WorldWideScience

Sample records for carbon oxide sulfide

  1. Phosphorus mobilization by sulfide oxidation in carbonate sediments from seagrass and unvegetated sites in the US Virgin Islands

    DEFF Research Database (Denmark)

    Jensen, Henning; Pedersen, Ole; Koch, M. R.;

    sources of nutrients compared to pristine sites. These results, along with those from our earlier studies in Florida Bay, a carbonate seagrass-dominated estuary, highlight the potential importance of P release from acid dissolution of carbonate-bound P pools. Session #:046 Date: 01-29-09 Time: 16:45......PHOSPHORUS MOBILIZATION BY SULFIDE OXIDATION IN CARBONATE SEDIMENTS FROM SEAGRASS AND UNVEGETATED SITES IN THE US VIRGIN ISLANDS Sulfide produced by sulfate reduction (SR) can be oxidized by seagrass root O2 flux in shallow carbonate sediments low in Fe. The sulfuric acid produced from sulfide...

  2. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen;

    oxidizing bacteria but several fungal families including Trichocomaceae. A positive correlation was found between the presence of mold and sulfide uptake. However there have been no reports on fungi metabolizing hydrogen sulfide. We hypothesize that the mold increases the air exposed surface, enabling...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  3. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen;

    2012-01-01

    oxidizing bacteria but several fungal families including Trichocomaceae. A positive correlation was found between the presence of mold and sulfide uptake. However there have been no reports on fungi metabolizing hydrogen sulfide. We hypothesize that the mold increases the air exposed surface, enabling...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  4. Phototrophic sulfide oxidation: environmental insights and a method for kinetic analysis

    Directory of Open Access Journals (Sweden)

    Thomas E Hanson

    2013-12-01

    Full Text Available Previously, we presented data that indicated microbial sulfide oxidation would out-compete strictly chemical, abiotic sulfide oxidation reactions under nearly all conditions relevant to extant ecosystems (Luther et al., 2011. In particular, we showed how anaerobic microbial sulfide oxidation rates were several orders of magnitude higher than even metal catalyzed aerobic sulfide oxidation processes. The fact that biotic anaerobic sulfide oxidation is kinetically superior to abiotic reactions implies that nearly all anaerobic and sulfidic environments should host microbial populations that oxidize sulfide at appreciable rates. This was likely an important biogeochemical process during long stretches of euxinia in the oceans suggested by the geologic record. In particular, phototrophic sulfide oxidation allows the utilization of carbon dioxide as the electron acceptor suggesting that this process should be particularly widespread rather than relying on the presence of other chemical oxidants. Using the Chesapeake Bay as an example, we argue that phototrophic sulfide oxidation may be more important in many environments than is currently appreciated. Finally, we present methodological considerations to assist other groups that wish to study this process.

  5. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning. PMID:24456468

  6. Sulfide Oxidation in the Anoxic Black-Sea Chemocline

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; FOSSING, H.; WIRSEN, CO; JANNASCH, HW

    1991-01-01

    The depth distributions of O2 and H2S and of the activity of chemical or bacterial sulfide oxidation were studied in the chemocline of the central Black Sea. Relative to measurements from earlier studies, the sulfide zone had moved upwards by 20-50 m and was now (May 1988) situated at a depth of 81...... per day, occurred in anoxic water at the top of the sulfide zone concurrent with the highest rates of dark CO2 assimilation. The main soluble oxidized products of sulfide were thiosulfate (68-82%) and sulfate. Indirect evidence was presented for the formation of elemental sulfur which accumulated to a...... that the measured H2S oxidation rates were 4-fold higher than could be explained by the downward flux of organic carbon and too high to balance the availability of electron acceptors such as oxidized iron or manganese. A nitrate maximum at the lower boundary of the O2 zone did not extend down to the...

  7. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2013-01-01

    A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts satisfact......A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts...... satisfactorily oxidation of OCS over a wide range of stoichiometric air–fuel ratios (0.5 ≤λ≤7.3), temperatures (450–1700 K), and pressures (0.02–3.0 atm) under dry conditions. The governing reaction mechanisms are outlined based on calculations with the kinetic model. The oxidation rate of OCS is controlled...

  8. Efficiently Dispersing Carbon Nanotubes in Polyphenylene Sulfide

    OpenAIRE

    Sommer, Kevin M; Pipes, R. Byron

    2013-01-01

    Thermal plastics are replacing conventional metals in the aerospace, sporting, electronics, and other industries. Thermal plastics are able to withstand relatively high temperatures, have good fatigue properties, and are lighter than metals. Unfortunately, they are not very electrically conductive. However, adding carbon nanotubes to thermal plastics such as polyphenylene sulfide (PPS) can drastically increase the plastic's conductivity at a low weight percent of nanotubes called the percolat...

  9. PARTICIPATION OF REDOX SIGNALIZATION IN NITRIC OXIDE-, CARBON MONOXIDE- AND HUDROGEN SULFIDE-MEDIATED REGULATION OF APOPTOSIS AND CELL CYCLE

    Directory of Open Access Journals (Sweden)

    Ye. G. Starikova

    2015-12-01

    Full Text Available The study has demonstrated that proapoptic concentrations of donors of NO (100 mmol SNP and 100 µmol NOC-5, H2S  (10 mmol NaHS, and CO (50 µmol CORM-2 gases caused an increase in the intracellular level of active forms of oxygen in Jurkat cells. As this took place, the activation of redox-dependent transcription factor р53 was observed as Jurkat cells were exposed to 100 mmol SNP and 10 mmol NaHS. In the case of 100 µmol NOC-5 and 50 µmol CORM-2, an increase of р53 was not observed, but the expression of target gens of this transcription factor р21 (under the effect of NO and СО and bax (under the effect of NO increased. The antiproliferative concentration of hydrogen sulfide donor (50 µmol did not cause an increase in the intracellular production of active forms of oxygen and the activation of redox-dependent signal mechanisms.

  10. Microbial oxidation of mixtures of methylmercaptan and hydrogen sulfide.

    Science.gov (United States)

    Subramaniyan, A; Kolhatkar, R; Sublette, K L; Beitle, R

    1998-01-01

    Refinery spent-sulfidic caustic, containing only inorganic sulfides, has previously been shown to be amenable to biotreatment with Thiobacillus denitrificans strain F with complete oxidation of sulfides to sulfate. However, many spent caustics contain mercaptans that cannot be metabolized by this strict autotroph. An aerobic enrichment culture was developed from mixed Thiobacilli and activated sludge that was capable of simultaneous oxidation of inorganic sulfide and mercaptans using hydrogen sulfide (H2S) and methylmercaptan (MeSH) gas feeds used to simulate the inorganic and organic sulfur of a spent-sulfidic caustic. The enrichment culture was also capable of biotreatment of an actual mercaptan-containing, spent-sulfidic caustic but at lower rates than predicted by operation on MeSH and H2S fed to the culture in the gas phase, indicating that the caustic contained other inhibitory components. PMID:18576062

  11. An eco-friendly oxidation of sulfide compounds

    Indian Academy of Sciences (India)

    RAVINDRA B WAGH; SITARAM H GUND; JAYASHREE M NAGARKAR

    2016-08-01

    An improved green route has been developed for the oxidation of sulfide compounds. Albendazole is converted to ricobendazole or albendazole sulfone using H₂O₂ as an oxidant and H₂O as the solvent. High yields of the corresponding products were obtained by carrying out the reaction at room temperature. This synthetic method is environmentally clean and safe, operationally simple for the oxidation of other benzimidazole anthelmintics and various sulfide compounds.

  12. Oxidation and Precipitation of Sulfide in Sewer Networks

    DEFF Research Database (Denmark)

    Nielsen, A. H.

    are integrated at a more detailed level in the extended WATS model. This allows effects of pH, temperature and hydraulic conditions on the individual processes to be accounted for. For several of the processes, model parameters were found to be highly site specific. A sound and reliable use of complex models....... The effect of temperature on oxidation kinetics was described by the widely used Arrhenius equation. Rates of chemical and biological sulfide oxidation in the wastewater were found to double with temperature increases of 10 and 7C, respectively. The biofilm experiments indicated a smaller dependency...... on temperature in that the biofilm sulfide oxidation rate was found to double with a temperature increase of approximately 23C. The pH dependency of chemical sulfide oxidation in wastewater represented the dissociation of sulfide, with the hydrosulfide ion being more rapidly oxidized than molecular hydrogen...

  13. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    Science.gov (United States)

    Luc, Wesley; Jiao, Feng

    2016-07-19

    Nanoporous metal-based solids are of particular interest because they combine a large quantity of surface metal sites, interconnected porous networks, and nanosized crystalline walls, thus exhibiting unique physical and chemical properties compared to other nanostructures and bulk counterparts. Among all of the synthetic approaches, nanocasting has proven to be a highly effective method for the syntheses of metal oxides with three-dimensionally ordered porous structures and crystalline walls. A typical procedure involves a thermal annealing process of a porous silica template filled with an inorganic precursor (often a metal nitrate salt), which converts the precursor into a desired phase within the silica pores. The final step is the selective removal of the silica template in either a strong base or a hydrofluoric acid solution. In the past decade, nanocasting has become a popular synthetic approach and has enabled the syntheses of a variety of nanoporous metal oxides. However, there is still a lack of synthetic methods to fabricate nanoporous materials beyond simple metal oxides. Therefore, the development of new synthetic strategies beyond nanocasting has become an important direction. This Account describes new progress in the preparation of novel nanoporous metal-based solids for heterogeneous catalysis. The discussion begins with a method called dealloying, an effective method to synthesize nanoporous metals. The starting material is a metallic alloy containing two or more elements followed by a selective chemical or electrochemical leaching process that removes one of the preferential elements, resulting in a highly porous structure. Nanoporous metals, such as Cu, Ag, and CuTi, exhibit remarkable electrocatalytic properties in carbon dioxide reduction, oxygen reduction, and hydrogen evolution reactions. In addition, the syntheses of metal oxides with hierarchical porous structures are also discussed. On the basis of the choice of hard template, nanoporous

  14. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Science.gov (United States)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  15. Heterogeneous oxidation of carbonyl sulfide on mineral oxides

    Institute of Scientific and Technical Information of China (English)

    LIU YongChun; LIU JunFeng; HE Hong; YU YunBo; XUE Li

    2007-01-01

    Heterogeneous oxidation of carbonyl sulfide (OCS) on mineral oxides including SiO2, Fe2O3, CaO, MgO, ZnO and TiO2, which are the main components of atmospheric particles, were investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), ion chromatography (IC), temperature-programmed desorption (TPD), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) methods. The main products and intermediates of the heterogeneous oxidation of OCS on these oxides were identified with in situ DRIFTS and IC. The reaction mechanism and kinetics were also discussed. It is found that the reaction mechanism on these mineral oxides is the same as that on Al2O3 for the same final products and the intermediates at room temperature. Namely, OCS can be catalytically oxidized to produce surface SO42- species and gaseous CO2 through the surface hydrogen thiocarbonate (HSCO2-) and HSO3- species. The activity series for heterogeneous oxidation of OCS follows: Al2O3 ≈ CaO>MgO>TiO2 ≈ ZnO>Fe2O3>SiO2. The specific area, basic hydroxyl and surface basicity of these oxides have effect on the reactivity. This study suggests that heterogeneous reactions of OCS on mineral dust may be an unneglectable sink of OCS.

  16. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review.

    Science.gov (United States)

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H₂S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H₂S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H₂S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  17. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review

    Directory of Open Access Journals (Sweden)

    Maria Greabu

    2016-01-01

    Full Text Available In the past years, biomedical research has recognized hydrogen sulfide (H2S not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H2S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H2S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases.

  18. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    Science.gov (United States)

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term. PMID:27093236

  19. Catalytic effect of activated carbon on bioleaching of low-grade primary copper sulfide ores

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The catalytic effect of activated carbon on the bioleaching of low-grade primary copper sulfide ores using mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was investigated. The results show that the addition of activated carbon can greatly accelerate the rate and efficiency of copper dissolution from low-grade primary copper sulfide ores. The solution with the concentration of 3.0 g/L activated carbon is most beneficial to the dissolution of copper. The resting time of the mixture of activated carbon and ores has an impact on the bioleaching of low-grade primary copper sulfide ores. The 2 d resting time is most favorable to the dissolution of copper. The enhanced dissolution rate and efficiency of copper can be attributed to the galvanic interaction between activated carbon and chalcopyrite. The addition of activated carbon obviously depresses the dissolution of iron and the bacterial oxidation of ferrous ions in solution. The lower redox potentials are more favorable to the copper dissolution than the higher potentials for low-grade primary copper sulfide ores in the presence of activated carbon.

  20. Investigation of the Electrocatalytic Activity of Rhodium Sulfide for Hydrogen Evolution and Hydrogen Oxidation

    International Nuclear Information System (INIS)

    We report the synthesis of unsupported and carbon-supported, mixed phase, rhodium sulfide, using both a hydrogen sulfide source and a solid sulfur source. Samples with several different distributions of rhodium sulfide phases (Rh2S3, Rh17S15, RhS2 and metallic Rh) were obtained by varying the temperature and exposure time to H2S or sulfur to rhodium ratio when using solid sulfur. Samples were characterized by X-ray diffraction (XRD), and the unsupported rhodium sulfide compounds studied using Raman spectroscopy to link Raman spectra to catalyst phases. The electrocatalytic activity of the rhodium sulfide compounds for hydrogen evolution and oxidation was measured using rotating disk electrode measurements in acidic conditions to simulate use in a flow cell. The most active phases for hydrogen evolution were found to be Rh3S4 and Rh17S15 (−0.34 V vs. Ag/AgCl required for 20 mA/cm2), while Rh2S3 and RhS2 phases were relatively inactive (−0.46 V vs. Ag/AgCl required for 20 mA/cm2 using RhS2/C). The hydrogen oxidation activity of all rhodium sulfide phases is significantly lower than the hydrogen evolution activity and is not associated with conductivity limitations

  1. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass.

    Science.gov (United States)

    Mora, Mabel; López, Luis R; Lafuente, Javier; Pérez, Julio; Kleerebezem, Robbert; van Loosdrecht, Mark C M; Gamisans, Xavier; Gabriel, David

    2016-02-01

    Respirometry was used to reveal the mechanisms involved in aerobic biological sulfide oxidation and to characterize the kinetics and stoichiometry of a microbial culture obtained from a desulfurizing biotrickling filter. Physical-chemical processes such as stripping and chemical oxidation of hydrogen sulfide were characterized since they contributed significantly to the conversions observed in respirometric tests. Mass transfer coefficient for hydrogen sulfide and the kinetic parameters for chemical oxidation of sulfide with oxygen were estimated. The stoichiometry of the process was determined and the different steps in the sulfide oxidation process were identified. The conversion scheme proposed includes intermediate production of elemental sulfur and thiosulfate and the subsequent oxidation of both compounds to sulfate. A kinetic model describing each of the reactions observed during sulfide oxidation was calibrated and validated. The product selectivity was found to be independent of the dissolved oxygen to hydrogen sulfide concentration ratio in the medium at sulfide concentrations ranging from 3 to 30 mg S L(-1). Sulfide was preferentially consumed (SOURmax = 49.2 mg DO g(-1) VSS min(-1)) and oxidized to elemental sulfur at dissolved oxygen concentrations above 0.8 mg DO L(-1). Substrate inhibition of sulfide oxidation was observed (K(i,S(2-))= 42.4 mg S L(-1)). Intracellular sulfur accumulation also affected negatively the sulfide oxidation rate. The maximum fraction of elemental sulfur accumulated inside cells was estimated (25.6% w/w) and a shrinking particle equation was included in the kinetic model to describe elemental sulfur oxidation. The microbial diversity obtained through pyrosequencing analysis revealed that Thiothrix sp. was the main species present in the culture (>95%). PMID:26704759

  2. Hydrogen sulfide and endothelial dysfunction: relationship with nitric oxide.

    Science.gov (United States)

    Altaany, Zaid; Moccia, Francesco; Munaron, Luca; Mancardi, Daniele; Wang, Rui

    2014-01-01

    The endothelium is a cellular monolayer that lines the inner surface of blood vessels and plays a central role in the maintenance of cardiovascular homeostasis by controlling platelet aggregation, vascular tone, blood fluidity and fibrinolysis, adhesion and transmigration of inflammatory cells, and angiogenesis. Endothelial dysfunctions are associated with various cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and cardiovascular complications of diabetes. Numerous studies have established the anti-inflammatory, anti-apoptotic, and anti-oxidant effects of hydrogen sulfide (H2S), the latest member to join the gasotransmitter family along with nitric oxide and carbon monoxide, on vascular endothelium. In addition, H2S may prime endothelial cells (ECs) toward angiogenesis and contribute to wound healing, besides to its well-known ability to relax vascular smooth muscle cells (VSMCs), and thereby reducing blood pressure. Finally, H2S may inhibit VSMC proliferation and platelet aggregation. Consistently, a deficit in H2S homeostasis is involved in the pathogenesis of atherosclerosis and of hyperglycaemic endothelial injury. Therefore, the application of H2S-releasing drugs or using gene therapy to increase endogenous H2S level may help restore endothelial function and antagonize the progression of cardiovascular diseases. The present article reviews recent studies on the role of H2S in endothelial homeostasis, under both physiological and pathological conditions, and its putative therapeutic applications. PMID:25005182

  3. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides.

    Science.gov (United States)

    Placencia-Gómez, Edmundo; Slater, Lee; Ntarlagiannis, Dimitrios; Binley, Andrew

    2013-05-01

    Oxidation of metal sulfide minerals is responsible for the generation of acidic waters rich in sulfate and metals. When associated with the oxidation of sulfide ore mine waste deposits the resulting pore water is called acid mine drainage (AMD); AMD is a known environmental problem that affects surface and ground waters. Characterization of oxidation processes in-situ is challenging, particularly at the field scale. Geophysical techniques, spectral induced polarization (SIP) in particular, may provide a means of such investigation. We performed laboratory experiments to assess the sensitivity of the SIP method to the oxidation mechanisms of common sulfide minerals found in mine waste deposits, i.e., pyrite and pyrrhotite, when the primary oxidant agent is dissolved oxygen. We found that SIP parameters, e.g., phase shift, the imaginary component of electrical conductivity and total chargeability, decrease as the time of exposure to oxidation and oxidation degree increase. This observation suggests that dissolution-depletion of the mineral surface reduces the capacitive properties and polarizability of the sulfide minerals. However, small increases in the phase shift and imaginary conductivity do occur during oxidation. These transient increases appear to correlate with increases of soluble oxidizing products, e.g., Fe(2+) and Fe(3+) in solution; precipitation of secondary minerals and the formation of a passivating layer to oxidation coating the mineral surface may also contribute to these increases. In contrast, the real component of electrical conductivity associated with electrolytic, electronic and interfacial conductance is sensitive to changes in the pore fluid chemistry as a result of the soluble oxidation products released (Fe(2+) and Fe(3+)), particularly for the case of pyrrhotite minerals. PMID:23531431

  4. Sulfide oxidizing activity as a survival strategy in mangrove clam Polymesoda erosa (Solander, 1786)

    Digital Repository Service at National Institute of Oceanography (India)

    Clemente, S.; Ingole, B.S.; Sumati, M.; Goltekar, R.

    strategies of sulfide detoxification appear to be common in animals in normoxia. First, sulfide can be bound to blood proteins (Bagarinao and Vetter 1992). Second, sulfide is frequently oxidized to less toxic or nontoxic sulfur compounds, either... with the help of bacterial symbionts (Wilmot and Vetter 1990) or in the animal tissue (Vetter et al. 1987). As a group, thiotrophic (sulfide-utilizing) bacteria employ various enzymatic pathways for conversion of sulfide into energy, including the oxidation...

  5. The sulfide oxidation in an electrolytic sulfide oxidizing bioreactor using graphite anode

    International Nuclear Information System (INIS)

    The goal of the present research was the direct conversion of sulfide (an important contaminant in various industrial wastewaters) to sulfate, whose discharge limits are much less stringent than those for sulfide. The electrolysis of sodium sulfide was investigated under different conditions such as: ph, current density and working area etc. along with cyclic voltammetry. By the use of a graphite anode, we achieved near-quantitative electrochemical conversion of sulfide ions to sulfate with current efficiency of 88%. Kinetically, the reaction is first order in current density. The experimental results revealed that the sulfide removal rate of more than 88% could be achieved under the conditions T=30 deg. C, ph = 7, current density of 1 mA/cm/sup 2/ at anode area of 225 cm/sup 2/.The process can be practically coupled with bioreactor for an effective sulfide removal. (author)

  6. Alloy selection for sulfidation: oxidation resistance in coal gasification environments

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, R.W.; Stoltz, R.E.

    1980-01-01

    A series of iron-nickel-chromium and nickel-chromium alloys were studied for their combined sulfidation-oxidation resistance in simulated coal gasification environments. All alloys contained a minimum of 20 w/o chromium, and titanium and aluminum in the range 0 to 4 w/o. Corrosion resistance was evaluated at 1255/sup 0/K (1800/sup 0/F) in both high BTU and low BTU coal gasification atmospheres with 1 v/o H/sub 2/S. Titanium at levels greater than 1 w/o imparted significant sulfidation resistance due to an adherent, solid solution chromium-titanium oxide layer which prevented sulfur penetration. Aluminum was less effective in preventing sulfidation since surface scales were not adherent. Of the commercial alloys tested, Nimomic 81, Pyromet 31, IN801, and IN825 exhibited the best overall corrosion resistance. However, futher alloy development, tailored to produce solid solution chromium-titanium oxide scales, may lead to alloys with greater sulfidation-oxidation resistance than those investigated here.

  7. Carbon steel protection in G.S. (Girlder sulfide) plants. Iron sulfide scales formation conditions. Pt. 1

    International Nuclear Information System (INIS)

    An ASTM A 516 degree 60 carbon steel superficial protection technique submitted to a hydrogen-water sulfide corrosive medium at 2 MPa of pressure and 40-125 deg C forming on itself an iron sulfide layer was tested. Studies on pH influence, temperature, passivating mean characteristics and exposure time as well as the mechanical resistance of sulfide layers to erosion are included. (Author)

  8. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    Science.gov (United States)

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  9. Mathematical model for microbial oxidation of pure lead sulfide by Thiobacillus ferrooxidans.

    Science.gov (United States)

    Kargi, F

    1989-08-01

    A shrinking-core mathematical model describing bioleaching of lead sulfide is developed considering the deposition of insoluble bio-oxidation products on metal sulfide particle surfaces. Variations in particle size are considered as it affects diffusion limitations. PMID:18588129

  10. HYDROGEN SULFIDE ADSORPTION BY ALKALINE IMPREGNATED COCONUT SHELL ACTIVATED CARBON

    OpenAIRE

    HUI SUN CHOO; LEE CHUNG LAU; ABDUL RAHMAN MOHAMED; KEAT TEONG LEE

    2013-01-01

    Biogas is one type of renewable energy which can be burnt to produce heat and electricity. However, it cannot be burnt directly due to the presence of hydrogen sulfide (H2S) which is highly corrosive to gas engine. In this study, coconut shell activated carbon (CSAC) was applied as a porous adsorbent for H2S removal. The effect of amount of activated carbon and flow rate of gas stream toward adsorption capacity were investigated. Then, the activated carbons were impregnated by three types of ...

  11. Carbon steel protection in G.S. (Girlder sulfide) plants. Pressure influence on iron sulfide scales formation. Pt. 5

    International Nuclear Information System (INIS)

    In order to protect carbon steel towers and piping of Girlder sulfide (G.S.) experimental heavy water plants against corrosion produced by the action of aqueous solutions of hydrogen sulfide, a method, previously published, was developed. Carbon steel, exposed to saturated aqueous solutions of hydrogen sulfide, forms iron sulfide scales. In oxygen free solutions evolution of corrosion follows the sequence: mackinawite → cubic ferrous sulfide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite-pyrite or pyrite are the most protective layers (these are obtained at 130 deg C, 2MPa, for periods of 14 days). Experiments, at 125 deg C and periods of 10-25 days, were performed in two different ways: 1- constant pressure operations at 0.5 and 1.1 MPa. 2- variable pressure operation between 0.3-1 MPa. In all cases pyrrotite-pyrite scales were obtained. (Author)

  12. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    Science.gov (United States)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  13. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  14. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    to the concentration in milligrams per liter of sulfide sulfur. Percentage oxidation was calculated by comparing the experimental values with the respective uninoculated controls at the end of incubation period using the formula (C f 2 E f /C f ) 3 100, where C f... is the final sulfide content in the control, and E f is the final sulfide content in the experiment. Effect of iron (FeCl 3 ) Positive controls at ambient conditions [room temperature (RT) 30 6 28C and atmospheric pressure] were always included to verify normal...

  15. Kinetic Studies of Sulfide Mineral Oxidation and Xanthate Adsorption

    OpenAIRE

    Mendiratta, Neeraj K.

    2000-01-01

    Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrho...

  16. HYDROGEN SULFIDE ADSORPTION BY ALKALINE IMPREGNATED COCONUT SHELL ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    HUI SUN CHOO

    2013-12-01

    Full Text Available Biogas is one type of renewable energy which can be burnt to produce heat and electricity. However, it cannot be burnt directly due to the presence of hydrogen sulfide (H2S which is highly corrosive to gas engine. In this study, coconut shell activated carbon (CSAC was applied as a porous adsorbent for H2S removal. The effect of amount of activated carbon and flow rate of gas stream toward adsorption capacity were investigated. Then, the activated carbons were impregnated by three types of alkaline (NaOH, KOH and K2CO3 with various ratios. The effects of various types of alkaline and their impregnation ratio towards adsorption capacity were analysed. In addition, H2S influent concentration and the reaction temperature on H2S adsorption were also investigated. The result indicated that adsorption capacity increases with the amount of activated carbon and decreases with flow rate of gas stream. Alkaline impregnated activated carbons had better performance than unimpregnated activated carbon. Among all impregnated activated carbons, activated carbon impregnated by K2CO3 with ratio 2.0 gave the highest adsorption capacity. Its adsorption capacity was 25 times higher than unimpregnated activated carbon. The result also indicated that the adsorption capacity of impregnated activated carbon decreased with the increment of H2S influent concentration. Optimum temperature for H2S adsorption was found to be 50˚C. In this study, the adsorption of H2S on K2CO3 impregnated activated carbon was fitted to the Langmuir isotherm. The fresh and spent K2CO3 impregnated activated carbon were characterized to study the adsorption process.

  17. A STUDY TO EVALUATE CARBON MONOXIDE AND HYDROGEN SULFIDE CONTINUOUS EMISSION MONITORS AT AN OIL REFINERY

    Science.gov (United States)

    An eleven month field evaluation was done on five hydrogen sulfide and four carbon monoxide monitors located at an oil refinery. The hydrogen sulfide monitors sampled a fuel gas feed line and the carbon monoxide monitors sampled the emissions from a fluid cat cracker (FCC). Two o...

  18. Evaluation of long-term sulfide oxidation processes within pyrrhotite-rich tailings, Lynn Lake, Manitoba.

    Science.gov (United States)

    Gunsinger, M R; Ptacek, C J; Blowes, D W; Jambor, J L

    2006-02-10

    Oxidation reactions have depleted sulfide minerals in the shallow tailings and have generated sulfate- and metal-rich pore water throughout the East Tailings Management Area (ETMA) at Lynn Lake, Manitoba, Canada. Information concerning the tailings geochemistry and mineralogy suggest the sulfide oxidation processes have reached an advanced stage in the area proximal to the point of tailings discharge. In contrast, the distal tailings, or slimes area, have a higher moisture content close to the impoundment surface, thereby impeding the ingress of oxygen and limiting sulfide oxidation. Numerical modelling of sulfide oxidation indicates the maximum rate of release for sulfate, Fe, and Ni occurred shortly after tailings deposition ceased. Although the sulfide minerals have been depleted in the very shallow tailings, the modelling suggests that sulfide oxidation will continue for hundreds and possibly thousands of years. The combination of sulfide minerals, principally pyrrhotite, that is susceptible to weathering processes and the relatively dry, coarse-grained nature of the tailings have resulted in the formation of a massive-hardpan layer in the proximal area of the ETMA. Because extensive accumulations of secondary oxyhydroxides of ferric iron are already present, remediation strategies for the ETMA should focus on mitigating the release of sulfide oxidation products rather than on preventing further oxidation. PMID:16406605

  19. Carbon steel protection in G.S. (Girlder sulfide) plants. Iron sulfide scales formation on surfaces covered by fabrication produced films. Pt. 4

    International Nuclear Information System (INIS)

    This work describes the assays aimed to passivate the steel carbon of the process pipings. This steel is marked by the ASTM A 333 G6 and is chemically similar to those of isotopic exchange towers which corrode in contact with in-water hydrogen sulfide solutions forming iron sulfide protective layers. The differences between both materials lie in the surface characteristics to be passivated. The steel of towers has an internal side covered by paint which shall be removed prior to passivation. The steel's internal side shall be covered by a film formed during the fabrication process and constituted by calcinated wastes and iron oxides (magnetite, hematite and wustite). This film interferes in the formation process of passivating layers of pyrrhotite and pyrite. The possibility to passivate the pipes in their actual state was evaluated since it would result highly laborious and expensive to eliminate the film. (Author)

  20. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    International Nuclear Information System (INIS)

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d-1 and 1.33 d-1 as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  1. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    Science.gov (United States)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  2. Removals of aqueous sulfur dioxide and hydrogen sulfide using CeO2-NiAl-LDHs coating activated carbon and its mix with carbon nano-tubes

    KAUST Repository

    Li, Jing

    2015-07-01

    Ce-doped NiAl/layered double hydroxide was coated at activated carbon by urea hydrolysis method (CeO2-NiAl-LDHs/AC) in one pot, which was characterized by X-ray diffraction, infrared spectra, field emission scanning electron microscope and electrochemical techniques. CeO2-NiAl-LDHs/AC shows good uptake for aqueous sulfur dioxide (483.09mg/g) and hydrogen sulfide (181.15mg/g), respectively at 25°C. Meanwhile, the electrochemical removals of aqueous sulfur dioxide and hydrogen sulfide were respectively investigated at the mix of CeO2-NiAl-LDHs/AC and carbon nano-tubes modified homed paraffin-impregnated electrode. Both sulfur dioxide and hydrogen sulfide could be effectively oxidized to sulfuric acid at 1.0V in alkaline aqueous solution. © 2015 Elsevier B.V.

  3. Analysis of a microbial community oxidizing inorganic sulfide and mercaptans.

    Science.gov (United States)

    Duncan, K E; Sublette, K L; Rider, P A; Stepp, A; Beitle, R R; Conner, J A; Kolhatkar, R

    2001-01-01

    Successful treatment of refinery spent-sulfidic caustic (which results from the addition of sodium hydroxide solutions to petroleum refinery waste streams) was achieved in a bioreactor containing an enrichment culture immobilized in organic polymer beads with embedded powdered activated carbon (Bio-Sep). The aerobic enrichment culture had previously been selected using a gas mixture of hydrogen sulfide and methyl mercaptan (MeSH) as the sole carbon and energy sources. The starting cultures for the enrichment consisted of several different Thiobacilli spp. (T. thioparus, T. denitrificans, T. thiooxidans, and T. neopolitanus), as well as activated sludge from a refinery aerobic wastewater treatment system and sludge from an industrial anaerobic digester. Microscopic examination (light and SEM) of the beads and of microbial growth on the walls of the bioreactor revealed a great diversity of microorganisms. Further characterization was undertaken starting with culturable aerobic heterotrophic microorganisms (sequencing of PCR-amplified DNA coding for 16S rRNA, Gram staining) and by PCR amplification of DNA coding for 16S rRNA extracted directly from the cell mass, followed by the separation of the PCR products by DGGE (denaturing gradient gel electrophoresis). Eight prominent bands from the DGGE gel were sequenced and found to be closest to sequences of uncultured Cytophagales (3 bands), Gram-positive cocci (Micrococcineae), alpha proteobacteria (3 bands), and an unidentified beta proteobacterium. Culturable microbes included several genera of fungi as well as various Gram-positive and Gram-negative heterotrophic bacteria not seen in techniques using direct DNA extraction. PMID:11485441

  4. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard

    Science.gov (United States)

    Stachnik, Łukasz; Majchrowska, Elżbieta; Yde, Jacob C.; Nawrot, Adam P.; Cichała-Kamrowska, Katarzyna; Ignatiuk, Dariusz; Piechota, Agnieszka

    2016-07-01

    This study aims to determine the rate of chemical denudation and the relationships between dominant geochemical reactions operating in the proglacial and subglacial environments of the polythermal glacier Werenskioldbreen (SW Svalbard) during an entire ablation season. Water sampling for major ion chemistry was performed at a proglacial hydrometric station and from subglacial outflows from May to September 2011. These data were combined with measurements of discharge and supraglacial ablation rates. The slopes and intercepts in best-fit regressions of [*Ca2+ + *Mg2+ vs. *SO42-] and [HCO3- vs. *SO42-] in meltwater from ice-marginal subglacial channels were close to the stoichiometric parameters of sulfide oxidation and simple hydrolysis coupled to carbonate dissolution (*concentrations corrected for input of sea-salt). This shows that these relationships predominates the meltwater chemistry. Our findings also show that sulfide oxidation is a better indicator of the configuration of subglacial drainage systems than, for instance, Na+ and K+. In the proglacial area and in sub-artesian outflows, the ion associations represent sulfide oxidation but other processes such as ion exchange and dissolution of Ca and Mg efflorescent salts may also contribute to the solute variations. These processes may cause enhanced fluxes of Ca2+ and HCO3- from glacierized basins during the early ablation and peak flow seasons as the proglacial salts re-dissolve. The overall chemical denudation rate in the basin for 2011 (ranging from 1601 to 1762 meq m-2 yr-1 (121.9 to 132.2 t km-2 yr-1)) was very high when compared to other Svalbard valley glaciers suggesting that the high rate of chemical denudation was mostly caused by the high rates of discharge and ablation. Chemical weathering intensities (876 and 964 meq m-3 yr-1) exceeded previously reported intensities in Svalbard.

  5. Microbial oxidation of soluble sulfide in produced water from the Bakkeen Sands

    Energy Technology Data Exchange (ETDEWEB)

    Gevertz, D.; Zimmerman, S. [Agouron Institute, La Jolla, CA (United States); Jenneman, G.E. [Phillips Petroleum Company, Bartlesville, OK (United States)] [and others

    1995-12-31

    The presence of soluble sulfide in produced water results in problems for the petroleum industry due to its toxicity, odor, corrosive nature, and potential for wellbore plugging. Sulfide oxidation by indigenous nitrate-reducing bacteria (NRB) present in brine collected from wells at the Coleville Unit (CVU) in Saskatchewan, Canada, was investigated. Sulfide oxidation took place readily when nitrate and phosphate were added to brine enrichment cultures, resulting in a decrease in sulfide levels of 99-165 ppm to nondetectable levels (< 3.3 ppm). Produced water collected from a number of producing wells was screened to determine the time required for complete sulfide oxidation, in order to select candidate wells for treatment. Three wells were chosen, based on sulfide removal in 48 hours or less. These wells were treated down the backside of the annulus with a solution containing 10 mM KNO{sub 3} and 100 {mu}M NaH{sub 2}PO{sub 4}. Following a 24- to 72-hour shut-in, reductions in pretreatment sulfide levels of greater than 90% were observed for two of the wells, as well as sustained sulfide reductions of 50% for at least two days following startup. NRB populations in the produced brine were observed to increase significantly following treatment, but no significant increases in sulfate-reducing bacteria were observed. These results demonstrate the technical feasibility of stimulating indigenous populations of NRB to remediate and control sulfide in produced brine.

  6. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part II. the regeneration of copper sulfide to copper oxide - An experimental study

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    Aim of this study was to investigate the possibilities for a selective and efficient method to convert copper(II) sulfide (CuS) into copper(II) oxide (CuO). The oxidation of copper sulfide has been studied experimentally using a thermogravimetric analyzer (TGA) at temperatures ranging from 450 to 75

  7. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.C.

    1995-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this research project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, oxygen, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbent for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur-absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes.

  8. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor

    NARCIS (Netherlands)

    Bosch, van den P.L.F.; Beusekom, van O.C.; Buisman, C.J.N.; Janssen, A.J.H.

    2007-01-01

    A biotechnological process is described to remove hydrogen sulfide (H2S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO) and thiosul

  9. Inhibition of a biological sulfide oxidation under haloalkaline conditions by thiols and diorgano polysulfanes

    NARCIS (Netherlands)

    Roman, Pawel; Lipińska, Joanna; Bijmans, Martijn F.M.; Sorokin, Dimitry Y.; Keesman, Karel J.; Janssen, Albert J.H.

    2016-01-01

    A novel approach has been developed for the simultaneous description of reaction kinetics to describe the formation of polysulfide and sulfate anions from the biological oxidation of hydrogen sulfide (H2S) using a quick, sulfide-dependent respiration test. Next to H2S, thiol

  10. Carbon dioxide and hydrogen sulfide associations with regional bacterial diversity patterns in microbially induced concrete corrosion.

    Science.gov (United States)

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2014-07-01

    The microbial communities associated with deteriorating concrete corrosion fronts were characterized in 35 samples taken from wastewater collection and treatment systems in ten utilities. Bacterial communities were described using Illumina MiSeq sequencing of the V1V2 region of the small subunit ribosomal ribonucleic acid (SSU-rRNA) gene recovered from fresh corrosion products. Headspace gas concentrations (hydrogen sulfide, carbon dioxide, and methane), pore water pH, moisture content, and select mineralogy were tested for correlation to community outcomes and corrosion extent using pairwise linear regressions and canonical correspondence analysis. Corroding concrete was most commonly characterized by moisture contents greater than 10%, pore water pH below one, and limited richness (100 ppm) and carbon dioxide (>1%) gases, conditions which also were associated with low diversity biofilms dominated by members of the acidophilic sulfur-oxidizer genus Acidithiobacillus. PMID:24842376

  11. Reliability of Electrochemical Techniques for Determining Corrosion Rates on Carbon Steel in Sulfide Media

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, T.; Nielsen, Lars Vendelbo; Richter, S.

    2007-01-01

    Effects of film formation on carbon steel in hydrogen sulfide (H2S) media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from H2S solutions, biological sulfide media, and natural sulfide containing geothermal water have been collected, and the process of...... biofilm in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemicel impedance spectroscopy (EIS). Oxygen entering the system...

  12. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    OpenAIRE

    Bosak, Z.; Barta, D; Zečević, N.; Šiklušić, S.

    2009-01-01

    This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV) oxide, carbon(II) oxide, hydrogen, methane, hydrogen sulfide, nitrogen...

  13. Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-rich ecosystem

    Science.gov (United States)

    Hayakawa, Atsushi; Hatakeyama, Mizuho; Asano, Ryoki; Ishikawa, Yuichi; Hidaka, Shin

    2013-06-01

    studies of denitrification have focused on organic carbon as an electron donor, but reduced sulfur can also support denitrification. Few studies have reported nitrate (NO3-) reduction coupled with pyrite oxidation and its stoichiometry in surface sediments, especially without experimental pyrite addition. In this study, we evaluated NO3- reduction coupled with sulfur oxidation by long-term incubation of surface sediments from a sulfide-rich ecosystem in Akita Prefecture, Japan. The surface sediments were sampled from a mud pool and a riverbed. Fresh sediments and water were incubated under anoxic conditions (and one oxic condition) at 20°C. NO3- addition increased the SO42- concentration and decreased the NO3- concentration. SO42- production (∆SO42-) was strongly and linearly correlated with NO3- consumption (∆NO3-) during the incubation period (R2 = 0.983, P denitrifying bacteria. Framboidal pyrite and marcasite (both FeS2) were present in the sediments and functioned as the electron donors for autotrophic denitrification. Both ∆NO3- and ∆SO42- were higher in the riverbed sediment than in the mud pool sediment, likely because of the higher amount of easily oxidizable S (pyrite) in the riverbed sediment. Consistently low ammonium (NH4+) concentrations indicated that NO3- reduction by dissimilatory NO3- reduction to NH4+ was small but could not be disregarded. Our results demonstrate that sulfide-rich ecosystems with easily oxidizable metal-bound sulfides such as FeS2 near the ground surface may act as denitrification hot spots.

  14. When can Electrochemical Techniques give Reliable Corrosion Rates on Carbon Steel in Sulfide Media?

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, Tor; Nielsen, Lars Vendelbo;

    2005-01-01

    of film formation in sulfide solutions was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data resulting in unreliable corrosion rates measured by electrochemical techniques. The effect is strongly increased if biofilm......Effects of film formation on carbon steel in hydrogen sulfide media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from hydrogen sulfide solutions, biological sulfide media and natural sulfide containing geothermal water have been collected and the process...... in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Oxygen entering the system...

  15. Transition-Metal-Free Highly Efficient Aerobic Oxidation of Sulfides to Sulfoxides under Mild Conditions

    OpenAIRE

    Hua Zhang; Chunyu Chen; Renhua Liu; Qiang Xu; Weiqie Zhao

    2009-01-01

    A highly efficient transition-metal-free catalytic system Br2/NaNO2/H2O has been developed for a robust and economic acid-free aerobic oxidation of sulfides. It is noteworthy that the sulfide function reacts under mild conditions without over-oxidation to sulfone. The role of NaNO2as an efficient NO equivalent for the activation of molecular oxygen was identified. Under the optimal conditions, a broad range of sulfide substrates were converted into their corresponding sulfoxides in high yield...

  16. Spontaneous electrochemical treatment for sulfur recovery by a sulfide oxidation/vanadium(V) reduction galvanic cell.

    Science.gov (United States)

    Kijjanapanich, Pimluck; Kijjanapanich, Pairoje; Annachhatre, Ajit P; Esposito, Giovanni; Lens, Piet N L

    2015-02-01

    Sulfide is the product of the biological sulfate reduction process which gives toxicity and odor problems. Wastewaters or bioreactor effluents containing sulfide can cause severe environmental impacts. Electrochemical treatment can be an alternative approach for sulfide removal and sulfur recovery from such sulfide rich solutions. This study aims to develop a spontaneous electrochemical sulfide oxidation/vanadium(V) reduction cell with a graphite electrode system to recover sulfide as elemental sulfur. The effects of the internal and external resistance on the sulfide removal efficiency and electrical current produced were investigated at different pH. A high surface area of the graphite electrode is required in order to have as less internal resistance as possible. In this study, graphite powder was added (contact area >633 cm(2)) in order to reduce the internal resistance. A sulfide removal efficiency up to 91% and electrical charge of more than 400 C were achieved when using five graphite rods supplemented with graphite powder as the electrode at an external resistance of 30 Ω and a sulfide concentration of 250 mg L(-1). PMID:25463589

  17. Carbonyl Sulfide for Tracing Carbon Fluxes Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. Elliott [Univ. of California, Merced, CA (United States); Berry, Joseph A. [Carnegie Inst. of Science, Stanford, CA (United States); Billesbach, Dave [Univ. of Nebraska, Lincoln, NE (United States); Torn, Margaret S [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zahniser, Mark [Aerodyne Research, Inc., Billerica, MA (United States); Seibt, Ulrike [Univ. of California, Los Angeles, CA (United States); Maseyk, Kadmiel [Pierre and Marie Curie Univ., Paris (France)

    2016-04-01

    The April-June 2012 campaign was located at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site Central Facility and had three purposes. One goal was to demonstrate the ability of current instrumentation to correctly measure fluxes of atmospheric carbonyl sulfide (COS). The approach has been describe previously as a critical approach to advancing carbon cycle science1,2, but requires further investigation at the canopy scale to resolve ecosystem processes. Previous canopy-scale efforts were limited to data rates of 1Hz. While 1 Hz measurements may work in a few ecosystems, it is widely accepted that data rates of 10 to 20 Hz are needed to fully capture the exchange of traces gases between the atmosphere and vegetative canopy. A second goal of this campaign was to determine if canopy observations could provide information to help interpret the seasonal double peak in airborne observations at SGP of CO2 and COS mixing ratios. A third goal was to detect potential sources and sinks of COS that must be resolved before using COS as a tracer of gross primary productivity (GPP).

  18. Test of oxidation behavior of sulfide ores at ambient temperature for fire control

    Institute of Scientific and Technical Information of China (English)

    WU Chao; LI Zi-jun; LI Ming; WU Guo-min

    2007-01-01

    The coincidence of relevant factors, e.g. oxygen absorption quantity, weight increment, water soluble iron ions and sulfate ion of sulfide ore samples in the oxidation process, was tested through experiment. Based on a large number of tests for a group sample of sulfide ores from a mine, some important conclusions were obtained. The results obtained by the investigation indicate that there is no general interpretation relative to the oxygen absorption and the formation products of sulfate ion and water soluble iron ions during the oxidation process of sulfide ores at ambient temperature. However, the weight increment of the sulfide ore samples in the oxidation process at ambient temperature has a linear relationship with the quantity of oxygen absorption.

  19. Depositional environments inferred from variations of calcium carbonate, organic carbon, and sulfide sulfur: a core from southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Iyer, S.D.; Chauhan, O.S.; PrakashBabu, C.

    Pleistocene has been inferred. The higher contents of organic carbon and sulfide sulfur and their negative relationship clearly establish the existence of a reducing environment below 65 cm subbottom depth. The occurrence of pyrite framboids and crystals...

  20. Biotechnical process for the treatment of hydrogen sulfide and carbon disulfide in a waste gas

    Energy Technology Data Exchange (ETDEWEB)

    Revah, S.; Hinojosa, A.; Marroquin, E; Morales, V. [Universidad Autonoma Metropolitana, Mexico City (Mexico)

    1994-12-31

    A process for the microbial oxidation of hydrogen sulfide (H{sub 2}S) and carbon disulfide (CS{sub 2}) present in exhaust gases from cellophane, rayon and sponge manufacturing plants was described. The microbial population was isolated from sulfurous sources and from water treatment plants and enriched by successive inoculations. The operation of a 50 cubic m per min pilot plant to remove the sulfur compounds present in the exhaust gas of a cellophane plant and a 300 cubic m per min industrial unit for a rayon plant were discussed. Typical efficiencies in both units were 98 per cent for H{sub 2}S and 80 per cent for CS{sub 2}. Other applications of the process were also discussed. 16 refs., 1 tab.

  1. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  2. Reliability of Electrochemical Techniques for Determining Corrosion Rates on Carbon Steel in Sulfide Media

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, T.; Nielsen, Lars Vendelbo;

    2007-01-01

    film formation in sulfide solutins was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data, resulting in unreliable corrosion rates measured using electrochemical techniques. The effect is strongly increased if the......Effects of film formation on carbon steel in hydrogen sulfide (H2S) media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from H2S solutions, biological sulfide media, and natural sulfide containing geothermal water have been collected, and the process of...... biofilm in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemicel impedance spectroscopy (EIS). Oxygen entering the system...

  3. Kinetics and correlation analysis of reactivity in the oxidation of organic sulfides by butyltriphenylphosphonium dichromate

    Indian Academy of Sciences (India)

    K M Dilsha; Seema Kothari

    2009-03-01

    The oxidation of a number of monosubstituted aryl methyl, alkyl phenyl, dialkyl, and diphenyl sulfides by butyltriphenylphosphonium dichromate (BTPPD), to the corresponding sulfoxides, is first order with respect to BTPPD and is second order with respect to sulfide. The reaction is catalysed by hydrogen ions and the dependence is of second order. The oxidation of meta- and para-substituted aryl methyl sulfides correlated best in terms of Hammett equation, the reactions exhibited negative polar reaction constant. The ortho-substituted compounds correlated best in terms of Charton’s triparametric equation with negative polar constant and a small degree of steric hindrance. The oxidation of alkyl phenyl sulfides exhibited a good correlation in terms of Pavelich-Taft equation confirming that the electron-donating power of the alkyl group increases the rate, however, the reactivity is not markedly controlled by the bulkiness of the alkyl group. The rates of oxidation of sulfides were determined in nineteen organic solvents. An analysis of the solvent effect by multi-parametric equations indicated the relatively greater importance of the cation-solvating power of the solvents. A mechanism involving a single-step electrophilic oxygen transfer from BTPPD to the sulfide leading to polar transition state has been proposed.

  4. Electrocatalytic Hydrogen Evolution from Molybdenum Sulfide-Polymer Composite Films on Carbon Electrodes.

    Science.gov (United States)

    Lattach, Youssef; Deronzier, Alain; Moutet, Jean-Claude

    2015-07-29

    The design of more efficient catalytic electrodes remains an important objective for the development of water splitting electrolyzers. In this context a structured composite cathode material has been synthesized by electrodeposition of molybdenum sulfide (MoSx) into a poly(pyrrole-alkylammonium) matrix, previously coated onto carbon electrodes by oxidative electropolymerization of a pyrrole-alkylammonium monomer. The composite material showed an efficient electrocatalytic activity toward proton reduction and the hydrogen evolution reaction (HER). Data from Tafel plots have demonstrated that the electron transfer rate in the composite films is fast, in agreement with the high catalytic activity of this cathode material. Bulk electrolysis of acidic water at carbon foam electrodes modified with the composite have shown that the cathodes display a high catalytic activity and a reasonable operational stability, largely exceeding that of regular amorphous MoSx electrodeposited on naked carbon foam. The enhanced catalytic performances of the composite electrode material were attributed to the structuration of the composite, which led to a homogeneous distribution of the catalyst on the carbon foam network, as shown by SEM characterizations. PMID:26147828

  5. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    Science.gov (United States)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at <10-5 present atmospheric O2).2 As a result, it is difficult to quantify O2 concentrations implied by observed trace metal variations. As a first step toward providing more quantitative constraints on late Archean pO2, we conducted laboratory studies of pyrite and molybdenite oxidation kinetics at the nanomolar O2 concentrations that are relevant to late Archean environments. These measurements were made using recently developed, highly sensitive optical O2 sensors to monitor the rates at which the powdered minerals consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to <1 nM O2 (4 x 10-6 present atmospheric O2). This implies that oxidative weathering of sulfides could occur under conditions which preserve MIF S fractionation. Furthermore, our results indicate that the rate law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our

  6. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms

    Science.gov (United States)

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  7. Enantiomeric oxidation of organic sulfides by the filamentous fungi Botrytis cinerea, Eutypa lata and Trichoderma viride

    OpenAIRE

    Pinedo Rivilla, Cristina; Aleu Casatejada, Josefina; González Collado, Isidro

    2007-01-01

    The biotransformations of a series of substituted sulfides were carried out with the filamentous fungi Botrytis cinerea, Eutypa lata and Trichoderma viride. Several products underwent microbial oxidation of sulfide to sulfoxide with medium to high enantiomeric purity. With regard to sulfoxide enantioselectivity, the (R)-enantiomer was favoured in biotransformations by T. viride and E. lata while the (S)-enantiomer was favoured in those by B. cinerea. A minor amount of sulfone product...

  8. Source Of Hydrogen Sulfide To Sulfidic Spring And Watershed Ecosystems In Northern Sierra De Chiapas, Mexico Based On Sulfur And Carbon Isotopes

    Science.gov (United States)

    Rosales Lagarde, L.; Boston, P. J.; Campbell, A.

    2013-12-01

    At least four watersheds in northern Sierra de Chiapas, Mexico are fed by conspicuous karst sulfide-rich springs. The toxic hydrogen sulfide (H2S) in these springs nurtures rich ecosystems including especially adapted microorganisms, invertebrates and fish. Sulfur and carbon isotopic analysis of various chemical species in the spring water are integrated within their hydrogeologic context to evaluate the hydrogen sulfide source. Constraining the H2S origin can also increase the understanding of this compound effect in the quality of the nearby hydrocarbon reservoirs, and the extent to which its oxidation to sulfuric acid increases carbonate dissolution and steel corrosion in surface structures. The SO42-/H2S ratio in the spring water varies from 70,000 to 2 meq/L thus sulfate is the dominant species in the groundwater system. This sulfate is mainly produced from anhydrite dissolution based on its isotopic signature. The Δ SO42--H2S range of 16 spring water samples (30-50 ‰) is similar to the values determined by Goldhaber & Kaplan (1975) and Canfield (2001) for low rates of bacterial sulfate reduction suggesting that this is the most important mechanism producing H2S. Although the carbon isotopes do not constrain the nature of the organic matter participating in this reaction, this material likely comes from depth, perhaps as hydrocarbons, due to the apparent stability of the system. The organic matter availability and reactivity probably control the progress of sulfate reduction. The subsurface environments identified in the area also have different sulfur isotopic values. The heavier residual sulfate isotopic value in the Northern brackish springs (δ34S SO42- ≥ 18 ‰) compared to the Southern springs (δ34S SO42- ~18 ‰) suggests sulfate reduction is particularly enhanced in the former, probably by contribution of organic matter associated with oil produced water. In comparison, the composition of the Southern aquifer is mainly influenced by halite

  9. Correlations among factors of sulfide ores in oxidation process at ambient temperature

    Institute of Scientific and Technical Information of China (English)

    吴超; 李孜军; 周勃

    2004-01-01

    Spontaneous combustion is one of the serious problems in the mining of sulfide ore deposits. The relevant factors, e. G. Oxygen absorption quantity, mass increase, contents of water soluble iron ions and sulfate ion of sulfide ore samples in the oxidation process were investigated both in theory and experiment. The results from the investigation show that there is no general interpretation relation among the oxygen absorption quantity, the contents of sulfate ion and water soluble iron ions during the oxidation process of sulfide ores at ambient temperature.However, there is a linear relationship between the mass increase of the sulfide ore samples in the oxidation process at ambient temperature and the quantity of oxygen absorption. Therefore, the simple and cheap mass scaling method is suitable for predicting the oxygen absorption performance of sulfide ores at ambient temperature in place of the expensive and complicated chemical method used hitherto. Furthermore, combined with other items of breeding-fire test, the mass increase potential can also be used to predict the spontaneous combustion tendency of sulfide ores.

  10. Characterization of oxide layers of heat-resisting alloys in oxidizing and oxidizing/sulfidizing atmospheres by deuterium permeation measurement

    International Nuclear Information System (INIS)

    Deuterium permeation measurements are suitable to characterize the integrity of layers, which are preoxidized or in-situ oxidized on high temperature alloys. The permeation through metal alloys with a growing oxidized layer is described by a model with a time dependence of the permeation flux related to the growth of the oxide layer. The behaviour of the layers, which are oxidized at different oxidizing atmospheres, are investigated in this work. By permeation test, parabolic rate constants, impeding factors, as well as permeability, diffusivity and the solubility of deuterium for the oxide layers are obtained. The measurement are continued in sulfidizing atmosphere for testing such layers as corrosion barrier. In correlation with microstructural post examinations it is found that permeation measurement can be utilized as a method for investigating high-temperature corrosion. (orig.)

  11. The oxidation/sulfidation behavior of Fe-Cr-Ni-Nb alloys at elevated temperatures

    International Nuclear Information System (INIS)

    Structural Fe-Cr-Ni alloys may undergo rapid degradation at elevated temperatures unless protective surface oxide scales are formed and maintained. The ability of alloys to resist rapid degradation strongly depends on their Cr content and the chemistry of the exposure environment. Normally, 20% Cr is required for service at temperatures up to 10000C, although the presence of sulfur inhibits formation of a protective surface oxide scale. The oxidation and sulfidation behavior of Fe-Cr-Ni alloys is examined with particular emphasis on the effects of alloy Cr content (12 and 25% Cr) and the addition of a reactive oxide-forming element (1-6% Nb). Niobium is shown to promote protective oxidation behavior on the 12% Cr alloy in oxidizing environments and to suppress sulfidation in mixed oxygen-sulfur-containing environments. The results for isothermal corrosion tests are presented and discussed with reference to published information

  12. Carbon-supported iron and iron-molybdenum sulfide catalysts

    International Nuclear Information System (INIS)

    The main objective was to describe the relations between the characteristics (composition and dispersion) of the actual sulfide phase and the catalytic activity. Attention was also paid to the influence of preparational aspects on these characteristics. The catalysts were characterized using in-situ Moessbauer spectroscopy down to 2.0 K. 254 refs.; 47 figs.; 22 tabs

  13. Environmentally Benign Oxidation of Some Organic Sulfides with 34% Hydrogen Peroxide Catalyzed by Simple Heteropolyoxometalates

    Institute of Scientific and Technical Information of China (English)

    TAYEBEE,Reza; ALIZADEH,Moharnmad Hassan

    2007-01-01

    An environmentally benign oxygenation protocol was developed for selective oxidation of some types of aromatic and aliphatic sulfides in good to excellent yields utilizing 34% hydrogen peroxide catalyzed by simple heteropolyoxometalates in normal drinking water at room temperature. The catalysts could be recovered and reused for at least seven reaction cycles under the described reaction conditions without considerable loss of reactivity. This procedure introduced a new insight into the use of simple heteropolyanions as recoverable catalysts for the oxidation of organic sulfides by an environmentally acceptable protocol.

