WorldWideScience

Sample records for carbon nanotubes modified

  1. Modified carbon nanotubes and methods of forming carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  2. Modified Multiwall Carbon Nanotubes with Nanolumps for Nanocomposite Reinforcement

    Science.gov (United States)

    Wen, J. G.; Lao, J. Y.; Li, W. Z.; Ren, Z. F.; Department Of Physics Team

    2002-03-01

    The quality of the bonding between a polymer matrix and carbon nanotubes is critical in the development of carbon nanotube reinforced polymer composites. In this paper, we modified multiwall carbon nanotubes by growing boron carbide (a covalent bonding compound) nanolumps on carbon nanotubes to enhance load transfer from matrix to carbon nanotubes. Experimental results demonstrated that boron carbide nanolumps with the required morphology were formed on multiwall carbon nanotubes by a solid state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. We also found that inner layers of multiwall carbon nanotubes are bonded to boron carbide nanolumps probably through covalent bonding. Therefore, these multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal nano-scale reinforcement to improve load transfer between carbon nanotubes and the polymer matrix. For comparison, other nanolumps such as crystalline MgO, amorphous B2O3 are also grown on nanotubes.

  3. Modified carbon nanotubes: from nanomedicine to nanotoxicology

    Science.gov (United States)

    Bottini, Massimo; Bottini, Nunzio

    2012-09-01

    Nanomedicine is the science of fabricating smart devices able to diagnose and treat diseases more efficiently than conventional medicine while minimizing costs, complexity and adverse effects. Carbon nanotubes (CNTs) are receiving considerable attention for biomedical applications due to their extraordinary properties. In particular, their chemical nature and high aspect ratio (ratio between the length and the diameter) make them ideal carriers to achieve delivery of high doses of therapeutic and imaging cargo to a specific site of interest. A major obstacle to the use of pristine (unmodified) CNTs in biological systems is their complete aqueous insolubility and low biocompatibility and toxicity profiles. To endow CNTs with solubility in a biological milieu, several non-covalent and covalent modification methods have been explored. Suitably modified CNTs have shown increased solubility under physiological conditions, improved biocompatibility profiles and lack of toxicity after injection in living animals. Additionally, after being loaded with cargo (small molecules, proteins, peptides or nucleic acids) they have been successfully evaluated as pharmaceutical, therapeutic and diagnostic tools.

  4. Conductive hydrophobic hybrid textiles modified with carbon nanotubes

    Science.gov (United States)

    Kowalczyk, D.; Brzeziński, S.; Makowski, T.; Fortuniak, W.

    2015-12-01

    The paper presents the results of modifying and testing modern hybrid polyester-cotton woven fabrics with deposited multi-wall carbon nanotubes and imparted hydrophobicity. The effect of the carbon nanotubes deposited on these fabrics on their conductive properties and hydrophobicity has been assessed. The electro-conductive and hydrophobic composite fabrics obtained in this way, being light, elastic and resistant to mechanical effects, make it possible to be widely used in various industrial fields.

  5. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    Science.gov (United States)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  6. Low temperature electrical transport in modified carbon nanotube fibres

    International Nuclear Information System (INIS)

    Carbon nanotube fibres are a new class of materials highly promising for many electrical/electronic applications. The range of applications could be extended through the modification of their electrical transport properties by inclusions of foreign materials. However, the changes in electrical transport are often difficult to assess. Here, we propose that the analysis of resistance–temperature dependencies of modified fibres supported by a recently developed theoretical model may aid research in this area and accelerate real life applications of the fibres

  7. ELECTROANALYTICAL APPLICATIONS OF CARBOXYL-MODIFIED CARBON NANOTUBE FILM ELECTRODES

    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; K.J. Liao; W. Zhu

    2003-01-01

    The electrochemical behavior of a carboxyl-modified carbon nanotube films was investigated to explore its possibility in electroanalytical applicaton. Cyclic voltammetry of quinone was conducted in 1mol/L Na2SO4, which showed a stable, quasi-reversible voltammetric response for quinone / hydroquinone, and the anodic and the cathodic peak potentials were 0.657V and -0.029V (vs. SCE) at a scan rate of 0.1V.s-1, respectively. Both anodic and cathodic peak currents depended linearly on the square root of the scan rate over the range of 0.01-0. 5 V.s-1, which suggested that the process of the electrode reactions was diffusion-controlled. Carboxyl-modified carbon nanotube electrodes made it possible to determine low level of dopamine selectively in the presence of a large excess of ascorbic acid in acidic media using derivative voltammetry.The results obtained were discussed in details. This work demonstrates the potential of carboxyl-modified carbon nanotube electrodes for electroanalytical applications.

  8. Adsorption of uranium with multiwall carbon nanotubes modified by formaldehyde

    International Nuclear Information System (INIS)

    Purified multiwall carbon nanotubes (MWCNTs) were modified with formaldehyde and the dispersibility of MWCNTs was greatly improved after modification. The modified MWCNTs were used to study the adsorption of uranium from aqueous solution. pH, contact time, temperature, initial concentration of uranium and modified MWCNTs concentrations were investigated to estimate the adsorptive properties. The results show that uranium adsorption percentage strongly depends on the pH, initial concentration of uranium and modified MWCNTs content, and is slightly influenced by contact time, temperature and ionic strength. The adsorptivity increases over the range of pH=2.0-7.0. The maximum adsorptivity is 46.44 mg/g as the initial concentration of uranium reaches 50 μg/mL. The equilibrium data obey both Langmuir and Freundlich isotherms well, and the maximal theoretical adsorption capacity is 55.87 mg/g for the modified MWCNTs. (authors)

  9. Osteoblast cell response to surface-modified carbon nanotubes

    International Nuclear Information System (INIS)

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  10. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  11. Preparation and Characterization of Polycarbonate Modified Multiple-walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    YU Jin-Gang; HUANG Ke-Long; LIU Su-Qin; TANG Jin-Chun

    2008-01-01

    To prepare polymer/carbon nanotube composites, polycarbonate was chosen to modify multiple-walled carbon nanotubes. Poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)], poly(butylene-co-ε-caprolactone carbonate),and poly[(propylene oxide)-co-(carbon dioxide)-co-(maleic anhydride)] were the polycarbonates which were used to modify multiple-walled carbon nanotubes, but only soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes could be obtained. Thermogravimetric analysis clearly indicated that more polycarbonates were attached to soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes. The formation of surface functional groups and changes of nanotube structures and morphology were monitored by infrared spectroscopy, scanning electron microscopy and transmission electron microscopy, respectively. Because of their solubility and bioactive moieties,poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes may find their potential use in drug delivery.

  12. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors

    Science.gov (United States)

    Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru

    2016-09-01

    A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.

  13. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  14. Strain-modified RKKY interaction in carbon nanotubes

    DEFF Research Database (Denmark)

    Gorman, P. D.; Duffy, J. M.; Power, Stephen R.;

    2015-01-01

    been shown that the interaction range depends on the conformation of the magnetic dopants in both graphene and nanotubes. Here we examine the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in carbon nanotubes in the presence of uniaxial strain for a range of different impurity configurations. We show......For low-dimensionalmetallic structures, such as nanotubes, the exchange coupling between localized magnetic dopants is predicted to decay slowly with separation. The long-range character of this interaction plays a significant role in determining the magnetic order of the system. It has previously...... that strain is capable of amplifying or attenuating the RKKY interaction, significantly increasing certain interaction ranges, and acting as a switch: effectively turning on or off the interaction. We argue that uniaxial strain can be employed to significantly manipulate magnetic interactions in carbon...

  15. SELECTIVE VOLTAMMETRIC DETERMINATION OF HYDROXYPURINS ON ELECTRODE MODIFIED BY CARBON NANOTUBES

    OpenAIRE

    Shaidarova, L. G.; Chelnokova, I. A.; Mahmutova, G. F.; Degteva, M. A.; Gedmina, A. V.; Budnikov, H. C.

    2014-01-01

    Carbon nanotubes (CNT) deposited on the surface of glassy carbon electrode show catalytic activity in the oxidation of uric acid, xanthine and hypoxanthine that is exhibited in decreasing overvoltage and increasing oxidation current of hydroxypurins. The method of simultaneous voltammetric determination of uric acid, xanthine and hypoxanthine at the electrode modified by carbon nanotubes is suggested. The linear dependence of analytical signal from substrates concentration is observed in the ...

  16. Hall Measurements on Carbon Nanotube Paper Modified With Electroless Deposited Platinum

    Directory of Open Access Journals (Sweden)

    Iwuoha Emmanuel

    2009-01-01

    Full Text Available Abstract Carbon nanotube paper, sometimes referred to as bucky paper, is a random arrangement of carbon nanotubes meshed into a single robust structure, which can be manipulated with relative ease. Multi-walled carbon nanotubes were used to make the nanotube paper, and were subsequently modified with platinum using an electroless deposition method based on substrate enhanced electroless deposition. This involves the use of a sacrificial metal substrate that undergoes electro-dissolution while the platinum metal deposits out of solution onto the nanotube paper via a galvanic displacement reaction. The samples were characterized using SEM/EDS, and Hall-effect measurements. The SEM/EDS analysis clearly revealed deposits of platinum (Pt distributed over the nanotube paper surface, and the qualitative elemental analysis revealed co-deposition of other elements from the metal substrates used. When stainless steel was used as sacrificial metal a large degree of Pt contamination with various other metals was observed. Whereas when pure sacrificial metals were used bimetallic Pt clusters resulted. The co-deposition of a bimetallic system upon carbon nanotubes was a function of the metal type and the time of exposure. Hall-effect measurements revealed some interesting fluctuations in sheet carrier density and the dominant carrier switched from N- to P-type when Pt was deposited onto the nanotube paper. Perspectives on the use of the nanotube paper as a replacement to traditional carbon cloth in water electrolysis systems are also discussed.

  17. Electrochemical oxidation and nanomolar detection of acetaminophen at a carbon-ceramic electrode modified by carbon nanotubes: A comparison between multi walled and single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Carbon-ceramic electrodes (CCE) modified with carbon nanotubes were prepared, and the electrochemical behavior towards acetaminophen (ACOP) was investigated using both a bare CCE and electrodes modified with either single walled carbon nanotubes (SWCNT) or multi walled carbon nanotubes (MWCNT) in an effort to understand which of them is the better choice in terms of electrocatalyzing the oxidation of ACOP, and thus for sensing it. The SWCNT are found to be the better material in significantly enhancing the oxidation peak current and improving the reversibility of the oxidation. Under optimal conditions, linearity between the oxidation peak current and the concentration of ACOP is obtained for the concentration range from 40 nM to 85 μM, with a detection limit of 25 nM. Finally, ACOP was successfully determined with the SWCNT modified electrode in pharmaceutical samples. (author)

  18. A Multiwall Carbon Nanotube-chitosan Modified Electrode for Selective Detection of Dopamine in the Presence of Ascorbic Acid

    Institute of Scientific and Technical Information of China (English)

    Ling Yan JIANG; Chuan Yin LIU; Li Ping JIANG; Guang Han LU

    2005-01-01

    A novel multiwall carbon nanotube-chitosan modified electrode has been prepared.The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbic acid into two well-defined peak by 212 mY. The mechanism of discrimination of dopamine from ascorbic acid is discussed. Dopamine can be determined selectively with the carbon nanotube-chitosan modified electrode. The electrode shows good sensitivity, selectivity and stability.keywords: Nanotube-chitosan modified electrode, dopamine, ascorbic acid.

  19. Carbon Nanotube Coating on Titanium Substrate Modified with TiO2 Nanotubes

    Institute of Scientific and Technical Information of China (English)

    BAI Yu; PARK Ilsong; BAE Taesung; KLM Kyounga; WATARI Fumio; UO Motohiro; LEE Minho

    2011-01-01

    A combination of carbon nanotubes (CNTs) and titanium (Ti) modified with TiO2 nanotubes (TiO2 NTs) was fulfilled with the aim of improving bioactivity of Ti implant.First,well-ordered TiO2 NTs were prepared by the electrochemical anodization of Ti in an ethylene glycol electrolyte containing 1 wt% NH4F and 10 wt% H2O at 20 V for 50 min,followed by annealing.Then,the carboxylated CNTs were coated onto the TiO2NTs using electrophoretic deposition (EPD) technique.The growth of hydroxyapatite (HA) on the samples was investigated by soaking them in simulated body fiuid (SBF).The result showed the CNTs-coated Ti with the modification of TiO2 NTs (CNTs-TiO2 NTs) was more efficient to induce HA formation than the CNTs-coated smooth Ti (CNTs-Ti).The vitro cell response was evaluated using osteoblast cells (MC3T3-El).The good cell proliferation and strong cell adhesion could be obtained on the CNTs-TiO2 NTs.These results indicated that CNT coating on the Ti modified with TiO2 NTs could be potentially useful for the periodontal ligament combination on dental implants.

  20. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  1. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Huiying Wang

    2013-11-01

    Full Text Available A versatile strategy for electrochemical determination of glycoalkaloids (GAs was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  2. Design of Dendrimer Modified Carbon Nanotubes for Gene Delivery

    Institute of Scientific and Technical Information of China (English)

    PAN Bi-feng; BAO Chen-chen; GAO Feng; HE Rong; SHU Meng-jun; MA Yong-jie; CUI Da-xiang; XU Ping; CHEN Hao; LIU Feng-tao; LI Qing; HUANG Tuo; YOU Xiao-gang; SHAO Jun

    2007-01-01

    Objective: To investigate the efficiency of polyamidoamine dendrimer grafted carbon nanotube (dendrimer-CNT) mediated entrance of anti-survivin oligonucleotide into MCF-7 cells, and its effects on the growth of MCF-7 cells. Methods: Antisense survivin oligonucleotide was anchored onto polyamidoamine dendrimer grafted carbon nanotubes to form dendrimer-CNT-asODN complex and the complex was characterized by Zeta potential, AFM, TEM, and 1% agarose gel electrophoresis analysis. Dendrimer-CNT-asODN complexes were added into the medium and incubated with MCF-7 cells. MTT method was used to detect the effects of asODN and dendrimer-CNT-asODN on the growth of MCF-7 cells. TEM was used to observe the distribution of dendrimer-CNT-asODN complex within MCF-7 cells. Results: Successful synthesis of dendrimer-CNT-asODN complexes was proved by TEM, AFM and agarose gel electrophoresis. TEM showed that the complexes were located in the cytoplasm, endosome, and lysosome within MCF-7 cells. When dendrimer-CNT-asODN (1.0 μmol/L) and asODN (1.0 μmol/L) were used for 120 h incubation, the inhibitory rates of MCF-7 cells were (28.22±3.5)% for dendrimer-CNT-asODN complex group, (9.23±0.56)% for only asODN group, and (3.44±0.25)% for dendrimer-CNT group. Dendrimer-CNT-asODN complex at 3.0 μmol/L inhibited MCF-7 cells by (30.30±10.62)%, and the inhibitory effects were in a time- and concentration- dependent manner. Conclusion: Dendrimer-CNT nanoparticles may serve as a gene delivery vector with high efficiency, which can bring foreign gene into cancer cells, inhibiting cancer cell proliferation and markedly enhancing the cancer therapy effects.

