability and decrease endogenous Al content in wheat grains to alleviate Al stress.

  18. Sulfide removal by moderate oxygenation of anaerobic sludge environments

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zee, F.P.; Villaverde, S.; Polanco, F. [Valladolid Univ., Valladolid (Spain). Dept. of Chemical Engineering; Garcia, P.A.

    2004-07-01

    Treating wastewater through anaerobic bioreactors results in the formation of hydrogen sulfide. The sulfide can be removed from the biogas by introducing air directly into the anaerobic bioreactor system. This study presents the results of batch experiments that provided a better insight into the fate of sulfur compounds and oxygen during microaerobic sulfide oxidation in granular sludge. It was shown that sulfide could be removed rapidly upon introduction of low amounts of oxygen to the sulfide-amended batch vials with granular sludge treating vinasse. Initially, the sulfide was oxidized to elemental sulfur, thiosulfate and polysulfide. Significant production of sulfate did not occur. The introduction of oxygen, however, could result in the growth of aerobic organic-chemical oxygen demand-oxidizing bacteria that compete with sulfide oxidation for oxygen. 6 refs., 1 tab., 1 fig.

  19. Synthesis and evaluation of novel biochar-based and metal oxide-based catalysts for removal of model tar (toluene), ammonia, and hydrogen sulfide from simulated producer gas

    Science.gov (United States)

    Bhandari, Pushpak

    Gasification is a thermochemical conversion process in which carbonaceous feedstock is gasified in a controlled atmosphere to generate producer gas. The producer gas is used for production of heat, power, fuels and chemicals. Various contaminants such as tars, NH3, and H2S in producer gas possess many problems due to their corrosive nature and their ability to clog and deactivate catalysts. In this study, several catalysts were synthesized, characterized, and tested for removal of three contaminants (toluene (model tar), NH3, and H2S) from the biomass-generated producer gas. Biochar, a catalyst, was generated from gasification of switchgrass. Activated carbon and acidic surface activated carbon were synthesized using ultrasonication method from biochar. Acidic surface was synthesized by coating activated carbon with dilute acid. Mixed metal oxide catalysts were synthesized from hydrotalcite precursors using novel synthesis technique using microwave and ultrasonication. Surface area of activated carbon (˜900 m2/g) was significantly higher than that of its precursor biochar (˜60 m2/g). Surface area of metal oxide catalyst was approximately 180 m2/g after calcination. Biochar, activated carbon, and acidic surface activated carbon showed toluene removal efficiencies of approximately 78, 88, and 88 %, respectively, when the catalysts were tested individually with toluene in the presence of producer gas at 800 °C. The toluene removal efficiencies increased to 86, 91, and 97 % using biochar, activated carbon and acidic surface activated carbon, respectively in the presence of NH3 and H2S in the producer gas. Increase in toluene removal efficiencies in presence of NH3 and H2S indicates that NH3 and H 2S play a role in toluene reforming reactions during simultaneous removal of contaminants. Toluene removal efficiency for mixed metal oxide was approximately 83%. Ammonia adsorption capacities were 0.008 g NH3/g catalyst for biochar and 0.03g NH3/g catalyst for activated

  20. A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle

    Science.gov (United States)

    Berry, Joe; Wolf, Adam; Campbell, J. Elliott; Baker, Ian; Blake, Nicola; Blake, Don; Denning, A. Scott; Kawa, S. Randy; Montzka, Stephen A.; Seibt, Ulrike; Stimler, Keren; Yakir, Dan; Zhu, Zhengxin

    2013-06-01

    Carbonyl sulfide (COS) is an atmospheric trace gas that participates in some key reactions of the carbon cycle and thus holds great promise for studies of carbon cycle processes. Global monitoring networks and atmospheric sampling programs provide concurrent data on COS and CO2 concentrations in the free troposphere and atmospheric boundary layer over vegetated areas. Here we present a modeling framework for interpreting these data and illustrate what COS measurements might tell us about carbon cycle processes. We implemented mechanistic and empirical descriptions of leaf and soil COS uptake into a global carbon cycle model (SiB 3) to obtain new estimates of the COS land flux. We then introduced these revised boundary conditions to an atmospheric transport model (Parameterized Chemical Transport Model) to simulate the variations in the concentration of COS and CO2 in the global atmosphere. To balance the threefold increase in the global vegetation sink relative to the previous baseline estimate, we propose a new ocean COS source. Using a simple inversion approach, we optimized the latitudinal distribution of this ocean source and found that it is concentrated in the tropics. The new model is capable of reproducing the seasonal variation in atmospheric concentration at most background atmospheric sites. The model also reproduces the observed large vertical gradients in COS between the boundary layer and free troposphere. Using a simulation experiment, we demonstrate that comparing drawdown of CO2 with COS could provide additional constraints on differential responses of photosynthesis and respiration to environmental forcing. The separation of these two distinct processes is essential to understand the carbon cycle components for improved prediction of future responses of the terrestrial biosphere to changing environmental conditions.

  1. Hydrogen Sulfide and Polysulfides as Biological Mediators

    Directory of Open Access Journals (Sweden)

    Hideo Kimura

    2014-10-01

    Full Text Available Hydrogen sulfide (H2S is recognized as a biological mediator with various roles such as neuromodulation, regulation of the vascular tone, cytoprotection, anti-inflammation, oxygen sensing, angiogenesis, and generation of mitochondrial energy. It is produced by cystathionine β-synthase (CBS, cystathionine γ-lyase (CSE, and 3-mercaptopyruvate sulfurtransferase (3MST. The activity of CBS is enhanced by S-adenosyl methionine (SAM and glutathionylation, while it is inhibited by nitric oxide (NO and carbon monoxide (CO. The activity of CSE and cysteine aminotransferase (CAT, which produces the 3MST substrate 3-mercaptopyruvate (3MP, is regulated by Ca2+. H2S is oxidized to thiosulfate in mitochondria through the sequential action of sulfide quinone oxidoreductase (SQR, sulfur dioxygenase, and rhodanese. The rates of the production and clearance of H2S determine its cellular concentration. Polysulfides (H2Sn have been found to occur in the brain and activate transient receptor potential ankyrin 1 (TRPA1 channels, facilitate the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2 to the nucleus, and suppress the activity of phosphatase and tensin homolog (PTEN by sulfurating (sulfhydrating the target cysteine residues. A cross talk between H2S and NO also plays an important role in cardioprotection as well as regulation of the vascular tone. H2S, polysulfides, and their cross talk with NO may mediate various physiological and pathophysiological responses.

  2. Hydrogen sulfide and polysulfides as biological mediators.

    Science.gov (United States)

    Kimura, Hideo

    2014-10-09

    Hydrogen sulfide (H2S) is recognized as a biological mediator with various roles such as neuromodulation, regulation of the vascular tone, cytoprotection, anti-inflammation, oxygen sensing, angiogenesis, and generation of mitochondrial energy. It is produced by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST). The activity of CBS is enhanced by S-adenosyl methionine (SAM) and glutathionylation, while it is inhibited by nitric oxide (NO) and carbon monoxide (CO). The activity of CSE and cysteine aminotransferase (CAT), which produces the 3MST substrate 3-mercaptopyruvate (3MP), is regulated by Ca2+. H2S is oxidized to thiosulfate in mitochondria through the sequential action of sulfide quinone oxidoreductase (SQR), sulfur dioxygenase, and rhodanese. The rates of the production and clearance of H2S determine its cellular concentration. Polysulfides (H2Sn) have been found to occur in the brain and activate transient receptor potential ankyrin 1 (TRPA1) channels, facilitate the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus, and suppress the activity of phosphatase and tensin homolog (PTEN) by sulfurating (sulfhydrating) the target cysteine residues. A cross talk between H2S and NO also plays an important role in cardioprotection as well as regulation of the vascular tone. H2S, polysulfides, and their cross talk with NO may mediate various physiological and pathophysiological responses.

  3. Carbon as a fuel for efficient electricity generation in carbon solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Skrzypkiewicz Marek

    2016-01-01

    Full Text Available In this paper, the impact of the physicochemical properties of carbonaceous solid fuels on the performance of a direct carbon solid oxide fuel cell (DC-SOFC was investigated. High-purity synthetic carbon powders such as carbon black N-220 and Carbo Medicinalis FP5 were chosen for analytical and electrochemical investigations in a DC-SOFC. The research focussed on choosing an optimised, cost-effective, high-purity carbon powder which could be applied as a solid reference fuel for all tests performed on a single DC-SOFC cell as well as on DC-SOFC stack constructions. Most of the electrochemical investigations described in this paper were performed using square DCSOFCs with dimensions of 5 × 5 cm. The relationship between structure, physicochemical properties, and electrochemical reactivity in a DC-SOFC was analysed.

  4. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg's reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm-1 corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  5. INFLUENCE OF HEAT TREATMENT ON OXIDATION PROPERTIES OF C/C COMPOSITES FABRICATED BY HIGH PRESSURE IMPREGNATION CARBONIZATION

    Institute of Scientific and Technical Information of China (English)

    Q.Chen; H.J.Li; A.J.Li; H.M.Han; K.Z.Li

    2004-01-01

    Felt base carbon/carbon composites fabricated by super-high pressure impregnation carbonization process (SPIC) were heat treated at high temperature 2773K. The oxidation properties of felt base carbon/carbon composites were investigated at different temperatures (773-1173K), and the microstructures of carbon/carbon composites were studied by SEM and X-ray diffraction. The experimental results showed that the interlaminar distance of (002) plane (doo2) deceased while the microcrystalline stack height (Lc) increased. The oxidation rate of felt base carbon/carbon composites was invariable at certain temperatures. The oxidation mechanism of carbon/carbon composites changed remarkably at the oxidation temperature 973K. At the initial oxidation stage of carbon/carbon composites, carbon matrix was oxidized much more rapidly than carbon felt.

  6. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments

    DEFF Research Database (Denmark)

    Jørgensen, BB; Bottcher, ME; Luschen, H.

    2004-01-01

    to isotopically heavy pyrite in a sediment open to diffusion. These results have general implications for the marine sulfur cycle and for the interpretation of sulfur isotopic data in modern sediments and in sedimentary rocks throughout earth's history. Copyright (C) 2004 Elsevier Ltd......The main terminal processes of organic matter mineralization in anoxic Black Sea sediments underlying the sulfidic water column are sulfate reduction in the upper 2-4 m and methanogenesis below the sulfate zone. The modern marine deposits comprise a ca. 1-m-deep layer of coccolith ooze...... and underlying sapropel, below which sea water ions penetrate deep down into the limnic Pleistocene deposits from >9000 years BP. Sulfate reduction rates have a subsurface maximum at the SO42--CH4 transition where H2S reaches 4 maximum concentration. Because of an excess of reactive iron in the deep limnic...

  7. A peroxotungstate-ionic liquid brush assembly: an efficient and reusable catalyst for selectively oxidizing sulfides with aqueous H{sub 2}O{sub 2} solution in neat water

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xianying; Ma, Wenjuan; Ou, Hui; Han, Xiaoyan; Lu, Congmin; Chen, Yan; Wei, Junfa, E-mail: shixy@snnu.edu.cn, E-mail: weijf@snnu.edu.cn [School of Chemistry and Chemical Engineering, Shaanxi Normal University and Key Laboratory for Macromolecular Science of Shaanxi Province, Xian (China)

    2012-08-15

    An efficient and reusable heterogeneous catalytic assembly of peroxotungstate held in a ionic liquid (IL) brush was synthesized and an environmentally-friendly procedure was developed for selective oxidation of sulfides at room temperature using 30 wt.% hydrogen peroxide as the terminal oxidant and water as a sole solvent. No organic co-solvent or other additive was needed. A 1.5-2.0 mol% (based on W atom) loading catalyst was found to be sufficient for a smooth and clean reaction. Both aliphatic and aromatic sulfides were efficiently and selectively transformed into their respective sulfoxides or sulfones by simply controlling of equivalents of hydrogen peroxide. In addition to the high catalytic activity, the catalyst exhibits excellent chemoselectivity. Sensitive functional groups, such as double bond and hydroxyl, remained under the oxidation conditions the reaction even with an excess hydrogen peroxide. The catalyst was easily recovered (via simple filtration) and reused at least eight times without a noticeable loss of activity. (author)

  8. Enhancing the crystalline degree of carbon nanotubes by acid treatment, air oxidization and heat treatment

    Institute of Scientific and Technical Information of China (English)

    Chensha Li; Baoyou Zhang; Xingjuan Chen; Xiaoqing Hu; Ji Liang

    2005-01-01

    Three approaches of treating carbon nanotubes (CNTs) including acid treatment, air oxidization and heat treatment at high temperature were studied to enhance the crystalline degree of carbon nanotubes. High temperature heat-treatment elevates the crystalline degree of carbon nanotubes. Acid treatment removes parts of amorphous carbonaceous matter through its oxidization effect.Air oxidization disperses carbon nanotubes and amorphous carbonaceous matter. The treatment of combining acid treatment with heat-treatment further elevates the crystalline degree of carbon nanotubes comparing with acid treatment or heat-treatment. The combination of the three treatments creates the thorough effects of enhancing the crystalline degree of carbon nanotubes.

  9. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R.; Novak, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  10. Investigation of the weldability of iron-aluminum-chromium overlay coatings for corrosion protection in oxidizing/sulfidizing environments

    Science.gov (United States)

    Regina, Jonathan R.