  14. Ionic liquid-modified metal sulfides/graphene oxide nanocomposites for photoelectric conversion

    Science.gov (United States)

    Zhang, Yu; Zhang, Yù; Pei, Qi; Feng, Ting; Mao, Hui; Zhang, Wei; Wu, Shuyao; Liu, Daliang; Wang, Hongyu; Song, Xi-Ming

    2015-08-01

    Ionic liquid-modified metal sulfides/graphene oxide nanocomposites are prepared via a facile electrostatic adsorption. Ionic liquid (IL) is firstly used as surface modifier and structure-directing agent of metal sulfide (MS) crystallization process, obtaining ionic liquid modified-MS (IL-MS) nanoparticles with positive charges on surface. IL-MS/GO is obtained by electrostatic adherence between positively charged IL-MS and negatively charged graphene oxide (GO). The as-prepared sample shows enhanced photocurrent and highly efficient photocatalytic activity under visible light irradiation, indicating IL-MS/GO nanocomposites greatly promoted the separation of photogenerated electron-hole pairs.

  15. Effect of Sodium Sulfide on Ni-Containing Carbon Monoxide Dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Jian Feng; Paul A. Lindahl

    2004-07-28

    OAK-B135 The structure of the active-site C-cluster in CO dehydrogenase from Carboxythermus hydrogenoformans includes a {mu}{sup 2}-sulfide ion bridged to the Ni and unique Fe, while the same cluster in enzymes from Rhodospirillum rubrum (CODH{sub Rr}) and Moorella thermoacetica (CODH{sub Mt}) lack this ion. This difference was investigated by exploring the effects of sodium sulfide on activity and spectral properties. Sulfide partially inhibited the CO oxidation activity of CODH{sub Rr} and generated a lag prior to steady-state. CODH{sub Mt} was inhibited similarly but without a lag. Adding sulfide to CODH{sub Mt} in the C{sub red1} state caused the g{sub av} = 1.82 EPR signal to decline and new features to appear, including one with g = 1.95, 1.85 and (1.70 or 1.62). Removing sulfide caused the g{sub av} = 1.82 signal to reappear and activity to recover. Sulfide did not affect the g{sub av} = 1.86 signal from the C{sub red2} state. A model was developed in which sulfide binds reversibly to C{sub red1}, inhibiting catalysis. Reducing this adduct causes sulfide to dissociate, C{sub red2} to develop, and activity to recover. Using this model, apparent K{sub I} values are 40 {+-} 10 nM for CODH{sub Rr} and 60 {+-} 30 {micro}M for CODH{sub Mt}. Effects of sulfide are analogous to those of other anions, including the substrate hydroxyl group, suggesting that these ions also bridge the Ni and unique Fe. This proposed arrangement raises the possibility that CO binding labilizes the bridging hydroxyl and increases its nucleophilic tendency towards attacking Ni-bound carbonyl.

  16. Sulfidation and oxidation of stainless steel in coal combustion flue gases

    International Nuclear Information System (INIS)

    Coal fired thermal power plants face serious challenges due to high temperature corrosion of structural materials by oxidation, sulfidation and ash corrosion. The present work is an attempt for corrosion study of stainless steel during the combustion of coal for a length of time. The composition of coal was determined by CHNS-O elemental analyzer and the coal that contained about 50% carbon were selected for corrosion studies of 304-S.S i.e. from Chakwal, Jhelum and Mianwali. The sulfur content of these coals varied from 4 ∼ 8%. In the experiment, ash was prepared from coal in open stainless steel container under excessive oxidation condition. The sulfur content in ash was found to be in the range of 1 ∼ 3% by XRF analysis. 304-S.S samples were engulfed in the ash bed which was placed in porcelain crucible. These samples were kept at 650 degree C for 400 hours. The change in weight after every 100 hour was measured. It was found that coal of Jhelum showed minimum weight change per unit area. The corrosion rate has been calculated 0.3153mpy and proved to be best coal from least material degradation point of view. The film comprised mainly of iron oxide product as detected by XRD analysis. Second experiment was also performed in a sealed S.S container to study the high temperature corrosion behavior of 304-S.S under sulfur content of about 4.76%. In the experiment calculated amount of sulfur was added into ash before sealing of container and kept in Muffle furnace at 650 degree C for 240 hours. The S.S samples exposed to ash with corrosive SO3 gas were studied by XRD which showed iron oxide as well as iron sulfide peaks. Formation of film by corrosion has been observed from SEM micrographs and corrosion rate has been calculated from the film thickness. It was found corrosion rate of 304-S.S is minimum i.e. 5mpy when ash of Jhelum's coal was fired and maximum corrosion rate of 34mpy was found for Chakwal's coal ash. The ash content of these coal samples was also

  17. Formation of iron sulfide nodules during anaerobic oxidation

    OpenAIRE

    van Dongen, B. E.; Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, Cantock’s Close, Bristol University, Bristol BS8 1TS, United Kingdom; Roberts, A. P.; National Oceanography Centre, University of Southampton, Southampton, UK.; Schouten, S.; Department of Marine Biogeochemistry, Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands; Jiang, W-T; Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan, PR China; Florindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Pancost, R. D.; Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, Cantock’s Close, Bristol University, Bristol BS8 1TS, United Kingdom

    2007-01-01

    The biomarker compositions of iron sulfide nodules (ISNs; upper Pliocene Valle Ricca section near Rome, Italy) that contain the ferrimagnetic mineral greigite (Fe3S4) were examined. In addition to the presence of specific terrestrial and marine biomarkers, consistent with formation in coastal marine sediments, these ISNs contain compounds thought to originate from sulfate reducing bacteria (SRB). These compounds include a variety of low-molecular-weight and branched alkanols and seve...

  18. Iron-Sulfide-Associated Products Formed during Reductive Dechlorination of Carbon Tetrachloride.

    Science.gov (United States)

    Lan, Ying; Butler, Elizabeth C

    2016-06-01

    This paper investigated the mackinawite (FeS)-associated products formed during reaction between FeS and carbon tetrachloride (CT) at pH 7 and 8. At pH 8, reaction of FeS with CT led to formation of abundant spherical particles with diameters between 50 and 400 nm on the FeS surface and in solution; far fewer such particles were observed at pH 7. Analysis of the FeS surface by energy dispersive X-ray spectroscopy after reaction with CT at pH 8 showed decreased sulfur and elevated oxygen compared to unreacted FeS. The spherical particles that formed upon FeS reaction with CT were mostly amorphous with localized areas of poorly crystalline two-line ferrihydrite. X-ray photoelectron spectroscopy indicated that the predominant Fe surface species after reaction with CT at pH 8 was Fe(III)-O, consistent with ferrihydrite and other amorphous iron (hydr)oxides as major products. Powder X-ray diffraction analysis suggested formation of greigite upon reaction of FeS with CT at pH 7. Both ferrihydrite and Fe(2+), which is a product of greigite dissolution, can react with dissolved HS(-) to form FeS, suggesting that, after oxidation by chlorinated aliphatics, FeS can be regenerated by addition or microbial generation of sulfide. PMID:27138348

  19. Transition-Metal-Free Highly Efficient Aerobic Oxidation of Sulfides to Sulfoxides under Mild Conditions

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2009-12-01

    Full Text Available A highly efficient transition-metal-free catalytic system Br2/NaNO2/H2O has been developed for a robust and economic acid-free aerobic oxidation of sulfides. It is noteworthy that the sulfide function reacts under mild conditions without over-oxidation to sulfone. The role of NaNO2as an efficient NO equivalent for the activation of molecular oxygen was identified. Under the optimal conditions, a broad range of sulfide substrates were converted into their corresponding sulfoxides in high yields by molecular oxygen. The present catalytic system utilizes cheap and readily available agents as the catalysts, exhibits high selectivity for sulfoxide products and releases only innocuous water as the by-products.

  20. Magnetite-sulfide chondrules and nodules in CK carbonaceous chondrites - Implications for the timing of CK oxidation

    Science.gov (United States)

    Rubin, Alan E.

    1993-01-01

    CK carbonaceous chondrites contain rare (about 0.1 vol pct) magnetite-sulfide chondrules that range from about 240 to 500 microns in apparent diameter and have ellipsoidal to spheroidal morphologies, granular textures, and concentric layering. They resemble the magnetite-sulfide nodules occurring inside mafic silicate chondrules in CK chondrites. It seems likely that the magnetite-sulfide chondrules constitute the subset of magnetite-sulfide nodules that escaped as immiscible droplets from their molten silicate chondrule hosts during chondrule formation. The intactness of the magnetite-sulfide chondrules and nodules implies that oxidation of CK metal occurred before agglomeration. Hence, the pervasive silicate darkening of CK chondrites was caused by the shock mobilization of magnetite and sulfide, not metallic Fe-Ni and sulfide as in shock-darkened ordinary chondrites.

  1. Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell

    DEFF Research Database (Denmark)

    Zong, Xu; Chen, Hongjun; Seger, Brian;

    2014-01-01

    A solar-to-chemical conversion process is demonstrated using a photoelectrochemical cell without external bias for selective oxidation of hydrogen sulfide (H2S) to produce hydrogen peroxide (H2O2) and sulfur (S). The process integrates two redox couples anthraquinone/anthrahydroquinone and I−/I3......−, and conceptually illustrates the remediation of a waste product for producing valuable chemicals....

  2. Release of dissolved cadmium and sulfur nanoparticles from oxidizing sulfide minerals

    Science.gov (United States)

    Cadmium enrichment (relative to Fe and Zn) in paddy rice grain occurs during the pre-harvest drainage of flooded soil, which causes oxidative dissolution of sulfide minerals present in reduced soil. We investigated this process over a range of environmentally realistic Cdcontain...

  3. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    International Nuclear Information System (INIS)

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H2S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H2S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H2S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H2 and CO2 on H2S adsorption was also investigated. The presence of hydrogen in the H2S stream had a positive effect on the removal of H2S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn2+) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO2) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H2S and CO2.

  4. Selective detection of hydrogen sulfide using copper oxide-doped tin oxide based thick film sensor array

    International Nuclear Information System (INIS)

    In this work, copper oxide-doped (1, 3 and 5 wt%) tin oxide powders have been synthesised by sol–gel method and thick film sensor array has been developed by screen printing technique for the detection of H2S gas. Powder X-ray diffraction pattern shows that the tin oxide (SnO2) doped with 3 wt% copper oxide (CuO) has smaller crystallite size in comparison to 0, 1 and 5 wt% CuO-doped SnO2. Furthermore, field emission scanning electron microscopy manifests the formation of porous film consisting of loosely interconnected small crystallites. The effect of various amounts of CuO dopant has been studied on the sensing properties of sensor array with respect to hydrogen sulfide (H2S) gas. It is found that the SnO2 doped with 3 wt% CuO is extremely sensitive (82%) to H2S gas at 150 °C, while it is almost insensitive to many other gases, i.e., hydrogen (H2), carbon monoxide (CO), sulphur dioxide (SO2) and liquefied petroleum gas (LPG). Moreover, at low concentration of gas, it shows fast recovery as compared to response time. Such high performance of 3 wt% CuO-doped SnO2 thick film sensor is probably due to the diminishing of the p–n junction and the smallest crystallite size (11 nm) along with porous structure. - Highlights: • Thick film sensor array has been developed by screen printing technique. • SnO2 doped with 3 wt% CuO is extremely sensitive (82%) to H2S gas at 150 °C. • Above sensor shows high performance due to diminishing of the p–n junction. • All sensors have switching like characteristics at low concentration of H2S

  5. One-Electron Oxidation of Hydrogen Sulfide by a Stable Oxidant: Hexachloroiridate(IV).

    Science.gov (United States)

    Hu, Ying; Stanbury, David M

    2016-08-01

    Detailed reports on the oxidation of aqueous H2S by mild one-electron oxidants are lacking, presumably because of the susceptibility of these reactions to trace metal-ion catalysis and the formation of turbid sulfur sols. Here we report on the reaction of [IrCl6](2-) with H2S in acetate buffers. Dipicolinic acid (dipic) is shown to be effective in suppressing metal-ion catalysis. In the presence of dipic the reaction produces [IrCl6](3-) and polysulfides; turbidity develops primarily after the Ir(IV) oxidant is consumed. Water-soluble phosphines are shown to prevent the development of turbidity; in the case of tris-hydroxymethylphosphine (THMP) the product is the corresponding sulfide, THMP═S. THMP diminishes the rates of reduction of Ir(IV), and the rate law with sufficient THMP is first order in [Ir(IV)] and first order in [HS(-)]. The rate-limiting step is inferred to be electron transfer from HS(-) to Ir(IV) with ket = 2.9 × 10(4) M(-1) s(-1) at 25.0 °C and μ = 0.1 M. The kinetic inhibition by THMP is attributed to its interception of a polysulfide chain elongation process. PMID:27410173

  6. Pyrolytically grown indium sulfide sensitized zinc oxide nanowires for solar water splitting

    International Nuclear Information System (INIS)

    Zinc oxide (ZnO) nanowires, sensitized with spray pyrolyzed indium sulfide, were obtained by chemical bath deposition. The XRD analysis indicated dominant evolution of hexagonal ZnO phase. Significant gain in photoelectrochemical current using ZnO nanowires is largely accountable to enhancement of the visible light absorption and the formation of heterostructure. The maximum photoconversion efficiency of 2.77% was calculated for the indium sulfide sensitized ZnO nanowire photoelectrodes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Pyrolytically grown indium sulfide sensitized zinc oxide nanowires for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Komurcu, Pelin; Can, Emre Kaan; Aydin, Erkan; Semiz, Levent [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Gurol, Alp Eren; Alkan, Fatma Merve [Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Sankir, Mehmet; Sankir, Nurdan Demirci [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey)

    2015-11-15

    Zinc oxide (ZnO) nanowires, sensitized with spray pyrolyzed indium sulfide, were obtained by chemical bath deposition. The XRD analysis indicated dominant evolution of hexagonal ZnO phase. Significant gain in photoelectrochemical current using ZnO nanowires is largely accountable to enhancement of the visible light absorption and the formation of heterostructure. The maximum photoconversion efficiency of 2.77% was calculated for the indium sulfide sensitized ZnO nanowire photoelectrodes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Effect of pre-oxidation on high temperature sulfidation behavior of FeCr and FeCrAl alloys

    Directory of Open Access Journals (Sweden)

    Pillis Marina Fuser

    2004-01-01

    Full Text Available High temperature corrosion of structural alloys in sulfur bearing environments is many orders of magnitude higher than in oxidizing environments. Efforts to increase sulfidation resistance of these alloys include addition of alloying elements. Aluminum additions to iron-chromium alloys bring about increase in sulfidation resistance. This paper reports the effect of pre-oxidation on the sulfidation behavior of Fe-20Cr and Fe-20Cr-5Al alloys in H2-2% H2S environment at 800 °C. The surfaces of sulfidized specimens were also examined. Pre-oxidation of the two alloys results in an incubation period during subsequent sulfidation. After this incubation period, the Fe-20Cr alloy showed sulfidation behavior similar to that when the alloy was not pre-oxidized. The incubation period during sulfidation of the Fe-20Cr-5Al alloy was significantly longer, over 45 h, compared to 2 h for the Al free alloy. Based on the microscopic and gravimetric data a mechanism for sulfidation of these alloys with pre-oxidation has been proposed.

  9. Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1.

    Science.gov (United States)

    Wakai, Satoshi; Kikumoto, Mei; Kanao, Tadayoshi; Kamimura, Kazuo

    2004-12-01

    The effects of cyanide, azide, and 2-n-Heptyl-4-hydroxy-quinoline-N-oxide (HQNO) on the oxidation of ferrous ion or elemental sulfur with Acidithiobacillus ferrooxidans NASF-1 cells grown in iron- or sulfur-medium were examined. The iron oxidation of both iron- and sulfur-grown cells was strongly inhibited by cyanide and azide, but not by HQNO. Sulfur oxidation was relatively resistant to cyanide and azide, and inhibited by HQNO. Higher sulfide oxidation, ubiquinol dehydrogenase activity, and sulfide:quinone oxidoreductase (SQR) activity were observed in sulfur-grown cells more than in iron-grown cells. Sulfide oxidation in the presence of ubiquinone with the membrane fraction was inhibited by HQNO, but not by cyanide, azide, antimycin A, and myxothiazol. The transcription of three genes, encoding an aa(3)-type cytochrome c oxidase (coxB), a bd-type ubiquinol oxidase (cydA), and an sqr, were measured by real-time reverse transcription polymerase chain reaction. The transcriptional levels of coxB and cydA genes were similar in sulfur- and iron-grown cells, but that of sqr was 3-fold higher in sulfur-grown cells than in iron-grown cells. A model is proposed for the oxidation of reduced inorganic sulfur compounds in A. ferrooxidans NASF-1 cells. PMID:15618623

  10. Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide

    Directory of Open Access Journals (Sweden)

    Jack N. Blandy

    2015-04-01

    Full Text Available Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides.

  11. THE SULFIDATION/OXIDATION RESISTANCE OF TWO Ni-Cr-Al-Y ALLOYS AT 700℃

    Institute of Scientific and Technical Information of China (English)

    Y.X.Lu; W.X.Chen; R.Eadie

    2004-01-01

    The high temperature corrosion resistance of Ni-25.gCr-13.5Al-1.2Y-0.6Si and Ni-10.2Co-12.4 Cr-16.0A l-0.5 Y-0.2Hf alloys was assessed in sulfidation/oxidation environments.In the environment with a sulfur partial pressure of 1Pa.and an oxygen partial pressure of 10-19Pa,both these alloys exhibited three distinct stages in the weight gain-time curve when tested at 700℃.In the initial stage,selective sulfidation of Cr suppressed the formation of the other metal sulfides,resulting in lower weight gains.In the transient stage,breakdown and cracking of Cr sulfides and insufficient concentration of Cr at the outer zone led to the rapid formation of Ni sulfides and a rapid increase in weight.In the steady-state stage,corrosion was controlled by the diffusion of anions and/or cations,which led to a parabolic rate law.

  12. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments

    DEFF Research Database (Denmark)

    Schippers, A.; Jørgensen, BB

    2002-01-01

    Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments, They may be buried in the sediment or oxidized by O-2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3-...

  13. Ionic liquid-modified metal sulfides/graphene oxide nanocomposites for photoelectric conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Zhang, Yù; Pei, Qi; Feng, Ting; Mao, Hui; Zhang, Wei; Wu, Shuyao; Liu, Daliang; Wang, Hongyu; Song, Xi-Ming, E-mail: songlab@lnu.edu.cn

    2015-08-15

    Graphical abstract: - Highlights: • Metal sulfide (CdS, ZnS, Ag{sub 2}S)/GO nanocomposites were prepared by electrostatic adherence. • Ionic liquid was used to link the metal sulfide and GO in the electrostatic adherence process. • The as-prepared samples showed enhanced photocurrent and highly efficient photocatalytic activity under visible light irradiation. - Abstract: Ionic liquid-modified metal sulfides/graphene oxide nanocomposites are prepared via a facile electrostatic adsorption. Ionic liquid (IL) is firstly used as surface modifier and structure-directing agent of metal sulfide (MS) crystallization process, obtaining ionic liquid modified-MS (IL-MS) nanoparticles with positive charges on surface. IL-MS/GO is obtained by electrostatic adherence between positively charged IL-MS and negatively charged graphene oxide (GO). The as-prepared sample shows enhanced photocurrent and highly efficient photocatalytic activity under visible light irradiation, indicating IL-MS/GO nanocomposites greatly promoted the separation of photogenerated electron–hole pairs.

  14. Ionic liquid-modified metal sulfides/graphene oxide nanocomposites for photoelectric conversion

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Metal sulfide (CdS, ZnS, Ag2S)/GO nanocomposites were prepared by electrostatic adherence. • Ionic liquid was used to link the metal sulfide and GO in the electrostatic adherence process. • The as-prepared samples showed enhanced photocurrent and highly efficient photocatalytic activity under visible light irradiation. - Abstract: Ionic liquid-modified metal sulfides/graphene oxide nanocomposites are prepared via a facile electrostatic adsorption. Ionic liquid (IL) is firstly used as surface modifier and structure-directing agent of metal sulfide (MS) crystallization process, obtaining ionic liquid modified-MS (IL-MS) nanoparticles with positive charges on surface. IL-MS/GO is obtained by electrostatic adherence between positively charged IL-MS and negatively charged graphene oxide (GO). The as-prepared sample shows enhanced photocurrent and highly efficient photocatalytic activity under visible light irradiation, indicating IL-MS/GO nanocomposites greatly promoted the separation of photogenerated electron–hole pairs

  15. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    Science.gov (United States)

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  16. Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light.

    Science.gov (United States)

    Pawar, Rajendra C; Khare, Varsha; Lee, Caroline Sunyong

    2014-09-01

    Graphitic carbon nitride (g-C3N4) was hybridized with CdS nanoparticles and reduced graphene oxide (RGO) sheets using a facile chemical method, for the application of catalytic photodegradation of Rhodamine B and Congo red dyes under irradiation with UV and visible light. Fourier-transform infrared (FTIR) spectroscopy and X-ray photoemission spectroscopy (XPS) analyses confirmed the formation of pure g-C3N4, as well as g-C3N4/CdS, g-C3N4/RGO, and g-C3N4/CdS/RGO composites. The large surface area of the g-C3N4/CdS/RGO composite (70.42 m(2) g(-1)) resulted in rapid dye adsorption onto the surface of the photocatalyst, leading to effective photodegradation of organic pollutants. The addition of CdS and RGO increased the photocatalytic activity of g-C3N4 by a factor of approximately twenty compared with that of the commercially available TiO2 catalyst under visible light, and the g-C3N4/CdS/RGO composite was found to significantly enhance the catalytic effect compared with pure g-C3N4 and with the g-C3N4/CdS and g-C3N4/RGO composites. The superior photocatalytic activity of the g-C3N4/CdS/RGO composite is attributed to enhanced separation of the photogenerated electron-hole pairs, as well as increased visible-light absorption. The improved transport of photoelectrons was consistent with the results of transient photocurrent measurements. Therefore, g-C3N4/CdS/RGO composites using a facile method are applicable to the development of high-efficiency photocatalytic devices for industrial applications. PMID:25001639

  17. Effect of sulfide inclusion shape control on the impact energy of Ca, REM treated low carbon Ni-Cr-Mo steel

    International Nuclear Information System (INIS)

    High strength low carbon 3.5Ni-1.5Cr-0.38Mo steel containing 0.006% S was melted in the vacuum induction furnace. REM and/or CaSi were added into the melt to control the shape of sulfide inclusions. The specimens were taken in the longitudinal and transverse to the hot rolling direction and then heat treated. The effect of the sulfide inclusion shape control on the property anisotropy such as the impact absorption energy and the ductile-to-brittle fracture transition temperature were studied. Deoxydizing by a aluminum prior to the REM and/or Ca treatment refined the grain, and besides the sulfide or the oxide, complex oxysulfide inclusions are detected among the non-metallic inclusions after the shape control that diminished the inclusion shape factor, Isub(C)(L) below 0.1 from 0.6-0.8. If the shape of sulfide inclusion is controlled by the REM and/or Ca treatment, the tensile property anisotropy is diminished since the ratio in the longitudinal and transverse to the rolling direction, T/L value are improved and T/L values of tho impact absorption energy increased from 62.2% to 78.5-89.0% and could decrease the ductile-to-brittle fracture transition temperature by about 10deg-30degC. The shape control of sulfide inclusion did not show any difference, regardless of the REM treatment or Ca treatment. (Author)

  18. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides

    International Nuclear Information System (INIS)

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of ‘rattlers’…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites). (topical review)

  19. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides

    Science.gov (United States)

    Hébert, S.; Berthebaud, D.; Daou, R.; Bréard, Y.; Pelloquin, D.; Guilmeau, E.; Gascoin, F.; Lebedev, O.; Maignan, A.

    2016-01-01

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of ‘rattlers’…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites).

  20. Kinetic model for simultaneous leaching of zinc sulfide and manganese dioxide in the presence of iron-oxidizing bacteria

    OpenAIRE

    KAI, Takami; Suenaga, Yo-ich; Migita, Atsuko; TAKAHASHI, Takeshige

    2000-01-01

    The effect of iron-oxidizing bacteria on the simultaneous leaching of zinc sulfide and manganese dioxide was studied. Some researchers have reported the enhancement of the leaching rate during the simultaneous leaching of metal oxides and metal sulfides. In the present study, we examined the effect of the presence of Thiobacillus ferrooxidans in the simultaneous leaching. We also examined the reaction rates during the simultaneous leaching in the presence of the bacteria in order to study the...

  1. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  2. Mineralogical and chemical assessment of concrete damaged by the oxidation of sulfide-bearing aggregates: Importance of thaumasite formation on reaction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A. [Centre de Recherche sur les Infrastructures en Beton (CRIB), Universite Laval, 1065 ave de la Medecine, Quebec, QC, Canada G1V 0A6 (Canada); Duchesne, J., E-mail: josee.duchesne@ggl.ulaval.ca [Centre de Recherche sur les Infrastructures en Beton (CRIB), Universite Laval, 1065 ave de la Medecine, Quebec, QC, Canada G1V 0A6 (Canada); Fournier, B. [Centre de Recherche sur les Infrastructures en Beton (CRIB), Universite Laval, 1065 ave de la Medecine, Quebec, QC, Canada G1V 0A6 (Canada); Durand, B. [Institut de recherche d' Hydro-Quebec (IREQ), 1740 boul. Lionel-Boulet, Varennes, QC, Canada J3X 1S1 (Canada); Rivard, P. [Universite de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1 (Canada); Shehata, M. [Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada)

    2012-10-15

    Damages in concrete containing sulfide-bearing aggregates were recently observed in the Trois-Rivieres area (Quebec, Canada), characterized by rapid deterioration within 3 to 5 years after construction. A petrographic examination of concrete core samples was carried out using a combination of tools including: stereomicroscopic evaluation, polarized light microscopy, scanning electron microscopy, X-ray diffraction and electron microprobe analysis. The aggregate used to produce concrete was an intrusive igneous rock with different metamorphism degrees and various proportions of sulfide minerals. In the rock, sulfide minerals were often surrounded by a thin layer of carbonate minerals (siderite). Secondary reaction products observed in the damaged concrete include 'rust' mineral forms (e.g. ferric oxyhydroxides such as goethite, limonite (FeO (OH) nH{sub 2}O) and ferrihydrite), gypsum, ettringite and thaumasite. In the presence of water and oxygen, pyrrhotite oxidizes to form iron oxyhydroxides and sulphuric acid. The acid then reacts with the phases of the cement paste/aggregate and provokes the formation of sulfate minerals. Understanding both mechanisms, oxidation and internal sulfate attack, is important to be able to duplicate the damaging reaction in laboratory conditions, thus allowing the development of a performance test for evaluating the potential for deleterious expansion in concrete associated with sulfide-bearing aggregates.

  3. Inhibition of sulfide mineral oxidation by surface coating agents: batch and field studies.

    Science.gov (United States)

    Ji, Min-Kyu; Gee, Eun-Do; Yun, Hyun-Shik; Lee, Woo-Ram; Park, Young-Tae; Khan, Moonis Ali; Jeon, Byong-Hun; Choi, Jaeyoung

    2012-08-30

    The potential of several surface coating agents to inhibit the oxidation of metal sulfide minerals from Young-Dong coal mine and the Il-Gwang gold mine was examined by conducting laboratory scale batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH(2)PO(4), MgO and KMnO(4) as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H(2)O(2) or NaClO). For the observed time period (8 days), Young-Dong coal mine samples exhibited the least sulfate (SO(4)(2-)) production in the presence of KMnO(4) (16%) or cement (4%) while, for Il-Gwang mine samples, the least SO(4)(2-) production was observed in presence of KH(2)PO(4) (8%) or cement (2%) compared to control. Field-scale pilot tests at the Il-Gwang site also showed that addition of KH(2)PO(4) decreased SO(4)(2-) production from 200 to 13 mg L(-1) and it also reduced Cu and Mn from 8 and 3 mg L(-1), respectively to detection limits). The experimental results suggested that the use of surface coating agents is a promising alternative for sulfide oxidation inhibition at acid mine drainage sites. PMID:22727481

  4. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    OpenAIRE

    Whelan, Mary E.; Hilton, Timothy W.; Berry, Joseph A; Berkelhammer, Max; Desai, Ankur R; Campbell, J. Elliott

    2016-01-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil–COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show smal...

  5. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    OpenAIRE

    M. E. Whelan; T. W. Hilton; J. A. Berry; M. Berkelhammer; A. R. Desai; Campbell, J. E.

    2015-01-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil-COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been ...

  6. Sulfide Oxidation in Marine Sedimentary Rocks as a Source of Trace Metals and Sulfate to Urban California Streams

    Science.gov (United States)

    Bardsley, A.; Hammond, D. E.; von Bitner, T.

    2013-12-01

    Watersheds in southern Orange County, CA have received regulatory scrutiny for elevated levels of total dissolved solids (TDS) along with cadmium, nickel, and sulfate as threats to in-stream and marine ecology. Multiple source investigations have failed to attribute these chronic contaminants to anthropogenic sources. Patterns of high TDS in the study region's surface waters correlate poorly with landuse and instead appear to follow geologic substrate. Measurements of springs and seeps reveal groundwater pH as low as 4.8, TDS as high as 8700 mg/L, dissolved concentrations of sulfate up to 50 mM, cadmium up to 1.8 uM, selenium up to 2.4 uM, and nickel up to 14.8 uM flowing directly into creeks. We suggest that subsurface oxidation of sulfide in prevalent Neogene marine sedimentary rock formations is the key weathering mechanism behind this phenomenon. Bulk analysis of the Capistrano and other local formations indicates that they are enriched in select trace metals up to two orders of magnitude relative to average crustal abundance, making them a plausible source of contamination to groundwater, and ultimately, surface water. Though carbonate dissolution in these same formations may offset the acidity at some sites, many groundwater samples were substantially undersaturated in calcite and capable of maintaining low pH and high dissolved metals concentration. While sulfide mineral weathering has been invoked as the cause of significant contamination at former mining sites and undeveloped mineralized regions, our findings indicate this same weathering mechanism may have implications for urbanized catchments that contain marine sedimentary units. Sulfide mineral oxidation can result in substantial sulfate loading, acid production and subsequent mobilization of trace metals and other ions from the surrounding rock matrix, leading to high dissolved contaminant levels. To evaluate water and sulfate sources to these high TDS springs, we measured stable isotopes of water and

  7. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas

    International Nuclear Information System (INIS)

    Highlights: ► Alkaline oxidative scrubbing proved for biogas desulfurization ► Effect of operating conditions on hydrogen sulfide removal efficiency. ► Minimization of caustic and oxidant consumption. ► Process control via pH, redox potential and conductivity measurement. ► Investigation of long-term behavior of pilot plant operation. - Abstract: Reliable and selective removal of hydrogen sulfide (H2S) is an essential part of the biogas upgrading procedure in order to obtain a marketable and competitive natural gas substitute for flexible utilization. A promising biogas desulfurization technology has to ensure high separation efficiency regardless of process conditions or H2S load without the use or production of toxic or ecologically harmful substances. Alkaline oxidative scrubbing is an interesting alternative to existing desulfurization technologies and is investigated in this work. In experiments on a stirred tank reactor and a continuous scrubbing column in laboratory-scale, H2S was absorbed from a gas stream containing large amounts of carbon dioxide (CO2) into an aqueous solution prepared from sodium hydroxide (NaOH), sodium bicarbonate (NaHCO3) and hydrogen peroxide (H2O2). The influence of pH, redox potential and solution aging on the absorption efficiency and the consumption of chemicals was investigated. Because of the irreversible oxidation reactions of dissolved H2S with H2O2, high H2S removal efficiencies were achieved while the CO2 absorption was kept low. At an existing biogas upgrading plant an industrial-scale pilot scrubber was constructed, which efficiently desulfurizes 180 m3/h of raw biogas with an average removal efficiency of 97%, even at relatively high and strongly fluctuating H2S contents in the crude gas.

  8. Thermodynamics of Modifying Effect of Rare Earth Oxide on Inclusions in Hardfaci ng Metal of Medium-High Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    杨庆祥; 赵研辉; 李艳丽; 姚枚

    2002-01-01

    The modifying effect of rare earth (RE) oxide on inclusions in hardfacing metals of medium-high carbon steel was investigated by means of thermodynamics. The t hermodynamic analysis for inclusion formation shows that RE oxide can be redu ced to RE element by carbon, then the RE element can react with oxygen and sulfu r to form the RE oxide, RE sulfide and RE oxide-sulfide in hardfacing molten po ol. The deoxidization and the desulphurization can be carried out and the liquid metal can be purified. In addition, RE oxide can also react with sulfur to form RE oxide-sulfide directly. Therefore, the harmful effect of sulfur can be decr eased.

  9. Thermodynamics of Modifying Effect of Rare Earth Oxide on Inclusions in Hardfacing Metal of Medium—High Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    杨庆祥; 赵研辉; 等

    2002-01-01

    The modifying effect of rare earth(RE)oxide on inclusions in hardfacing metals of medium-high carbon steel was investigated by means of thermodynamics,The thermodynamic analsys for inclusion formation shows that RE oxide can be reduced to RE element by carbon,then the RE element can react with oxygen and sulfur to form the RE oxide,RE sulfide and RE oxide-sulfide in hardfacing molten pool.The deoxidization and the desulphurization can be carried otu and the liquid metal can be purified.In addition,RE oxide can also react with sulfur to form RE oxide-sulfide dirdctly.Therefore,the harmful effect of sulfur can be decreased.

  10. Synthesis of finely divided molybdenum sulfide nanoparticles in propylene carbonate solution

    International Nuclear Information System (INIS)

    Molybdenum sulfide nanoparticles have been prepared from the reflux solution reaction involving ammonium heptamolybdate and elemental sulfur in propylene carbonate. Addition to the reaction mixture of starch as a natural capping agent leads to lesser agglomeration and smaller size of the particles. Nanoparticles of MoSx (x≈4) of 10–30 nm size are highly divided and form stable colloidal suspensions in organic solvents. Mo K edge EXAFS of the amorphous materials shows rapid exchange of oxygen to sulfur in the molybdenum coordination sphere during the solution reaction. Thermal treatment of the amorphous sulfides MoSx under nitrogen or hydrogen flow at 400 °C allows obtaining mesoporous MoS2 materials with very high pore volume and specific surface area, up to 0.45 cm3/g and 190 m2/g, respectively. The new materials show good potential for the application as unsupported hydrotreating catalysts. - Graphical abstract: Solution reaction in propylene carbonate allows preparing weakly agglomerated molybdenum sulfide with particle size 20 nm and advantageous catalytic properties. - Highlights: • Solution reaction in propylene carbonate yields MoSx particles near 20 nm size. • Addition of starch as capping agent reduces particles size and hinder agglomeration. • EXAFS at Mo K edge shows rapid oxygen to sulfur exchange in the solution. • Thermal treatment leads to MoS2 with very high porosity and surface area

  11. Filamentous sulfide-oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico.

    Science.gov (United States)

    Larkin, J M; Henk, M C

    1996-01-01

    Mats consisting of the large sulfide-oxidizing bacterium, Beggiatoa, were collected from the sediment/water interface at several locations in the Gulf of Mexico. The collection sites were associated with the presence of petroleum hydrocarbons or the microbial breakdown products of the hydrocarbons. The morphologies of the mats varied with the nature of the underlying sediments, and some mats were pigmented either yellow or orange instead of the usual white. At one site, beggiatoas were found that had a diameter of nearly 200 mu m, making them the largest prokaryotic organism known. In filaments with a diameter of over approximately 10 mu m the cytoplasm was restricted to a thin layer immediately underlying the cell membrane, and the majority of the cell consisted of a vacuole with unknown contents. Beggiatoa filaments often rotated as they moved by gliding. Parallel rows of 15 nm diameter pores were found on the surface of the beggiatoas. The pores may have been wound in a spiral fashion around the cell. These pores may be involved in the gliding motility of the bacteria by the motion imparted by the excretion of slime through the pores. Several structures with the typical morphology of prokaryotic cells but lacking a cell wall were found within the vacuolar and cytoplasmic portions of the hollow beggiatoas. Some of these internal "symbionts" ultrastructurally resembled methanotrophic bacteria like those that have been seen in animals taken from vent areas. Other symbionts ultrastructurally resembled autotrophic bacteria with carboxysome-like structures. These internal symbionts may enable the Beggiatoa to grow in different environments on different carbon sources. They also provide important evidence for the endosymbiotic theory of the evolution of internal organelles of eukaryotic organisms. PMID:8820662

  12. Enrichment and cultivation of a sulfide-oxidizing bacteria consortium for its deploying in full-scale biogas desulfurization

    International Nuclear Information System (INIS)

    Operational experiences and strategies to get suitable chemolithoautotrophic sulfide-oxidizing biomass from activated sludge wastewater treatment plant for its deploying in a full-scale biogas desulfurization plant are described. An economic nutrient source was applied to foster microbial selection and rapid growth. Respirometry was implemented on full-scale installations to monitor the ability of the specialized bacteria consortium to oxidize reduced sulfur i.e. H2S. During the deployment in the full-scale desulfurization reactor, intermittent sulfide feed from biogas scrubbing was performed to accelerate the startup the desulfurization process. - Highlights: • A simple method for reaching high amounts of specialized sulfide-oxidizing bacterial consortium from activated sludge was developed. • The full-scale desulfurization process can be continuously monitored by respirometry allowing fast decision making if problems arise. • The dissolved sulfide concentration was estimated with an empirical correlation between measurements of ORP, dissolved oxygen and pH

  13. Microbial Oxidation of Iron Sulfides in Anaerobic Environments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka

    processes in natural anoxic soils is supported by the fact that about 17 % of drinking water wells in Denmark were lately found to be contaminated by NO3- in concentrations exceeding the allowed limit of 50 mgL-1. This study experimentally documented potential for MISON in a range of anoxic aquatic....... MISON was found to count for about 1/3 of the net NO3- reduction in MISON active environments, despite the presence of alternative electron donor, organic carbon. The rate of MISON was found to be dependent on the available reactive surface area of FeSx and on the microorganism involved. The findings...

  14. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    Science.gov (United States)

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-08-24

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation. PMID:22920540

  15. Sulfidation and reduction of zinc titanate and zinc oxide sorbents for injection in gasifier exit ducts

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, K. [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering]|[Kawasaki Heavy Industries Ltd., Akashi, Hyogo (Japan). Technical Inst.; Krueger, C.; Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering; Jl, W.; Higgins, R.J.; Bishop, B.A.; Goldsmith, R.L. [CeraMem Corp., Waltham, MA (United States)

    1995-12-31

    The sulfidation reaction kinetics of fine particles of zinc titanate and zinc oxide with H{sub 2}S were studied in order to test the potential of the sorbent injection hot-gas desulfurization process. Fine sorbent particles with diameter between 0.3 and 60 {mu}m were sulfided with H{sub 2}S and/or reduced with H{sub 2} in a laminar flow reactor over the temperature range of 500-900{degrees}C. Sulfidation/reduction conversion was compared for different particle sizes and sorbents with various porosities and atomic ratios of Zn and Ti. In reduction of ZnO with H{sub 2} and without H{sub 2}S, significant amount of Zn was formed and vaporized, while the presence of H{sub 2}S suppressed elemental Zn formation. This suggests that H{sub 2}S may suppress the surface reduction of ZnO and/or gaseous Zn may react with H{sub 2}S homogeneously and form fine particles of ZnS. Formation and vaporization of elemental Zn from zinc titanate sorbents was slower than from zinc oxide with and without H{sub 2}S.

  16. Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms

    Directory of Open Access Journals (Sweden)

    Vacek TP

    2015-02-01

    Full Text Available Thomas P Vacek, Shahnaz Rehman, Diana Neamtu, Shipeng Yu, Srikanth Givimani, Suresh C Tyagi Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA Abstract: Atherosclerosis is an inflammatory process that involves activation of matrix metalloproteinases (MMPs; MMPs degrade collagen and allow for smooth-muscle cell migration within a vessel. Moreover, this begets an accumulation of other cellular material, resulting in occlusion of the vessel and ischemic events to tissues in need of nutrients. Homocysteine has been shown to activate MMPs via an increase in oxidative stress and acting as a signaling molecule on receptors like the peroxisome proliferator activated receptor- and N-methyl-d-aspartate receptor. Nitric oxide has been shown to be beneficial in some cases of deactivating MMPs. However, in other cases, it has been shown to be harmful. Further studies are warranted on the scenarios that are beneficial versus destructive. Hydrogen sulfide (H2S has been shown to decrease MMP activities in all cases in the literature by acting as an antioxidant and vasodilator. Various MMP-knockout and gene-silencing models have been used to determine the function of the many different MMPs. This has allowed us to discern the role that each MMP has in promoting or alleviating pathological conditions. Furthermore, there has been some study into the MMP polymorphisms that exist in the population. The purpose of this review is to examine the role of MMPs and their polymorphisms on the development of atherosclerosis, with emphasis placed on pathways that involve nitric oxide, hydrogen sulfide, and homocysteine. Keywords: homocysteine, matrix metalloproteinases, oxidative stress, bone remodeling, collagen cross-linking, hydrogen sulfide, nitric oxide

  17. Identification of bacteria potentially responsible for oxic and anoxic sulfide oxidation in biofilters of a recirculating mariculture system.

    Science.gov (United States)

    Cytryn, Eddie; van Rijn, Jaap; Schramm, Andreas; Gieseke, Armin; de Beer, Dirk; Minz, Dror

    2005-10-01

    Bacteria presumably involved in oxygen- or nitrate-dependent sulfide oxidation in the biofilters of a recirculating marine aquaculture system were identified using a new application of reverse transcription-PCR denaturing gradient gel electrophoresis (DGGE) analysis termed differential-transcription (DT)-DGGE. Biofilter samples were incubated in various concentrations of sulfide or thiosulfate (0 to 5 mM) with either oxygen or nitrate as the sole electron acceptor. Before and after short-term incubations (10 to 20 h), total DNA and RNA were extracted, and a 550-bp fragment of the 16S rRNA genes was PCR amplified either directly or after reverse transcription. DGGE analysis of DNA showed no significant change of the original microbial consortia upon incubation. In contrast, DGGE of cDNA revealed several phylotypes whose relative band intensities markedly increased or decreased in response to certain incubation conditions, indicating enhanced or suppressed rRNA transcription and thus implying metabolic activity under these conditions. Specifically, species of the gammaproteobacterial genus Thiomicrospira and phylotypes related to symbiotic sulfide oxidizers could be linked to oxygen-dependent sulfide oxidation, while members of the Rhodobacteraceae (genera Roseobacter, Rhodobacter, and Rhodobium) were putatively active in anoxic, nitrate-dependent sulfide oxidation. For all these organisms, the physiology of their closest cultured relatives matches their DT-DGGE-inferred function. In addition, higher band intensities following exposure to 5 mM sulfide and nitrate were observed for Thauera-, Hydrogenophaga-, and Dethiosulfovibrio-like phylotypes. For these genera, nitrate-dependent sulfide oxidation has not been documented previously and therefore DT-DGGE might indicate a higher relative tolerance to high sulfide concentrations than that of other community members. We anticipate that DT-DGGE will be of general use in tracing functionally equivalent yet

  18. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: A field evaluation

    Science.gov (United States)

    Nason, Peter; Johnson, Raymond H.; Neuschutz, Clara; Alakangas, Lena; Ohlander, Bjorn

    2014-01-01

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2 m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6 m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3 m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.

  19. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    Science.gov (United States)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  20. Sorption of noble gases by solids, with reference to meteorites. II - Chromite and carbon. III - Sulfides, spinels, and other substances; on the origin of planetary gases

    Science.gov (United States)

    Yang, J.; Anders, E.

    1982-06-01

    The trapping of noble gases by chromite and carbon, two putative carriers of primordial noble gases in meteorites, was studied by synthesizing 19 samples in a Ne-Ar-Kr-Xe atmosphere at 440-720 K. Noble gas contents are found to approximately obey Henry's Law, but only slight correlations are found with composition, surface area, or adsorption temperature. Geometric mean distribution coefficients for bulk samples and HCl residues in 10 cu cm STP/g atm are: Xe 100, Kr 15, Ar 3.5, and Ne 0.62. Elemental fractionation data support the suggestion of Lewis et al. (1977) that chromite and carbon in C2 and C3 chondrites were formed by the reaction: Fe, Cr + 4CO yields (Fe, Cr)3O4 + 4C + carbides. In contrast to meteoritic minerals, the synthetic specimens show no isotopic fractionation of noble gases. In a subsequent study, attention is given to the cases of sulfides and spinels, on the way to consideration of the origin of planetary gases. Sulfides showed three distinctive trends relative to chromite or magnetite. The elemental fractionation pattern of Ar, Kr and Xe in meteorites, terrestrial rocks and planets resembles the adsorption patterns on the carbons, spinels, sulfides, and other solids studied. The high release temperature of meteoritic noble gases may be explained by transformation of the physisorbed or chemisorbed gas. The ready loss of meteoritic heavy gases on surficial oxidation is consistent with adsorption, as is the high abundance.

  1. Photodegradation of dimethyl sulfide (DMS) in natural waters: laboratory assessment of the nitrate-photolysis-induced DMS oxidation.

    Science.gov (United States)

    Bouillon, René-Christian; Miller, William L

    2005-12-15

    The interaction of sunlight and dissolved chromophoric matter produces reactive chemical species that are significant in the removal of dimethyl sulfide (DMS) in the surface ocean. Using artificial solar radiation, we examined the role of several inorganic components of seawater on the kinetics of NO3- -photolysis-induced DMS removal in aqueous solution. This study strongly suggests that NO3- photolysis products react significantly with DMS in aqueous solution possibly via an electrophilic attack on the electron-rich sulfur atom. This supports previous field observations that indicate that NO3- photolysis has a substantial control on DMS photochemistry in nutrient-rich waters. A key finding of this research is that the oxidation rate of DMS induced by NO3- photolysis is dramatically enhanced in the presence of bromide ion. Moreover, our results suggest that bicarbonate/carbonate ions are involved in free radical production/scavenging processes important for DMS photochemistry. These reactions are pH dependent. We propose that DMS removal by some selective free radicals derived from bromide and bicarbonate/carbonate ion oxidation is a potentially important and previously unrecognized pathway for DMS photodegradation in marine waters. PMID:16475324

  2. Identification of Bacteria Potentially Responsible for Oxic and Anoxic Sulfide Oxidation in Biofilters of a Recirculating Mariculture System

    OpenAIRE

    Cytryn, Eddie; van Rijn, Jaap; Schramm, Andreas; Gieseke, Armin; Beer, Dirk de; Minz, Dror

    2005-01-01

    Bacteria presumably involved in oxygen- or nitrate-dependent sulfide oxidation in the biofilters of a recirculating marine aquaculture system were identified using a new application of reverse transcription-PCR denaturing gradient gel electrophoresis (DGGE) analysis termed differential-transcription (DT)-DGGE. Biofilter samples were incubated in various concentrations of sulfide or thiosulfate (0 to 5 mM) with either oxygen or nitrate as the sole electron acceptor. Before and after short-term...

  3. Oxidation study of the synthetic sulfides molybdenite (MoS2) and covellite (CuS) by acidithiobacillus ferrooxidants using respirometric experiments

    International Nuclear Information System (INIS)

    This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe3+ did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations. (author)

  4. Highly Efficient Biomimetic Oxidation of Sulfide to Sulfone by Hydrogen Peroxide in the Presence of Manganese meso-Tetraphenylporphyrin

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Xian-Tai; JI,Hong-Bing; YUAN,Qiu-Lan; XU,Jian-Chang; PEI,Li-Xia; WANG,Le-Fu

    2008-01-01

    Low amount of manganese meso-tetraphenyl porphyrin [Mn(TPP)] was used for highly efficient selective oxidation of sulfide to sulfone by hydrogen peroxide at room temperature.Sulfones were produced directly with yields generally around 90% while the catalyst concentration was only 4 ×10-5 mol·L-1.In a large-scale experiment of thioanisole oxidation,the isolated yield of sulfone (87%) was obtained and the turnover number (TON) reached up to 8×106,which is the highest TON for the oxidation systems of sulfide to sulfone catalyzed by metalloporphyrins.

  5. First-principles search for n -type oxide, nitride, and sulfide thermoelectrics

    Science.gov (United States)

    Garrity, Kevin F.

    2016-07-01

    Oxides have many potentially desirable characteristics for thermoelectric applications, including low cost and stability at high temperatures, but thus far there are few known high z T n -type oxide thermoelectrics. In this work, we use high-throughput first-principles calculations to screen transition metal oxides, nitrides, and sulfides for candidate materials with high power factors and low thermal conductivity. We find a variety of promising materials, and we investigate these materials in detail in order to understand the mechanisms that cause them to have high power factors. These materials all combine a high density of states near the Fermi level with dispersive bands, reducing the trade-off between the Seebeck coefficient and the electrical conductivity, but they do so for several different reasons. In addition, our calculations indicate that many of our candidate materials have low thermal conductivity.

  6. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D F; Thompson, D N; Noah, K S

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  7. Influence of Biofield Treatment on Physical and Structural Characteristics of Barium Oxide and Zinc Sulfide

    OpenAIRE

    Mahendra Kumar Trivedi, Alice Branton

    2015-01-01

    Barium oxide (BaO) and zinc sulfide (ZnS) are well known for their applications in electrical, optical and chemical industries. The present study was aimed to evaluate the impact of biofield treatment on the structural and physical properties of BaO and ZnS powder. The study was carried out in two groups, one was set to control, and another group was subjected to Mr. Trivedi’s biofield treatment. Control and treated samples of BaO and ZnS were analyzed using X-ray diffraction (XRD), Fourier t...

  8. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    Science.gov (United States)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  9. Sulfide-oxidizing bacteria establishment in an innovative microaerobic reactor with an internal silicone membrane for sulfur recovery from wastewater.

    Science.gov (United States)

    Valdés, F; Camiloti, P R; Rodriguez, R P; Delforno, T P; Carrillo-Reyes, J; Zaiat, M; Jeison, D

    2016-06-01

    A novel bioreactor, employing a silicone membrane for microaeration, was studied for partial sulfide oxidation to elemental sulfur. The objective of this study was to assess the feasibility of using an internal silicone membrane reactor (ISMR) to treat dissolved sulfide and to characterize its microbial community. The ISMR is an effective system to eliminate sulfide produced in anaerobic reactors. Sulfide removal efficiencies reached 96 % in a combined anaerobic/microaerobic reactor and significant sulfate production did not occur. The oxygen transfer was strongly influenced by air pressure and flow. Pyrosequencing analysis indicated various sulfide-oxidizing bacteria (SOB) affiliated to the species Acidithiobacillus thiooxidans, Sulfuricurvum kujiense and Pseudomonas stutzeri attached to the membrane and also indicated similarity between the biomass deposited on the membrane wall and the biomass drawn from the material support, supported the establishment of SOB in an anaerobic sludge under microaerobic conditions. Furthermore, these results showed that the reactor configuration can develop SOB under microaerobic conditions and can improve and reestablish the sulfide conversion to elemental sulfur. PMID:27003697

  10. Sulfidation of rock-salt-type transition metal oxide nanoparticles as an example of a solid state reaction in colloidal nanoparticles.

    Science.gov (United States)

    Chen, Chih-Jung; Chiang, Ray-Kuang

    2011-01-28

    The sulfidation of colloidal rock-salt-type MO (M = Fe, Mn and Co) nanocrystals was performed in organic solvents using dissolved elemental sulfur at moderate temperatures. The vacancy defects in these rock-salt-type structures clearly promote complete oxide-sulfide conversion. The conversion products were hollow metal sulfide (pyrrhotite (Fe(1-x)S), Co(1-x)S and α-MnS) nanoparticles. These conversions by sulfidation proceed rapidly, making difficult the isolation of intermediates. The sulfidation intermediates, when the supply of sulfur was insufficient, had interesting structures, in which the metal oxide cores were surrounded by metal sulfide shells or had surfaces that were decorated with metal sulfide islands. Based on the above results, a mechanism of surface nucleation, shell formation, and void formation by diffusion processes is proposed. PMID:21140007

  11. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    Science.gov (United States)

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  12. Current oscillations during the electrochemical oxidation of sulfide in the presence of an external resistor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electrochemical oxidation of sulfide on a polycrystalline platinum electrode was studied under potentiostatic condition when an external resistor is in series with the working electrode. Only two os- cillatory regions can be obtained in the absence of the external resistance, but four oscillatory regions, including two new current oscillations, were found in this system by controlling the external resistance. It is demonstrated that three oscillatory regimes, which arise on the positive branch of current-potential curve, can be classified as HN-NDR (Hidden N-shaped Negative Differential Resistance) oscillators. For the first oscillatory region, various transient complex phenomena, which result from the change of the electrode/electrolyte interface by accumulation of adsorbed element sulfur on the electrode, have been observed. The dynamic behavior of NDR (Negative Differential Resistance) oscillations, appearing along with negative branch of polarization curve, can transform from oscillations into bistability with a sufficient large external resistance in series. Two oscillatory regions in high-potential region classified as HN-NDR type oscillations are separated by a saddle-loop bifurcation. They displayed a sequence of bursting oscillations and irregular oscillations, respectively. The electrochemical oxidation of sulfide provides a model system for studying complex dynamics and possible application in sulfur removal.

  13. Bacterial oxidation of sulfide minerals in column leaching experiments at suboptimal temperatures.

    Science.gov (United States)

    Ahonen, L; Tuovinen, O H

    1992-02-01

    The purpose of the work was to quantitatively characterize temperature effects on the bacterial leaching of sulfide ore material containing several sulfide minerals. The leaching was tested at eight different temperatures in the range of 4 to 37 degrees C. The experimental technique was based on column leaching of a coarsely ground (particle diameter, 0.59 to 5 mm) ore sample. The experimental data were used for kinetic analysis of chalcopyrite, sphalerite, and pyrrhotite oxidation. Chalcopyrite yielded the highest (73 kJ/mol) and pyrrhotite yielded the lowest (25 kJ/mol) activation energies. Especially with pyrrhotite, diffusion contributed to rate limitation. Arrhenius plots were also linear for the reciprocals of lag periods and for increases of redox potentials (dmV/dt). Mass balance analysis based on total S in leach residue was in agreement with the highest rate of leaching at 37 and 28 degrees C. The presence of elemental S in leach residues was attributed to pyrrhotite oxidation. PMID:16348648

  14. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds

    Science.gov (United States)

    Chen, J. G.

    Owing to their unique physical and chemical properties, transition metal compounds, especially transition metal oxides, nitrides, carbides and sulfides, have been the subject of many surface science investigations. In this article we will review applications of the near-edge X-ray absorption fine structure (NEXAFS) technique in the investigations of electronic and structural properties of transition metal compounds. This review covers NEXAFS studies of compounds in various physical forms, including bulk single crystals, well-characterized overlayers on surfaces of corresponding parent metals, and amorphous powder materials. In addition to transition metal oxides, nitrides, carbides and sulfides, we will also briefly discuss NEXAFS studies of interstitial compounds containing other 2p and 3p non-metal components, namely boron, fluorine, silicon, phosphorus and chlorine. We will discuss the correlation between experimental NEXAFS spectra and the local bonding environment of these compounds, such as the number of d-electrons, spin configurations, ligand-field splitting, coordination numbers, local symmetries, and crystal structures. In addition, NEXAFS investigations of the adsorption and reaction of probing molecules will also be discussed to reveal the underlying chemical reactivities of these materials. We will use many examples to demonstrate the importance of NEXAFS studies in the overall understanding of the physical and chemical properties of transition metal compounds. Finally, we will conclude this review by summarizing the current applications, as well as potential research opportunities, of NEXAFS in several technologically important research areas, including materials science, catalysis, biological science, earth science and environmental science.

  15. Current oscillations during the electrochemical oxidation of sulfide in the presence of an external resistor

    Institute of Scientific and Technical Information of China (English)

    FENG JiaMin; GAO QingYu; LI Jun; LIU Li; MAO ShanCheng

    2008-01-01

    The electrochemical oxidation of sulfide on a polycrystalline platinum electrode was studied under potenUostatic condition when an external resistor is in series with the working electrode. Only two os-cillatory regions can be obtained in the absence of the external resistance, but four oscillatory regions, including two new current oscillations, were found in this system by controlling the external resistance. It is demonstrated that three oscillatory regimes, which arise on the positive branch of current-potential curve, can be classified as HN-NDR (Hidden N-shaped Negative Differential Resistance) oscillators. For the first oscillatory region, various transient complex phenomena, which result from the change of the electrode/electrolyte interface by accumulation of adsorbed element sulfur on the electrode, have been observed. The dynamic behavior of NDR (Negative Differential Resistance) oscillations, appearing along with negative branch of polarization curve, can transform from oscillations into bistability with a sufficient large external resistance in series. Two oscillatory regions in high-potential region classified as HN-NDR type oscillations are separated by a saddle-loop bifurcation. They displayed a sequence of bursting oscillations and irregular oscillations, respectively. The electrochemical oxidation of sulfide provides a model system for studying complex dynamics and possible application in sulfur removal.