  3. Carbon nanotubes/pentacyaneferrate-modified chitosan nanocomposites platforms for reagentless glucose biosensing.

    Science.gov (United States)

    Parra-Alfambra, A M; Casero, E; Ruiz, M A; Vázquez, L; Pariente, F; Lorenzo, E

    2011-08-01

    The design, characterization and applicability of a nanostructured biosensor platform are described. The biosensor is developed through the immobilization of three components: a polymeric chitosan network previously modified with a redox mediator (denoted as PCF-Pyr-Ch), an enzyme (glucose oxidase, chosen as a model) and carbon nanotubes onto a solid glassy carbon electrode (C). In order to assess the influence of the nanomaterial in the performance of the resulting analytical device, a second biosensor, free of carbon nanotubes, is developed. The characterization of both biosensing platforms was performed in aqueous phosphate buffer solutions using atomic force microscopy technique. In the presence of glucose, both systems exhibit a clear electrocatalytic activity, and glucose could be amperometrically determined at +0.35 V versus Ag/AgCl. The performance of both biosensors was evaluated in terms of sensitivity, detection limit and linear response range. Finally, the enhancement of the analytical response induced by the presence of carbon nanotubes was evaluated. PMID:21633839

  4. Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling

    International Nuclear Information System (INIS)

    Biomarkers play a potential role in the early detection and diagnosis of a disease. Our aim is to derivatize carbon nanotubes for exploration of the differences in human body fluids e.g. serum, through matrix assisted laser desorption ionisation/time of flight mass spectrometry (MALDI/TOF-MS) that can be related to disease and subsequently to be employed in the biomarker discovery process. This application we termed as the material enhanced laser desorption ionisation (MELDI). The versatility of this technology is meant to increase the amount of information from biological samples on the protein level, which will have a major impact to serve the cause of diagnostic markers. Serum peptides and proteins are immobilized on derivatized carbon nanotubes, which function as binding material. Protein-loaded suspension is placed on a stainless steel target or buckypaper on aluminum target for direct analysis with MALDI-MS. The elution method to wash the bound proteins from carbon nanotubes was employed to compare with the direct analysis procedure. Elution is carried out by MALDI matrix solution to get them out of the entangled nanotubes, which are difficult to desorb by laser due to the complex nanotube structures. The advantage of these optimized methods compared to the conventional screening methods is the improved sensitivity, selectivity and the short analysis time without prior albumin and immunoglobulin depletion. The comparison of similarly modified diamond and carbon nanotubes exhibit differences in their nature to bind the proteins out of serum due to the differences in their physical characteristics. Infrared (IR) spectroscopy provided hint for the presence of tertiary amine peak at the crucial chemical step of iminodiacetic acid addition to acid chloride functionality on carbon nanotubes. Atomic absorption spectroscopy (AAS) was utilized to quantitatively measure the copper capacity of these derivatized carbon nanotubes which is a direct measure of capacity of

  5. Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling

    Energy Technology Data Exchange (ETDEWEB)

    Najam-ul-Haq, M. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, A-6020 Innsbruck (Austria); Rainer, M. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, A-6020 Innsbruck (Austria); Schwarzenauer, T. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, A-6020 Innsbruck (Austria); Huck, C.W. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, A-6020 Innsbruck (Austria)]. E-mail: christian.w.huck@uibk.ac.at; Bonn, G.K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, A-6020 Innsbruck (Austria)

    2006-03-02

    Biomarkers play a potential role in the early detection and diagnosis of a disease. Our aim is to derivatize carbon nanotubes for exploration of the differences in human body fluids e.g. serum, through matrix assisted laser desorption ionisation/time of flight mass spectrometry (MALDI/TOF-MS) that can be related to disease and subsequently to be employed in the biomarker discovery process. This application we termed as the material enhanced laser desorption ionisation (MELDI). The versatility of this technology is meant to increase the amount of information from biological samples on the protein level, which will have a major impact to serve the cause of diagnostic markers. Serum peptides and proteins are immobilized on derivatized carbon nanotubes, which function as binding material. Protein-loaded suspension is placed on a stainless steel target or buckypaper on aluminum target for direct analysis with MALDI-MS. The elution method to wash the bound proteins from carbon nanotubes was employed to compare with the direct analysis procedure. Elution is carried out by MALDI matrix solution to get them out of the entangled nanotubes, which are difficult to desorb by laser due to the complex nanotube structures. The advantage of these optimized methods compared to the conventional screening methods is the improved sensitivity, selectivity and the short analysis time without prior albumin and immunoglobulin depletion. The comparison of similarly modified diamond and carbon nanotubes exhibit differences in their nature to bind the proteins out of serum due to the differences in their physical characteristics. Infrared (IR) spectroscopy provided hint for the presence of tertiary amine peak at the crucial chemical step of iminodiacetic acid addition to acid chloride functionality on carbon nanotubes. Atomic absorption spectroscopy (AAS) was utilized to quantitatively measure the copper capacity of these derivatized carbon nanotubes which is a direct measure of capacity of

  6. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  7. Electrochemical behaviour of different redox probes on single wall carbon nanotube buckypaper-modified electrodes

    International Nuclear Information System (INIS)

    In the present work, the electrochemical properties of single-walled carbon nanotube buckypapers (BPs) were examined in terms of carbon nanotubes nature and preparation conditions. The performance of the different free-standing single wall carbon nanotube sheets was evaluated via cyclic voltammetry of several redox probes in aqueous electrolyte. Significant differences are observed in the electron transfer kinetics of the buckypaper-modified electrodes for both the outer- and inner-sphere redox systems. These differences can be ascribed to the nature of the carbon nanotubes (nanotube diameter, chirality and aspect ratio), surface oxidation degree and type of functionalities. In the case of dopamine, ferrocene/ferrocenium, and quinone/hydroquinone redox systems the voltammetric response should be thought as a complex contribution of different tips and sidewall domains which act as mediators for the electron transfer between the adsorbate species and the molecules in solution. In the other redox systems only nanotube ends are active sites for the electron transfer. It is also interesting to point out that a higher electroactive surface area not always lead to an improvement in the electron transfer rate of various redox systems. In addition, the current densities produced by the redox reactions studied here are high enough to ensure a proper electrochemical signal, which enables the use of BPs in sensing devices

  8. Improvement of the LiBH{sub 4} hydrogen desorption by confinement in modified carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.T.; Wan, C.B.; Meng, X.H.; Ju, X., E-mail: jux@ustb.edu.cn

    2015-10-05

    Highlights: • The desorption kinetics for LiBH{sub 4} greatly promoted using melt infiltration method. • The LiBH{sub 4} confined in modified MWCNTs shows the best desorption kinetics. • The crystal structure of MWCNTs and SWCNTs is unchanged after ball milling. • Ball milling introduces a great amount of structural defects in the CNTs. • Nano-confinement is dominant on improving the hydrogen desorption of LiBH{sub 4}. - Abstract: The dehydrogenation kinetics of LiBH{sub 4} incorporated within various carbon nanotubes has been studied. It is demonstrated that the desorption kinetics of LiBH{sub 4} could be greatly promoted using a simple melt infiltration method and LiBH{sub 4} confined in modified multi-walled carbon nanotubes (MWCNTs) shows the best desorption kinetics. The structural properties of carbon nanotubes and confined samples are demonstrated by means of transmission electron microscopy, powder X-ray diffraction and Raman spectroscopy. The crystal structure of MWCNTs and single-walled carbon nanotubes (SWCNTs) are almost unchanged after ball milling. But high energy ball milling leads to a decrease in the average nanotube length and introduces a great amount of local disorder and structural defects in the CNTs, which may provide a considerable kinetic improvement.

  9. Improvement of the LiBH4 hydrogen desorption by confinement in modified carbon nanotubes

    International Nuclear Information System (INIS)

    Highlights: • The desorption kinetics for LiBH4 greatly promoted using melt infiltration method. • The LiBH4 confined in modified MWCNTs shows the best desorption kinetics. • The crystal structure of MWCNTs and SWCNTs is unchanged after ball milling. • Ball milling introduces a great amount of structural defects in the CNTs. • Nano-confinement is dominant on improving the hydrogen desorption of LiBH4. - Abstract: The dehydrogenation kinetics of LiBH4 incorporated within various carbon nanotubes has been studied. It is demonstrated that the desorption kinetics of LiBH4 could be greatly promoted using a simple melt infiltration method and LiBH4 confined in modified multi-walled carbon nanotubes (MWCNTs) shows the best desorption kinetics. The structural properties of carbon nanotubes and confined samples are demonstrated by means of transmission electron microscopy, powder X-ray diffraction and Raman spectroscopy. The crystal structure of MWCNTs and single-walled carbon nanotubes (SWCNTs) are almost unchanged after ball milling. But high energy ball milling leads to a decrease in the average nanotube length and introduces a great amount of local disorder and structural defects in the CNTs, which may provide a considerable kinetic improvement

  10. Single-walled carbon nanotubes modified by ionic liquid as antiwear additives of thermoplastics

    OpenAIRE

    Carrión, F.J.; Espejo, C.; Sanes, J.; Bermúdez, M.D.

    2010-01-01

    Abstract Pristine single-walled carbon nanotubes (CNTs) were dispersed in the room-temperature ionic liquid (IL) 1-octyl, 3-methylimidazolium tetrafluoroborate ([OMIM]BF4) by grinding and ultrasounds. Excess IL was removed to obtain single-walled carbon nanotubes modified by [OMIM]BF4 (mCNTs). mCNTs were added in a 1wt.% to polystyrene (PS), polymethylmethacrylate (PMMA) and polycarbonate (PC) to obtain PS+mCNT, PMMA+mCNT and PC+mCNT. The dry tribological performance of the new nan...

  11. Fabrication and characterization of polymer insulated carbon nanotube modified electrochemical nanoprobes.

    Science.gov (United States)

    Patil, Amol V; Beker, Anne F; Wiertz, Frank G M; Heering, Hendrik A; Coslovich, Giacomo; Vlijm, Rifka; Oosterkamp, Tjerk H

    2010-05-01

    Electrochemical nanoprobes were fabricated from polymer insulated multiwalled carbon nanotube modified tapping mode atomic force microscope probes. An electrochemically active length of carbon nanotube was exposed by laser ablation of the insulating polymer. Characterization of these probes is done by cyclic voltammetry of ferrocenemethanol in an aqueous solution and by finite element analysis. The fabricated nanoelectrodes were found to be stable and yielded an interfacial electron transfer rate constant (k(0)) of 1.073 +/- 0.36 cm s(-1) for ferrocenemethanol. PMID:20648318

  12. Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polyethylenimine

    International Nuclear Information System (INIS)

    This work reports the electrochemical response of the complex between dsDNA and PEI formed in solution and at the surface of glassy carbon electrodes (GCE) modified with a dispersion of multi-walled carbon nanotubes in polyethylenimine (CNT-PEI). Scanning Electron Microscopy and Scanning Electrochemical Microscopy demonstrate that the dispersion covers the whole surface of the electrode although there are areas with higher density of CNT and, consequently, with higher electrochemical reactivity. The adsorption of DNA at GCE/CNT-PEI is fast and it is mainly driven by electrostatic forces. A clear oxidation signal is obtained either for dsDNA or a heterooligonucleotide of 21 bases (oligoY) at potentials smaller than those for the oxidation at bare GCE. The comparison of the behavior of DNA before and after thermal treatment demonstrated that the electrochemical response highly depends on the 3D structure of the nucleic acid.

  13. Biosensor based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    We describe a biosensor for phenolic compounds that is based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes (MWNTs). The MWNTs possess excellent inherent electrical conductivity which enhances the electron transfer rate and results in good electrochemical catalytic activity towards the reduction of benzoquinone produced by enzymatic reaction. The biosensor was characterized by cyclic voltammetry, and the experimental conditions were optimized. The cathodic current is linearly related to the concentration of the phenols between 0.4 μM and 10 μM, and the detection limit is 0.2 μM. The method was applied to the determination of phenol in water samples (author)

  14. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    Science.gov (United States)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT–GDH electrode is 2 times more sensitive than that of the normal-length MWCNT–GDH electrode in the concentration range from 0.25–35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT–GDH electrode formed a better electron transfer network than the normal-length one.

  15. Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol

    OpenAIRE

    Gouveia-Caridade, Carla; Pauliukaite, Rasa; Brett, Christopher M. A.

    2008-01-01

    Functionalised multi-walled carbon nanotubes (MWCNTs) were cast on glassy carbon (GC) and carbon film electrodes (CFE), and were characterised electrochemically and applied in a glucose-oxidase-based biosensor. MWCNT-modified carbon film electrodes were then used to develop an alcohol oxidase (AlcOx) biosensor, in which AlcOx-BSA was cross-linked with glutaraldehyde and attached by drop-coating. The experimental conditions, applied potential and pH, for ethanol monitoring were optimised, and ...

  16. Improved capacitance characteristics during electrochemical charging of carbon nanotubes modified with polyoxometallate monolayers

    International Nuclear Information System (INIS)

    By modification of surfaces of multi-walled carbon nanotubes with ultra-thin monolayer-type films of phosphododecamolybdic acid, H3PMo12O40, an electrode material with improved capacitance properties is produced. It is apparent from three distinct test experiments (based on cyclic voltammetry, galavanostatic charging-discharging and AC impedance) that capacitors utilizing H3PMo12O40-modified carbon nanotubes are characterized by specific capacitances and energy densities on the levels of 40 F g-1 and 1.3 Wh kg-1, whereas the respective values for the systems built from bare carbon nanotubes are lower, 22 F g-1 and 0.7 Wh kg-1. It is reasonable to expect that fast and reversible multi-electron transfers of the Keggin-type H3PMo12O40 account for the pseudocapacitance effect and significantly contribute to the observed overall capacitance

  17. Anti-tumor response with immunologically modified carbon nanotubes and phototherapy

    Science.gov (United States)

    Acquaviva, Joseph T.; Zhou, Feifan; Boarman, Ellen; Chen, Wei R.

    2013-02-01

    While successes of different cancer therapies have been achieved in various degrees a systemic immune response is needed to effectively treat late-stage, metastatic cancers, and to establish long-term tumor resistance in the patients. A novel method for combating metastatic cancers has been developed using immunologically modified carbon nanotubes in conjunction with phototherapy. Glycated chitosan (GC) is a potent immunological adjuvant capable of increasing host immune responses, including antigen presentation by activation of dendritic cells (DCs) and causing T cell proliferation. GC is also an effective surfactant for nanomaterials. By combining single-walled carbon nanotubes (SWNTs) and GC, immunologically modified carbon nanotubes (SWNT-GC) were constructed. The SWNT-GC suspension retains the enhanced light absorption properties in the near infrared (NIR) region and the ability to enter cells, which are characteristic of SWNTs. The SWNT-GC also retains the immunological properties of GC. Cellular SWNT-GC treatments increased macrophage activity, DC activation and T cell proliferation. When cellular SWNT-GC was irradiated with a laser of an appropriate wavelength, these immune activities could be enhanced. The combination of laser irradiation and SWNT-GC induced cellular toxicity in targeted tumor cells, leading to a systemic antitumor response. Immunologically modified carbon nanotubes in conjunction with phototherapy is a novel and promising method to produce a systemic immune response for the treatment of metastatic cancers.

  18. Removal of Chromium (III from Water by Using Modified and Nonmodified Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Muataz Ali Atieh

    2010-01-01

    Full Text Available This study was carried out to evaluate the environmental application of modified and nonmodified carbon nanotubes through the experiment removal of chromium trivalent (III from water. The aim was to find the optimal condition of the chromium (III removal from water under different treatment conditions of pH, adsorbent dosage, contact time and agitation speed. Multi wall carbon nanotubes (MW-CNTs were characterized by field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM. The diameter of the carbon nanotubes produced varied from 20–40 nm with average diameter of 24 nm and 10 micrometer in length. Adsorption isotherms were used to model the adsorption behavior and to calculate the adsorption capacity of the absorbents. The results showed that, 18% of chromium (III removal was achieved using modified carbon nanotubes (M-CNTs at pH 7, 150 rpm, and 2 hours for a dosage of 150 mg of CNTs. The removal of Cr (III is mainly attributed to the affinity of chromium (III to the physical and chemical properties of the CNTs. The adsorption isotherms plots were well fitted with experimental data.

  19. Enhanced Growth and Redox Characteristics of Some Conducting Polymers on Carbon Nanotube Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    R.Saraswathi

    2007-01-01

    1 Results Recent studies on the electrochemistry of a number of active compounds at carbon nanotube electrodes have proved beyond doubt their excellent electrocatalytic properties.Particularly,the advancements accomplished towards the functionalization of carbon nanotubes resulting in their enhanced solubilization in aqueous solutions have helped in the preparation of stable carbon nanotube electrodes.Glassy carbon has been invariably the preferred substrate for casting carbon nanotube electrodes.Such c...