    The current study investigated the effect of chromium additions on the hydrogen cracking susceptibility of Fe-Al weld overlay claddings containing chromium additions. It was found that the weldability of FeAlCr claddings was a function of both the aluminum and chromium concentrations of the weld coatings. Weld overlay compositions that were not susceptible to hydrogen cracking were identified and the underlying mechanism behind the hydrogen cracking phenomenon was investigated further. It was concluded that the cracking behavior of the FeAlCr welds depended strongly on the microstructure of the weld fusion zone. Although it was found that the cracking susceptibility was influenced by the presence of Fe-Al intermetallic phases (namely Fe3 Al and FeAl), the cracking behavior of FeAlCr weld overlay claddings also depended on the size and distribution of carbide and oxide particles present within the weld structure. These particles acted as hydrogen trapping sites, which are areas where free hydrogen segregates and can no longer contribute to the hydrogen embrittlement of the metal. It was determined that in practical applications of these FeAlCr weld overlay coatings, carbon should be present within these welds to reduce the amount of hydrogen available for hydrogen cracking. Based on the weldability results of the FeAlCr weld claddings, coating compositions that were able to be deposited crack-free were used for long-term corrosion testing in a simulated low NOx environment. These alloys were compared to a Ni-based superalloy (622), which is commonly utilized as boiler tube coatings in power plant furnaces for corrosion protection. It was found that the FeAlCr alloys demonstrated superior corrosion resistance when compared to the Ni-based superalloy. Due to the excellent long-term corrosion behavior of FeAlCr weld overlays that were immune to hydrogen cracking, it was concluded that select FeAlCr weld overlay compositions would make excellent corrosion resistant

  11. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yadegari, H. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Karimian, K. [Arasto Pharmaceutical Chemicals Inc., Tehran (Iran, Islamic Republic of); Khodadadi, A. [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-02-15

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS). During oxidation of deferiprone, two irreversible anodic peaks, with E{sub 1}{sup 0}=452 and E{sub 2}{sup 0}=906mV, appeared, using GC-CNT. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that deferiprone is oxidized via two two-electron steps. The results revealed that carbon nanotube (CNT) promotes the rate of oxidation by increasing the peak current, so that deferiprone is oxidized at lower potentials, which thermodynamically is more favorable. This result was confirmed by impedance measurements. The diffusion coefficient, electron-transfer coefficient and heterogeneous electron-transfer rate constant of deferiprone were found to be 1.49 x 10{sup -6} cm{sup 2} s{sup -1}, 0.44, and 3.83 x 10{sup -3} cm s{sup -1}, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of deferiprone. Using the proposed method, deferiprone can be determined with a detection limit of 5.25 x 10{sup -7} M. The applicability of the method to direct assays of spiked human serum and urine fluids is described.

  12. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone

    DEFF Research Database (Denmark)

    Bruchert, V.; Jørgensen, BB; Neumann, K.;

    2003-01-01

    and the low capacity to oxidize and trap sulfide. The inner shelf break marks the seaward border of sulfidic bottom waters, and separates two different regimes of bacterial sulfate reduction. In the sulfidic bottom waters on the shelf, up to 55% of sulfide oxidation is mediated by the large nitrate...... to the sediment-water interface and reduce the hydrogen sulfide flux to the water column. Modeling of pore water sulfide concentration profiles indicates that sulfide produced by bacterial sulfate reduction in the uppermost 16 cm of sediment is sufficient to account for the total flux of hydrogen sulfide...... to the water column. However, the total pool of hydrogen sulfide in the water column is too large to be explained by steady state diffusion across the sediment-water interface. Episodic advection of hydrogen sulfide, possibly triggered by methane eruptions, may contribute to hydrogen sulfide in the water...

  13. The hydrogen sulfide releasing compounds ATB-346 and diallyl trisulfide attenuate streptozotocin-induced cognitive impairment, neuroinflammation, and oxidative stress in rats: involvement of asymmetric dimethylarginine.

    Science.gov (United States)

    Mostafa, Dalia K; El Azhary, Nesrine M; Nasra, Rasha A

    2016-07-01

    Hydrogen sulfide (H2S) has attracted interest as a gaseous mediator involved in diverse processes in the nervous system, particularly with respect to learning and memory. However, its therapeutic potential in Alzheimer disease (AD) is not fully explored. Therefore, the effects of H2S-releasing compounds against AD-like behavioural and biochemical abnormalities were investigated. Memory deficit was induced by intracerberoventicular injection of streptozotocin (STZ, 3 mg·kg(-1)). Animals were randomly assigned into 5 groups (12 rats each): normal control, STZ treated, and 3 drug-treated groups receiving naproxen, H2S-releasing naproxen (ATB-346), and diallyl trisulfide in 20, 32, 40 mg·kg(-1)·day(-1), respectively. Memory function was assessed by passive avoidance and T-maze tasks. After 21 days, hippocampal IL-6, malondialdehyde, reduced glutathione (GSH), asymmetric dimethylarginine (ADMA), and acetylcholinestrase activity were determined. ATB-346 and diallyl trisulfide ameliorated behavioural performance and reduced malondialdehyde, ADMA, and acetylcholinestrase activity while increasing GSH. This study demonstrates the beneficial effects of H2S release in STZ-induced memory impairment by modulation of neuroinflammation, oxidative stress, and cholinergic function. It also delineates the implication of ADMA to the cognitive impairment induced by STZ. These findings draw the attention to H2S-releasing compounds as new candidates for treating neurodegenerative disorders that have prominent oxidative and inflammatory components such as AD.

  14. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    Science.gov (United States)

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-11-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application.

  15. Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. G. Larrude

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition of cobalt nitrate hexahydrate diluted in acetone. Electron microscopy analysis indicated that dispersed particles were formed on the MWCNTs walls. The average size increased with the increasing concentration of cobalt nitrate in acetone in the precursor mixture. TEM images indicated that nanoparticles were strongly attached to the tube walls. The Raman spectroscopy results suggested that the MWCNT structure was slightly damaged after the nanoparticle growth.

  16. Highly sensitive thermoluminescent carbon doped nanoporous aluminium oxide detectors.

    Science.gov (United States)

    de Azevedo, W M; de Oliveira, G B; da Silva, E F; Khoury, H J; Oliveira de Jesus, E F

    2006-01-01

    In this work we present the synthesis, characterisation and the thermoluminescence (TL) response of nanoporous carbon doped aluminium oxide Al2O3:C produced by anodic oxidation of aluminium in organic and inorganic solvents. The X-ray and scanning electron microscopy (SEM) measurements reveal that the synthesised samples are amorphous and present highly ordered structures with uniform pore distribution with diameter of the order 50 nm. The photoluminescence and spectroscopic analysis in the visible and infrared regions show that the luminescence properties presented by the samples prepared in organic acid are due to carboxylate species, incorporated in anodic alumina films during the synthesis process. After an annealing treatment, part of the incorporated species decomposes and is incorporated into the structure of the aluminium oxide yielding a highly thermoluminescent detector (TL) . The results for X-ray irradiation in the range from 21 to 80 keV indicate a linear TL response with the dose in the range from 5 mGy to 1 Gy, suggesting that nanoporous aluminium oxide produced in the present route of synthesis is a suitable detector for radiation measurements.

  17. Benzene Removal by Iron Oxide Nanoparticles Decorated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Aamir Abbas

    2016-01-01

    Full Text Available In this paper, carbon nanotubes (CNTs impregnated with iron oxide nanoparticles were employed for the removal of benzene from water. The adsorbents were characterized using scanning electron microscope, X-ray diffraction, BET surface area, and thermogravimetric analysis. Batch adsorption experiments were carried out to study the adsorptive removal of benzene and the effect of parameters such as pH, contact time, and adsorbent dosage. The maximum removal of benzene was 61% with iron oxide impregnated CNTs at an adsorbent dosage 100 mg, shaking speed 200 rpm, contact time 2 hours, initial concentration 1 ppm, and pH 6. However, raw CNTs showed only 53% removal under same experimental conditions. Pseudo-first-order kinetic model was found well to describe the obtained data on benzene removal from water. Initial concentration was varied from 1 to 200 mg/L for isotherms study. Langmuir isotherm model was observed to best describe the adsorption data. The maximum adsorption capacities were 987.58 mg/g and 517.27 mg/g for iron oxide impregnated CNTs and raw CNTs, respectively. Experimental results revealed that impregnation with iron oxide nanoparticles significantly increased the removal efficiency of CNTs.

  18. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990

    Science.gov (United States)

    Miettinen, Jukka; Hooijer, Aljosja; Vernimmen, Ronald; Liew, Soo Chin; Page, Susan E.

    2017-02-01

    Tropical peatlands of the western part of insular Southeast Asia have experienced extensive land cover changes since 1990. Typically involving drainage, these land cover changes have resulted in increased peat oxidation in the upper peat profile. In this paper we provide current (2015) and cumulative carbon emissions estimates since 1990 from peat oxidation in Peninsular Malaysia, Sumatra and Borneo, utilizing newly published peatland land cover information and the recently agreed Intergovernmental Panel on Climate Change (IPCC) peat oxidation emission values for tropical peatland areas. Our results highlight the change of one of the Earth’s most efficient long-term carbon sinks to a short-term emission source, with cumulative carbon emissions since 1990 estimated to have been in the order of 2.5 Gt C. Current (2015) levels of emissions are estimated at around 146 Mt C yr‑1, with a range of 132–159 Mt C yr‑1 depending on the selection of emissions factors for different land cover types. 44% (or 64 Mt C yr‑1) of the emissions come from industrial plantations (mainly oil palm and Acacia pulpwood), followed by 34% (49 Mt C yr‑1) of emissions from small-holder areas. Thus, altogether 78% of current peat oxidation emissions come from managed land cover types. Although based on the latest information, these estimates may still include considerable, yet currently unquantifiable, uncertainties (e.g. due to uncertainties in the extent of peatlands and drainage networks) which need to be focused on in future research. In comparison, fire induced carbon dioxide emissions over the past ten years for the entire equatorial Southeast Asia region have been estimated to average 122 Mt C yr‑1 (www.globalfiredata.org/_index.html). The results emphasise that whilst reducing emissions from peat fires is important, urgent efforts are also needed to mitigate the constantly high level of emissions arising from peat drainage, regardless of fire occurrence.

  19. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application

    Science.gov (United States)

    Abdalla, Ahmed M.; Sahu, Rakesh P.; Wallar, Cameron J.; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K.

    2017-02-01

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g-1 and an areal capacitance of 3.28 F cm-2 at a scan rate of 2 mV s-1 is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm-2.

  20. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    Science.gov (United States)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  1. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Science.gov (United States)

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  2. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    Science.gov (United States)

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  3. The Effect of Anodic Surface Treatment on the Oxidation of Catechols at Ultrasmall Carbon Ring Electrodes

    Science.gov (United States)

    1991-07-09

    selectivity. A model of the surface formed following anodic oxidation is consistent with previous models involving both surface cleanliness and carbon...involving both surface cleanliness and carbon structure orientation. 2 INTRODUCTION Because of the vast electroanalytical utility of carbon electrodes...of the electron transfer rate following treatment are a function of the surface cleanliness and the orientation of the carbon structure

  4. Metal Oxide-Carbon Nanocomposites for Aqueous and Nonaqueous Supercapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I effort focuses on development of novel metal-oxide-carbon nanocomposites for application in pseudocapacitive...

  5. [Biooxidation of a Double-Refractory Gold-Bearing Sulfide Ore Concentrate].

    Science.gov (United States)

    Bulaev, A G; Kanaeva, Z K; Kanaev, A T; Kondrat'eva, T F

    2015-01-01

    The efficiency of biooxidation for treatment of a double-refractory gold-bearing sulfide ore concentrate from the Bakyrchik deposit (East Kazakhstan) was defined. The experiments were conducted in two different modes, i.e., with the standard liquid medium and the medium imitating the chemical composition of the Bakyrchik deposit groundwater and containing high concentrations of sodium, magnesium, and chloride. The concentrate contained 17.5% of organic carbon, 6% of pyrite and 13% arsenopyrite. Gold content was 57.5 g t@-1@. Direct gold recovery by cyanidation was very low (2.8%). While biooxidation was efficient in both cases (approximately 90% of sulfide sulfur was oxidized), the efficiency of cyanidation was low (39 and 32%, respectively). This fact suggests high efficiency of biooxidation is insufficient for efficient treatment of double-refractory gold-bearing sulfide ore concentrates.

  6. Copper on activated carbon for catalytic wet air oxidation

    Directory of Open Access Journals (Sweden)

    Nora Dolores Martínez

    2009-03-01

    Full Text Available Textile industry is an important source of water contamination. Some of the organic contaminants cannot be eliminated by nature in a reasonable period. Heterogeneous catalytic wet air oxidation is one of the most effective methods to purify wastewater with organic contaminants. In this work, catalysts based on copper supported on activated carbon were synthesized. The activated carbons were obtained from industrial wastes (apricot core and grape stalk of San Juan, Argentina. These were impregnated with a copper salt and thermically treated in an inert atmosphere. Analysis of specific surface, pore volume, p zc, acidity, basicity and XRD patterns were made in order to characterize the catalysts. The catalytic activity was tested in the oxidation of methylene blue (MB and polyvinyl alcohol (PVA in aqueous phase with pure oxygen. Reaction tests were carried out in a Parr batch reactor at different temperatures, with a 0.2 MPa partial pressure of oxygen. The amount of unconverted organics was measured by spectrophotometry. Higher temperatures were necessary for the degradation of PVA compared to those for methylene blue.