  16. A model for the description of oxidation in sulfidic waste rock dumps

    International Nuclear Information System (INIS)

    Basic mathematical equations which describe the processes of sulfide oxidation and gas and water transport in waste rock dumps are presented and discussed. The governing equations account for gas and water flow, vaporisation and condensation with latent heat effects, heat transport and mass balance. Gas, water and solid phases are assumed to be in local thermal equilibrium at all times. Air is approximated as an ideal three-component gas. Different semi-empirical relationships between physical values are used: Darcy's law for fluid flow, ideal gas law, the Van Genuchten formula for the relationship between degree of water saturation and pressure head, Mualem's formula for the relative hydraulic conductivity as a function of pressure head, etc. Some important global quantities, such as the fraction of sulfide sulfur oxidised and the global oxidation rate, are defined and considered as functions of time. The full set of equations is collected and presented in explicit form, convenient for further numerical modelling. The glossary of some technical terms and the table of definitions of the main parameters as well as their units and characteristic values are given

  17. Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance

    Science.gov (United States)

    He, Zhanjun; Zhu, Yabo; Xing, Zheng; Wang, Zhengyuan

    2016-01-01

    The cuprous sulfide nanoparticles (CuS NPs)-decorated reduced graphene oxide (rGO) nanocomposites have been successfully prepared via a facile and efficient solvothermal synthesis method. Scanning electron microscopy and transmission electron microscopy images demonstrated that CuS micronspheres composed of nanosheets and distributed on the rGO layer in well-monodispersed form. Fourier-transform infrared spectroscopy analyses and x-ray photoelectron spectroscopy showed that graphene oxide (GO) had been reduced to rGO. The electrochemical performances of CuS/rGO nanocomposites were investigated by cyclic voltammetry and charge/discharge techniques, which showed that the specific capacitance of CuS/rGO nanocomposites was enhanced because of the introduction of rGO.

  18. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas.

    Science.gov (United States)

    Krischan, J; Makaruk, A; Harasek, M

    2012-05-15

    Reliable and selective removal of hydrogen sulfide (H(2)S) is an essential part of the biogas upgrading procedure in order to obtain a marketable and competitive natural gas substitute for flexible utilization. A promising biogas desulfurization technology has to ensure high separation efficiency regardless of process conditions or H(2)S load without the use or production of toxic or ecologically harmful substances. Alkaline oxidative scrubbing is an interesting alternative to existing desulfurization technologies and is investigated in this work. In experiments on a stirred tank reactor and a continuous scrubbing column in laboratory-scale, H(2)S was absorbed from a gas stream containing large amounts of carbon dioxide (CO(2)) into an aqueous solution prepared from sodium hydroxide (NaOH), sodium bicarbonate (NaHCO(3)) and hydrogen peroxide (H(2)O(2)). The influence of pH, redox potential and solution aging on the absorption efficiency and the consumption of chemicals was investigated. Because of the irreversible oxidation reactions of dissolved H(2)S with H(2)O(2), high H(2)S removal efficiencies were achieved while the CO(2) absorption was kept low. At an existing biogas upgrading plant an industrial-scale pilot scrubber was constructed, which efficiently desulfurizes 180m(3)/h of raw biogas with an average removal efficiency of 97%, even at relatively high and strongly fluctuating H(2)S contents in the crude gas. PMID:22440540

  19. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas

    Energy Technology Data Exchange (ETDEWEB)

    Krischan, J., E-mail: jutta_krischan@hotmail.com [Vienna University of Technology, Institute of Chemical Engineering, Getreidemarkt 9/166, 1060 Vienna (Austria); Makaruk, A., E-mail: aleksander.makaruk@tuwien.ac.at [Vienna University of Technology, Institute of Chemical Engineering, Getreidemarkt 9/166, 1060 Vienna (Austria); Harasek, M., E-mail: michael.harasek@tuwien.ac.at [Vienna University of Technology, Institute of Chemical Engineering, Getreidemarkt 9/166, 1060 Vienna (Austria)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Alkaline oxidative scrubbing proved for biogas desulfurization Black-Right-Pointing-Pointer Effect of operating conditions on hydrogen sulfide removal efficiency. Black-Right-Pointing-Pointer Minimization of caustic and oxidant consumption. Black-Right-Pointing-Pointer Process control via pH, redox potential and conductivity measurement. Black-Right-Pointing-Pointer Investigation of long-term behavior of pilot plant operation. - Abstract: Reliable and selective removal of hydrogen sulfide (H{sub 2}S) is an essential part of the biogas upgrading procedure in order to obtain a marketable and competitive natural gas substitute for flexible utilization. A promising biogas desulfurization technology has to ensure high separation efficiency regardless of process conditions or H{sub 2}S load without the use or production of toxic or ecologically harmful substances. Alkaline oxidative scrubbing is an interesting alternative to existing desulfurization technologies and is investigated in this work. In experiments on a stirred tank reactor and a continuous scrubbing column in laboratory-scale, H{sub 2}S was absorbed from a gas stream containing large amounts of carbon dioxide (CO{sub 2}) into an aqueous solution prepared from sodium hydroxide (NaOH), sodium bicarbonate (NaHCO{sub 3}) and hydrogen peroxide (H{sub 2}O{sub 2}). The influence of pH, redox potential and solution aging on the absorption efficiency and the consumption of chemicals was investigated. Because of the irreversible oxidation reactions of dissolved H{sub 2}S with H{sub 2}O{sub 2}, high H{sub 2}S removal efficiencies were achieved while the CO{sub 2} absorption was kept low. At an existing biogas upgrading plant an industrial-scale pilot scrubber was constructed, which efficiently desulfurizes 180 m{sup 3}/h of raw biogas with an average removal efficiency of 97%, even at relatively high and strongly fluctuating H{sub 2}S contents in the crude gas.

  20. Thermodynamic Analysis of Looping Sulfide Oxidation Production of MoO2 from Molybdenite for Energy Capture and Generation

    Science.gov (United States)

    Lessard, Joseph D.; Shekhter, Leonid N.; Gribbin, Daniel G.; McHugh, Lawrence F.

    2013-11-01

    Conventional processing of molybdenum sulfide concentrates involves decades-old technology and often inefficient processing. Molybdenum trioxide (MoO3) is produced from the sulfide concentrate and used by the steel industry to produce steel alloys. An alternative and more attractive molybdenum product, molybdenum dioxide (MoO2), is produced using the Looping Sulfide Oxidation process. By examining the thermodynamics of the molybdenum-sulfur-oxygen system, the conditions necessary to selectively produce MoO2 over the trioxide have been identified. Under such conditions, oxygen, MoO3, or a mixture of the two can be used to convert the sulfide concentrate. Some of the resulting MoO2 is collected as final product, while some is oxidized to MoO3 and looped back to the conversion furnace to complete the cycle. A thermodynamic analysis of the reaction schemes and a discussion of the potential for energy capture are presented. The Looping Sulfide Oxidation process presents a paradigm shift in the production and consumption of molybdenum.

  1. Valorization of Calcium Carbonate-Based Solid Wastes for the Treatment of Hydrogen Sulfide from the Gas Phase

    OpenAIRE

    Pham Xuan, Huynh; Pham Minh, Doan; Galera Martinez, Marta; Nzihou, Ange; Sharrock, Patrick

    2015-01-01

    This paper focuses on the valorization of calcium carbonate-based solid wastes for theremoval of hydrogen sulfide from gas phase. Two solid wastes taken from industrial sites for theproduction of sodium carbonate and sodium bicarbonate by the Solvay process® were analyzedby different physico-chemical methods. Calcium carbonate was found as the main component ofboth the solid wastes. Trace amounts of other elements such as Mg, Al, Fe, Si, Cl, Na etc. werealso present in these wastes. These sol...

  2. Poly(4-vinylpyridinium tribromide) as metal-free, green and recoverable oxidizing polymer for the chemoselective oxidation of sulfides into sulfoxides

    Institute of Scientific and Technical Information of China (English)

    Arash Ghorbani-Choghamarani; Mina Abbasi

    2011-01-01

    Poly(4-vinylpyridinium wibromide) was prepared from poly(4-vinylpyridin) and used for the selective oxidation of a variety of sulfides to the corresponding sulfoxides.The oxidation reaction was carried out heterogeneously in acetone/water,as green solvent,at room temperature.

  3. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.

    Science.gov (United States)

    Hiller, Edgar; Petrák, Marián; Tóth, Roman; Lalinská-Voleková, Bronislava; Jurkovič, L'ubomír; Kučerová, Gabriela; Radková, Anežka; Sottník, Peter; Vozár, Jaroslav

    2013-11-01

    mineral assemblage and their occurrence follows the order: chalcopyrite > pyrite > tetrahedrite>arsenopyrite. The mineralogical composition of the tailings corresponds well to the primary mineralization mined. The neutralization capacity of the tailings is high, as confirmed by the values of neutralization potential to acid generation potential ratio, ranging from 6.7 to 63.9, and neutral to slightly alkaline pH of the tailings (paste pH 7.16-8.12) and the waters (pH 7.00-8.52). This is explained by abundant occurrence of carbonate minerals in the tailings, which readily neutralize the acidity generated by sulfide oxidation. The total solid-phase concentrations of metal(loid)s decrease as Cu>Sb>Hg>As and reflect the proportions of sulfides present in the tailings. Sulfide oxidation generally extends to a depth of 2 m. μ-XRD and EMPA were used to study secondary products developed on the surface of sulfide minerals and within the tailings. The main secondary minerals identified are goethite and X-ray amorphous Fe oxyhydroxides and their occurrence decreases with increasing tailings depth. Secondary Fe phases are found as mineral coatings or individual grains and retain relatively high amounts of metal(loid)s (up to 57.6 wt% Cu, 1.60 wt% Hg, 23.8 wt% As, and 2.37 wt% Sb). Based on batch leaching tests and lysimeter results, the mobility of potentially toxic elements in the tailings is low. The limited mobility of metals and metalloids is due to their retention by Fe oxyhydroxides and low solubilities of metal(loid)-bearing sulfides. The observations are consistent with PHREEQC calculations, which predict the precipitation of Fe oxyhydroxides as the main solubility-controlling mineral phases for As, Cu, Hg, and Sb. Waters discharging from tailings impoundment are characterized by a neutral to slightly alkaline pH (7.52-7.96) and low concentrations of dissolved metal(loid)s (carbonate dissolution as well as precipitation reactions and sorption onto hydrous ferric

  4. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, Debby Fox; Thompson, David Neal; Noah, Karl Scott

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, “Leptospirillum”, “Ferromicrobium”, and Acidiphilium. Two temperatures (30°C and 45°C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to low the pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  5. New Insight into the Interaction between Carbonate-based Electrolyte and Cuprous Sulfide Electrode Material for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Cuprous sulfide (Cu2S) is attractive electrode material for lithium-ion battery because of its high capacity and energy density. Interestingly, the cycling stability of cuprous sulfide is poor in the carbonate-based electrolytes used in lithium ion battery industry but excellent in ether-based electrolyte. In this study, we have compared the electrochemical performance of commercially available cuprous sulfide in various kinds of carbonate-based electrolytes. Our results show that the specific capacity of Cu2S electrode fades quickly in cyclic carbonate-based electrolytes, but a much better electrochemical performance in linear carbonate-based electrolytes. In linear carbonate-based electrolyte (1 M LiPF6 in EMC), it exhibits a specific discharge capacity of 242.8 mAh g−1 after 50 cycles with coulombic efficiency of 99.6%. Our study suggests that the poor cycling performance of Cu2S in cyclic carbonate-based electrolytes is mainly due to the higher reactivity of cyclic carbonates with polysulfides on the surface of the electrode than linear carbonates, which was confirmed for the first time by our experiment studies and theoretical calculation

  6. Study on the Size-Dependent Oxidation Reaction Kinetics of Nanosized Zinc Sulfide

    Directory of Open Access Journals (Sweden)

    Qing-Shan Fu

    2014-01-01

    Full Text Available Numerous oxidation problems of nanoparticles are often involved during the preparation and application of nanomaterials. The oxidation rate of nanomaterials is much faster than bulk materials due to nanoeffect. Nanosized zinc sulfide (nano-ZnS and oxygen were chosen as a reaction system. The influence regularities were discussed and the influence essence was elucidated theoretically. The results indicate that the particle size can remarkably influence the oxidation reaction kinetics. The rate constant and the reaction order increase, while the apparent activation energy and the preexponential factor decrease with the decreasing particle size. Furthermore, the logarithm of rate constant, the apparent activation energy and the logarithm of preexponential factor are linearly related to the reciprocal of particle diameter, respectively. The essence is that the rate constant is influenced by the combined effect of molar surface energy and molar surface entropy, the reaction order by the molar surface area, the apparent activation energy, by the molar surface energy, and the preexponential factor by the molar surface entropy. The influence regularities and essence can provide theoretical guidance to solve the oxidation problems involved in the process of preparation and application of nanomaterials.

  7. Integrating nitric oxide, nitrite and hydrogen sulfide signaling in the physiological adaptations to hypoxia: A comparative approach

    DEFF Research Database (Denmark)

    Fago, Angela; Jensen, Frank Bo; Tota, Bruno;

    2012-01-01

    Hydrogen sulfide (H2S), nitric oxide (NO) and nitrite (NO2-) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular...

  8. Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization.

    Science.gov (United States)

    Kobayashi, Takuro; Li, Yu-You; Kubota, Kengo; Harada, Hideki; Maeda, Takeki; Yu, Han-Qing

    2012-01-01

    The microbial mats responsible for biological desulfurization from biogas in a full-scale anaerobic digester were characterized in terms of their structure, as well as their chemical and microbial properties. Filament-shaped elemental sulfur 100-500 μm in length was shown to cover the mats, which cover the entire headspace of the digester. This is the first report on filamentous sulfur production in a non-marine environment. The results of the analysis of the mats suggest that the key players in the sulfide oxidation and sulfur production in the bio-desulfurization in the headspace of the digester were likely to be two sulfide-oxidizing bacteria (SOB) species related to Halothiobacillus neapolitanus and Sulfurimonas denitrificans, and that the microbial community, cell density, activity for sulfide oxidation varied according to the environmental conditions at the various locations of the mats. Since the water and nutrients necessary for the SOB were provided by the digested sludge droplets deposited on the mats, and our results show that a higher rate of sulfide oxidation occurred with more frequent digested sludge deposition, the habitat of the SOB needs to be made in the lower part of the headspace near the liquid level of the digested sludge to maintain optimal conditions. PMID:21735263

  9. Measurement of low concentration and nano-quantity hydrogen sulfide in sera using unfunctionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Hydrogen sulfide (H2S) is produced in small amounts by certain cells in the mammalian body and has a number of biological functions. H2S gas naturally produced by the body is not simply a toxic gas; it could be a vascular dilator and play a physiological role in regulating cardiovascular functions. In order to know the effects of H2S, it is necessary to accurately know its concentrations in the body. Conventional measurement methods have their limitations concerning the small amount and low concentration of H2S in the body. A new paradigm of using carbon nanotubes in H2S measurement expresses its potential. However, the influence of proteins in the mammalian body must be studied in the measurement of H2S by carbon nanotubes. In this paper, we demonstrate a successful measurement of low concentration (20 µM) and nano-quantity (0.5 µg) H2S in the serum by using carbon nanotubes and further with the fluorescence of confocal laser scanning microscopy and the luminescence of Raman microscopy. Statistical analysis of the experimental data shows that the relationship between concentrations and intensities is linear, which thus makes the carbon nanotube sensor highly promising for the measurement of H2S in sera

  10. Amorphous Molybdenum Sulfide on Graphene-Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts.

    Science.gov (United States)

    Pham, Kien-Cuong; Chang, Yung-Huang; McPhail, David S; Mattevi, Cecilia; Wee, Andrew T S; Chua, Daniel H C

    2016-03-01

    In this study, we report on the deposition of amorphous molybdenum sulfide (MoSx, with x ≈ 3) on a high specific surface area conductive support of Graphene-Carbon Nanotube hybrids (GCNT) as the Hydrogen Evolution Reaction (HER) catalysts. We found that the high surface area GCNT electrode could support the deposition of MoSx at much higher loadings compared with simple porous carbon paper or flat graphite paper. The morphological study showed that MoSx was successfully deposited on and was in good contact with the GCNT support. Other physical characterization techniques suggested the amorphous nature of the deposited MoSx. With a typical catalyst loading of 3 mg cm(-2), an overpotential of 141 mV was required to obtain a current density of 10 mA cm(-2). A Tafel slope of 41 mV decade(-1) was demonstrated. Both measures placed the MoSx-deposited GCNT electrode among the best performing molybdenum sulfide-based HER catalysts reported to date. The electrode showed a good stability with only a 25 mV increase in overpotential required for a current density of 10 mA cm(-2), after undergoing 500 potential sweeps with vigorous bubbling present. The current density obtained at -0.5 V vs SHE (Standard Hydrogen Electrode potential) decreased less than 10% after the stability test. The deposition of MoSx on high specific surface area conductive electrodes demonstrated to be an efficient method to maximize the catalytic performance toward HER. PMID:26864503

  11. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies.

    Science.gov (United States)

    Yamasaki, Hideo; Cohen, Michael F

    2016-05-01

    Hydrogen sulfide (H2S) is produced in the mammalian body through the enzymatic activities of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). A growing number of studies have revealed that biogenic H2S produced in tissues is involved in a variety of physiological responses in mammals including vasorelaxation and neurotransmission. It is now evident that mammals utilize H2S to regulate multiple signaling systems, echoing the research history of the gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO) that had previously only been recognized for their cytotoxicity. In the human diet, meats (mammals, birds and fishes) and vegetables (plants) containing cysteine and other sulfur compounds are the major dietary sources for endogenous production of H2S. Plants are primary producers in ecosystems on the earth and they synthesize organic sulfur compounds through the activity of sulfur assimilation. Although plant H2S-producing activities have been known for a long time, our knowledge of H2S biology in plant systems has not been updated to the extent of mammalian studies. Here we review recent progress on H2S studies, highlighting plants and bacteria. Scoping the future integration of H2S, NO and O2 biology, we discuss a possible linkage between physiology, ecology and evolutional biology of gas metabolisms that may reflect the historical changes of the Earth's atmospheric composition. PMID:27083071

  12. Gaseous Mediators Nitric Oxide and Hydrogen Sulfide in the Mechanism of Gastrointestinal Integrity, Protection and Ulcer Healing

    Directory of Open Access Journals (Sweden)

    Marcin Magierowski

    2015-05-01

    Full Text Available Nitric oxide (NO and hydrogen sulfide (H2S are known as biological messengers; they play an important role in human organism and contribute to many physiological and pathophysiological processes. NO is produced from l-arginine by constitutive NO synthase (NOS and inducible NOS enzymatic pathways. This gaseous mediator inhibits platelet aggregation, leukocyte adhesion and contributes to the vessel homeostasis. NO is known as a vasodilatory molecule involved in control of the gastric blood flow (GBF and the maintenance of gastric mucosal barrier integrity in either healthy gastric mucosa or that damaged by strong irritants. Biosynthesis of H2S in mammals depends upon two enzymes cystathionine-β-synthase and cystathionine γ-lyase. This gaseous mediator, similarly to NO and carbon monoxide, is involved in neuromodulation, vascular contractility and anti-inflammatory activities. For decades, H2S has been known to inhibit cytochrome c oxidase and reduce cell energy production. Nowadays it is generally considered to act through vascular smooth muscle ATP-dependent K+ channels, interacting with intracellular transcription factors and promote sulfhydration of protein cysteine moieties within the cell, but the mechanism of potential gastroprotective and ulcer healing properties of H2S has not been fully explained. The aim of this review is to compare current results of the studies concerning the role of H2S and NO in gastric mucosa protection and outline areas that may pose new opportunities for further development of novel therapeutic targets.

  13. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway

    International Nuclear Information System (INIS)

    Highlights: •Oxidative stress impairs 3-MST-derived H2S production in isolated enzyme and in isolated mitochondria. •This impairs the stimulatory bioenergetic effects of H2S in hepatocytes. •This has implications for the pathophysiology of diseases with oxidative stress. -- Abstract: Recent data show that lower concentrations of hydrogen sulfide (H2S), as well as endogenous, intramitochondrial production of H2S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H2S pathway in vitro. Hydrogen peroxide (H2O2, 100–500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H2O2 (50–500 μM) caused a concentration-dependent decrease in production of H2S from 3-MP. In cultured murine hepatoma cells H2O2, (3–100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100–300 nM) was completely abolished by pre-treatment of the cells with H2O2 (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H2S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging

  14. An asymmetric supercapacitor with ultrahigh energy density based on nickle cobalt sulfide nanocluster anchoring multi-wall carbon nanotubes hybrid

    Science.gov (United States)

    Wen, Ping; Fan, Mingjin; Yang, Desuo; Wang, Yan; Cheng, Hualei; Wang, Jinqing

    2016-07-01

    The development of novel electrode materials with high energy density and long cycling life is critical to realize electrochemical capacitive energy storage for practical applications. In this paper, the hybrids of nickle cobalt sulfide/multi-wall carbon nanotubes (NiCo2S4/MWCNTs) with different contents of MWCNTs are prepared using a facile one-pot solvothermal reaction. As novel active materials for supercapacitors, the electrochemistry tests show that the hybrid of NiCo2S4/MWCNTs-5 is able to deliver a high specific capacitance of 2080 F g-1 at the current density of 1 A g-1, even superior rate capability of 61% capacitance retention after a 20-fold increase in current densities, when the content of MWCNTs is up to 5%. More importantly, an asymmetric supercapacitor assembled by NiCo2S4/MWCNTs-5 as positive electrode and reduced graphene oxide (rGO) as negative electrode delivers a high energy density of 51.8 Wh Kg-1 at a power density of 865 W kg-1, and 85.7% of its initial capacitance is retained at the current density of 4 A g-1 after 5000 charge-discharge cycles, exhibiting potential prospect for practical applications.

  15. Carbon steel protection in G.S. (Girlder sulfide) plants. Influence of the material surface state. Pt. 2

    International Nuclear Information System (INIS)

    The passivation on carbon steels, in particular ASTM A 516 Degree 60 and ASTM A 333 steels is made, submitting it to the action of H2S/H2O1,2 corrosive medium. The steel is rapidly corroded by H2S in aqueous solution, forming iron sulfides on the metallic surface in a crystalline layer of various μm of thickness. During this process, various types of iron sulfides at different phases, with different sulfur and iron contents are formed. The influence of temperature, the pH, the exposure time and the corrosive medium composition on formation and quality of the iron sulfides protective layer was also studied. (Author)

  16. Influence of selected coal contaminants on graphitic carbon electro-oxidation for application to the direct carbon fuel cell

    Science.gov (United States)

    Tulloch, John; Allen, Jessica; Wibberley, Louis; Donne, Scott

    2014-08-01

    A novel method examining the fundamental electrochemical behaviour of carbon is outlined here involving the use of a half cell set-up and solid sacrificial anode. Using this method, electrochemical oxidation of graphite is assessed using selective contamination of a graphite electrode with major coal contaminants identified in selected Australian black coals using X-ray diffraction. Contaminants identified include anatase, alumina, pyrite, quartz, kaolin and montmorillonite. From the systematic introduction of these contaminants it is shown that clay materials, such as kaolin and montmorillonite, act catalytically to increase the rate of graphite oxidation. Metal oxides and sulfides such as anatase, alumina and pyrite give a limited increase in the normalised current, whereas quartz gives a significant decrease in performance. This demonstrates a clear effect of the solid phase interaction of these contaminants on the electrochemical oxidation of graphite since the same effect is not observed when the contaminants are added instead to the molten carbonate electrolyte.

  17. Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) and zinc (Zn) for human nutrition. To find ways of limiting this potential risk, we investigated factors influencing Cd solubility relative to Fe and Zn during pre-harvest drainage of paddy soils, in which soil oxidation is accompanied by the grain-filling stage of rice growth. This was simulated in temperature-controlled 'reaction cell' experiments by first excluding oxygen to incubate soil suspensions anaerobically, then inducing aerobic conditions. In treatments without sulfur addition, the ratios of Cd:Fe and Cd:Zn in solution increased during the aerobic phase while Cd concentrations were unaffected and the Fe and Zn concentrations decreased. However, in treatments with added sulfur (as sulfate), up to 34 % of sulfur (S) was precipitated as sulfide minerals during the anaerobic phase and the Cd:Fe and Cd:Zn ratios in solution during the aerobic phase were lower than for treatments without S addition. When S was added, Cd solubility decreased whereas Fe and Zn were unaffected. When soil was spiked with Zn the Cd:Zn ratio was lower in solution during the aerobic phase, due to higher Zn concentrations. Decreased Cd:Fe and Cd:Zn ratios during the grain filling stage could potentially limit Cd enrichment in paddy rice grain due to competitive ion effects for root uptake. - Research Highlights: → Cd:Fe and Cd:Zn ratios increase in paddy soil solution during oxidation. → Cd:Fe and Cd:Zn ratios increase because Fe and Zn concentrations decrease. → Cd concentrations do not change during oxidation. → Cd:Fe and Cd:Zn ratios in solution decrease when Zn is added to soil. → Metal sulfide precipitation lowers Cd:Fe and Cd:Zn ratios in soil solution.

  18. Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions

    Energy Technology Data Exchange (ETDEWEB)

    Livera, Jennifer de, E-mail: Jennifer.deLivera@adelaide.edu.au [Soil Science, School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA (Australia); McLaughlin, Mike J. [Soil Science, School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA (Australia); CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia); Hettiarachchi, Ganga M. [CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia); Department of Agronomy, Kansas state University, Manhattan, KS (United States); Kirby, Jason K. [CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia); CSIRO Land and Water, Environmental Biogeochemistry Program, Water for a Healthy Country Flagship, Adelaide, SA (Australia); Beak, Douglas G. [CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia)

    2011-03-15

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) and zinc (Zn) for human nutrition. To find ways of limiting this potential risk, we investigated factors influencing Cd solubility relative to Fe and Zn during pre-harvest drainage of paddy soils, in which soil oxidation is accompanied by the grain-filling stage of rice growth. This was simulated in temperature-controlled 'reaction cell' experiments by first excluding oxygen to incubate soil suspensions anaerobically, then inducing aerobic conditions. In treatments without sulfur addition, the ratios of Cd:Fe and Cd:Zn in solution increased during the aerobic phase while Cd concentrations were unaffected and the Fe and Zn concentrations decreased. However, in treatments with added sulfur (as sulfate), up to 34 % of sulfur (S) was precipitated as sulfide minerals during the anaerobic phase and the Cd:Fe and Cd:Zn ratios in solution during the aerobic phase were lower than for treatments without S addition. When S was added, Cd solubility decreased whereas Fe and Zn were unaffected. When soil was spiked with Zn the Cd:Zn ratio was lower in solution during the aerobic phase, due to higher Zn concentrations. Decreased Cd:Fe and Cd:Zn ratios during the grain filling stage could potentially limit Cd enrichment in paddy rice grain due to competitive ion effects for root uptake. - Research Highlights: {yields} Cd:Fe and Cd:Zn ratios increase in paddy soil solution during oxidation. {yields} Cd:Fe and Cd:Zn ratios increase because Fe and Zn concentrations decrease. {yields} Cd concentrations do not change during oxidation. {yields} Cd:Fe and Cd:Zn ratios in solution decrease when Zn is added to soil. {yields} Metal sulfide precipitation lowers Cd:Fe and Cd:Zn ratios in soil solution.

  19. Semi-Coke–Supported Mixed Metal Oxides for Hydrogen Sulfide Removal at High Temperatures

    Science.gov (United States)

    Jie, Mi; Yongyan, Zhang; Yongsheng, Zhu; Ting, Guo; Huiling, Fan

    2012-01-01

    Abstract To improve the desulfurization efficiency of sorbents at low cost, modified semi-coke was used as the substrate for mixed metal oxides (ZFM; oxides of zinc [Zn], iron [Fe], and manganese [Mn]) in hot gas desulfurization. Performance of the prepared ZFM/modified semi-coke (MS) sorbents were evaluated in a fixed-bed reactor in the temperature range 400–550°C. Results showed that the molar ratio of Mn to Zn, effect of the substrate, the calcination temperature, and the sulfidation temperature influenced the performance of the sorbents. Optimum conditions for the preparation of the ZFM/MS sorbents were molar ratio of Mn(NO3)2·6H2O, Zn(NO3)2, and Fe(NO3)3, 0.6:1:2; mass ratio of ZFM0.6 to modified semi-coke support, 1:1; and calcination temperature, 600°C. The ZFM0.6/MS sorbent thus prepared exhibited the best sorption sulfur capacity of 27.46% at 450°C. PMID:22783061

  20. Hydrogen sulfide increases nitric oxide production from endothelial cells by an Akt-dependent mechanism

    Directory of Open Access Journals (Sweden)

    ArturoJCardounel

    2011-12-01

    Full Text Available Hydrogen sulfide (H2S and nitric oxide (NO are both gasotransmitters that can elicit synergistic vasodilatory responses in the in the cardiovascular system, but the mechanisms behind this synergy are unclear. In the current study we investigated the molecular mechanisms through which H2S regulates endothelial NO production. Initial studies were performed to establish the temporal and dose-dependent effects of H2S on NO generation using EPR spin trapping techniques. H2S stimulated a two-fold increase in NO production from endothelial nitric oxide synthase (eNOS, which was maximal 30 min after exposure to 25-150 µM H2S. Following 30 min H2S exposure, eNOS phosphorylation at Ser 1177 was significantly increased compared to control, consistent with eNOS activation. Pharmacological inhibition of Akt, the kinase responsible for Ser 1177 phosphorylation, attenuated the stimulatory effect of H2S on NO production. Taken together, these data demonstrate that H2S up-regulates NO production from eNOS through an Akt-dependent mechanism. These results implicate H2S in the regulation of NO in endothelial cells, and suggest that deficiencies in H2S signaling can directly impact processes regulated by NO.

  1. Molybdatophosphoric acid as an efficient catalyst for the catalytic and chemoselective oxidation of sulfides to sulfoxides using urea hydrogen peroxide as a commercially available oxidant

    Directory of Open Access Journals (Sweden)

    ALIREZA HASANINEJAD

    2010-03-01

    Full Text Available An efficient procedure for the chemoselective oxidation of alkyl (aryl sulfides to the corresponding sulfoxides using urea hydrogen peroxide (UHP in the presence of a catalytic amount of molybdatophosphoric acid at room temperature is described. The advantages of described method are: generality, high yield and chemoselectivity, short reaction time, low cost and compliment with green chemistry protocols.

  2. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.

    Science.gov (United States)

    Zheng, Shiyou; Chen, Yvonne; Xu, Yunhua; Yi, Feng; Zhu, Yujie; Liu, Yihang; Yang, Junhe; Wang, Chunsheng

    2013-12-23

    Highly stable sulfur/microporous carbon (S/MC) composites are prepared by vacuum infusion of sulfur vapor into microporous carbon at 600 °C, and lithium sulfide/microporous carbon (Li2S/MC) cathodes are fabricated via a novel and facile in situ lithiation strategy, i.e., spraying commercial stabilized lithium metal powder (SLMP) onto a prepared S/MC film cathode prior to the routine compressing process in cell assembly. The in situ formed Li2S/MC film cathode shows high Coulombic efficiency and long cycling stability in a conventional commercial Li-ion battery electrolyte (1.0 M LiPF6 + EC/DEC (1:1 v/v)). The reversible capacities of Li2S/MC cathodes remain about 650 mAh/g even after 900 charge/discharge cycles, and the Coulombic efficiency is close to 100% at a current density of 0.1C, which demonstrates the best electrochemical performance of Li2S/MC cathodes reported to date. Furthermore, this Li2S/MC film cathode fabricated via our in situ lithiation strategy can be coupled with a Li-free anode, such as graphite, carbon/tin alloys, or Si nanowires to form a rechargeable Li-ion cell. As the Li2S/MC cathode is paired with a commercial graphite anode, the full cell of Li2S/MC-graphite (Li2S-G) shows a stable capacity of around 600 mAh/g in 150 cycles. The Li2S/MC cathodes prepared by high-temperate sulfur infusion and SLMP prelithiation before cell assembly are ready to fit into current Li-ion batteries manufacturing processes and will pave the way to commercialize low-cost Li2S-G Li-ion batteries. PMID:24251957

  3. Observations of the uptake of carbonyl sulfide (COS by trees under elevated atmospheric carbon dioxide concentrations

    Directory of Open Access Journals (Sweden)

    L. Sandoval-Soto

    2012-02-01

    Full Text Available Global change affects ecosystems to adapt to elevated atmospheric concentrations of carbon dioxide (CO2. We understand that carbonyl sulfide (COS, a trace gas which is involved in building up the stratospheric sulfate aerosol layer, is taken up by vegetation with the same triad of the enzmyes which are metabolizing the CO2, i.e. Ribulose-1,5-bisphosphate Carboxylase-Oxygenase (Rubisco, Phosphoenolpyruvate Carboxylase (PEP-Co and carbonic anhydrase (CA. Therefore, we discuss a physiological/biochemical adaptation of these enzymes to affect the sink strength of vegetation for COS. We investigated the adaption of two European tree species, Fagus sylvatica and Quercus ilex, grown inside chambers under elevated CO2 and determined the exchange characteristics and the content of CA after a 1–2 yr period of adaption from 350 ppm to 800 ppm CO2. We could demonstrate that the COS compensation point, the CA activity and the deposition velocities may change and cause a decrease of the COS uptake by plant ecosystems. As a consequence, the atmospheric COS level may rise leading to higher input of this trace gas into the stratosphere and causing a higher energy reflection by the stratospheric sulfur aerosol into space, thus counteracting the direct radiative forcing by the tropospheric COS.

  4. Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments.

    Science.gov (United States)

    Gong, Wenwen; Liu, Xinhui; Xia, Shuhua; Liang, Baocui; Zhang, Wei

    2016-06-01

    Dinitroaniline herbicides such as trifluralin and pendimethalin are persistent bioaccumulative toxins to aquatic organisms. Thus, in-situ remediation of contaminated sediments is desired. This study investigated whether black carbons (BCs), including apple wood charcoal (BC1), rice straw biochar (BC2), and activated carbon (BC3), could facilitate abiotic reduction of trifluralin and pendimethalin by sulfides of environmentally-relevant concentrations in anoxic coastal sediments. The reduction rates of trifluralin and pendimethalin increased substantially with increasing BC dosages in the sediments. This enhancing effect was dependent on BC type with the greatest for BC3 followed by BC1 and BC2, which well correlated with their specific surface area. The pseudo-first order reduction rate constants (kobs) for BC3-amended sediment (2%) were 13- and 14 times the rate constants in the BC-free sediment. The reduction rates increased with increasing temperature from 8 to 25°C in the BC-amended sediment, following the Arrhenius relationship. Finally, through molecular modeling by density functional theory and reaction species identification from mass spectra, molecular pathways of trifluralin and pendimethalin reduction were elucidated. In contrary to the separate sequential reduction of each nitro group to amine group, both nitro groups, first reduced to nitroso, then eventually to amine groups. PMID:26905610

  5. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment

    Science.gov (United States)

    Ayswarya, A.; Kurian, G. A.

    2016-01-01

    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the

  6. Sensitivity of interfibrillar and subsarcolemmal mitochondria to cobalt chloride-induced oxidative stress and hydrogen sulfide treatment

    Directory of Open Access Journals (Sweden)

    A Ayswarya

    2016-01-01

    Full Text Available Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment. Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co

  7. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment

    DEFF Research Database (Denmark)

    Preisler, André; de Beer, Dirk; Lichtschlag, Anna;

    2007-01-01

    gradient and corresponding high sulfide flux, a typical characteristic of Beggiatoa habitats, is not needed for their metabolic performance, but rather used as a chemotactic cue by the highly motile filaments to avoid getting lost at depth in the sediment. Indeed sulfide is a repellant for Beggiatoa...... and corresponding high sulfide flux, a typical characteristic of Beggiatoa habitats, is not needed for their metabolic performance, but rather used as a chemotactic cue by the highly motile filaments to avoid getting lost at depth in the sediment. Indeed sulfide is a repellant for Beggiatoa...

  8. Nonequilibrium Thermodynamic Model of Manganese Carbonate Oxidation

    Institute of Scientific and Technical Information of China (English)

    郝瑞霞; 彭省临

    1999-01-01

    Manganese carbonate can be converted to many kinds of manganese oxides when it is aerated in air and oxygen.Pure manganese carbonate can be changed into Mn3O4 and γ-MnOOH,and manganese carbonate ore can be converted to MnO2 under the air-aerating and oxygen-aerating circumstances.The oxidation process of manganese carbonate is a changing process of mineral association,and is also a converting process of valence of manganese itself.Not only equilibrium stat,but also nonequilibrium state are involved in this whole process,This process is an irreversible heterogeneous complex reaction,and oberys the nonequilibrium thermodynamic model,The oxidation rate of manganese cabonate is controlled by many factors,especially nonmanganese metallic ions which play an important role in the oxidation process of manganese carbonate.

  9. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway.

    Science.gov (United States)

    Módis, Katalin; Asimakopoulou, Antonia; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-04-19

    Recent data show that lower concentrations of hydrogen sulfide (H2S), as well as endogenous, intramitochondrial production of H2S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H2S pathway in vitro. Hydrogen peroxide (H2O2, 100-500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H2O2 (50-500 μM) caused a concentration-dependent decrease in production of H2S from 3-MP. In cultured murine hepatoma cells H2O2, (3-100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100-300 nM) was completely abolished by pre-treatment of the cells with H2O2 (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H2S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging. PMID:23537657

  10. Analysis of the electronic dipole polarizability of ions in cubic oxides, fluorides, and sulfides of alkaline earth elements

    International Nuclear Information System (INIS)

    A new approach to calculating the electronic dipole polarizability of ions in crystals which is based on an analysis of the relationship between the electronic dipole polarizability of ion and its effective charge has been proposed. It is shown that applying this method to simple cubic oxides, fluorides, and sulfides of alkaline earth elements yields makes the calculation results consistent with the well-known data on the structure and type of bonds in these compounds.

  11. Sulfur-Oxidizing Bacteria in Soap Lake (Washington State), a Meromictic, Haloalkaline Lake with an Unprecedented High Sulfide Content▿

    OpenAIRE

    Dimitry Y Sorokin; Foti, Mirjam; Pinkart, Holly C.; Muyzer, Gerard

    2006-01-01

    Culture-dependent and -independent techniques were used to study the diversity of chemolithoautotrophic sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake containing an unprecedentedly high sulfide concentration in the anoxic monimolimnion. Both approaches revealed the dominance of bacteria belonging to the genus Thioalkalimicrobium, which are common inhabitants of soda lakes. A dense population of Thioalkalimicrobium (up to 107 cells/ml) was found at t...

  12. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment

    OpenAIRE

    A Ayswarya; Kurian, G. A.

    2016-01-01

    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. Th...

  13. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway

    Energy Technology Data Exchange (ETDEWEB)

    Módis, Katalin [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Asimakopoulou, Antonia [Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras (Greece); Coletta, Ciro [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Papapetropoulos, Andreas [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras (Greece); Szabo, Csaba, E-mail: szabocsaba@aol.com [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States)

    2013-04-19

    Highlights: •Oxidative stress impairs 3-MST-derived H{sub 2}S production in isolated enzyme and in isolated mitochondria. •This impairs the stimulatory bioenergetic effects of H{sub 2}S in hepatocytes. •This has implications for the pathophysiology of diseases with oxidative stress. -- Abstract: Recent data show that lower concentrations of hydrogen sulfide (H{sub 2}S), as well as endogenous, intramitochondrial production of H{sub 2}S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H{sub 2}S pathway in vitro. Hydrogen peroxide (H{sub 2}O{sub 2}, 100–500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H{sub 2}O{sub 2} (50–500 μM) caused a concentration-dependent decrease in production of H{sub 2}S from 3-MP. In cultured murine hepatoma cells H{sub 2}O{sub 2}, (3–100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100–300 nM) was completely abolished by pre-treatment of the cells with H{sub 2}O{sub 2} (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H{sub 2}S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging.

  14. Microbial conversion of inorganic carbon to dimethyl sulfide in anoxic lake sediment (Plußsee, Germany

    Directory of Open Access Journals (Sweden)

    Y.-S. Lin

    2010-04-01

    Full Text Available In anoxic environments, volatile methylated sulfides including methanethiol (MT and dimethyl sulfide (DMS link the pools of inorganic and organic carbon with the sulfur cycle. However, direct formation of methylated sulfides from reduction of dissolved inorganic carbon has previously not been demonstrated. During examination of the hydrogenotrophic microbial activity at different temperatures in the anoxic sediment from Lake Plußsee, DMS formation was detected at 55 °C and was enhanced when bicarbonate was supplemented. Addition of both bicarbonate and H2 resulted in the strongest stimulation of DMS production, and MT levels declined slightly. Addition of methyl-group donors such as methanol and syringic acid or methyl-group acceptors such as hydrogen sulfide did not enhance further accumulation of DMS and MT. The addition of 2-bromoethanesulfonate inhibited DMS formation and caused a slight MT accumulation. MT and DMS had average δ13C values of −55‰ and −62‰, respectively. Labeling with NaH13CO3 showed that incorporation of bicarbonate into DMS occurred through methylation of MT. H235S labeling demonstrated a microbially-mediated, but slow, process of hydrogen sulfide methylation that accounted for <10% of the accumulation rates of DMS. Our data suggest: (1 methanogens are involved in DMS formation from bicarbonate, and (2 the major source of the 13C-depleted MT is neither bicarbonate nor methoxylated aromatic compounds. Other possibilities for isotopically light MT, such as demethylation of 13C-depleted DMS or other organic precursors such as methionine, are discussed. This DMS-forming pathway may be relevant for anoxic environments, such as hydrothermally influenced sediments and fluids and sulfate-methane transition zones in marine sediments.

  15. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

    2014-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  16. Measuring oxygen, carbon monoxide and hydrogen sulfide diffusion coefficient and solubility in Nafion membranes

    International Nuclear Information System (INIS)

    A Devanathan-Stachurski type diffusion cell made from a fuel cell assembly is designed to evaluate the gas transport properties of a proton exchange membrane as a function of cell temperature and gas pressure. Data obtained on this cell using the electrochemical monitoring technique (EMT) is used to estimate solubility and diffusion coefficient of oxygen (O2), carbon monoxide (CO) and hydrogen sulfide (H2S) in Nafion membranes. Membrane swelling and reverse-gas diffusion due to water flux are accounted for in the parameter estimation procedure. Permeability of all three gases was found to increase with temperature. The estimated activation energies for O2, CO and H2S diffusion in Nafion 112 are 12.58, 20 and 8.85 kJ mol-1, respectively. The estimated enthalpies of mixing for O2, CO and H2S in Nafion 112 are 5.88, 3.74 and 7.61 kJ mol-1, respectively. An extensive comparison of transport properties estimated in this study to those reported in the literature suggests good agreement. Oxygen permeability in Nafion 117 was measured as a function of gas pressures between 1 and 3 atm. Oxygen diffusion coefficient in Nafion 117 is invariant with pressure and the solubility increases with pressure and obeys Henry's law. The estimated Henry's constant is 3.5 x 103 atm.

  17. Corrosion behavior of oil tube steel in simulant solution with hydrogen sulfide and carbon dioxide

    International Nuclear Information System (INIS)

    Electrochemical measurement techniques, X-ray diffraction and scanning electron microscopy were applied to investigate the corrosion behavior of N80 tube steel in simulant static solution with carbon dioxide (CO2) and hydrogen sulfide (H2S) at a temperature of 100 deg. C. Sweet corrosion occurred when a very small partial pressure of H2S was added. At this condition, uniform corrosion was found. The added H2S only accelerated the general corrosion rate. Sour corrosion was primary as the partial pressure of H2S increased to 0.010 MPa. The general corrosion rate decreased quickly, but severe pitting was found. The corrosion scale, mainly composed of coarse grains of mackinawite (FeS1-x), was loose and brittle. In sour corrosion, general corrosion rate decreased slowly and pitting became slight with increasing partial pressure of H2S because the primary corrosion product, fine grains of pyrrhotite (FeS1+x), made the scale more compact and continuous

  18. The flux of carbonyl sulfide and carbon disulfide between the atmosphere and a spruce forest

    Directory of Open Access Journals (Sweden)

    X. Xu

    2002-01-01

    Full Text Available Turbulent fluxes of carbonyl sulfide (COS and carbon disulfide (CS2 were measured over a spruce forest in Central Germany using the relaxed eddy accumulation (REA technique. A REA sampler was developed and validated using simultaneous measurements of CO2 fluxes by REA and by eddy correlation. REA measurements were conducted during six campaigns covering spring, summer, and fall between 1997 and 1999. Both uptake and emission of COS and CS2 by the forest were observed, with deposition occurring mainly during the sunlit period and emission mainly during the dark period. On the average, however, the forest acts as a sink for both gases. The average fluxes for COS and CS2 are  -93 ± 11.7 pmol m-2 s-1 and  -18 ± 7.6 pmol m-2 s-1, respectively. The fluxes of both gases appear to be correlated to photosynthetically active radiation and to the CO2 and chem{H_2O} fluxes, supporting the idea that the air-vegetation exchange of both gases is controlled by stomata. An uptake ratio COS/CO2 of 10 ± 1.7 pmol m mol-1 has been derived from the regression line for the correlation between the COS and CO2 fluxes. This uptake ratio, if representative for the global terrestrial net primary production, would correspond to a sink of 2.3 ± 0.5 Tg COS yr-1.

  19. Kinetics and mechanisms of iron sulfide reductions in hydrogen and in carbon monoxide

    Science.gov (United States)

    Wiltowski, T.; Hinckley, C.C.; Smith, Gerard V.; Nishizawa, T.; Saporoschenko, Mykola; Shiley, R.H.; Webster, J.R.

    1987-01-01

    The reduction of iron sulfides by hydrogen and by carbon monoxide has been studied using plug flow and thermogravimetric methods. The reactions were studied in the 523-723??K temperature range and were found to be first-order processes. Plug flow studies were used to correlate reaction rates between pyrite and the gases as a function of the surface area of the pyrite. The rate of H2S formation increases with the surface area of the pyrite sample. The results of thermogravimetric experiments indicate that the reactions consist of several steps. Rate constants for the pyrite reduction by H2 and by CO were obtained. The activation energies increased with degree of reduction. Values of Ea were 113.2 (step I) and 122.5 kJ/mole (step II) for pyrite reduction with CO and 99.4 (step I), 122.4 (step II), 125.2 (step III), and 142.6 kJ/mole (step IV) for pyrite reduction with hydrogen. ?? 1987.

  20. One-pot synthesis of reduced graphene oxide-cadmium sulfide nanocomposite and its photocatalytic hydrogen production.

    Science.gov (United States)

    Zeng, Peng; Zhang, Qinggang; Peng, Tianyou; Zhang, Xiaohu

    2011-12-28

    Reduced graphene oxide (RGO)-cadmium sulfide (CdS) nanocomposites were successfully prepared by a one-pot solvothermal process without pretreatment of graphene oxide (GO) and a precipitation process, in which GO needs to be pre-reduced by hydrazine. The as-obtained RGO-CdS nanocomposites were used as photocatalysts for hydrogen production under visible light irradiation, and it was found that the product derived from the one-pot solvothermal process showed much better photoactivity than that from the precipitation method. PMID:22068902

  1. Catalytic Oxidation of Aryl Alkyl Sulfides Using Immobilized Vanadyl Ions within Nanoreactors of Al-MCM-41

    Institute of Scientific and Technical Information of China (English)

    Zamanifar ELHAM; Farzaneh FAEZEH

    2010-01-01

    VOSO4 immobilized within nanoreactors of Al-MCM-41(VO2+/Al-MCM-41) was synthesized and characterized by X-rav digfraction,Fourier transform infrared spectroscopy,nitrogen adsorption-desorption,and chemical analysis techniques.The prepared VO2+/Al-MCM-41 successfully catalyzes the oxidation of aryl alkyl sulfides and up to 99% conversion and 90% selectivity for the corresponding sulfoxidas were obtained with H2O2 as oxidant in acetonitrile at room temperature in 30 min.

  2. Observations of the uptake of carbonyl sulfide (COS by trees under elevated atmospheric carbon dioxide concentrations

    Directory of Open Access Journals (Sweden)

    L. Sandoval-Soto

    2012-08-01

    Full Text Available Global change forces ecosystems to adapt to elevated atmospheric concentrations of carbon dioxide (CO2. We understand that carbonyl sulfide (COS, a trace gas which is involved in building up the stratospheric sulfate aerosol layer, is taken up by vegetation with the same triad of the enzymes which are metabolizing CO2, i.e. ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, phosphoenolpyruvate carboxylase (PEP-Co and carbonic anhydrase (CA. Therefore, we discuss a physiological/biochemical acclimation of these enzymes affecting the sink strength of vegetation for COS. We investigated the acclimation of two European tree species, Fagus sylvatica and Quercus ilex, grown inside chambers under elevated CO2, and determined the exchange characteristics and the content of CA after a 1–2 yr period of acclimation from 350 ppm to 800 ppm CO2. We demonstrate that a compensation point, by definition, does not exist. Instead, we propose to discuss a point of uptake affinity (PUA. The results indicate that such a PUA, the CA activity and the deposition velocities may change and may cause a decrease of the COS uptake by plant ecosystems, at least as long as the enzyme acclimation to CO2 is not surpassed by an increase of atmospheric COS. As a consequence, the atmospheric COS level may rise causing an increase of the radiative forcing in the troposphere. However, this increase is counterbalanced by the stronger input of this trace gas into the stratosphere causing a stronger energy reflection by the stratospheric sulfur aerosol into space (Brühl et al., 2012. These data are very preliminary but may trigger a discussion on COS uptake acclimation to foster measurements with modern analytical instruments.

  3. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...

  4. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation.

    Science.gov (United States)

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors as a result of hydrogen sulfide (H2S) and low-molecular-weight thiols are commonly encountered in wine production. These odors are usually removed by the process of Cu(II) fining, a process that remains poorly understood. The present study aims to elucidate the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds (RSH) under wine-like conditions. Copper complex formation was monitored along with H2S, thiol, oxygen, and acetaldehyde concentrations after the addition of Cu(II) (50 or 100 μM) to air-saturated model wine solutions containing H2S, cysteine, 6-sulfanylhexan-1-ol, or 3-sulfanylhexan-1-ol (300 μM each). The presence of H2S and thiols in excess to Cu(II) led to the rapid formation of ∼1.4:1 H2S/Cu and ∼2:1 thiol/Cu complexes, resulting in the oxidation of H2S and thiols and reduction of Cu(II) to Cu(I), which reacted with oxygen. H2S was observed to initially oxidize rather than form insoluble copper sulfide. The proposed reaction mechanisms provide insight into the extent to which H2S can be selectively removed in the presence of thiols in wine. PMID:27133282

  5. Zinc oxide nanocubes as a destructive nanoadsorbent for the neutralization chemistry of 2-chloroethyl phenyl sulfide: A sulfur mustard simulant.

    Science.gov (United States)

    Kiani, Armin; Dastafkan, Kamran

    2016-09-15

    Zinc oxide nanocubes were surveyed for their destructive turn-over to decontaminate 2-chloro ethyl phenyl sulfide, a sulfur mustard simulant. Prior to the reaction, nanocubes were prepared through sol-gel method using monoethanolamine, diethylene glycol, and anhydrous citric acid as the stabilizing, cross linking/structure directing agents, respectively. The formation of nanoscale ZnO, the cubic morphology, crystalline structure, and chemical-adsorptive characteristics were certified by FESEM-EDS, TEM-SAED, XRD, FTIR, BET-BJH, H2-TPR, and ESR techniques. Adsorption and destruction reactions were tracked by GC-FID analysis in which the effects of polarity of the media, reaction time, and temperature on the destructive capability of the surface of nanocubes were investigated and discussed. Results demonstrated that maximum neutralization occurred in n-heptane solvent after 1/2h at 55°C. Kinetic study construed that the neutralization reaction followed the pseudo-second order model with a squared correlation coefficient and rate constant of 0.9904 and 0.00004gmg(-1)s(-1), respectively. Furthermore, GC-MS measurement confirmed the formation of 2-hydroxy ethyl phenyl sulfide (2-HEPS) and phenyl vinyl sulfide (PVS) as neutralization products that together with Bronsted and Lewis acid/base approaches exemplify the role of hydrolysis and elimination mechanisms on the surface of zinc oxide nanocubes. PMID:27309947

  6. Purification and characterization of sulfide:quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Wakai, Satoshi; Tsujita, Mizuho; Kikumoto, Mei; Manchur, Mohammed A; Kanao, Tadayoshi; Kamimura, Kazuo

    2007-11-01

    Sulfide:quinone oxidoreductase (SQR) was purified from membrane of acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans NASF-1 cells grown on sulfur medium. It was composed of a single polypeptide with an apparent molecular mass of 47 kDa. The apparent K(m) values for sulfide and ubiquinone were 42 and 14 muM respectively. The apparent optimum pH for the SQR activity was about 7.0. A gene encoding a putative SQR of A. ferrooxidans NASF-1 was cloned and sequenced. The gene was expressed in Escherichia coli as a thioredoxin-fusion protein in inclusion bodies in an inactive form. A polyclonal antibody prepared against the recombinant protein reacted immunologically with the purified SQR. Western blotting analysis using the antibody revealed an increased level of SQR synthesis in sulfur-grown A. ferrooxidans NASF-1 cells, implying the involvement of SQR in elemental sulfur oxidation in sulfur-grown A. ferrooxidans NASF-1 cells. PMID:17986789

  7. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    Science.gov (United States)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  8. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    OpenAIRE

    Bassam Lajin; Francesconi, Kevin A

    2016-01-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ion...

  9. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    Directory of Open Access Journals (Sweden)

    M. E. Whelan

    2015-08-01

    Full Text Available Carbonyl sulfide (COS measurements are one of the emerging tools to better quantify gross primary production (GPP, the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil-COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show small uptake of atmospheric COS. Recently, a series of studies at an agricultural site in the central United States found soil COS production under hot conditions an order of magnitude greater than fluxes at other sites. To investigate the extent of this phenomenon, soils were collected from 5 new sites and incubated in a variety of soil moisture and temperature states. We found that soils from a desert, an oak savannah, a deciduous forest, and a rainforest exhibited small COS fluxes, behavior resembling previous studies. However, soil from an agricultural site in Illinois, > 800 km away from the initial central US study site, demonstrated comparably large soil fluxes under similar conditions. These new data suggest that, for the most part, soil COS interaction is negligible compared to plant uptake of COS. We present a model that anticipates the large agricultural soil fluxes so that they may be taken into account. While COS air-monitoring data are consistent with the dominance of plant uptake, improved interpretation of these data should incorporate the soil flux parameterizations suggested here.

  10. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    Science.gov (United States)

    Whelan, Mary E.; Hilton, Timothy W.; Berry, Joseph A.; Berkelhammer, Max; Desai, Ankur R.; Campbell, J. Elliott

    2016-03-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil-COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show small uptake of atmospheric COS. Recently, a series of studies at an agricultural site in the central United States found soil COS production under hot conditions an order of magnitude greater than fluxes at other sites. To investigate the extent of this phenomenon, soils were collected from five new sites and incubated in a variety of soil moisture and temperature states. We found that soils from a desert, an oak savannah, a deciduous forest, and a rainforest exhibited small COS fluxes, behavior resembling previous studies. However, soil from an agricultural site in Illinois, > 800 km away from the initial central US study site, demonstrated comparably large soil fluxes under similar conditions. These new data suggest that, for the most part, soil COS interaction is negligible compared to plant uptake of COS. We present a model that anticipates the large agricultural soil fluxes so that they may be taken into account. While COS air-monitoring data are consistent with the dominance of plant uptake, improved interpretation of these data should incorporate the soil flux parameterizations suggested here.