  20. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yadegari, H. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Karimian, K. [Arasto Pharmaceutical Chemicals Inc., Tehran (Iran, Islamic Republic of); Khodadadi, A. [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-02-15

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS). During oxidation of deferiprone, two irreversible anodic peaks, with E{sub 1}{sup 0}=452 and E{sub 2}{sup 0}=906mV, appeared, using GC-CNT. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that deferiprone is oxidized via two two-electron steps. The results revealed that carbon nanotube (CNT) promotes the rate of oxidation by increasing the peak current, so that deferiprone is oxidized at lower potentials, which thermodynamically is more favorable. This result was confirmed by impedance measurements. The diffusion coefficient, electron-transfer coefficient and heterogeneous electron-transfer rate constant of deferiprone were found to be 1.49 x 10{sup -6} cm{sup 2} s{sup -1}, 0.44, and 3.83 x 10{sup -3} cm s{sup -1}, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of deferiprone. Using the proposed method, deferiprone can be determined with a detection limit of 5.25 x 10{sup -7} M. The applicability of the method to direct assays of spiked human serum and urine fluids is described.

  1. Properties of epoxy resins filled with modified carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Špitalský, Z.; Matějka, Libor; Šlouf, Miroslav; Konyushenko, E. N.; Kovářová, Jana

    Prague : Consortium for Research of Nanostructured and Crosslinked Polymeric Materials, 2005. s. 61. [Workshop Nanofun-Poly on Chemistry, Processing Structure, Properties and Applications of Nanostructured Polymers and Nanocomposites, Life- Cycle Engineering, Gender Issues /3./. 11.11.2005-12.11.2005, Prague] Institutional research plan: CEZ:AV0Z40500505 Keywords : epoxy resins * nanotubes Subject RIV: CD - Macromolecular Chemistry

  2. Single-walled carbon nanotubes modified carbon ionic liquid electrode for sensitive electrochemical detection of rutin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhihong [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China); Sun Xiaoying; Zhuang Xiaoming [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zeng Yan [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China); Sun Wei, E-mail: sunwei@qust.edu.c [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Huang Xintang [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China)

    2010-11-01

    The single-walled carbon nanotubes (SWCNTs) modified carbon ionic liquid electrode (CILE) was designed and further used for the voltammetric detection of rutin in this paper. CILE was prepared by mixing graphite powder with ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate and liquid paraffin together. Based on the interaction of SWCNTs with IL present on the electrode surface, a stable SWCNTs film was formed on the CILE to get a modified electrode denoted as SWCNTs/CILE. The characteristics of SWCNTs/CILE were recorded by different methods including cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The electrochemical behaviors of rutin on the SWCNTs/CILE were investigated by cyclic voltammetry and differential pulse voltammetry. Due to the specific interface provided by the SWCNTs-IL film, the electrochemical response of rutin was greatly enhanced with a pair of well-defined redox peaks appeared in pH 2.5 phosphate buffer solution. The oxidation peak currents showed good linear relationship with the rutin concentration in the range from 1.0 x 10{sup -7} to 8.0 x 10{sup -4} mol/L with the detection limit as 7.0 x 10{sup -8} mol/L (3{sigma}). The SWCNTs/CILE showed the advantages such as excellent selectivity, improved performance, good stability and it was further applied to the rutin tablets sample detection with satisfactory results.

  3. Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes

    KAUST Repository

    Hamzaoui, Rabah

    2014-04-01

    Mechanical performance of modified mortar using hemp fibres is studied following various processing conditions. Hemp fibres combined with carbon nanotubes (CNT) are introduced in mortar and their effect is studied as function of curing time. The cement phase is replaced by different percentages of dry or wet hemp fibres ranging from 1.1. wt% up to 3.1. wt% whereas carbon nanotubes are dispersed in the aqueous solution. Our experimental results show that compressive and flexural strengths of wet fibres modified mortar are higher than those for dry hemp-mortar material. The achieved optimal percentage of wet hemp fibres is 2.1. wt% allowing a flexural strength higher than that of reference mortar. The addition of an optimal CNT concentration (0.01. wt%) combined with wet hemp has a reinforcing effect which turns to be related to an improvement of compressive and flexural strengths by 10% and 24%, respectively, in comparison with reference condition. © 2013 Elsevier Ltd.

  4. Synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell

    Science.gov (United States)

    Wang, Zi-Bo; Xiong, Shi-Chang; Guan, Yu-Jiang; Zhu, Xue-Qiang

    2016-03-01

    The aim of this work was to study the synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell. With the chemical vapor deposition technique, carbon nanotubes growing in situ on a carbon felt are obtained. A SnO2 sol was applied to the carbon felt to prepare a SnO2-modified carbon nanotubes. X-ray diffraction and energy-dispersive X-ray analysis confirmed that SnO2 existed in the prepared samples. Using the prepared samples as anode electrodes, flexible graphite as cathode, and glucose solution as substrate in microbial fuel cell, the effects of the temperature, substrate concentration, and electrodes on removal rates for chemical oxygen demand and the performance of microbial fuel cell have been analyzed. With substrate concentration of 1500 mg L-1, the microbial fuel cell had an optimal output voltage of 563 mV and a removal rate of 78 % for chemical oxygen demand at 311 K. The composite electrodes are stable and reusable.

  5. Electrochemical investigation of NO at single-wall carbon nanotubes modified electrodes

    Indian Academy of Sciences (India)

    Tingliang Xia; Hongmei Bi; Keying Shi

    2010-05-01

    The NO electro-oxidation was investigated at various single-wall carbon nanotubes (SWCNTs) modified electrodes by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared with the glassy carbon electrode, the SWCNTs modified electrodes possess higher electro-catalytic activity to NO electro-oxidation. CV results indicate that the peak current density of NO electro-oxidation at the SWCNT-COOH (SWCNTs with carboxyl groups) modified electrode is the highest and the peak potential is the most negative among the four kinds of electrodes. EIS indicates that the charge transfer resistance of NO electro-oxidation at the SWCNT-COOH modified electrode is the least. The determined factors (charge transfer and mass transfer of diffusion) of NO electro-oxidation are different in varied potential region. The mechanism of NO electro-oxidation reaction at the SWCNTs modified electrodes is also discussed.

  6. A Novel Cholesterol Oxidase Biosensor Based on Pt-nanoparticle /Carbon Nanotube Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    Qiao Cui SHI; Tu Zhi PENG

    2005-01-01

    A Pt-nanoparticle/carbon nanotube modified graphite electrode immobilized with cholesterol oxidase/sol-gel layer was developed for monitoring cholesterol. Using this electrode,cholesterol concentration (4.0×10-6 to 1.0×10 mol/L) could be determined accurately in the presence of ascorbic or uric acid, and the response time was rapid (< 20 s). This biosensor has high sensitivity and selectivity.

  7. A study of single-walled carbon nanotubes modified by organics of the phthalocyanine category

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Organics of the phthalocyanine category have very good nonlinear optical properties. The single-walled carbon nanotubes were modified by using the phenoxy phthalocyanine. Characterization analysis was made by means of the transmission electron microscope (TEM), ultraviolet visible absorptive spectra, fluorescent spectra and Raman spectra. Under the TEM, it was observed that the composite looked like sugarcoated haws. By comparing the ultraviolet visible absorptive spectra before and after absorption, it was...

  8. Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of n-Butane

    OpenAIRE

    J. Zhang; Liu, X; Blume, R.; Zhang, A; Schlögl, R.; Su, D.

    2008-01-01

    Butenes and butadiene, which are useful intermediates for the synthesis of polymers and other compounds, are synthesized traditionally by oxidative dehydrogenation (ODH) of n-butane over complex metal oxides. Such catalysts require high O2/butane ratios to maintain the activity, which leads to unwanted product oxidation. We show that carbon nanotubes with modified surface functionality efficiently catalyze the oxidative dehydrogenation of n-butane to butenes, especially butadiene. For low O2/...

  9. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    International Nuclear Information System (INIS)

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  10. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  11. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    OpenAIRE

    Zheng Gong; Guoquan Zhang; Song Wang

    2013-01-01

    The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs) nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC) electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR). The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs ...

  12. Synthesis and characterization of carbon modified TiO2 nanotube and photocatalytic activity on methylene blue under sunlight

    International Nuclear Information System (INIS)

    Graphical abstract: Tentative photo-degradation mechanism diagram of the MB on the surface of carbon modified TNT. When the TiO2 was under ultraviolet light irradiation, the electrons were excited and transferred from the valence band (VB) to the conduction band (CB), leaving the holes on VB. The electrons were trapped by O2 and formed superoxide anion (O2−). H2O around the TiO2 was oxidized by the holes leaved on VB to hydroxyl radicals (OH·). When the TiO2 was modified by carbon, the same is that the electrons of C4+ would be excited from ground state to 2P orbital under visible light irradiation. The electrons and holes can also lead to the generation of the O2− and OH·. The oxidability of O2− and OH· created around the carbon modified TNT is strong, and could oxidize the MB to CO2 and H2O. - Highlights: • The TNT was successfully modified by carbon, its amount is about 4.95%. • The carbon modified TNT has a great enhancement of visible light absorption. • The photocatalytic ability of carbon modified TNT is higher than pristine TNT. • A tentative photo-degradation mechanism of carbon modified TNT is proposed. - Abstract: Carbon modified TiO2 nanotube was successfully synthesized via anodic oxidation method and its photocatalytic activity was evaluated by photodegrading methylene blue. The full width at half maximum of carbon modified TiO2 nanotube is smaller than that of pristine TiO2 nanotube, indicating the fact that carbon modifying leads to the increase of TiO2 crystallinity. TiO2 nanotube modified by carbon has a great enhancement on visible light absorption while contrasting with the pristine TiO2 nanotube. A tentative mechanism for the enhancement of sunlight absorption is proposed

  13. O2 activation on the outer surface of carbon nanotubes modified by encapsulated iron clusters

    International Nuclear Information System (INIS)

    Graphical abstract: Based on first-principle calculations, this study shows that the confined small Fe cluster inside the SWCNT can significantly modify the electronic structure of the carbon surface. This drastically facilitates the activation of the adsorbed O2 molecule. The calculated energy barrier (less than 0.8 eV) of the rate-determining step for the O2 dissociation indicates that the process can proceed readily at room temperature. - Highlights: • The confined Fe cluster inside the carbon nanotube can significantly modify the electronic structure of the carbon surface. • The confined Fe cluster makes the adsorption of the O2 molecule much more energetically favorable. • The calculated energies suggest that the dissociation of the O2 on the modified carbon surface can proceed readily at room temperature. - Abstract: Using first-principles calculations, the structural, magnetic, and electronic properties of the (6, 6) single-walled carbon nanotubes (SWCNT) with the confined small Fe cluster are systematically studied. We find that Fe–C interactions can induce the transfer of the electrons from the confined Fe to the carbon surface of the SWCNT considerably, and consequently the reduction of the local work function of the region in contact with the Fe. The charging of the carbon surface and the reduction of the work function make the adsorption of the O2 molecule much more energetically favorable on the outer surface of the SWCNT. Furthermore, the energy barrier of the rate-determining step, i.e., the approaching of the O2 towards the modified carbon surface, for the O2 dissociation is less than 0.8 eV, indicating that the process can proceed readily at room temperature

  14. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    OpenAIRE

    H. F. Xie; Wang, Y. T.; Wang, C. S.; H. Y. Yin; Wang, L.L.; R. S. Cheng

    2012-01-01

    Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs) as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA) toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN). The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg), mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOH...

  15. Bio-effect of modified multi-wall carbon nanotubes on tetrahymena pyriformis

    International Nuclear Information System (INIS)

    Multi-walled carbon nanotubes (MWNTs) irradiated with γ-rays were chemically modified with glucosamine and decylamine, respectively. The cytotoxicity of Tetrahymena pyriformis exposed to irradiated MWNTs, MWNTs modified with glucosamine and decylamine (denoted by G-MWNTs and D-MWNTs) was carried out. The results indicated that MWNTs modified with different functional groups exhibited different bioactivity to Tetrahymena pyriformis. D-MWNTs showed a significant toxicity to Tetrahymena pyriformis, and the viability of cells reduced to 46.2%. And G-MWNTs promoted significantly the growth of cells, with the viability being up to 308%. More interestingly, it was shown that the toxicity and bioactivity of modified MWNTs to cells was changed along with the contents of functional groups bound on the surface of MWNTs. The studies may supply a possible strategy for enhancing or reducing the toxicity of MWNTs to meet certain applications in biological and medical field. (authors)

  16. Voltammetric determination of theophylline at a Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode

    Indian Academy of Sciences (India)

    Suling Yang; Ran Yang; Gang Li; Jianjun Li; Lingbo Qu

    2010-11-01

    A Nafion/multi-wall carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied to the sensitive and convenient determination of theophylline (TP). Multi-wall carbon nanotubes (MWNTs) were easily dispersed homogeneously into 0.1% Nafion methanol solution by sonication. Appropriate amount of Nafion/MWNTs suspension was coated on a glassy carbon electrode. After evaporating methanol, a Nafion/MWNTs composite film-modified electrode was achieved. TP could effectively accumulate at Nafion/MWNTs composite film-modified electrode and cause a sensitive anodic peak at around 1180 mV (vs SCE) in 0.01 mol/L H2SO4 medium (pH 1.8). In contrast with the bare glassy carbon electrode, Nafion film-modified electrode, Nafion/MWNTs film-modified electrode could remarkably increase the anodic peak current and decreased the overpotential of TP oxidation. Under the optimized conditions, the anodic peak current was proportional to TP concentration in the range of 8.0 × 10-8-6.0 × 10-5 mol/L, with a detection limit of 2.0 × 10-8 mol/L. This newly developed method was used to determine TP in drug samples with good percentage of recoveries.

  17. The preparation of lysine modified multi-walled carbon nanotubes and the study of its dispersion properties

    Science.gov (United States)

    Lu, Hongwei; Zou, Liming; Wei, Yizhe; Ling, Xinlong; Xu, Yongjing

    2015-07-01

    The poor dispersion in aqueous solution limited the application of carbon nanotubes (CNTs) in biological field. Here we used DCC/DMAP as Catalysis to prepare lysine modified multi-walled carbon nanotubes (MWNTs). FT-IR and TGA demonstrated that lysine have been successfully grafted to MWNTs, EA showed that lysine graft rate up to 23.4%. The dispersion of lysine modified MWNTs was investigated by direct visual inspection and microscope observation, the result showed that lysine modified MWNTs can be dispersed in aqueous solution and keep stable for long time.

  18. Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes

    International Nuclear Information System (INIS)

    In this paper, we modified biocathodes with PANI (Polyaniline)/MWCNT (Multi-Walled Carbon Nanotube) composites to improve hydrogen production in single-chamber, membrane-free biocathode MECs. The results showed that the hydrogen production rates increased with an increase in applied voltage. At an applied voltage of 0.9 V, the modified biocathode MECs achieved a hydrogen production rate of 0.67m3m−3d−1, current density of 205 Am−3, COD of 86.8%, coulombic efficiency of 72%, cathodic hydrogen recovery of 42%, and energy efficiency of 81% with respect to the electrical power input. LSV (Linear Sweep Voltammetry) scans, SEM (Scanning Electron Microscopy) images and DGGE (Denaturing Gradient Gel Electrophoresis) demonstrated that hydrogen production is catalyzed by the special biofilm attached on a modified biocathode, and the microorganism species and quantity present were significantly different between the modified biocathode and the non-modified biocathode. In general, the performance of MECs with modified biocathodes was improved in the presence of a higher current density and hydrogen generation rate. - Highlights: • Different PANI/MWCNT composites were prepared and used to modify biocathode in MECs. • The performance of MECs was improved by the modification. • 75% wt PANI/MWCNT modified biocathode showed the better capacity on hydrogen generation. • LVS, SEM, DGGE were determined to figure out the effect of modification on MECs. • PANI/MWCNT modified biocathode in MECs was first studied to push MECs technology forward

  19. Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue

    Institute of Scientific and Technical Information of China (English)

    Shu Ping Zhang; Lian Gang Shan; Zhen Ran Tian; Yi Zheng; Li Yi Shi; Deng Song Zhang

    2008-01-01

    The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes(MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase(ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected byusing i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrodewith 0.01U activity value and the detection limit of carbaryl is 10-12 g L-1 so the enzyme biosensor showed good properties forpesticides residue detection.2008 Shu Ping Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  20. Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly(p-aminobenzenesulfonate)

    International Nuclear Information System (INIS)

    A glassy carbon electrode was modified with a nanocomposite prepared from poly(p-aminobenzene sulfonic acid), multi-walled carbon nanotubes and chitosan to obtain a differential pulse voltammetric sensor for serotonin that is remarkably stable and displays enhanced current response. Its peak current (at 0.38 V vs. Ag/AgCl) varied linearly with the concentration of serotonin in the 0.1–100 μM range, and the detection limit is 80 nM (at an S/N of 3). The sensor was successfully applied to the determination of serotonin in (spiked) human blood serum. (author)

  1. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    Science.gov (United States)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  2. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity

    Science.gov (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

    2014-07-01

    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  3. PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead.