  7. Chemical and biological oxidative effects of carbon black nanoparticles.

    Science.gov (United States)

    Koike, Eiko; Kobayashi, Takahiro

    2006-11-01

    Several studies show that ultrafine particles have a larger surface area than coarse particles, thus causing a greater inflammatory response. In this study, we investigated chemical and biological oxidative effects of nanoparticles in vitro. Carbon black (CB) nanoparticles with mean aerodynamic diameters of 14, 56, and 95nm were examined. The innate oxidative capacity of the CB nanoparticles was measured by consumption of dithiothreitol (DTT) in cell-free system. The expression of heme oxygenase-1 (HO-1) in rat alveolar type II epithelial cell line (SV40T2) and alveolar macrophages (AM) exposed to CB nanoparticles was measured by ELISA. DTT consumption of 14nm CB was higher than that of other CB nanoparticles having the same particle weight. However, DTT consumption was directly proportional to the particle surface area. HO-1 protein in SV40T2 cells was significantly increased by the 14nm and 56nm CB, however, 95nm CB did not affect. HO-1 protein in AM was significantly increased by the 14, 56, and 95nm CB. The increase in HO-1 expression was diminished by N-acetyl-l-cysteine (NAC) treatment of each CB nanoparticles before exposure although the difference between the effects of NAC-treated and untreated 14nm CB did not achieve significant. In conclusion, CB nanoparticles have innate oxidative capacity that may be dependent on the surface area. CB nanoparticles can induce oxidative stress in alveolar epithelial cells and AM that is more prominent with smaller particles. The oxidative stress may, at least partially, be mediated by surface function of particles.

  8. Cupric Oxide (CuO) Oxidation Detects Pyrogenic Carbon in Burnt Organic Matter and Soils.

    Science.gov (United States)

    Hatten, Jeff; Goñi, Miguel

    2016-01-01

    Wildfire greatly impacts the composition and quantity of organic carbon stocks within watersheds. Most methods used to measure the contributions of fire altered organic carbon-i.e. pyrogenic organic carbon (Py-OC) in natural samples are designed to quantify specific fractions such as black carbon or polyaromatic hydrocarbons. In contrast, the CuO oxidation procedure yields a variety of products derived from a variety of precursors, including both unaltered and thermally altered sources. Here, we test whether or not the benzene carboxylic acid and hydroxy benzoic acid (BCA) products obtained by CuO oxidation provide a robust indicator of Py-OC and compare them to non-Py-OC biomarkers of lignin. O and A horizons from microcosms were burned in the laboratory at varying levels of fire severity and subsequently incubated for 6 months. All soils were analyzed for total OC and N and were analyzed by CuO oxidation. All BCAs appeared to be preserved or created to some degree during burning while lignin phenols appeared to be altered or destroyed to varying extents dependent on fire severity. We found two specific CuO oxidation products, o-hydroxybenzoic acid (oBd) and 1,2,4-benzenetricarboxylic acid (BTC2) that responded strongly to burn severity and withstood degradation during post-burning microbial incubations. Interestingly, we found that benzene di- and tricarboxylic acids (BDC and BTC, respectively) were much more reactive than vanillyl phenols during the incubation as a possible result of physical protection of vanillyl phenols in the interior of char particles or CuO oxidation derived BCAs originating from biologically available classes of Py-OC. We found that the ability of these compounds to predict relative Py-OC content in burned samples improved when normalized by their respective BCA class (i.e. benzene monocarboxylic acids (BA) and BTC, respectively) and when BTC was normalized to total lignin yields (BTC:Lig). The major trends in BCAs imparted by burning

  9. 溴化钾催化硫化物、硝酸铵和 SiO2-OSO3H 固体酸的氧化反应%Chemoselective Oxidation of Sulfides with Ammonium Nitrate and Silica Sulfuric Acid Catalyzed by KBr

    Institute of Scientific and Technical Information of China (English)

    Arash GHORBANI-CHOGHAMARANI; Mohammad Ali ZOLFIGOL; Toktam RASTEGAR

    2009-01-01

    A convenient and selective catalytic method for the sulfoxidation of aliphatic and aromatic sulfides by treatment of NH4NO3, silica sulfuric acid, wet SiO2 (50% w/w) and a catalytic amount of KBr in CH2Cl2 at room temperature was developed. Many sulfides can be selectively oxidized at room temperature in good to excellent yields. The reaction proceeds without over-oxidation to sulfones under mild conditions.

  10. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  11. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions.

    Science.gov (United States)

    Wang, Xueqian; Qiu, Juan; Ning, Ping; Ren, Xiaoguang; Li, Ziyan; Yin, Zaifei; Chen, Wei; Liu, Wei

    2012-08-30

    Activated carbon modified with different impregnants has been studied for COS removal efficiency under micro-oxygen conditions. Activated carbon modified with Cu(NO(3))(2)-CoPcS-KOH (denoted as Cu-Co-KW) is found to have markedly enhanced adsorption purification ability. In the adsorption purification process, the reaction temperature, oxygen concentration, and relative humidity of the gas are determined to be three crucial factors. A breakthrough of 43.34 mg COS/g adsorbent at 60°С and 30% relative humidity with 1.0% oxygen is shown in Cu-Co-KW for removing COS. The structures of the activated carbon samples are characterized using nitrogen adsorption, and their surface chemical structures are analyzed with X-ray photoelectron spectroscopy (XPS). Modification of Cu(NO(3))(2)-CoPcS-KOH appears to improve the COS removal capacity significantly, during which, SO(4)(2-) is presumably formed, strongly adsorbed, and present in the micropores ranging from 0.7 to 1.5 nm. TPD is used to identify the products containing sulfur species on the carbon surface, where SO(2) and COS are detected in the effluent gas generated from exhausted Cu-Co-KW (denoted Cu-Co-KWE). According to the current study results, the activated carbon impregnated with Cu(NO(3))(2)-CoPcS-KOH promises a good candidate for COS adsorbent, with the purified gas meeting requirements for desirable chemical feed stocks.

  12. NOSH-sulindac (AVT-18A) is a novel nitric oxide- and hydrogen sulfide-releasing hybrid that is gastrointestinal safe and has potent anti-inflammatory, analgesic, antipyretic, anti-platelet, and anti-cancer properties

    OpenAIRE

    Kashfi, Khosrow; Chattopadhyay, Mitali; Kodela, Ravinder

    2015-01-01

    Sulindac is chemopreventive and has utility in patients with familial adenomatous polyposis; however, side effects preclude its long-term use. NOSH-sulindac (AVT-18A) releases nitric oxide and hydrogen sulfide, was designed to be a safer alternative. Here we compare the gastrointestinal safety, anti-inflammatory, analgesic, anti-pyretic, anti-platelet, and anti-cancer properties of sulindac and NOSH-sulindac administered orally to rats at equimolar doses. Gastrointestinal safety: 6 h post-adm...

  13. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon.

    Science.gov (United States)

    Rungnim, Chompoonut; Promarak, Vinich; Hannongbua, Supa; Kungwan, Nawee; Namuangruk, Supawadee

    2016-06-05

    The reaction mechanisms of mercury (Hg) adsorption and oxidation on halogenated activated carbon (AC) have been completely studied for the first time using density functional theory (DFT) method. Two different halogenated AC models, namely X-AC and X-AC-X (X=Cl, Br, I), were adopted. The results revealed that HgX is found to be stable-state on the AC edge since its further desorption from the AC as HgX, or further oxidation to HgX2, are energetically unfavorable. Remarkably, the halide type does not significantly affect the Hg adsorption energy but it strongly affects the activation energy barrier of HgX formation, which obviously increases in the order HgIBr-AC>Cl-AC. Thus, the study of the complete reaction mechanism is essential because the adsorption energy can not be used as a guideline for the rational material design in the halide impregnated AC systems. The activation energy is an important descriptor for the predictions of sorbent reactivity to the Hg oxidation process.

  14. Towards a mechanistic understanding of carbon stabilization in manganese oxides

    Science.gov (United States)

    Johnson, Karen; Purvis, Graham; Lopez-Capel, Elisa; Peacock, Caroline; Gray, Neil; Wagner, Thomas; März, Christian; Bowen, Leon; Ojeda, Jesus; Finlay, Nina; Robertson, Steve; Worrall, Fred; Greenwell, Chris

    2015-01-01

    Minerals stabilize organic carbon (OC) in sediments, thereby directly affecting global climate at multiple scales, but how they do it is far from understood. Here we show that manganese oxide (Mn oxide) in a water treatment works filter bed traps dissolved OC as coatings build up in layers around clean sand grains at 3%w/wC. Using spectroscopic and thermogravimetric methods, we identify two main OC fractions. One is thermally refractory (>550 °C) and the other is thermally more labile (<550 °C). We postulate that the thermal stability of the trapped OC is due to carboxylate groups within it bonding to Mn oxide surfaces coupled with physical entrapment within the layers. We identify a significant difference in the nature of the surface-bound OC and bulk OC . We speculate that polymerization reactions may be occurring at depth within the layers. We also propose that these processes must be considered in future studies of OC in natural systems. PMID:26194625

  15. Crystal and Magnetic Structures of the Oxide Sulfides CaCoSO and BaCoSO.

    Science.gov (United States)

    Salter, Edward J T; Blandy, Jack N; Clarke, Simon J

    2016-02-15

    CaCoSO, synthesized from CaO, Co, and S at 900 °C, is isostructural with CaZnSO and CaFeSO. The structure is non-centrosymmetric by virtue of the arrangement of the vertex-sharing CoS3O tetrahedra which are linked by their sulfide vertices to form layers. The crystal structure adopts space group P63mc (No. 186), and the lattice parameters are a = 3.7524(9) Å and c = 11.138(3) Å at room temperature with two formula units in the unit cell. The compound is highly insulating, and powder neutron diffraction measurements reveal long-range antiferromagnetic order with a propagation vector k = (1/3, 1/3, 1/2). The magnetic scattering from a powder sample can be modeled starting from a 120° arrangement of Co(2+) spin vectors in the triangular planes and then applying a canting out of the planes which can be modeled in the magnetic space group C(c)c (space group 9.40 in the Belov, Neronova, and Smirnova (BNS) scheme) with Co(2+) moments of 2.72(5) μ(B). The antiferromagnetic structure of the recently reported compound BaCoSO, which has a very different crystal structure from CaCoSO, is also described, and this magnetic structure and the magnitude of the ordered moment (2.75(2) μ(B)) are found by experiment to be similar to those predicted computationally.

  16. Diallyl trisulfide protects against ethanol-induced oxidative stress and apoptosis via a hydrogen sulfide-mediated mechanism.

    Science.gov (United States)

    Chen, Lian-Yun; Chen, Qin; Zhu, Xiao-Jing; Kong, De-Song; Wu, Li; Shao, Jiang-Juan; Zheng, Shi-Zhong

    2016-07-01

    Garlic is one natural source of organic sulfur containing compounds and has shown promise in the treatment of chronic liver disease. Dietary garlic consumption is inversely correlated with the progression of alcoholic fatty liver (AFL), although the exact underlying mechanisms are not clear. Our previous studies also have shown that diallyl trisulfide (DATS), the primary organosulfur compound from Allium sativum L, displayed anti-lipid deposition and antioxidant properties in AFL. The aim of the present study was to clarify the underlying mechanisms. In the present study, we used the intragastric infusion model of alcohol administration and human normal liver cell line LO2 cultured with suitable ethanol to mimic the pathological condition of AFL. We showed that accumulation of intracellular reactive oxygen species (ROS) was lowered significantly by the administration of DATS, but antioxidant capacity was increased by DATS. Additionally, DATS inhibited hepatocyte apoptosis via down-regulating Bax expression and up-regulating Bcl-2 expression, and attenuated alcohol-induced caspase-dependent apoptosis. More importantly, using iodoacetamide (IAM) to block hydrogen sulfide (H2S) production from DATS, we noted that IAM abolished all the above effects of DATS in ethanol-treated LO2 cells. Lastly, we found DATS could increase the expressions of cystathionine gamma-lyase (CSE) and cystathionine beta-synthase (CBS), the major H2S-producing enzymes. These results demonstrate that DATS protect against alcohol-induced fatty liver via a H2S-mediated mechanism. Therefore, targeting H2S may play a therapeutic role for AFL.

  17. Degradation of sulfide linkages between isoprenes by lipid peroxidation catalyzed by manganese peroxidase.

    Science.gov (United States)

    Sato, Shin; Ohashi, Yasunori; Kojima, Masaaki; Watanabe, Takahito; Honda, Yoichi; Watanabe, Takashi

    2009-10-01

    Scission of sulfide linkages in vulcanized rubber has been a major concern since the early 20th century, because devulcanization is a key process for recycling waste rubber products as polymer materials that pose low environmental risks. We herein demonstrate that lipid peroxidation (LPO) of linoleic acid by manganese peroxidase (MnP), a proposed lignin-degradation system in the early stage of selective white rot fungi, cleaves sulfide bond in a model rubber compound, di(2-methylpent-2-enyl) sulfide, to 2,4-dimethylthiophene and 2-methyl-2-pentenal. The major intermediate of the LPO process, 2,4-decadienal was directly oxidized by MnP to cleave the sulfur-carbon bond. We propose that electrophilic radicals from 2,4-decadienal abstract one electron from a sulfur atom of the model compound to produce the sulfur radical cation intermediate, which in turn reacts with molecular oxygen to cleave the sulfur-carbon bond. The discovery of free radical-mediated scission of sulfide bond coupled with Mn oxidation provides a novel strategy for recycling vulcanized rubber wastes.

  18. Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment

    Science.gov (United States)

    DesMarais, David J.; Strauss, Harald; Summons, Roger E.; Hayes, J. M.