  11. 活性炭的改性条件及其对硫化氢吸附性能的影响%Activated carbon modification condition and its influence on the performance of the adsorption of hydrogen sulfide

    Institute of Scientific and Technical Information of China (English)

    刘孝坤; 刘永军

    2012-01-01

    The H2S adsorption breakthrough time and breakthrough capacity of industrial activated carbons which were untreated, modified by NaOH, NaECO3, Fe(NO3)3, Cu(AC)2 impregnant respectively, and treated by oxidation sulfur bacteria biofilm were compared under the same condition. The results indicated that the activated carbon modified by NaOH was significantly better than any other modifier under the same condition. Compared with the modifier at different concentration of NaOH, the activated carbon modified by 20% NaOH had the best effect on the removal of hydrogen sulfide. The breakthrough time and the breakthrough capacity were 78.25 mg/g and 2000 min above respectively. After the oxidation sulfur bacteria biofilm was formed on the modified activated carbon, which had certain effect on the removal of hydrogen sulfide. The saturated activated carbon modified by NaOH can be regenerated by oxidation sulfur bacteria biofilm, and achieve 100% on the removal of hydrogen sulfide. The activated carbon treated by oxidation sulfur bacteria biofilm has a good effect on the removal of hydrogen sulfide.%以工业活性炭为载体制备改性活性炭,对比研究了未改性活性炭,NaOH、Na2CO3、Fe(NO3)3、Cu(Ac)2改性活性炭及挂膜硫氧化细菌后活性炭在相同条件下对硫化氢穿透时间及吸附容量的影响。结果表明:在相同控制条件下,NaOH改性活性炭明显优于其它改性剂;不同梯度改性剂条件下,20%NaOH改性活性炭对硫化氢的吸附效果最好,吸附穿透容量为78.25 mg/g,穿透时间可以达到2000 min以上;不同改性剂挂膜硫氧化细菌后对硫化氢均有一定的处理效果,其中对已达到饱和吸附的NaOH改性活性炭挂膜后的再生效果可以达到100%以上,说明挂膜硫氧化细菌活性炭对硫化氢的处理具有很好的效果。

  12. Proton-capped tripod triphosphines and their oxides and sulfides: Synthesis and characterization

    International Nuclear Information System (INIS)

    Nuclear process solutions typically contain significant quantities of radionuclides and some transition metal elements. These wastes generated at nuclear facilities generally contain mixtures of long-lived and short-lived radioactive elements. The Nuclear Regulator Commission requires that the long-lived α-emitting elements be removed from the waste solutions and safely isolated from the environment. In addition, some components of the radioactive open-quotes wasteclose quotes solutions can be recycled. It is now important that efficient separation schemes is developed to selectively isolate radioactive isotopes. The focus of this work has been to develop ligands that will selectively extract various radio nuclides from waste water streams based on size and electronic properties of the metal ion. It was previously found that the lanthanides and actinides form complexes of the general type, M(NO3)3(L)3 with mono-dentate chelators. It was rationalized that if three mono-dentate chelators would attach to one metal atom, then perhaps one tripodal molecule of the general form HC[(CH2)nP(O)R2]3, with three chelating sites could be used to trap a metal ion. With all of the ligands attached to one molecule, the bite size could then be controlled to add selectivity based on metal ion size. The R-groups attached to the ligand might also be altered to allow for differentiation among ions that are similar in size but different in oxidation state. During the course of this work, a scheme for synthesis of HC(CH2CH2Cl)3, the basic starting material, was developed and was used in the synthesis of HC(CH2CH2PPh2)3, HC(CH2CH2PEt2)3, HC[CH2CH2P(t-Bu)2]3, HC[CH2CH2P(n-Bu)2]3 and HC(CH2CH2CH2P-Ph2)3 with the corresponding oxides and sulfides

  13. Graphene oxide assisted hydrothermal carbonization of carbon hydrates.

    Science.gov (United States)

    Krishnan, Deepti; Raidongia, Kalyan; Shao, Jiaojing; Huang, Jiaxing

    2014-01-28

    Hydrothermal carbonization (HTC) of biomass such as glucose and cellulose typically produces micrometer-sized carbon spheres that are insulating. Adding a very small amount of Graphene oxide (GO) to glucose (e.g., 1:800 weight ratio) can significantly alter the morphology of its HTC product, resulting in more conductive carbon materials with higher degree of carbonization. At low mass loading level of GO, HTC treatment results in dispersed carbon platelets of tens of nanometers in thickness, while at high mass loading levels, free-standing carbon monoliths are obtained. Control experiments with other carbon materials such as graphite, carbon nanotubes, carbon black, and reduced GO show that only GO has significant effect in promoting HTC conversion, likely due to its good water processability, amphiphilicity, and two-dimensional structure that may help to template the initially carbonized materials. GO offers an additional advantage in that its graphene product can act as an in situ heating element to enable further carbonization of the HTC products very rapidly upon microwave irradiation. Similar effect of GO is also observed for the HTC treatment of cellulose. PMID:24298909

  14. Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions.

    Science.gov (United States)

    Suryanto, Bryan H R; Zhao, Chuan

    2016-05-11

    Carbon black (CB) is popularly used as a catalyst support for metal/metal oxide nanoparticles due to its large surface area, excellent conductivity and stability. Herein, we show that surface oxidized CB itself, after acidic treatment and electrochemical oxidation, exhibits significant catalytic activity for the electrochemical oxidation of water and alcohols. PMID:27097802

  15. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  16. Vanadium oxide dissolution in sodium carbonate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cherkashin, V.I.; Doroshenko, V.P.; Goncharov, I.A.; Denisova, G.V. (Zaporozhskij Industrial' nyj Inst. (Ukrainian SSR))

    1983-01-01

    Kinetics of dissolution process of powdered vanadium (5) oxide in sodium carbonate is studied. Activation energy of chemical dissolution of V/sub 2/O/sub 5/ at sodium carbonate concentration up to 0.6 mol/dm/sup 3/ constitutes 35.2 kJ/mol. With sodium carbonate concentration increase the dissolution activation energy decreases to 32.5 kJ/mol. Absolute values of activation energy of the dissolution process, dependence of the reaction order on the temperature in the range of low sodium carbonate concentration, testify to the presence of kinetic difficulties in the process studied. Thus, the process of V/sub 2/O/sub 5/ dissolution in sodium carbonate solutions proceeds in the mixed region and obeys regularities of the mixed kinetics.

  17. Selective Oxidation of Soft Grade Carbon

    Directory of Open Access Journals (Sweden)

    Zecevic, N.

    2007-12-01

    Full Text Available Oil-furnace carbon black is produced by pyrolysis of gaseous or liquid hydrocarbons or their mixtures. The oil feedstock for the production of oil-furnace carbon black is mainly composed of high-boiling aromatic hydrocarbons, which are residues of petroleum cracking, while the gaseous raw material is commonly natural gas. Most of the oil-furnace carbon black production (> 99 % is used as a reinforcing agent in rubber compounds. Occasionally, oil-furnace carbon blacks are used in contact with other rubber compounds and fillers that have different pigments, particularly with the color white. It has been observed that frequently a migrating rubber soluble colorant would enter the white or light colored rubber composition from the adjacent carbon black filled rubber, resulting in a highly undesirable staining effect. Methods for determining non-oxidized residue on the surface of the oil-furnace carbon black include extraction of carbon black with the appropriate organic solvent, and measuring the color of the organic solvent by means of a colorimeter on 425 nm (ASTM D 1618-99. Transmittance values of 85 % or more are indicative of a practically non-staining carbon black, while transmittance values below 50 % generally lead to a carbon black with pronounced staining characteristics. Many oil-furnace carbon blacks, particularly those with a larger particle size (dp > 50 nm which are produced by pyrolysis, have strongly adsorbed non-reacted oil on their surfaces. Upon incorporation in a rubber compound, the colored materials are gradually dissolved by the rubber matrix and migrate freely into adjacent light colored rubber compounds, causing a highly objectionable staining effect. Adjusting furnace parameters in the industrial process of producing specific soft grades of carbon black cannot obtain minimal values of toluene discoloration. The minimal value of toluene discoloration is very important in special applications. Therefore, after-treatment of

  18. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition

    International Nuclear Information System (INIS)

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed.

  19. Diffusion of insoluble carbon in zirconium oxides

    CERN Document Server

    Vykhodets, V B; Koester, U; Kondrat'ev, V V; Kesarev, A G; Hulsen, C; Kurennykh, T E

    2011-01-01

    The diffusion coefficient of insoluble carbon in zirconium oxides has been obtained for the temperature range of 900-1000A degrees C. There are no published data on the diffusion of insoluble impurities; these data are of current interest for the diffusion theory and nuclear technologies. Tracer atoms 13C have been introduced into oxides by means of ion implantation and the kinetics of their emission from the samples in the process of annealing in air has been analyzed. The measurements have been performed using the methods of nuclear microanalysis and X-ray photoelectron spectroscopy. The diffusion activation energy is 2.7 eV and the carbon diffusion coefficient is about six orders of magnitude smaller than that for oxygen self-diffusion in the same systems. This result indicates the strong anomaly of the diffusion properties of carbon in oxides. As a result, zirconium oxides cannot be used in some nuclear technologies, in particular, as a material of sources for accelerators of short-lived carbon isotopes.

  20. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect

    Science.gov (United States)

    Park, G. D.; Cho, J. S.; Kang, Y. C.

    2015-10-01

    Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the 150th cycle of the nickel sulfide/rGO composite powders prepared by sulfidation of the Ni/rGO composite and nickel acetate/GO composite powders at a current density of 0.3 A g-1 are 449 and 363 mA h g-1, respectively; their capacity retentions, calculated from the tenth cycle, are 100 and 87%. The nickel sulfide hollow nanospheres/rGO composite powders possess structural stability over repeated Na-ion insertion and extraction processes, and also show excellent rate performance for Na-ion storage.Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the

  1. Microbial conversion of inorganic carbon to dimethyl sulfide in anoxic lake sediment (Plußsee, Germany

    Directory of Open Access Journals (Sweden)

    Y. S. Lin

    2010-08-01

    Full Text Available In anoxic environments, volatile methylated sulfides like methanethiol (MT and dimethyl sulfide (DMS link the pools of inorganic and organic carbon with the sulfur cycle. However, direct formation of methylated sulfides from reduction of dissolved inorganic carbon has previously not been demonstrated. When studying the effect of temperature on hydrogenotrophic microbial activity, we observed formation of DMS in anoxic sediment of Lake Plußsee at 55 °C. Subsequent experiments strongly suggested that the formation of DMS involves fixation of bicarbonate via a reductive pathway in analogy to methanogenesis and engages methylation of MT. DMS formation was enhanced by addition of bicarbonate and further increased when both bicarbonate and H2 were supplemented. Inhibition of DMS formation by 2-bromoethanesulfonate points to the involvement of methanogens. Compared to the accumulation of DMS, MT showed the opposite trend but there was no apparent 1:1 stoichiometric ratio between both compounds. Both DMS and MT had negative δ13C values of −62‰ and −55‰, respectively. Labeling with NaH13CO3 showed more rapid incorporation of bicarbonate into DMS than into MT. The stable carbon isotopic evidence implies that bicarbonate was fixed via a reductive pathway of methanogenesis, and the generated methyl coenzyme M became the methyl donor for MT methylation. Neither DMS nor MT accumulation were stimulated by addition of the methyl-group donors methanol and syringic acid or by the methyl-group acceptor hydrogen sulphide. The source of MT was further investigated in a H235S labeling experiment, which demonstrated a microbially-mediated process of hydrogen sulfide methylation to MT that accounted for only <10% of the accumulation rates of DMS. Therefore, the major source of the 13C-depleted MT was neither bicarbonate nor methoxylated aromatic compounds. Other possibilities for

  2. Nanocrystalline cobalt oxides for carbon nanotube growth

    Science.gov (United States)

    Guo, Kun; Jayatissa, Ahalapitiya H.; Jayasuriya, Ambalangodage C.

    2007-09-01

    Thin Films of nanocrystalline cobalt oxide were formed by sol-gel method. Structure, optical properties and surface properties of these films were investigated by numerous characterization techniques. These films were successfully fabricated on glass substrates below 500°C. . Micropatterns of cobalt oxide thin films were also fabricated on glass and silicon substrates by employing a lift-off method. Crystal size of these nanocrystalline cobalt films could be successfully controllable by varying the amount of cobalt precursors and number of layers. These films were used as the seeding layers for carbon nanotube growth in a CVD process By changing the concentration of monomer precursors in the solgel coating solutions, different size nanoclusters hence different size carbon nanotubes could be synthesized in CVD process. This method can be used for controlled growth of carbon nanotubes for many different applications. In this paper, detail of these experimental results will be presented.

  3. Electrocatalytic oxidation of carbon monoxide

    Directory of Open Access Journals (Sweden)

    Manuel de Jesus Santiago Farias

    2008-12-01

    Full Text Available This work discusses some important aspects related to the carbon monoxide electrooxidation reaction on Pt single crystal electrodes in acidic media. The mechanistic aspects are discussed in terms of the formation of compact structures developed when CO is adsorbed. The main ideas presented here are focused on the mechanistic aspects that take into account the existence of such structures. The classical kinetic mechanisms of Lagmuir-Hinshelwood and Eley-Rideal are discussed considering the superficial mobility of CO or nucleation-growing of islands formed by oxygen-containing adsorbates.

  4. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    International Nuclear Information System (INIS)

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH

  5. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles.

    Science.gov (United States)

    Bharde, Atul A; Parikh, Rasesh Y; Baidakova, Maria; Jouen, Samuel; Hannoyer, Baetrice; Enoki, Toshiaki; Prasad, B L V; Shouche, Yogesh S; Ogale, Satish; Sastry, Murali

    2008-06-01

    The bacterium Actinobacter sp. has been shown to be capable of extracellularly synthesizing iron based magnetic nanoparticles, namely maghemite (gamma-Fe2O3) and greigite (Fe3S4) under ambient conditions depending on the nature of precursors used. More precisely, the bacterium synthesized maghemite when reacted with ferric chloride and iron sulfide when exposed to the aqueous solution of ferric chloride-ferrous sulfate. Challenging the bacterium with different metal ions resulted in induction of different proteins, which bring about the specific biochemical transformations in each case leading to the observed products. Maghemite and iron sulfide nanoparticles show superparamagnetic characteristics as expected. Compared to the earlier reports of magnetite and greigite synthesis by magnetotactic bacteria and iron reducing bacteria, which take place strictly under anaerobic conditions, the present procedure offers significant advancement since the reaction occurs under aerobic condition. Moreover, reaction end products can be tuned by the choice of precursors used. PMID:18454562

  6. Oxidation reaction of pyrolytic carbon coating

    International Nuclear Information System (INIS)

    The behaviour of pyrolytic carbon coatings on commercial grade graphite substrate in oxidizing environment is described. Specimens were examined under sputtering in plasma of oxygen and argon, or in an oxidizing solution of K2CrO7+H3PO4. Specimens of commercial grade graphite (ATJ) were quickly eroded under these conditions, compared to coated specimens. The erosion rate of the coating is dependent on its thickness and on the mean monticules diameter. The coatings disintegrated in the oxidizing environment in three steps: etching of monticules' boundaries; widening of the boundaries or cracking of the coating; falling off the coating. The degree of erosion decreased with increasing mean monticules diameter and increased where the diameter was non-homogeneous. The resistance of the coating to wear- under these oxidizing conditions- can be enhanced by homogenization of the coating and by its deposition in layered films. (author)

  7. Enantioselective Sulfide Oxidation Catalyzed by 2,10-Camphanediol Derived Titanium Complex and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    ZENG Qing-Le; TANG Hong-Yan; ZHANG Song; LIU Jian-Chuan

    2008-01-01

    Cumyl hydroperoxide (CHP) and tea-butyl hydroperoxide (TBHP) produced (R)- and (S)-sulfoxide in 2,10-camphanediol-titanium catalyzed sulfoxidation, respectively. During kinetic resolution, the salfoxide configu- ration was reversed with CHP, but kept with TBHP. Based on these results and the ESI-MS data, the mechanism of sulfoxidation was proposed to be intramolecular nucleophilic oxygen transfer to a coordinated sulfide.

  8. Structural Evolution of Carbon During Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adel F. Sarofim; Angelo Kandas

    1998-10-28

    The examination of the structural evolution of carbon during oxidation has proven to be of scientific interest. Early modeling work of fluidized bed combustion showed that most of the reactions of interest occurs iOn the micropores, and this work has concentrated on these pores. This work has concentrated on evolution of macroporosity and rnicroporosity of carbons during kinetic controlled oxidation using SAXS, C02 and TEM analysis. Simple studies of fluidized bed combustion of coal chars has shown that many of the events considered fragmentation events previously may in fact be "hidden" or nonaccessible porosity. This makes the study of the microporous combustion characteristics of carbon even more important. The generation of a combustion resistant grid, coupled with measurements of the SAXS and C02 surface areas, fractal analysis and TEM studies has confined that soot particles shrink during their oxidation, as previously suspected. However, this shrinkage results in an overall change in structure. This structure becomes, on a radial basis, much more ordered near the edges, while the center itself becomes transparent to the TEM beam, implying a total lack of structure in this region. Although complex, this carbon structure is probably burning as to keep the density of the soot particles nearly the same. The TEM techniques developed for examination of soots has also been applied to Spherocarb. The Spherocarb during oxidation also increases its ordering,. This ordering, by present theories, would imply that the reactivity would go. However, the reactivity goes up, implying that structure of carbon is secondary in importance to catalytic effects.

  9. Electrocatalytic oxidation of carbon monoxide

    Directory of Open Access Journals (Sweden)

    Manuel de Jesus Santiago Farias

    2009-01-01

    Full Text Available Este trabalho discute alguns aspectos importantes relacionados à reação de eletrooxidação do monóxido de carbono sobre monocristais de platina, em meio ácido. Aspectos mecanísticos são discutidos em termos da formação das estruturas compactas que o CO forma quando este é adsorvido. As principais idéias aqui apresentadas, levam em consideração as existências dessas estruturas. Os clássicos mecanismos Lagmuir-Hinshelwood e Eley-Rideal são aqui discutidos, especialmente o primeiro considerando a mobilidade do CO e também a nucleação e crescimento de ilhas formadas por espécies adsorvidas contendo oxigênio.////////// This work discusses some important aspects related to the carbon monoxide electrooxidation reaction on Pt single crystal electrodes in acidic media. The mechanistic aspects are discussed in terms of the formation of compact structures developed when CO is adsorbed. The main ideas presented here are focused on the mechanistic aspects that take into account the existence of such structures. The classical kinetic mechanisms of Lagmuir-Hinshelwood and Eley-Rideal are discussed considering the superficial mobility of CO or nucleation-growing of islands formed by oxygen-containing adsorbates.

  10. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation

    DEFF Research Database (Denmark)

    Revsbech, Inge G; Shen, Xinggui; Chakravarti, Ritu;

    2014-01-01

    inhibitors of mitochondrial respiration, hydrogen sulfide (H2S) and nitric oxide (NO), in winter-hibernating and summer-active free-ranging Scandinavian brown bears. We found that levels of sulfide metabolites were overall similar in summer-active and hibernating bears but their composition in the plasma...... differed significantly, with a decrease in bound sulfane sulfur in hibernation. High levels of unbound free sulfide correlated with high levels of cysteine (Cys) and with low levels of bound sulfane sulfur, indicating that during hibernation H2S, in addition to being formed enzymatically from the substrate...... Cys, may also be regenerated from its oxidation products, including thiosulfate and polysulfides. In the absence of any dietary intake, this shift in the mode of H2S synthesis would help preserve free Cys for synthesis of glutathione (GSH), a major antioxidant found at high levels in the red blood...

  11. Coating Carbon Nanotubes with Europium Oxide

    Institute of Scientific and Technical Information of China (English)

    Hui Qun CAO; Guang Yan HONG; Jing Hui YAN; Ji Lin ZHANG; Gui Xia LIU

    2003-01-01

    Carbon nanotubes (CNTS) coating with europium oxide by a simple method is reported in this letter for the first time. The CNTS were refluxed in a solution of nitric acid containing europium nitrate, and the pH value was subsequently ajusted with ammonia solution. At last, the mixture was filtered and annealed. The TEM micrograph showed that the CNTS were covered with a uniform thin layer with thickness of about 15 nm. The XRD results revealed that the CNTS were coated with europium oxide.

  12. Functional consortium for denitrifying sulfide removal process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuan [Harbin Inst. of Technology (CN). State Key Lab. of Water Resource and Environment (SKLWRE); Harbin Inst. of Technology (China). School of Municipal and Environmental Engineering; Ren, Nanqi; Wang, Aijie [Harbin Inst. of Technology (CN). State Key Lab. of Water Resource and Environment (SKLWRE); Liu, Lihong [Harbin Inst. of Technology (China). School of Municipal and Environmental Engineering; Lee, Duu-Jong [Harbin Inst. of Technology (CN). State Key Lab. of Water Resource and Environment (SKLWRE); National Taiwan Univ., Taipei (China). Dept. of Chemical Engineering

    2010-03-15

    Denitrifying sulfide removal (DSR) process simultaneously converts sulfide, nitrate, and chemical oxygen demand from industrial wastewaters to elemental sulfur, nitrogen gas, and carbon dioxide, respectively. This investigation utilizes a dilution-to-extinction approach at 10{sup -2} to 10{sup -6} dilutions to elucidate the correlation between the composition of the microbial community and the DSR performance. In the original suspension and in 10{sup -2} dilution, the strains Stenotrophomonas sp., Thauera sp., and Azoarcus sp. are the heterotrophic denitrifiers and the strains Paracoccus sp. and Pseudomonas sp. are the sulfide-oxidizing denitrifers. The 10{sup -4} dilution is identified as the functional consortium for the present DSR system, which comprises two functional strains, Stenotrophomonas sp. strain Paracoccus sp. At 10{sup -6} dilution, all DSR performance was lost. The functions of the constituent cells in the DSR granules were discussed based on data obtained using the dilution-to-extinction approach. (orig.)

  13. Versatile Oxidation Methods for Organic and Inorganic Substrates Catalyzed by Platinum-Group Metals on Carbons.

    Science.gov (United States)

    Sawama, Yoshinari; Asai, Shota; Monguchi, Yasunari; Sajiki, Hironao

    2016-02-01

    Platinum-group metals on activated carbon catalysts, represented by Pd/C, Ru/C, Rh/C, etc., are widely utilized to accomplish green and sustainable organic reactions due to their favorable features, such as easy handling, recoverability, and reusability. The efficient oxidation methods of various organic compounds using heterogeneous platinum-group metals on carbons with or without added oxidants are summarized in this Personal Account. The oxidation of internal alkynes into diketones was effectively catalyzed by Pd/C in the presence of dimethyl sulfoxide and molecular oxygen or pyridine N-oxide. The Pd/C-catalyzed mild combustion of gaseous hydrogen with molecular oxygen provided hydrogen peroxide, which could be directly utilized for the oxidation of sulfide derivatives into sulfoxides. Furthermore, the Ru/C-catalyzed aerobic oxidation of primary and secondary alcohols gave the corresponding aldehydes and ketones, respectively. On the other hand, the dehydrogenative oxidation of secondary alcohols into ketones was achieved using Rh/C in water, and primary alcohols were effectively dehydrogenated by Pd/C in water under mildly reduced pressure to produce carboxylic acids. PMID:26666634

  14. Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content.

    Science.gov (United States)

    Sorokin, Dimitry Y; Foti, Mirjam; Pinkart, Holly C; Muyzer, Gerard

    2007-01-01

    Culture-dependent and -independent techniques were used to study the diversity of chemolithoautotrophic sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake containing an unprecedentedly high sulfide concentration in the anoxic monimolimnion. Both approaches revealed the dominance of bacteria belonging to the genus Thioalkalimicrobium, which are common inhabitants of soda lakes. A dense population of Thioalkalimicrobium (up to 10(7) cells/ml) was found at the chemocline, which is characterized by a steep oxygen-sulfide gradient. Twelve Thioalkalimicrobium strains exhibiting three different phenotypes were isolated in pure culture from various locations in Soap Lake. The isolates fell into two groups according to 16S rRNA gene sequence analysis. One of the groups was closely related to T. cyclicum, which was isolated from Mono Lake (California), a transiently meromictic, haloalkaline lake. The second group, consisting of four isolates, was phylogenetically and phenotypically distinct from known Thioalkalimicrobium species and unique to Soap Lake. It represented a new species, for which we suggest the name Thioalkalimicrobium microaerophilum sp. nov. PMID:17114324

  15. Hydrogen sulfide prodrugs-a review.

    Science.gov (United States)

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-09-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  16. Hydrogen sulfide prodrugs—a review

    Directory of Open Access Journals (Sweden)

    Yueqin Zheng

    2015-09-01

    Full Text Available Hydrogen sulfide (H2S is recognized as one of three gasotransmitters together with nitric oxide (NO and carbon monoxide (CO. As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.

  17. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  18. Catalyst for Carbon Monoxide Oxidation

    Science.gov (United States)

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the

  19. THE C2 OXIDATIVE PHOTOSYNTHETIC CARBON CYCLE.

    Science.gov (United States)

    Tolbert, N. E.

    1997-06-01

    The C2 oxidative photosynthetic carbon cycle plus the C3 reductive photosynthetic carbon cycle coexist. Both are initiated by Rubisco, use about equal amounts of energy, must regenerate RuBP, and result in exchanges of CO2 and O2 to establish rates of net photosynthesis, CO2 and O2 compensation points, and the ratio of CO2 and O2 in the atmosphere. These concepts evolved from research on O2 inhibition, glycolate metabolism, leaf peroxisomes, photorespiration, 18O2/16O2 exchange, CO2 concentrating processes, and a requirement for the oxygenase activity of Rubisco. Nearly 80 years of research on these topics are unified under the one process of photosynthetic carbon metabolism and its self-regulation. PMID:15012254

  20. Carbon and oxide nanostructures. Synthesis, characterisation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Noorhana [Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia). Dept. of Fundamental and Applied Sciences

    2010-07-01

    This volume covers all aspects of carbon and oxide based nanostructured materials. The topics include synthesis, characterization and application of carbon-based namely carbon nanotubes, carbon nanofibres, fullerenes, carbon filled composites etc. In addition, metal oxides namely, ZnO, TiO2, Fe2O3, ferrites, garnets etc., for various applications like sensors, solar cells, transformers, antennas, catalysts, batteries, lubricants, are presented. The book also includes the modeling of oxide and carbon based nanomaterials. The book covers the topics: - Synthesis, characterization and application of carbon nanotubes, carbon nanofibres, fullerenes - Synthesis, characterization and application of oxide based nanomaterials. - Nanostructured magnetic and electric materials and their applications. - Nanostructured materials for petro-chemical industry. - Oxide and carbon based thin films for electronics and sustainable energy. - Theory, calculations and modeling of nanostructured materials. (orig.)

  1. Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton.

    Science.gov (United States)

    Bharwana, Saima Aslam; Ali, Shafaqat; Farooq, Muhammad Ahsan; Ali, Basharat; Iqbal, Naeem; Abbas, Farhat; Ahmad, Muhammad Sajid Aqeel

    2014-01-01

    Poisonous lead (Pb), among heavy metals, is a potential pollutant that readily accumulates in soils and thus adversely affects physiological processes in plants. We have evaluated how exogenous H2S affects cotton plant physiological attributes and Pb uptake under Pb stress thereby understanding the role of H2S in physiological processes in plants. Two concentrations (0 and 200 μM) of H2S donor sodium hydrosulfide (NaHS) were experimented on cotton plants under Pb stress (0, 50, and 100 μM). Results have shown that Pb stress decreased plant growth, chlorophyll contents, SPAD value, photosynthesis, antioxidant activity. On the other hand, Pb stress increased the level of malondialdehyde (MDA), electrolyte leakage (EL), and production of H2O2 and uptake of Pb contents in all three parts of plant, viz. root, stem, and leaf. Application of H2S slightly increased plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity as compared to control. Hydrogen sulfide supply alleviated the toxic effects of lead on plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity in cotton plants. Hydrogen sulfide also reduced MDA, EL, and production of H2O2 and endogenous Pb levels in the three mentioned plant parts. On the basis of our results, we conclude that H2S has promotive effects which could improve plant survival under Pb stress. PMID:23852465

  2. Reducing role of sulfides and diamond formation in the Earth's mantle

    Science.gov (United States)

    Palyanov, Yu. N.; Borzdov, Yu. M.; Bataleva, Yu. V.; Sokol, A. G.; Palyanova, G. A.; Kupriyanov, I. N.

    2007-08-01

    Sulfides are abundant inclusions in diamond, but their role in the diamond genesis is still debatable. To address this issue, experimental modeling of natural diamond-forming processes with the participation of sulfides has been performed with the MgCO 3-SiO 2-Al 2O 3-FeS system at 6.3 GPa in the temperature range of 1250-1800 °C, using a multi-anvil high pressure apparatus of the "split-sphere" type. As a result of redox reactions involving carbonate, oxides and sulfide, diamond and/or graphite are produced in association with garnet, orthopyroxene, coesite and sulfides (pyrite, pyrrhotite). Diamond crystals, formed from the carbon of initial carbonate, are found to contain nitrogen impurity with total concentration of approximately 1500 ppm, and defects related to hydrogen impurity. Based on the experimental data and thermodynamic calculations, the processes of the carbonate-oxide-sulfide interaction are reconstructed, revealing the role of sulfides as a reducing agent for CO 2-fluid. It is established that pyrrhotite acts as the reducing agent irrespective of its aggregate state (solid or melt). At temperatures below melting, pyrrhotite is enriched with sulfur and depleted with iron from FeS to Fe 0.85S. At higher temperatures, sulfide melt is enriched with sulfur and crystallizes as pyrite and pyrrhotite during quenching. The medium in which diamond and/or graphite crystallize is a CO 2-dominated fluid containing dissolved carbon, silicates, oxides and sulfides. The investigated processes and mechanisms of diamond crystallization can be considered as a possible model of the diamond formation in sulfide-bearing paragenesis in mantle metasomatism or UHP metamorphism of crustal material.

  3. Effect of carbon fiber reinforcement on the mechanical and tribological properties of polyamide6/polyphenylene sulfide composites

    International Nuclear Information System (INIS)

    Highlights: ► Carbon fiber was introduced into the PA6/PPS blend. ► Strength, modulus and hardness of the PA6/PPS composites improved apparently. ► Friction coefficient was reduced with the addition of CF into PA6/PPS blend. ► Tribological behavior under different time, load and speed was investigated. ► Practical guidance can be provided for the application of the composites. -- Abstract: Polymer-based composite reinforced by fibrous filler has aroused wide concern in the field of tribology and material science. In this manuscript, the effect of carbon fiber (CF) as filler on the structure, mechanical and tribological properties of the polyamide6/polyphenylene sulfide (PA6/PPS) composites were investigated carefully in order to provide a practical guidance for the use of the polymer-based composites. It was found that the introducing of carbon fibers improved strength, modulus and hardness of the PA6/PPS blend apparently while breaking elongation rate and impact strength just decreased in a small degree. Average friction coefficient value of the carbon fiber-reinforced PA6/PPS composites (PA6/PPS-CF) was lower than PA6/PPS blend at the stable stage. As the content of carbon fiber increased, the wear rate of the PA6/PPS-CF composites trended to increase. Under the friction condition of high applied load or high sliding speed, the friction coefficient of the PA6/PPS-CF composites inclined to decrease while wear rate increased. When slided under a relatively high load of 20 N or high speed of 1500 r/min, the wear resistance of PA6/PPS-CF behaved was better as the content of carbon fiber increased. Scanning electron microscopy of worn surface morphology has revealed that the main wear mechanism of the PA6/PPS-CF composites were adhesive wear.

  4. Integrated Three-Dimensional Carbon Paper/Carbon Tubes/Cobalt-Sulfide Sheets as an Efficient Electrode for Overall Water Splitting.

    Science.gov (United States)

    Wang, Jun; Zhong, Hai-xia; Wang, Zhong-li; Meng, Fan-lu; Zhang, Xin-bo

    2016-02-23

    The development of an efficient catalytic electrode toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of great significance for overall water splitting associated with the conversion and storage of clean and renewable energy. In this study, carbon paper/carbon tubes/cobalt-sulfide is introduced as an integrated three-dimensional (3D) array electrode for cost-effective and energy-efficient HER and OER in alkaline medium. Impressively, this electrode displays superior performance compared to non-noble metal catalysts reported previously, benefiting from the unique 3D array architecture with increased exposure and accessibility of active sites, improved vectorial electron transport capability, and enhanced release of gaseous products. Such an integrated and versatile electrode makes the overall water splitting proceed in a more direct and smooth manner, reducing the production cost of practical technological devices. PMID:26783885

  5. Effect of swine manure dilution on ammonia, hydrogen sulfide, carbon dioxide, and sulfur dioxide releases

    International Nuclear Information System (INIS)

    Animal manure is a significant source of environmental pollution and manure dilution in barn cleaning and slurry storage is a common practice in animal agriculture. The effect of swine manure dilution on releases of four pollutant gases was studied in a 30-day experiment using eight manure reactors divided into two groups. One group was treated with swine manure of 6.71% dry matter and another with manure diluted with water to 3.73% dry matter. Ammonia release from the diluted manure was 3.32 mg min-1 m-2 and was 71.0% of the 4.67 mg min-1 m-2 from the undiluted manure (P -1 m-2 from the diluted manure was 56.4% of the 154.8 mg min-1 m-2 from the undiluted manure (P 0.05) for both hydrogen sulfide and sulfur dioxide releases. Therefore, dilution could also significantly increase the total releases of hydrogen sulfide and sulfur dioxide to the environment because dilution adds to the total manure volume and usually also increases the total gas release surface area.

  6. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    Science.gov (United States)

    Lajin, Bassam; Francesconi, Kevin A.

    2016-06-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools.

  7. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.

    Science.gov (United States)

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors arising during wine production are frequently removed by Cu(II) fining. In part 1 of this study ( 10.1021/acs.jafc.6b00641 ), the reaction of H2S and thiols with Cu(II) was examined; however, the interaction of iron and copper is also known to play an important synergistic role in mediating non-enzymatic wine oxidation. The interaction of these two metals in the oxidation of H2S and thiols (cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol) was therefore examined under wine-like conditions. H2S and thiols (300 μM) were reacted with Fe(III) (100 or 200 μM) alone and in combination with Cu(II) (25 or 50 μM), and concentrations of H2S and thiols, oxygen, and acetaldehyde were monitored over time. H2S and thiols were shown to be slowly oxidized in the presence of Fe(III) alone and were not bound to Fe(III) under model wine conditions. However, Cu(II) added to model wine containing Fe(III) was quickly reduced by H2S and thiols to form Cu(I) complexes, which then rapidly reduced Fe(III) to Fe(II). Oxidation of Fe(II) in the presence of oxygen regenerated Fe(III) and completed the iron redox cycle. In addition, sulfur-derived oxidation products were observed, and the formation of organic polysulfanes was demonstrated. PMID:27133088

  8. Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution.

    Science.gov (United States)

    Esmaili-Hafshejani, Javad; Nezamzadeh-Ejhieh, Alireza

    2016-10-01

    Photocatalytic activity of the coupled ZnO-CuO and ZnS-CuS semiconductors supported onto clinoptilolite nanoparticles (CNP) and micronized one (CMP) was studied in photodegradation of benzophenone (BP) aqueous solution. The ZnO-CuO/CNP (or MCP) and ZnS-CuS/CNP (or MCP) catalysts were prepared via calcination and sulfiding of their Zn(II)-Cu(II) ion-exchanged samples, respectively. XRD patterns confirmed loading of the mentioned semiconductors onto the zeolite, and nano dimension of the catalysts was confirmed by XRD and TEM results. Typical Tauc plots obtained from UV-vis DRS spectra showed red shifts for the band gap energies of the supported coupled semiconductors with respect to the supported monocomponent ones especially for ZnO/NCP and ZnS/NCP catalysts. Also, in both indirect and direct transitions, these red shifts were more considerable in the oxidic systems with respect to the sulfidic systems. Accordingly, the supported oxidic systems showed better photocatalytic activity than the sulfidic one. In the oxidic systems changing the dose of CuO played important role while in the sulfidic systems ZnS played considerable role in the degradation of BP. In the used systems, CuO and ZnS played the main e/h generators in the oxidic and sulfidic systems, respectively, while ZnO and CuS played the preventer e/h recombination. Based on the results, production of e/h is the rate limiting step in the used systems. The maximum degradation activity of the catalysts was obtained at: 0.12gL(-1) of ZnO0.80-CuO3.18/NCP and 0.10gL(-1) of ZnS1.39-CuS2.88/NCP catalysts, initial BP concentration of 30mgL(-1) at pH 7.5. PMID:27235827

  9. Adsorption/oxidation of sulfur-containing gases on nitrogen-doped activated carbon

    Directory of Open Access Journals (Sweden)

    Liu Qiang

    2016-01-01

    Full Text Available Coconut shell-based activated carbon (CAC was used for the removal of methyl mercaptan (MM. CAC was modified by urea impregnation and calcined at 450°C and 950°C. The desulfurization activity was determined in a fixed bed reactor under room temperature. The results showed that the methyl mercaptan adsorption/oxidation capacity of modified carbon caicined at 950°C is more than 3 times the capacity of original samples. On the other hand, the modified carbon caicined at 950°C also has a high capacity for the simultaneous adsorption/oxidation of methyl mercaptan and hydrogen sulfide.The introduce of basic nitrogen groups siginificantly increases the desulfurization since it can facilitate the electron transfer process between sulfur and oxygen. The structure and chemical properties are characterized using Boehm titration, N2 adsorption-desorption method, thermal analysis and elemental analysis. The results showed that the major oxidation products were dimethyl disulfide and methanesulfonic acid which adsorbed in the activated carbon.

  10. Carbon steel protection in G.S. (Girlder sulfide) heavy water fabrication plants. Control of iron content at the final stage of passivation. Pt. 10

    International Nuclear Information System (INIS)

    This paper is part of a series which corresponds to the carbon steel behaviour as construction material for Girlder sulfide (G.S.) heavy water plants. The present work analyses the iron concentration study during passivation in the passivating fluid. At the beginning, during the formation of the most soluble sulfide -that is the mackinawite-, the iron concentration reaches more than 10 ppm. After some days, this iron concentration begins to decrease up to its stabilization under 0.1 ppm. This process, which occurs in the 9th. and 11th days, indicates that passivation is over, and that a pyrite and pyrrhotite-pyrite layer exists on the iron. Some differences exist between the results obtained and those previsible for the iron sulfides solubilities. In spite of these difficulties, the procedure is perfectly adequate to judge the passivation final stage. (Author)

  11. A peroxotungstate-ionic liquid brush assembly: an efficient and reusable catalyst for selectively oxidizing sulfides with aqueous H2O2 solution in neat water

    International Nuclear Information System (INIS)

    An efficient and reusable heterogeneous catalytic assembly of peroxotungstate held in a ionic liquid (IL) brush was synthesized and an environmentally-friendly procedure was developed for selective oxidation of sulfides at room temperature using 30 wt.% hydrogen peroxide as the terminal oxidant and water as a sole solvent. No organic co-solvent or other additive was needed. A 1.5-2.0 mol% (based on W atom) loading catalyst was found to be sufficient for a smooth and clean reaction. Both aliphatic and aromatic sulfides were efficiently and selectively transformed into their respective sulfoxides or sulfones by simply controlling of equivalents of hydrogen peroxide. In addition to the high catalytic activity, the catalyst exhibits excellent chemoselectivity. Sensitive functional groups, such as double bond and hydroxyl, remained under the oxidation conditions the reaction even with an excess hydrogen peroxide. The catalyst was easily recovered (via simple filtration) and reused at least eight times without a noticeable loss of activity. (author)

  12. Oxidation of carbon monoxide by perferrylmyoglobin

    DEFF Research Database (Denmark)

    Libardi, Silvia H; Skibsted, Leif Horsfelt; Cardoso, Daniel R

    2014-01-01

    Perferrylmyoglobin is found to oxidize CO in aerobic aqueous solution to CO2. Tryptophan hydroperoxide in the presence of tetra(4-sulfonatophenyl)-porphyrinate-iron(III) or simple iron(II)/(III) salts shows similar reactivity against CO. The oxidation of CO is for tryptophan hydroperoxide concluded...... to depend on the formation of alkoxyl radicals by reductive cleavage by iron(II) or on the formation of peroxyl radicals by oxidative cleavage by iron(III). During oxidation of CO, the tryptophan peroxyl radical was depleted with a rate constant of 0.26 ± 0.01 s(-1) for CO-saturated aqueous solution of pH 7.......4 at 25 °C without concomitant reduction of the iron(IV) center. Carbon monoxide is as a natural metabolite accordingly capable of scavenging tryptophan radicals in myoglobin activated by peroxides with a second-order rate constant of (3.3 ± 0.6) × 10(2) L mol(-1) s(-1), a reaction that might...

  13. Iron sulfide attenuates the methanogenic toxicity of elemental copper and zinc oxide nanoparticles and their soluble metal ion analogs.

    Science.gov (United States)

    Gonzalez-Estrella, Jorge; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A

    2016-04-01

    Elemental copper (Cu(0)) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu(0) and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25-75μm) and coarse (500 to 1200μm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu(0) and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu(0) NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excess of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu(0) and ZnO NPs and their soluble ion analogs to methanogens. PMID:26803736

  14. Formation of "Chemically Pure" Magnetite from Mg-Fe-Carbonates Implications for the Exclusively Inorganic Origin of Magnetite and Sulfides in Martian Meteorite ALH84001

    Science.gov (United States)

    Golden, D. C.; Ming, Douglas W.; Lauer, H. V., Jr.; Morris, R. V.; Trieman, A. H.; McKay, G. A.

    2006-01-01

    Magnetite and sulfides in the black rims of carbonate globules in Martian meteorite ALH84001 have been studied extensively because of the claim by McKay et al. that they are biogenic in origin. However, exclusively inorganic (abiotic) processes are able to account for the occurrence of carbonate-sulfide-magnetite assemblages in the meteorite. We have previously precipitated chemically zoned and sulfide-bearing carbonate globules analogous to those in ALH84001 (at less than or equal to 150 C) from multiple fluxes of variable-composition Ca-Mg-Fe-CO2-S-H2O solutions. Brief heating of precipitated globules to approx. 470 C produced magnetite and pyrrhotite within the globules by thermal decomposition of siderite and pyrite, respectively. We have also shown that morphology of magnetite formed by inorganic thermal decomposition of Fe-rich carbonate is similar to the morphology of so-called biogenic magnetite in the carbonate globules of ALH84001. Magnetite crystals in the rims of carbonate globules in ALH84001 are chemically pure [Note: "Chemically pure" is defined here as magnetite with Mg at levels comparable or lower than Mg detected by [8] in ALH84001 magnetite]. A debate continues on whether or not chemically pure magnetite can form by the thermal decomposition of mixed Mg-Fe-carbonates that have formed under abiotic conditions. Thomas-Keprta et al. argue that it is not possible to form Mg-free magnetite from Mg-Fe-carbonate based on thermodynamic data. We previously suggested that chemically pure magnetite could form by the thermal decomposition of relatively pure siderite in the outer rims of the globules. Mg-Fe-carbonates may also thermally decompose under conditions conducive for formation of chemically pure magnetite. In this paper we show through laboratory experiments that chemically pure magnetite can form by an inorganic process from mixed Mg-Fe-carbonates.

  15. Sulfide elimination by intermittent nitrate dosing in sewer sediments

    Institute of Scientific and Technical Information of China (English)

    Yanchen Liu; Chen Wu; Xiaohong Zhou; David Z.Zhu; Hanchang Shi

    2015-01-01

    The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards,and requires expensive programs for its prevention.The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments.The study was carried out based on lab-scale experiments and batch tests using real sewer sediments.The intermittent nitrate dosing mode and the optimal control condition were investigated.The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment.The oxidation-reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S (nitrate/sulfide)ratio with slight excess nitrate is necessary for optimal conditions ofefficient sulfide control with lower carbon source loss.The opth-nal control condition is feasible for the sulfide elimination in sewer systems.

  16. Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments

    DEFF Research Database (Denmark)

    Schippers, A.; Jørgensen, BB

    2001-01-01

    Oxidation of pyrite (FeS2) under anaerobic conditions in marine sediments is experimentally shown for the first time. In slurry experiments with (FeS2)-Fe-55 and a MnO2 rich marine sediment an oxidation of (FeS2)-Fe-55 was detected which decreased with depth and decreasing concentration of MnO2 i...

  17. Facile covalent immobilization of cadmium sulfide quantum dots on graphene oxide nanosheets: preparation, characterization, and optical properties

    International Nuclear Information System (INIS)

    A facile approach for the preparation of a novel hybrid material containing graphene and an inorganic semiconducting material, cadmium sulfide quantum dots (CdS QDs), is demonstrated for the first time. First, amino-functionalized CdS QDs were prepared by modifications of the kinetic trapping method. Then, pristine graphite was oxidized and exfoliated to obtain graphene oxide nanosheets (GONS), which were then acylated with thionyl chloride to introduce acyl chloride groups on their surface. Subsequently, immobilization of the CdS QDs on the GONS surface was achieved through an amidation reaction between the amino groups located on the CdS QDs surface and the acyl chloride groups bound to the GONS surface. Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H-NMR), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and energy dispersive x-ray (EDX) spectroscopy were employed to investigate the changes in the surface functionalities, while high resolution transmission electron microscopy (HR-TEM) and field emission scanning electronic microscopy (FE-SEM) were used to study the morphologies and distribution of the CdS QDs on the GONS surface. Thermogravimetric analysis (TGA) was employed to characterize the weight loss of the samples on heating. Photoluminescence (PL) measurements were used to study the optical properties of the prepared CdS QDs and the CdS-graphene hybrid material.

  18. Influence of increasing dissolved inorganic carbon concentrations and decreasing pH on chemolithoautrophic bacteria from oxic-sulfidic interfaces

    Science.gov (United States)

    Mammitzsch, K.; Jost, G.; Jürgens, K.

    2012-12-01

    Increases in the dissolved inorganic carbon (DIC) concentration are expected to cause a decrease in the pH of ocean waters, a process known as ocean acidification. In oxygen-deficient zones this will add to already increased DIC and decreased pH values. It is not known how this might affect microbial communities and microbially mediated processes. In this study, the potential effects of ocean acidification on chemolithoautotrophic prokaryotes of marine oxic-anoxic transition zones were investigated, using the chemoautotrophic denitrifying ɛ-proteobacterium "Sulfurimonas gotlandica" strain GD1 as a model organism. This and related taxa use reduced sulfur compounds, e.g. sulfide and thiosulfate, as electron donors and were previously shown to be responsible for nitrate removal and sulfide detoxification in redox zones of the Baltic Sea water column but occur also in other oxygen-deficient marine systems. Bacterial cell growth within a broad range of DIC concentrations and pH values was monitored and substrate utilization was determined. The results showed that the DIC saturation concentration for growth was already reached at 800 μM, which is well below in situ DIC levels. The pH optimum was between 6.6 and 8.0. Within a pH range of 6.6-7.1 there was no significant difference in substrate utilization; however, at lower pH values cell growth decreased sharply and cell-specific substrate consumption increased. These findings suggest that a direct effect of ocean acidification, with the predicted changes in pH and DIC, on chemolithoautotrophic bacteria such as "S. gotlandica" str. GD1 is generally not very probable.

  19. Influence of increasing dissolved inorganic carbon concentrations and decreasing pH on chemolithoautrophic bacteria from oxic-sulfidic interfaces

    Directory of Open Access Journals (Sweden)

    K. Mammitzsch

    2012-12-01

    Full Text Available Increases in the dissolved inorganic carbon (DIC concentration are expected to cause a decrease in the pH of ocean waters, a process known as ocean acidification. In oxygen-deficient zones this will add to already increased DIC and decreased pH values. It is not known how this might affect microbial communities and microbially mediated processes. In this study, the potential effects of ocean acidification on chemolithoautotrophic prokaryotes of marine oxic-anoxic transition zones were investigated, using the chemoautotrophic denitrifying ε-proteobacterium "Sulfurimonas gotlandica" strain GD1 as a model organism. This and related taxa use reduced sulfur compounds, e.g. sulfide and thiosulfate, as electron donors and were previously shown to be responsible for nitrate removal and sulfide detoxification in redox zones of the Baltic Sea water column but occur also in other oxygen-deficient marine systems. Bacterial cell growth within a broad range of DIC concentrations and pH values was monitored and substrate utilization was determined. The results showed that the DIC saturation concentration for growth was already reached at 800 μM, which is well below in situ DIC levels. The pH optimum was between 6.6 and 8.0. Within a pH range of 6.6–7.1 there was no significant difference in substrate utilization; however, at lower pH values cell growth decreased sharply and cell-specific substrate consumption increased. These findings suggest that a direct effect of ocean acidification, with the predicted changes in pH and DIC, on chemolithoautotrophic bacteria such as "S. gotlandica" str. GD1 is generally not very probable.

  20. Carbonyl sulfide hydrolase from Thiobacillus thioparus strain THI115 is one of the β-carbonic anhydrase family enzymes.

    Science.gov (United States)

    Ogawa, Takahiro; Noguchi, Keiichi; Saito, Masahiko; Nagahata, Yoshiko; Kato, Hiromi; Ohtaki, Akashi; Nakayama, Hiroshi; Dohmae, Naoshi; Matsushita, Yasuhiko; Odaka, Masafumi; Yohda, Masafumi; Nyunoya, Hiroshi; Katayama, Yoko

    2013-03-13

    Carbonyl sulfide (COS) is an atmospheric trace gas leading to sulfate aerosol formation, thereby participating in the global radiation balance and ozone chemistry, but its biological sinks are not well understood. Thiobacillus thioparus strain THI115 can grow on thiocyanate (SCN(-)) as its sole energy source. Previously, we showed that SCN(-) is first converted to COS by thiocyanate hydrolase in T. thioparus strain THI115. In the present work, we purified, characterized, and determined the crystal structure of carbonyl sulfide hydrolase (COSase), which is responsible for the degradation of COS to H2S and CO2, the second step of SCN(-) assimilation. COSase is a homotetramer composed of a 23.4 kDa subunit containing a zinc ion in its catalytic site. The amino acid sequence of COSase is homologous to the β-class carbonic anhydrases (β-CAs). Although the crystal structure including the catalytic site resembles those of the β-CAs, CO2 hydration activity of COSase is negligible compared to those of the β-CAs. The α5 helix and the extra loop (Gly150-Pro158) near the N-terminus of the α6 helix narrow the substrate pathway, which could be responsible for the substrate specificity. The k(cat)/K(m) value, 9.6 × 10(5) s(-1) M(-1), is comparable to those of the β-CAs. COSase hydrolyzes COS over a wide concentration range, including the ambient level, in vitro and in vivo. COSase and its structurally related enzymes are distributed in the clade D in the phylogenetic tree of β-CAs, suggesting that COSase and its related enzymes are one of the catalysts responsible for the global sink of COS. PMID:23406161

  1. Ductile mode electrochemical oxidation assisted micromachining for glassy carbon

    International Nuclear Information System (INIS)

    Recently, a new mechanical machining process using electrochemical oxidation was reported. Electrochemical oxidation assisted micromachining was applied to the machining of glassy carbon. The material removal process of the electrochemical oxidation assisted micromachining consists of repeated cycles of oxidation followed by removal of the oxide layer. In this paper, we experimentally investigate and compare the critical chip thickness for ductile mode cutting in mechanical machining and electrochemical oxidation assisted micromachining of glassy carbon. The theoretical critical chip thickness is calculated for mechanical machining of glassy carbon and experimentally verified. The effect of electrochemical oxidation on the critical chip thickness for ductile mode micromachining is also studied for glassy carbon. It is found that the critical chip thickness is increased for the electrochemical oxidation assisted micromachining. (paper)

  2. Amorphous flower-like molybdenum-sulfide-@-nitrogen-doped-carbon-nanofiber film for use in the hydrogen-evolution reaction.

    Science.gov (United States)

    Zhang, Xiaoyan; Li, Libo; Guo, Yaxiao; Liu, Dong; You, Tianyan

    2016-06-15

    A novel amorphous flower-like molybdenum sulfides@nitrogen doped carbon nanofibers (MoSx@NCNFs) films are successfully synthesized by combining electrospinning, carbonization and a mild hydrothermal process. NCNFs, as a conductive substrate, can accelerate the electron transfer rate and depress the aggregation of MoSx nanoparticles. The resultant amorphous flower-like MoSx on NCNFs exposes abundant S(2-)/S2(2-) active edge sites which is of great importance for hydrogen evolution reaction (HER) catalytic performance. Electrochemical measurements demonstrate the superior electrocatalytic activity of MoSx@NCNFs toward HER deriving from the synergistic effect between NCNFs and amorphous MoSx. The overpotential is only 137mV to reach the current density of 10mAcm(-2) with a Tafel slope of 41mVdecade(-1) at MoSx@NCNFs. Meanwhile, MoSx@NCNFs exhibits satisfactory long-time stability for HER. Noteworthy, the obtained composites show a free-standing structure which can be directly used as electrode materials. This work provides a feasible way to design promising noble-metal free electrocatalysts in the aspect of energy conversion. PMID:27015391

  3. Hydrogen Sulfide Promotes Wheat Seed Germination and Alleviates Oxidative Damage against Copper Stress

    Institute of Scientific and Technical Information of China (English)

    Hua Zhang; Lan-Ying Hu; Kang-Di Hu; Yun-Dong He; Song-Hua Wang; Jian-Ping Luo

    2008-01-01

    With the enhancement of copper (Cu) stress, the germination percentage of wheat seeds decreased gradually. Pretreatment with sodium hydrosulfide (NaHS), hydrogen sulfide (H2S) donor alleviated the inhibitory effect of Cu stress in a dose-dependent manner; whereas little visible symptom was observed in germinating seeds and radicle tips cultured in NaHs solutions. It was verified that H2S or HS- rather than other sulfur-containing components derived from NaHs attribute to the potential role in promoting seed germination against Cu stress. Further studies showed that NaHS could promote amylase and esterase activities, reduce Cu-induced disturbance of plasma membrane integrity in the radicle tips, and sustain lower levels of malondialdehyde and H2O2 in germinating seeds. Furthermore, NaHs pretreatment increased activities of superoxide dismutase and catalase and decreased that of lipoxygenase, but showed no significant effect on ascorbate peroxidase. Alternatively, NaHs prevented uptake of Cu and promoted the accumulation of free amino acids in seeds exposed to Cu. In addition, a rapid accumulation of endogenous H2S in seeds was observed at the early stags of germination, and higher level of H2S in NaHS-pretreated seeds. These data indicated that H2S was involved in the mechanism of germinating seeds' responses to Cu stress.

  4. Design and synthesis of chiral Ti-1,1'-bi-2-naphthol coordination polymers for heterogeneous catalytic asymmetric oxidation of sulfides

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-ya; WANG Xiao-tian

    2008-01-01

    Polymer-immobilized catalysis has many advantages such as easy recovery and reuse of catalyst. We prepared three novel chiral 1,1'-bi-2-naphthol-Ti coordination polymers with properly designed ligands and Ti(OiPr)4 under mild conditions. The prepared polymers exhibited good activity and excellent enantioselectivity (over 99%ee) in catalyzing the asymmetric oxidation of sulfides. The bridge linker in the polymer and the reaction solvent noticeably affected the enantioselectivity. The chiral coordination polymer was very stable and easy to separate from catalyzed reaction systems, with no significant loss of activity or enantioselectivity after reuse for at least ten times. These findings suggest a promising type of catalysts for synthesizing the widely used sulfoxides by asymmetrically oxidizing sulfides.

  5. Determination of carbon in amorphous carbon and uranium monocarbide by oxidation with lead(IV) oxide, copper(II) oxide or barium sulfate in an inert atmosphere

    International Nuclear Information System (INIS)

    Oxidation behavior was studied on amorphous carbon and carbon in uranium monocarbide when lead(IV) oxide, copper(II) oxide and barium sulfate were used as the oxidizing fluxes in helium. The amorphous carbon and the carbon in the carbide were completely extracted with lead oxide in 5 min at 10000C and in 8 min at 700 and 5000C, respectively. Carbon in two samples was quantitatively extracted at 10000C with copper oxide in 8 and 5 min, and with barium sulfate in 7 and 5 min, respectively. The rate of extraction of carbon with copper oxide decreased with decreasing temperature. It was found that the mixing ratio of the oxidizing flux to the amorphous carbon or carbide gave effect on the recovery of carbon. The conventional capillary-trap method which is used for the determination of carbon has a disadvantage that, when carbon dioxide is caught in a cold trap (liquid nitrogen), oxygen is also trapped. This disadvantage was eliminated when a stream of helium was used in place of oxygen. Carbon in the sample can be determined with lead oxide, copper oxide or barium sulfate by extracting carbon dioxide at 10000C for 10 min. (auth.)

  6. A mathematical model for the bacterial oxidation of a sulfide ore concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, S.; Dahlstrom, D. (Univ. of Utah, Salt Lake City, UT (United States). Dept. of Chemical Engineering); Oolman, T. (Radian Corp., Austin, TX (United States))

    1994-03-05

    The effect of dilution rate and feed solids concentration on the bacterial leaching of a pyrite/arsenopyrite ore concentrate was studied. A mathematical model was developed for the process based on the steady-state data collected over the range of dilution rates (20 to 110 h) and feed solids concentrations (6 to 18% w/v) studied. A modified Monod model with inhibition by arsenic was used to model bacterial ferrous ion oxidation rates. The model assumes that (1) pyrite and arsenopyrite leaching occurs solely by the action of ferric iron produced from the bacterial oxidation of ferrous iron and (2) bacterial growth rates are proportional to ferrous ion oxidation rate. The equilibrium among the various ionic species present in the leach solution that are likely to have a significant effect on the bioleach process were included in the model.

  7. Abundances of Hyperthermophilic Autotrophic Fe(III) Oxide Reducers and Heterotrophs in Hydrothermal Sulfide Chimneys of the Northeastern Pacific Ocean ▿ †

    OpenAIRE

    Ver Eecke, Helene C.; Kelley, Deborah S.; Holden, James F.

    2008-01-01

    The abundances of hyperthermophilic heterotrophs, methanogens, and autotrophic reducers of amorphous Fe(III) oxide in 18 samples of deep-sea hydrothermal vent sulfide chimneys of the Endeavour Segment were measured. The results indicate that conditions favor the growth of iron reducers toward the interiors of these deposits and that of heterotrophs toward the outer surfaces near high-temperature polychaete worms (Paralvinella sulfincola).

  8. Abundances of Hyperthermophilic Autotrophic Fe(III) Oxide Reducers and Heterotrophs in Hydrothermal Sulfide Chimneys of the Northeastern Pacific Ocean ▿ †

    Science.gov (United States)

    Ver Eecke, Helene C.; Kelley, Deborah S.; Holden, James F.