    Science.gov (United States)

    Bottini, Massimo; Rosato, Nicola; Bottini, Nunzio

    2011-10-10

    Since their discovery at the end of the previous millennium, carbon nanotubes (CNTs) have been the object of thousands of papers describing their applications in fields ranging from physics to electronics, photonics, chemistry, biology, and medicine. The development of chemical approaches to modify their graphitic sidewalls enabled the generation of poly(ethylene glycol) (PEG)-modified CNTs and their exploration in multiple biomedical applications. Studies at the cellular and organism level revealed that PEG-modified CNTs have favorable pharmacokinetic and toxicology profiles. Recently, PEG-modified CNTs have been successfully tested in preclinical studies in the fields of oncology, neurology, vaccination, and imaging, suggesting that they are well suited for the generation of novel multifunctional nanodrugs. Here we will review published data about the application of PEG-modified CNTs as in vitro and in vivo therapeutic and imaging tools and describe what is known about the interaction between PEG-modified CNTs and biological systems. Although several pieces of the puzzle are still missing, we will also attempt to formulate a preliminary structure-function model for PEG-modified CNT cellular trafficking, disposition, and side effects. PMID:21916410

  4. On-line solid phase extraction of Ni and Pb using carbon nanotubes and modified carbon nanotubes coupled to ETAAS.

    Science.gov (United States)

    Savio, Marianela; Parodi, Belén; Martinez, Luis D; Smichowski, Patricia; Gil, Raúl A

    2011-07-15

    A study about the capabilities of three kinds of nanomaterials namely, carbon nanotubes (CNT), oxidized carbon nanotubes (ox-CNT) and l-alanine immobilized on carbon nanotubes (ala-CNT) to serve as sorbents for preconcentrating Ni and Pb using an on-line system coupled to electrothermal atomic absorption spectroscopy (ETAAS) technique, was accomplished. The solid phase extraction was performed in a conical minicolumn used as sorbent holder. After loading a fixed volume of the analytes, they were eluted with a discrete volume (50 μL) of nitric acid, placed directly into the platform of a L'Vov tube. After that, each analyte was determined individually. Ni and Pb retention was strongly influenced by pH but exhibiting different behaviors. The study demonstrated that the sorbent based on ox-CNTs was the one that exhibited the highest capacity and linearity for both analytes when compared with CNT or ala-CNT. The analytical performance was evaluated for the three sorbents to establish the best conditions regarding sensitivity, reproducibility and accuracy. The precision expressed as relative standard deviations (n=6) were 3.9 and 0.5% for Ni(2+) and Pb(2+), respectively The limit of detection (LOD), calculated as the concentration required to yield a net peak equal to three times the standard deviation of the background signal (3σ) was 30 and 10 ng L(-1) for Ni(2+) and Pb(2+) respectively. Alternatively, the limit of quantification (10σ) was calculated and resulted to be 0.79 and 0.07 μg L(-1) for Ni(2+) and Pb(2+) respectively. After optimization, the method that involved the use of ox-CNT associated to an on-line preconcentration was tested in samples of relevant environmental importance. Accuracy was evaluated analyzing a certified reference material namely, Municipal Sludge (QC MUNICIPAL SLUDGE A) and a reference sample of Lake Sediment (TRAP-LRM from IJS). PMID:21645695

  5. Investigations of multilayer polyoxometalates-modified carbon nanotubes for electrochemical capacitors

    International Nuclear Information System (INIS)

    Highlights: → Multiwall carbon nanotube was modified by superimposing two types polyoxometalates. → The superimposed POM layers showed a synergistic effect from both POM layers. → The specific capacitance was quadrupled after two layers alternate coatings of POM. → The bottom POM layer dominates the chemistry and kinetics of the overall coating. - Abstract: A simple and effective method to improve over previous approaches to add pseudocapacitance to carbon substrates through deposition of polyoxometalates (POMs) was demonstrated on multi-walled carbon nanotubes (MWCNTs). By superimposing layers of different pseudocapacitive polyoxometalates, SiMo12O40-4 (SiMo12) and PMo12O40-3 (PMo12), the POMs exhibited continuous overlapped oxidation/reduction reactions and achieved an up to fourfold increase in area specific capacitance when compared with the double layer capacitance of bare MWCNTs. The superimposed SiMo12 and PMo12 layers were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Analyses of the potential/pH relationship provided important insights into the deposition mechanism and suggested that the layer closest to the electrode substrate was dominating in terms of chemistry and kinetics of the coated MWCNT.

  6. Electrochemical properties of seamless three-dimensional carbon nanotubes-grown graphene modified with horseradish peroxidase.

    Science.gov (United States)

    Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok

    2016-10-01

    Horseradish peroxidase (HRP) was immobilized through sodium dodecyl sulfate (SDS) on the surface of a seamless three-dimensional hybrid of carbon nanotubes grown at the graphene surface (HRP-SDS/CNTs/G) and its electrochemical properties were investigated. Compared with graphene alone electrode modified with HRP via SDS (HRP-SDS/G electrode), the surface coverage of electroactive HRP at the CNTs/G electrode surface was approximately 2-fold greater because of CNTs grown at the graphene surface. Based on the increase in the surface coverage of electroactive HRP, the sensitivity to H2O2 at the HRP-SDS/CNTs/G electrode was higher than that at the HRP-SDS/G electrode. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HRP was also analyzed. PMID:27224430

  7. Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yuan Zhuobin

    2003-12-01

    Full Text Available The direct electrochemistry of glucose oxidase (GOD was accomplished at a gold electrode modified with single-wall carbon nanotubes (SWNTs. A pair of welldefined redox peaks was obtained for GOD with the reduction peak potential at –0.465 V and a peak potential separation of 23 mV at pH 7.0. Both FT-IR spectra and the dependence of the reduction peak current on the scan rate revealed that GOD adsorbed onto the SWNT surfaces. The redox wave corresponds to the redox center of the flavin adenine dinucleotide(FAD of the GOD adsorbate. The electron transfer rate of GOD redox reaction was greatly enhanced at the SWNT-modified electrode. The peak potential was shown to be pH dependent. Verified by spectral methods, the specific enzyme activity of GOD adsorbates at the SWNTs appears to be retained.

  8. Synthesis and Characterizations of Poly(3-hexylthiophene and Modified Carbon Nanotube Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaul Karim

    2012-01-01

    Full Text Available Poly(3-hexylthiophene and modified (functionalized and silanized multiwall carbon nanotube (MWNT nanocomposites have been prepared through in situ polymerization process in chloroform medium with FeCl3 oxidant at room temperature. The composites are characterized through Fourier transfer infrared spectroscopy (FT-IR, Raman, and X-ray diffraction (XRD measurements to probe the nature of interaction between the moieties. Optical properties of the composites are measured from ultraviolet-visible (UV-Vis and photoluminescence (PL spectroscopy. Conductivity of the composites is followed by four probe techniques to understand the conduction mechanism. The change (if any in C=C symmetric and antisymmetric stretching frequencies in FT-IR, the shift in G band frequencies in Raman, any alterations in λmax of UV-Vis, and PL spectroscopic measurements are monitored with modified MWNT loading in the polymer matrix.

  9. Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine*

    OpenAIRE

    Hong, Xiao-ping; Zhu, Yan; Zhang, Yan-zhen

    2012-01-01

    A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoIITAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described. This electrode showed a very attractive performance by combining the advantages of CoIITAPc, MWCNTs, and Nafion. Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode, the electrocatalytic activity of...

  10. Electrochemical detection of carbidopa using a ferrocene-modified carbon nanotube paste electrode

    Directory of Open Access Journals (Sweden)

    FATEMEH KARIMI

    2009-12-01

    Full Text Available A chemically modified carbon paste electrode (MCPE containing ferrocene (FC and carbon nanotubes (CNT was constructed. The electrochemical behavior and stability of the MCPE were investigated by cyclic voltammetry. The electrocatalytic activity of the MCPE was investigated and it showed good characteristics for the oxidation of carbidopa (CD in phosphate buffer solution (PBS. A linear concentration range of 5 to 600 μM CD, with a detection limit of 3.6±0.17 μM CD, was obtained. The diffusion coefficient of CD and the transfer coefficient ( were also determined. The MCPE showed good reproducibility, remarkable long-term stability and especially good surface renewability by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for the determination of CD in real samples, such as urine samples.

  11. Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application

    Directory of Open Access Journals (Sweden)

    Refat Abdel-Hamid

    2015-10-01

    Full Text Available A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA. The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV and characterized using CV and scanning electron microscope (SEM. The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3. The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality.

  12. Synthesis and characterization of carbon modified TiO{sub 2} nanotube and photocatalytic activity on methylene blue under sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinchang [Faculty of Material Science and Chemistry, China University of Geoscience, Wuhan 430074 (China); Wang, Yongqian, E-mail: cugwyq@126.com [Faculty of Material Science and Chemistry, China University of Geoscience, Wuhan 430074 (China); Zhejiang Research Institute, China University of Geosciences, Hanzhou 311305 (China); Kong, Junhan; Jia, Hanxiang; Wang, Zhengshu [Faculty of Material Science and Chemistry, China University of Geoscience, Wuhan 430074 (China)

    2015-07-30

    Graphical abstract: Tentative photo-degradation mechanism diagram of the MB on the surface of carbon modified TNT. When the TiO{sub 2} was under ultraviolet light irradiation, the electrons were excited and transferred from the valence band (VB) to the conduction band (CB), leaving the holes on VB. The electrons were trapped by O{sub 2} and formed superoxide anion (O{sub 2}{sup −}). H{sub 2}O around the TiO{sub 2} was oxidized by the holes leaved on VB to hydroxyl radicals (OH·). When the TiO{sub 2} was modified by carbon, the same is that the electrons of C{sup 4+} would be excited from ground state to 2P orbital under visible light irradiation. The electrons and holes can also lead to the generation of the O{sub 2}{sup −} and OH·. The oxidability of O{sub 2}{sup −} and OH· created around the carbon modified TNT is strong, and could oxidize the MB to CO{sub 2} and H{sub 2}O. - Highlights: • The TNT was successfully modified by carbon, its amount is about 4.95%. • The carbon modified TNT has a great enhancement of visible light absorption. • The photocatalytic ability of carbon modified TNT is higher than pristine TNT. • A tentative photo-degradation mechanism of carbon modified TNT is proposed. - Abstract: Carbon modified TiO{sub 2} nanotube was successfully synthesized via anodic oxidation method and its photocatalytic activity was evaluated by photodegrading methylene blue. The full width at half maximum of carbon modified TiO{sub 2} nanotube is smaller than that of pristine TiO{sub 2} nanotube, indicating the fact that carbon modifying leads to the increase of TiO{sub 2} crystallinity. TiO{sub 2} nanotube modified by carbon has a great enhancement on visible light absorption while contrasting with the pristine TiO{sub 2} nanotube. A tentative mechanism for the enhancement of sunlight absorption is proposed.

  13. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review

    Directory of Open Access Journals (Sweden)

    Shen-Ming Chen

    2008-01-01

    Full Text Available Past few decades, conducting and redox active polymers play a critical role in the development of transducers for biosensing. It has been evidenced by increasing numerous reports on conducting and redox active polymers incorporated electrodes for assay of biomolcules. This review highlights the potential uses of electrogenerated polymer modified electrodes and polymer/carbon nanotubes composite modified electrodes for electroanalysis of reduced form of nicotinamide adenine dinuceltoide (NADH. In addition, carbon electrodes modified with organic and inorganic materials as modifier have been discussed in detail for the quantification of NADH based on mediator or mediator-less methods.

  14. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  15. Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    2012-05-01

    Full Text Available Multiwalled carbon nanotubes were used to modify the surface of a glassy carbon electrode to enhance its electroactivity. Nafion served to immobilise the carbon nanotubes on the electrode surface. The modified electrode was used to develop an analytical method for the analysis of ascorbic acid (AA by square-wave voltammetry (SWV. The oxidation of ascorbic acid at the modified glassy carbon electrode showed a peak potential at 315 mV, about 80 mV lower than that observed at the bare (unmodified electrode. The peak current was about threefold higher than the response at the bare electrode. Replicate measurements of peak currents showed good precision (3% rsd. Peak currents increased with increasing ascorbic acid concentration (dynamic range = 0.0047–5.0 mmol/L and displayed good linearity (R2 = 0.994. The limit of detection was 1.4 μmol/L AA, while the limit of quantitation was 4.7 μmol/L AA. The modified electrode was applied to the determination of the amount of ascorbic acid in four brands of commercial orange-juice products. The measured content agreed well (96–104% with the product label claim for all brands tested. Recovery tests on spiked samples of orange juice showed good recovery (99–104%. The reliability of the SWV method was validated by conducting parallel experiments based on high-performance liquid chromatography (HPLC with absorbance detection. The observed mean AA contents of the commercial orange juice samples obtained by the two methods were compared statistically and were found to have no significant difference (P = 0.05.

  16. Dispersion of single-walled carbon nanotubes modified with poly-l-tyrosine in water.

    Science.gov (United States)

    Kojima, Mio; Chiba, Tomoka; Niishima, Junichiro; Higashi, Toshiaki; Fukuda, Takahiro; Nakajima, Yoshikata; Kurosu, Shunji; Hanajiri, Tatsuro; Ishii, Koji; Maekawa, Toru; Inoue, Akira

    2011-01-01

    In this study, complexes composed of poly-l-tyrosine (pLT) and single-walled carbon nanotubes (SWCNTs) were produced and the dispersibility of the pLT/SWCNT complexes in water by measuring the ζ potential of the complexes and the turbidity of the solution were investigated. It is found that the absolute value of the ζ potential of the pLT/SWCNT complexes is as high as that of SWCNTs modified with double-stranded DNA (dsDNA) and that the complexes remain stably dispersed in the water at least for two weeks. Thermogravimetry analysis (TGA) and visualization of the surface structures of pLT/SWCNT complexes using an atomic force microscope (AFM) were also carried out. PMID:21711636

  17. Carbon nanotubes modified with SnO{sub 2} rods for levofloxacin detection

    Energy Technology Data Exchange (ETDEWEB)

    Cesarino, Vivian [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia; Cesarino, Ivana; Moraes, Fernando C.; Machado, Sergio A.S., E-mail: ivana@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica; Mascaro, Lucia H. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2014-03-15

    A new sensor based on multi-walled carbon nanotubes modified with SnO{sub 2} rods for the electrochemical determination of levofloxacin has been investigated. The morphology, the structure, and the electrochemical performance of the composite electrode were characterised by scanning electron microscopy, energy dispersive X-ray spectroscopy, and cyclic voltammetry, respectively. Differential pulse voltammetry in phosphate buffer solution at pH 6.0, allowed the application of a method to determine levofloxacin levels in a range of 1.0-9.9 μmol L{sup -1}, with a limit of detection calculated at 0.2 μmol L{sup -1} (72.0 mg L{sup -1}). (author)

  18. Mechanical, Rheological and Thermal Properties of Polystyrene/1-Octadecanol Modified Carbon Nanotubes Nanocomposites

    KAUST Repository

    Amr, Issam Thaher

    2014-09-04

    The results of the studies on the functionalization of multi-walled carbon nanotubes (MWCNT) with 1-octadecanol and its usage as reinforcing filler in the bulk polymerization of styrene are reported in this article. Both unmodified and modified CNTs were utilized in different loadings, however, without any initiator. The resulting composites were characterized by using mechanical testing, differential scanning calorimetry, thermogravimetric analysis and melt rheology. The tensile tests show the addition of 0.5wt% of CNT-C18 results in 19.5% increment of Young\\'s modulus. The DSC study shows a decrease in T-g values of prepared PS/CNT nanocomposite. The rheological study was conducted at 190 degrees C and shows that addition of pure CNT increased the viscoelastic behavior of the PS matrices, while the CNT-C18 act as plasticizer. Thermogravimetric analysis shows that the incorporation of CNT into PS enhanced the thermal properties significantly.