    1992-01-01

    The oxidation of the Earth's crust and the increase in atmospheric oxygen early in Earth history have been linked to the accumulation of reduced carbon in sedimentary rocks. Trends in the carbon isotope composition of sedimentary organic carbon and carbonate show that during the Proterozoic aeon (2.5-0.54 Gyr ago) the organic carbon reservoir grew in size, relative to the carbonate reservoir. This increase, and the concomitant release of oxidizing power in the environment, occurred mostly during episodes of global rifting and orogeny.

  19. Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: Unusual electrochemical behaviors and ascending capacities

    Science.gov (United States)

    Li, Xiaodan; Wu, Gaoxiang; Chen, Jiewei; Li, Meicheng; Li, Wei; Wang, Tianyue; Jiang, Bing; He, Yue; Mai, Liqiang

    2017-01-01

    Low-crystallinity molybdenum sulfide (LCMS, Mo:S = 1:2.75) nanosheets synthesized by a facile and low temperature solvothermal method is now reported. The as-prepared LCMS anode material is composited of MoS2 layers mixed with amorphous MoS3, which leads to an unusual electrochemical process for lithium storage compared to typical MoS2 anode. The existence of MoS3 and Mo (VI) provide strong adsorption and binding sites for polar polysulphides, which compels abundant sulfur to turn into new-formed MoS3 rather than diffuse into electrolyte. To fully utilize this novel electrochemical process, LCMS is decorated on carbon nanotubes, obtaining well-dispersed CNTs@LCMS. As electrode material for lithium storage, CNTs@LCMS exhibits a noticable ascending trend in capacity from 820 mA h g-1 to 1350 mA h g-1 at 100 mA g-1 during 130 cycles. The persistent ascending capacity is ascribed to the increasing lithium storage caused by new-formed MoS3, combined with the reduced volume change benifiting from well-dispersed CNTs@LCMS. Furthermore, the ascending performance is proved to be able to effectively extend the circulation life (up to 200%) for lithium-ion batteries by mathematical modeling and calculation. Accordingly, the CNTs@LCMS composite is a promising anode material for long-life lithium-ion batteries.

  20. Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon

    Science.gov (United States)

    Roosta, M.; Ghaedi, M.; Daneshfar, A.; Sahraei, R.

    2014-03-01

    In this research, the adsorption rate of safranine O (SO) onto tin sulfide nanoparticle loaded on activated carbon (SnS-NPAC) was accelerated by the ultrasound. SnS-NP-AC was characterized by different techniques such as SEM, XRD and UV-Vis measurements. The present results confirm that the ultrasound assisted adsorption method has remarkable ability to improve the adsorption efficiency. The influence of parameters such as the sonication time, adsorbent dosage, pH and initial SO concentration was examined and evaluated by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF). Conducting adsorption experiments at optimal conditions set as 4 min of sonication time, 0.024 g of adsorbent, pH 7 and 18 mg L-1 SO make admit to achieve high removal percentage (98%) and high adsorption capacity (50.25 mg g-1). A good agreement between experimental and predicted data in this study was observed. The experimental equilibrium data fitting to Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo-second-order and intraparticle diffusion models.

  1. Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon.

    Science.gov (United States)

    Roosta, M; Ghaedi, M; Daneshfar, A; Sahraei, R

    2014-03-25

    In this research, the adsorption rate of safranine O (SO) onto tin sulfide nanoparticle loaded on activated carbon (SnS-NPAC) was accelerated by the ultrasound. SnS-NP-AC was characterized by different techniques such as SEM, XRD and UV-Vis measurements. The present results confirm that the ultrasound assisted adsorption method has remarkable ability to improve the adsorption efficiency. The influence of parameters such as the sonication time, adsorbent dosage, pH and initial SO concentration was examined and evaluated by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF). Conducting adsorption experiments at optimal conditions set as 4 min of sonication time, 0.024 g of adsorbent, pH 7 and 18 mg L(-1) SO make admit to achieve high removal percentage (98%) and high adsorption capacity (50.25 mg g(-)(1)). A good agreement between experimental and predicted data in this study was observed. The experimental equilibrium data fitting to Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo-second-order and intraparticle diffusion models.

  2. One-Pot Synthesis of Copper Sulfide Nanowires/Reduced Graphene Oxide Nanocomposites with Excellent Lithium-Storage Properties as Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Feng, Caihong; Zhang, Le; Yang, Menghuan; Song, Xiangyun; Zhao, Hui; Jia, Zhe; Sun, Kening; Liu, Gao

    2015-07-29

    Copper sulfide nanowires/reduced graphene oxide (CuSNWs/rGO) nanocompsites are successfully synthesized via a facile one-pot and template-free solution method in a dimethyl sulfoxide (DMSO)-ethyl glycol (EG) mixed solvent. It is noteworthy that the precursor plays a crucial role in the formation of the nanocomposites structure. SEM, TEM, XRD, IR and Raman spectroscopy are used to investigate the morphological and structural evolution of CuSNWs/rGO nanocomposites. The as-fabricated CuSNWs/rGO nanocompsites show remarkably improved Li-storage performance, excellent cycling stability as well as high-rate capability compared with pristine CuS nanowires. It obtains a reversible capacity of 620 mAh g(-1) at 0.5C (1C = 560 mA g(-1)) after 100 cycles and 320 mAh g(-1) at a high current rate of 4C even after 430 cycles. The excellent lithium storage performance is ascribed to the synergistic effect between CuS nanowires and rGO nanosheets. The as-formed CuSNWs/rGO nanocomposites can effectively accommodate large volume changes, supply a 2D conducting network and trap the polysulfides generated during the conversion reaction of CuS.

  3. Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries

    Science.gov (United States)

    Wu, Lin; Lu, Haiyan; Xiao, Lifen; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-10-01

    Stannous sulfide@reduced graphene oxide (SnS@RGO) composite is successfully synthesized via a facile precipitation route. The structural and morphological characterizations reveal SnS@RGO composites are composed of SnS nanoparticles of the size 5-10 nm, which are uniformly anchored on the surface of RGO. The electrochemical measurements demonstrate the reversible capacity of the SnS@RGO composite - that includes contributions from the conversion reaction of SnS to Sn and NaxS and the alloying reaction of Sn to NaxSn. The SnS@RGO electrode exhibits a reversible capacity of 457 mAh g-1 at 20 mA g-1, superior cycling stability (94% capacity retention over 100 cycles at 100 mA g-1) and adequate rate performance. Compared to the neat SnS nanoparticles, the enhanced electrochemical performance of the SnS@RGO composite is primarily due to the incorporation of RGO as a highly conductive, flexible component as well as possessing a large available surface area, which provides desirable properties such as improved electronic contact between active materials, aggregation suppression of intermediate products, and alleviation of the volume change during sodiation and desodiation. Encouraging experimental results suggest that the SnS@RGO composite is a promising material to achieve a high-capacity and stable anode for NIBs.

  4. Oxidative Cleavage of C=S and P=S Bonds at an Al(I) Center: Preparation of Terminally Bound Aluminum Sulfides.

    Science.gov (United States)

    Chu, Terry; Vyboishchikov, Sergei F; Gabidullin, Bulat; Nikonov, Georgii I

    2016-10-10

    The treatment of cyclic thioureas with the aluminum(I) compound NacNacAl (1; NacNac=[ArNC(Me)CHC(Me)NAr](-) , Ar=2,6-Pr(i)2 C6 H3 ) resulted in oxidative cleavage of the C=S bond and the formation of 3 and 5, the first monomeric aluminum complexes with an Al=S double bond stabilized by N-heterocyclic carbenes. Compound 1 also reacted with triphenylphosphine sulfide in a similar manner, which resulted in cleavage of the P=S bond and production of the adduct [NacNacAl=S(S=PPh3 )] (8). The Al=S double bond in 3 can react with phenyl isothiocyanate to furnish the cycloaddition product 9 and zwitterion 10 as a result of coupling between the liberated carbene and PhN=C=S. All novel complexes were characterized by multinuclear NMR spectroscopy, and the structures of 5, 9, and 10 were confirmed by X-ray diffraction analysis. The nature of the Al=S bond in 5 was also probed by DFT calculations.

  5. An ultrasensitive electrochemiluminescence sensor based on reduced graphene oxide-copper sulfide composite coupled with capillary electrophoresis for determination of amlodipine besylate in mice plasma.

    Science.gov (United States)

    Wei, Yanfen; Wang, Hao; Sun, Shuangjiao; Tang, Lifu; Cao, Yupin; Deng, Biyang

    2016-12-15

    A new electrochemiluminescence (ECL) sensor based on reduced graphene oxide-copper sulfide (rGO-CuS) composite coupled with capillary electrophoresis (CE) was constructed for the ultrasensitive detection of amlodipine besylate (AML) for the first time. In this work, rGO-CuS composite was synthesized by one-pot hydrothermal method and used for electrode modification. The electrochemical and ECL behaviors of the sensor were investigated. More than 5-fold enhance in ECL intensity was observed after modified with rGO-CuS composite. The results can be ascribed to the presence of rGO-CuS composite on the electrode surface that facilitates the electron transfer rate between the electroactive center of Ru(bpy)3(2+) and the electrode. The ECL sensor was coupled with CE to improve the selectivity and the CE-ECL parameters that affect separation and detection were optimized. Under the optimum conditions, the linear ranges for AML was 0.008-5.0μg/mL with a detection limit of 2.8ng/mL (S/N=3). The method displayed the advantages of high sensitivity, good selectivity, wide linear range, low detection limit and fine reproducibility, and was used to analyze AML in mice plasma with a satisfactory result, which holds a great potential in the field of pharmaceutical analysis.

  6. Vasorelaxant Effect of a New Hydrogen Sulfide-Nitric Oxide Conjugated Donor in Isolated Rat Aortic Rings through cGMP Pathway

    Directory of Open Access Journals (Sweden)

    Dan Wu

    2016-01-01

    Full Text Available Endothelium-dependent vasorelaxant injury leads to a lot of cardiovascular diseases. Both hydrogen sulfide (H2S and nitric oxide (NO are gasotransmitters, which play a critical role in regulating vascular tone. However, the interaction between H2S and NO in vasorelaxation is still unclear. ZYZ-803 was a novel H2S and NO conjugated donor developed by H2S-releasing moiety (S-propyl-L-cysteine (SPRC and NO-releasing moiety (furoxan. ZYZ-803 could time- and dose-dependently relax the sustained contraction induced by PE in rat aortic rings, with potencies of 1.5- to 100-fold greater than that of furoxan and SPRC. Inhibition of the generations of H2S and NO with respective inhibitors abolished the vasorelaxant effect of ZYZ-803. ZYZ-803 increased cGMP level and the activity of vasodilator stimulated phosphoprotein (VASP in aortic rings, and those effects could be suppressed by the inhibitory generation of H2S and NO. Both the inhibitor of protein kinase G (KT5823 and the inhibitor of KATP channel (glibenclamide suppressed the vasorelaxant effect of ZYZ-803. Our results demonstrated that H2S and NO generation from ZYZ-803 cooperatively regulated vascular tone through cGMP pathway, which indicated that ZYZ-803 had therapeutic potential in cardiovascular diseases.

  7. Vasorelaxant Effect of a New Hydrogen Sulfide-Nitric Oxide Conjugated Donor in Isolated Rat Aortic Rings through cGMP Pathway

    Science.gov (United States)

    Wu, Dan; Hu, Qingxun; Ma, Fenfen; Zhu, Yi Zhun

    2016-01-01

    Endothelium-dependent vasorelaxant injury leads to a lot of cardiovascular diseases. Both hydrogen sulfide (H2S) and nitric oxide (NO) are gasotransmitters, which play a critical role in regulating vascular tone. However, the interaction between H2S and NO in vasorelaxation is still unclear. ZYZ-803 was a novel H2S and NO conjugated donor developed by H2S-releasing moiety (S-propyl-L-cysteine (SPRC)) and NO-releasing moiety (furoxan). ZYZ-803 could time- and dose-dependently relax the sustained contraction induced by PE in rat aortic rings, with potencies of 1.5- to 100-fold greater than that of furoxan and SPRC. Inhibition of the generations of H2S and NO with respective inhibitors abolished the vasorelaxant effect of ZYZ-803. ZYZ-803 increased cGMP level and the activity of vasodilator stimulated phosphoprotein (VASP) in aortic rings, and those effects could be suppressed by the inhibitory generation of H2S and NO. Both the inhibitor of protein kinase G (KT5823) and the inhibitor of KATP channel (glibenclamide) suppressed the vasorelaxant effect of ZYZ-803. Our results demonstrated that H2S and NO generation from ZYZ-803 cooperatively regulated vascular tone through cGMP pathway, which indicated that ZYZ-803 had therapeutic potential in cardiovascular diseases. PMID:26635911

  8. Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires.

    Science.gov (United States)

    Xiong, Yujie; Xie, Yi; Li, Zhengquan; Li, Xiaoxu; Gao, Shanmin

    2004-02-06

    A general synthetic route has been developed for the growth of metal phosphide, oxide, sulfide, and tungstate nanowires in aqueous solution. In detail, cetyltrimethylammonium cations (CTA(+)) can be combined with anionic inorganic species along a co-condensation mechanism to form lamellar inorganic-surfactant intercalated mesostructures, which serve as both microreactors and reactants for the growth of nanowires. For example, GaP, InP, gamma-MnO(2), ZnO, SnS(2), ZnS, CdWO(4), and ZnWO(4) nanowires have been grown by this route. To the best of our knowledge, this is the first time that the synthesis of GaP and InP nanowires in aqueous solution has been achieved. This strategy is expected to extend to grow nanowires of other materials in solution or by vapor transport routes, since the nanowire growth of any inorganic materials can be realized by selecting an appropriate reaction and its corresponding lamellar inorganic-surfactant precursors.