    2009-01-01

    The abundances of hyperthermophilic heterotrophs, methanogens, and autotrophic reducers of amorphous Fe(III) oxide in 18 samples of deep-sea hydrothermal vent sulfide chimneys of the Endeavour Segment were measured. The results indicate that conditions favor the growth of iron reducers toward the interiors of these deposits and that of heterotrophs toward the outer surfaces near high-temperature polychaete worms (Paralvinella sulfincola). PMID:18978076

  9. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments

    DEFF Research Database (Denmark)

    Jørgensen, BB; Bottcher, ME; Luschen, H.;

    2004-01-01

    deposits, most of the methane-derived H2S is drawn downward to a sulfidization front where it reacts with Fe(III) and with Fe 21 diffusing up from below. The H2S-Fe2+ transition is marked by a black band of amorphous iron sulfide above which distinct horizons of greigite and pyrite formation occur. The...

  10. Magnesium oxide inserts for the LECO Carbon Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Bagaasen, L.M.; Jensen, C.M.

    1991-01-16

    LECO carbon analysis of plutonium metal and plutonium oxide at the Rocky Flats Plant generates several hundred kilograms of high silica residues each year. The plutonium in these residues is difficult and expensive to recover using production dissolution processes. A magnesium oxide (MgO) insert has been developed that significantly lowers the plutonium recovery costs without adversely affecting accuracy of the carbon analysis.

  11. Kinetics and mechanism of nitric oxidation of carbon black

    International Nuclear Information System (INIS)

    After some generalities about carbon blacks (preparation by various processes, structure, industrial use), the author notices that carbon black is often dispersed in aqueous solutions and, as it is hydrophobic, must therefore be submitted to treatment to become hydrophilic. Oxidation in liquid phase suits perfectly, and oxidation by nitric acid gives good results. Thus, this research thesis reports the study of the oxidation reaction mechanism in the case of oxidation of carbon black by nitric acid in aqueous solution. After having defined the different types of carbon blacks used in this study, and given an overview of the oxidation process (methods, purification and purity control of the obtained blacks, determination of the efficiency in terms of oxidised or purified black, difficulties faced during the elemental analysis of oxidised blacks), the author discusses the mechanism of formation of carbon dioxide during the oxidation of Philblack 0 carbon black by nitric acid. He reports the study of the oxidation kinetics, and the study of a thermal treatment of oxidised carbon blacks. The last part reports the study of the evolution of various properties of carbon blacks during oxidation: specific surface (BET method), density, examination by electronic microscopy and X-rays, magnetic susceptibility

  12. Whole-cell oxidation of omeprazole sulfide to enantiopure esomeprazole with Lysinibacillus sp B71

    Czech Academy of Sciences Publication Activity Database

    Babiak, Petr; Kyslíková, Eva; Štěpánek, Václav; Valešová, Renata; Palyzová, Andrea; Marešová, Helena; Hájíček, J.; Kyslík, Pavel

    2011-01-01

    Roč. 102, č. 17 (2011), s. 7621-7626. ISSN 0960-8524 R&D Projects: GA MŠk 2B08064 Institutional research plan: CEZ:AV0Z50200510 Keywords : Biotransformation * Asymmetric oxidation * Esomeprazole Subject RIV: EE - Microbiology, Virology Impact factor: 4.980, year: 2011

  13. Inhibition of trichloroethylene oxidation by the transformation intermediate carbon monoxide.

    OpenAIRE

    Henry, S M; Grbić-Galić, D

    1991-01-01

    Inhibition of trichloroethylene (TCE) oxidation by the transformation intermediate carbon monoxide (CO) was evaluated with the aquifer methanotroph Methylomonas sp. strain MM2. CO was a TCE transformation intermediate. During TCE oxidation, approximately 9 mol% of the TCE was transformed to CO. CO was oxidized by Methylomonas sp. strain MM2, and when formate was provided as an electron donor, the CO oxidation rate doubled. The rate of CO oxidation without formate was 4.6 liter mg (dry weight)...

  14. Changes in plasma hydrogen sulfide and nitric oxide levels and their clinical significance in children with Kawasaki disease

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hui; ZHANG Chao-ying; WU Jian-xin; ZHANG Ting

    2011-01-01

    Background Cardiac involvement is the most common complication of Kawasaki disease (KD); however,the underlying mechanisms are not understood.The present study was designed to investigate changes in plasma hydrogen sulfide (H2S) and nitric oxide (NO) levels in the acute and recovery stages of KD children and to examine their clinical significance.Methods Thirty-five KD patients and 32 healthy children were enrolled in the study.KD patients were divided into two subgroups:a non-cardiac involvement group and a cardiac involvement group.Plasma H2S levels were measured using the sulfur-sensitive electrode method and plasma NO levels and NO synthase activity were determined using the nitrate reductase method both before and after intravenous immune globulin (IVIG) therapy.Results Plasma H2S levels significantly decreased in KD patients during the acute phase of the disease and NO levels were significantly increased,compared with the control group (P <0.01).After treatment with IVIG,both plasma H2S and NO levels significantly increased (P <0.01).The plasma levels of H2S were significantly lower in the cardiac involvement group compared with the non-cardiac involvement group (P<0.05).Conclusion H2S and NO may play a role in the pathophysiological process of inflammation during the acute phase of KD.Endogenous H2S may exert protective effects with respect to cardiac complications in KD.

  15. In site bioimaging of hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral root formation.

    Directory of Open Access Journals (Sweden)

    Yan-Jun Li

    Full Text Available Hydrogen sulfide (H2S is an important gasotransmitter in mammals. Despite physiological changes induced by exogenous H2S donor NaHS to plants, whether and how H2S works as a true cellular signal in plants need to be examined. A self-developed specific fluorescent probe (WSP-1 was applied to track endogenous H2S in tomato (Solanum lycopersicum roots in site. Bioimaging combined with pharmacological and biochemical approaches were used to investigate the cross-talk among H2S, nitric oxide (NO, and Ca(2+ in regulating lateral root formation. Endogenous H2S accumulation was clearly associated with primordium initiation and lateral root emergence. NO donor SNP stimulated the generation of endogenous H2S and the expression of the gene coding for the enzyme responsible for endogenous H2S synthesis. Scavenging H2S or inhibiting H2S synthesis partially blocked SNP-induced lateral root formation and the expression of lateral root-related genes. The stimulatory effect of SNP on Ca(2+ accumulation and CaM1 (calmodulin 1 expression could be abolished by inhibiting H2S synthesis. Ca(2+ chelator or Ca(2+ channel blocker attenuated NaHS-induced lateral root formation. Our study confirmed the role of H2S as a cellular signal in plants being a mediator between NO and Ca(2+ in regulating lateral root formation.

  16. AC Conduction and Time-Temperature Superposition Scaling in a Reduced Graphene Oxide-Zinc Sulfide Nanocomposite.

    Science.gov (United States)

    Chakraborty, Koushik; Das, Poulomi; Chakrabarty, Sankalpita; Pal, Tanusri; Ghosh, Surajit

    2016-05-18

    We report, herein, the results of an in depth study and concomitant analysis of the AC conduction [σ'(ω): f=20 Hz to 2 MHz] mechanism in a reduced graphene oxide-zinc sulfide (RGO-ZnS) composite. The magnitude of the real part of the complex impedance decreases with increase in both frequency and temperature, whereas the imaginary part shows an asymptotic maximum that shifts to higher frequencies with increasing temperature. On the other hand, the conductivity isotherm reveals a frequency-independent conductivity at lower frequencies subsequent to a dispersive conductivity at higher frequencies, which follows a power law [σ'(ω)∝ω(s) ] within a temperature range of 297 to 393 K. Temperature-independent frequency exponent 's' indicates the occurrence of phonon-assisted simple quantum tunnelling of electrons between the defects present in RGO. Finally, this sample follows the "time-temperature superposition principle", as confirmed from the universal scaling of conductivity isotherms. These outcomes not only pave the way for increasing our elemental understanding of the transport mechanism in the RGO system, but will also motivate the investigation of the transport mechanism in other order-disorder systems. PMID:26864678

  17. Hydrogen sulfide oxidation in novel Horizontal-Flow Biofilm Reactors dominated by an Acidithiobacillus and a Thiobacillus species.

    Science.gov (United States)

    Gerrity, S; Kennelly, C; Clifford, E; Collins, G

    2016-09-01

    Hydrogen Sulfide (H2S) is an odourous, highly toxic gas commonly encountered in various commercial and municipal sectors. Three novel, laboratory-scale, Horizontal-Flow Biofilm Reactors (HFBRs) were tested for the removal of H2S gas from air streams over a 178-day trial at 10°C. Removal rates of up to 15.1 g [H2S] m(-3) h(-1) were achieved, demonstrating the HFBRs as a feasible technology for the treatment of H2S-contaminated airstreams at low temperatures. Bio-oxidation of H2S in the reactors led to the production of H(+) and sulfate (SO(2-)4) ions, resulting in the acidification of the liquid phase. Reduced removal efficiency was observed at loading rates of 15.1 g [H2S] m(-3) h(-1). NaHCO3 addition to the liquid nutrient feed (synthetic wastewater (SWW)) resulted in improved H2S removal. Bacterial diversity, which was investigated by sequencing and fingerprinting 16S rRNA genes, was low, likely due to the harsh conditions prevailing in the systems. The HFBRs were dominated by two species from the genus Acidithiobacillus and Thiobacillus. Nonetheless, there were significant differences in microbial community structure between distinct HFBR zones due to the influence of alkalinity, pH and SO4 concentrations. Despite the low temperature, this study indicates HFBRs have an excellent potential to biologically treat H2S-contaminated airstreams. PMID:26829048

  18. Production of hydrogen sulfide from tetrathionate by the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1.

    Science.gov (United States)

    Ng, K Y; Kamimura, K; Sugio, T

    2000-01-01

    When incubated under anaerobic conditions, five strains of Thiobacillus ferrooxidans tested produced hydrogen sulfide (H2S) from elemental sulfur at pH 1.5. However, among the strains, T. ferrooxidans NASF-1 and AP19-3 were able to use both elemental sulfur and tetrathionate as electron acceptors for H2S production at pH 1.5. The mechanism of H2S production from tetrathionate was studied with intact cells of strain NASF-1. Strain NASF-1 was unable to use dithionate, trithionate, or pentathionate as an electron acceptor. After 12 h of incubation under anaerobic conditions at 30 degrees C, 1.3 micromol of tetrathionate in the reaction mixture was decomposed, and 0.78 micromol of H2S and 0.6 micromol of trithionate were produced. Thiosulfate and sulfite were not detected in the reaction mixture. From these results, we propose that H2S is produced at pH 1.5 from tetrathionate by T. ferrooxidans NASF-1, via the following two-step reaction, in which AH2 represents an unknown electron donor in NASF-1 cells. Namely, tetrathionate is decomposed by tetrathionate-decomposing enzyme to give trithionate and elemental sulfur (S4O6(2-)-->S3O6(2-) + S(o), Eq. 1), and the elemental sulfur thus produced is reduced by sulfur reductase using electrons from AH2 to give H2S (S(o) + AH2-->H2S + A, Eq. 2). The optimum pH and temperature for H2S production from tetrathionate under argon gas were 1.5 and 30 degrees C, respectively. Under argon gas, the H2S production from tetrathionate stopped after 1 d of incubation, producing a total of 2.5 micromol of H2S/5 mg protein. In contrast, under H2 conditions, H2S production continued for 6 d, producing a total of 10.0 micromol of H2S/5 mg protein. These results suggest that electrons from H2 were used to reduce elemental sulfur produced as an intermediate to give H2S. Potassium cyanide at 0.5 mM slightly inhibited H2S production from tetrathionate, but increased that from elemental sulfur 3-fold. 2,4-Dinitrophenol at 0.05 mM, carbonylcyanide

  19. The effect of aerobic corrosion on anaerobically-formed sulfide layers on carbon steel in dilute near-neutral pH saline solutions

    International Nuclear Information System (INIS)

    Highlights: •The corrosion rate is low when steel is exposed to anaerobic conditions (pH = 8.9). •An anaerobic corrosion with sulfide to aerobic switch increases the corrosion rate. •Aerobic conditions leads to corrosion and oxide deposition beneath FeS. •Continual air exposure leads to the blistering of the original FeS film. -- Abstract: The aerobic corrosion of pipeline steel was investigated in an aqueous sulfide solution by monitoring the corrosion potential and periodically measuring the polarization resistance. The properties and composition of the corrosion product deposits formed were determined using scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy. The establishment of aerobic conditions leads to corrosion and (oxyhydr)oxide deposition beneath the anaerobically-formed mackinawite film originally present on the steel surface. This leads to blistering and spalling of the sulfide film. Chemical conversion of the mackinawite to Fe(III) (oxyhydr)oxides also occurs but is a relatively slow reaction

  20. Development of carbon nanotube and graphite filled polyphenylene sulfide based bipolar plates for all-vanadium redox flow batteries

    Science.gov (United States)

    Caglar, Burak; Fischer, Peter; Kauranen, Pertti; Karttunen, Mikko; Elsner, Peter

    2014-06-01

    In this study, synthetic graphite and carbon nanotube (CNT) filled polyphenylene sulfide (PPS) based bipolar plates are produced by using co-rotating twin-screw extruder and injection molding. Graphite is the main conductive filler and CNTs are used as bridging filler between graphite particles. To improve the dispersion of the fillers and the flow behavior of the composite, titanate coupling agent (KR-TTS) is used. The concentration effect of CNTs and coupling agent on the properties of bipolar plates are examined. At 72.5 wt.% total conductive filler concentration, by addition of 2.5 wt.% CNT and 3 wt.% KR-TTS; through-plane and in-plane electrical conductivities increase from 1.42 S cm-1 to 20 S cm-1 and 6.4 S cm-1 to 57.3 S cm-1 respectively compared to sample without CNTs and additive. Extruder torque value and apparent viscosity of samples decrease significantly with coupling agent and as a result; the flow behavior is positively affected. Flexural strength is improved 15% by addition of 1.25 wt.% CNT. Differential scanning calorimeter (DSC) analysis shows nucleating effect of conductive fillers on PPS matrix. Corrosion measurements, cyclic voltammetry and galvanostatic charge-discharge tests are performed to examine the electrochemical stability and the performance of produced bipolar plates in all-vanadium redox flow battery.

  1. Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanced visible light driven photocatalytic performance.

    Science.gov (United States)

    Chen, Xi; Li, Huankun; Wu, Yuxin; Wu, Hanshuo; Wu, Laidi; Tan, Pengfei; Pan, Jun; Xiong, Xiang

    2016-08-15

    In this work, a novel organic-inorganic heterostructured photocatalyst: porous graphitic carbon nitride (g-C3N4) hybrid with copper sulfide (CuS) had been synthesized via a precipitation-deposition method at low temperature for the first time. UV-vis spectroscopy revealed the porous g-C3N4/CuS nanocomposites showed a strong and broad visible light absorption. Furthermore, the g-C3N4/CuS nanocomposites showed higher photocatalytic activity in the photodegradation of various organic dyes than that of pure g-C3N4 and CuS, and the selected sample of g-C3N4/CuS-2 exhibited the best photocatalytic activity under visible light. The good photocatalytic activity could be ascribed to the matching of the g-C3N4 and CuS band gap energies. Besides, photoluminescent spectra and photoelectrochemical measurements also proved that the CuS/g-C3N4 could greatly enhance the charge generation and suppress the charge recombination of photogenerated carriers. According to the experimental result, a possible photocatalytic mechanism has been proposed. Due to the high stability, the porous g-C3N4/CuS could be applied in the field of environmental remediation. Our work highlights that coupling semiconductors with well-matched band energies provides a facile way to improve the photocatalytic activity. PMID:27209398

  2. First-Principles Studies of Transition Metal Oxides and Sulfides in Electrochemical Energy Storage Applications

    OpenAIRE

    Liu, Chi-Ping

    2015-01-01

    Unlike batteries, electrochemical supercapacitors require not only high energy density, but also very high rates of charge and ionic transport. In this thesis, first-principles calculations, such as Density Functional Theory (DFT), Molecular Dynamics (MD), and Monte Carlo (MC) are applied to study charge storage mechanisms and factors that affect ion intercalation / diffusion in transition metal compounds (Nb2O5, WO3, and MoS2).Recent experimental results show that niobium oxide exhibits an o...

  3. Copper-cerium oxides supported on carbon nanomaterial for preferential oxidation of carbon monoxide

    Institute of Scientific and Technical Information of China (English)

    高美怡; 江楠; 赵宇宏; 徐长进; 苏海全; 曾尚红

    2016-01-01

    The CuxO-CeO2/Fe@CNSs, CuxO-CeO2/MWCNTs-Co and CuxO-CeO2/MWCNTs-Ni catalysts were prepared by the im-pregnation method and characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffrac-tion, H2-temperature programmed reduction and N2 adsorption-desorption techniques. It was found that the Fe nanoparticles were encapsulated into the multi-layered carbon nanospheres (CNSs). However, the multi-wall carbon nanotubes (MWCNTS) were generated on the Co/Al2O3 and Ni/Al2O3 precursor. The addition of carbon nanomaterial as supports could improve structural properties and low-temperature activity of the CuO-CeO2 catalyst, and save the used amount of metal catalysts in the temperature range with high selectivity for CO oxidation. The copper-cerium oxides supported on carbon nanomaterial had good resistence to H2O and CO2.

  4. Interaction of terbium group metal oxides with carbon

    International Nuclear Information System (INIS)

    Mechanism of carbothermal reduction of terbium group metals from oxides is investigated using thermodynamic and kinetic analyses. Interaction of metal oxides with carbon covers dissociation of metal oxides and reduction by carbon monoxide, which contribution into general reduction depends on CO pressure. Temperatures of reaction beginning for batch initial components at P=1.3x10-4 and PCO=0.1 MPa and of formation of oxycarbide melts are determined

  5. Polarity and structure peculiarities of trialkylphosphine oxides, sulfides, selenides and tellurides

    International Nuclear Information System (INIS)

    Using the quantum-chemical calculations structural characteristics of trialkylphosphine oxides, sulfates, selenides and tellurides (Alk3P=X; X O, S, Se, Te) are obtained, which are in good agreement with literature X-ray structural analysis and gas-phase electron diffraction data. The P=X bonds polarity is determined in the framework of vector-additive scheme on the base of experimental data on components dipole moments and using different base series of molecules geometry parameters. It is shown that increasing of bond moment P=X in the X = O, S, Se, Te series takes place through dipole length increasing

  6. Sulfide ore looping oxidation : an innovative process that is energy efficient and environmentally friendly

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, L.F.; Balliett, R.; Mozolic, J.A. [Orchard Material Technology, North Andover, MA (United States)

    2008-07-01

    Many sulphide ore processing methods use different types of roasting technologies. These technologies are generally quite effective, however, they represent significant energy use and environmental cost. This paper discussed and validated the use of a two-step looping oxidation process that effectively removes sulphur while producing materials of adequate purity in an energy efficient and environmentally sound manner. This paper described the process in detail and compared it to existing technologies in the area of energy efficiency, and off-gas treatment energy requirements. Validation of the looping oxidation concept was described and the starting chemistries of each chemical were listed. Thermodynamic modeling was used to determine the temperature at which the reaction should begin and to predict the temperature at which the reaction should be complete. The test apparatus and run conditions were also described. It was concluded that there are several critical stages in the looping process where energy recovery is economically attractive and could easily be directed or converted for other plant operations. All reactions were fast and efficient, allowing for reduced equipment size as well as higher throughput rates. 11 refs., 3 tabs., 2 figs.

  7. Carbon mediated catalysis:A review on oxidative dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    De Chen; Anders Holmen; Zhijun Sui; Xinggui Zhou

    2014-01-01

    Carbon mediated catalysis has gained an increasing attention in both areas of nanocatalysis and nanomaterials. The progress in carbon nanomaterials provides many new opportunities to manip-ulate the types and properties of active sites of catalysts through manipulating structures, function-alities and properties of carbon surfaces. The present review focuses on progresses in carbon medi-ated oxidative dehydrogenation reactions of ethylbenzene, propane, and butane. The state-of-the-art of the developments of carbon mediated catalysis is discussed in terms of fundamental studies on adsorption of oxygen and hydrocarbons, reaction mechanism as well as effects of carbon nano-material structures and surface functional groups on the catalytic performance. We highlight the importance and challenges in tuning of the electron density of carbon and oxygen on carbon surfac-es for improving selectivity in oxidative dehydrogenation reactions.

  8. Hydrogen Sulfide Regulates Ca2+ Homeostasis Mediated by Concomitantly Produced Nitric Oxide via a Novel Synergistic Pathway in Exocrine Pancreas

    Science.gov (United States)

    Moustafa, Amira

    2014-01-01

    Abstract Aim: The present study was designed to explore the effects of hydrogen sulfide (H2S) on Ca2+ homeostasis in rat pancreatic acini. Results: Sodium hydrosulfide (NaHS; an H2S donor) induced a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner. The NaHS-induced [Ca2+]i elevation persisted with an EC50 of 73.3 μM in the absence of extracellular Ca2+ but was abolished by thapsigargin, indicating that both Ca2+ entry and Ca2+ release contributed to the increase. The [Ca2+]i increase was markedly inhibited in the presence of NG-monomethyl L-arginine or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), and diaminofluorescein-2/diaminofluorescein-2 triazole (DAF-2/DAF-2T) fluorometry demonstrated that nitric oxide (NO) was also produced by H2S in a dose-dependent manner with an EC50 of 64.8 μM, indicating that NO was involved in the H2S effect. The H2S-induced [Ca2+]i increase was inhibited by pretreatment with U73122, xestospongin C, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, KT5823, and GP2A, indicating that phospholipase C (PLC), the inositol 1,4,5-trisphosphate (IP3) receptor, soluble guanylate cyclase (sGC), protein kinase G (PKG), and Gq-protein play roles as intermediate components in the H2S-triggered intracellular signaling. Innovation: To our knowledge, our study is the first one highlighting the effect of H2S on intracellular Ca2+ dynamics in pancreatic acinar cells. Moreover, a novel cascade was presumed to function via the synergistic interaction between H2S and NO. Conclusion: We conclude that H2S affects [Ca2+]i homeostasis that is mediated by H2S-evoked NO production via an endothelial nitric oxide synthase (eNOS)-NO-sGC-cyclic guanosine monophosphate-PKG-Gq-protein-PLC-IP3 pathway to induce Ca2+ release, and this pathway is identical to the one we recently proposed for a sole effect of NO and the two gaseous molecules synergistically function to regulate Ca2+ homeostasis

  9. Oxidation of ultra low carbon and silicon bearing steels

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Lucia [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: lucia.suarez@ctm.com.es; Rodriguez-Calvillo, Pablo [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: pablo.rodriguez@ctm.com.es; Houbaert, Yvan [Department of Materials Science and Engineering, University of Ghent (Belgium)], E-mail: Yvan.Houbaert@UGent.be; Colas, Rafael [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)], E-mail: rcolas@mail.uanl.mx

    2010-06-15

    Oxidation tests were carried out in samples from an ultra low carbon and two silicon bearing steels to determine the distribution and morphology of the oxide species present. The ultra low carbon steel was oxidized for short periods of time within a chamber designed to obtain thin oxide layers by controlling the atmosphere, and for longer times in an electric furnace; the silicon steels were reheated only in the electric furnace. The chamber was constructed to study the behaviour encountered during the short period of time between descaling and rolling in modern continuous mills. It was found that the oxide layers formed on the samples reheated in the electric furnace were made of different oxide species. The specimens treated in the chamber had layers made almost exclusively of wustite. Selected oxide samples were studied by scanning electron microscopy to obtain electron backscattered diffraction patterns, which were used to identify the oxide species in the layer.

  10. Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Polyacrylonitrile (PAN) and zinc precursor were electrospun and heat-treated for preparing zinc oxide (ZnO) modified carbon nanofibers (CNF). • A facile synthesis of composite webs resulted in uniformly loaded ZnO on the surface of CNFs. • The composites showed significant hydrogen sulfide adsorption efficiency at 300 °C. • The flexible webs can be applied for mid-temperature desulfurization. - Abstract: Polyacrylonitrile (PAN) derived carbon nanofiber (CNF) webs loaded with zinc oxide (ZnO) were synthesized using electrospinning and heat treatment at 600 °C. Uniformly dispersed ZnO nanoparticles, clarified by X-ray diffraction and scanning electron microscopy, were observed on the surface of the nanofiber composites containing 13.6–29.5 wt% of ZnO. The further addition of ZnO up to 34.2 wt% caused agglomeration with a size of 50–80 nm. Higher ZnO contents led the concentrated ZnO nanoparticles on the surface of the nanofibers rather than uniform dispersion along the cross-section of the fiber. The flexible composite webs were crushed and tested for hydrogen sulfide (H2S) adsorption at 300 °C. Breakthrough experiments with the ZnO/CNF composite containing 25.7 wt% of ZnO for H2S adsorption showed three times higher ZnO utilization efficiency compared to pure ZnO nano powders, attributed to chemisorption of the larger surface area of well dispersed ZnO particles on nanofibers and physical adsorption of CNF

  11. Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soojung; Bajaj, Bharat [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Byun, Chang Ki; Kwon, Soon-Jin [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Joh, Han-Ik [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Lee, Sungho, E-mail: sunghol@kist.re.kr [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Department of Nano Material Engineering, University of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-11-30

    Graphical abstract: - Highlights: • Polyacrylonitrile (PAN) and zinc precursor were electrospun and heat-treated for preparing zinc oxide (ZnO) modified carbon nanofibers (CNF). • A facile synthesis of composite webs resulted in uniformly loaded ZnO on the surface of CNFs. • The composites showed significant hydrogen sulfide adsorption efficiency at 300 °C. • The flexible webs can be applied for mid-temperature desulfurization. - Abstract: Polyacrylonitrile (PAN) derived carbon nanofiber (CNF) webs loaded with zinc oxide (ZnO) were synthesized using electrospinning and heat treatment at 600 °C. Uniformly dispersed ZnO nanoparticles, clarified by X-ray diffraction and scanning electron microscopy, were observed on the surface of the nanofiber composites containing 13.6–29.5 wt% of ZnO. The further addition of ZnO up to 34.2 wt% caused agglomeration with a size of 50–80 nm. Higher ZnO contents led the concentrated ZnO nanoparticles on the surface of the nanofibers rather than uniform dispersion along the cross-section of the fiber. The flexible composite webs were crushed and tested for hydrogen sulfide (H{sub 2}S) adsorption at 300 °C. Breakthrough experiments with the ZnO/CNF composite containing 25.7 wt% of ZnO for H{sub 2}S adsorption showed three times higher ZnO utilization efficiency compared to pure ZnO nano powders, attributed to chemisorption of the larger surface area of well dispersed ZnO particles on nanofibers and physical adsorption of CNF.

  12. Solar Hydrogen Production from Zinc Telluride Photocathode Modified with Carbon and Molybdenum Sulfide.

    Science.gov (United States)

    Jang, Youn Jeong; Lee, Jaehyuk; Lee, Jinwoo; Lee, Jae Sung

    2016-03-30

    A zinc telluride (ZnTe) film modified with MoS2 and carbon has been studied as a new photocathode for solar hydrogen production from photoelectrochemical (PEC) water splitting. The modification enhances PEC activity and stability of the photocathode. Thus, the MoS2/C/ZnTe/ZnO electrode exhibits highly improved activity of -1.48 mA cm(-2) at 0 VRHE with a positively shifted onset potential up to 0.3 VRHE relative to bare ZnO/ZnTe electrode (-0.19 mA cm(-2), 0.18 VRHE) under the simulated 1 sun illumination. This represents the highest value ever reported for ZnTe-based electrodes in PEC water splitting. The carbon densely covers the surface of ZnTe to protect it against photocorrosion in aqueous electrolyte and improves charge separation. In addition, MoS2 further enhances the PEC performance as a hydrogen evolution co-catalyst. PMID:26909873

  13. Laminar shear flow increases hydrogen sulfide and activates a nitric oxide producing signaling cascade in endothelial cells.

    Science.gov (United States)

    Huang, Bin; Chen, Chang-Ting; Chen, Chi-Shia; Wang, Yun-Ming; Hsieh, Hsyue-Jen; Wang, Danny Ling

    2015-09-01

    Laminar shear flow triggers a signaling cascade that maintains the integrity of endothelial cells (ECs). Hydrogen sulfide (H2S), a new gasotransmitter is regarded as an upstream regulator of nitric oxide (NO). Whether the H2S-generating enzymes are correlated to the enzymes involved in NO production under shear flow conditions remains unclear as yet. In the present study, the cultured ECs were subjected to a constant shear flow (12 dyn/cm(2)) in a parallel flow chamber system. We investigated the expression of three key enzymes for H2S biosynthesis, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercapto-sulfurtransferase (3-MST). Shear flow markedly increased the level of 3-MST. Shear flow enhanced the production of H2S was determined by NBD-SCN reagent that can bind to cysteine/homocystein. Exogenous treatment of NaHS that can release gaseous H2S, ECs showed an increase of phosphorylation in Akt(S473), ERK(T202/Y204) and eNOS(S1177). This indicated that H2S can trigger the NO-production signaling cascade. Silencing of CSE, CBS and 3-MST genes by siRNA separately attenuated the phosphorylation levels of Akt(S473) and eNOS(S1177) under shear flow conditions. The particular mode of shear flow increased H2S production. The interplay between H2S and NO-generating enzymes were discussed in the present study. PMID:26212441

  14. Effects of carbonyl sulfide (COS) and carbonic anhydrase on stomatal conductance

    Science.gov (United States)

    Yakir, D.; Stimler, K.; Berry, J. A.

    2011-12-01

    The potential use of COS as tracer of the gross, one-way, CO2 flux into plants is based on its co-diffusion with CO2 into leaves without outflux stimulated research on COS-CO2 interactions during leaf gas exchange. We carried out gas exchange measurements of COS and CO2 in 22 plant species representing deciduous and evergreen trees, grasses, and shrubs, under a range of light intensities and ambient COS concentrations, using mid IR laser spectroscopy. A narrow range in the normalized ratio of the net uptake rates of COS (As) and CO2 (Ac; As/Ac*[CO2]/[COS]) was observed, with a mean value of 1.61±0.26. These results reflect the dominance of stomatal conductance over both COS and CO2 uptake, imposing a relatively constant ratio between the two fluxes (except under low light conditions when CO2, but not COS, metabolism is light limited). A relatively constant ratio under common ambient conditions will facilitate the application of COS as a tracer of gross photosynthesis from leaf to global scales. However, its effect on stomatal conductance may require a special attention. Increasing COS concentrations between 250 and 2800 pmol mol-1 (enveloping atmospheric levels) seems to stimulate stomatal conductance. We examined the stimulation of conductance by COS in a range of species and show that there is a large variation with some species showing almost no response while others are highly responsive (up to doubling stomatal conductance). Using C3 and C4 plants with antisense lines abolishing carbonic anhydrase activity, we show that the activity of this enzyme is essential for both the uptake of COS and the enhancement of stomatal conductance by COS. Since carbonic anhydrase catalyzes the conversion of COS to CO2 and H2S it seems likely that the stomata are responding to H2S produced in the mesophyll. In all natural species examined the uptake of COS and CO2 were highly correlated, and there was no relationship between the sensitivity of stomata and the rate of COS uptake

  15. SULFIDE METHOD PLUTONIUM SEPARATION

    Science.gov (United States)

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  16. Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal

    Science.gov (United States)

    Huang, Liangliang; Seredych, Mykola; Bandosz, Teresa J.; van Duin, Adri C. T.; Lu, Xiaohua; Gubbins, Keith E.

    2013-11-01

    The determination of an atomistic graphene oxide (GO) model has been challenging due to the structural dependence on different synthesis methods. In this work we combine temperature-programmed molecular dynamics simulation techniques and the ReaxFF reactive force field to generate realistic atomistic GO structures. By grafting a mixture of epoxy and hydroxyl groups to the basal graphene surface and fine-tuning their initial concentrations, we produce in a controllable manner the GO structures with different functional groups and defects. The models agree with structural experimental data and with other ab initio quantum calculations. Using the generated atomistic models, we perform reactive adsorption calculations for H2S and H2O/H2S mixtures on GO materials and compare the results with experiment. We find that H2S molecules dissociate on the carbonyl functional groups, and H2O, CO2, and CO molecules are released as reaction products from the GO surface. The calculation reveals that for the H2O/H2S mixtures, H2O molecules are preferentially adsorbed to the carbonyl sites and block the potential active sites for H2S decomposition. The calculation agrees well with the experiments. The methodology and the procedure applied in this work open a new door to the theoretical studies of GO and can be extended to the research on other amorphous materials.

  17. Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal

    International Nuclear Information System (INIS)

    The determination of an atomistic graphene oxide (GO) model has been challenging due to the structural dependence on different synthesis methods. In this work we combine temperature-programmed molecular dynamics simulation techniques and the ReaxFF reactive force field to generate realistic atomistic GO structures. By grafting a mixture of epoxy and hydroxyl groups to the basal graphene surface and fine-tuning their initial concentrations, we produce in a controllable manner the GO structures with different functional groups and defects. The models agree with structural experimental data and with other ab initio quantum calculations. Using the generated atomistic models, we perform reactive adsorption calculations for H2S and H2O/H2S mixtures on GO materials and compare the results with experiment. We find that H2S molecules dissociate on the carbonyl functional groups, and H2O, CO2, and CO molecules are released as reaction products from the GO surface. The calculation reveals that for the H2O/H2S mixtures, H2O molecules are preferentially adsorbed to the carbonyl sites and block the potential active sites for H2S decomposition. The calculation agrees well with the experiments. The methodology and the procedure applied in this work open a new door to the theoretical studies of GO and can be extended to the research on other amorphous materials

  18. Simulating Geologic Co-sequestration of Carbon Dioxide and Hydrogen Sulfide in a Basalt Formation

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Diana H.; Ramanathan, Ramya; Schaef, Herbert T.; McGrail, B. Peter

    2014-01-15

    Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (Water, Multiple Components, Salt and Energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years.

  19. Hollow-spherical composites of Polyaniline/Cobalt Sulfide/Carbon nanodots with enhanced magnetocapacitance and electromagnetic wave absorption capabilities

    Science.gov (United States)

    Ge, Chuanjun; Zhang, Xiang; Liu, Jian; Jin, Feng; Liu, Jichang; Bi, Hong

    2016-08-01

    Hollow-spherical composites of polyaniline/cobalt sulfide/carbon nanodots (PANI/CoS/CDs-0.5T) have been synthesized by in situ polymerization under an applied magnetic field (MF) of 0.5 T. As a control, PANI/CoS/CDs-0T composites have been synthesized without a MF. Both composites acting as electrodes present obvious magnetocapacitances at a scan rate of 100 mV s-1 while the electrochemical cell tested under an external MF of 0.5 T. Notably, PANI/CoS/CDs-0.5T composites show larger magnetocapacitances than PANI/CoS/CDs-0T composites at different scan rates from 5 to 100 mV s-1. Electrochemical impedance spectroscopy (EIS) results indicate that MF can reduce charge transfer resistance at electrode/electrolyte interface. More importantly, PANI/CoS/CDs-0.5T composites show a much stronger electromagnetic wave (EMW) absorbing capability than PANI/CoS/CDs-0T in the range of 2-18 GHz which is attributed to an increased dielectric loss and a magnetic loss in low frequency range of 2-12.5 GHz. MF-induced ferromagnetic nanodomains of Co2+ clusters in the PANI/CoS/CDs-0.5T composites increase the complex permittivity and create more interfacial polarizations or the Maxwell-Wagner effect, which leads to increased dielectric loss. Compared with PANI/CoS/CDs-0T composites with diamagnetic behaviour, MF-induced weak ferromagnetism of CoS in the PANI/CoS/CDs-0.5T composites has caused additional magnetic loss. This work provides an efficient way for modulating electrochemical or electromagnetic properties of inorganic/polymer nanocomposites by employing an external MF.

  20. Exposure assessment to airborne endotoxin, dust, ammonia, hydrogen sulfide and carbon dioxide in open style swine houses.

    Science.gov (United States)

    Chang, C W; Chung, H; Huang, C F; Su, H J

    2001-08-01

    Information is limited for the exposure levels of airborne hazardous substances in swine feed buildings that are not completely enclosed. Open-style breeding, growing and finishing swine houses in six farms in subtropical Taiwan were studied for the airborne concentrations of endotoxin, dust, ammonia, hydrogen sulfide and carbon dioxide. The air in the farrowing and nursery stalls as partially enclosed was also simultaneously evaluated. Three selected gases and airborne dusts were quantified respectively by using Drager diffusion tubes and a filter-weighing method. Endotoxin was analyzed by the Limulus amoebocyte lysate assay. Average concentration of airborne total endotoxin among piggeries was between 36.8 and 298 EU/m(3), while that for respirable endotoxin was 14.1-129 EU/m(3). Mean concentration of total dust was between 0.15 and 0.34 mg/m(3), with average level of respirable dust of 0.14 mg/m(3). The respective concentrations of NH3, CO2 and H2S were less than 5 ppm, 600-895 ppm and less than 0.2 ppm. Airborne concentrations of total dust and endotoxin in the nursery house were higher than in the other types of swine houses. The finishing house presented the highest exposure risk to NH3, CO2 and H2S. Employees working in the finishing stalls were also exposed to the highest airborne levels of respirable endotoxin and dust. On the other hand, the air of the breeding units was the least contaminated in terms of airborne endotoxin, dust, NH3, CO2 and H2S. The airborne concentrations of substances measured in the present study were all lower than most of published studies conducted in mainly enclosed swine buildings. Distinct characteristics, including maintaining swine houses in an open status and frequent spraying water inside the stalls, significantly reduce accumulation of gases and airborne particulates. PMID:11513795

  1. Oxidation behaviour of ribbon shape carbon fibers and their composites

    International Nuclear Information System (INIS)

    Carbon fibers, though important constituent as reinforcements for high performance carbon/carbon composites, are shadowed by their oxidation in air at temperatures beginning 450 deg. C. Owing to tailorable properties of carbon fibers, efforts are underway to explore structural modification possibilities to improve the oxidation resistance of the fibers and their composites. The pitch based ribbon shape carbon fibers are found to have highly preferential oriented graphitic structure resulting in high mechanical properties and thermal conductivity. In the present work oxidation behaviour of ribbon shape carbon fibers and their composites heat treated to 1000-2700 deg. C has been studied. SEM examination of these composites exhibits development of graphitic texture and ordering within the fibers with increase in heat treatment temperature. Oxidation studies made by thermogravimetric analysis in air show that matrix has faster rate of oxidation and in the initial stages the matrix gets oxidized at faster rate with slower rate of oxidation of the fibers depending on processing conditions of fibers and composites

  2. Carbon Monoxide Oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum

    Science.gov (United States)

    Diekert, Gabriele B.; Thauer, Rudolf K.

    1978-01-01

    Cultures of Clostridium formicoaceticum and C. thermoaceticum growing on fructose and glucose, respectively, were shown to rapidly oxidize CO to CO2. Rates up to 0.4 μmol min−1 mg of wet cells−1 were observed. Carbon monoxide oxidation by cell suspensions was found (i) to be dependent on pyruvate, (ii) to be inhibited by alkyl halides and arsenate, and (iii) to stimulate CO2 reduction to acetate. Cell extracts catalyzed the oxidation of carbon monoxide with methyl viologen at specific rates up to 10 μmol min−1 mg of protein−1 (35°C, pH 7.2). Nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate and ferredoxin from C. pasteurianum were ineffective as electron acceptors. The catalytic mechanism of carbon monoxide oxidation was “ping-pong,” indicating that the enzyme catalyzing carbon monoxide oxidation can be present in an oxidized and a reduced form. The oxidized form was shown to react reversibly with cyanide, and the reduced form was shown to react reversibly with alkyl halides: cyanide inactivated the enzyme only in the absence of carbon monoxide, and alkyl halides inactivated it only in the presence of carbon monoxide. Extracts inactivated by alkyl halides were reactivated by photolysis. The findings are interpreted to indicate that carbon monoxide oxidation in the two bacteria is catalyzed by a corrinoid enzyme and that in vivo the reaction is coupled with the reduction of CO2 to acetate. Cultures of C. acidi-urici and C. cylindrosporum growing on hypoxanthine were found not to oxidize CO, indicating that clostridia mediating a corrinoid-independent total synthesis of acetate from CO2 do not possess a CO-oxidizing system. PMID:711675

  3. Adequate hydrogen sulfide, healthy circulation

    Institute of Scientific and Technical Information of China (English)

    DU Jun-bao; CHEN Stella; JIN Hong-fang; TANG Chao-shu

    2011-01-01

    Previously,hydrogen sulfide (H2S) was considered to be a toxic gas.However,recently it was discovered that it could be produced in mammals and even in plants,throughtheproductionandmetabolismof sulfur-containing amino acids.In mammals,H2S is mainly catalyzed by cystathionine-γ-lyase (CSE),cystathionin-β-lyase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST) with the substrate of L-cysteine.Endogenous H2S exerts many important physiological and pathophysiological functions,including hypotensive action,vasorelaxation,myocardial dilation,inhibition of smooth muscle cell proliferation,and antioxidatve actions.Importantly,it plays a very important role in the pathogenesis of systemic hypertension,pulmonary hypertension,atherosclerosis,myocardialinjury,angiogenesis,hyperhomocysteinemi aandshock.Therefore,H2S is now being considered to be a novel gasotransmitter after nitric oxide and carbon monoxide in the regulation of circulatory system.

  4. Pyrophoric nature of iron sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R. [Univ. of Surrey, Guildford (United Kingdom). Dept. of Materials Science and Engineering; Steele, A.D.; Morgan, D.T.B. [Shell Research Centre Ltd., Chester (United Kingdom). Thornton Research Centre

    1996-05-01

    Hydrogen sulfide, often present in crude oil tankers, can react with rust to form various sulfides including mackinawite (FeS), greigite (Fe{sub 3}S{sub 4}), and pyrite (FeS{sub 2}). The tendency for these compounds to react with oxygen in air to form potentially explosive mixtures depends upon their morphology and the environmental conditions. The experimentally determined heat of oxidation of finely divided mackinawite was {minus}7.45 kJ/g. For samples with a larger particle size and smaller surface area the values measured were lower due to incomplete oxidation of the sulfide. All the sulfides produced, whether from magnetite or acicular, prismatic or spherical geothite, were approximately spherical in form. The heat of oxidation of greigite was found to be approximately {minus}2100 kJ/mol, and the heat of formation of greigite is approximately {minus}320 kJ/mol.

  5. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    Science.gov (United States)

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma. PMID:19933342

  6. Pathways of organic carbon oxidation in three continental margin sediments

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Jørgensen, Bo Barker; Fossing, Henrik;

    1993-01-01

    important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and......We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that...... O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...

  7. Carbon dioxide and nitrous oxide in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Naqvi, S.W.A.; Jayakumar, D.A.; George, M.D.; Narvekar, P.V.; DeSousa, S.N.

    The understanding of biogeochemical cycling of carbon dioxide and nitrous oxide in the oceans is essential for predicting the fate of anthropogenically emitted components. The North Indian Ocean, with its diverse regimes, provides us with a natural...

  8. Preparation of anti-oxidative carbon fiber at high temperature

    Science.gov (United States)

    Kim, Bo-Hye; Kim, Su Yeun; Kim, Chang Hyo; Yang, Kap Seung; Lee, Young-Jun

    2010-11-01

    In this paper, carbon fibers with improved thermal stability and oxidation resistive properties were prepared and evaluated their physical performances under oxidation condition. Carbon fibers were coated with SiC particles dispersed in a polyacrylonitrile solution and then followed by pyrolyzed at 1400 °C to obtain the SiC nanoparticle deposition on the surface of the carbon fiber. The SiC coated carbon fiber showed extended oxidation resistive property as remaining 80-88% of the original weight even at high temperature 1000 °C under air, as compared with the control of zero weight at 600 °C. The effects of the coating conditions on the oxidation resistive properties of the coated fibers were studied in detail.

  9. Oxidation study of the synthetic sulfides molybdenite (MoS{sub 2}) and covellite (CuS) by acidithiobacillus ferrooxidants using respirometric experiments; Estudo da oxidacao dos sulfetos sinteticos molibdenita (MoS2) e covelita (CuS) por Acidithiobacillus ferrooxidans via respirometria celular

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Junior, Wilmo E. [Universidade Federal de Rondonia (UFRO), Porto Velho, RO (Brazil). Dept. de Quimica; Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Bioquimica e Tecnologia Quimica], e-mail: wilmojr@bol.com.br; Bevilaqua, Denise; Garcia Junior, Oswaldo [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Bioquimica e Tecnologia Quimica

    2009-07-01

    This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe{sup 3+} did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations. (author)

  10. Estudo da oxidação dos sulfetos sintéticos molibdenita (MoS2 e covelita (CuS por Acidithiobacillus ferrooxidans via respirometria celular Oxidation study of the synthetic sulfides molybdenite (MoS2 and covellite (CuS by Acidithiobacillus ferrooxidans using respirometric experiments

    Directory of Open Access Journals (Sweden)

    Wilmo E. Francisco Junior

    2009-01-01

    Full Text Available This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe3+ did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations.

  11. Growth of tungsten oxide on carbon nanowalls templates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua, E-mail: wanghua@dlou.edu.cn [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023 (China); Su, Yan [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Chen, Shuo, E-mail: shuochen@dlut.edu.cn [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Quan, Xie [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-03-15

    Highlights: ► Tungsten oxide deposited on carbon nanowalls by hot filament chemical vapor deposition technique. ► This composite has two-dimensional uniform morphology with a crystalline structure of monoclinic tungsten trioxide. ► Surface photoelectric voltage measurements show that this product has photoresponse properties. - Abstract: In the present work we present a simple approach for coupling tungsten oxide with carbon nanowalls. The two-dimensional carbon nanowalls with open boundaries were grown using plasma enhanced hot filament chemical vapor deposition, and the subsequent tungsten oxide growth was performed in the same equipment by direct heating of a tungsten filament. The tungsten oxide coating is found to have uniform morphology with a crystalline structure of monoclinic tungsten trioxide. Surface photoelectric voltage measurements show that this product has photoresponse properties. The method of synthesis described here provides an operable route to the production of two-dimensional tungsten oxide nanocomposites.

  12. Nitric oxide and carbon monoxide diffusing capacity of the lung

    OpenAIRE

    Lee, I.

    2006-01-01

    The single breath diffusion capacity of the lung for carbon monoxide (DLCO) is measure for gas uptake by the lung, and consists of a membrane and a vascular component. Nitric oxide (NO) binds 400 times faster to hemoglobin than carbon monoxide, thus the uptake of NO by the blood is very large. Therefore the diffusion capacity of the lung for nitric oxide (DLNO) should reflect the alveolocapillary membrane diffusing capacity only, and should not be influenced by the vascular component. In this...

  13. A Novel Catalytic Method for the Oxidation of Sulfides to Sulfoxides with Silica Sulfuric Acid and Sodium Nitrite in the Presence of KBr and/or NaBr as Catalyst

    Institute of Scientific and Technical Information of China (English)

    GOUDARZIAFSHAR Hamid; GHORBANI-CHOGHAMARANI Arash; NIKOORAZM Mohsen; NASERIFAR Zahra

    2009-01-01

    Highly efficient selective oxidation of sulfides to sulfoxides by NaNO2 and silica sulfuric acid catalyzed with KBr or NaBr has been reported.This oxidation was carried out in the presence of wet SiO2(50% w/w)in acetonitrile at room temperature with good to excellent yields.

  14. Field method for sulfide determination

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B L; Schwarser, R R; Chukwuenye, C O

    1982-01-01

    A simple and rapid method was developed for determining the total sulfide concentration in water in the field. Direct measurements were made using a silver/sulfide ion selective electrode in conjunction with a double junction reference electrode connected to an Orion Model 407A/F Specific Ion Meter. The method also made use of a sulfide anti-oxidant buffer (SAOB II) which consists of ascorbic acid, sodium hydroxide, and disodium EDTA. Preweighed sodium sulfide crystals were sealed in air tight plastic volumetric flasks which were used in standardization process in the field. Field standards were prepared by adding SAOB II to the flask containing the sulfide crystals and diluting it to the mark with deionized deaerated water. Serial dilutions of the standards were used to prepare standards of lower concentrations. Concentrations as low as 6 ppB were obtained on lake samples with a reproducibility better than +- 10%.

  15. Evaluation of ferric oxide and ferric citrate for their effects on fermentation, production of sulfide and methane, and abundance of select microbial populations using in vitro rumen cultures.

    Science.gov (United States)

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2016-07-01

    This study systematically evaluated the effect of ferric iron on sulfate reduction to sulfide, feed digestion and fermentation, methane production, and populations of select ruminal microbes using in vitro rumen cultures. Ferric oxide (Fe2O3) and ferric citrate (C6H5FeO7) at six concentrations (0, 25, 50, 100, 150, and 200mg/L as Fe(3+)) were tested. Ferric iron decreased production of both H2S gas in culture headspace (up to 71.9%) and aqueous sulfide (up to 80.8%), without adversely affecting other fermentation parameters, with ferric citrate being more effective than ferric oxide. Total archaeal population was increased by ferric citrate, but methane production was not affected significantly. The population of sulfate reducing bacteria was affected differently by ferric oxide than by ferric citrate. The results of this study could guide future in vivo studies to develop effective solutions to abate sulfur-associated polioencephalomalacia in cattle fed high-sulfur diet such as dried distiller's grains with solubles. PMID:27043055

  16. Activity studies of sesquiterpene oxides and sulfides from the plant Hyptis suaveolens (Lamiaceae) and its repellency on Ixodes ricinus (Acari: Ixodidae).

    Science.gov (United States)

    Ashitani, T; Garboui, S S; Schubert, F; Vongsombath, C; Liblikas, I; Pålsson, K; Borg-Karlson, A-K

    2015-12-01

    Hyptis suaveolens (Lamiaceae), a plant traditionally used as a mosquito repellent, has been investigated for repellent properties against nymphs of the tick Ixodes ricinus. Essential oils and volatile compounds of fresh and dried leaves, from plants originating from Laos and Guinea-Bissau, were identified by GC-MS and tested in a tick repellency bioassay. All the essential oils were strongly repellent against the ticks, even though the main volatile constituents differed in their proportions of potentially tick repellent chemicals. (+)/(-)-sabinene were present in high amounts in all preparations, and dominated the emission from dry and fresh leaves together with 1,8-cineol and α-phellandrene. 1,8-Cineol and sabinene were major compounds in the essential oils from H. suaveolens from Laos. Main compounds in H. suaveolens from Guinea-Bissau were (-)-sabinene, limonene and terpinolene. Among the sesquiterpene hydrocarbons identified, α-humulene exhibited strong tick repellency (96.8 %). Structure activity studies of oxidation or sulfidation products of germacrene D, α-humulene and β-caryophyllene, showed increased tick repellent activity: of mint sulfide (59.4 %), humulene-6,7-oxide (94.5 %) and caryophyllene-6,7-oxide (96.9 %). The substitution of oxygen with sulfur slightly lowered the repellency. The effects of the constituents in the oils can then be regarded as a trade off between the subsequently lower volatility of the sesquiterpene derivatives compared to the monoterpenes and may thus increase their potential usefulness as tick repellents. PMID:26385208

  17. High temperature oxidation-sulfidation behavior of Cr-Al2O3 and Nb-Al2O3 composites densified by spark plasma sintering

    International Nuclear Information System (INIS)

    The high temperature oxidation-sulfidation behavior of Cr-Al2O3 and Nb-Al2O3 composites prepared by mechanical alloying (MA) and spark plasma sintering (SPS) has been studied. These composite powders have a particular metal-ceramic interpenetrating network and excellent mechanical properties. Oxidation-sulfidation tests were carried out at 900 deg. C, in a 2.5%SO2 + 3.6%O2 + N2(balance) atmosphere for 48 h. The results revealed the influence of the sintering conditions on the specimens corrosion resistance, i.e. the Cr-Al2O3 and Nb-Al2O3 composite sintered at 1310 deg. C/4 min showed better corrosion resistance (lower weight gains) compared with those found for the 1440 deg. C/5 min conditions. For the former composite, a protective Cr2O3 layer immediately forms upon heating, whereas for the later pest disintegration was noted. Thus, under the same sintering conditions the Nb-Al2O3 composites showed the highest weight gains. The oxidation products were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy

  18. Ammonia, total reduced sulfides, and greenhouse gases of pine chip and corn stover bedding packs

    Science.gov (United States)

    Bedding materials may affect air quality in livestock facilities. The objective of this study was to compare headspace concentrations of ammonia (NH3), total reduced sulfides (TRS), carbon dioxide (CO2),methane (CH4), and nitrous oxide (N2O) when pine wood chips and corn stover were mixed in various...

  19. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells.

    Science.gov (United States)

    Huang, Qian; Sparatore, Anna; Del Soldato, Piero; Wu, Lingyun; Desai, Kaushik

    2014-01-01

    Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4) and inducible nitric oxide synthase (iNOS) protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM) and high glucose (25 mM). ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor), all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM). ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM). In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known deleterious effects

  20. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Qian Huang

    Full Text Available Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4 and inducible nitric oxide synthase (iNOS protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM and high glucose (25 mM. ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor, all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM. ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM. In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known

  1. The effect of sulfide on the aerobic corrosion of carbon steel in near-neutral pH saline solutions

    International Nuclear Information System (INIS)

    Highlights: ► The corrosion rate is low when steel is exposed to anaerobic conditions (pH = 8.9). ► An anaerobic to aerobic corrosion with sulfide switch increases the corrosion rate. ► Aerobic exposure induces the formation of goethite-covered tubercles. ► Continual sulfide exposure leads to the slow conversion of goethite to mackinawite. - Abstract: Severe corrosion damage may occur when gas transmission pipelines are exposed, at disbonded coating locations, to trapped waters containing sulfide followed by secondary exposure to air. Aerobic corrosion with sulfide was investigated in a long-term corrosion experiment in which corrosion was monitored by measurement of the corrosion potential and polarization resistance obtained from linear polarization resistance measurements. The properties and composition of the corrosion product deposits formed were determined using scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy. A switch from aerobic to aerobic-with-sulfide corrosion doubles the relative corrosion rate.

  2. Tin oxide-carbon nanotube composite for NOx sensing.

    Science.gov (United States)

    Jang, Dong Mi; Jung, Hyuck; Hoa, Nguyen Duc; Kim, Dojin; Hong, Soon-Ku; Kim, Hyojin

    2012-02-01

    Tin oxide-single wall carbon nanotube (SWCNT) nano composites are synthesized for gas sensor application. The fabrication includes deposition of porous SWCNTs on thermally oxidized SiO2 substrates followed by rheotaxial growth of Sn and thermal oxidation at 300, 400, 500, and 600 degrees C in air. The effects of oxidation temperature on morphology, microstructure, and gas sensing properties are investigated for process optimization. The tin monoxide oxidized at 400 degrees C showed the highest response at the operating temperature of 200 degrees C. Under the optimized test condition, the composite structure showed better response than both structures of SWCNTs and thin film SnO. PMID:22629971

  3. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; JØRGENSEN, BB

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO4(2-) reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100-mu-m) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured......, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying...... water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO4(2-) or organic substrate...

  4. Reduction of vanadium oxide by carbon in stainless steelmaking slags

    Energy Technology Data Exchange (ETDEWEB)

    Divakar, M.; Lahiri, A.K. [Indian Inst. of Science, Bangalore (India). Dept. of Metallurgy; Goernerup, M. [Uddeholm Technology AB (Sweden)

    2001-02-01

    Simultaneous reduction of chromium, iron and vanadium oxides by carbon has been studied by conducting experiments on typical stainless steelmaking slags in the temperature range of 1823 to 1923 K. In-situ gas generated due to the reduction led to several phenomena such as foam/emulsion formation, change in foam height, size of gas bubbles and rate of gas generation. The kinetics of vanadium oxide reduction by carbon are studied under the influence of the above mentioned phenomena and the presence of chromium and iron oxides. (orig.)

  5. Pathways of organic carbon oxidation in three continental margin sediments

    Science.gov (United States)

    Canfield, D. E.; Jorgensen, B. B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N. B.; Thamdrup, B.; Hansen, J. W.; Nielsen, L. P.; Hall, P. O.

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.