  19. Bilirubin oxidase bound to multi-walled carbon nanotube-modified gold

    International Nuclear Information System (INIS)

    We report on direct electron transfer (DET) reactions of bilirubin oxidase at multi-walled carbon nanotube-(MWCNT) modified gold electrodes. MWCNTs are very suitable for protein immobilisation and provide surface groups that can be used for the stable fixation on electrodes. They can also effectively replace the natural substrate of BOD - bilirubin, the electron donor for oxygen reduction. The bioelectrocatalytic oxygen reduction was recorded using linear sweep voltammetry (LSV) with BOD covalently linked to the nanotubes. The start potential of the bioelectrocatalytic oxygen reduction at pH 7 and a scan rate of 10 mV/s was determined to be 485 ± 10 mV vs. Ag/AgCl, 1 M KCl (720 mV vs. SHE). Current densities up to 500 μA/cm2 were detected in an air-saturated buffer at room temperature (25 ± 5 deg. C). Experiments with a rotating disk electrode (RDE) indicate a diffusion controlled electrode reaction. A ks value in the range of 80-100 s-1 could be estimated. The DET could also be observed directly by the redox conversion of a copper centre of BOD under anaerobic conditions. A peak pair with a formal potential of 680 ± 10 mV vs. SHE was found. The T1 site is probably addressed by the electrode as indicated by several experimental studies

  20. Enhanced oxidation and detection of toxic ractopamine using carbon nanotube film-modified electrode

    International Nuclear Information System (INIS)

    Highlights: ► The enhanced oxidation of ractopamine on MWCNT film surface was firstly studied. ► The oxidation occurred at phenolic hydroxyl groups and transferred two electrons. ► A sensitive and effective electrochemical sensor was developed for ractopamine. ► It was used to detect ractopamine in animal tissues, the recovery was satisfactory. - Abstract: Insoluble multi-walled carbon nanotube (MWCNT) was readily dispersed into water in the presence of dihexadecyl hydrogen phosphate, and then used to modify the surface of glassy carbon electrode (GCE) by means of solvent evaporation. Scanning electron microscopy test indicated that the GCE surface was coated with uniform MWCNT film. The resulting MWCNT film-modified GCE greatly enhanced the oxidation signal of ractopamine. The oxidation mechanism was studied, and it was found that the oxidation of ractopamine occurred at two phenolic hydroxyl groups, involving two protons and two electrons. Moreover, the influences of pH value, amount of MWCNT, accumulation potential and time were investigated on the oxidation signal of ractopamine. Based on the strong enhancement effect of MWCNT, a sensitive, rapid and simple electrochemical method was developed for the detection of ractopamine. The linear range was from 50 μg L−1 to 2 mg L−1, and the detection limit was 20 μg L−1. Finally, this method was successfully used to detect the content of ractopamine in pork and liver samples, and the recovery was in the range from 93.1% to 107.2%.

  1. Carbon nanotube field emitters on KOVAR substrate modified by random pattern

    International Nuclear Information System (INIS)

    We investigated the field emission characteristics of patterned carbon nanotubes (CNTs) on KOVAR substrates with different surface morphologies. The substrate with a micro-sized random pattern was fabricated through chemical wet etching, whereas the substrate with a nano-sized random pattern was formed by surface roughening process of polymer and chemical wet etching. The field emission characteristics of these substrates were the compared with those of non-treated substrates. It was clearly revealed that the field emission characteristics of CNTs were influenced by the surface morphology of the cathode substrate. When the surface of cathode was modified by random pattern, the modified substrate provided a large surface area and a wider print area. Also, the modified surface morphology of the cathode provided strong adhesion between the CNT paste and the cathode. Particularly, the substrate with the nano-sized random pattern showed that the turn-on field value decreases and the field enhancement factor value improves as compared with non-treated substrate

  2. A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes

    International Nuclear Information System (INIS)

    A carbon nanotube (CNT) modified biosensor based on oxygen-independent, pyrrole quinoline quinone glucose dehydrogenase (PQQ-GDH) for monitoring glucose was studied. The disposable amperometric biosensors based on screen-printed carbon paste electrodes are low cost and suitable for mass production. Potassium ferricyanide was immobilized on the surface of the electrodes as an electron mediator, which decreased the work potential. The biosensor showed a linear amperometric response to glucose from 1 to 35 mM, with a sensitivity of 31.0 µA mM−1 cm−2. Experimentally, the compositions of PQQ-GDH, potassium ferricyanide, CNTs and other components were evaluated and optimized. Only 2 µl of sample are needed for one test, and the response time of the sensor is 20 s. The characteristics of the biosensor were studied through cyclic voltammetry, and experimental results showed that the CNTs could facilitate the electron transfer between the enzyme and electrode surface significantly. Compared with the biosensor without carbon nanotube modification, the CNTs improved the sensitivity of the biosensor up to five times

  3. Direct Electrochemical Oxidation of NADPH at a Low Potential on the Carbon Nanotube Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    CHEN, Jing(陈静); CAI, Chen-Xin(蔡称心)

    2004-01-01

    NADPH can be directly oxidized on a carbon nanotube modified glassy carbon (CNT/GC) electrode in phosphate buffer solution (pH=6.0) with a diminution of the overpotential of more than 700 mV. The anodic peak currents increase linearly with the increase of concentration of NADPH in the range of 5×10-7 to 1×10-3 mol/L with a detection limit of about 1×10-7 mol/L. The CNT/GC electrode exhibits high sensitivity, low potential and stability in detecting NADPH and thus might be used in biosensors to study the electrocatalytic reaction of important dehydrogenase-based biological systems.

  4. Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection

    International Nuclear Information System (INIS)

    Highlights: ► We propose an impedimetric microbial biosensor for trichloroethylene detection. ► A new transducer modified with carbon nanotubes and Pseudomonas putida is evaluated. ► Functionalization steps are controlled by impedance spectroscopy and AFM. ► The biosensor offers good sensitivity, selectivity, linear range and stability. ► The biosensor is successfully applied to spiked natural water samples. - Abstract: Contamination of soils and groundwaters with persistent organic pollutants is a matter of increasing concern. The most common organic pollutants are chlorinated hydrocarbons such as perchloroethylene and trichloroethylene (TCE). In this study, we developed a bacterial impedimetric biosensor for TCE detection, based on the immobilization of Pseudomonas putida F1 strain on gold microelectrodes functionalized with single wall carbon nanotubes covalently linked to anti-Pseudomonas antibodies. The different steps of microelectrodes functionalization were characterized by electrochemical impedance and atomic force spectroscopies, and analytical performances of the developed microbial biosensor were determined. The impedimetric biosensor response was linear with TCE concentration up to 150 μg L−1 and a low limit of detection (20 μg L−1) was achieved. No significant loss of signal was observed after 4 weeks of storage at 4 °C in phosphate buffer saline pH 7 (three to four measurements a week). After 5 weeks, 90% of the initial value still remained. cis-1,2-Dichloroethylene and vinylchloride, the main TCE degradation products, did not significantly interfere with TCE. The microbial sensor was finally applied to the determination of TCE in natural water samples spiked at the 30, 50 and 75 μg L−1 levels. Recoveries were very good, ranging from 100 to 103%.

  5. Ethylenediamine-modified multiwall carbon nanotubes as a Pt catalyst support

    International Nuclear Information System (INIS)

    Highlights: → Multi-walled carbon nanotubes (MWCNTs) were used as a support for Pt nanoparticles. → Modification of oxidized MWCNTs by ethylenediamine is necessary for high Pt loading. → Pt nanoparticles are homogenously distributed on the support without agglomeration. → The activity of the catalyst for oxygen reduction matches the commercial catalyst. - Abstract: Multi-walled carbon nanotubes (MWCNTs) were used as a support for Pt nanoparticles prepared by the microwave-assisted polyol method. The MWCNTs were pretreated by chemical oxidation (o-MWCNTs) followed by modification by ethylenediamine (eda-MWCNTs). Characterization of both oxidized and eda-modified materials by UV-spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy revealed that the modification by eda leads to (i) agglomeration of the MWCNTs, (ii) a decrease in the capacitance of the material and (iii) reduced rate of electron transfer between the MWCNTs and solution species. However, the Pt loading of Pt/o-MWCNTs was only 2 mass% while the loading of Pt/eda-MWCNTs was 20 mass%. Much higher efficiency of Pt deposition on eda-MWCNTs than on o-MWCNTs was ascribed to the shift in pHpzc value of the MWCNT surface from 2.43 to 5.91 upon modification by eda. Transmission electron microscopy revealed that the mean diameter of the Pt particles in Pt/eda-MWCNTs is 2.5 ± 0.5 nm and that their distribution on the support is homogenous with no evidence of pronounced particle agglomeration. Cyclic voltammetry of a Pt/eda-MWCNT thin film indicated a clean Pt surface with well-resolved peaks characteristic of polycrystalline Pt. Its electrocatalytic activity for oxygen reduction was examined and the results corresponded to the commercial Pt nanocatalyst. This study shows that modification of o-MWCNTs by eda helps to achieve homogenous distribution of small Pt nanoparticles and does not impede its electrocatalytic activity.

  6. Electrocatalytic Study of Paracetamol at a Single-Walled Carbon Nanotube/Nickel Nanocomposite Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Koh Sing Ngai

    2015-01-01

    Full Text Available A rapid, simple, and sensitive method for the electrochemical determination of paracetamol was developed. A single-walled carbon nanotube/nickel (SWCNT/Ni nanocomposite was prepared and immobilized on a glassy carbon electrode (GCE surface via mechanical attachment. This paper reports the voltammetry study on the effect of paracetamol concentration, scan rate, pH, and temperature at a SWCNT/Ni-modified electrode in the determination of paracetamol. The characterization of the SWCNT/Ni/GCE was performed by cyclic voltammetry. Variable pressure scanning electron microscopy (VPSEM and energy dispersive X-ray (EDX spectrometer were used to examine the surface morphology and elemental profile of the modified electrode, respectively. Cyclic voltammetry showed significant enhancement in peak current for the determination of paracetamol at the SWCNT/Ni-modified electrode. A linear calibration curve was obtained for the paracetamol concentration between 0.05 and 0.50 mM. The SWCNT/Ni/GCE displayed a sensitivity of 64 mA M−1 and a detection limit of 1.17 × 10−7 M in paracetamol detection. The proposed electrode can be applied for the determination of paracetamol in real pharmaceutical samples with satisfactory performance. Results indicate that electrodes modified with SWCNT and nickel nanoparticles exhibit better electrocatalytic activity towards paracetamol.

  7. Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites with Modified Morphology and Thermal Properties

    OpenAIRE

    Nasir Mahmood; Mohammad Islam; Asad Hameed; Shaukat Saeed

    2013-01-01

    Pure polyamide 6 (PA6) and polyamide 6/carbon nanotube (PA6/CNT) composite samples with 0.5 weight percent loading of pristine or functionalized CNTs were made using a solution mixing technique. Modification of nanotube surface as a result of chemical functionalization was confirmed through the presence of lattice defects as examined under high-resolution transmission electron microscope and absorption bands characteristic of carboxylic, sulfonic and amine chemical groups. Microstructural exa...

  8. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.

    Science.gov (United States)

    Barsan, Madalina M; Ghica, M Emilia; Brett, Christopher M A

    2015-06-30

    The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed. PMID:26041516

  9. Detection of NADH via electrocatalytic oxidation at single-walled carbon nanotubes modified with Variamine blue

    Energy Technology Data Exchange (ETDEWEB)

    Radoi, A. [Dipartimento di Scienze e Tecnologie Chimiche, Universita ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Rome (Italy)], E-mail: radoiantonio@yahoo.com; Compagnone, D. [Dipartimento di Scienze degli Alimenti, Universita di Teramo, via C. Lerici 1, Mosciano S. Angelo, Teramo (Italy); Valcarcel, M.A. [Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cs./08193, Bellaterra, Barcelona (Spain); Placidi, P.; Materazzi, S. [Dipartimento di Chimica, Universita ' La Sapienza' , Piazzale A. Moro 5, 00185 Rome (Italy); Moscone, D.; Palleschi, G. [Dipartimento di Scienze e Tecnologie Chimiche, Universita ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2008-01-01

    Screen-printed electrodes (SPEs) modified with Variamine blue (VB), covalently attached to the oxidized single-walled carbon nanotubes (SWCNTs-COOH), were developed and used as chemical sensors for the detection of the reduced nicotinamide adenine dinucleotide (NADH). The Variamine blue redox mediator was covalently linked to the SWCNTs-COOH by the N,N'-dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) chemistry. Infrared Fourier transform (FT-IR) spectroscopy revealed the presence of the amide bands situated at 1623 cm{sup -1} (I band), 1577 cm{sup -1} (II band) and 1437 cm{sup -1} (III band) demonstrating the covalent linkage of Variamine blue to SWCNTs-COOH. The heterogeneous electron transfer rate, k{sub obs.}, was 13,850 M{sup -1} s{sup -1}, and the k{sub s} and {alpha} were 0.8 s{sup -1} and 0.56, respectively. The pH dependence was also investigated. SPEs modified with Variamine blue by using the DCC/NHS conjugation method, showed a variation of -36 mV per pH unit. A successful application was the development of a lactate biosensor obtained by the immobilization of the L-lactate dehydrogenase on the NADH sensor.

  10. Voltammetric monitoring photodegradation of EDTA based on carbon nanotubes-modified electrode

    International Nuclear Information System (INIS)

    This work described a fast and sensitive voltammetric method developed for monitoring the photodegradation of ethylenediaminetetraacetic acid (EDTA). Due to the unique properties of carbon nanotubes (CNTs) such as negative charges, large surface area and excellent electron transfer ability, metal ion namely Fe3+ showed a pair of well-defined redox response peaks on the CNTs-modified electrode. When EDTA was present in the solution, the voltammetric response of Fe3+ was suppressed due to the chelating interaction between Fe3+ and EDTA. In acetate buffer solution, the concentration of EDTA was found to be inversely proportional to the decreased cathodic peak current in the range of 1.0 x 10-6 to 1.0 x 10-4 mol/L with a detection limit (3S/N) of 6.5 x 10-7 mol/L. While EDTA was degraded by UV irradiation, the voltammetric response on the CNTs-modified electrode was enhanced due to the reduced amount of EDTA species chelating with Fe3+. Accordingly, the concentration variation of EDTA during the photodegradation was analyzed. The effects of H2O2 and pH on the photodegradation of EDTA were investigated. Thus, the proposed CNTs-based voltammetry provided a useful analytical tool for studying the degradation of EDTA.

  11. Electrochemical Characterization and Determination of Phenol and Chlorophenols by Voltammetry at Single Wall Carbon Nanotube/Poly(3,4-ethylenedioxythiophene) Modified Screen Printed Carbon Electrode

    OpenAIRE

    Negash, Negussie; Alemu, Hailemichael; Tessema, Merid

    2015-01-01

    Screen printed carbon electrode (SPCE) has been modified with single wall carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) composites for the determination of phenol and chlorophenols (phenol, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol). The effect of the modifiers on the electrode characteristics was evaluated and the responses were optimized for the voltammetric determination of phenol and chlorophenols. The parameters affecting the responses such as pH, sca...

  12. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars.