  9. Three-Carbon Planetary Chemistry - Propylene and Propylene Oxide

    Science.gov (United States)

    Hudson, Reggie L.; Yocum, Katarina; Loeffler, Mark

    2016-10-01

    We recently have published new studies of solid CO2, CH4, C2H2, C2H4, and C2H6, recording new, and in some cases the first, infrared (IR) spectra of the amorphous phases of these compounds and correcting multiple problems and contradictions in the literature that have persisted for several decades and influenced both planetary and interstellar studies (e.g., Hudson et al. 2014, 2015). We now extend this work by examining two three-carbon molecules, the acyclic propylene (C3H6) and the cyclic molecule propylene oxide (OC3H6). Both molecules have been detected in low-temperature astronomical environments (Titan, interstellar medium (ISM)) and are suspected in others. However, in contrast to the astronomical relevance of these compounds, there are almost no laboratory measurements of spectra and other properties for either of them at low temperatures. Here we report new results on ices containing propylene and propylene oxide including IR spectra of multiple solid phases and measurements of phase transition temperatures, IR band strengths, refractive indices, vapor pressures, and sublimation energies. Radiation-chemical reactions connecting propylene and propylene oxide have been investigated for possible applications to the moon, Europa, TNOs, comets, and the ISM, and first results will be presented. Propylene oxide is of particular interest as it recently was announced (McGuire et al. 2016) as the first chiral molecule identified in the ISM. [Our work was supported by NASA Goddard's DREAM2 center, funded by NASA's SSERVI program, and by the NASA Astrobiology Institute's Goddard Center for Astrobiology.

  10. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats

    Directory of Open Access Journals (Sweden)

    Pan Huang

    2016-01-01

    Full Text Available Background. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. Methods. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP, serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. Results. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and •OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. Conclusions. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress.

  11. Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis

    Science.gov (United States)

    Aleksandrzak, Malgorzata; Kukulka, Wojciech; Mijowska, Ewa

    2017-03-01

    The study presents a modification of graphitic carbon nitride (g-C3N4) with graphene oxide (GO) and reduced graphene oxide (rGO) and investigation of photoluminescent and photocatalytic properties. The influence of GO and rGO lateral sizes used for the modification was investigated. The nanomaterials were characterized with atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-vis spectroscopy (DR-UV-vis) and photoluminescence spectroscopy (PL). PL revealed that pristine graphitic carbon nitride and its nanocomposites with GO and rGO emitted up-converted photoluminescence (UCPL) which could contribute to the improvement of photocatalytic activity of the materials. The photoactivity was evaluated in a process of phenol decomposition under visible light. A hybrid composed of rGO nanoparticles (rGONPs, 4-135 nm) exhibited the highest photoactivity compared to rGO with size of 150 nm-7.2 μm and graphene oxide with the corresponding sizes. The possible reason of the superior photocatalytic activity is the most enhanced UCPL of rGONPs, contributing to the emission of light with higher energy than the incident light, resulting in improved photogeneration of electron-hole pairs.

  12. Hydrogen sulfide is endogenously generated in rat skeletal muscle and exerts a protective effect against oxidative stress

    Institute of Scientific and Technical Information of China (English)

    DU Jian-tong; LI Wei; YANG Jin-yan; TANG Chao-shu; LI Qi; JIN Hong-fang

    2013-01-01

    Background Skeletal muscle has recently been recognized as an endocrine organ that can express,synthesize and secrete a variety of bioactive molecules which exert significant regulatory effects.Hydrogen sulfide (H2S) is endogenously produced in mammalian tissues and participates in a number of physiological and pathophysiological processes.We aimed to verify whether H2S could be endogenously generated and released by rat skeletal muscle,and determine the biological effects of H2S in rat skeletal muscle.Methods The study was divided into two parts:detection of endogenous H2S generation and release in rat skeletal muscle and determination of antioxidative activity of skeletal muscle-derived H2S.H2S content and production in tissues were detected by sensitive sulfur electrode method.The expressions of H2S producing enzymes cystathionine β-synthase,cystathionine Y-lyase and mercaptopyruvate sulfurtransferase were detected by real-time PCR and western blotting and their tissue distributions were observed by immunohistochemical and immunofluorescent analysis.Rat skeletal muscular ischemia-reperfusion (I-R) injury model was created and evaluated by histological analysis under microscope.The malondialdehyde (MDA) contents,hydrogen peroxide levels,superoxide anion and superoxide dismutase (SOD) activities were detected using spectrophotometer.Results H2S could be endogenously generated and released by skeletal muscle of Sprague-Dawley rats (H2S content:(2.06±0.43) nmol/mg; H2S production:(0.17±0.06) nmol.min-1·mg-1).Gene and protein expressions of the three H2S producing enzymes were detected in skeletal muscle,as well as the liver and kidney.Endogenous H2S content and production were decreased in skeletal muscles of rats with I-R skeletal muscle injury (P <0.05).Furthermore,H2S significantly protected rat skeletal muscle against I-R injury and resulted in decreased MDA content,reduced hydrogen peroxide and superoxide anion levels,but increased SOD activity and

  13. Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress

    Directory of Open Access Journals (Sweden)

    Mohammad Golam Mostofa

    2015-12-01

    Full Text Available Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of salt stress tolerance in rice. We show that pretreating rice plants with H2S donor sodium bisulfide (NaHS clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS, contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, decreased uptake of Na+, decreased Na+/K+ ratio and balanced mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitter like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes.

  14. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na+/K+ Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress

    Science.gov (United States)

    Mostofa, Mohammad G.; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na+ and the Na+/K+ ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015

  15. Production of Metal-Free Composites Composed of Graphite Oxide and Oxidized Carbon Nitride Nanodots and Their Enhanced Photocatalytic Performances.

    Science.gov (United States)

    Kim, Seung Yeon; Oh, Junghoon; Park, Sunghee; Shim, Yeonjun; Park, Sungjin

    2016-04-01

    A novel metal-free composite (GN) composed of two types of carbon-based nanomaterials, graphite oxide (GO) and 2D oxidized carbon nitride (OCN) nanodots was produced. Chemical and morphological characterizations reveal that GN contains a main component of GO with well-dispersed 2D OCN nanodots. GN shows enhanced photocatalytic performance for degrading an organic pollutant, Rhodamine B, under visible light.

  16. Standard Test Method for Thermal Oxidative Resistance of Carbon Fibers

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1982-01-01

    1.1 This test method covers the apparatus and procedure for the determination of the weight loss of carbon fibers, exposed to ambient hot air, as a means of characterizing their oxidative resistance. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units which are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard information, see Section 8.

  17. Nickel Sulfide/Graphene/Carbon Nanotube Composites as Electrode Material for the Supercapacitor Application in the Sea Flashing Signal System

    Institute of Scientific and Technical Information of China (English)

    Hailong Chen; Ji Li; Conglai Long; Tong Wei; Guoqing Ning; Jun Yan; Zhuangjun Fan

    2014-01-01

    This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductive GNS-CNT networks. As a result, the NiS/GNS/CNT electrode showed a high specific capacitance of 2 377 F·g-1 at 2 mV·s-1 and good cycling stability compared with the pure NiS (1 599 F·g-1 ). The enhanced electrochemical performances are attributed to the synergetic effect between the conductive carbon and the pseudo-capacitive NiS. The high performance supercapacitor may provide application in the sea flashing signal system.

  18. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  19. Hydrogen sulfide regulates lung tissue-oxidized glutathione and total antioxidant capacity in hypoxic pulmonary hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    Hong-ling WEI; Chun-yu ZHANG; Hong-fang JIN; Chao-shu TANG; Jun-bao DU

    2008-01-01

    Aim: To investigate the modulatory effect of sudium hydrosulfide on lung tissue-oxidized glutathione and total antioxidant capacity in the development of hypoxic pulmonary hypertension (HPH). Methods: After 21 d of hypoxia, the mean pulmo-nary artery pressure was measured by cardiac catheterization. The plasma H2S level and production of H2S in the lung tissues were determined by using a spectrophotometer. The lung homogenates were assayed for total antioxidant capacity (T-AOC), superoxide dismutase (SOD), oxidized glutathione (GSSG), re-duced glutathione and malonaldehyde by colorimetry. The mRNA level of SOD was analyzed by real-time PCR, and the SOD expression was detected by Western blotting. Results: In the hypoxia group, the plasma H2S concentration and H2S production in the lung was significantly decreased compared with the control P<0.01). The administration of sodium hydrosulfide could reduce the mean pul-monary artery pressure by 31.2% compared with the hypoxia group (P<0.01). Treat-ment with sodium hydrosulfide decreased GSSG, and the T-AOC level of the lung tissues was enhanced compared with the hypoxia group (P<0.05). There were no significant changes in the lung tissue SOD mRNA level, protein level, and its activity among the 3 groups. Conclusion: Oxidative stress occurred in the development of HPH and was accompanied by a decrease in the endogenous production of H2S in the lung tissues. H2S acted as an antioxidant during the oxidative stress of HPH partly as a result of the attenuated GSSG content.

  20. Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Muhammad B. Haider

    2012-02-01

    Full Text Available Thin films of tin oxide mixed cerium oxide were grown on unheated substrates by physical vapor deposition. The films were annealed in air at 500 °C for two hours, and were characterized using X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. X-ray photoelectron spectroscopy and atomic force microscopy results reveal that the films were highly porous and porosity of our films was found to be in the range of 11.6–21.7%. The films were investigated for the detection of carbon monoxide, and were found to be highly sensitive. We found that 430 °C was the optimum operating temperature for sensing CO gas at concentrations as low as 5 ppm. Our sensors exhibited fast response and recovery times of 26 s and 30 s, respectively.

  1. Carbon dioxide reduction in a tubular solid oxide electrolysis cell for a carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Dipu, Arnoldus Lambertus, E-mail: dipu.a.aa@m.titech.ac.jp [Department of Nuclear Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ujisawa, Yutaka [Nippon Steel and Sumitomo Metal Corporation, 16-1, Sunayama, Kamisu, Ibaraki 314-0255 (Japan); Ryu, Junichi; Kato, Yukitaka [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-05-01

    A new energy transformation system based on carbon recycling is proposed called the active carbon recycling energy system (ACRES). A high-temperature gas reactor was used as the main energy source for ACRES. An experimental study based on the ACRES concept of carbon monoxide (CO) regeneration via high-temperature reduction of carbon dioxide (CO{sub 2}) was carried out using a tubular solid oxide electrolysis cell employing Ni-LSM cermet|YSZ|YSZ-LSM as the cathode|electrolyte|anode. The current density increased with increasing CO{sub 2} concentration at the cathode, which was attributed to a decrease in cathode activation and concentration overpotential. Current density, as well as the CO and oxygen (O{sub 2}) production rates, increased with increasing operating temperature. The highest CO and O{sub 2} production rates of 1.24 and 0.64 μmol/min cm{sup 2}, respectively, were measured at 900 °C. Based on the electrolytic characteristics of the cell, the scale of a combined ACRES CO{sub 2} electrolysis/iron production facility was estimated.

  2. Air Oxidation of Activated Carbon to Synthesize a Biomimetic Catalyst for Hydrolysis of Cellulose.

    Science.gov (United States)

    Shrotri, Abhijit; Kobayashi, Hirokazu; Fukuoka, Atsushi

    2016-06-01

    Oxygenated carbon catalyzes the hydrolysis of cellulose present in lignocellulosic biomass by utilizing the weakly acidic functional groups on its surface. Here we report the synthesis of a biomimetic carbon catalyst by simple and economical air-oxidation of a commercially available activated carbon. Air- oxidation at 450-500 °C introduced 2000-2400 μmol g(-1) of oxygenated functional groups on the material with minor changes in the textural properties. Selectivity towards the formation of carboxylic groups on the catalyst surface increased with the increase in oxidation temperature. The degree of oxidation on carbon catalyst was found to be proportional to its activity for hydrolysis of cellulose. The hydrolysis of eucalyptus in the presence of carbon oxidized at 475 °C afforded glucose yield of 77 % and xylose yield of 67 %.

  3. Iron oxide nanoparticles embedded in activated carbons prepared from hydrothermally treated waste biomass.

    Science.gov (United States)

    Hao, Wenming; Björkman, Eva; Yun, Yifeng; Lilliestråle, Malte; Hedin, Niklas

    2014-03-01

    Particles of iron oxide (Fe3O4 ; 20–40 nm) were embedded within activated carbons during the activation of hydrothermally carbonized (HTC) biomasses in a flow of CO2. Four different HTC biomass samples (horse manure, grass cuttings, beer production waste, and biosludge) were used as precursors for the activated carbons. Nanoparticles of iron oxide formed from iron catalyst included in the HTC biomasses. After systematic optimization, the activated carbons had specific surface areas of about 800 m2g1. The pore size distributions of the activated carbons depended strongly on the degree of carbonization of the precursors. Activated carbons prepared from highly carbonized precursors had mainly micropores, whereas those prepared from less carbonized precursors contained mainly mesopores. Given the strong magnetism of the activated carbon–nano-Fe3O4 composites, they could be particularly useful for water purification.

  4. Liquid Phase Plasma Synthesis of Iron Oxide/Carbon Composite as Dielectric Material for Capacitor

    Directory of Open Access Journals (Sweden)

    Heon Lee

    2014-01-01

    Full Text Available Iron oxide/carbon composite was synthesized using a liquid phase plasma process to be used as the electrode of supercapacitor. Spherical iron oxide nanoparticles with the size of 5~10 nm were dispersed uniformly on carbon powder surface. The specific capacitance of the composite increased with increasing quantity of iron oxide precipitate on the carbon powder up to a certain quantity. When the quantity of the iron oxide precipitate exceeds the threshold, however, the specific capacitance was rather reduced by the addition of precipitate. The iron oxide/carbon composite containing an optimum quantity (0.33 atomic % of iron oxide precipitate exhibited the smallest resistance and the largest initial resistance slope.