  6. The Role of Amines, Hydrogen Sulfide and Carbon Dioxide in the Formation of Prebiotic Macromolecules Surrounded by Membranes

    Science.gov (United States)

    Rajen, Gaurav

    2016-04-01

    Amphiphilic compounds are known to self-assemble into membranous structures when exposed to alternate dry and wet conditions. This paper presents a model of how such structures could form near hydrothermal vents while containing macromolecules such as amino acids. The formation of amino acids near deep ocean hydrothermal vents as precursors for the origins of life is problematic as amino acids degrade from thermal energy. In the model proposed here, amino acids would degrade into amines (near hydrothermal vents). Amines have an affinity to interact with carbon dioxide (CO2) and hydrogen sulfide (H2S), form weak heat-unstable salts, and then through exposure to thermal energy release the acid gases and regenerate back to amines. Amines carrying and releasing H2S and CO2 would help other macromolecules form along with amino acids within protected cell-like structures; the cyclical release and recapture of acid gases would subsequently help the amino acids form bonds; further thermal action would degrade some of the amines into polymers that provide more strength and rigidity to the membrane walls; and also enable escaping gases to form tubes within the surrounding membranes for inlet and outlet of chemicals. Consider that liquids and gases are undergoing thermal convection inside a porous medium, and the convecting liquids contain some amines. Consider now that an amine weak salt carrying H2S and another carrying CO2 is inside a vesicle that formed through self-assembly. As this vesicle moves around in the thermal convection cell it will come close to the heat source and release the H2S and CO2 inside the vesicle. As the vesicle moves away from the heat source, the gases would be reabsorbed into the amines. This process would create stability and a repeating set of reactions, reactants, and products forming and reforming - cyclical stability is a key criterion for more complex reactions to occur. Some of the amines present would reform into an amino acid (as occurs

  7. Facile covalent immobilization of cadmium sulfide quantum dots on graphene oxide nanosheets : preparation, characterization, and optical properties

    NARCIS (Netherlands)

    Pham, Tuan Anh; Choi, Byung Choon; Jeong, Yeon Tae

    2010-01-01

    A facile approach for the preparation of a novel hybrid material containing graphene and an inorganic semiconducting material, cadmium sulfide quantum dots (CdS QDs), is demonstrated for the first time. First, amino-functionalized CdS QDs were prepared by modifications of the kinetic trapping method

  8. Estudo da oxidação dos sulfetos sintéticos molibdenita (MoS2) e covelita (CuS) por Acidithiobacillus ferrooxidans via respirometria celular Oxidation study of the synthetic sulfides molybdenite (MoS2) and covellite (CuS) by Acidithiobacillus ferrooxidans using respirometric experiments

    OpenAIRE

    Wilmo E. Francisco Junior; Denise Bevilaqua; Oswaldo Garcia Júnior

    2009-01-01

    This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry...

  9. Methanol absorption characteristics for the removal of H2S (hydrogen sulfide), COS (carbonyl sulfide) and CO2 (carbon dioxide) in a pilot-scale biomass-to-liquid process

    International Nuclear Information System (INIS)

    The BTL (biomass-to-liquid) process is an attractive process that produces liquid biofuels from biomass. The FT (Fisher–Tropsch) process is used to produce synfuels such as diesel and gasoline from gasified biomass. However, the H2S (hydrogen sulfide), COS (carbonyl sulfide) and CO2 (carbon dioxide) in the syngas that are produced from the biomass gasifiers cause a decrease of the conversion efficiency and deactivates the catalyst that is used in the FT process. To remove the acid gases, a pilot-scale methanol absorption tower producing diesel at a rate of 1 BPD (barrel per day) was developed, and the removal characteristics of the acid gases were determined. A total operation time of 500 h was achieved after several campaigns. The average syngas flow rate at the inlet of methanol absorption tower ranged from 300 to 800 L/min. The methanol absorption tower efficiently removed H2S from 30 ppmV to less than 1 ppmV and COS from 2 ppmV to less than 1 ppmV with a removal of CO2 from 20% to 5%. The outlet gas composition adhered to the guidelines for FT reactors. No remaining sulfurous components were found, and the tar component was analyzed in the spent methanol after long-term operations. - Highlights: • The gas cleaning system in a pilot-scale BTL (biomass-to-liquid) process is reported. • Although methanol absorption tower is conventional process, its application to BTL process is attempted. • The methanol absorption tower efficiently removed H2S, COS and CO2 in the syngas. • The sulfurous and tar components in the methanol are analyzed

  10. Catalytic Formation of Propylene Carbonate from Supercritical Carbon Dioxide/Propylene Oxide Mixture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Propylene carbonate was synthesized from supercritical carbon dioxide (SC-CO2)/ propylene oxide mixture with phthalocyaninatoaluminium chloride (ClAlPc)/ tetrabutylammon-ium bromide (n-Bu4NBr) as catalyst. The high rate of reaction was attributed to rapid diffusion and the high miscibility of propylene oxide in SC-CO2 under employed conditions. Various reaction periods present different formation rate of propylene carbonate, mainly due to the existence of phase change during the reaction. The experimental results demonstrate that SC-CO2 could be used as not only an environmentally benign solvent but also a carbon precursor in synthesis.

  11. A nine-atom rhodium–aluminum oxide cluster oxidizes five carbon monoxide molecules

    Science.gov (United States)

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium–aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  12. A nine-atom rhodium-aluminum oxide cluster oxidizes five carbon monoxide molecules.

    Science.gov (United States)

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium-aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  13. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions.

    Science.gov (United States)

    Fowler, T A; Crundwell, F K

    1999-12-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

  14. Comparative DEMS study on the electrochemical oxidation of carbon blacks

    DEFF Research Database (Denmark)

    Ashton, Sean James; Arenz, Matthias

    2012-01-01

    heat-treated between 2100 and 3200 °C, such as those typically used as corrosion resistant carbon (CRC) supports for polymer electrolyte membrane fuel cell (PEMFC) catalysts. A methodology combining cyclic voltammetry (CV) and differential electrochemical mass spectrometry (DEMS) is used, which allows...... subsequent oxidation; however, CRC samples graphitised =2800 °C did not exhibit this same behaviour. Highlights ¿ We quantitatively determine electrooxidation of carbon support materials. ¿ We can distinguish between the total and partial electrooxidation. ¿ Non or mildly heat treated carbon forms...... passivating layer. ¿ Heat treated carbons are less sensitive to oxidation–reduction cycles....

  15. Thermal oxidation of hydrogen sulfide associated to a petroleum reservoir submitted to in-situ combustion in the Orinoco oil belt

    Energy Technology Data Exchange (ETDEWEB)

    Perozo, H.A.; Belandria, V. [PDVSA Petroleos de Venezuela SA, Caracas (Venezuela, Bolivarian Republic of). INTEVEP

    2009-07-01

    This paper described an in-situ combustion (ISC) pilot project that is being developed by Venezuela's state oil company in the Orinoco oil belt. Thermal oxidation is commonly used to remove contaminants from waste gases. Petroleos de Venezuela SA examined the effectiveness of this process for eliminating hydrogen sulfide (H{sub 2}S) from flue gas associated with heavy oil thermal upgrading projects, with particular focus on the effect of temperature on H{sub 2}S oxidation. Laboratory-scale experiments were conducted in an isothermal batch reactor at temperatures between 200 and 500 degrees C. A synthetic gas stream was prepared. The experimental results showed that it is feasible to oxidize 100 per cent of the H{sub 2}S at temperatures as low as 300 degrees C by optimizing excess air and residence time in the reactor. Compared to the minimum required temperature of 760 degrees C to reach 98 per cent oxidation efficiency of H{sub 2}S in the conventional thermal oxidation process of most sour gases, this study found a lower temperature that satisfactorily eliminates H{sub 2}S for the desired application. The results confirmed the feasibility of using thermal oxidation to deal with H{sub 2}S in the flue gas stream during the application of ISC. 5 refs., 8 tabs., 5 figs.

  16. Kinetic Analysis of the Anodic Carbon Oxidation Mechanism in a Molten Carbonate Medium

    International Nuclear Information System (INIS)

    The oxidation mechanism for carbon in a carbonate melt was modelled using an electrochemical kinetic approach. Through the Butler-Volmer equation for electrode kinetics, a series of expressions was derived assuming each step of the proposed carbon oxidation mechanism is in turn the rate determining step (RDS). Through the derived expressions the transfer coefficient and Tafel slope were calculated for each possible RDS of the proposed mechanism and these were compared with real data collected on carbon based electrodes including graphite and coal. It was established that the RDS of the electrochemical oxidation process is dependent on both the carbon type and the potential region of oxidation. The simplified kinetic analysis suggested that the RDS in the main oxidation region is likely to be the first or second electron transfer on a graphite electrode surface, which occurs following initial adsorption of an oxygen anion to an active carbon site. This is contrary to previous suggestions that adsorption of the second anion to the carbon surface will be rate determining. It was further shown that use of a coal based carbon introduces a change in mechanism with an additional reaction region where a different mechanism is proposed to be operating

  17. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas.

    Science.gov (United States)

    Fernandes, António Maximiano; Abdalhai, Mandour H; Ji, Jian; Xi, Bing-Wen; Xie, Jun; Sun, Jiadi; Noeline, Rasoamandrary; Lee, Byong H; Sun, Xiulan

    2015-01-15

    In this paper, we reported the construction of new high sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth complex (MWCNT-Chi-Bi) and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Lead sulfide nanoparticles capped with 5'-(NH2) oligonucleotides thought amide bond was used as signalizing probe DNA (sz-DNA) and thiol-modified oligonucleotides sequence was used as fixing probe DNA (fDNA). The two probes hybridize with target Aeromonas DNA (tDNA) sequence (fDNA-tDNA-szDNA). The signal of hybridization is detected by differential pulse voltammetry (DPV) after electrodeposition of released lead nanoparticles (PbS) from sz-DNA on the surface of glass carbon electrode decorated with MWCNT-Chi-Bi, which improves the deposition and traducing electrical signal. The optimization of incubation time, hybridization temperature, deposition potential, deposition time and the specificity of the probes were investigated. Our results showed the highest sensibility to detect the target gene when compared with related biosensors and polymerase chain reaction (PCR). The detection limit for this biosensor was 1.0×10(-14) M. We could detect lower than 10(2) CFU mL(-1) of Aeromonas in spiked tap water. This method is rapid and sensitive for the detection of pathogenic bacteria and would become a potential application in biomedical diagnosis, food safety and environmental monitoring. PMID:25127474

  18. Selective stabilization of aliphatic organic carbon by iron oxide

    Science.gov (United States)

    Adhikari, Dinesh; Yang, Yu

    2015-06-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter.

  19. Oxidation Behavior of Carbon Fiber-Reinforced Composites

    Science.gov (United States)

    Sullivan, Roy M.

    2008-01-01

    OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.

  20. Effect of carbon on the oxidation of zirconium

    International Nuclear Information System (INIS)

    The study of specimens contaminated by different amounts of carbon shows a deleterious effect of this element in the resistance of zirconium to high temperature oxidation (700 to 900 deg. C). We drew the following results: a) the white spots or 'pimples' observed by numerous authors seem to be caused by the oxidation of precipitated carbides. We suggest a mechanism of formation and growth of these pimples; b) for a certain carbon content, the resistance to oxidation is increased by an uniform dispersion of the carbide phase and decreased, for instance, by extrusion textures. In this case, for the more marked textures, the more oriented corrosion was observed; c) by burning of the carbide phase it can result a second reaction increasing the corrosion rate; d) thin zirconium foils undergoes dimensional changes when scaling in oxygen. This unusual feature is also subordinated to carbon content and specially to the carbide phase dispersion. (author)

  1. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: characterization, pathway, and microbial community analysis.

    Science.gov (United States)

    Wang, Xiaowei; Zhang, Yu; Zhang, Tingting; Zhou, Jiti

    2016-03-01

    Microaerobic bioreactor treatment for enriched sulfide and nitrate has been demonstrated as an effective strategy to improve the efficiencies of elemental sulfur (S(0)) generation, sulfide oxidation, and nitrate reduction. However, there is little detailed information for the effect and mechanism of dissolved oxygen (DO) on the variations of microbial community in sulfur generation, sulfide oxidation, and nitrate reduction systems. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was employed to evaluate the variations of microbial community structures in a sulfide oxidation and nitrate reduction reactor under different DO conditions (DO 0-0.7 mg · L(-1)). Experimental results revealed that the activity of sulfide-oxidizing bacteria (SOB) and nitrate-reducing bacteria (NRB) could be greatly stimulated in 0.1-0.3 mg-DO · L(-1). However, when the DO concentration was further elevated to more than 0.5 mg · L(-1), the abundance of NRB was markedly decreased, while the heterotrophic microorganisms, especially carbon degradation species, were enriched. The reaction pathways for sulfide and nitrate removal under microaerobic conditions were also deduced by combining batch experiments with functional species analysis. It was likely that the oxidation of sulfide to sulfur could be performed by both aerobic heterotrophic SOB and sulfur-based autotrophic denitrification bacteria with oxygen and nitrate as terminal electron acceptor, respectively. The nitrate could be reduced to nitrite by both autotrophic and heterotrophic denitrification, and then the generated nitrite could be completely converted to nitrogen gas via heterotrophic denitrification. This study provides new insights into the impacts of microaerobic conditions on the microbial community functional structures of sulfide-oxidizing, nitrate-reducing, and sulfur-producing bioreactors, which revealing the potential linkage between functional microbial communities and

  2. Thermo-Oxidation of Tokamak Carbon Dust

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Davis; B.W.N. Fitzpatrick; J.P. Sharpe; A.A. Haasz

    2008-04-01

    The oxidation of dust and flakes collected from the DIII-D tokamak, and various commercial dust specimens, has been measured at 350 ºC and 2.0 kPa O2 pressure. Following an initial small mass loss, most of the commercial dust specimens showed very little effect due to O2 exposure. Similarly, dust collected from underneath DIII-D tiles, which is thought to comprise largely Grafoil™ particulates, also showed little susceptibility to oxidation at this temperature. However, oxidation of the dust collected from tile surfaces has led to ~ 18% mass loss after 8 hours; thereafter, little change in mass was observed. This suggests that the surface dust includes some components of different composition and/or structure – possibly fragments of codeposited layers. The oxidation of codeposit flakes scraped form DIII-D upper divertor tiles showed an initial 25% loss in mass due to heating in vacuum, and the gradual loss of 30-38% mass during the subsequent 24 hours exposure to O2. This behavior is significantly different from that observed for the oxidation of thinner DIII-D codeposit specimens which were still adhered to tile surfaces, and this is thought to be related to the low deuterium content (D/C ~ 0.03 – 0.04) of the flakes.

  3. Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    Hybrid direct carbon fuel cells (HDCFCs) consisting of a solid carbon (carbon black)-molten carbonate ((62-38 wt% Li-K)2CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell (SOFC)-type full-cell (NiO-yttria-stablized zirconia (YSZ)|YSZ|lanthanum strontium manganite (LSM...... in the carbon-carbonate mixture in the anode chamber of an HDCFC. 96-4 vol% N2-CO2 (anode), air (cathode), 755°C, 0-600 mA, 50 mA/step. Power density corrected to cathode geometric surface area. [Formula]...... impedance data as a function of temperature, anode and cathode atmospheres, and their flow rates are discussed. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, and Mn3O4, Fig. 1) and doped-ceria (CeO2, Ce1-xGdxO2, Ce...

  4. Surface State of Carbon Fibers Modified by Electrochemical Oxidation

    Institute of Scientific and Technical Information of China (English)

    Yunxia GUO; Jie LIU; Jieying LIANG

    2005-01-01

    Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5%which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.

  5. Characterization and Oxidation Behavior of Rayon-Derived Carbon Fibers

    Science.gov (United States)

    Jacobson, Nathan; Hull, David

    2010-01-01

    Rayon-derived fibers are the central constituent of reinforced carbon/ carbon (RCC) composites. Optical, scanning electron, and transmission electron microscopy were used to characterize the as-fabricated fibers and the fibers after oxidation. Oxidation rates were measured with weight loss techniques in air and oxygen. The as-received fibers are approximately 10 micron in diameter and characterized by grooves or crenulations around the edges. Below 800 C, in the reaction-controlled region, preferential attack began in the crenulations and appeared to occur down fissures in the fibers.

  6. Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    was investigated using current-potential-power density curves. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, and Mn3O4) and dopedceria (CeO2, Ce1-xGdxO2-x/2, Ce1-xRExO2-delta (RE = Pr, Sm)), the effectiveness...

  7. Production of graphene oxide from pitch-based carbon fiber

    OpenAIRE

    Miyeon Lee; Jihoon Lee; Sung Young Park; Byunggak Min; Bongsoo Kim; Insik In

    2015-01-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA.

  8. Sources and sinks of carbonyl sulfide in a mountain grassland and relationships to the carbon dioxide exchange

    Science.gov (United States)

    Spielmann, Felix M.; Kitz, Florian; Hammerle, Albin; Gerdel, Katharina; Wohlfahrt, Georg

    2016-04-01

    The trace gas carbonyl sulfide (COS) has been proposed as a tracer for canopy gross primary production (GPP), canopy transpiration and stomatal conductance of plant canopies in the last few years. COS enters the plant leaf through the stomata and diffuses through the intercellular space, the cell wall, the plasma membrane and the cytosol like CO2. It is then catalyzed by the enzyme carbonic anhydrase (CA) in a one-way reaction to H2S and CO2. This one-way flux into the leaf makes COS a promising tracer for the GPP. However there is growing evidence, that plant leaves aren't the only contributors to the ecosystem flux of COS. Therefor the COS uptake of soil microorganisms also containing CA and abiotic COS production might have to be accounted for when using COS as a tracer at the ecosystem scale. The overarching objective of this study was to quantify the relationship between the ecosystem-scale exchange of COS, CO2 and H2O and thus to test for the potential of COS to be used as a tracer for the plant canopy CO2 and H2O exchange. More specifically we aimed at quantifying the contribution of the soil to the ecosystem-scale COS exchange in order to understand complications that may arise due to a non-negligible soil COS exchange. In May 2015 we set up our quantum cascade laser (QCL) (Aerodyne Research Inc., MA, USA) at a temperate mountain grassland in Stubai Valley close to the village of Neustift, Austria. Our site lies at the valley bottom and is an intensively managed mountain grassland, which is cut 3-4 times a year. With the QCL we were able to measure concurrently the concentrations of COS, CO2, H2O (and CO) at a frequency of 10 Hz with minimal noise. This allowed us to conduct ecosystem-scale eddy covariance measurements. The eddy covariance flux measurements revealed that the COS uptake continues at night, which we confirmed was not caused by soil microorganisms, as the soil exchange was close to neutral during nighttime. Instead, the nocturnal COS uptake

  9. Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions

    Science.gov (United States)

    Chen, Binling; Li, Rong; Ma, Guiping; Gou, Xinglong; Zhu, Yanqiu; Xia, Yongde

    2015-12-01

    Exploring highly-efficient and low-cost bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reactions (OER) in the renewable energy area has gained momentum but still remains a significant challenge. Here we present a simple but efficient method that utilizes ZIF-67 as the precursor and template for the one-step generation of homogeneous dispersed cobalt sulfide/N,S-codoped porous carbon nanocomposites as high-performance electrocatalysts. Due to the favourable molecular-like structural features and uniform dispersed active sites in the precursor, the resulting nanocomposites, possessing a unique core-shell structure, high porosity, homogeneous dispersion of active components together with N and S-doping effects, not only show excellent electrocatalytic activity towards ORR with the high onset potential (around -0.04 V vs. -0.02 V for the benchmark Pt/C catalyst) and four-electron pathway and OER with a small overpotential of 0.47 V for 10 mA cm-2 current density, but also exhibit superior stability (92%) to the commercial Pt/C catalyst (74%) in ORR and promising OER stability (80%) with good methanol tolerance. Our findings suggest that the transition metal sulfide-porous carbon nanocomposites derived from the one-step simultaneous sulfurization and carbonization of zeolitic imidazolate frameworks are excellent alternative bifunctional electrocatalysts towards ORR and OER in the next generation of energy storage and conversion technologies.Exploring highly-efficient and low-cost bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reactions (OER) in the renewable energy area has gained momentum but still remains a significant challenge. Here we present a simple but efficient method that utilizes ZIF-67 as the precursor and template for the one-step generation of homogeneous dispersed cobalt sulfide/N,S-codoped porous carbon nanocomposites as high-performance electrocatalysts. Due to the

  10. Investigation of Structure and Oxidation Behavior of Pitch and Resin Resultant Carbon

    Institute of Scientific and Technical Information of China (English)

    ZHUBo-quan; LINan

    1996-01-01

    The structure and oxidation behaviors of pitch carbon,resin carbon and their mixture re-sultant carbon have been investigated.The results indicate that the pitch carbon has relative higher true specific gravity,well developed crystalline and better oxidation resistance than resin carbon,With 20%-35% resin added to pitch,the structure of the resultant carbon can be modified and oxidation resistance will be improved significantly.

  11. USE OF CARBON CATALYSTS FOR OXIDATIVE DESTRUCTION OF WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Svetlana S. Stavitskaya

    2007-06-01

    Full Text Available The paper considers a possibility of using the catalytic action of the carbonaceous adsorbents modified by different ways for the purification of various solutions, natural and wastewaters. It has been found that the oxidative destruction of organic (phenols, dyes, pesticides, etc. and inorganic (H2S contaminants in water solutions is considerably intensified in the presence of both ordinary activated carbons and especially, carbons with specially introduced catalytic additives. It is shown that the sewage treatment level is strongly affected by the amount and nature of a modifying agent introduced on the carbon surface.

  12. Oxidizing attack process of uranium ore by a carbonated liquor

    International Nuclear Information System (INIS)

    A continuous process for digesting a uraniferous ore by oxidation with a recycling aqueous liquor containing alkaline carbonates and bicarbonates in solution as well as uranium in a concentration close to its solubility limit at digestion temperature, and of recuperation of the precipitated uranium within the solid phase remaining after digestion. The digestion is carried out by spraying oxygen into the hot reactional medium in order not only to permit oxidation of the uranium and its solubilization but also to ensure that the sulphides of impurities and organic substances present in the ore are oxidized

  13. Zinc oxide catalyzed growth of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    We demonstrate that zinc oxide can catalyze the growth of single-walled carbon nanotubes (SWNTs) with high efficiency by a chemical vapor deposition process. The zinc oxide nanocatalysts, prepared using a diblock copolymer templating method and characterized by atomic force microscopy (AFM), were uniformly spaced over a large deposition area with an average diameter of 1.7 nm and narrow size distribution. Dense and uniform SWNTs films with high quality were obtained by using a zinc oxide catalyst, as characterized by scanning electron microscopy (SEM), Raman spectroscopy, AFM, and high-resolution transmission electron microscopy (HRTEM).

  14. Membrane topography of anaerobic carbon monoxide oxidation in Rhodocyclus gelatinosus

    International Nuclear Information System (INIS)

    Rhodocyclus gelatinosus 1 grows anaerobically in the dark at the expense of carbon monoxide. Topographical studies with methyl viologen as the membrane probe indicated that CO oxidation and H2 production sites were on the cytoplasmic side of the cell membrane. Membrane-associated hydrogen gas production appeared to be a unidirectional reaction. In the dark, strain 1 whole cells oxidized CO and incorporated about 306 pmol of 32P/sub i/ into ATP per min per mg of protein. With CO as the sole energy-yielding substrate, cells grew with a low growth yield coefficient of 3.7 g (dry weight) of cells per mg of CO oxidized

  15. On vanadium oxide dissolution in sodium carbonate solutions

    International Nuclear Information System (INIS)

    Kinetics of dissolution process of powdered vanadium (5) oxide in sodium carbonate is studied. Activation energy of chemical dissolution of V2O5 at sodium carbonate concentration up to 0.6 mol/dm3 constitutes 35.2 kJ/mol. With sodium carbonate concentration increase the dissolution activation energy decreases to 32.5 kJ/mol. Absolute values of activation energy of the dissolution process, dependence of the reaction order on the temperature in the range of low sodium carbonate concentration, testify to the presence of kinetic difficulties in the process studied. Thus, the process of V2O5 dissolution in sodium carbonate solutions proceeds in the mixed region and obeys regularities of the mixed kinetics

  16. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation

    International Nuclear Information System (INIS)

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO42- ratio. This work relates the feed COD/SO42- ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470 ± 7 mg S/L was obtained at a feed COD/SO42- ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145 ± 10 mg S/L) was observed with a feed COD/SO42- ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO42- ratio of 1.5. It was found that the feed COD/SO42- ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead

  17. Modelling carbon for industry: radiolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Leary, P.; Ewels, C.P.; Heggie, M.I. [Sussex Univ., Brighton (United Kingdom). Dept. of Chem., Phys. and Environ. Sci.; Jones, R. [Exeter Univ. (United Kingdom). Dept. of Physics; Briddon, P.R. [Newcastle upon Tyne Univ. (United Kingdom). Dept. of Physics

    2000-01-01

    An ab initio density functional technique (AIMPRO) has been employed to investigate the structure, vibrational properties, and dissociation mechanisms of CO{sub 3}{sup 0}, the important radical anion CO{sub 3}{sup -} and the interaction of this species with the graphite basal plane. The results are discussed in the context of the radiolytic oxidation of graphite: a process of relevance to the British nuclear industry, which relies for the most part on graphite-cored, CO{sub 2}-cooled reactors. The radiation field splits coolant molecules and produces, amongst other things, a very reactive radical anion CO{sub 3}{sup -}, which has been suggested as the main agent for the accelerated oxidation of graphite. This paper shows that CO{sub 3}{sup -} binds strongly to graphite after combining with an electronic hole and forming a long and strong ionic bond. It still remains mobile on the basal plane and can diffuse to a graphite edge and oxidize it. (orig.)

  18. Chemical foundations of hydrogen sulfide biology.

    Science.gov (United States)

    Li, Qian; Lancaster, Jack R

    2013-11-30

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  19. Hydrogen Sulfide Regulates Ca2+ Homeostasis Mediated by Concomitantly Produced Nitric Oxide via a Novel Synergistic Pathway in Exocrine Pancreas

    OpenAIRE

    Moustafa, Amira; Habara, Yoshiaki

    2014-01-01

    Aim: The present study was designed to explore the effects of hydrogen sulfide (H2S) on Ca2+ homeostasis in rat pancreatic acini. Results: Sodium hydrosulfide (NaHS; an H2S donor) induced a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner. The NaHS-induced [Ca2+]i elevation persisted with an EC50 of 73.3 μM in the absence of extracellular Ca2+ but was abolished by thapsigargin, indicating that both Ca2+ entry and Ca2+ release contributed to the in...

  20. Carbon monoxide-induced reduction and healing of graphene oxide

    NARCIS (Netherlands)

    Narayanan, B.; Weeks, S. L.; Jariwala, B. N.; Macco, B.; Weber, J.; Rathi, S. J.; M. C. M. van de Sanden,; Sutter, P.; Agarwal, S.; Ciobanu, C. V.

    2013-01-01

    Graphene oxide holds promise as a carbon-based nanomaterial that can be produced inexpensively in large quantities. However, its structural and electrical properties remain far from those of the graphene sheets obtained by mechanical exfoliation or by chemical vapor deposition unless efficient reduc

  1. Aerobic Oxidation of Methyl Vinyl Ketone in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    OUYANG,Xiao-Yue(欧阳小月); JIANG,Huan-Feng(江焕峰); CHENG,Jin-Sheng(程金生); ZHANG,Qun-Jian(张群健)

    2002-01-01

    Aerobic oxidation of methyl vinyl ketone to acetal in supercritical carbon dioxide are achieved in high conversion and high selectivity when oxygen pressure reaches 0.5MPa. The effects of cocatalysts,additive, pressure and temperature of the reaction are studied in detail.

  2. Carbon nanotube transistors with graphene oxide films as gate dielectrics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Carbon nanomaterials,including the one-dimensional(1-D) carbon nanotube(CNT) and two-dimensional(2-D) graphene,are heralded as ideal candidates for next generation nanoelectronics.An essential component for the development of advanced nanoelectronics devices is processing-compatible oxide.Here,in analogy to the widespread use of silicon dioxide(SiO2) in silicon microelectronic industry,we report the proof-of-principle use of graphite oxide(GO) as a gate dielectrics for CNT field-effect transistor(FET) via a fast and simple solution-based processing in the ambient condition.The exceptional transistor characteristics,including low operation voltage(2 V),high carrier mobility(950 cm2/V-1 s-1),and the negligible gate hysteresis,suggest a potential route to the future all-carbon nanoelectronics.

  3. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon (RCC)

    Science.gov (United States)

    Roth, Don J.; Rauser, Richard W.; Jacobson, Nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  4. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon

    Science.gov (United States)

    Roth, Don J.; Jacobson, Nathan S.; Rauser, Richard W.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2010-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 C and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3mm. Single-sided NDE methods were used because they might be practical for on-wing inspection, while X-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally cracked coating and subsequent oxidation damage was also studied with X-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  5. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community].

    Science.gov (United States)

    Moshchanetskii, P V; Pivovarova, T A; Belyi, A V; Kondrat'eva, T F

    2014-01-01

    Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45 degrees C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40 degrees C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45 degrees C was 89.34, 94.59, and 83.25%, respectively. At 40 degrees C, the highest number of microbial cells (6.01 x 10(9) cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities, except for the absence of Leptospirillum ferriphilum at 35 degrees C, the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40 degrees C. PMID:25844443

  6. Hydrogen Sulfide and Polysulfides as Biological Mediators

    Directory of Open Access Journals (Sweden)

    Hideo Kimura

    2014-10-01

    Full Text Available Hydrogen sulfide (H2S is recognized as a biological mediator with various roles such as neuromodulation, regulation of the vascular tone, cytoprotection, anti-inflammation, oxygen sensing, angiogenesis, and generation of mitochondrial energy. It is produced by cystathionine β-synthase (CBS, cystathionine γ-lyase (CSE, and 3-mercaptopyruvate sulfurtransferase (3MST. The activity of CBS is enhanced by S-adenosyl methionine (SAM and glutathionylation, while it is inhibited by nitric oxide (NO and carbon monoxide (CO. The activity of CSE and cysteine aminotransferase (CAT, which produces the 3MST substrate 3-mercaptopyruvate (3MP, is regulated by Ca2+. H2S is oxidized to thiosulfate in mitochondria through the sequential action of sulfide quinone oxidoreductase (SQR, sulfur dioxygenase, and rhodanese. The rates of the production and clearance of H2S determine its cellular concentration. Polysulfides (H2Sn have been found to occur in the brain and activate transient receptor potential ankyrin 1 (TRPA1 channels, facilitate the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2 to the nucleus, and suppress the activity of phosphatase and tensin homolog (PTEN by sulfurating (sulfhydrating the target cysteine residues. A cross talk between H2S and NO also plays an important role in cardioprotection as well as regulation of the vascular tone. H2S, polysulfides, and their cross talk with NO may mediate various physiological and pathophysiological responses.

  7. Synthesis and evaluation of novel biochar-based and metal oxide-based catalysts for removal of model tar (toluene), ammonia, and hydrogen sulfide from simulated producer gas

    Science.gov (United States)

    Bhandari, Pushpak

    Gasification is a thermochemical conversion process in which carbonaceous feedstock is gasified in a controlled atmosphere to generate producer gas. The producer gas is used for production of heat, power, fuels and chemicals. Various contaminants such as tars, NH3, and H2S in producer gas possess many problems due to their corrosive nature and their ability to clog and deactivate catalysts. In this study, several catalysts were synthesized, characterized, and tested for removal of three contaminants (toluene (model tar), NH3, and H2S) from the biomass-generated producer gas. Biochar, a catalyst, was generated from gasification of switchgrass. Activated carbon and acidic surface activated carbon were synthesized using ultrasonication method from biochar. Acidic surface was synthesized by coating activated carbon with dilute acid. Mixed metal oxide catalysts were synthesized from hydrotalcite precursors using novel synthesis technique using microwave and ultrasonication. Surface area of activated carbon (˜900 m2/g) was significantly higher than that of its precursor biochar (˜60 m2/g). Surface area of metal oxide catalyst was approximately 180 m2/g after calcination. Biochar, activated carbon, and acidic surface activated carbon showed toluene removal efficiencies of approximately 78, 88, and 88 %, respectively, when the catalysts were tested individually with toluene in the presence of producer gas at 800 °C. The toluene removal efficiencies increased to 86, 91, and 97 % using biochar, activated carbon and acidic surface activated carbon, respectively in the presence of NH3 and H2S in the producer gas. Increase in toluene removal efficiencies in presence of NH3 and H2S indicates that NH3 and H 2S play a role in toluene reforming reactions during simultaneous removal of contaminants. Toluene removal efficiency for mixed metal oxide was approximately 83%. Ammonia adsorption capacities were 0.008 g NH3/g catalyst for biochar and 0.03g NH3/g catalyst for activated

  8. High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots

    International Nuclear Information System (INIS)

    In a line with most recent trends in developing non-toxic fluorescent nanomaterials, we combined blue emissive carbon dots with green and red emissive zinc copper indium sulfide (ZCIS) core/shell quantum dots (QDs) to achieve white light-emitting diodes (WLEDs) with a high color rendering index of 93. This indicates that ZCIS QDs, with their broad emission bands, can be employed to effectively make up the emission of carbon dots in the yellow and red regions to produce WLEDs in the wide region of color temperature by tuning the volume ratio of these constituting luminophores. Their electroluminescence characteristics including color rendering index, Commission Internationale de l'Eclairage (CIE) color coordinates, and color temperatures were evaluated as a function of forward current. The CIE-1931 chromaticity coordinates of the as-prepared WLEDs, exhibiting good stability, were slightly shifted from (0.321, 0.312) at 10 mA to (0.351, 0.322) at 30 mA, which was mainly caused by the different thermal quenching coefficients of carbon dots and ZCIS QDs.

  9. Structural evolution of carbon during oxidation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, A.F.

    1998-04-01

    The examination of the structural evolution of carbon during oxidation has proven to be of scientific interest. Early modeling work of fluidized bed combustion showed that most of the reactions of interest occurs in the micropores, and this work has concentrated on these pores. This work has concentrated on evolution of macroporosity and microporosity of carbons during kinetic controlled oxidation using SAXS, CO{sub 2} and TEM analysis. Simple studies of fluidized bed combustion of coal chars has shown that many of the events considered fragmentation events previously may in fact be {open_quotes}hidden{close_quotes} or nonaccessible porosity. This makes the study of the microporous combustion characteristics of carbon even more important. The generation of a combustion resistant grid, coupled with measurements of the SAXS and CO{sub 2} surface areas, fractal analysis and TEM. Studies has confirmed that soot particles shrink during their oxidation, as previously suspected. However, this shrinkage results in an overall change in structure. This structure becomes, on a radial basis, much more ordered near the edges, while the center itself becomes transparent to the TEM beam, implying a total lack of structure in this region. Although complex, this carbon structure is probably burning as to keep the density of the soot particles nearly the same. The TEM techniques developed for examination of soots has also been applied to Spherocarb. The Spherocarb during oxidation also increases its ordering. This ordering, by present theories, would imply that the reactivity would go. However, the reactivity goes up, implying that structure of carbon is secondary in importance to catalytic effects.

  10. Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization

    Science.gov (United States)

    Kim, Soojung; Bajaj, Bharat; Byun, Chang Ki; Kwon, Soon-Jin; Joh, Han-Ik; Yi, Kwang Bok; Lee, Sungho

    2014-11-01

    Polyacrylonitrile (PAN) derived carbon nanofiber (CNF) webs loaded with zinc oxide (ZnO) were synthesized using electrospinning and heat treatment at 600 °C. Uniformly dispersed ZnO nanoparticles, clarified by X-ray diffraction and scanning electron microscopy, were observed on the surface of the nanofiber composites containing 13.6-29.5 wt% of ZnO. The further addition of ZnO up to 34.2 wt% caused agglomeration with a size of 50-80 nm. Higher ZnO contents led the concentrated ZnO nanoparticles on the surface of the nanofibers rather than uniform dispersion along the cross-section of the fiber. The flexible composite webs were crushed and tested for hydrogen sulfide (H2S) adsorption at 300 °C. Breakthrough experiments with the ZnO/CNF composite containing 25.7 wt% of ZnO for H2S adsorption showed three times higher ZnO utilization efficiency compared to pure ZnO nano powders, attributed to chemisorption of the larger surface area of well dispersed ZnO particles on nanofibers and physical adsorption of CNF.

  11. Oxidation behavior of a kind of carbon black

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The DTG curves of a kind of carbon black during TPO tests were found to have multiple peaks with an unusual sharp peak after the main peak.TPO tests with different sample loads,oxygen fractions and heating rates were carried out to study the influence of the experimental parameters on the sharp peak.The results show that the sharp peak is not caused by heat and mass transfer limitations,but by the intrinsic oxidation kinetics of the carbon black.The evolution of the specific surface area during the intrinsic kinetic controlled oxidation process was then analyzed using isothermal oxidation at low temperatures which showed that the sharp peak is caused by the increase of the specific surface area.The pore structure changes greatly influence the oxidation process when the reaction is controlled by the intrinsic kinetics.When there were no heat and mass transfer limitations,the different oxidation processes result in the same specific surface area evolution.

  12. Forest soil carbon oxidation state and oxidative ratio responses to elevated CO2

    Science.gov (United States)

    Hockaday, William C.; Gallagher, Morgan E.; Masiello, Caroline A.; Baldock, Jeffrey A.; Iversen, Colleen M.; Norby, Richard J.

    2015-09-01

    The oxidative ratio (OR) of the biosphere is the stoichiometric ratio (O2/CO2) of gas exchange by photosynthesis and respiration—a key parameter in budgeting calculations of the land and ocean carbon sinks. Carbon cycle-climate feedbacks could alter the OR of the biosphere by affecting the quantity and quality of organic matter in plant biomass and soil carbon pools. This study considers the effect of elevated atmospheric carbon dioxide concentrations ([CO2]) on the OR of a hardwood forest after nine growing seasons of Free-Air CO2 Enrichment. We measured changes in the carbon oxidation state (Cox) of biomass and soil carbon pools as a proxy for the ecosystem OR. The OR of net primary production, 1.039, was not affected by elevated [CO2]. However, the Cox of the soil carbon pool was 40% higher at elevated [CO2], and the estimated OR values for soil respiration increased from 1.006 at ambient [CO2] to 1.054 at elevated [CO2]. A biochemical inventory of the soil organic matter ascribed the increases in Cox and OR to faster turnover of reduced substrates, lignin and lipids, at elevated [CO2]. This implicates the heterotrophic soil community response to elevated [CO2] as a driver of disequilibrium in the ecosystem OR. The oxidation of soil carbon pool constitutes an unexpected terrestrial O2 sink. Carbon budgets constructed under the assumption of OR equilibrium would equate such a terrestrial O2 sink to CO2 uptake by the ocean. The potential for climate-driven disequilibriua in the cycling of O2 and CO2 warrants further investigation.

  13. Nickel Oxide/Carbon Nanotubes Nanocomposite for Electrochemical Capacitance

    Institute of Scientific and Technical Information of China (English)

    Kui LIANG; Kayhyeok AN; Younghee LEE

    2005-01-01

    A nanocomposite of nickel oxide/carbon nanotubes was prepared through a simple chemical precipitation followed by thermal annealing. The electrochemical capacitance of this electrode material was studied. When the mass fraction of CNTs (carbon nanotubes) in NiO/CNT composites increases, the electrical resistivity of nanocomposites decreases and becomes similar to that of pure CNTs when it reaches 30%. The specific surface area of composites increases with increasing CNT mass fraction and the specific capacitance reaches 160 F/g under 10 mA/g discharge current density at CNT mass fraction of 10%.

  14. Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune; Mogensen, Mogens Bjerg

    2009-01-01

    Carbon dioxide electrolysis was studied in Ni/YSZ electrode supported Solid Oxide Electrolysis Cells (SOECs) consisting of a Ni-YSZ support, a Ni-YSZ electrode layer, a YSZ electrolyte, and a LSM-YSZ O2 electrode (YSZ = Yttria Stabilized Zirconia). The results of this study show that long term CO2...... current density and irreversible when operated at conditions that would oxidise carbon. This clearly shows that the passivation was not caused by coke formation. On the other hand, the passivation was partly reversible when introducing hydrogen. The passivation may be a consequence of impurities in the...

  15. A peroxotungstate-ionic liquid brush assembly: an efficient and reusable catalyst for selectively oxidizing sulfides with aqueous H{sub 2}O{sub 2} solution in neat water

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xianying; Ma, Wenjuan; Ou, Hui; Han, Xiaoyan; Lu, Congmin; Chen, Yan; Wei, Junfa, E-mail: shixy@snnu.edu.cn, E-mail: weijf@snnu.edu.cn [School of Chemistry and Chemical Engineering, Shaanxi Normal University and Key Laboratory for Macromolecular Science of Shaanxi Province, Xian (China)

    2012-08-15

    An efficient and reusable heterogeneous catalytic assembly of peroxotungstate held in a ionic liquid (IL) brush was synthesized and an environmentally-friendly procedure was developed for selective oxidation of sulfides at room temperature using 30 wt.% hydrogen peroxide as the terminal oxidant and water as a sole solvent. No organic co-solvent or other additive was needed. A 1.5-2.0 mol% (based on W atom) loading catalyst was found to be sufficient for a smooth and clean reaction. Both aliphatic and aromatic sulfides were efficiently and selectively transformed into their respective sulfoxides or sulfones by simply controlling of equivalents of hydrogen peroxide. In addition to the high catalytic activity, the catalyst exhibits excellent chemoselectivity. Sensitive functional groups, such as double bond and hydroxyl, remained under the oxidation conditions the reaction even with an excess hydrogen peroxide. The catalyst was easily recovered (via simple filtration) and reused at least eight times without a noticeable loss of activity. (author)

  16. Investigation of the weldability of iron-aluminum-chromium overlay coatings for corrosion protection in oxidizing/sulfidizing environments

    Science.gov (United States)

    Regina, Jonathan R.

    The current study investigated the effect of chromium additions on the hydrogen cracking susceptibility of Fe-Al weld overlay claddings containing chromium additions. It was found that the weldability of FeAlCr claddings was a function of both the aluminum and chromium concentrations of the weld coatings. Weld overlay compositions that were not susceptible to hydrogen cracking were identified and the underlying mechanism behind the hydrogen cracking phenomenon was investigated further. It was concluded that the cracking behavior of the FeAlCr welds depended strongly on the microstructure of the weld fusion zone. Although it was found that the cracking susceptibility was influenced by the presence of Fe-Al intermetallic phases (namely Fe3 Al and FeAl), the cracking behavior of FeAlCr weld overlay claddings also depended on the size and distribution of carbide and oxide particles present within the weld structure. These particles acted as hydrogen trapping sites, which are areas where free hydrogen segregates and can no longer contribute to the hydrogen embrittlement of the metal. It was determined that in practical applications of these FeAlCr weld overlay coatings, carbon should be present within these welds to reduce the amount of hydrogen available for hydrogen cracking. Based on the weldability results of the FeAlCr weld claddings, coating compositions that were able to be deposited crack-free were used for long-term corrosion testing in a simulated low NOx environment. These alloys were compared to a Ni-based superalloy (622), which is commonly utilized as boiler tube coatings in power plant furnaces for corrosion protection. It was found that the FeAlCr alloys demonstrated superior corrosion resistance when compared to the Ni-based superalloy. Due to the excellent long-term corrosion behavior of FeAlCr weld overlays that were immune to hydrogen cracking, it was concluded that select FeAlCr weld overlay compositions would make excellent corrosion resistant

  17. Indium Tin Oxide@Carbon Core–Shell Nanowire and Jagged Indium Tin Oxide Nanowire

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2010-01-01

    Full Text Available Abstract This paper reports two new indium tin oxide (ITO-based nanostructures, namely ITO@carbon core–shell nanowire and jagged ITO nanowire. The ITO@carbon core–shell nanowires (~50 nm in diameter, 1–5 μm in length, were prepared by a chemical vapor deposition process from commercial ITO nanoparticles. A carbon overlayer (~5–10 in thickness was observed around ITO nanowire core, which was in situ formed by the catalytic decomposition of acetylene gas. This carbon overlayer could be easily removed after calcination in air at an elevated temperature of 700°C, thus forming jagged ITO nanowires (~40–45 nm in diameter. The growth mechanisms of ITO@carbon core–shell nanowire and jagged ITO nanowire were also suggested.

  18. Fluid phase equilibria during propylene carbonate synthesis from propylene oxide in carbon dioxide medium

    DEFF Research Database (Denmark)

    Gharnati, Loubna; Musko, Nikolai; Jensen, Anker Degn;

    2013-01-01

    In the present study the influence of the amount of carbon dioxide on the catalytic performance during the propylene carbonate synthesis from propylene oxide and CO2 was investigated. The reaction was performed in high-pressure batch autoclaves using immobilized 1-hydroxyethyl-9-propyl......-phase region where a CO2-expanded reactant/product phase (larger volume due to the dissolution of carbon dioxide in the liquid phase) is present. Optimal conditions for performing the reaction have been derived which requires consideration not only of the phase behavior of the starting phase but also of the...

  19. Strings of polymer microspheres stabilized by oxidized carbon nanotubes.

    Science.gov (United States)

    Yin, Guannan; Zheng, Zheng; Wang, Haitao; Du, Qiangguo; Zhang, Hongdong

    2014-07-15

    Oxidized carbon nanotubes (CNTOs) with hydrophilic oxygen-containing functional groups and hydrophobic conjugated structure are prepared by the oxidation of carbon nanotubes (CNTs). After the polymerization of styrene with CNTOs dispersed in aqueous phase, polystyrene (PS) microspheres with string-like structure are obtained. Thermogravimetic analysis (TGA), differential scanning calorimeter (DSC) and Raman results indicate the strong interaction between the separated PS chains from the oil phase and CNTOs during the initial stage of the polymerization. These adsorbed PS chains on the surface of CNTOs are quickly swollen by the monomer and they grow in size during the further polymerization. The pH value and the ion strength of aqueous phase obviously affect the stability of PS microspheres. The particle size of microspheres is also determined by the pH. We demonstrate that the one-dimensional structure of CNTOs is responsible for the formation of polymer microspheres with special architecture. PMID:24863776

  20. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  1. Exergy parametric study of carbon monoxide oxidation in moist air

    Science.gov (United States)

    Souidi, Ferhat; Benmalek, Toufik; Yesaad, Billel; Baik, Mouloud

    2015-12-01

    This study aims to analyze the oxidation of carbon monoxide in moist air from the second thermodynamic law aspect. A mathematical model of laminar premixed flame in a stagnation point flow has been achieved by numerical solution of the boundary layer equation using a self-made code. The chemical kinetic mechanism for flameless combustion of fuel, which is a mixture of carbon monoxide, oxygen, and water vapor, is modeled by 34 elementary reactions that incorporate (09) nine chemical species: CO, O, CO2, O2, H2O, H, H2, HO2, and OH. The salient point is that for all the parameters we considered, the exergy of the process is completely destroyed by irreversibilities. From the chemical viewpoint, the OH radical plays an essential role in CO oxidation. This latter point has already been mentioned by previous investigators.

  2. Memory Effects on Iron Oxide Filled Carbon Nanotubes

    OpenAIRE

    Cava, Carlos

    2013-01-01

    In this Licentiate Thesis, the properties and effects of iron and iron oxide filled carbon nanotube (Fe-CNT) memories are investigated using experimental characterization and quantum physical theoretical models. Memory devices based on the simple assembly of Fe-CNTs between two metallic contacts are presented as a possible application involving the resistive switching phenomena of this material. It is known that the electrical conductivity of these nanotubes changes significantly when the mat...

  3. Nitric oxide increases carbon monoxide production by piglet cerebral microvessels

    OpenAIRE

    Leffler, Charles W.; Balabanova, Liliya; Fedinec, Alexander L.; Parfenova, Helena

    2005-01-01

    Carbon monoxide (CO) and nitric oxide (NO) can be involved in regulation of cerebral circulation. Inhibition of production of either one of these gaseous intercellular messengers inhibits newborn pig cerebral arteriolar dilation to the excitatory amino acid glutamate. Glutamate can increase NO production. Therefore, the present study tests the hypothesis that NO, which is increased by glutamate, stimulates the production of CO by cerebral microvessels. Experiments used freshly isolated cerebr...

  4. High temperature sulfide corrosion and transport properties of transition metal sulfides

    International Nuclear Information System (INIS)

    An overview is presented of the role of the defect and transport properties of transition metal sulfides on the kinetics and mechanism of high-temperature sulfide corrosion of metals and alloys. It has been shown that due to the very high concentration of defects in common metal sulfides, not only pure metals but also conventional high-temperature alloys (chromia and alumina formers) undergo very rapid degradation in highly sulfidizing environments. Refractory metals (Mo, Nb), on the other hands, are highly resistant to sulfide corrosion, their sulfidation rates being comparable with the oxidation rate of chromium. Also, alloying of common metals by niobium and molybdenum improve considerably corrosion resistance with respect to highly sulfidizing atmospheres. It has demonstrated that Al.-Mo and Al.-Mo-Si alloys shown excellent resistant to sulfidizing environments, these materials being also simultaneously oxidation resistant. Thus, new prospects have been created for the development of a new generation of coating materials, resistant to multicomponent sulfidizing-oxidizing atmospheres, often encountered in many branches of modern technology. (author)

  5. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    Science.gov (United States)

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-11-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application.

  6. Flotation Experiment on A Refractory Sulfide and Oxidized Bulk Copper Ore%甘肃某难选混合型铜矿浮选试验

    Institute of Scientific and Technical Information of China (English)

    郭伟; 包玺琳; 廖雪珍; 刘宝山

    2014-01-01

    According to mineral characteristics of high oxidation rate, easy slimming and uneven dissemination size for a re-fractory copper bulk ore, the process flowsheet of bulk flotation for sulfide and oxidized copper ore was adopted.Test results indicate that under the conditions of appropriate grinding and reagent system, a copper concentrate containing Cu 23.98%with recovery of 85.09%can be obtained.%针对甘肃某混合型铜矿,氧化率高、易泥化、嵌布粒度不均匀的特点,采用硫化-氧化铜矿物混合浮选的工艺方案进行了矿石浮选试验研究。试验研究结果表明,在适宜的磨矿细度和药剂制度下,采用试验确定的闭路试验流程处理该矿石,可获得铜品位为23.98%、回收率为85.09%的良好指标。

  7. [Assimilation of carbon dioxide and oxidation of methane in various zones of the Rainbow hyperthermophilic field zones].

    Science.gov (United States)

    Pimenov, N V; Lein, A Iu; Sagalevich, A M; Ivanov, M V

    2000-01-01

    Rates of carbon dioxide assimilation and methane oxidation were determined in various zones of the Rainbow Hydrothermal Field (36 degrees N) of the Mid-Atlantic Ridge. In the plume above the hydrothermal field, anomalously high methane content was recorded; the microbial population density (up to 10(5) cells/ml) was an order of magnitude higher than the background values; and the CO2 assimilation rate varied from 0.01 to 1.1 micrograms C/(1 day). Based on the data on CO2 assimilation, the production of organic carbon due to bacterial chemosynthesis in the plume was calculated to be 930 kg/day or 340 tons/year (about 29% of the organic carbon production in the photic zone). In the black smoke above active smokers, the microbial population density was as high as 10(6) cells/ml; the rate of CO2 assimilation made up 5-10 micrograms C/(1 day); the methane oxidation rate varied from 0.15 to 12.7 mu/(1 day); and the methane concentration ranged from 1.05 to 70.6 mu/l. In bottom sediments enriched with sulfides, the rate of CO2 assimilation was at least an order of magnitude higher than in oxidized metal-bearing sediments. At the base of an active construction site, whitish sediment was found, which was characterized by a methane high content (92 mu/dm3) and a high rate of oxidation (1.7 mu/(dm3 day)). PMID:11195582

  8. Scientific communications: Re-Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonate-hosted copper deposits at ruby creek, southern brooks range, Alaska

    Science.gov (United States)

    Selby, D.; Kelley, K.D.; Hitzman, M.W.; Zieg, J.

    2009-01-01

    New Re-Os data for chalcopyrite, bornite, and pyrite from the carbonate-hosted Cu deposit at Ruby Creek (Bornite), Alaska, show extremely high Re abundances (hundreds of ppb, low ppm) and contain essentially no common Os. The Re-Os data provide the first absolute ages of ore formation for the carbonate-hosted Ruby Creek Cu-(Co) deposit and demonstrate that the Re-Os systematics of pyrite, chalcopyrite, and bornite are unaffected by greenschist metamorphism. The Re-Os data show that the main phase of Cu mineralization pre dominantly occurred at 384 ?? 4.2 Ma, with an earlier phase possibly at ???400 Ma. The Re-Os data are consistent with the observed paragenetic sequence and coincide with zircon U-Pb ages from igneous rocks within the Ambler metallogenic belt, some of which are spatially and genetically associated with regional volcanogenic massive sulfide deposits. The latter may suggest a temporal link between regional magmatism and hydrothermal mineralization in the Ambler district. The utility of bornite and chalcopyrite, in addition to pyrite, contributes to a new understanding of Re-Os geochronology and permits a refinement of the genetic model for the Ruby Creek deposit. ?? 2009 Society of Economices Geologists, Inc.

  9. Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores: I. Thermodynamic constants at ambient conditions

    Science.gov (United States)

    Charykova, M. V.; Krivovichev, V. G.; Depmeir, W.

    2010-12-01

    Understanding and deciphering processes proceeding near the surface are among the urgent tasks of contemporary mineralogy and geochemistry, which are especially important for resolving ecological challenges and developing principles of rational environmental management. The paper presents systematized data published on thermodynamics of minerals (arsenates, sulfates, selenites, and selenates), which are formed in the weathering zone of sulfide ores, and determines approaches to quantitative physicochemical modeling of their formation conditions. Diagrams of phase and chemical equilibria (Eh-pH, diagrams of solubility) of the subsystems of the model system Fe-Cu-Zn-Pb-Co-Ni-As-Se-S-H2O (Fe2+, Fe3+, Cu2+, Zn2+, Pb2+, Ni2+, Co2+, H+//SeO{3/2-}, SeO{4/2-}, AsO{4/3-}, SO{4/2-}, OH--H2O) are used as a thermodynamic basis for modeling mineral-forming processes in the weathering zone of ore deposits. Seventy-two arsenates, about 70 sulfates, and 7 selenites and selenates have been identified in the framework of this system. The available published values of standard thermodynamic functions of the formation of minerals and chemical compounds are given, as well as the Pitzer equation parameters to describe the sulfate systems, which are substantially specific due to the high solubility of their components.

  10. Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3 mediated by reactive platinum carbonates

    Science.gov (United States)

    Newton, Mark A.; Ferri, Davide; Smolentsev, Grigory; Marchionni, Valentina; Nachtegaal, Maarten

    2015-10-01

    Room-temperature carbon monoxide oxidation, important for maintaining clean air among other applications, is challenging even after a century of research into carbon monoxide oxidation. Here we report using time-resolved diffuse reflectance infrared spectroscopy, X-ray absorption fine structure spectroscopy and mass spectrometry a platinum carbonate-mediated mechanism for the room-temperature oxidation of carbon monoxide. By applying a periodic reduction-oxidation mode of operation we further show that this behaviour is reversible and can be formed into a catalytic cycle that requires molecular communication between metallic platinum nanoparticles and highly dispersed oxidic platinum centres. A new possibility for the attainment of low-temperature oxidation of carbon monoxide is therefore demonstrated.

  11. Liquid Phase Plasma Synthesis of Iron Oxide/Carbon Composite as Dielectric Material for Capacitor

    OpenAIRE

    2014-01-01

    Iron oxide/carbon composite was synthesized using a liquid phase plasma process to be used as the electrode of supercapacitor. Spherical iron oxide nanoparticles with the size of 5~10 nm were dispersed uniformly on carbon powder surface. The specific capacitance of the composite increased with increasing quantity of iron oxide precipitate on the carbon powder up to a certain quantity. When the quantity of the iron oxide precipitate exceeds the threshold, however, the specific capacitance was ...

  12. The oxidation of moderator graphites irradiated in carbon dioxide containing carbon monoxide, methane and water

    International Nuclear Information System (INIS)

    The Advanced Gas Cooled Reactor (AGR) was introduced for the second generation of British nuclear power stations. It was recognised that problems of compatibility between the carbon dioxide coolant and the moderator graphite would arise because of the increased power rating of the reactor compared with the first generation MAGNOX system. This led to the realisation that it would be necessary to reduce the rate of oxidation of the moderator to acceptable levels by the addition of inhibitors to the coolant and to this end carbon monoxide and methane were chosen. This paper describes experiments which have been made in a materials testing reactor at AERE Harwell in which moderator graphite reaction rates have been measured in carbon dioxide containing carbon monoxide at concentrations between 0.03% and 2% and methane concentrations up to 600 vpm. The effect of impressing a flow of coolant through the graphite structure, the so-called ventilation effect, and the role of coolant temperature and pressure have also been assessed. The results confirm the inhibiting power of methane and carbon monoxide on the graphite/CO2 reaction and demonstrate that the application of ventilation in the presence of these inhibitors enhances their effect. A minimum or 'terminal' oxidation rate may be achieved by the CAGR Gilso carbon graphites when irradiated in the presence of 200 vpm methane, or more, under appropriate conditions. (author)

  13. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP;

    1999-01-01

    Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store...... internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths,vith trichomes in......) mg of protein(-1). The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol...