    Science.gov (United States)

    Inyang, Mandu; Gao, Bin; Zimmerman, Andrew; Zhou, Yanmei; Cao, Xinde

    2015-02-01

    New, sustainable, and low-cost materials that can simultaneously remove a range of wastewater contaminants, such as heavy metals and pharmaceutical residues, are needed. In this work, modified biochars were produced by dip-coating hickory or bagasse biomass in carbon nanotube (CNT) suspensions with or without sodium dodecylbenzenesulfonate (SDBS)-aided dispersion prior to slow pyrolysis in a N2 environment at 600 °C. The sulfapyridine (SPY) and lead (Pb) sorption ability of pristine hickory (HC) and bagasse (BC) biochars and the modified biochars with (HC-SDBS-CNT and BC-SDBS-CNT, respectively) and without (HC-CNT and BC-CNT) SDBS was assessed in laboratory aqueous batch single- and binary-solute system. The greatest removal of SPY and Pb was observed for HC-SDBS-CNT (86 % SPY and 71 % Pb) and BC-SDBS-CNT (56 % SPY and 53 % Pb), whereas HC-CNT, BC-CNT, and the pristine biochars removed far less. This can be attributed to the fact that surfactant could prevent the aggregation of CNTs and thus promote the distribution and stabilization of individual CNT nanoparticle on the biochar surface to adsorb the contaminants. The observation of no significant change in Pb sorption capacities of the surfactant-dispersed CNT-modified biochars in the presence of SPY, or vice versa, was indicative of site-specific sorption interactions and a lack of significant competition for functional groups by the two sorbates. These results suggest that products of hybrid technologies, such as biochars modified with CNTs, can yield multi-sorbents and may hold excellent promise as a sustainable wastewater treatment alternative. PMID:25212810

  13. Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joseph [Departments of Chemical and Material Engineering, Chemistry and Biochemistry, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5801 (United States)]. E-mail: joseph.wang@asu.edu; Tangkuaram, Tanin [Departments of Chemical and Material Engineering, Chemistry and Biochemistry, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5801 (United States); Department of Chemistry, Mahidol University, Bangkok 10400 (Thailand); Loyprasert, Suchera [Departments of Chemical and Material Engineering, Chemistry and Biochemistry, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5801 (United States); Department of Chemistry, Prince of Songkla University, Songkhla 90000 (Thailand); Vazquez-Alvarez, Terannie [Departments of Chemical and Material Engineering, Chemistry and Biochemistry, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5801 (United States); Veerasai, Waret [Department of Chemistry, Mahidol University, Bangkok 10400 (Thailand); Kanatharana, Proespichaya [Department of Chemistry, Prince of Songkla University, Songkhla 90000 (Thailand); Thavarungkul, Panote [Department of Chemistry, Prince of Songkla University, Songkhla 90000 (Thailand)

    2007-01-02

    A bilayer surface coating, prepared by electrodepositing ruthenium oxide (RuOx) onto a carbon nanotube (CNT) layer, offers dramatic improvements in the stability and sensitivity of voltammetric and amperometric measurements of insulin compared to the individual (CNT or RuOx) coated electrodes. The enhanced electrocatalytic activity towards insulin is indicated from lowering the potential of the oxidation process (starting around 0.35 versus Ag/AgCl) and the substantially higher sensitivity over the entire potential range. A wide linear dynamic range (10-800 nM) was achieved with a detection limit of 1 nM. The marked electrocatalytic activity of the RuOx/CNT coating towards insulin is coupled with a greatly enhanced stability. For example, the insulin amperometric response of the RuOx/CNT-coated electrodes is highly stable, with 97% of the initial activity remaining after 60 min stirring of 2 x 10{sup -6} M solution (compared to significantly faster current diminutions at the RuOx- or CNT-coated surfaces). The results suggest great promise for miniaturized sensors and detectors for monitoring insulin.

  14. Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes

    International Nuclear Information System (INIS)

    A bilayer surface coating, prepared by electrodepositing ruthenium oxide (RuOx) onto a carbon nanotube (CNT) layer, offers dramatic improvements in the stability and sensitivity of voltammetric and amperometric measurements of insulin compared to the individual (CNT or RuOx) coated electrodes. The enhanced electrocatalytic activity towards insulin is indicated from lowering the potential of the oxidation process (starting around 0.35 versus Ag/AgCl) and the substantially higher sensitivity over the entire potential range. A wide linear dynamic range (10-800 nM) was achieved with a detection limit of 1 nM. The marked electrocatalytic activity of the RuOx/CNT coating towards insulin is coupled with a greatly enhanced stability. For example, the insulin amperometric response of the RuOx/CNT-coated electrodes is highly stable, with 97% of the initial activity remaining after 60 min stirring of 2 x 10-6 M solution (compared to significantly faster current diminutions at the RuOx- or CNT-coated surfaces). The results suggest great promise for miniaturized sensors and detectors for monitoring insulin

  15. Sensitive Detection of Haloperidol and Hydroxyzine at Multi-Walled Carbon Nanotubes-Modified Glassy Carbon Electrodes

    Directory of Open Access Journals (Sweden)

    Jilie Kong

    2008-03-01

    Full Text Available Haloperidol (i.e. HPD and hydroxyzine (i.e. HXY, two effective and important tranquilizers with low redox activity, were found to generate an irreversible anodic peak at about +0.86 V (vs. SCE or two anodic peaks at about +0.83 and +0.91 V in 0.05 M NaH2PO4-Na2HPO4 (pH=7.0 buffer solution with a multi-walled carbon nanotubes-modified glassy carbon electrode (i.e. MWNTs/GC, respectively. Their sensitive and quantitative measurement based on the first two anodic peaks was established under the optimum conditions. The anodic peak current was linear to HPD and HXY concentration from 1×10-7 to 2.5 ×10-5 M and 5×10-8 to 2.5 ×10-5 M, the detection limits obtained were 8×10-9 and 5×10-9 M, separately. The modified electrode exhibited some excellent characteristics including easy regeneration, high stability, good reproducibility and selectivity. The method proposed was successfully applied to the detection of HPD and HXY in drug tablets and proved to be reliable compared with ultraviolet spectrophotometry. The modified electrode was characterized by electrochemical methods.

  16. Poly-glutamic acid modified carbon nanotube-doped carbon paste electrode for sensitive detection of L-tryptophan.

    Science.gov (United States)

    Liu, Xiao; Luo, Liqiang; Ding, Yaping; Ye, Daixin

    2011-08-01

    A novel poly-glutamic acid (PGA) film modified carbon paste electrode (CPE) incorporating carbon nanotubes (CNTs) was first prepared for the determination of l-tryptophan (l-Trp). Scanning electron microscopy and Fourier transform infrared spectroscopy were applied for characterization of the surface morphology of the modified electrodes and cyclic voltammetry was used to investigate the electrochemical properties of the proposed electrode towards the oxidation of l-Trp. Optimization of the experimental parameters was performed with regard to pH, ratio of CNTs, concentration of glutamic acid, electro-polymerization cycles, accumulation time and concentration of sodium dodecylbenzene sulfonate. The linearity between the oxidation peak current and the l-Trp concentration was obtained in the range of 5.0×10(-8) to 1.0×10(-4)M with a detection limit of 1.0×10(-8)M (S/N=3) and the sensitivity was calculated to be 1143.79μA∙mM(-1)∙cm(-2). In addition, the PGA modified CPE incorporating CNTs displayed high selectivity, good stability and reproducibility, making it suitable for the routine analysis of l-Trp in clinical use. PMID:21640670

  17. Cobalt oxide nanoparticle-modified carbon nanotubes as an electrocatalysts for electrocatalytic evolution of oxygen gas

    Indian Academy of Sciences (India)

    Jahan Bakhsh Raoof; Fereshteh Chekin; Vahid Ehsani

    2015-02-01

    A simple procedure was developed to prepare cobalt oxide nanoparticles (nano-CoO) on multiwall carbon nanotube-modified glassy carbon electrode (MWNT/GCE). Scanning electron microscopy revealed the electrodeposition of nano-CoO with an average particle size of 25 nm onto MWNT/GCE. Also, the presence of nano-CoO was revealed by energy dispersive X-ray spectra. The electrocatalytic activity of nano-CoO and MWNT composite-modified GCE (CoO–MWNT/GCE) has been examined towards the oxygen evolution reaction (OER) by linear sweep voltammetry. The OER is significantly enhanced at CoO–MWNT/GCE, as demonstrated by a negative shift in the polarization curves at the CoO–MWNT/GCE compared with that obtained at the CoO–GCE and GCE. Optimization of the operating experimental conditions (i.e., solution pH and loading level of nano-CoO) has been achieved to maximize the electrocatalytic activity of CoO–MWNT/GCE. The maximum electrocatalytic activity towards the OER was obtained in alkaline media (pH = 13). The electrocatalytic activity of CoO–MWNT/GCE increased with the number of potential cycles employed for the CoO deposition till a certain loading (20 cycles) beyond which an adverse effect is observed. The fabricated CoO–MWNT/GCE exhibited a good stability and durability. The value of energy saving per gram of oxygen gas at a current density of 10 mA cm-2 is 19.3 kWh kg-1.

  18. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  19. Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    João Restivo; Raquel P. Rocha; Adrián M. T. Silva; José J. M. Órfão; Manuel F. R. Pereira; José L. Figueiredo

    2014-01-01

    Multi-walled carbon nanotubes (CNTs) were submitted to chemical and thermal treatments in or-der to incorporate different heteroatoms on the surface. O-, S-and N-containing groups were suc-cessfully introduced onto the CNTs without significant changes of the textural properties. The cata-lytic activity of these heteroatom-modified CNTs was studied in two liquid phase oxidation pro-cesses:catalytic ozonation and catalytic wet air oxidation (CWAO), using oxalic acid and phenol as model compounds. In both cases, the presence of strongly acidic O-containing groups was found to decrease the catalytic activity of the CNTs. On the other hand, the introduction of S species (mainly sulfonic acids) enhanced the removal rate of the model compounds, particularly in the CWAO of phenol. Additional experiments were performed with a radical scavenger and sodium persulfate, in order to clarify the reaction mechanism. Nitrogen functionalities improve the catalytic performance of the original CNTs, regardless of the process or of the pollutant.

  20. Gold nanoparticle-coated multiwall carbon nanotube-modified electrode for electrochemical determination of methyl parathion

    International Nuclear Information System (INIS)

    We report on an electrochemical sensor for the determination of methyl parathion. It is based on an electrode modified with multi-walled carbon nanotubes that were covered with gold nanoparticles (Au-NPs). The vertically aligned array of MWCNTs on a tantalum substrate was coated with Au-NPs by overhead magnetron sputtering deposition. Scanning and transmission electron microscopy and XRD were used to characterize the Au-NP-MWCNTs composite. Cyclic voltammetry and differential pulse voltammetry were employed to evaluate the suitability of the new electrode for the determination of methyl parathion. Under the optimal conditions, the current response of the electrode to methyl parathion is linear in the range from 0.50 to 16.0 mg mL-1, with a detection limit of 50 μg mL-1 (signal/noise = 3), and the sensitivity is 4.5 times better than that of the plain MWCNTs electrode. We conclude that this method represents a simple, rapid, effective and sensitive approach for the detection of methyl parathion. (author)

  1. Immunoassay for netrin 1 via a glassy carbon electrode modified with multi-walled carbon nanotubes, thionine and gold nanoparticles

    International Nuclear Information System (INIS)

    We describe a nanostructured immunosensor for the cardiovascular biomarker netrin 1. A glassy carbon electrode was consecutively modified with multi-walled carbon nanotubes (MWCNTs), nafion (to retain the MWCNTs), thionine-coated gold nanoparticles (Thi-AuNPs), and monoclonal antibodies against netrin 1. The modified electrode was characterized by transmission electron microscopy, cyclic voltammetry, differential pulse voltammetry, UV-visible spectrophotometry and X-ray diffraction. The presence of Thi-AuNPs warrants direct and convenient immobilization of the antibody. This immunoelectrode enables netrin 1 to be determined, best at a voltage of −300 mV (vs. SCE), with a limit of detection of 30 fg mL−1 (at an S/N ratio of 3) after a 50 min incubation time. The detection range extends from 0.09 to 1800 pg∙mL−1. The method is simple, sensitive, specific and reproducible. We presume this stable and reproducible biosensor to be useful for the early detection of cardiovascular diseases. (author)

  2. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Afraz, Ahmadreza

    2014-06-01

    The zidovudine (ZDV) is the first drug approved for the treatment of HIV virus infection. The detection and determination of this drug are very importance in human serum because of its undesirable effects. A new ZDV sensor was fabricated on the basis of nanocomposite of silver nanofilm (Ag-NF) and multiwalled carbon nanotubes (MWCNTs) immobilized on glassy carbon electrode (GCE). The modified electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) techniques. Results showed that the electrodeposited silver has a nanofilm structure and further electrochemical studies showed that the prepared nanocomposite has high electrocatalytic activity and is appropriate for using in sensors. The amperometric technique under optimal conditions is used for the determination of ZDV ranging from 0.1 to 400 ppm (0.37 μM–1.5 mM) with a low detection limit of 0.04 ppm (0.15 μM) (S/N = 3) and good sensitivity. The prepared sensor possessed accurate and rapid response to ZDV and shows an average recovery of 98.6% in real samples. - Highlights: • New anti-HIV drug sensor was fabricated on the basis of nanomaterials composite. • The GCE modified by prepared hydrophilic MWCNT silver nanoparticles. • Silver nanofilm electrodeposited on MWCNT/GCE and characterized by SEM, EDX, CV and LSV • Response of electrode to ZDV was thoroughly investigated by electrochemical techniques.

  3. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode

    International Nuclear Information System (INIS)

    The zidovudine (ZDV) is the first drug approved for the treatment of HIV virus infection. The detection and determination of this drug are very importance in human serum because of its undesirable effects. A new ZDV sensor was fabricated on the basis of nanocomposite of silver nanofilm (Ag-NF) and multiwalled carbon nanotubes (MWCNTs) immobilized on glassy carbon electrode (GCE). The modified electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) techniques. Results showed that the electrodeposited silver has a nanofilm structure and further electrochemical studies showed that the prepared nanocomposite has high electrocatalytic activity and is appropriate for using in sensors. The amperometric technique under optimal conditions is used for the determination of ZDV ranging from 0.1 to 400 ppm (0.37 μM–1.5 mM) with a low detection limit of 0.04 ppm (0.15 μM) (S/N = 3) and good sensitivity. The prepared sensor possessed accurate and rapid response to ZDV and shows an average recovery of 98.6% in real samples. - Highlights: • New anti-HIV drug sensor was fabricated on the basis of nanomaterials composite. • The GCE modified by prepared hydrophilic MWCNT silver nanoparticles. • Silver nanofilm electrodeposited on MWCNT/GCE and characterized by SEM, EDX, CV and LSV • Response of electrode to ZDV was thoroughly investigated by electrochemical techniques

  4. Electrooxidation of morin on glassy carbon electrode modified by carboxylated single-walled carbon nanotubes and surfactants

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Carboxylated SWNT/GCE modified with surfactants are tested for morin determination. • The best electrocatalytic effect observed for Cetylpyridinium bromide/SWNT-COOH/GCE. • Adsorption-controlled irreversible two electron oxidation of morin is confirmed. • Sensitive differential pulse voltammetric quantification of morin is developed. • Limits of detection and quantification are 28.9 and 96 nM, respectively. - Abstract: Voltammetric characteristics of morin on glassy carbon electrode (GCE) modified by carboxylated single-walled carbon nanotubes (SWNT-COOH) and surfactants in phosphate buffer have been found. Cationic cetylpyridium bromide (CPB), nonionic Triton X100 and anionic sodium dodecylsulfate surfactants under different concentrations have been tested as modifier of SWNT-COOH/GCE. The form of CVs and oxidation potentials are not changed significantly in the presence of all type surfactants on the electrode surface that confirms negligible influence of surfactant on electron transfer rate. Morin oxidation currents are increased on surfactant-modified electrodes. The best characteristics are observed on CPB (1 μM)/SWNT-COOH/GCE when 1.8-fold increase of oxidation currents has been observed in comparison with SWNT-COOH/GCE. Mechanism of morin oxidation on CPB/SWNT-COOH/GCE is suggested on the basis of relationship between oxidation potential and pH of supporting electrolyte. Electrooxidation is adsorption-controlled irreversible two-step process with participation of one electron and one proton on each step. The linear dynamic ranges of morin determination under conditions of differential pulse voltammetry are 0.1-100 and 100-750 μM with the limits of detection and quantification 28.9 and 96.0 nM of morin, respectively. The developed approach applied for morin quantification in mulberry leaves using preliminary extraction with ethanol

  5. Preparation of isolated carbon nanotubes

    International Nuclear Information System (INIS)

    Full text: Carbon nanotubes are of great interest for a large range of applications from physical chemistry, solid state physics to molecular quantum optics. We propose the preparation of molecular beams of isolated carbon nanotubes for future matter wave experiments, as well as for applications in the material sciences and spectroscopy. Carbon nanotubes may be particularly interesting for quantum experiments because of their low ionization threshold, high mechanical stability and high polarizability. This is expected to facilitate the cooling, coherent manipulation and efficient detection of such molecular beams. For this purpose we are investigating different methods of solvation, isolation and shortening of carbon nanotubes from commercial bundles. Length and diameter distributions are recorded by SPM whereas the unbundling of the tubes is determined by absorption spectroscopy. Established methods from physical chemistry, such as laser desorption are currently being modified and studied as potential tools for generating beams of nanotubes in the mass range of around 50.000-100.000 amu. (author)

  6. Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide

    International Nuclear Information System (INIS)

    We report on a non-enzymatic electrochemical sensing strategy for ultrasensitive detection of hydrogen peroxide (H2O2) at nanomolar levels. A glassy carbon electrode (GCE) was modified with a hybrid material consisting of multiwalled carbon nanotubes (CNT) and molybdenum disulfide (MoS2). Transmission electron microscopy and Raman spectroscopy were employed to characterize the hybrid nanostructures. GCEs modified with carbon nanotubes, or nanoscaled MoS2, or with the CNT-MoS2 hybrid were investigated with respect to sensing H2O2, and this revealed that the GCE modified with the CNT-MoS2 hybrid performed best and resulted in a limit of detection as low as 5.0 nM. A repeatability and intermediate precision of 9 % was accomplished. The method was applied to determine H2O2 in spiked sterilized milk and gave satisfactory results. (author)

  7. Study of Carbon Nanotube-Substrate Interaction

    OpenAIRE

    Soares, Jaqueline S.; Ado Jorio

    2012-01-01

    Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the ...