  5. Oxidation Protection Systems for Carbon-Carbon Composites Formed by Chemical Vapor Deposition and Plasma Assisted Chemical Vapor Deposition Techniques

    Science.gov (United States)

    1992-04-22

    transducer, ie. a more positive scaleI I 34 thickness of fairly continuous conversion layer carbon 10 , •O.0000 resina 0 0 Fiber O0c00.a 0 Bundlea • 06...thermal and oxidative environments. It should meet four main requirements: adequate adhesion between substrate and coating; maximum resistance to...resistance and good coating adhesion . (2) CVD Coatings I Currently, the most successful protective coating for carbon-carbon composite is CVD SiC. Coatings

  6. The plausible role of carbonate in photo-catalytic water oxidation processes.

    Science.gov (United States)

    Kornweitz, Haya; Meyerstein, Dan

    2016-04-28

    DFT calculations point out that the photo-oxidation of water on GaN is energetically considerably facilitated by adsorbed carbonate. As the redox potential of the couple CO3(˙-)/CO3(2-) is considerably lower than that of the couple OH˙/OH(-) but still enables the oxidation of water it is suggested that carbonate should be considered as a catalyst/co-catalyst in a variety of catalytic/photo-catalytic/electro-catalytic oxidation processes.

  7. CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol.

    Science.gov (United States)

    Liou, Rey-May; Chen, Shih-Hsiung

    2009-12-15

    This paper presents an original approach to the removal of phenol in synthetic wastewater by catalytic wet peroxide oxidation with copper binding activated carbon (CuAC) catalysts. The characteristics and oxidation performance of CuAC in the wet hydrogen peroxide catalytic oxidation of phenol were studied in a batch reactor at 80 degrees C. Complete conversion of the oxidant, hydrogen peroxide, was observed with CuAC catalyst in 20 min oxidation, and a highly efficient phenol removal and chemical oxygen demand (COD) abatement were achieved in the first 30 min. The good oxidation performance of CuAC catalyst was contributed to the activity enhancement of copper oxide, which was binding in the carbon matrix. It can be concluded that the efficiency of oxidation dominated by the residual H2O2 in this study. An over 90% COD removal was achieved by using the multiple-step addition in this catalytic oxidation.

  8. Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors.

    Science.gov (United States)

    Cheng, Liqiu; House, Mitch W; Weiss, W Jason; Banks, M Katherine

    2016-02-01

    Microbially influenced corrosion (MIC) in concrete results in significant cost for infrastructure maintenance. Prior studies have employed molecular techniques to identify microbial community species in corroded concrete, but failed to explore bacterial activity and functionality during deterioration. In this study, biofilms of different sulfur-oxidizing bacteria compositions were developed on the surface of cement paste samples to simulate the natural ecological succession of microbial communities during MIC processes. Noninvasive, self-referencing (SR) microsensors were used to quantify real time changes of oxygen, hydrogen ion and calcium ion flux for the biofilm to provide more information about bacterial behavior during deterioration. Results showed higher transport rates in oxygen consumption, and hydrogen ion at 4 weeks than 2 weeks, indicating increased bacterial activity over time. Samples with five species biofilm had the highest hydrogen ion and calcium ion transport rates, confirming attribution of acidophilic sulfur-oxidizing microorganisms (ASOM). Differences in transport rates between three species samples and two species samples confirmed the diversity between Thiomonas intermedia and Starkeya novella. The limitations of SR sensors in corrosion application could be improved in future studies when combined with molecular techniques to identify the roles of major bacterial species in the deterioration process.

  9. 40 CFR 52.269 - Control strategy and regulations: Photochemical oxidants (hydrocarbons) and carbon monoxide.

    Science.gov (United States)

    2010-07-01

    ...: Photochemical oxidants (hydrocarbons) and carbon monoxide. 52.269 Section 52.269 Protection of Environment... PLANS California § 52.269 Control strategy and regulations: Photochemical oxidants (hydrocarbons) and... provide for attainment and maintenance of the national standards for photochemical oxidants...

  10. Sulfide, the first inorganic substrate for human cells.

    Science.gov (United States)

    Goubern, Marc; Andriamihaja, Mireille; Nübel, Tobias; Blachier, François; Bouillaud, Frédéric

    2007-06-01

    Hydrogen sulfide (H2S) is produced inside the intestine and is known as a poison that inhibits cellular respiration at the level of cytochrome oxidase. However, sulfide is used as an energetic substrate by many photo- and chemoautotrophic bacteria and by animals such as the lugworm Arenicola marina. The concentrations of sulfide present in their habitats are comparable with those present in the human colon. Using permeabilized colonic cells to which sulfide was added by an infusion pump we show that the maximal respiratory rate of colonocyte mitochondria in presence of sulfide compares with that obtained with succinate or L-alpha-glycerophosphate. This oxidation is accompanied by mitochondrial energization. In contrast, other cell types not naturally exposed to high concentration of sulfide showed much lower oxidation rates. Mitochondria showed a very high affinity for sulfide that permits its use as an energetic substrate at low micromolar concentrations, hence, below the toxic level. However, if the supply of sulfide exceeds the oxidation rate, poisoning renders mitochondria inefficient and our data suggest that an anaerobic mechanism involving partial reversion of Krebs cycle already known in invertebrates takes place. In conclusion, this work provides additional and compelling evidence that sulfide is not only a toxic compound. According to our study, sulfide appears to be the first inorganic substrate for mammalian cells characterized thus far.

  11. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    Science.gov (United States)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-08-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  12. Cadmium sulfide quantum dots supported on gallium and indium oxide for visible-light-driven hydrogen evolution from water.

    Science.gov (United States)

    Pan, Yun-xiang; Zhuang, Huaqiang; Hong, Jindui; Fang, Zheng; Liu, Hai; Liu, Bin; Huang, Yizhong; Xu, Rong

    2014-09-01

    In this work, CdS quantum dots (QDs) supported on Ga2O3 and In2O3 are applied for visible-light-driven H2 evolution from aqueous solutions that contain lactic acid. With Pt as the cocatalyst, the H2 evolution rates on CdS/Pt/Ga2O3 and CdS/Pt/In2O3 are as high as 995.8 and 1032.2 μmol h(-1), respectively, under visible light (λ>420 nm) with apparent quantum efficiencies of 43.6 and 45.3% obtained at 460 nm, respectively. These are much higher than those on Pt/CdS (108.09 μmol h(-1)), Pt/Ga2O3 (0.12 μmol h(-1)), and Pt/In2O3 (0.05 μmol h(-1)). The photocatalysts have been characterized thoroughly and their band structures and photocurrent responses have been measured. The band alignment between the CdS QDs and In2O3 can lead to interfacial charge separation, which cannot occur between the CdS QDs and Ga2O3. Among the various possible factors that contribute to the high H2 evolution rates on CdS/Pt/oxide, the surface properties of the metal oxides play important roles, which include (i) the anchoring of CdS QDs and Pt nanoparticles for favorable interactions and (ii) the efficient trapping of photogenerated electrons from the CdS QDs because of surface defects (such as oxygen defects) based on photoluminescence and photocurrent studies.

  13. Enhancing the capacitances of electric double layer capacitors based on carbon nanotube electrodes by carbon dioxide activation and acid oxidization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polarizable electrodes of electric double layer capacitors(EDLCs) were made from carbon nanotubes(CNTs).Effect of carbon dioxide activation together with acid oxidation for the electrodes on the characteristics and performances of electrodes and EDLCs was studied.Carbon dioxide activation changed the microstructure of the electrodes,increased the effective surface area of CNTs and optimized the distribution of apertures of the electrodes.Acid oxidization modified the surface characteristics of CNTs.Based on the polarizable electrodes treated by carbon dioxide activation and acid oxidization,the performances of EDLCs were greatly enhanced.The specific capacitance of the electrodes with organic electrolyte was increased from 21.8 F/g to 60.4 F/g.

  14. Preferential distribution and oxidation inhibiting/catalytic effects of boron in carbon fiber reinforced carbon (CFRC) composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.J.; Joo, H.J.; Radovic, L.R. [Penn State University, University Park, PA (United States). Dept. of Energy & Geoenvironmental Engineering, Fuel Science Program

    2003-07-01

    Two different batches of CFRC composites were prepared in the absence/presence of boron with the expectation of increasing oxidation stability and improving the processing compatibility of CFRC composites in commercial applications. The composites were examined to reveal the nature of substitutional B in oxidation, crystallinity and distribution preference in the composites. Substitutional B acts both a catalyst and an inhibitor in carbon oxidation, depending on the content and the extent of carbon burn-off reaction. Crystallinity increases with the incorporation of B. Boron prefers to be distributed in the less ordered structure; non-graphitizable PAN-based carbon fibers have higher B contents than graphitizable coal-tar pitch, but processing conditions can change this preference. The incorporation of B in CFRC composites seems to be beneficial for improving the potential ability of the composites in applications by increasing crystallinity and oxidation stability.

  15. Morphology-Controllable Synthesis of Zn-Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc-Air Batteries and Water Electrolysis.

    Science.gov (United States)

    Wu, Xiaoyu; Han, Xiaopeng; Ma, Xiaoya; Zhang, Wei; Deng, Yida; Zhong, Cheng; Hu, Wenbin

    2017-04-12

    It remains an ongoing challenge to develop cheap, highly active, and stable electrocatalysts to promote the sluggish electrocatalytic oxygen evolution, oxygen reduction, and hydrogen evolution reactions for rechargeable metal-air batteries and water-splitting systems. In this work, we report the morphology-controllable synthesis of zinc cobalt mixed sulfide (Zn-Co-S) nanoarchitectures, including nanosheets, nanoplates, and nanoneedles, grown on conductive carbon fiber paper (CFP) and the micronanostructure dependent electrochemical efficacy for catalyzing hydrogen and oxygen in zinc-air batteries and water electrolysis. The formation of different Zn-Co-S morphologies was attributed to the synergistic effect of decomposed urea products and the corrosion of NH4F. Among synthesized Zn-Co-S nanostructures, the nanoneedle arrays supported on CFP exhibit superior trifunctional activity for oxygen reduction, oxygen evolution, and hydrogen evolution reactions than its nanosheet and nanoplate counterparts through half reaction testing. It also exhibited better catalytic durability than Pt/C and RuO2. Furthermore, the Zn-Co-S nanoneedle/CFP electrode enables rechargeable Zn-air batteries with low overpotential (0.85 V), high efficiency (58.1%), and long cycling lifetimes (200 cycles) at 10 mA cm(-2) as well as considerable performance for water splitting. The superior performance is contributed to the integrated nanoneedle/CFP nanostructure, which not only provides enhanced electrochemical active area, but also facilitates ion and gas transfer between the catalyst surface and electrolyte, thus maintaining an effective solid-liquid-gas interface necessary for electrocatalysis. These results indicate that the Zn-Co-S nanoneedle/CFP system is a low cost, highly active, and durable electrode for highly efficient rechargeable zinc-air batteries and water electrolysis in alkaline solution.

  16. Simultaneous ultrasound-assisted ternary adsorption of dyes onto copper-doped zinc sulfide nanoparticles loaded on activated carbon: Optimization by response surface methodology

    Science.gov (United States)

    Asfaram, Arash; Ghaedi, Mehrorang; Hajati, Shaaker; Goudarzi, Alireza; Bazrafshan, Ali Akbar

    2015-06-01

    The simultaneous and competitive ultrasound-assisted removal of Auramine-O (AO), Erythrosine (Er) and Methylene Blue (MB) from aqueous solutions were rapidly performed onto copper-doped zinc sulfide nanoparticles loaded on activated carbon (ZnS:Cu-NP-AC). ZnS:Cu nanoparticles were studied by FESEM, XRD and TEM. First, the effect of pH was optimized in a one-at-a-time procedure. Then the dependency of dyes removal percentage in their ternary solution on the level and magnitude of variables such as sonication time, initial dyes concentrations and adsorbent dosage was fully investigated and optimized by central composite design (CCD) under response surface methodology (RSM) as well as by regarding desirability function (DF) as a good and general criterion. The good agreement found between experimental and predicted values supports and confirms the suitability of the present model to predict adsorption state. The applied ultrasound strongly enhanced mass transfer process and subsequently performance. Hence, a small amount of the adsorbent (0.04 g) was capable to remove high percentage of dyes, i.e. 100%, 99.6% and 100% for MB, AO and Er, respectively, in very short time (2.5 min). The experimental equilibrium data fitting to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models showed that the Langmuir model applies well for the evaluation and description of the actual behavior of adsorption. The small amount of proposed adsorbent (0.015 g) was applicable for successful removal of dyes (RE > 99.0%) in short time (2.5 min) with high adsorption capacity in single component system (123.5 mg g-1 for MB, 123 mg g-1 for AO and 84.5 mg g-1 for Er). Kinetics evaluation of experiments at various time intervals reveals that adsorption processes can be well predicated and fitted by pseudo-second-order and Elovich models.

  17. Synthesis of nickel sulfide nanoparticles loaded on activated carbon as a novel adsorbent for the competitive removal of Methylene blue and Safranin-O.