  14. High purity samarium oxide from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    A simple and economical chemical process for the production of highly pure samarium oxides is discussed. The raw material, which was used in the form of rare earth carbonates was produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography was performed using a strong cationic resin that is typically employed in water treatment processes to fractionate rare earth elements (REE) without the use of retention ions. Under these conditions, 99.9% pure Sm2O3 was eluted using the ammonium salt of ethylenediaminetetraacetic acid (EDTA) at a controlled pH. The EDTA-samarium complex was separated from EDTA and then precipitated as oxalate and fired to samarium oxide. Molecular absorption spectrophotometry was used to monitor the samarium content during the proposed process, and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the samarium oxide. Typical samarium oxide obtained from the proposed procedure contained the following contaminants in micrograms per gram: Sc (20.90); Y (11.80); La (8.4); Ce (4.3); Pr (2.5); Nd (5.1); Eu (94); Gd (114); Tb (3.6); Dy (2.5), Ho (2.3); Er (3.0); Tm (2.3); Yb (38,2); Lu (25.6). The high-purity samarium oxides produced in the present study can be used as an alternative to imported products in research and development applications. (author)

  15. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg's reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm-1 corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  16. High purity samarium oxide from mixed rare earth carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Carlos A. da S.; Seneda, Jose A.; Vasconcellos, Mari E. de, E-mail: cqueiroz@ipen.br, E-mail: jaseneda@ipen.br, E-mail: mstela@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pedreira Filho, Walter dos R., E-mail: walter.pedreira@fundacentro.gov.br [Fundaco Jorge Duprat Figueiredo de Seguranca e Medicina do Trabalho (FUNDACENTRO), Sao Paulo, SP (Brazil)

    2013-07-01

    A simple and economical chemical process for the production of highly pure samarium oxides is discussed. The raw material, which was used in the form of rare earth carbonates was produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography was performed using a strong cationic resin that is typically employed in water treatment processes to fractionate rare earth elements (REE) without the use of retention ions. Under these conditions, 99.9% pure Sm{sub 2}O{sub 3} was eluted using the ammonium salt of ethylenediaminetetraacetic acid (EDTA) at a controlled pH. The EDTA-samarium complex was separated from EDTA and then precipitated as oxalate and fired to samarium oxide. Molecular absorption spectrophotometry was used to monitor the samarium content during the proposed process, and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the samarium oxide. Typical samarium oxide obtained from the proposed procedure contained the following contaminants in micrograms per gram: Sc (20.90); Y (11.80); La (8.4); Ce (4.3); Pr (2.5); Nd (5.1); Eu (94); Gd (114); Tb (3.6); Dy (2.5), Ho (2.3); Er (3.0); Tm (2.3); Yb (38,2); Lu (25.6). The high-purity samarium oxides produced in the present study can be used as an alternative to imported products in research and development applications. (author)

  17. Diallyl trisulfide protects against ethanol-induced oxidative stress and apoptosis via a hydrogen sulfide-mediated mechanism.

    Science.gov (United States)

    Chen, Lian-Yun; Chen, Qin; Zhu, Xiao-Jing; Kong, De-Song; Wu, Li; Shao, Jiang-Juan; Zheng, Shi-Zhong

    2016-07-01

    Garlic is one natural source of organic sulfur containing compounds and has shown promise in the treatment of chronic liver disease. Dietary garlic consumption is inversely correlated with the progression of alcoholic fatty liver (AFL), although the exact underlying mechanisms are not clear. Our previous studies also have shown that diallyl trisulfide (DATS), the primary organosulfur compound from Allium sativum L, displayed anti-lipid deposition and antioxidant properties in AFL. The aim of the present study was to clarify the underlying mechanisms. In the present study, we used the intragastric infusion model of alcohol administration and human normal liver cell line LO2 cultured with suitable ethanol to mimic the pathological condition of AFL. We showed that accumulation of intracellular reactive oxygen species (ROS) was lowered significantly by the administration of DATS, but antioxidant capacity was increased by DATS. Additionally, DATS inhibited hepatocyte apoptosis via down-regulating Bax expression and up-regulating Bcl-2 expression, and attenuated alcohol-induced caspase-dependent apoptosis. More importantly, using iodoacetamide (IAM) to block hydrogen sulfide (H2S) production from DATS, we noted that IAM abolished all the above effects of DATS in ethanol-treated LO2 cells. Lastly, we found DATS could increase the expressions of cystathionine gamma-lyase (CSE) and cystathionine beta-synthase (CBS), the major H2S-producing enzymes. These results demonstrate that DATS protect against alcohol-induced fatty liver via a H2S-mediated mechanism. Therefore, targeting H2S may play a therapeutic role for AFL. PMID:27107369

  18. Hydrogen evolution on nano-particulate transition metal sulfides

    DEFF Research Database (Denmark)

    Bonde, Jacob Lindner; Moses, Poul Georg; Jaramillo, Thomas F.;

    2008-01-01

    The hydrogen evolution reaction (HER) on carbon supported MoS2 nanoparticles is investigated and compared to findings with previously published work on Au(111) supported MoS2. An investigation into MoS2 oxidation is presented and used to quantify the surface concentration of MoS2. Other metal...... sulfides with morphologies similar to MoS2 such as WS2, cobalt- promoted WS2, and cobalt-promoted MoS2 were also investigated in the search for improved HER activity. Experimental findings are compared to density functional theory (DFT) calculated values for the hydrogen binding energies (Delta G(H)) on...

  19. 溴化钾催化硫化物、硝酸铵和 SiO2-OSO3H 固体酸的氧化反应%Chemoselective Oxidation of Sulfides with Ammonium Nitrate and Silica Sulfuric Acid Catalyzed by KBr

    Institute of Scientific and Technical Information of China (English)

    Arash GHORBANI-CHOGHAMARANI; Mohammad Ali ZOLFIGOL; Toktam RASTEGAR

    2009-01-01

    A convenient and selective catalytic method for the sulfoxidation of aliphatic and aromatic sulfides by treatment of NH4NO3, silica sulfuric acid, wet SiO2 (50% w/w) and a catalytic amount of KBr in CH2Cl2 at room temperature was developed. Many sulfides can be selectively oxidized at room temperature in good to excellent yields. The reaction proceeds without over-oxidation to sulfones under mild conditions.

  20. INFLUENCE OF HEAT TREATMENT ON OXIDATION PROPERTIES OF C/C COMPOSITES FABRICATED BY HIGH PRESSURE IMPREGNATION CARBONIZATION

    Institute of Scientific and Technical Information of China (English)

    Q.Chen; H.J.Li; A.J.Li; H.M.Han; K.Z.Li

    2004-01-01

    Felt base carbon/carbon composites fabricated by super-high pressure impregnation carbonization process (SPIC) were heat treated at high temperature 2773K. The oxidation properties of felt base carbon/carbon composites were investigated at different temperatures (773-1173K), and the microstructures of carbon/carbon composites were studied by SEM and X-ray diffraction. The experimental results showed that the interlaminar distance of (002) plane (doo2) deceased while the microcrystalline stack height (Lc) increased. The oxidation rate of felt base carbon/carbon composites was invariable at certain temperatures. The oxidation mechanism of carbon/carbon composites changed remarkably at the oxidation temperature 973K. At the initial oxidation stage of carbon/carbon composites, carbon matrix was oxidized much more rapidly than carbon felt.

  1. Composition of Aqueous Solutions in Equilibrium with Sulfides and Oxides of Iron at 350{degrees}C.

    Science.gov (United States)

    Raymahashay, B C; Holland, H D

    1968-11-22

    Solutions of potassium chloride (pH-buffered and 1-molal) equilibrated at 350 degrees C with pyrrhotite, pyrite, and magnetite contained approximately 1 millimole of reduced sulfur and less than 0.1 millimole of oxidized sulfur per kilogram. Similar solutions equilibrated with pyrite, magnetite, and hematite contained approximately 1 millimole of reduced sulfur, but 3 to 6 millimoles of oxidized sulfur per kilogram. Both types of solutions contained less than 0.1 millimole of iron per kilogram at pH >/= 6 and approximately 100 millimoles per kilogram at pH 2. PMID:17769075

  2. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R.; Novak, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  3. Enhancing the crystalline degree of carbon nanotubes by acid treatment, air oxidization and heat treatment

    Institute of Scientific and Technical Information of China (English)

    Chensha Li; Baoyou Zhang; Xingjuan Chen; Xiaoqing Hu; Ji Liang

    2005-01-01

    Three approaches of treating carbon nanotubes (CNTs) including acid treatment, air oxidization and heat treatment at high temperature were studied to enhance the crystalline degree of carbon nanotubes. High temperature heat-treatment elevates the crystalline degree of carbon nanotubes. Acid treatment removes parts of amorphous carbonaceous matter through its oxidization effect.Air oxidization disperses carbon nanotubes and amorphous carbonaceous matter. The treatment of combining acid treatment with heat-treatment further elevates the crystalline degree of carbon nanotubes comparing with acid treatment or heat-treatment. The combination of the three treatments creates the thorough effects of enhancing the crystalline degree of carbon nanotubes.

  4. Measurement of dissolved sulfide in geothermal condensate

    Energy Technology Data Exchange (ETDEWEB)

    Chang, D.P.Y.; Corsi, R.L.; McNeece, C.

    1985-01-01

    The objective of this study was to develop a reliable method for determining the concentration of sulfide ions in laboratory solutions and in field samples containing geothermal condensate. A method based upon a sulfide selective ion electrode has been tested successfully on both. The method is straightforward to apply, involving collection of filtered samples into a sulfide anti-oxidant buffer (SAOB), subsequent measurement by electrodes and comparison with a calibration curve prepared from solutions containing known concentrations of sulfide ions. The importance of filtering the samples was demonstrated by a marked reduction of electrode potential after sample filtration. For replicate solutions of known composition containing greater than 1 x 10/sup -6/ M (0.032 ppm) of dissolved sulfide the estimated accuracy of the method was about 5%. For geothermal condensate of unknown composition, the mean of replicate samples was estimated to be within about 20% of the true value.

  5. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats.

    Science.gov (United States)

    Huang, Pan; Shen, Zhizhou; Liu, Jia; Huang, Yaqian; Chen, Siyao; Yu, Wen; Wang, Suxia; Ren, Yali; Li, Xiaohui; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    BACKGROUND. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. METHODS. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP), serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. RESULTS. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and (•)OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. CONCLUSIONS. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress. PMID:26823949

  6. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats

    Directory of Open Access Journals (Sweden)

    Pan Huang

    2016-01-01

    Full Text Available Background. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. Methods. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP, serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. Results. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and •OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. Conclusions. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress.

  7. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yadegari, H. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Karimian, K. [Arasto Pharmaceutical Chemicals Inc., Tehran (Iran, Islamic Republic of); Khodadadi, A. [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-02-15

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS). During oxidation of deferiprone, two irreversible anodic peaks, with E{sub 1}{sup 0}=452 and E{sub 2}{sup 0}=906mV, appeared, using GC-CNT. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that deferiprone is oxidized via two two-electron steps. The results revealed that carbon nanotube (CNT) promotes the rate of oxidation by increasing the peak current, so that deferiprone is oxidized at lower potentials, which thermodynamically is more favorable. This result was confirmed by impedance measurements. The diffusion coefficient, electron-transfer coefficient and heterogeneous electron-transfer rate constant of deferiprone were found to be 1.49 x 10{sup -6} cm{sup 2} s{sup -1}, 0.44, and 3.83 x 10{sup -3} cm s{sup -1}, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of deferiprone. Using the proposed method, deferiprone can be determined with a detection limit of 5.25 x 10{sup -7} M. The applicability of the method to direct assays of spiked human serum and urine fluids is described.

  8. Carbon Nanomaterial Produced by Microwave Exfoliation of Graphite Oxide

    Directory of Open Access Journals (Sweden)

    Shulga Y.M.

    2013-09-01

    Full Text Available Carbon-based graphene-like material was obtained through microwave stimulated exfoliation of graph-ite oxide (GO. Properties of this material were investigated by multiple techniques including element analysis, X-ray photoelectron spectroscopy (XPS, mass-spectroscopy, infrared (IR and Raman spectrosco-py, scanning electron microscopy (SEM and broadband dielectric spectroscopy. Specific surface area and volume of microwave exfoliated graphite oxide (MEGO reached 600 m2/g and 6 cm3/g, respectively. It is shown that during such explosive reduction process the sample emits CO2, CO and H2O and, in some cases, SO2 gases. The resulting reduced material exhibits IR spectra similar to that of graphite and a dc-conductivity of 0.12 S/cm. It is also shown that prolonged storage in ambient conditions leads to elevated oxygen content and decrease of specific surface area of the samples.

  9. Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. G. Larrude

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition of cobalt nitrate hexahydrate diluted in acetone. Electron microscopy analysis indicated that dispersed particles were formed on the MWCNTs walls. The average size increased with the increasing concentration of cobalt nitrate in acetone in the precursor mixture. TEM images indicated that nanoparticles were strongly attached to the tube walls. The Raman spectroscopy results suggested that the MWCNT structure was slightly damaged after the nanoparticle growth.

  10. Kinetic study of pyrite oxidation in basic carbonate solutions

    International Nuclear Information System (INIS)

    The general goal of this experimental study was to find ways to control the unwanted oxidation of pyrite during the in situ leaching of uranium ores. The authors investigated the effect of particle size, leaching pH, flow rate, total carbonate concentration, and cation type of column leaching rates. The work appears to be the first dealing with pyrite leaching in test columns at high pH in which the identity and percentages of the various eluted sulfur compounds was measured. The most interesting of the experimental observations was the ultimate ceasing of the pyrite reaction when using an ammonia leachant

  11. Flowerlike molybdenum sulfide/multi-walled carbon nanotube hybrid as Pt-free counter electrode used in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    A flowerlike molybdenum sulfide/multi-walled carbon nanotube (MoS2/MWCNT) hybrid is prepared and used as an efficient Pt-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). Field emission scanning electron microscopy observes that the flowerlike MoS2/MWCNTs possess lamellar and large specific surface area, which benefits the enhancement of electrocatalytic activity. Cyclic voltammogram measurement indicates that MoS2/MWCNT CE has larger current density smaller overpotential than MoS2, MWCNT, even Pt CEs. Electrochemical impedance spectroscopy shows that the MoS2/MWCNT with optimal MWCNT content has low charge-transfer resistance of 2.05 Ω × cm2 and series resistance of 1.13 Ω·cm2. Under simulated solar light irradiation with intensity of 100 mW·cm−2 (AM 1.5), the DSSC based on the MoS2/MWCNT CE achieves a power conversion efficiency of 7.50 %, which is comparable with the solar cells based on the Pt CE (7.49%)

  12. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: effect of pH, mixing and aeration

    DEFF Research Database (Denmark)

    Dai, Xiao-Rong; Blanes-Vidal, Victoria

    2013-01-01

    This study aimed at evaluating the effect of swine slurry acidification and acidification-aeration treatments on ammonia (NH(3)), carbon dioxide (CO(2)) and hydrogen sulfide (H(2)S) emissions during slurry treatment and subsequent undisturbed storage. The study was conducted in an experimental...... setup consisting of nine dynamic flux chambers. Three pH levels (pH = 6.0, pH = 5.8 and pH = 5.5), combined with short-term aeration and venting (with an inert gas) treatments were studied. Acidification reduced average NH(3) emissions from swine slurry stored after acidification treatment compared to...... emissions during storage of non-acidified slurry. The reduction were 50%, 62% and 77% when pH was reduce to 6.0, 5.8 and 5.5, respectively. However, it had no significant effect on average CO(2) and H(2)S emissions during storage of slurry after acidification. Aeration of the slurry for 30 min had no effect...

  13. Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress

    Directory of Open Access Journals (Sweden)

    Mohammad Golam Mostofa

    2015-12-01

    Full Text Available Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of salt stress tolerance in rice. We show that pretreating rice plants with H2S donor sodium bisulfide (NaHS clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS, contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, decreased uptake of Na+, decreased Na+/K+ ratio and balanced mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitter like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes.

  14. Carbon and Redox Tolerant Infiltrated Oxide Fuel-Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Sudireddy, Bhaskar Reddy; Blennow, P.;

    2016-01-01

    To solve issues of coking and redox instability related to the presence of nickel in typical fuel electrodes in solid oxide cells,Gd-doped CeO2 (CGO) electrodes were studied using symmetriccells. These electrodes showed high electro-catalytic activity, butlow electronic conductivity. When infiltr...... deposition in a CO/CO2-atmosphere, while none of the non-nickel cells catalyzed carbon.Stability towards redox cycles was also proven....

  15. Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NALT)

    OpenAIRE

    Anderson, Iain; Chertkov, Olga; Chen, Amy; Saunders, Elizabeth; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos

    2012-01-01

    Sulfobacillus acidophilus Norris et al. 1996 is a member of the genus Sulfobacillus which comprises five species of the order Clostridiales . Sulfobacillus species are of interest for comparison to other sulfur and iron oxidizers and also have biomining applications. This is the first completed genome sequence of a type strain of the genus Sulfobacillus , and the second published genome of a member of the species S. acidophilus . The genome, which consists of one chromosome and one plasmid wi...

  16. Carbon nanotubes/tin oxide nanocomposite-supported Pt catalysts for methanol electro-oxidation.

    Science.gov (United States)

    Li, Xingwei; Wei, Jiadi; Chai, Yuzheng; Zhang, Shuo

    2015-07-15

    Carbon nanotubes/tin oxide nanocomposite (MWCNTs-SnO2) was obtained via the hydrolysis of SnCl4 in the presence of multi-walled carbon nanotubes (MWCNTs) and subsequent calcinations. And carbon nanotubes/tin oxide nanocomposite-supported Pt catalysts (Pt/MWCNTs-SnO2) were prepared by in-situ liquid phase reduction using H2PtCl6 as a metal precursor. As-prepared catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), and their catalytic performances were evaluated by chronoamperometry (CA) and cyclic voltammetry (CV). Desirable catalytic performance for methanol electro-oxidation was observed with a reduced size and an improved dispersion of Pt catalysts on the MWCNTs-SnO2 nanocomposite. The calcination temperature of MWCNTs-SnO2 nanocomposite was a key factor for controlling the catalytic performance of Pt/MWCNTs-SnO2 catalysts. PMID:25801135

  17. Electrochemically oxidized carbon anode in direct L-ascorbic acid fuel cells

    International Nuclear Information System (INIS)

    The activity of electrochemically oxidized carbon electrode was investigated in the operation of a direct L-ascorbic acid fuel cell anode. The surface oxygen species placed on electrochemically oxidized carbon electrode were analyzed by X-ray photoelectron spectroscopy and cyclic voltammetry. The electrochemical oxidation process of carbon electrode can facilitate the pore-filling process (i.e., wetting) of the electrolyte into the microstructure of the carbon electrode by increasing the number of more polar functional groups on the electrode surface. The electrochemically oxidized carbon electrode exhibited significantly enhanced electro-catalytic oxidation activity of L-ascorbic acid compared to an unmodified carbon electrode. Moreover, the simplified electrode structure using carbon paper without an additional powder-based precious catalyst layer is very favorable in creating percolation network and generates power density of 18 mW/cm2 at 60 deg. C

  18. Functional Analysis of Three Sulfide:Quinone Oxidoreductase Homologs in Chlorobaculum tepidum▿ †

    OpenAIRE

    Chan, Leong-Keat; Morgan-Kiss, Rachael M; Hanson, Thomas E.

    2008-01-01

    Sulfide:quinone oxidoreductase (SQR) catalyzes sulfide oxidation during sulfide-dependent chemo- and phototrophic growth in bacteria. The green sulfur bacterium Chlorobaculum tepidum (formerly Chlorobium tepidum) can grow on sulfide as the sole electron donor and sulfur source. C. tepidum contains genes encoding three SQR homologs: CT0117, CT0876, and CT1087. This study examined which, if any, of the SQR homologs possess sulfide-dependent ubiquinone reduction activity and are required for gro...

  19. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Science.gov (United States)

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  20. Carbon nanotubes: a suitable material for catalytic wet peroxide oxidation of organic pollutants?

    OpenAIRE

    Ribeiro, Rui; Silva, Adrián; Faria, Joaquim; Gomes, Helder

    2012-01-01

    Carbon materials, such as activated carbons (AC), graphite and activated carbon xerogels, have been explored as metal-free catalysts for the catalytic wet peroxide oxidation (CWPO) of bio-refractory organic compounds, such as azo dyes and phenolic compounds [1-3]. At the same time, the application of carbon nanomaterials in catalysis, such as carbon nanotubes (CNT), has grown exponentially [4]. In the present work, commercial multiwalled carbon nanotubes (MWNT) were used in the CWPO of 2-nitr...

  1. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  2. Nickel Sulfide/Graphene/Carbon Nanotube Composites as Electrode Material for the Supercapacitor Application in the Sea Flashing Signal System

    Institute of Scientific and Technical Information of China (English)

    Hailong Chen; Ji Li; Conglai Long; Tong Wei; Guoqing Ning; Jun Yan; Zhuangjun Fan

    2014-01-01

    This work presents NiS/graphene/carbon nanotube (NiS/GNS/CNT) composites as electrode material for the supercapacitor application in sea flashing signal systems. NiS nanosheets were closely anchored on the conductive GNS-CNT networks. As a result, the NiS/GNS/CNT electrode showed a high specific capacitance of 2 377 F·g-1 at 2 mV·s-1 and good cycling stability compared with the pure NiS (1 599 F·g-1 ). The enhanced electrochemical performances are attributed to the synergetic effect between the conductive carbon and the pseudo-capacitive NiS. The high performance supercapacitor may provide application in the sea flashing signal system.

  3. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  4. Hierarchical nickel sulfide/carbon nanotube nanocomposite as a catalytic material toward triiodine reduction in dye-sensitized solar cells

    Science.gov (United States)

    Lu, Man-Ning; Dai, Chao-Shuan; Tai, Sheng-Yen; Lin, Tsung-Wu; Lin, Jeng-Yu

    2014-12-01

    In this study, Ni3S2 nanoparticles are successfully decorated on the backbone of conductive multi-walled carbon nanotubes (denoted as Ni3S2/MWCNT-NC) via a facile glucose-assisted hydrothermal method and employed as a counter electrode (CE) in dye-sensitized solar cells (DSCs). It is noteworthy that the use of glucose in the hydrothermal reaction plays a crucial role in the formation of the nanocomposite structure. Nevertheless, a thick layer of amorphous carbon derived from the hydrothermal carbonization of glucose covers Ni3S2 nanoparticle surface, and thus may inhibit the contact of active sites in Ni3S2 nanoparticles with electrolyte. It is found that the partial amorphous carbon on Ni3S2/MWCNT-NC can be effectively removed after annealing at 400 °C in a nitrogen atmosphere, which further increases the active sites of Ni3S2 nanoparticles on MWCNTs and therefore improves the electrocatalytic activity of the Ni3S2/MWCNT-NC CE. As a result, the DSC with the Ni3S2/MWCNT-NC CE yields a cell efficiency of 6.87%, which is higher than those of DSCs based on the Ni3S2 CE (5.77%) and MWCNT CE (3.76%). Because the Ni3S2/MWCNT-NC CE based DSC shows a comparable photovoltaic performance to the DSC using the Pt CE (7.24%), Ni3S2/MWCNT-NC CE may serve as a promising alternative to Pt CE for DSCs.

  5. A Study on the Oxidative-dissolution Leaching of Fission Product Oxides in the carbonate solution

    International Nuclear Information System (INIS)

    This study was carried out to investigate the characteristics of an oxidativedissolution leaching of FP co-dissolved with U in a carbonate solution of Na2CO3- H2O2 and (NH4)2CO3-H2O2, respectively. Simulated FP-oxides which contained 12 components have been added to the solution to examine their oxidative dissolution characteristics. It was found that H2O2 was an effective oxidant to minimize the dissolution of FP in a carbonate solution. In 0.5M Na2CO3-0.5M H2O2 and 0.5M (NH4)2CO3-0.5M H2O2 solution, some elements such as Re, Te, Cs and Mo seem to be dissolved together with U. It is revealed that dissolution rates of Re, Te and Cs are high (completely dissolved within 10∼20 minutes) due to their high solubility in Na2CO3 and (NH4)2CO3 solution regardless of the addition of H2O2, and independent of the concentrations of Na2CO3 and H2O2. However, Mo was slowly dissolved by an oxidative dissolution with H2O2. It is found that the most important factor for the oxidative dissolution of FP is the pH of the solution and an effective oxidative dissolution is achieved at a pH between 10∼12 for Na2CO3 and a pH between 9∼10 for (NH4)2CO3, respectively, in order to minimize the dissolution of FP

  6. Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NALT)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Pan, Chongle [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute

    2012-01-01

    Sulfobacillus acidophilus Norris et al. 1996 is a member of the genus Sulfobacillus which comprises five species of the order Clostridiales. Sulfobacillus species are of interest for comparison to other sulfur and iron oxidizers and also have biomining applications. This is the first completed genome sequence of a type strain of the genus Sulfobacillus, and the second published genome of a member of the species S. acidophilus. The genome, which consists of one chromosome and one plasmid with a total size of 3,557,831 bp, harbors 3,626 protein-coding and 69 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Phase Engineering of 2D Tin Sulfides.

    OpenAIRE

    Mutlu, Z; Wu, RJ; Wickramaratne, D.; Shahrezaei, S; Liu, C; Temiz, S; Patalano, A; M Ozkan; Lake, RK; Mkhoyan, KA; Ozkan, CS

    2016-01-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2...

  8. Copper on activated carbon for catalytic wet air oxidation

    Directory of Open Access Journals (Sweden)

    Nora Dolores Martínez

    2009-03-01

    Full Text Available Textile industry is an important source of water contamination. Some of the organic contaminants cannot be eliminated by nature in a reasonable period. Heterogeneous catalytic wet air oxidation is one of the most effective methods to purify wastewater with organic contaminants. In this work, catalysts based on copper supported on activated carbon were synthesized. The activated carbons were obtained from industrial wastes (apricot core and grape stalk of San Juan, Argentina. These were impregnated with a copper salt and thermically treated in an inert atmosphere. Analysis of specific surface, pore volume, p zc, acidity, basicity and XRD patterns were made in order to characterize the catalysts. The catalytic activity was tested in the oxidation of methylene blue (MB and polyvinyl alcohol (PVA in aqueous phase with pure oxygen. Reaction tests were carried out in a Parr batch reactor at different temperatures, with a 0.2 MPa partial pressure of oxygen. The amount of unconverted organics was measured by spectrophotometry. Higher temperatures were necessary for the degradation of PVA compared to those for methylene blue.

  9. Thermal and radiation induced polymerisation of carbon sub-oxide

    International Nuclear Information System (INIS)

    This research thesis addresses the study of the polymerisation of carbon sub-oxide (C3O2) in gaseous phase. As this work is related to other researches dealing with the reactions of the graphite-CO2 system which occur in graphite-moderated nuclear reactors, a first intention was to study the behaviour of C3O2 when submitted to radiations. Preliminary tests showed that the most remarkable result of this action was the formation of a polymer. It was also noticed that the polymerisation of this gas was spontaneous however slower at room temperature. The research thus focused on this polymerisation, and on the formula of the obtained polymer. After some generalities, the author reports the preparation, purification and storage and conservation of the carbon sub-oxide. The next parts report the kinetic study of thermal polymerisation, the study of polymerisation under γ rays, the study of the obtained polymer by using visible, UV and infrared spectroscopy, electronic paramagnetic resonance, and semi-conductivity measurements

  10. Atomic Layer Deposition of Zirconium Oxide on Carbon Nanoparticles

    International Nuclear Information System (INIS)

    In this report we describe preparation of structures containing carbon nanoparticles for potential applications in nonvolatile memories. The carbon nanoparticles were synthesized from 5-methylresorcinol and formaldehyde via base catalysed polycondensation reaction, and were distributed over substrates by dip-coating the substrates into an organic solution. Before deposition of nanoparticles the substrates were covered with 2 nm thick Al2O3 layer grown by atomic layer deposition (ALD) from Al(CH3)3 and O3. After deposition of nanoparticles the samples were coated with ZrO2 films grown from C5H5Zr[N(CH3)2]3 and H2O. Both dielectrics were grown in two-temperature ALD processes starting deposition of Al2O3 at 25 °C and ZrO2 at 200 °C, thereafter completing both processes at a substrate temperature of 300 °C. Deposition of ZrO2 changed the structure of C-nanoparticles, which still remained in a Si/Al2O3/C/ZrO2 structure as a separate layer. Electrical characterization of nanostructures containing Al2O3 as tunnel oxide, C-nanoparticles as charge traps and ZrO2 as control oxide showed hysteretic flat-band voltage shift of about 1V

  11. Metal Oxide-Carbon Nanocomposites for Aqueous and Nonaqueous Supercapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I effort focuses on development of novel metal-oxide-carbon nanocomposites for application in pseudocapacitive...

  12. Paleomagnetic dating of non-sulfide Zn-Pb ores in SW Sardinia (Italy: a first attempt

    Directory of Open Access Journals (Sweden)

    L. Sagnotti

    2005-06-01

    Full Text Available A first paleomagnetic investigation aimed at constraining the age of the non-sulfide Zn-Pb ore deposits in the Iglesiente district (SW Sardinia, Italy was carried out. In these ores, the oxidation of primary sulfides, hosted in Cambrian carbonate rocks, was related to several paleoweathering episodes spanning from the Mesozoic onward. Paleomagnetic analyses were performed on 43 cores from 4 different localities, containing: a non-oxidized primary sulfides and host rock, b oxidized Fe-rich hydrothermal dolomites and (c supergene oxidation ore («Calamine». Reliable data were obtained from 18 samples; the others show uninterpretable results due to low magnetic intensity or to scattered demagnetization trajectories. Three of them show a scattered Characteristic Remanent Magnetization (ChRM, likely carried by the original (i.e. Paleozoic magnetic iron sulfides. The remaining 15 samples show a well defined and coherent ChRM, carried by high-coercivity minerals, acquired after the last phase of counterclockwise rotation of Sardinia (that is after 16 Myr, in a time interval long enough to span at least one reversal of the geomagnetic field. Hematite is the main magnetic carrier in the limestone, whereas weathered hydrothermal dolomite contains goethite or a mixture of both. The results suggest that paleomagnetism can be used to constrain the timing of oxidation in supergene-enriched ores.

  13. The effect of sulfide inhibition on the ANAMMOX process.

    Science.gov (United States)

    Jin, Ren-Cun; Yang, Guang-Feng; Zhang, Qian-Qian; Ma, Chun; Yu, Jin-Jin; Xing, Bao-Shan

    2013-03-01

    The feasibility of anaerobic ammonium oxidation (ANAMMOX) process to treat wastewaters containing sulfide was studied in this work. Serum bottles were used as experimental containers in batch tests to analyze the short-term response of the ANAMMOX process under sulfide stress. The IC(50) of sulfide-S for ANAMMOX biomass was substrates-dependent and was calculated to be 264 mg L(-1) at an initial total nitrogen level of 200 mg L(-1) (molar ratio of ammonium and nitrite was 1:1). The long-term effects and the performance recovery under sulfide stress were continuously monitored and evaluated in an upflow anaerobic sludge blanket reactor. The performance of the ANAMMOX system was halved at an sulfide-S level of 32 mg L(-1) within 13 days; however, the nitrogen removal rate (NRR) decreased by only 17.2% within 18 days at an sulfide-S concentration of 40 mg L(-1) after long-time acclimatization of sludge in the presence of sulfide. The ANAMMOX performance recovered under sulfide-S level of 8 mg L(-1) with a steady NRR increasing speed, linear relationship between the NRR and operation time. The synchronic reduce in the specific ANAMMOX activity and the biomass extended the apparent doubling time of the nitrogen removal capacity and decreased biomass growth rate. PMID:23273856

  14. Oxidation of carbon based first wall materials of ITER

    International Nuclear Information System (INIS)

    The safety relevance of oxidation reactions on carbon materials in fusion reactors is discussed. Because tritium codeposited in ITER will probably exceed tolerable limits, countermeasures have to be developed: In this paper ozone is tested as oxidising agent for removal of codeposited layers on thick a-C:D-flakes from TEXTOR. In preceeding experiments the advantageous features of using ozonised air instead of ozonised oxygen, reported in literature for reactions with graphite, is not found for nuclear grade graphite. At 185 deg. C = 458 K ozone (0.8-3.4 vol-% in oxygen) is able to gasify the carbon content of these flakes with initial rates, comparable to initial rates in oxygen (21 kPa) for the same material at >200K higher temperatures. The layer reduction rate in ozone drops with increasing burn-off rapidly from about 0.9-2.0 μm/h to 0.20-0.25 μm/h, but in oxygen it drops to zero for all temperatures ≤ 450 deg. C = 723 K, before carbon is completely gasified. Altogether, ozone seems to be a promising oxidising agent for removal of codeposited layers, but further studies are necessary with respect to rate dependence on temperature and ozone concentration even on other kinds of codeposited layers. Further on, the optimum reaction temperature considering the limited thermal stability of ozone has to be found out and studies on the general reaction mechanism have to be done. Besides these examinations on codeposited layers, a short overview on the status of our oxidation studies on different types of fusion relevant C-based materials is given; open problems in this field are outlined. (author)

  15. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  16. Interactions between the glass fiber coating and oxidized carbon nanotubes

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible

  17. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon.

    Science.gov (United States)

    Rungnim, Chompoonut; Promarak, Vinich; Hannongbua, Supa; Kungwan, Nawee; Namuangruk, Supawadee

    2016-06-01

    The reaction mechanisms of mercury (Hg) adsorption and oxidation on halogenated activated carbon (AC) have been completely studied for the first time using density functional theory (DFT) method. Two different halogenated AC models, namely X-AC and X-AC-X (X=Cl, Br, I), were adopted. The results revealed that HgX is found to be stable-state on the AC edge since its further desorption from the AC as HgX, or further oxidation to HgX2, are energetically unfavorable. Remarkably, the halide type does not significantly affect the Hg adsorption energy but it strongly affects the activation energy barrier of HgX formation, which obviously increases in the order HgIelimination significantly decreases as I-AC>Br-AC>Cl-AC. Thus, the study of the complete reaction mechanism is essential because the adsorption energy can not be used as a guideline for the rational material design in the halide impregnated AC systems. The activation energy is an important descriptor for the predictions of sorbent reactivity to the Hg oxidation process. PMID:26943019

  18. Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NAL(T)).

    Science.gov (United States)

    Anderson, Iain; Chertkov, Olga; Chen, Amy; Saunders, Elizabeth; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Palaniappan, Krishna; Land, Miriam; Pan, Chongle; Rohde, Manfred; Pukall, Rüdiger; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Mavromatis, Konstantinos

    2012-07-30

    Sulfobacillus acidophilus Norris et al. 1996 is a member of the genus Sulfobacillus which comprises five species of the order Clostridiales. Sulfobacillus species are of interest for comparison to other sulfur and iron oxidizers and also have biomining applications. This is the first completed genome sequence of a type strain of the genus Sulfobacillus, and the second published genome of a member of the species S. acidophilus. The genome, which consists of one chromosome and one plasmid with a total size of 3,557,831 bp harbors 3,626 protein-coding and 69 RNA genes, and is a part of the GenomicEncyclopedia ofBacteria andArchaea project. PMID:23407703

  19. Investigation into leaching of indium-containing sulfide cake

    International Nuclear Information System (INIS)

    Data are given of laboratory investigations into indium leaching from commercial-grade sulfide cake. Two indium extraction methods are studied: exchange sulfide decomposition by blue vitriol treatment, sulfide destruction by means of an oxidizer where manganese ore containing manganese dioxide and zinc cake containing zinc ferrite have been used. The influence of the reagent consumption temperature, duration of leaching on the indium extraction is estimated as well as into on the Copper and arsenic transport into the solution. Optimal conditions for the indium extraction from sulfide cake under salt leaching and oxidizing treatment are established

  20. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    Science.gov (United States)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-05-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  1. Redox Biochemistry of Hydrogen Sulfide*

    OpenAIRE

    Kabil, Omer; Banerjee, Ruma

    2010-01-01

    H2S, the most recently discovered gasotransmitter, might in fact be the evolutionary matriarch of this family, being both ancient and highly reduced. Disruption of γ-cystathionase in mice leads to cardiovascular dysfunction and marked hypertension, suggesting a key role for this enzyme in H2S production in the vasculature. However, patients with inherited deficiency in γ-cystathionase apparently do not present vascular pathology. A mitochondrial pathway disposes sulfide and couples it to oxid...

  2. Synthesis, characterization and formation process of transition metal oxide nanotubes using carbon nanofibers as templates

    International Nuclear Information System (INIS)

    Mono and binary transition metal oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air. The transition metal oxide nanotubes were composed of nano-crystallites of metal oxides. The functional groups on the carbon nanofiber templates were essential for the coating of these templates: they acted as adsorption sites for the metal nitrates, ensuring a uniform metal oxide coating. During the removal of the carbon nanofiber templates by calcination in air, the metal oxide coatings promoted the combustion reaction between the carbon nanofibers and oxygen. - Graphical abstract: Mono and binary transition metal-oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air.

  3. Selective Oxidation of Amorphous Carbon Layers without Damaging Embedded Single Wall Carbon Nanotube Bundles

    Science.gov (United States)

    Choi, Young Chul; Lim, Seong Chu

    2013-11-01

    Single wall carbon nanotubes (SWCNTs) were synthesized by arc discharge, and then purified by selective oxidation of amorphous carbon layers that were found to encase SWCNT bundles and catalyst metal particles. In order to remove selectively the amorphous carbon layers with SWCNTs being intact, we have systematically investigated the thermal treatment conditions; firstly, setting the temperature by measuring the activation energies of SWCNTs and amorphous carbon layers, and then, secondly, finding the optimal process time. As a consequence, the optimal temperature and time for the thermal treatment was found to be 460 °C and 20 min, respectively. The complete elimination of surrounding amorphous carbon layers makes it possible to efficiently disperse the SWCNT bundles, resulting in high absorbance of SWCNT-ink. The SWCNTs which were thermal-treated at optimized temperature (460 °C) and duration (20 min) showed much better crystallinity, dispersibility, and transparent conducting properties, compared with as-synthesized and the nanotubes thermal-treated at different experimental conditions.

  4. Additive cardioprotection by pharmacological postconditioning with hydrogen sulfide and nitric oxide donors in mouse heart: S-sulfhydration vs. S-nitrosylation.

    Science.gov (United States)

    Sun, Junhui; Aponte, Angel M; Menazza, Sara; Gucek, Marjan; Steenbergen, Charles; Murphy, Elizabeth

    2016-05-01

    Hydrogen sulfide (H2S), as a gaseous signalling molecule, has been found to play important roles in postconditioning (PostC)-induced cardioprotection. Similar to nitric oxide (NO)-mediated protein S-nitrosylation (SNO), recent studies suggest that H2S could regulate protein function through another redox-based post-translational modification on protein cysteine residue(s), i.e. S-sulfhydration (SSH). In this study, we examined whether there are changes in protein SSH associated with cardioprotection induced by treatment with H2S on reperfusion. In addition, we also examined whether there is cross talk between H2S and NO. Compared with control, treatment on reperfusion with NaHS (H2S donor, 100 µmol/L) significantly reduced post-ischaemic contractile dysfunction and infarct size. A comparable cardioprotective effect could be also achieved by reperfusion treatment with SNAP (NO donor, 10 µmol/L). Interestingly, simultaneous reperfusion with both donors had an additive protective effect. In addition, C-PTIO (NO scavenger, 20 µmol/L) eliminated the protection induced by NaHS and also the additive protection by SNAP + NaHS together. Using a modified biotin switch method, we observed a small increase in SSH following NaHS treatment on reperfusion. We also found that NaHS treatment on reperfusion increases SNO to a level comparable to that with SNAP treatment. In addition, there was an additive increase in SNO but not SSH when SNAP and NaHS were added together at reperfusion. Thus, part of the benefit of NaHS is an increase in SNO, and the magnitude of the protective effect is related to the magnitude of the increase in SNO. PMID:26907390

  5. Cupric Oxide (CuO) Oxidation Detects Pyrogenic Carbon in Burnt Organic Matter and Soils

    Science.gov (United States)

    Hatten, Jeff; Goñi, Miguel

    2016-01-01

    Wildfire greatly impacts the composition and quantity of organic carbon stocks within watersheds. Most methods used to measure the contributions of fire altered organic carbon–i.e. pyrogenic organic carbon (Py-OC) in natural samples are designed to quantify specific fractions such as black carbon or polyaromatic hydrocarbons. In contrast, the CuO oxidation procedure yields a variety of products derived from a variety of precursors, including both unaltered and thermally altered sources. Here, we test whether or not the benzene carboxylic acid and hydroxy benzoic acid (BCA) products obtained by CuO oxidation provide a robust indicator of Py-OC and compare them to non-Py-OC biomarkers of lignin. O and A horizons from microcosms were burned in the laboratory at varying levels of fire severity and subsequently incubated for 6 months. All soils were analyzed for total OC and N and were analyzed by CuO oxidation. All BCAs appeared to be preserved or created to some degree during burning while lignin phenols appeared to be altered or destroyed to varying extents dependent on fire severity. We found two specific CuO oxidation products, o-hydroxybenzoic acid (oBd) and 1,2,4-benzenetricarboxylic acid (BTC2) that responded strongly to burn severity and withstood degradation during post-burning microbial incubations. Interestingly, we found that benzene di- and tricarboxylic acids (BDC and BTC, respectively) were much more reactive than vanillyl phenols during the incubation as a possible result of physical protection of vanillyl phenols in the interior of char particles or CuO oxidation derived BCAs originating from biologically available classes of Py-OC. We found that the ability of these compounds to predict relative Py-OC content in burned samples improved when normalized by their respective BCA class (i.e. benzene monocarboxylic acids (BA) and BTC, respectively) and when BTC was normalized to total lignin yields (BTC:Lig). The major trends in BCAs imparted by burning

  6. 宁南难选氧化硫化混合铅锌矿选矿工艺研究%Research on Beneficiation Process for a Refractory Oxidation-sulfidation Lead-zinc Bulk Ore in Ningnan

    Institute of Scientific and Technical Information of China (English)

    乔吉波; 杨玉珠

    2013-01-01

    针对宁南难选氧化硫化混合铅锌矿的特点,确定了先浮选硫化矿物后浮选氧化矿物的优先浮选全浮选工艺流程,在条件试验的基础上进行了小型闭路试验,可获得铅品位73.01%、铅回收率64.73%的硫化铅精矿;锌品位43.54%、锌回收率29.88%的硫化锌精矿;铅品位51.44%、铅回收率30.77%的氧化铅精矿;锌品位26.88%、锌回收率37.32%的氧化锌精矿,其中氧化锌矿物采用预先脱泥及中矿再脱泥的浮选工艺可以改善氧化锌选别效果,使流程更加通畅.%Based on the properties of the refractory oxidation-sulfidation lead-zinc bulk ore in Ningnan,the preferred and full flotation process of flotation of oxide minerals after that of sulfide minerals was determined. The small closed-circuit test was carried on the basis of the condition test. Finally, the lead sulfide concentrate with the Pb grade of 73. 01% and recovery of 64. 73% , the zinc sulfide concentrate with the zinc grade of 43. 54% and recovery of 29. 88% ,the lead oxide concentrate with the lead grade of 51.44% and recovery of 30. 77% and the zinc oxide concentrate with the zinc grade of 26. 88% and recovery of 37. 32% were obtained. The flotation process of preliminary desliming and middling further desliming was adopted for zinc oxide ores, which can improve the flotation performance of zinc oxide ores and make the flotation flowsheet more unobstructed.

  7. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light

    Science.gov (United States)

    Yan, Zhiping; Sun, Zijun; Liu, Xiang; Jia, Hongxing; Du, Pingwu

    2016-02-01

    Photocatalytic hydrogen production from water in a noble-metal-free system has attracted much attention in recent years. Herein we report on the use of core/shell cadmium sulfide/graphitic carbon nitride (CdS/g-C3N4) heterojunction nanorods modified by nickel hydroxide (Ni(OH)2) as a highly efficient photocatalyst for visible light-driven hydrogen production from water. Due to efficient separation of the photoexcited charge carriers in the CdS/g-C3N4 core/shell nanorods and the synergistic effect of Ni(OH)2, the optimal hydrogen evolution rate over Ni(OH)2-CdS/g-C3N4 is 115.18 μmol h-1 mg-1 under visible light irradiation (λ > 420 nm), which is ~26 times higher than the CdS/g-C3N4 nanorod composite without Ni(OH)2 and ~7 times better than the 0.5 wt% Pt-CdS/g-C3N4 nanorod composite. The apparent quantum efficiency is ~16.7% at an excitation of 450 nm. During photocatalysis, no degradation of Ni(OH)2 was observed based on the XPS data, indicating that it is a robust cocatalyst. Moreover, the present photocatalyst showed excellent photocatalytic stability for hydrogen production and the turnover number (TON) reached ~24 600 over 90 hours.Photocatalytic hydrogen production from water in a noble-metal-free system has attracted much attention in recent years. Herein we report on the use of core/shell cadmium sulfide/graphitic carbon nitride (CdS/g-C3N4) heterojunction nanorods modified by nickel hydroxide (Ni(OH)2) as a highly efficient photocatalyst for visible light-driven hydrogen production from water. Due to efficient separation of the photoexcited charge carriers in the CdS/g-C3N4 core/shell nanorods and the synergistic effect of Ni(OH)2, the optimal hydrogen evolution rate over Ni(OH)2-CdS/g-C3N4 is 115.18 μmol h-1 mg-1 under visible light irradiation (λ > 420 nm), which is ~26 times higher than the CdS/g-C3N4 nanorod composite without Ni(OH)2 and ~7 times better than the 0.5 wt% Pt-CdS/g-C3N4 nanorod composite. The apparent quantum efficiency is ~16.7% at an

  8. Electrochemical oxidation of ascorbic acid mediated by carbon nano tubes/ Li+/ carbon paste modified solid electrode

    International Nuclear Information System (INIS)

    Multi-walled carbon nano tube (MWCNT) was used to modify BPPG electrode because of its unique structure and extraordinary properties. MWCNT modified electrode exhibited obvious enhancing and electro catalyzing effects to the oxidation of ascorbic acid using cyclic voltammetry technique. MWCNT was bonded on BPPG electrode surface using carbon paste with ratio of 30 % (w/ W) carbon paste (binder): 70 % (w/ w) MWCNT. This method of modification has lowered the capacitance background current and enabled lower detection limit of ascorbic acid concentration. The electrical conductivity property of MWCNT modified electrode was further improved with the intercalation with lithium ion and resulted in current enhancement of 2 times on the oxidation current of ascorbic acid. Parameters of pH and temperature showed significant relation to the sensitivity of MWCNT modified electrode. Under the optimized parameters, the calibration curve constructed was linear up from 50 μM to 5 mM with sensitivity of 34.5 mA M-1. The practical application of MWCNT modified electrode was demonstrated with Vitamin C pill and orange juice. Good reproducibility and recovery of ascorbic acid concentration showed the feasibility of MWCNT modified electrode to be used in the detection of ascorbic acid in aqueous solution. This also proposed MWCNT modified BPPG electrode possessed advantages such as low detection limit, high stability, low cost and simplicity in fabrication. (author)

  9. In-situ growth of antimony sulfide in carbon nanoparticle matrix: Enhanced electrocatalytic activity as counter electrode in dye-sensitized solar cells

    Science.gov (United States)

    Sun, Panpan; Zhang, Ming; Ai, Changzhi; Wu, Zhixin; Lu, Shuang; Zhang, Xintong; Huang, Niu; Sun, Yihua; Sun, Xiaohua

    2016-07-01

    Considering the undesirable electrocatalytic activity toward I-/I3- redox system of prinstine antimony sulfide (Sb2S3) fabricated with the existing conditions, a mesoporous carbon nanoparticle film (CNP) is introduced here for in-situ growth of Sb2S3 to construct a Sb2S3@CNP hybrid catalyst. Based on a Sb-thiourea precursor solution, in-situ growth of Sb2S3 can be achieved via solution deposition (denoted as Sb2S3@CNP-S) as well as atmospheric pressure thermal evaporation (denoted as Sb2S3@CNP-T) in CNP matrix. Structural characterizations indicate that Sb2S3 particles have well dispersed in the pores of CNP matrix. Because of the introduction of porous and conductive CNP matrix to support Sb2S3, the hybrid catalyst exhibits lower charge transfer resistance at the catalyst/electrolyte interface and higher electrocatalytic activity. When used as counter electrode (CE) for dye-sensitized solar cells (DSSCs), devices using Sb2S3@CNP hybrid catalyst as CE produce fill factor of 67.6% and 66.3%, which is significantly higher than that using pristine Sb2S3 fabricated in our previous work (52.8%). Finally, the corresponding power conversion efficiencies reach 6.69% (Sb2S3@CNP-S) and 6.24% (Sb2S3@CNP-T), respectively, which are comparable to that using Pt CE measured under the same conditions (6.74%).

  10. Zinc recovery from spent ZnO catalyst by carbon in the presence of calcium carbonate

    Science.gov (United States)

    Hsu, Hua-Ching; Lin, Chun-I.; Chen, Hsi-Kuei

    2004-02-01

    Zinc recovery from the spent zinc oxide catalyst by carbon in the presence of calcium carbonate was studied using an X-ray diffractometer (XRD), an atomic absorption spectrometer (AAS), and a scanning electron microscope (SEM). The spent zinc oxide catalyst was determined to be composed of 87.5 wt pct zinc oxide and 3.1 wt pct zinc sulfide. The results of X-ray diffractometry revealed that calcium carbonate decomposed to calcium oxide and carbon dioxide; zinc oxide and zinc sulfide were reduced to zinc vapor and carbon monoxide evolving from solid sample; and sulfur content was scavenged as calcium sulfide remained in the solid. Steps involved in this reaction system were summarized to explain the overall reaction. The experimental results of atomic absorption spectrometry showed that the initial rate of zinc recovery and final zinc recovery can be increased by increasing either the sample height, the reaction temperature or the initial bulk density. Furthermore, they were found to increase with decrease in either the argon flow rate, the molar ratio of Zntotal/C, the molar ratio of Zntotal/CaCO3, the grain size of the spent catalyst, the agglomerate size of carbon, or the agglomerate size of calcium carbonate. Empirical expressions of the initial rate of zinc recovery and final zinc recovery have been determined.

  11. Generation of nitric oxide from nitrite by carbonic anhydrase

    DEFF Research Database (Denmark)

    Aamand, Rasmus; Dalsgaard, Thomas; Jensen, Frank B;

    2009-01-01

    In catalyzing the reversible hydration of CO2 to bicarbonate and protons, the ubiquitous enzyme carbonic anhydrase (CA) plays a crucial role in CO2 transport, in acid-base balance, and in linking local acidosis to O2 unloading from hemoglobin. Considering the structural similarity between...... bicarbonate and nitrite, we hypothesized that CA uses nitrite as a substrate to produce the potent vasodilator nitric oxide (NO) to increase local blood flow to metabolically active tissues. Here we show that CA readily reacts with nitrite to generate NO, particularly at low pH, and that the NO produced in...... effectively in catalysis. Taken together, our results reveal a novel nitrous anhydrase enzymatic activity of CA that would function to link the in vivo main end products of energy metabolism (CO2/H+) to the generation of vasoactive NO. The CA-mediated NO production may be important to the correlation between...

  12. Generation of nitric oxide from nitrite by carbonic anhydrase:

    DEFF Research Database (Denmark)

    Aamand, Rasmus; Dalsgaard, Thomas; Jensen, Frank Bo;

    2009-01-01

    In catalyzing the reversible hydration of CO2 to bicarbonate and protons, the ubiquitous enzyme carbonic anhydrase (CA) plays a crucial role in CO2 transport, in acid-base balance, and in linking local acidosis to O2 unloading from hemoglobin. Considering the structural similarity between...... bicarbonate and nitrite, we hypothesized that CA uses nitrite as a substrate to produce the potent vasodilator nitric oxide (NO) to increase local blood flow to metabolically active tissues. Here we show that CA readily reacts with nitrite to generate NO, particularly at low pH, and that the NO produced in...... effectively in catalysis. Taken together, our results reveal a novel nitrous anhydrase enzymatic activity of CA that would function to link the in vivo main end products of energy metabolism (CO2/H+) to the generation of vasoactive NO. The CA-mediated NO production may be important to the correlation between...

  13. Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pen-Cheng, E-mail: wangpc@ess.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Graduate Program for Science and Technology of Synchrotron Light Source, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Liao, Yu-Chun [Department of Engineering and System Science, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Graduate Program for Science and Technology of Synchrotron Light Source, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Liu, Li-Hung [Department of Engineering and System Science, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Lai, Yu-Ling; Lin, Ying-Chang [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Hsu, Yao-Jane [Graduate Program for Science and Technology of Synchrotron Light Source, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China)

    2014-06-01

    We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in I{sub on}/I{sub off} ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.

  14. Standard Test Method for Thermal Oxidative Resistance of Carbon Fibers

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1982-01-01

    1.1 This test method covers the apparatus and procedure for the determination of the weight loss of carbon fibers, exposed to ambient hot air, as a means of characterizing their oxidative resistance. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units which are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard information, see Section 8.

  15. Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Muhammad B. Haider

    2012-02-01

    Full Text Available Thin films of tin oxide mixed cerium oxide were grown on unheated substrates by physical vapor deposition. The films were annealed in air at 500 °C for two hours, and were characterized using X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. X-ray photoelectron spectroscopy and atomic force microscopy results reveal that the films were highly porous and porosity of our films was found to be in the range of 11.6–21.7%. The films were investigated for the detection of carbon monoxide, and were found to be highly sensitive. We found that 430 °C was the optimum operating temperature for sensing CO gas at concentrations as low as 5 ppm. Our sensors exhibited fast response and recovery times of 26 s and 30 s, respectively.

  16. Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Li, Ping; Yang, Zhi; Shen, Juanxia; Nie, Huagui; Cai, Qiran; Li, Luhua; Ge, Mengzhan; Gu, Cancan; Chen, Xi'an; Yang, Keqin; Zhang, Lijie; Chen, Ying; Huang, Shaoming

    2016-02-10

    Electrochemically splitting water for hydrogen evolution reaction (HER) has been viewed as a promising approach to produce renewable and clean hydrogen energy. However, searching for cheap and efficient HER electrocatalysts to replace the currently used Pt-based catalysts remains an urgent task. Herein, we develop a one-step carbon nanotube (CNT) assisted synthesis strategy with CNTs' strong adsorbability to mediate the growth of subnanometer-sized MoS(x) on CNTs. The subnanometer MoS(x)-CNT hybrids achieve a low overpotential of 106 mV at 10 mA cm(-2), a small Tafel slope of 37 mV per decade, and an unprecedentedly high turnover frequency value of 18.84 s(-1) at η = 200 mV among all reported non-Pt catalysts in acidic conditions. The superior performance of the hybrid catalysts benefits from the presence of a higher number of active sites and the abundant exposure of unsaturated S atoms rooted in the subnanometer structure, demonstrating a new class of subnanometer-scale catalysts. PMID:26765150

  17. Plasma-Chemical Synthesis of Nanosized Powders-Nitrides, Carbides, Oxides, Carbon Nanotubes and Fullerenes

    International Nuclear Information System (INIS)

    In this article the plasma-chemical synthesis of nanosized powders (nitrides, carbides, oxides, carbon nanotubes and fullerenes) is reviewed. Nanosized powders - nitrides, carbides, oxides, carbon nanotubes and fullerenes have been successfully produced using different techniques, technological apparatuses and conditions for their plasma-chemical synthesis. (plasma technology)

  18. Carbon dioxide reduction in a tubular solid oxide electrolysis cell for a carbon recycling energy system

    International Nuclear Information System (INIS)

    A new energy transformation system based on carbon recycling is proposed called the active carbon recycling energy system (ACRES). A high-temperature gas reactor was used as the main energy source for ACRES. An experimental study based on the ACRES concept of carbon monoxide (CO) regeneration via high-temperature reduction of carbon dioxide (CO2) was carried out using a tubular solid oxide electrolysis cell employing Ni-LSM cermet|YSZ|YSZ-LSM as the cathode|electrolyte|anode. The current density increased with increasing CO2 concentration at the cathode, which was attributed to a decrease in cathode activation and concentration overpotential. Current density, as well as the CO and oxygen (O2) production rates, increased with increasing operating temperature. The highest CO and O2 production rates of 1.24 and 0.64 μmol/min cm2, respectively, were measured at 900 °C. Based on the electrolytic characteristics of the cell, the scale of a combined ACRES CO2 electrolysis/iron production facility was estimated

  19. Electrolysis of carbon dioxide for carbon monoxide production in a tubular solid oxide electrolysis cell

    International Nuclear Information System (INIS)

    Highlights: • An experimental study for the CO regeneration was demonstrated. • Higher current densities at higher temperatures were obtained. • The scale of the combined system was estimated experimentally at 800 °C. • The required surface area of the cells was estimated to be 65.6 km2/BF unit. • The combined system may contribute to establishing a low-carbon society. - Abstract: An active carbon recycling energy system (ACRES) based on carbon recycling has been proposed as a new energy transformation system. This energy transformation system reduces the carbon dioxide (CO2) emissions in the atmosphere during the iron-making process. An experimental study for electrochemical CO production by CO2 electrolysis based on the ACRES concept was carried out using a tubular solid oxide electrolysis cell. Experimental results show that the CO and oxygen (O2) production rates at 800, 850, and 900 °C were almost proportional to the current passing through the cell. Both ionic conductivity and the chemical kinetics of CO2 decomposition increased with increasing temperature. The highest current density and CO production rate at 900 °C were 2.97 mA/cm2 and 0.78 μmol/(min cm2), respectively. On the basis of the electrolytic characteristics of the cell, the scale of the combined ACRES CO2 electrolysis/iron-making system was estimated

  20. Carbon dioxide reduction in a tubular solid oxide electrolysis cell for a carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Dipu, Arnoldus Lambertus, E-mail: dipu.a.aa@m.titech.ac.jp [Department of Nuclear Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ujisawa, Yutaka [Nippon Steel and Sumitomo Metal Corporation, 16-1, Sunayama, Kamisu, Ibaraki 314-0255 (Japan); Ryu, Junichi; Kato, Yukitaka [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-05-01

    A new energy transformation system based on carbon recycling is proposed called the active carbon recycling energy system (ACRES). A high-temperature gas reactor was used as the main energy source for ACRES. An experimental study based on the ACRES concept of carbon monoxide (CO) regeneration via high-temperature reduction of carbon dioxide (CO{sub 2}) was carried out using a tubular solid oxide electrolysis cell employing Ni-LSM cermet|YSZ|YSZ-LSM as the cathode|electrolyte|anode. The current density increased with increasing CO{sub 2} concentration at the cathode, which was attributed to a decrease in cathode activation and concentration overpotential. Current density, as well as the CO and oxygen (O{sub 2}) production rates, increased with increasing operating temperature. The highest CO and O{sub 2} production rates of 1.24 and 0.64 μmol/min cm{sup 2}, respectively, were measured at 900 °C. Based on the electrolytic characteristics of the cell, the scale of a combined ACRES CO{sub 2} electrolysis/iron production facility was estimated.