  8. Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes

    International Nuclear Information System (INIS)

    A novel and sensitive electrochemical DNA biosensor based on nanoparticles ZrO2 and multi-walled carbon nanotubes (MWNTs) for DNA immobilization and enhanced hybridization detection is described. The MWNTs/nano ZrO2/chitosan-modified glassy carbon electrode (GCE) was fabricated and oligonucleotides were immobilized to the GCE. The hybridization reaction on the electrode was monitored by differential pulse voltammetry (DPV) analysis using electroactive daunomycin as an indicator. Compared with previous DNA sensors with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotube-based assay with its large surface area and good charge-transport characteristics increased DNA attachment quantity and complementary DNA detection sensitivity. The response signal increases linearly with the increase of the logarithm of the target DNA concentration in the range of 1.49 x 10-10 to 9.32 x 10-8 mol L-1 with the detection limit of 7.5 x 10-11 mol L-1 (S/N = 3). The linear regression equation is I = 32.62 + 3.037 log C DNA (mol L-1) with a correlation coefficient value of 0.9842. This is the first application of carbon nanotubes combined with nano ZrO2 to the fabrication of an electrochemical DNA biosensor with a favorable performance for the rapid detection of specific hybridization

  9. Plumbing carbon nanotubes

    Science.gov (United States)

    Jin, Chuanhong; Suenaga, Kazu; Iijima, Sumio

    2008-01-01

    Since their discovery, the possibility of connecting carbon nanotubes together like water pipes has been an intriguing prospect for these hollow nanostructures. The serial joining of carbon nanotubes in a controlled manner offers a promising approach for the bottom-up engineering of nanotube structures-from simply increasing their aspect ratio to making integrated carbon nanotube devices. To date, however, there have been few reports of the joining of two different carbon nanotubes. Here we demonstrate that a Joule heating process, and associated electro-migration effects, can be used to connect two carbon nanotubes that have the same (or similar) diameters. More generally, with the assistance of a tungsten metal particle, this technique can be used to seamlessly join any two carbon nanotubes-regardless of their diameters-to form new nanotube structures.

  10. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    International Nuclear Information System (INIS)

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening. (paper)

  11. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    Science.gov (United States)

    Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2013-07-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.

  12. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors

    OpenAIRE

    Ghica, M. Emilia; Christopher M. A. Brett

    2014-01-01

    Poly(brilliant green) (PBG) and poly(thionine) (PTH) films have been formed on carbon film electrodes (CFEs) modified with carbon nanotubes (CNT) by electropolymerisation using potential cycling. Voltammetric and electrochemical impedance characterisation were performed. Glucose oxidase and uricase, as model enzymes, were immobilised on top of PBG/CNT/CFE and PTH/CNT/CFE for glucose and uric acid (UA) biosensing. Amperometric determination of glucose and UA was carried out in phosphate buffer...

  13. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Highlights: • Hydrogen peroxide biosensor was constructed by combining the advantageous properties of MWCNTs and Co3O4. • Incorporating Co3O4 nanoparticles into MWCNTs/gelatin film increased the electron transfer. • Co3O4/MWCNTs/gelatin/HRP/Nafion/GCE showed strong anti-interference ability. • Hydrogen peroxide was successfully determined in disinfector with an average recovery of 100.78 ± 0.89. - Abstract: In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at −0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10−7–1.9 × 10−5 M with a detection limit of 7.4 × 10−7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89

  14. Controlled preparation of carbon nanotube-iron oxide nanoparticle hybrid materials by a modified wet impregnation method

    Energy Technology Data Exchange (ETDEWEB)

    Tsoufis, Theodoros, E-mail: ttsoufis@cc.uoi.gr [University of Ioannina, Department of Materials Science and Engineering (Greece); Douvalis, Alexios P. [University of Ioannina, Physics Department (Greece); Lekka, Christina E. [University of Ioannina, Department of Materials Science and Engineering (Greece); Trikalitis, Pantelis N. [University of Crete, Department of Chemistry (Greece); Bakas, Thomas [University of Ioannina, Physics Department (Greece); Gournis, Dimitrios [University of Ioannina, Department of Materials Science and Engineering (Greece)

    2013-09-15

    We report a novel, simple, versatile, and reproducible approach for the in situ synthesis of iron oxide nanoparticles (NP) on the surface of carbon nanotubes (CNT). Chemically functionalized single- or multi-wall CNT were used as nanotemplates for the synthesis of a range of very small (<10 nm) ferrimagnetic and/or anti-ferromagnetic iron oxide NP on their surface. For the synthesis of the hybrid materials, we employed for the first time a modified wet impregnation method involving the adsorption of ferric cations (as nanoparticle's precursor) on the functionalized nanotube surface and the subsequent interaction with acetic acid vapors followed by calcination at 400 Degree-Sign C under different atmospheres (air, argon, and oxygen). X-ray diffraction, transmission electron microscopy, Moessbauer spectroscopy, and magnetization measurements were used to study in-detail the morphology, size, and type of crystalline phases in the resulting hybrid materials. In addition, Raman measurements were used to monitor possible structural changes of the nanotubes during the synthetic approach. The experimental results were further supported by density functional theory calculations. These calculations were also used to disclose, how the type of the carbon nanotube template affects the nature and the size of the resulting NP in the final hybrids.

  15. Synergistic effect of plasma-modified halloysite nanotubes and carbon black in natural rubber-butadiene rubber blend

    NARCIS (Netherlands)

    Poikelispaa, Minna; Das, Amit; Dierkes, Wilma; Vuorinen, Jyrki

    2013-01-01

    Halloysite nanotubes (HNTs) were investigated concerning their suitability for rubber reinforcement. As they have geometrical similarity with carbon nanotubes, they were expected to impart a significant reinforcement effect on the rubber compounds but the dispersion of the nanofillers is difficult.

  16. Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping square wave voltammetry.

    Science.gov (United States)

    Cittan, Mustafa; Koçak, Süleyman; Çelik, Ali; Dost, Kenan

    2016-10-01

    A multi-walled carbon nanotube modified glassy carbon electrode was used to prepare an electrochemical sensing platform for the determination of oleuropein. Results showed that, the accumulation of oleuropein on the prepared electrode takes place with the adsorption process. Electrochemical behavior of oleuropein was studied by using cyclic voltammetry. Compared to the bare GCE, the oxidation peak current of oleuropein increased about 340 times at MWCNT/GCE. Voltammetric determination of oleuropein on the surface of prepared electrode was studied using square wave voltammetry where the oxidation peak current of oleuropein was measured as an analytical signal. A calibration curve of oleuropein was performed between 0.01 and 0.70µM and a good linearity was obtained with a correlation coefficient of 0.9984. Detection and quantification limits of the method were obtained as 2.73 and 9.09nM, respectively. In addition, intra-day and inter-day precision studies indicated that the voltammetric method was sufficiently repeatable. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract. Microwave-assisted extraction of oleuropein had good recovery values between 92% and 98%. The results obtained with the proposed electrochemical sensor were compared with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. PMID:27474292

  17. Novel phosphorus doped carbon nitride modified TiO2 nanotube arrays with improved photoelectrochemical performance

    Science.gov (United States)

    Su, Jingyang; Geng, Ping; Li, Xinyong; Zhao, Qidong; Quan, Xie; Chen, Guohua

    2015-10-01

    Novel phosphorus-doped graphitic-carbon nitride (P-C3N4) modified vertically aligned TiO2 nanotube arrays (NTs) were designed and synthesized. They can significantly enhance the conduction and utilization of photogenerated charge carriers of TiO2 NTs. The heterostructure was successfully fabricated through a three-step process: electrochemical anodization and wet-dipping followed by thermal polymerization. The prepared P-C3N4/TiO2 NTs exhibit enhanced light-absorption characteristics and improved charge separation and transfer ability, thus resulting in a 3-fold photocurrent (1.98 mA cm-2 at 0 V vs. Ag/AgCl) compared with that of pure TiO2 NTs (0.66 mA cm-2 at 0 V vs. Ag/AgCl) in 1 M NaOH solution. The prepared P-C3N4/TiO2 NT photoelectrodes also present excellent photocatalytic and photoelectrocatalytic capabilities in the degradation of methylene blue (MB). The kinetic rate of P-C3N4/TiO2 NTs in the photoelectrocatalytic process for MB is 2.7 times that of pristine TiO2 NTs. Furthermore, the prepared sample was used as a photoanode for solar-driven water splitting, giving a H2 evolution rate of 36.6 μmol h-1 cm-2 at 1.0 V vs. RHE under simulated solar light illumination. This novel structure with a rational design for a visible light response shows potential for metal free materials in photoelectrochemical applications.Novel phosphorus-doped graphitic-carbon nitride (P-C3N4) modified vertically aligned TiO2 nanotube arrays (NTs) were designed and synthesized. They can significantly enhance the conduction and utilization of photogenerated charge carriers of TiO2 NTs. The heterostructure was successfully fabricated through a three-step process: electrochemical anodization and wet-dipping followed by thermal polymerization. The prepared P-C3N4/TiO2 NTs exhibit enhanced light-absorption characteristics and improved charge separation and transfer ability, thus resulting in a 3-fold photocurrent (1.98 mA cm-2 at 0 V vs. Ag/AgCl) compared with that of pure TiO2 NTs (0

  18. Characterization and photocatalytic performance of carbon nanotube material-modified TiO2 synthesized by using the hot CVD process

    OpenAIRE

    Tsubota, Toshiki; Ono, Asami; Murakami, Naoya; Ohno, Teruhisa

    2009-01-01

    Carbon nanotube-modified TiO2 was synthesized by using the hot CVD process. Fe (0.13–1.9 wt%) as the catalyst for synthesis of carbon nanotubes modified on the surface of TiO2, was loaded on commercial TiO2 particles. CH4 gas was used as the carbon source in the CVD process. The color of the Fe-supported TiO2 powder changed to black when CVD treatment was performed. Nano-sized spherical carbon materials were generated on the surface of TiO2 after the CVD process. The spherical materials gradu...

  19. Microbiosensors based on DNA modified single-walled carbon nanotube and Pt black nanocomposites.

    Science.gov (United States)

    Shi, Jin; Cha, Tae-Gon; Claussen, Jonathan C; Diggs, Alfred R; Choi, Jong Hyun; Porterfield, D Marshall

    2011-12-01

    Glucose and ATP biosensors have important applications in diagnostics and research. Biosensors based on conventional materials suffer from low sensitivity and low spatial resolution. Our previous work has shown that combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. The immobilization of SWCNTs on biosensors remains challenging due to the aqueous insolubility originating from van der Waals forces. In this study, we used single-stranded DNA (ssDNA) to modify SWCNTs to increase solubility in water. This allowed us to explore new schemes of combining ssDNA-SWCNT and Pt black in aqueous media systems. The result is a nanocomposite with enhanced biosensor performance. The surface morphology, electroactive surface area, and electrocatalytic performance of different fabrication protocols were studied and compared. The ssDNA-SWCNT/Pt black nanocomposite constructed by a layered scheme proved most effective in terms of biosensor activity. The key feature of this protocol is the exploitation of ssDNA-SWCNTs as molecular templates for Pt black electrodeposition. The glucose and ATP microbiosensors fabricated on this platform exhibited high sensitivity (817.3 nA/mM and 45.6 nA/mM, respectively), wide linear range (up to 7 mM and 510 μM), low limit of detection (1 μM and 2 μM) and desirable selectivity. This work is significant to biosensor development because this is the first demonstration of ssDNA-SWCNT/Pt black nanocomposite as a platform for constructing both single-enzyme and multi-enzyme biosensors for physiological applications. PMID:21858297

  20. High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers

    International Nuclear Information System (INIS)

    A simple and facile method for depositing multiwall carbon nanotubes (MWCNTs) onto the surface of naturally occurring short jute fibers (JFs) is reported. Hierarchical multi-scale structures were formed with CNT-networks uniformly distributed and fully covering the JFs (JF–CNT), as depicted by the scanning electron microscopy (SEM) micrographs. The impact of these hybrid fillers on the mechanical properties of a natural rubber (NR) matrix was systematically investigated. Pristine JFs were cut initially to an average length of 2.0 mm and exposed to an alkali treatment (a-JFs) to remove impurities existing in the raw jute. MWCNTs were treated under mild acidic conditions to generate carboxylic acid moieties. Afterward, MWCNTs were dispersed in an aqueous media and short a-JFs were allowed to react with them. Raman spectroscopy confirmed the chemical interaction between CNTs and JFs. The JF–CNT exposed quite hydrophobic behavior as revealed by the water contact angle measurements, improving the wettability of the non-polar NR. Consequently, the composite interfacial adhesion strength was significantly enhanced while a micro-scale “mechanical interlocking” mechanism was observed from the interphase-section transmission electron microscopy (TEM) images. SEM analysis of the composite fracture surfaces demonstrated the interfacial strength of NR/a-JF and NR/JF–CNT composites, at different fiber loadings. It can be presumed that the CNT-coating effectively compatibillized the composite structure acting as a macromolecular coupling agent. A detailed analysis of stress-strain and dynamic mechanical spectra confirmed the high mechanical performance of the hierarchical composites, consisting mainly of materials arising from natural resources. - Highlights: • Natural rubber (NR) composites reinforced with CNT-modified short jute fibers. • MWCNTs deposited to the surface of jute fibers via non-covalent interactions. • Hierarchical reinforcement structure with

  1. Carboxyl multiwalled carbon nanotubes modified polypyrrole (PPy) aerogel for enhanced electromagnetic absorption

    Science.gov (United States)

    Zhang, Kun; Xie, Aming; Wu, Fan; Jiang, Wanchun; Wang, Mingyang; Dong, Wei

    2016-05-01

    Polypyrrole (PPy) aerogel is a low-cost and lightweight material with high-performance electromagnetic absorption (EA). However, it does not always meet the requirements of practical applications. In this study, we used trace amounts of carboxyl multiwalled carbon nanotubes to regulate the dielectric property of PPy aerogel, thus enhancing the EA performance. Furthermore, the reason for enhanced EA performance can be elaborated by an electron blocking mechanism.