    Science.gov (United States)

    Ghaedi, M; Pakniat, M; Mahmoudi, Z; Hajati, S; Sahraei, R; Daneshfar, A

    2014-04-05

    Nickel sulfide nanoparticle-loaded activated carbon (NiS-NP-AC) were synthesized as a novel adsorbent for simultaneous and rapid adsorption of Methylene blue (MB) and Safranin-O (SO), as most together compounds in wastewater. NiS-NP-AC was characterized using different techniques such as UV-visible, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Brunauer-Emmett-Teller (BET). The surface area of the adsorbent was found to be very high (1018m(2)/g according BET). By using central composite design (CCD), the effects of variables such as pH, adsorbent dosage, MB concentration, SO concentration and contact time on binary dyes removal were examined and optimized values were found to be 8.1, 0.022g, 17.8mg/L, and 5mg/L and 5.46min, respectively. The very short time required for the dyes removal makes this novel adsorbent as a promising tool for wastewater treatment applications. Different models were applied to analyze experimental isotherm data. Modified-extended Langmuir model showed good fit to equilibrium data with maximum adsorption capacity at 0.022g of adsorbent. An empirical extension of competitive modified-extended Langmuir model was proposed to predict the simultaneous adsorption behavior of MB and SO. Kinetic models were applied to fit the experimental data at various adsorbent dosages and initial dyes concentrations. It was seen that pseudo-second-order equation is suitable to fit the experimental data. Individual removalof each dye was also studied.

  18. In-situ growth of antimony sulfide in carbon nanoparticle matrix: Enhanced electrocatalytic activity as counter electrode in dye-sensitized solar cells

    Science.gov (United States)

    Sun, Panpan; Zhang, Ming; Ai, Changzhi; Wu, Zhixin; Lu, Shuang; Zhang, Xintong; Huang, Niu; Sun, Yihua; Sun, Xiaohua

    2016-07-01

    Considering the undesirable electrocatalytic activity toward I-/I3- redox system of prinstine antimony sulfide (Sb2S3) fabricated with the existing conditions, a mesoporous carbon nanoparticle film (CNP) is introduced here for in-situ growth of Sb2S3 to construct a Sb2S3@CNP hybrid catalyst. Based on a Sb-thiourea precursor solution, in-situ growth of Sb2S3 can be achieved via solution deposition (denoted as Sb2S3@CNP-S) as well as atmospheric pressure thermal evaporation (denoted as Sb2S3@CNP-T) in CNP matrix. Structural characterizations indicate that Sb2S3 particles have well dispersed in the pores of CNP matrix. Because of the introduction of porous and conductive CNP matrix to support Sb2S3, the hybrid catalyst exhibits lower charge transfer resistance at the catalyst/electrolyte interface and higher electrocatalytic activity. When used as counter electrode (CE) for dye-sensitized solar cells (DSSCs), devices using Sb2S3@CNP hybrid catalyst as CE produce fill factor of 67.6% and 66.3%, which is significantly higher than that using pristine Sb2S3 fabricated in our previous work (52.8%). Finally, the corresponding power conversion efficiencies reach 6.69% (Sb2S3@CNP-S) and 6.24% (Sb2S3@CNP-T), respectively, which are comparable to that using Pt CE measured under the same conditions (6.74%).

  19. Graphene oxide vs. reduced graphene oxide as carbon support in porphyrin peroxidase biomimetic nanomaterials.

    Science.gov (United States)

    Socaci, C; Pogacean, F; Biris, A R; Coros, M; Rosu, M C; Magerusan, L; Katona, G; Pruneanu, S

    2016-02-01

    The paper describes the preparation of supramolecular assemblies of tetrapyridylporphyrin (TPyP) and its metallic complexes with graphene oxide (GO) and thermally reduced graphene oxide (TRGO). The two carbon supports are introducing different characteristics in the absorption spectra of the investigated nanocomposites. Raman spectroscopy shows that the absorption of iron-tetrapyridylporphyrin is more efficient on GO than TRGO, suggesting that oxygen functionalities are involved in the non-covalent interaction between the iron-porphyrin and graphene. The biomimetic peroxidase activity is investigated and the two iron-containing composites exhibit a better catalytic activity than each component of the assembly, and their cobalt and manganese homologues, respectively. The main advantages of this work include the demonstration of graphene oxide as a very good support for graphene-based nanomaterials with peroxidase-like activity (K(M)=0.292 mM), the catalytic activity being observed even with very small amounts of porphyrins (the TPyP:graphene ratio=1:50). Its potential application in the detection of lipophilic antioxidants (vitamin E can be measured in the 10(-5)-10(-4) M range) is also shown.

  20. Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Liu, Chung-Chiun; Ward, Benjamin J.

    2008-01-01

    Carbon dioxide (CO2) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of CO2 sensing materials exist due to the high chemical stability of CO2. In this work, a novel CO2 microsensor based on nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO2 based CO2 microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: SnO2 = 1:8 (molar ratio), the resistance of the sensor has a linear response to CO2 concentrations for the range of 1 to 4 percent CO2 in air at 450 C. This approach has demonstrated the use of SnO2, typically used for the detection of reducing gases, in the detection of an oxidizing gas.

  1. Old and new gasotransmitters in the cardiovascular system: focus on the role of nitric oxide and hydrogen sulfide in endothelial cells and cardiomyocytes.

    Science.gov (United States)

    Mancardi, Daniele; Pla, Alessandra Florio; Moccia, Francesco; Tanzi, Franco; Munaron, Luca

    2011-09-01

    The functional relevance of nitric oxide (NO) in the cardiovascular system is well established since the end of the 80', when it was firstly proposed as a key controller of vasodilation. More recent evidences, still debated and partly conflicting, point to a role of NO in the angiogenic progression. On the other hand hydrogen sulfide is a new entry as a gasotransmitter in the cardiovascular system. The variety of its biological functions seems to grow day after day. The first to be described is surely its reversible and poisoning binding of the cytochrome c oxidase that leads to impairment of the respiratory chain in mitochondria. However, sub-toxic concentrations have been later proved to be essential to maintain fundamental physiological functions in several tissues. The basal production of H2S is determined by the activity of, at least, three constitutively expressed enzymes (CBS, CSE, and 3-MPT) with tissue specificity for CBS and CSE in the central nervous and cardiovascular system, respectively. The assumption of a pivotal role of H2S in regulating physiological function is supported by the demonstration that reduced production of this gaseous molecule by CSE induces hypertension in mice. The increasing number of studies showing the regulatory functions of H2S reveals that maintaining the normal blood pressure levels is only one of its multiple biological actions. In this review, we would like to explore the recent literature on NO and H2S roles on cardiovascular system and to elucidate potential outcomes in the use of pharmacological drugs interfering with their metabolism.

  2. Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide.

    Directory of Open Access Journals (Sweden)

    Anna Jamroz-Wiśniewska

    Full Text Available Adipose tissue hormone leptin induces endothelium-dependent vasorelaxation mediated by nitric oxide (NO and endothelium-derived hyperpolarizing factors (EDHF. Previously it has been demonstrated that in short-term obesity the NO-dependent and the EDHF-dependent components of vascular effect of leptin are impaired and up-regulated, respectively. Herein we examined the mechanism of the EDHF-dependent vasodilatory effect of leptin and tested the hypothesis that alterations of acute vascular effects of leptin in obesity are accounted for by chronic hyperleptinemia. The study was performed in 5 groups of rats: (1 control, (2 treated with exogenous leptin for 1 week to induce hyperleptinemia, (3 obese, fed highly-palatable diet for 4 weeks, (4 obese treated with pegylated superactive rat leptin receptor antagonist (PEG-SRLA for 1 week, (5 fed standard chow and treated with PEG-SRLA. Acute effect of leptin on isometric tension of mesenteric artery segments was measured ex vivo. Leptin relaxed phenylephrine-preconstricted vascular segments in NO- and EDHF-dependent manner. The NO-dependent component was impaired and the EDHF-dependent component was increased in the leptin-treated and obese groups and in the latter group both these effects were abolished by PEG-SRLA. The EDHF-dependent vasodilatory effect of leptin was blocked by either the inhibitor of cystathionine γ-lyase, propargylglycine, or a hydrogen sulfide (H2S scavenger, bismuth (III subsalicylate. The results indicate that NO deficiency is compensated by the up-regulation of EDHF in obese rats and both effects are accounted for by chronic hyperleptinemia. The EDHF-dependent component of leptin-induced vasorelaxation is mediated, at least partially, by H2S.

  3. Additive cardioprotection by pharmacological postconditioning with hydrogen sulfide and nitric oxide donors in mouse heart: S-sulfhydration vs. S-nitrosylation.

    Science.gov (United States)

    Sun, Junhui; Aponte, Angel M; Menazza, Sara; Gucek, Marjan; Steenbergen, Charles; Murphy, Elizabeth

    2016-05-01

    Hydrogen sulfide (H2S), as a gaseous signalling molecule, has been found to play important roles in postconditioning (PostC)-induced cardioprotection. Similar to nitric oxide (NO)-mediated protein S-nitrosylation (SNO), recent studies suggest that H2S could regulate protein function through another redox-based post-translational modification on protein cysteine residue(s), i.e. S-sulfhydration (SSH). In this study, we examined whether there are changes in protein SSH associated with cardioprotection induced by treatment with H2S on reperfusion. In addition, we also examined whether there is cross talk between H2S and NO. Compared with control, treatment on reperfusion with NaHS (H2S donor, 100 µmol/L) significantly reduced post-ischaemic contractile dysfunction and infarct size. A comparable cardioprotective effect could be also achieved by reperfusion treatment with SNAP (NO donor, 10 µmol/L). Interestingly, simultaneous reperfusion with both donors had an additive protective effect. In addition, C-PTIO (NO scavenger, 20 µmol/L) eliminated the protection induced by NaHS and also the additive protection by SNAP + NaHS together. Using a modified biotin switch method, we observed a small increase in SSH following NaHS treatment on reperfusion. We also found that NaHS treatment on reperfusion increases SNO to a level comparable to that with SNAP treatment. In addition, there was an additive increase in SNO but not SSH when SNAP and NaHS were added together at reperfusion. Thus, part of the benefit of NaHS is an increase in SNO, and the magnitude of the protective effect is related to the magnitude of the increase in SNO.

  4. Redox Biochemistry of Hydrogen Sulfide*

    OpenAIRE

    Kabil, Omer; Banerjee, Ruma

    2010-01-01

    H2S, the most recently discovered gasotransmitter, might in fact be the evolutionary matriarch of this family, being both ancient and highly reduced. Disruption of γ-cystathionase in mice leads to cardiovascular dysfunction and marked hypertension, suggesting a key role for this enzyme in H2S production in the vasculature. However, patients with inherited deficiency in γ-cystathionase apparently do not present vascular pathology. A mitochondrial pathway disposes sulfide and couples it to oxid...

  5. Spectroscopic Studies of Doping and Charge Transfer in Single Walled Carbon Nanotubes and Lead Sulfide Quantum Dots

    Science.gov (United States)

    Haugen, Neale O.

    The use of single wall carbon nanotubes (SW-CNTs) in solar photovoltaic (PV) devices is a relatively new, but quickly growing field. SW-CNTs have found application as transparent front contacts, and high work function back contacts in thin film solar PV. For the utility of SW-CNTs to be fully realized, however, controllable and stable doping as well as long term protection from doping must be achieved. Spectroscopic techniques facilitate detailed investigations of the intrinsic and variable properties of semiconductor materials without the issues of contact deposition and the possibility of sample contamination. Detailed spectroscopic analysis of the doping induced changes in the optical properties of SW-CNTs has revealed normally hidden excited state transitions in large diameter single walled carbon nanotubes for the first time. Spectroscopic monitoring of the degree of doping in SW-CNTs made possible studies of the dopant complex desorption and readsorption energies and kinetics. The long term protection from doping of SW-CNTs exposed to ambient laboratory conditions was achieved as a result of the more detailed understanding of the doping processes and mechanisms yielded by these spectroscopic studies. The application of SW-CNTs to other roles in solar PV devices was another goal of this research. Efficient collection of photogenerated charge carriers in semiconductor quantum dot (QD) based solar photovoltaic devices has been limited primarily by the poor transport properties and high density of recombination sites in the QD films. Coupling semiconductor QDs to nanomaterials with better transport properties is one potential solution to the poor transport within the QD films. This portion of the work investigated the possibility of charge transfer occurring in nano-heterostructures (NHSs) of PbS QDs and SW-CNTs produced through spontaneous self-assembly in solution. Electronic coupling in the form of charge transfer from the QDs to the SW-CNTs is unambiguously

  6. MICROSTRUCTURAL STUDY OF Fe-Cr-Al/Al COMPOSITE COATINGS DURING OXIDATION AND SULFIDATION AT 900 ℃

    Institute of Scientific and Technical Information of China (English)

    Z.L. Zhang; D.Y. Li; X. Q. Dong

    2007-01-01

    The microstructure of a composite coating system, which was composed of an inner layer of Fe-Cr-Al and an outer layer of aluminum, was studied after it was respectively oxidized and sulfurdized at elevated temperatures. Apart from the Al2O3 scale formed on the surface, the microstructure of the composite coatings exposed at 900℃ in air for 4h was a three-layer structure. The first layer consisted of a solid solution of Cr and Fe in α aluminum and an intermetallic compound FeAl3, while the second layer was a single phase of the aluminide and the third layer still remained the same appearance as the original Fe-Cr-Al coating.The microstructural observation of the specimen tested at 850-900 ℃ at low oxygen pressure and high sulfur pressure for 576h revealed that the surface coatings of the specimen had transformed into a duplex structure containing an outer layer and a thicker aluminide layer beneath. X-ray diffraction results showed that the out layer was composed of Al2S3 and Al2O3 and that AlCrFe2 was the main phase composition of the aluminide layer, with a few of Al2S3 and Al2O3 accompanied.