  1. Determination of carbon in ceramic oxides - Al sub(2)O sub(3) and UO sub(2)

    International Nuclear Information System (INIS)

    Carbon determination in ceramics oxides is the objective of the present work. The amount of carbon in aluminium oxide (Al sub(2)O sub(3)) and uranium oxide (UO sub(2)) is determined by fusion/infrared cell technique. A carbon determinator (IECO - CS244) was used to test the performance of the analytical results. The determinator was calibrated using steel standards instead of ceramics oxides, and a special flux mix (W, Sn and Fe) was used. The details of the analysis technique and the data obtained are discussed. (author)

  2. Catalytic oxidation of carbon monoxide over supported palladium nanoparticles

    Science.gov (United States)

    Soni, Keshav Chand; Krishna, R.; Chandra Shekar, S.; Singh, Beer

    2016-01-01

    Catalytic oxidation of CO with ozone had been studied over Al2O3 and SiO2 supported Pd nanoparticles which was synthesized by two different methods. The polyol method mainly resulted in highly dispersed Pd particles on the support, while the impregnation method resulted in agglomeration Pd particles on the support. Supported Pd nanoparticles synthesized from PdCl2 in the presence of poly ( N-vinylpyrrolidone) (PVP) by chemical reduction. The catalysts were characterized by X-ray diffraction, N2 BET surface area, pore size distributions, CO chemisorption, TEM and H2-temperature programmed reduction. The physico-chemical properties were well correlated with activity data. Characterizations of XRD and TEM show that the surface Pd nanoparticles are highly dispersed over Al2O3 and SiO2. The catalytic activity was dependent upon ozone/CO ratio, contact times, and the reaction temperature. The extent of carbon monoxide oxidation was proportional to the catalytically ozone decomposition. The PVP synthesized Pd/A2O3 catalyst had been found to be highly active for complete CO removal at room temperature. The higher activity of the nanocatalyst was attributed to small particle size and higher dispersion of Pd over support.

  3. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Science.gov (United States)

    Ku-Herrera, J. J.; Avilés, F.; Nistal, A.; Cauich-Rodríguez, J. V.; Rubio, F.; Rubio, J.; Bartolo-Pérez, P.

    2015-03-01

    Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as "sizing"), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  4. Production of Glycolic Acid by Chemolithotrophic Iron- and Sulfur-Oxidizing Bacteria and Its Role in Delineating and Sustaining Acidophilic Sulfide Mineral-Oxidizing Consortia▿

    OpenAIRE

    Ñancucheo, Ivan; Johnson, D. Barrie

    2009-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacill...

  5. Experimental kinetic study and modeling of calcium oxide carbonation

    International Nuclear Information System (INIS)

    Anthropogenic carbon dioxide (CO2) emissions, major contributors to the greenhouse effect, are considered as the main cause of global warming. So, decrease of CO2 emitted by large industrial combustion sources or power plants, is an important scientific goal. One of the approaches is based on CO2 separation and capture from flue gas, followed by sequestration in a wide range of geological formations. In this aim, CO2 is captured by sorbents like calcium oxide (CaO) in multi-cycle process of carbonation/de-carbonation. However, it was shown that the most important limitations of such process are related to the reversibility of reaction. CaO rapidly loses activity towards CO2, so the maximum extent of carbonation decreases as long as the number of cycles increases. In order to well understand the processes and parameters influencing the capture capacity of CaO-based sorbents, it appears important to get details on the kinetic law governing the reaction, which have not been really studied up to now. To investigate this reaction, CaO carbonation kinetics was followed by means of thermogravimetric analysis (TGA) on divided materials. Special care was given to the validation of the usual kinetic assumptions such as steady state and rate-determining step assumptions. The aim was to obtain a model describing the reaction in order to explain the influence of intensive variables such as carbonation temperature and CO2 partial pressure. TGA curves obtained under isothermal and isobaric conditions showed an induction period linked to the nucleation process and a strong slowing down of the reaction rate once a given fractional conversion was reached. Both phenomena were observed to depend on carbonation temperature and CO2 partial pressure. To explain these results, the evolution of texture and microstructure of the solid during the reaction was regarded as essential. Reaction at the grain scale induces a volume increase from CaO to CaCO3 which causes a change in the porosity

  6. Attack of carbonic anhydride and hydrogen sulfide on API class H cement slurries exposed to saline formation waters

    Directory of Open Access Journals (Sweden)

    Márquez, G.

    2011-09-01

    Full Text Available This paper discusses the attack of the major ions (sulfate, chloride, and magnesium and sour gases, present in natural gas (CO2 y SH2, on API class H cement, the type used in gas wells under high pressure and temperature. The effects of these chemical agents on this cement was simulated to study the physicochemical changes due to the action of sour gases and formation water. Cement specimens were immersed in neutral solutions containing fixed concentrations of the major ions inside Parr reactors. These solutions were analysed and XRD analyses were conducted for over two months to identify mineralogical variations from 14 to 60 days. The objective of this research was to determine the effects of the joint attack of major ions and sour gases on cement pastes. The main effects of both gases, jointly or separately, on cement durability were, respectively, the carbonation process and the leaching of some components.

    Se simuló la acción agresiva de los denominados iones fundamentales (sulfato, cloruro y magnesio y los gases agrios presentes en el gas natural (CO2 y H2S sobre un cemento API clase H utilizado en pozos gasíferos a presión y temperatura elevadas, al objeto de observar sus alteraciones fisicoquímicas por la acción combinada de tales gases y las aguas de formación. Se prepararon varias probetas del material cementante para su inmersión en disoluciones neutras, conteniendo los iones fundamentales en concentraciones fijas, dentro de reactores tipo Parr. Se analizaron durante más de dos meses una serie de disoluciones en contacto con el cemento utilizado; así como, mediante DRX, la evolución de la mineralogía de dicho material entre los 14 y los 60 días. Los principales efectos de ambos gases, en conjunto o por separado, sobre la durabilidad del cemento fueron, respectivamente, la formación de carbonato cálcico y la lixiviación de algunos componentes.

  7. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, Antonio [Direccion General del Centro Nacional de Investigacion y Capacitacion Ambiental-Instituto Nacional de Ecologia, Av. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico)], E-mail: jvelasco@ine.gob.mx; Ramirez, Martha [Direccion General del Centro Nacional de Investigacion y Capacitacion Ambiental-Instituto Nacional de Ecologia, Av. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Volke-Sepulveda, Tania [Departamento de Biotecnologia, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Gonzalez-Sanchez, Armando [Departamento de Ingenieria de Procesos, Universidad Autonoma Metropolitana-Iztapalapa, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Revah, Sergio [Departamento de Procesos y Tecnologia, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico)

    2008-03-01

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO{sub 4}{sup 2-} ratio. This work relates the feed COD/SO{sub 4}{sup 2-} ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470 {+-} 7 mg S/L was obtained at a feed COD/SO{sub 4}{sup 2-} ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145 {+-} 10 mg S/L) was observed with a feed COD/SO{sub 4}{sup 2-} ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO{sub 4}{sup 2-} ratio of 1.5. It was found that the feed COD/SO{sub 4}{sup 2-} ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead.

  8. CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol

    International Nuclear Information System (INIS)

    This paper presents an original approach to the removal of phenol in synthetic wastewater by catalytic wet peroxide oxidation with copper binding activated carbon (CuAC) catalysts. The characteristics and oxidation performance of CuAC in the wet hydrogen peroxide catalytic oxidation of phenol were studied in a batch reactor at 80 deg. C. Complete conversion of the oxidant, hydrogen peroxide, was observed with CuAC catalyst in 20 min oxidation, and a highly efficient phenol removal and chemical oxygen demand (COD) abatement were achieved in the first 30 min. The good oxidation performance of CuAC catalyst was contributed to the activity enhancement of copper oxide, which was binding in the carbon matrix. It can be concluded that the efficiency of oxidation dominated by the residual H2O2 in this study. An over 90% COD removal was achieved by using the multiple-step addition in this catalytic oxidation.

  9. Aptamer-based electrochemical assay of 17β-estradiol using a glassy carbon electrode modified with copper sulfide nanosheets and gold nanoparticles, and applying enzyme-based signal amplification

    International Nuclear Information System (INIS)

    We have developed an electrochemical method for the determination of 17β-estradiol. A glassy carbon electrode was modified with a composite made from copper sulfide nanosheets, gold nanoparticles, and glucose oxidase. The copper sulfide nanosheet was prepared by a single-step hydrothermal process, and its properties were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. Finally, an estradiol-specific aptamer was assembled on the electrode. The copper sulfide nanosheet on the electrode surface acts as a relatively good electrical conductor. Glucose oxidase acts as an indicator, and the dual modification of glucose oxidase and gold nanoparticles for signal amplification. The determination of 17β-estradiol was performed by differential pulse voltammetry of glucose oxidase because the signal measured at typically −0.43 V depends on the concentration of 17β-estradiol because addition of 17β-estradiol at electrode hinders electron transfer. A linear relationship exists between the peak current and the logarithm of concentration of 17β-estradiol in the 0.5 pM to 5 nM range, with a 60 f. detection limit (at 3σ/S). The method displays good selectivity over bisphenol A, 1-aminoanthraquinone and naphthalene even if present in 100-fold concentrations. (author)

  10. Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio

    Science.gov (United States)

    Masiello, C. A.; Gallagher, M. E.; Randerson, J. T.; Deco, R. M.; Chadwick, O. A.

    2008-09-01

    Degree of oxidation of organic carbon (Cox) is a fundamental property of the carbon cycle, reflecting the synthesis and decomposition of natural organic matter. Cox is also related to ecosystem oxidative ratio (OR), the molar ratio of O2 to CO2 fluxes associated with net ecosystem exchange (NEE). Here we compare two methods for measuring Cox and OR: (1) %C, %H, %N, and %O elemental analysis, and (2) heat of combustion (ΔHc) measured by means of bomb calorimetry coupled with %C elemental analysis (hereafter referred to as calorimetry). Compared with %C, %N, %H, and %O elemental analysis, calorimetry generates Cox and OR data more rapidly and cheaply. However, calorimetric measurements yield less accurate Cox and OR data. We additionally report Cox and OR data for a pair of biomass standards and a suite of biomass samples. The OR values we measured in these samples were less variable than OR data reported in the literature (generated by simultaneous measurement of ecosystem O2 and CO2 gas mixing ratios). Our biomass OR values had a mean of 1.03 and range of 0.99-1.06. These estimates are lower than the OR value of 1.10 that is often used to partition uptake of fossil fuel CO2 between the ocean and the terrestrial biosphere.

  11. 40 CFR 52.269 - Control strategy and regulations: Photochemical oxidants (hydrocarbons) and carbon monoxide.

    Science.gov (United States)

    2010-07-01

    ...: Photochemical oxidants (hydrocarbons) and carbon monoxide. 52.269 Section 52.269 Protection of Environment... carbon monoxide. (a) The requirements of subpart G of this chapter are not met because the plan does not...) and carbon monoxide in the San Francisco Bay Area, San Diego, Sacramento Valley, San Joaquin...

  12. High temperature oxidation-sulfidation behavior of Cr-Al{sub 2}O{sub 3} and Nb-Al{sub 2}O{sub 3} composites densified by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Acuna, R.A. [Instituto e Ingenieria y Tecnologia, Universidad Autonoma de Cd. Juarez, Av. Del Charro 450 Norte, Col. Partido Romero, C.P. 32310, Cd. Juarez, Chihuahua (Mexico); Monreal-Romero, H.; Martinez-Villafane, A. [Centro de Investigacion en Materiales Avanzados, Departamento de Fisica de Materiales, Miguel de Cervantes 120, Complejo Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico); Chacon-Nava, J.G. [Centro de Investigacion en Materiales Avanzados, Departamento de Fisica de Materiales, Miguel de Cervantes 120, Complejo Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico)], E-mail: jose.chacon@cimav.edu.mx; Arce-Colunga, U. [Centro de Investigacion en Materiales Avanzados, Departamento de Fisica de Materiales, Miguel de Cervantes 120, Complejo Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico); Universidad Autonoma de Tamaulipas, Matamoros 8 y 9 Col. Centro C.P. 87110, Cd. Victoria, Tamaulipas (Mexico); Gaona-Tiburcio, C. [Centro de Investigacion en Materiales Avanzados, Departamento de Fisica de Materiales, Miguel de Cervantes 120, Complejo Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico); De la Torre, S.D. [Centro de Investigacion e Innovacion Tecnologica (CIITEC)-IPN, D.F. Mexico (Mexico)

    2007-12-15

    The high temperature oxidation-sulfidation behavior of Cr-Al{sub 2}O{sub 3} and Nb-Al{sub 2}O{sub 3} composites prepared by mechanical alloying (MA) and spark plasma sintering (SPS) has been studied. These composite powders have a particular metal-ceramic interpenetrating network and excellent mechanical properties. Oxidation-sulfidation tests were carried out at 900 deg. C, in a 2.5%SO{sub 2} + 3.6%O{sub 2} + N{sub 2}(balance) atmosphere for 48 h. The results revealed the influence of the sintering conditions on the specimens corrosion resistance, i.e. the Cr-Al{sub 2}O{sub 3} and Nb-Al{sub 2}O{sub 3} composite sintered at 1310 deg. C/4 min showed better corrosion resistance (lower weight gains) compared with those found for the 1440 deg. C/5 min conditions. For the former composite, a protective Cr{sub 2}O{sub 3} layer immediately forms upon heating, whereas for the later pest disintegration was noted. Thus, under the same sintering conditions the Nb-Al{sub 2}O{sub 3} composites showed the highest weight gains. The oxidation products were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy.

  13. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  14. VALORIZATION OF INORGANIC SOLID WASTES FROM INDUSTRIAL ACTIVITIES INTO ACTIVE MATERIALS FOR REMOVAL OF HYDROGEN SULFIDE IN GAS PHASE

    OpenAIRE

    Pham Xuan, Huynh; Pham Minh, Doan; Nzihou, Ange

    2015-01-01

    Hydrogen sulfide (H2S), which was formed from both natural and anthropogenic processes, is one of the most toxic contaminants affecting machine, people health, and ecosystem. Activated carbon and its derivatives (with metal oxides) are conventionally for H 2 S removal. However, they are expensive. Besides, the worldwide production of soda ash bases mostly on the Solvay Process ® (59% in 2000), which generates a large amounts of inorganic solid wastes with the main composition of CaCO 3. This ...

  15. Supercritical aqueous fluids in subduction zones carrying carbon and sulfur: oxidants for the mantle wedge?

    Science.gov (United States)

    Sverjensky, Dimitri; Manning, Craig

    2014-05-01

    Much speculation surrounds the nature of aqueous fluids in subduction zones. Aqueous fluids likely trigger partial melting in the mantle wedge, influencing the chemistry of the magmas that erupt in island arcs. They also may play a role in transporting elements that could metasomatize and oxidize the overlying mantle wedge, most importantly C, S and Fe. However, full coupling of aqueous fluid chemistry with the silicate, carbonate, C, sulfide and sulfate minerals has remained limited to pressures of 0.5 GPa because of limitations on the HKF aqueous ion equation of state. Recent progress in developing a Deep Earth Water model (Sverjensky et al., 2014), calibrated with new experimental data, now enables a detailed evaluation of the evolution of aqueous fluid chemistry to a pressure of 6 GPa, well into subduction zone conditions. We report aqueous speciation models for eclogitic aqueous fluids constrained by model mineral assemblages that give preliminary indications of the solubilities of elements that could contribute to mass transfer and redox changes in the mantle wedge. For example, at 600 °C and 2.5 GPa, an aqueous fluid in equilibrium with jadeite, paragonite, muscovite, quartz, lawsonite, almandine, talc, magnesite and pyrite at QFM oxidation state with 0.1 molal total Cl, contains 5.5 molal C, 0.04 molal S, and 9 micromolal Fe. The fluid has a pH of 4.7, much greater than the neutral pH of 3.3; the predominant species and molalities are CO2 (5.0), Na+ (0.44), Si(OH)4 (0.36), HCO3- (0.26), H3SiO4- (0.23), CaHCO3+ (0.18), silica dimer (0.10), Cl- (0.09), K+ (0.08), HCOO- (0.06), H2S (0.03). Calculations for model eclogitic fluids at the higher pressures and temperatures of subarc conditions also show that the solubility of C is much greater than either S or Fe at QFM. However, in subarc eclogitic fluids of higher oxidation state (QFM +3 to +4) in equilibrium with hematite, anhydrite, jadeite, kyanite, phlogopite, coesite, lawsonite, almandine-pyrope, and

  16. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.

    2015-12-01

    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  17. Carbon steel protection in G.S. (Girlder sulfide) plants. A protective layer formation in saturated solution of sulfohydric acid in water at pH = 4.43. Pt. 3

    International Nuclear Information System (INIS)

    As complement to the experiences on carbon steel passivation for its use in G.S. (Girlder sulfide) heavy water production plants, the results herein obtained are given, processing the material with a saturated solution at 2.3 MPa of full pressure and 125 temperature degree of H2S in NaOH 5 x 10-3 M, which, at an equilibrium point, the pH is 4.43. The characteristics, the composition and adherence to the layer formed and the corrosion velocity data are analyzed. (Author)

  18. Deposition of Biogenic Iron Minerals in a Methane Oxidizing Microbial Mat

    Directory of Open Access Journals (Sweden)

    Christoph Wrede

    2013-01-01

    Full Text Available The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates.

  19. Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Liu, Chung-Chiun; Ward, Benjamin J.

    2008-01-01

    Carbon dioxide (CO2) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of CO2 sensing materials exist due to the high chemical stability of CO2. In this work, a novel CO2 microsensor based on nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO2 based CO2 microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: SnO2 = 1:8 (molar ratio), the resistance of the sensor has a linear response to CO2 concentrations for the range of 1 to 4 percent CO2 in air at 450 C. This approach has demonstrated the use of SnO2, typically used for the detection of reducing gases, in the detection of an oxidizing gas.

  20. Enhancing the capacitances of electric double layer capacitors based on carbon nanotube electrodes by carbon dioxide activation and acid oxidization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polarizable electrodes of electric double layer capacitors(EDLCs) were made from carbon nanotubes(CNTs).Effect of carbon dioxide activation together with acid oxidation for the electrodes on the characteristics and performances of electrodes and EDLCs was studied.Carbon dioxide activation changed the microstructure of the electrodes,increased the effective surface area of CNTs and optimized the distribution of apertures of the electrodes.Acid oxidization modified the surface characteristics of CNTs.Based on the polarizable electrodes treated by carbon dioxide activation and acid oxidization,the performances of EDLCs were greatly enhanced.The specific capacitance of the electrodes with organic electrolyte was increased from 21.8 F/g to 60.4 F/g.

  1. Gold catalysts supported on nanosized iron oxide for low-temperature oxidation of carbon monoxide and formaldehyde

    Science.gov (United States)

    Tang, Zheng; Zhang, Weidong; Li, Yi; Huang, Zuming; Guo, Huishan; Wu, Feng; Li, Jinjun

    2016-02-01

    This study aimed to optimize synthesis of gold catalyst supported on nanosized iron oxide and to evaluate the activity in oxidation of carbon monoxide and formaldehyde. Nanosized iron oxide was prepared from a colloidal dispersion of hydrous iron oxide through a dispersion-precipitation method. Gold was adsorbed onto nanosized iron oxide under self-generated basic conditions. Characterization results indicate that the iron oxide consisted of hematite/maghemite composite with primary particle sizes of 6-8 nm. Gold was highly dispersed on the surface of the support. The catalysts showed good activity in the oxidation of airborne carbon monoxide and formaldehyde. The optimal pH for their synthesis was ∼7. The catalytic performance could be enhanced by extending the adsorption time of gold species on the support within 21 h. The optimized catalyst was capable of achieving complete oxidation of 1% carbon monoxide at -20 °C and 33% conversion of 450 ppm formaldehyde at ambient temperature. The catalyst may be applicable to indoor air purification.

  2. Electrochemical oxidation and nanomolar detection of acetaminophen at a carbon-ceramic electrode modified by carbon nanotubes: A comparison between multi walled and single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Carbon-ceramic electrodes (CCE) modified with carbon nanotubes were prepared, and the electrochemical behavior towards acetaminophen (ACOP) was investigated using both a bare CCE and electrodes modified with either single walled carbon nanotubes (SWCNT) or multi walled carbon nanotubes (MWCNT) in an effort to understand which of them is the better choice in terms of electrocatalyzing the oxidation of ACOP, and thus for sensing it. The SWCNT are found to be the better material in significantly enhancing the oxidation peak current and improving the reversibility of the oxidation. Under optimal conditions, linearity between the oxidation peak current and the concentration of ACOP is obtained for the concentration range from 40 nM to 85 μM, with a detection limit of 25 nM. Finally, ACOP was successfully determined with the SWCNT modified electrode in pharmaceutical samples. (author)

  3. Initial Characterization of Carbon Metabolism in Iron Oxidizing Microbial Communities of Acidic Hot Springs in Norris Geyser Basin, Yellowstone National Park

    Science.gov (United States)

    Kreuzer, H. W.; Jennings, R. D.; Whitmore, L.; Inskeep, W. P.; Moran, J.

    2012-12-01

    Norris Geyser Basin in Yellowstone National Park is home to several acidic, sulfidic hot springs. Visual inspection of the springs reveals distinct geochemical regions starting with a sulfur deposition zone followed by a transition to iron oxide deposition downstream. The microbial communities in the iron oxidation zones are dominated by Archaea, including several members that appear to define previously unrecognized taxa. Abiotic iron oxidation rates are very slow at these temperatures (typically ~ 65-70 oC) and pH's (typically ~3). Therefore, the relatively rapid iron oxide deposition rate strongly suggests the process is microbially mediated, and an organism previously isolated from these springs, Metallosphaera yellowstonensis, has been shown to oxide iron in culture. M. yellowstonensis has been observed in the all microbial communities analyzed in the iron oxidizing zones of these springs, though metagenomic profiling suggests it constitutes only ~20% of the community membership. When we began our studies of C flow in the iron-oxidizing community, no C source had been demonstrated. Observed potential carbon sources in the springs include dissolved inorganic carbon, dissolved organic carbon, and methane, as well as random inputs of heterotrophic carbon in the forms of insect carcasses, pine needles, and animal scat. The temperatures in the iron oxidation zones are above the photosynthetic upper temperature limit, thus precluding photosynthetic-based autotrophy within the community itself. We are employing geochemical and stable isotope techniques to assess carbon inventories in the system. We have demonstrated that M. yellowstonensis as well as excised samples of iron oxide mat communities can fix CO2, and our estimated isotopic fractionation factor is consistent with the 3-hydroxypropionate 4-hydroxybutyrate pathway. Genes of this pathway have been identified in the M. yellowstonensis genome. We have tentatively identified small amounts of organic compounds

  4. Research on the Process for Conventional Leaching and Oxidation Leaching of Indium Sulfide%硫化铟常规酸浸和氧化酸浸试验研究

    Institute of Scientific and Technical Information of China (English)

    韦岩松; 马宸; 黎铉海

    2011-01-01

    用人工合成的硫化铟模拟实际硫化铟,研究了硫化铟在硫酸体系中常规浸出和以高锰酸钾、双氧水为氧化剂的氧化浸出的浸出效果和工艺条件.结果表明:在搅拌速度为800 r/min、物料粒度为75~96μm、液固比为300:1、温度为80℃、硫酸初始浓度为2.0 mol/L的条件下,常规浸出60min,铟的浸出率为84.9%;而在相同条件下加入氧化剂KMnO4或H2O2进行氧化浸出,只需20min就可使铟的浸出率达到94.9%或92.8%.在温度<70℃时,氧化剂的效应起主要作用,高锰酸钾的氧化效果比双氧水更明显;在温度>70℃时,温度效应占主导地位,两种氧化剂的影响差别不大..%By using the synthetic Indium sulfide to simulate the actual indium sulfide, the leaching effect and leaching process conditions of indium sulfide With the conventional leaching method and the oxidation leaching of potassium permanganate and hydrogen peroxide as the oxidant in sulfuric acid leaching system were studied. The results showed that under conditions of the stirring speed at 800 r/min, particle size of 75 ~ 96 μn, the liquid-solid ratio of 300: 1, the temperature at 80 ℃, and initial concentration of sulfuric acid of 2.0 mol/L for leaching 60 min, the leaching rate of indium arrived at 84. 9% by the conventional leaching method. Under the same conditions, the leaching rate reached 94. 9% or 92. 8% by adding oxidant KMnO4 or H202 to realize oxidation leaching only for 20 min. At temperature <70 ℃, the oxidant plays a major role, where the effect of potassium permanganate is more obvious than the that of hydrogen peroxide; At temperature > 70 ℃, the temperature effect plays a leading rule, and the impact of the two oxidants are less different.

  5. Recent findings on sinks for sulfide in gravity sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2006-01-01

    Sulfide buildup in sewer networks is associated with several problems, including health impacts, corrosion of sewer structures and odor nuisance. In recent years, significant advances in the knowledge of the major processes governing sulfide buildup in sewer networks have been made. This paper...... summarizes this newly obtained knowledge and emphasizes important implications of the findings. Model simulations of the in-sewer processes important for the sulfur cycle showed that sulfide oxidation in the wetted biofilm is typically the most important sink for dissolved sulfide in gravity sewers. However...

  6. Microbial control of hydrogen sulfide production

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  7. Enhanced electro-oxidation resistance of carbon electrodes induced by phosphorus surface groups

    OpenAIRE

    Berenguer Betrián, Raúl; Ruiz Rosas, Ramiro; Gallardo, Aurora; Cazorla Amorós, Diego; Morallón Núñez, Emilia; Nishihara, Hirotomo; Kyotani, Takashi; Rodríguez-Mirasol, José; Cordero, Tomás

    2015-01-01

    The electro-oxidation of carbon materials enormously degrades their performance and limits their wider utilization in multiple electrochemical applications. In this work, the positive influence of phosphorus functionalities on the overall electrochemical stability of carbon materials has been demonstrated under different conditions. We show that the extent and selectivity of electroxidation in P-containing carbons are completely different to those observed in conventional carbons without P. T...

  8. Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of n-Butane

    OpenAIRE

    J. Zhang; Liu, X; Blume, R.; Zhang, A; Schlögl, R.; Su, D.

    2008-01-01

    Butenes and butadiene, which are useful intermediates for the synthesis of polymers and other compounds, are synthesized traditionally by oxidative dehydrogenation (ODH) of n-butane over complex metal oxides. Such catalysts require high O2/butane ratios to maintain the activity, which leads to unwanted product oxidation. We show that carbon nanotubes with modified surface functionality efficiently catalyze the oxidative dehydrogenation of n-butane to butenes, especially butadiene. For low O2/...

  9. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion.

    Science.gov (United States)

    Alvarez-Merino, M A; Ribeiro, M F; Silva, J M; Carrasco-Marín, F; Maldonado-Hódar, F J

    2004-09-01

    We have used activated carbon (AC) prepared from almond shells as a support for tungsten oxide to develop a series of WOx/AC catalysts for the catalytic combustion of toluene. We conducted the reaction between 300 and 350 degrees C, using a flow of 500 ppm of toluene in air and space velocity (GHSV) in the range 4000-7000 h(-1). Results show that AC used as a support is an appropriate material for removing toluene from dilute streams. By decreasing the GHSV and increasing the reaction temperature AC becomes a specific catalyst for the total toluene oxidation (SCO2 = 100%), but in less favorable conditions CO appears as reaction product and toluene-derivative compounds are retained inside the pores. WOx/AC catalysts are more selective to CO2 than AC due to the strong acidity of this oxide; this behavior improves with increased metal loading and reaction temperature and contact time. The catalytic performance depends on the nonstoichiometric tungsten oxide obtained during the pretreatment. In comparison with other supports the WOx/AC catalysts present, at low reaction temperatures, higher activity and selectivity than WO, supported on SiO2, TiO2, Al2O3, or Y zeolite. This is due to the hydrophobic character of the AC surface which prevents the adsorption of water produced from toluene combustion thus avoiding the deactivation of the active centers. However, the use of WOx/AC system is always restricted by its gasification temperature (around 400 degrees C), which limits the ability to increase the conversion values by increasing reaction temperatures. PMID:15461177

  10. An experimental and modeling study of diethyl carbonate oxidation

    KAUST Repository

    Nakamura, Hisashi

    2015-04-01

    Diethyl carbonate (DEC) is an attractive biofuel that can be used to displace petroleum-derived diesel fuel, thereby reducing CO2 and particulate emissions from diesel engines. A better understanding of DEC combustion characteristics is needed to facilitate its use in internal combustion engines. Toward this goal, ignition delay times for DEC were measured at conditions relevant to internal combustion engines using a rapid compression machine (RCM) and a shock tube. The experimental conditions investigated covered a wide range of temperatures (660-1300K), a pressure of 30bar, and equivalence ratios of 0.5, 1.0 and 2.0 in air. To provide further understanding of the intermediates formed in DEC oxidation, species concentrations were measured in a jet-stirred reactor at 10atm over a temperature range of 500-1200K and at equivalence ratios of 0.5, 1.0 and 2.0. These experimental measurements were used to aid the development and validation of a chemical kinetic model for DEC.The experimental results for ignition in the RCM showed near negative temperature coefficient (NTC) behavior. Six-membered alkylperoxy radical (RO˙2) isomerizations are conventionally thought to initiate low-temperature branching reactions responsible for NTC behavior, but DEC has no such possible 6- and 7-membered ring isomerizations. However, its molecular structure allows for 5-, 8- and 9-membered ring RO˙2 isomerizations. To provide accurate rate constants for these ring structures, ab initio computations for RO˙2⇌Q˙OOH isomerization reactions were performed. These new RO˙2 isomerization rate constants have been implemented in a chemical kinetic model for DEC oxidation. The model simulations have been compared with ignition delay times measured in the RCM near the NTC region. Results of the simulation were also compared with experimental results for ignition in the high-temperature region and for species concentrations in the jet-stirred reactor. Chemical kinetic insights into the

  11. Transition Metal Catalyzed Synthesis of Aryl Sulfides

    Directory of Open Access Journals (Sweden)

    Chad C. Eichman

    2011-01-01

    Full Text Available The presence of aryl sulfides in biologically active compounds has resulted in the development of new methods to form carbon-sulfur bonds. The synthesis of aryl sulfides via metal catalysis has significantly increased in recent years. Historically, thiolates and sulfides have been thought to plague catalyst activity in the presence of transition metals. Indeed, strong coordination of thiolates and thioethers to transition metals can often hinder catalytic activity; however, various catalysts are able to withstand catalyst deactivation and form aryl carbon-sulfur bonds in high-yielding transformations. This review discusses the metal-catalyzed arylation of thiols and the use of disulfides as metal-thiolate precursors for the formation of C-S bonds.

  12. Influence of carbon monoxide to the surface layer of uranium metal and its oxides

    International Nuclear Information System (INIS)

    The surface structures of uranium metal and triuranium octaoxide (U3O8) and the influence of carbon monoxide to the surface layers have been studied by X-ray photoelectron spectroscopy (XPS). After exposure to carbon monoxide, contents of oxygen in the surface oxides of uranium metal and U3O8 are decreased and O/U ratios decrease 7.2%, 8.0% respectively. The investigation indicated the surface layers of uranium metal and its oxides were forbidden to further oxidation in the atmosphere of carbon monoxide. (11 refs., 9 figs., 2 tabs.)

  13. Carbon-13 kinetic isotope effects in CO oxidation by Ag

    International Nuclear Information System (INIS)

    In the catalytic oxidation of carbon monoxide over silver wool the 13C kinetic isotope effects in the 343--453 K temperature range were experimentally determined and the following temperature dependence was found: 100 ln(k12/k13) = (3.398--630/T) ± 0.083. A reaction CO/O2gas mixture of 1:2 ratio was used in a static system with initial pressures ranging from 20 to 40 kPa. Under these conditions the reaction is of order 1 with respect to CO and order 0 with respect to O2 and CO2 pressure. The apparent activation energy is 59.3 ± 1.7 kJ/mol. In the authors theoretical interpretation of the experimental data various geometries of (CO2)* and (CO3)* transition states were applied, and only a (CO2)* with an interbond angle of 110degree and CO stretching force constants of 1,700 and 1,000--1,400 N/m, respectively, with an asymmetric reaction coordinate was found to be acceptable

  14. Metal oxide coating of carbon supports for supercapacitor applications.

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Tribby, Louis, J (University of New Mexico, Albuquerque, NM); Lakeman, Charles D. E. (TPL, Inc., Albuquerque, NM); Han, Sang M. (University of New Mexico, Albuquerque, NM); Lambert, Timothy N.; Fleig, Patrick F. (TPL, Inc., Albuquerque, NM)

    2008-07-01

    The global market for wireless sensor networks in 2010 will be valued close to $10 B, or 200 M units. TPL, Inc. is a small Albuquerque based business that has positioned itself to be a leader in providing uninterruptible power supplies in this growing market with projected revenues expected to exceed $26 M in 5 years. This project focused on improving TPL, Inc.'s patent-pending EnerPak{trademark} device which converts small amounts of energy from the environment (e.g., vibrations, light or temperature differences) into electrical energy that can be used to charge small energy storage devices. A critical component of the EnerPak{trademark} is the supercapacitor that handles high power delivery for wireless communications; however, optimization and miniaturization of this critical component is required. This proposal aimed to produce prototype microsupercapacitors through the integration of novel materials and fabrication processes developed at New Mexico Technology Research Collaborative (NMTRC) member institutions. In particular, we focused on developing novel ruthenium oxide nanomaterials and placed them into carbon supports to significantly increase the energy density of the supercapacitor. These improvements were expected to reduce maintenance costs and expand the utility of the TPL, Inc.'s device, enabling New Mexico to become the leader in the growing global wireless power supply market. By dominating this niche, new customers were expected to be attracted to TPL, Inc. yielding new technical opportunities and increased job opportunities for New Mexico.

  15. Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries.

    Science.gov (United States)

    Lou, Fengliu; Zhou, Haitao; Tran, Trung Dung; Melandsø Buan, Marthe Emelie; Vullum-Bruer, Fride; Rønning, Magnus; Walmsley, John Charles; Chen, De

    2014-05-01

    Coaxial carbon/metal oxide/aligned carbon nanotube (ACNT) arrays over stainless-steel foil are reported as high-performance binder-free anodes for lithium ion batteries. The coaxial arrays were prepared by growth of ACNTs over stainless-steel foil followed by coating with metal oxide and carbon. The carbon/manganese oxide/ACNT arrays can deliver an initial capacity of 738 mAh g(-1) with 99.9 % capacity retention up to 100 cycles and a capacity of 374 mAh g(-1) at a high current density of 6000 mA g(-1). The external carbon layer was recognized as a key component for high performance, and the mechanism of performance enhancement was investigated by electrochemical impedance spectroscopy, electron microscopy, and X-ray diffraction analysis. The layer increases rate capability by enhancing electrical conductivity and maintaining a low mass-transfer resistance and also improves cyclic stability by avoiding aggregation of metal-oxide particles and stabilizing the solid electrolyte interface. The resultant principle of rational electrode design was applied to an iron oxide-based system, and similar improvements were found. These coaxial nanotube arrays present a promising strategy for the rational design of high-performance binder-free anodes for lithium ion batteries. PMID:24578068

  16. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    International Nuclear Information System (INIS)

    Research highlights: → Organic compounds is mineralized during later transport in deep groundwater aquifers. → Carbonic acid generated by this process stimulates dissolution of silicate minerals. → Protons derived from pyrite oxidation also affects weathering in deep groundwater. → The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H2CO3, produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and δ18O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H2CO3 generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO42- in the groundwater during lateral transport and a δ34S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km2) as evident by δ18O signatures and base cation concentrations that overlap with that of the groundwater.

  17. Study of the catalytic activity of mixed non-stoichiometric uranium-thorium oxides in carbon monoxide oxidation

    International Nuclear Information System (INIS)

    The aim of this work has been to study the catalytic properties of non-stoichiometric uranium-thorium oxides having the general formula UxTh1-xO2+y, for the oxidation of carbon monoxide. The preparation of pure, homogeneous, isotropic solids having good structural stability and a surface area as high as possible calls for a strict control of the conditions of preparation of these oxides right from the preparation of 'mother salts': the mixed oxalates UxTh1-x(C2O4)2, 2H2O. A study has been made of their physico-chemical properties (overall and surface chemical constitution, texture, structure, electrical conductivity), as well as of their adsorption properties with respect to gaseous species occurring in the catalytic reaction. This analysis has made it possible to put forward a reaction mechanism based on successive oxidations and reductions of the active surface by the reactants. A study of the reactions kinetics has confirmed the existence of this oxidation-reduction mechanism which only occurs for oxides having a uranium content of above 0.0014. The carbon dioxide produced by the reaction acts as an inhibitor by blocking the sites on which carbon monoxide can be adsorbed. These non-stoichiometric mixed oxides are a particularly clear example of catalysis by oxygen exchange between the solid and the gas phase. (author)

  18. Carbon oxidation in ceramic composites and the evaluation of interfacial sealing for oxidation resistant fiber-reinforced composite systems

    Science.gov (United States)

    Glime, William Harrison, III

    1997-11-01

    Carbon offers desirable properties as a fiber-matrix interphase material in ceramic matrix composites (CMC's), but oxidation of carbon at temperatures above 500sp°C has limited its utility. In an effort to better understand the kinetics associated with carbon oxidation pertaining to CMC applications, the origin of non-planar morphologies observed in the reaction front of carbon fibers and interphases receding into a ceramic matrix in the temperature range of 700sp°C to 1000sp°C was analyzed. A numerical simulation based on the finite difference method is utilized to evaluate the parameters which govern the morphology of the receding carbon reaction front. The study indicates that the morphology of the reaction front contains information regarding the interplay between oxidation behavior and microstructural features of the carbon. Carbon oxidation was found to obey "weak-link" behavior, that is, a sub-component which is more susceptible to oxidation governs the recession kinetics. The implications of weak link oxidation to preservation of a carbon interphase in a ceramic composite are discussed. Interrupted interphases have demonstrated the ability to confine oxidation of a carbon interphase to a localized region adjacent to a matrix crack. Commercial SiC mono-filaments (SCS-6, Textron Specialty Materials) were modified with a laser to produce fibers with discontinuous carbon coatings that were used in experiments to study mechanical properties. The laser-scribed fibers were tested in isolation, used in single-fiber microcomposites, or incorporated into small bulk composite specimens using a powder processing route to produce the matrix. The mechanical performance of the various types of specimens prepared using the laser scribing technique is presented and these results are used in a simulation of ultimate composite properties. The effect of fiber matrix fusion, by direct bonding or through a reaction product which seals the interface, was investigated with

  19. Oxidation protection and behavior of in-situ zirconium diboride–silicon carbide coating for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu; Li, Hejun, E-mail: lihejun@nwpu.edu.cn; Yin, Xuemin; Chu, Yanhui; Chen, Xi; Fu, Qiangang, E-mail: fuqiangang@nwpu.edu.cn

    2015-10-05

    Highlights: • ZrB{sub 2}–SiC coating was prepared on C/C composite by in-situ reaction. • A two-layered structure was obtained when the coating was oxidized at 1500 °C. • The formation and collapse of bubbles influenced the coating oxidation greatly. • The morphology evolution of oxide scale during oxidation was illuminated. - Abstract: To protect carbon/carbon (C/C) composites against oxidation, zirconium diboride–silicon carbide (ZrB{sub 2}–SiC) coating was prepared by in-situ reaction using ZrC, B{sub 4}C and Si as raw materials. The in-situ ZrB{sub 2}–SiC coated C/C presented good oxidation resistance, whose weight loss was only 0.15% after isothermal oxidation at 1500 °C for 216 h. Microstructure evolution of coating at 1500 °C was studied, revealing a two-layered structure: (1) ZrO{sub 2} (ZrSiO{sub 4}) embedded in SiO{sub 2}-rich glass, and (2) unaffected ZrB{sub 2}–SiC. The formation and collapse of bubbles influenced the coating oxidation greatly. A model based on the evolution of oxide scale was proposed to explain the failure mechanism of coating.

  20. Platinum-Niobium(V Oxide/Carbon Nanocomposites Prepared By Microwave Synthesis For Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Virginija KEPENIENĖ

    2016-05-01

    Full Text Available In the present work, Pt nanoparticles were deposited by means of microwave synthesis on the primary carbon supported Nb2O5 composite which was prepared in two different ways: (A by dispersion of Nb2O5 and carbon with the mass ratio equal to 1:1 in a 2-propanol solution by ultrasonication for 30 min. with further desiccation of the mixture and (B by heating the Nb2O5/C composite obtained according to the procedure (A at 500 °C for 2 h. The transmission electron microscopy was used to determine the shape and the size of catalyst particles. X-ray diffraction and inductively coupled plasma optical emission spectroscopy were employed to characterize the structure and composition of the synthesized catalysts. The electrocatalytic activity of the synthesized catalysts towards the oxidation of ethanol in an alkaline medium was investigated by means of cyclic voltammetry.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.8609

  1. Toxicity of Multi-Walled Carbon Nanotubes, Graphene Oxide, and Reduced Graphene Oxide to Zebrafish Embryos

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao Tong; MU Xi Yan; WU Xiao Li; MENG Li Xuan; GUAN Wen Bi; MA Yong Qiang; SUN Hua; WANG Cheng Ju; LI Xue Feng

    2014-01-01

    Objective This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. Methods The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations ls were evaluated. Results Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. Conclusion MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed.

  2. The Evolution of Sulfide Tolerance in the Cyanobacteria

    Science.gov (United States)

    Miller, Scott R.; Bebout, Brad M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Understanding how the function of extant microorganisms has recorded both their evolutionary histories and their past interactions with the environment is a stated goal of astrobiology. We are taking a multidisciplinary approach to investigate the diversification of sulfide tolerance mechanisms in the cyanobacteria, which vary both in their degree of exposure to sulfide and in their capacity to tolerate this inhibitor of photosynthetic electron transport. Since conditions were very reducing during the first part of Earth's history and detrital sulfides have been found in Archean sediments, mechanisms conferring sulfide tolerance may have been important for the evolutionary success of the ancestors of extant cyanobacteria. Two tolerance mechanisms have been identified in this group: (1) resistance of photosystem II, the principal target of sulfide toxicity; and (2) maintenance of the ability to fix carbon despite photosystem II inhibition by utilizing sulfide as an electron donor in photosystem I - dependent, anoxygenic photosynthesis. We are presently collecting comparative data on aspects of sulfide physiology for laboratory clones isolated from a variety of habitats. These data will be analyzed within a phylogenetic framework inferred from molecular sequence data collected for these clones to test how frequently different mechanisms of tolerance have evolved and which tolerance mechanism evolved first. In addition, by analyzing these physiological data together with environmental sulfide data collected from our research sites using microelectrodes, we can also test whether the breadth of an organism's sulfide tolerance can be predicted from the magnitude of variation in environmental sulfide concentration it has experienced in its recent evolutionary past and whether greater average sulfide concentration and/or temporal variability in sulfide favors the evolution of a particular mechanism of sulfide tolerance.

  3. Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: From synthesis to enhanced removal of phenol

    Directory of Open Access Journals (Sweden)

    Hamza A. Asmaly

    2015-09-01

    Full Text Available In this work, ferric oxide nanoparticle decorated carbon fibers and carbon nanotubes (CNF/Fe2O3 and CNT/Fe2O3 were synthesized and characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TGA, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, X-ray diffraction (XRD, zeta potential and BET surface area analyzer. The prepared nanocomposites were evaluated or the removal of phenol ions from aqueous solution. The effects of experimental parameters, such as shaking speed, pH, contact time, adsorbent dosage and initial concentration, were evaluated for the phenol removal efficiency. The adsorption experimental data were represented by both the Langmuir and Freundlich isotherm models. The Langmuir isotherm model best fitted the data on the adsorption of phenol, with a high correlation coefficient. The adsorption capacities, as determined by the Langmuir isotherm model were 0.842, 1.098, 1.684 and 2.778 mg/g for raw CNFs, raw CNTs, CNF–Fe2O3 and CNT–Fe2O3, respectively.

  4. A highly stable and sensitive chemically modified screen-printed electrode for sulfide analysis

    International Nuclear Information System (INIS)

    We report here a highly stable and sensitive chemically modified screen-printed carbon electrode (CMSPE) for sulfide analysis. The CMSPE was prepared by first ion-exchanging ferricyanide into a Tosflex anion-exchange polymer and then sealing with a tetraethyl orthosilicate sol-gel layer. The sol-gel overlayer coating was crucial to stabilize the electron mediator (i.e., Fe(China)63-) from leaching. The strong interaction between the oxy-hydroxy functional group of sol-gel and the hydrophilic sites of Tosflex makes the composite highly rigid to trap the ferricyanide mediator. An obvious electrocatalytic sulfide oxidation current signal at ∼0.20 V versus Ag/AgCl in pH 7 phosphate buffer solution was observed at the CMSPE. A linear calibration plot over a wide range of 0.1 μM to 1 mM with a slope of 5.6 nA/μM was obtained by flow injection analysis. The detection limit (S/N = 3) was 8.9 nM (i.e., 25.6 ppt). Practical utility of the system was applied to the determination of sulfide trapped from cigarette smoke and sulfide content in hot spring water

  5. Effects of sulfide on the integration of denitrification with anaerobic digestion.

    Science.gov (United States)

    Yin, Zhixuan; Xie, Li; Zhou, Qi

    2015-10-01

    The effects of sulfide on the integration of denitrification with anaerobic digestion using anaerobic effluents of cassava stillage as carbon source were investigated. Batch tests indicated that nitrate reduction efficiencies decreased from 96.5% to 15.8% as sulfide/nitrate (S/NO3(-)-N) ratios increased from 0.27 to 1.60. At low S/NO3(-)-N ratios (0.27-1.08) anaerobic acidogenesis was accelerated. Nitrate was reduced to nitrite via sulfur-based autotrophic denitrification, after which the formed nitrite and residual nitrate were converted to N2 via heterotrophic denitrification. Increases in the S/NO3(-)-N ratio (1.60) caused a shift (76.3%) in the nitrate reduction pathway from denitrification to dissimilatory nitrate reduction to ammonia (DNRA). Sulfide concentrations (S/NO3(-)-N ratio of 1.60) suppressed not only heterotrophic denitrification but also acidogenesis. The potentially toxic effect of sulfide on acid production was mitigated by its rapid oxidation to sulfur, allowing the recovery of acidogenesis. PMID:25801462

  6. Analyzing the kinetic response of tin oxide-carbon and tin oxide-CNT composites gas sensors for alcohols detection

    International Nuclear Information System (INIS)

    Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxidecarbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size ∼7 nm and ∼95 m2/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO2 thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors

  7. Theranostic carbon dots derived from garlic with efficient anti-oxidative effects towards macrophages

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Ogaki, Ryosuke; Hansen, Line;

    2015-01-01

    Luminescent garlic carbon dots with superior photostability are synthesized via microwave assisted heating. The garlic dots are biocompatible, have low toxicity and can be used as benign theranostic nanoparticles for bioimaging with efficient anti-oxidative effects towards macrophages....

  8. Selective removal of methyl mercaptan in coffee aroma using oxidized microporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Sakano, T. [Ajinomoto General Foods Inc., Tokyo (Japan). Central Research Laboratoties; Tamon, H.; Okazaki, M. [Kyoto University, Kyoto (Japan). Dept. of Chemical Engineering

    1999-10-01

    Coffee aroma recovered from the extraction process of roasted coffee beans is used to improve the quality of soluble coffee products. Coffee aroma often has an irritating sulfurous odor. In the present work, it is experimentally elucidated that methyl mercaptan could be selectively removed from the coffee aroma-containing gas by the oxidized microporous carbon. Breakthrough curves of coffee aroma-containing gas on zeolite 5A, microporous carbon (MSC 5A), and MSC 5A oxidized with 13.2N HNO{sub 3} aqueous solution revealed that the adsorption capacity of methyl mercaptan on the oxidized carbon was 4.2 times of that on the zeolite. The loss of desired coffee aroma was decreased using the oxidized carbon in the removal of methyl mercaptan. (author)

  9. Metal Oxide-Carbon Nanocomposites for Aqueous and Nonaqueous Supercapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Technology Transfer Phase 2 effort focuses on development of a supercapacitor energy storage device based on novel metal oxide-carbon...

  10. Weathering of sulfides on Mars

    Science.gov (United States)

    Burns, Roger G.; Fisher, Duncan S.

    1987-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  11. Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: Modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xijun; Chen, Chuan; Wang, Aijie; Guo, Wanqian; Zhou, Xu [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Lee, Duu-Jong, E-mail: djlee@ntu.edu.tw [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Ren, Nanqi, E-mail: rnq@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Chang, Jo-Shu [Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2014-01-15

    Graphical abstract: Model evaluation applied to case study 1: (A-G) S{sup 2−}, NO{sub 3}{sup −}-N, NO{sub 2}{sup −}-N, and Ac{sup −}-C profiles under initial sulfide concentrations of 156.2 (A), 539 (B), 964 (C), 1490 (D), 342.7 (E), 718 (F), and 1140.7 (G) mg L{sup −1}. The solid line represents simulated result and scatter represents experimental result. -- Highlights: • This work developed a mathematical model for DSR process. • Kinetics of sulfur–nitrogen–carbon and interactions between denitrifiers were studied. • Kinetic parameters of the model were estimated via data fitting. • The model described kinetic behaviors of DSR processes over wide parametric range. -- Abstract: Simultaneous removal of sulfide (S{sup 2−}), nitrate (NO{sub 3}{sup −}) and acetate (Ac{sup −}) under denitrifying sulfide removal process (DSR) is a novel biological wastewater treatment process. This work developed a mathematical model to describe the kinetic behavior of sulfur–nitrogen–carbon and interactions between autotrophic denitrifiers and heterotrophic denitrifiers. The kinetic parameters of the model were estimated via data fitting considering the effects of initial S{sup 2−} concentration, S{sup 2−}/NO{sub 3}{sup −}-N ratio and Ac{sup −}-C/NO{sub 3}{sup −}-N ratio. Simulation supported that the heterotrophic denitratation step (NO{sub 3}{sup −} reduction to NO{sub 2}{sup −}) was inhibited by S{sup 2−} compared with the denitritation step (NO{sub 2}{sup −} reduction to N{sub 2}). Also, the S{sup 2−} oxidation by autotrophic denitrifiers was shown two times lower in rate with NO{sub 2}{sup −} as electron acceptor than that with NO{sub 3}{sup −} as electron acceptor. NO{sub 3}{sup −} reduction by autotrophic denitrifiers occurs 3–10 times slower when S{sup 0} participates as final electron donor compared to the S{sup 2−}-driven pathway. Model simulation on continuous-flow DSR reactor suggested that the adjustment of

  12. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells

    OpenAIRE

    Yang, Lei; Choi, YongMan; Qin, Wentao; Chen, Haiyan; Blinn, Kevin; Liu, Mingfei; Liu, Ping; Bai, Jianming; Trevor A. Tyson; Liu, Meilin

    2011-01-01

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C3H8, CO and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni su...

  13. Global geochemical cycles of carbon, sulfur and oxygen

    Science.gov (United States)

    Walker, J. C.

    1986-01-01

    Time resolved data on the carbon isotopic composition of carbonate minerals and the sulfur isotopic composition or sulfate minerals show a strong negative correlation during the Cretaceous. Carbonate minerals are isotopically heavy during this period while sulfate minerals are isotopically light. The implication is that carbon is being transferred from the oxidized, carbonate reservoir to the reservoir of isotopically light reduced organic carbon in sedimentary rocks while sulfur is being transferred from the reservoir of isotopically light sedimentary sulfide to the oxidized, sulfate reservoir. These apparently oppositely directed changes in the oxidation state of average sedimentary carbon and sulfur are surprising because of a well-established and easy to understand correlation between the concentrations of reduced organic carbon and sulfide minerals in sedimentary rocks. Rocks rich in reduced carbon are also rich in reduced sulfur. The isotopic and concentration data can be reconciled by a model which invokes a significant flux of hydrothermal sulfide to the deep sea, at least during the Cretaceous.

  14. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires.

    Science.gov (United States)

    Kawashima, Ayato; Nomura, Shinfuku; Toyota, Hiromichi; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro

    2007-12-12

    A supercritical carbon dioxide (CO(2)) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively. PMID:20442477

  15. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires

    International Nuclear Information System (INIS)

    A supercritical carbon dioxide (CO2) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively

  16. Study of the processes of carbonization and oxidation of porous silicon by Raman and IR spectroscopy

    International Nuclear Information System (INIS)

    Porous silicon layers were produced by electrochemical etching of single-crystal silicon wafers with the resistivity 10 Ω cm in the aqueous-alcohol solution of hydrofluoric acid. Raman spectroscopy and infrared absorption spectroscopy are used to study the processes of interaction of porous silicon with undiluted acetylene at low temperatures and the processes of oxidation of carbonized porous silicon by water vapors. It is established that, even at the temperature 550°C, the silicon-carbon bonds are formed at the pore surface and the graphite-like carbon condensate emerges. It is shown that the carbon condensate inhibits oxidation of porous silicon by water vapors and contributes to quenching of white photoluminescence in the oxidized carbonized porous silicon nanocomposite layer.

  17. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    OpenAIRE

    Cao, Zeyuan; Wei, Bingqing

    2015-01-01

    Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high-performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical vapor deposition products is developed as a general synthetic method to prepare a family of metal oxides [MxOy (M = Fe, Co, Ni)]/single-walled carbon nanotube (SWNT) macrofilm nanocomposites. The MxOy nanoparticles obt...

  18. Synthesis of Heteroaromatic Compounds by Oxidative Aromatization Using an Activated Carbon/Molecular Oxygen System

    Directory of Open Access Journals (Sweden)

    Masahiko Hayashi

    2009-08-01

    Full Text Available A variety of heteroaromatic compounds, such as substituted pyridines, pyrazoles, indoles, 2-substituted imidazoles, 2-substituted imidazoles, 2-arylbenzazoles and pyrimidin-2(1H-ones are synthesized by oxidative aromatization using the activated carbon and molecular oxygen system. Mechanistic study focused on the role of activated carbon in the synthesis of 2-arylbenzazoles is also discussed. In the final section, we will disclose the efficient synthesis of substituted 9,10-anthracenes via oxidative aromatization.

  19. Effect of oxygen adsorption on the electrochemical oxidative corrosion of single-walled carbon nanotubes

    OpenAIRE

    Tominaga, Masato; Yatsugi, Yuto; Togami, Makoto; トミナガ, マサト; ヤツギ, ユウト; トガミ, マコト; 冨永, 昌人; 矢次, 祐人; 戸上, 純

    2014-01-01

    The effect of adsorbed molecular oxygen on the oxidative corrosion of single-walled carbon nanotubes in aqueous solution was investigated by Raman spectroscopy. Adsorbed molecular oxygen affected nucleation and growth in the electrochemical oxidative corrosion of single-walled carbon nanotubes in aqueous electrolyte. Nucleation and growth began at defect sites in the presence of adsorbed oxygen, but occurred randomly in the absence of adsorbed oxygen. This insight furthers our understanding o...

  20. CATALYTIC PROPERTIES OF NANOFIBROUS CARBON IN SELECTIVE OXIDATION OF HYDROGEN SULPHIDE

    Institute of Scientific and Technical Information of China (English)

    Gennady G. Kuvshinov; Vasiliy V. Shinkarev; Alexey M. Glushenkov; Maxim N. Boyko; Dmitriy G. Kuvshinov

    2006-01-01

    Nanofibrous carbonaceous materials (NFC) as a new class of materials having many applications, can catalyze the selective oxidation of H2S to sulfur. The correlation between NFC structure and its activity and selectivity in H2S oxidation was determined. It is demonstrated that selectivity can be improved if NFC with more ordered structure be synthesized and the portion of the original catalyst in carbon be reduced by increasing the carbon accumulated in the catalyst.