  7. Enhanced Lithium-Ion Storage Capability of a Bismuth Sulfide/Graphene Oxide/Poly(3,4-ethylenedioxythiophene) Composite.

    Science.gov (United States)

    Mukkabla, Radha; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-10-26

    A Bi2 S3 /graphene oxide (GO) composite enwrapped by a poly(3,4-ethylenedioxythiophene) (PEDOT) coating was prepared for the first time for use as an anode in Li-ion batteries. Pristine Bi2 S3 nanoflowers and composites of Bi2 S3 /GO and Bi2 S3 /GO/PEDOT were assembled into half cells with Li metal as the counter electrode, and initial discharge capacities of 833, 1020, and 1300 mAh g(-1) , respectively, were obtained. Composites of Bi2 S3 /GO/PEDOT and Bi2 S3 /GO showed superior cycling stability and better rate capability than pristine Bi2 S3 . GO provides highly conducting interconnections, which allow facile propagation of electrons during charge/discharge, and this improves the ion-uptake capability of the Bi2 S3 nanoflowers and also increases the rate capability. PEDOT furnishes a protective coating that prevents detachment of the material from the current collector during cycling, and it also imparts better cycling stability to the Bi2 S3 /GO/PEDOT composite.

  8. Hydrogen Sulfide as a "Double-Faced" Compound: One with Pro- and Antioxidant Effect.

    Science.gov (United States)

    Olas, B

    2017-01-01

    Hydrogen sulfide (H2S), like other gasotransmitters such as nitric oxide (NO(•)) and carbon monoxide (CO), acts as a signaling molecule in various biological systems. It may also regulate the oxidative stress observed in several diseases sometimes associated with changes of H2S concentration. This chapter describes the "double face" of hydrogen sulfide as both an antioxidant and a prooxidant in biological systems. One proposed mechanism by which H2S exerts its antioxidative effects is its ability to modulate the concentration of glutathione, which is a very important physiological antioxidant. This chapter discusses the interactions of H2S with various reactive oxygen species and reactive nitrogen species, including the superoxide radical anion [Formula: see text] , hydrogen peroxide (H2O2), and peroxynitrite anion (ONOO(-)), which is produced in a rapid reaction between [Formula: see text] and NO(•).

  9. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Gargi; Sarkar, C K [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata (India); Lu, X B; Dai, J Y [Department of Applied Physics and Materials Research Center, Hong Kong Polytechnic University, Hong Kong (China)], E-mail: gargichakraborty0@yahoo.co.in, E-mail: phyhod@yahoo.co.in

    2008-06-25

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter.

  10. Gold catalysts supported on nanosized iron oxide for low-temperature oxidation of carbon monoxide and formaldehyde

    Science.gov (United States)

    Tang, Zheng; Zhang, Weidong; Li, Yi; Huang, Zuming; Guo, Huishan; Wu, Feng; Li, Jinjun

    2016-02-01

    This study aimed to optimize synthesis of gold catalyst supported on nanosized iron oxide and to evaluate the activity in oxidation of carbon monoxide and formaldehyde. Nanosized iron oxide was prepared from a colloidal dispersion of hydrous iron oxide through a dispersion-precipitation method. Gold was adsorbed onto nanosized iron oxide under self-generated basic conditions. Characterization results indicate that the iron oxide consisted of hematite/maghemite composite with primary particle sizes of 6-8 nm. Gold was highly dispersed on the surface of the support. The catalysts showed good activity in the oxidation of airborne carbon monoxide and formaldehyde. The optimal pH for their synthesis was ∼7. The catalytic performance could be enhanced by extending the adsorption time of gold species on the support within 21 h. The optimized catalyst was capable of achieving complete oxidation of 1% carbon monoxide at -20 °C and 33% conversion of 450 ppm formaldehyde at ambient temperature. The catalyst may be applicable to indoor air purification.

  11. Carbon catalysis in the aqueous oxidation of SO2 by NO2 and air

    Science.gov (United States)

    Schryer, D. R.; Schryer, J.; Cofer, W. R., III; Vay, S. A.

    1984-01-01

    Sulfur dioxide and an oxidant gas (air or NO2) were bubbled through aqueous suspensions of both washed and unwashed carbon black as well as through samples of wash water, which contained whatever soluble species were originally present on the carbon, and high-purity water. The sulfate yields obtained showed the washed and unwashed carbon to be equally catalytic for the oxidation of SO2 to sulfate by both oxidants, whereas little sulfate was generated in either the wash water or high-purity water in the absence of carbon. These results indicate that the sulfate yields produced in aqueous suspensions of the carbon studied are due to catalysis by the carbon particles rather than by soluble species dissolved from them.

  12. Recycling and Resistance of Petrogenic Particulate Organic Carbon: Implications from A Chemical Oxidation Method

    Science.gov (United States)

    Zhang, T.; Li, G.; Ji, J.

    2013-12-01

    Petrogenic particulate organic carbon (OCpetro) represents a small fraction of photosynthetic carbon which escapes pedogenic-petrogenic degradation and gets trapped in the lithosphere. Exhumation and recycling of OCpetro are of significant importance in the global carbon cycle because OCpetro oxidation represents a substantial carbon source to the atmosphere while the re-burial of OCpetro in sediment deposits has no net effect. Though studies have investigated various behaviors of OCpetro in the surface environments (e.g., riverine mobilization, marine deposition, and microbial remineralization), less attention has been paid to the reaction kinetics and structural transformations during OCpetro oxidation. Here we assess the OCpetro-oxidation process based on a chemical oxidation method adopted from soil studies. The employed chemical oxidation method is considered an effective simulation of natural oxidation in highly oxidative environments, and has been widely used in soil studies to isolate the inert soil carbon pool. We applied this chemical method to the OCpetro-enriched black shale samples from the middle-lower Yangtze (Changjiang) basin, China, and performed comprehensive instrumental analyses (element analysis, Fourier transform infrared (FTIR) spectrum, and Raman spectrum). We also conducted step-oxidizing experiments following fixed time series and monitored the reaction process in rigorously controlled lab conditions. In this work, we present our experiment results and discuss the implications for the recycling and properties of OCpetro. Particulate organic carbon concentration of black shale samples before and after oxidation helps to quantify the oxidability of OCpetro and constrain the preservation efficiency of OCpetro during fluvial erosion over large river basin scales. FTIR and Raman analyses reveal clear structural variations on atomic and molecular levels. Results from the step-oxidizing experiments provide detailed information about the reaction

  13. Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate-glutathione cycle: Possible involvement of nitric oxide.

    Science.gov (United States)

    Singh, Vijay Pratap; Singh, Samiksha; Kumar, Jitendra; Prasad, Sheo Mohan

    2015-06-01

    In plants, hydrogen sulfide (H2S) is an emerging novel signaling molecule that is involved in growth regulation and abiotic stress responses. However, little is known about its role in the regulation of arsenate (As(V)) toxicity. Therefore, hydroponic experiments were conducted to investigate whether sodium hydrosulfide (NaHS; a source of H2S) is involved in the regulation of As(V) toxicity in pea seedlings. Results showed that As(V) caused decreases in growth, photosynthesis (measured as chlorophyll fluorescence) and nitrogen content, which was accompanied by the accumulation of As. As(V) treatment also reduced the activities of cysteine desulfhydrase and nitrate reductase, and contents of H2S and nitric oxide (NO). However, addition of NaHS ameliorated As(V) toxicity in pea seedlings, which coincided with the increased contents of H2S and NO. The cysteine level was higher under As(V) treatment in comparison to all other treatments (As-free; NaHS; As(V)+NaHS). The content of reactive oxygen species (ROS) and damage to lipids, proteins and membranes increased by As(V) while NaHS alleviated these effects. Enzymes of the ascorbate-glutathione cycle (AsA-GSH cycle) showed inhibition of their activities following As(V) treatment while their activities were increased by application of NaHS. The redox status of ascorbate and glutathione was disturbed by As(V) as indicated by a steep decline in their reduced/oxidized ratios. However, simultaneous NaHS application restored the redox status of the ascorbate and glutathione pools. The results of this study demonstrated that H2S and NO might both be involved in reducing the accumulation of As and triggering up-regulation of the AsA-GSH cycle to counterbalance ROS-mediated damage to macromolecules. Furthermore, the results suggest a crucial role of H2S in plant priming, and in particular for pea seedlings in mitigating As(V) stress.

  14. An experimental and modeling study of diethyl carbonate oxidation

    KAUST Repository

    Nakamura, Hisashi

    2015-04-01

    Diethyl carbonate (DEC) is an attractive biofuel that can be used to displace petroleum-derived diesel fuel, thereby reducing CO2 and particulate emissions from diesel engines. A better understanding of DEC combustion characteristics is needed to facilitate its use in internal combustion engines. Toward this goal, ignition delay times for DEC were measured at conditions relevant to internal combustion engines using a rapid compression machine (RCM) and a shock tube. The experimental conditions investigated covered a wide range of temperatures (660-1300K), a pressure of 30bar, and equivalence ratios of 0.5, 1.0 and 2.0 in air. To provide further understanding of the intermediates formed in DEC oxidation, species concentrations were measured in a jet-stirred reactor at 10atm over a temperature range of 500-1200K and at equivalence ratios of 0.5, 1.0 and 2.0. These experimental measurements were used to aid the development and validation of a chemical kinetic model for DEC.The experimental results for ignition in the RCM showed near negative temperature coefficient (NTC) behavior. Six-membered alkylperoxy radical (RO˙2) isomerizations are conventionally thought to initiate low-temperature branching reactions responsible for NTC behavior, but DEC has no such possible 6- and 7-membered ring isomerizations. However, its molecular structure allows for 5-, 8- and 9-membered ring RO˙2 isomerizations. To provide accurate rate constants for these ring structures, ab initio computations for RO˙2⇌Q˙OOH isomerization reactions were performed. These new RO˙2 isomerization rate constants have been implemented in a chemical kinetic model for DEC oxidation. The model simulations have been compared with ignition delay times measured in the RCM near the NTC region. Results of the simulation were also compared with experimental results for ignition in the high-temperature region and for species concentrations in the jet-stirred reactor. Chemical kinetic insights into the

  15. Deposition of Biogenic Iron Minerals in a Methane Oxidizing Microbial Mat

    Directory of Open Access Journals (Sweden)

    Christoph Wrede

    2013-01-01

    Full Text Available The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates.

  16. Deposition of biogenic iron minerals in a methane oxidizing microbial mat.

    Science.gov (United States)

    Wrede, Christoph; Kokoschka, Sebastian; Dreier, Anne; Heller, Christina; Reitner, Joachim; Hoppert, Michael

    2013-01-01

    The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates.

  17. Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling?

    Science.gov (United States)

    Bouillaud, Frédéric; Blachier, François

    2011-07-15

    Sulfide is a molecule with toxicity comparable to that of cyanide. It inhibits mitochondrial cytochrome oxidase at submicromolar concentrations. However, at even lower concentrations, sulfide is a substrate for the mitochondrial electron transport chain in mammals, and is comparable to succinate. This oxidation involves a sulfide quinone reductase. Sulfide is thus oxidized before reaching a toxic concentration, which explains why free sulfide concentrations are very low in mammals, even though sulfide is constantly released as a result of cellular metabolism. It has been suggested that sulfide has signaling properties in mammals like two other gases, NO and CO, which are also cytochrome oxidase inhibitors. The oxidation of sulfide by mitochondria creates further complexity in the description/use of sulfide signaling in mammals. In fact, in the many studies reported in the literature, the sulfide concentrations that have been used were well within the range that affects mitochondrial activity. This review focuses on the relevance of sulfide bioenergetics to sulfide biology and discusses the case of colonocytes, which are routinely exposed to higher sulfide concentrations. Finally, we offer perspectives for future studies on the relationship between the two opposing aspects of this Janus-type molecule, sulfide.

  18. Metal oxide coating of carbon supports for supercapacitor applications.

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Tribby, Louis, J (University of New Mexico, Albuquerque, NM); Lakeman, Charles D. E. (TPL, Inc., Albuquerque, NM); Han, Sang M. (University of New Mexico, Albuquerque, NM); Lambert, Timothy N.; Fleig, Patrick F. (TPL, Inc., Albuquerque, NM)

    2008-07-01

    The global market for wireless sensor networks in 2010 will be valued close to $10 B, or 200 M units. TPL, Inc. is a small Albuquerque based business that has positioned itself to be a leader in providing uninterruptible power supplies in this growing market with projected revenues expected to exceed $26 M in 5 years. This project focused on improving TPL, Inc.'s patent-pending EnerPak{trademark} device which converts small amounts of energy from the environment (e.g., vibrations, light or temperature differences) into electrical energy that can be used to charge small energy storage devices. A critical component of the EnerPak{trademark} is the supercapacitor that handles high power delivery for wireless communications; however, optimization and miniaturization of this critical component is required. This proposal aimed to produce prototype microsupercapacitors through the integration of novel materials and fabrication processes developed at New Mexico Technology Research Collaborative (NMTRC) member institutions. In particular, we focused on developing novel ruthenium oxide nanomaterials and placed them into carbon supports to significantly increase the energy density of the supercapacitor. These improvements were expected to reduce maintenance costs and expand the utility of the TPL, Inc.'s device, enabling New Mexico to become the leader in the growing global wireless power supply market. By dominating this niche, new customers were expected to be attracted to TPL, Inc. yielding new technical opportunities and increased job opportunities for New Mexico.

  19. Attack of carbonic anhydride and hydrogen sulfide on API class H cement slurries exposed to saline formation waters

    Directory of