  2. Microbiosensors based on DNA modified single-walled carbon nanotube and Pt black nanocomposites

    OpenAIRE

    SHI, JIN; Cha, Tae-Gon; Claussen, Jonathan; Diggs, Alfred R.; Choi, Jong Hyun; Porterfield, D. Marshall

    2011-01-01

    Glucose and ATP biosensors have important applications in diagnostics and research. Biosensors based on conventional materials suffer from low sensitivity and low spatial resolution. Our previous work has shown that combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. The immobilization of SWCNTs on biosensors remains challenging due to the aqueous insolubility originating from van der Waals forces. In...

  3. Polyurethane foams obtained from residues of PET manufacturing and modified with carbon nanotubes

    Science.gov (United States)

    Stiebra, L.; Cabulis, U.; Knite, M.

    2016-04-01

    In this work we report the preparation of rigid microcellular polyurethane/carbon nanotube nanocomposites with different CNT loadings (0.09-0.46%) and various isocyanate indexes (110-260). Water was used as a blowing agent for samples. Density of all obtained samples – 200 ± 10 kg/m3. Electrical properties, as well as heat conductivity, cellular structure and mechanical properties of these nanocomposites were investigated.

  4. Electrochemical behavior of dye-linked L-proline dehydrogenase on glassy carbon electrodes modified by multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Haitao Zheng

    2010-12-01

    Full Text Available A glassy carbon electrode (GC was modified by multi-walled carbon nanotubes (MWCNTs. The modified electrode showed a pair of redox peaks that resulted from the oxygen-containing functional groups on the nanotube surface. A recombinant thermostable dye-linked L-proline dehydrogenase (L-proDH from hyperthermophilic archaeon (Thermococcus profundus was further immobilized by physical adsorption. The modified electrode (GC/MWCNTs/L-proDH exhibited an electrocatalytic signal for L-proline compared to bare GC, GC/L-proDH and GC/MWCNTs electrodes, which suggested that the presence of MWCNTs efficiently enhances electron transfer between the active site of enzyme and electrode surface. The immobilized L-proDH showed a typical Michaelis–Menten catalytic response with lower apparent constant.

  5. Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode

    OpenAIRE

    Hayati Filik; Asiye Aslıhan Avan; Sevda Aydar

    2016-01-01

    In this paper, multi-walled carbon nanotube/Azure A/gold nanoparticle composites (Nafion/AuNPs/AzA/MWCNTs) were prepared by binding gold nanoparticles to the surfaces of Azure A-coated carbon nanotubes. Nafion/AuNPs/AzA/MWCNTs based electrochemical sensor was fabricated for the simultaneous determination of ascorbic acid, dopamine, uric acid, and tryptophan. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrochemical properties of the modified e...

  6. Sensitive Detection of a Modified Base in Single-Stranded DNA by a Single-Walled Carbon Nanotube.

    Science.gov (United States)

    Zhang, Shuang; Wang, Xiaofeng; Li, Tang; Liu, Lei; Wu, Hai-Chen; Luo, Mengbo; Li, Jingyuan

    2015-09-15

    In this work, we use molecular dynamics simulations to study the responses of the configuration of single-strand DNA (ssDNA) within a carbon nanotube (CNT) and the concomitant ion flow to a single modified base, i.e., benzoimidazole (Bzim)-modified 5-hydroxymethyl cytosine (5hmC). Our simulation results show the Bzim-modified 5hmC can considerably increase the ion flow through a single-walled carbon nanotube (SWCNT), despite its larger size, which is consistent with prior experimental results. This phenomenon is attributed to enhanced adsorption of DNA to the interior wall of the CNT driven by the Bzim-modified 5hmC, leading to a reduced steric effect on ion transport through the CNT. As revealed in this work, the distribution of ssDNA can be affected by limited change in the interactions with the CNT surface. Such behavior of ssDNA within small-sized CNTs can be exploited to further improve the sensitivity of nanopore detection. PMID:26259044

  7. Synthesis and CO2 adsorption study of modified MOF-5 with multi-wall carbon nanotubes and expandable graphite

    International Nuclear Information System (INIS)

    MOF-5 was synthesized by solvothermal method and its reactivation under anhydrous conditions. This research is conducted to investigate the effect of MOF-5 and MOF-5 modified with multi-wall carbon nanotubes (MWCNTs) and expandable graphite (EG) on the performance of CO2 adsorption. The synthesized MOFs were characterized using Field emission scanning electron microscopy (FESEM) for surface morphology, Thermogravimetric analysis (TGA) for thermal stability, X-ray diffraction (XRD) for crystals plane, Brunauer-Emmet-Teller (BET) for surface area and CO2 adsorption. The result had showed that the modified MOF-5 enhanced the CO2 adsorption compared to the pure MOF-5. The increment in the CO2 uptake capacities of MOF materials was attributed to the decrease in the pore size and enhancement of micropore volume of MOF-5 by multi-walled carbon nanotube and EG incorporation. The BET surface area of the synthesized MOF-5@MWCNTs is more than MOF-5. The CO2 sorption capacities of MOF-5 and MOF-5@MWCNTs were observed to increase from 0.00008 to 0.00048 mol g-1 at 298 K and 1 bar. The modified MOF-5@MWCNTs resulted in the highest CO2 adsorption followed by the modified MOF-5@ EG and lastly, MOF-5

  8. Modified Sol-Gel Synthesis of Carbon Nanotubes Supported Titania Composites with Enhanced Visible Light Induced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Quanjie Wang

    2016-01-01

    Full Text Available Multiwalled carbon nanotube (MWCNT enhanced MWCNT/TiO2 nanocomposites were synthesized by surface coating of carbon nanotube with mixed phase of anatase and rutile TiO2 through a modified sol-gel approach using tetrabutyl titanate as raw material. The morphological structures and physicochemical properties of the nanocomposites were characterized by FT-IR, XRD, DTA-TG, TEM, and UV-Vis spectra. The results show that TiO2 nanoparticles with size of around 15 nm are closely attached on the sidewall of MWCNT. The nanocomposites possess good absorption properties not only in the ultraviolet but also in the visible light region. Under irradiation of ultraviolet lamp, the prepared composites have the highest photodegradation efficiency of 83% within 4 hours towards the degradation of Methyl Orange (MO aqueous solution. The results indicate that the carbon nanotubes supported TiO2 nanocomposites exhibit high photocatalytic activity and stability, showing great potentials in the treatment of wastewater.

  9. Attachment of Gold Nanoparticles to Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xi Cheng MA; Ning LUN; Shu Lin WEN

    2005-01-01

    Carbon nanotubes were initially chemically modified with an H2SO4-HNO3 treatment,and subsequently activated with Pd-Sn catalytic nuclei via a one-step activation approach. These activated nanotubes were used as precursors for obtaining gold nanoparticles-attached nanotubes via simple electroless plating. This approach provides an efficient method for attachment of metal nanostructures to carbon nanotubes. Such novel hybrid nanostructures are attractive for many applications.

  10. Ruthenium oxide modified titanium dioxide nanotube arrays as carbon and binder free lithium-air battery cathode catalyst

    Science.gov (United States)

    Zhao, Guangyu; Niu, Yanning; Zhang, Li; Sun, Kening

    2014-12-01

    RuO2 modified TiO2 nanotube arrays, growing on Ti foams, are used as carbon and binder free cathodes for Li-O2 batteries. The micrometer pores in Ti foams and nanometer pores in TiO2 nanotubes supply facilitated transport channels for oxygen diffusing into/out of the catalysts in discharge and charge processes. The RuO2 catalyst exhibits outstanding catalytic active toward oxygen evolution reaction (OER), which leads the charge voltage maintaining around 3.7 V all through the battery cycling. The stability of TiO2/Ti support, abundant oxygen transport path and favorable catalytic activity of RuO2 toward OER enable the Li-O2 batteries exhibiting 130 cycle discharge/charge.

  11. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    International Nuclear Information System (INIS)

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices. (paper)

  12. Immobilization of Genetically-Modified d-Amino Acid Oxidase and Catalase on Carbon Nanotubes to Improve the Catalytic Efficiency

    OpenAIRE

    Rong Li; Jian Sun; Yaqi Fu; Kun Du; Mengsha Cai; Peijun Ji; Wei Feng

    2016-01-01

    d-amino acid oxidase (DAAO) and catalase (CAT) have been genetically modified by fusing them to an elastin-like polypeptide (ELP). ELP-DAAO and ELP-CAT have been separately immobilized on multi-walled carbon nanotubes (MWNTs). It has been found that the secondary structures of the enzymes have been preserved. ELP-DAAO catalyzed the oxidative deamination of d-alanine, and H2O2 was evolved continuously. When the MWNT-supported enzymes were used together, the generated hydrogen peroxide of ELP-D...

  13. Fabrication of multiwalled carbon nanotube-surfactant modified sensor for the direct determination of toxic drug 4-aminoantipyrine☆

    Institute of Scientific and Technical Information of China (English)

    Jayant I. Gowda; Arunkumar T. Buddanavar; Sharanappa T. Nandibewoor

    2015-01-01

    A multi-walled carbon nanotube (MWCNT)-cetyltrimethylammonium bromide (CTAB) surfactant composite modified glassy carbon electrode (GCE) was developed as a novel system for the determination of 4-aminoantipyrine(AAP). The oxidation process was irreversible over the pH range studied and exhibited a diffusion controlled behavior. All experimental parameters were optimized. The combination of MWCNT-CTAB endows the biosensor with large surface area, good biological compatibility, electricity and stability, high selectivity and sensitivity. MWCNT-CTAB /GCE electrode gave a linear response for AAP from 5.0 × 10-9 to 4.0 × 10-8 M with a detection limit of 1.63 × 10-10 M. The modified electrode showed good selectivity against interfering species and also exhibited good reproducibility. The present electrochemical sensor based on the MWCNT-CTAB/GCE electrode was applied to the determination of AAP in real samples.

  14. Simultaneous determination of cysteamine and folic acid in pharmaceutical and biological samples using modified multiwall carbon nanotube paste electrode

    Institute of Scientific and Technical Information of China (English)

    Ali Taherkhani; Hassan Karimi-Maleh; Ali A.Ensafi; Hadi Beitollahi; Ahmad Hosseini; Mohammad A.Khalilzadeh; Hassan Bagheri

    2012-01-01

    A carbon paste electrode (CPE) chemically modified with multiwall carbon nanotubes and ferrocene (FC) was used as a selective electrochemical sensor for the simultaneous determination of trace amounts of cysteamine (CA) and folic acid (FA).This modified electrode showed very efficient electrocatalytic activity for the anodic oxidation of CA.The peak current of differential pulse voltammograms of CA and FA increased linearly with their concentration in the ranges of 0.7-200 μmol/L CA and 5.0-700 μmol/L FA.The detection limits for CA and FA were 0.3 μmol/L and 2.0 μ mol/L,respectively.The diffusion coefficient (D) and transfer coefficient (α) of CA were also determined.These conditions are sufficient to allow determination of CA and FA both individually and simultaneously.

  15. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  16. Amperometric sensor for detection of bisphenol A using a pencil graphite electrode modified with polyaniline nanorods and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    We report on a simple and highly sensitive amperometric method for the determination of bisphenol A (BPA) using pencil graphite electrodes modified with polyaniline nanorods and multiwalled carbon nanotubes. The modified electrodes display enhanced electroactivity for the oxidation of BPA compared to the unmodified pencil graphite electrode. Under optimized conditions, the sensor has a linear response to BPA in the 1. 0 and 400 μM concentration range, with a limit of detection of 10 nM (at S/N = 3). The modified electrode also has a remarkably stable response, and up to 95 injections are possible with a relative standard deviation of 4. 2% at 100 μM of BPA. Recoveries range from 86 to 102% for boiling water spiked with BPA from four brands of baby bottles. (author)

  17. Hydrogen peroxide sensor based on a stainless steel electrode coated with multi-walled carbon nanotubes modified with magnetite nanoparticles

    International Nuclear Information System (INIS)

    Multi-walled carbon nanotubes (MWCNTs) were decorated with magnetite (Fe3O4) nanoparticles and then used to modify a stainless steel electrode. The Fe3O4/MWCNTs composite was characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction patterns. Electrochemical properties of the modified electrode revealed a substantial catalytic activity for the reduction of hydrogen peroxide. The relationship between peak current and the concentration of hydrogen peroxide was linear in the range from 0.06 mmol L-1 to 0.36 mmol L-1, and the lowest detectable concentration is 0.01 mmol.L-1 (S/N=3). The modified stainless steel electrode displays excellent stability. (author)

  18. Carbon nanotubes decorating methods

    OpenAIRE

    A.D. Dobrzańska-Danikiewicz; D. Łukowiec; D. Cichock; W. Wolany

    2013-01-01

    Purpose: The work is to present and characterise various methods of depositing carbon nanotubes with nanoparticles of precious metals, and also to present the results of own works concerning carbon nanotubes coated with platinum nanoparticles.Design/methodology/approach: Electron transmission and scanning microscopy has been used for imaging the structure and morphology of the nanocomposites obtained and the distribution of nanoparticles on the surface of carbon nanotubes.Findings: The studie...

  19. Functionalization of Carbon Nanotubes

    OpenAIRE

    Abraham, Jürgen

    2005-01-01

    Carbon nanotubes have an enormous potential due to their outstanding electronic, optical, and mechanical properties. However, any technological application is still hindered due to problems regarding the processibility of the pristine carbon nanotubes. In the past few years, it has been shown that the chemical modification of the carbon nanotubes is an inevitable step prior to their application. The first part of this work (chapter 3.1) was focused on the purification of pristine laser ablati...

  20. A Facile Synthesis of a Palladium-Doped Polyaniline-Modified Carbon Nanotube Composites for Supercapacitors

    Science.gov (United States)

    Giri, Soumen; Ghosh, Debasis; Malas, Asish; Das, Chapal Kumar

    2013-08-01

    Supercapacitors have evolved as the premier choice of the era for storing huge amounts of charge in the field of energy storage devices, but it is still necessary to enhance their performance to meet the increasing requirements of future systems. This could be achieved either through advancing the interfaces of the material at the nanoscale or by using novel material compositions. We report a high-performance material composition prepared by combining a transition metal (palladium)-doped conductive polymer with multiwalled carbon nanotubes (MWCNTs). MWCNTs/palladium-doped polyaniline (MWCNTs/Pd/PANI) composites and multiwalled carbon nanotube/polyaniline (MWCNTs/PANI) composites (for comparison) were prepared via in situ oxidative polymerization of aniline monomer. The reported composites were characterized by Fourier-transform infrared (FTIR), x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) studies. FESEM and TEM studies indicated the narrow size distribution of the π-conjugated polymer-protected palladium nanoparticles on the surface of the carbon nanotubes. All the electrochemical characterizations were executed using a three-electrode system in 1 M H2SO4 electrolyte. Cyclic voltammetry (CV) analysis was performed to observe the capacitive performance and redox behavior of the composites. The ion transfer behavior and cyclic stability of the composites were investigated by electrochemical impedance spectroscopy (EIS) analysis and cyclic charge-discharge (CCD) testing, respectively. The MWCNTs/Pd/PANI composite was found to exhibit an especially high specific capacitance value of 920 F/g at scan rate of 2 mV/s.

  1. Reinforcement of semicrystalline polymers with collagen-modified single walled carbon nanotubes

    Science.gov (United States)

    Bhattacharyya, Sanjib; Salvetat, Jean-Paul; Saboungi, Marie-Louise

    2006-06-01

    We report on the enhancement of the mechanical properties of single wall carbon nanotube (SWNT)-polyvinyl alcohol (PVA) composites through functionalization of SWNTs with denatured collagen. In addition to improving compatibility with the matrix, the denatured collagen layer was found to increase the PVA matrix crystallinity, which results in a dramatic enhancement of the Young's modulus (260%), tensile strength (300%), and toughness (700%) well above what can be expected with the classical rule of mixture. A supramolecular organization at the interface is associated with an increase of PVA crystallinity as shown by the x-ray diffraction and differential scanning calorimetry.

  2. Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Polythionine and Multiwalled Carbon Nanotubes

    OpenAIRE

    Wenwei Tang; Lei Li; Lujun Wu; Jiemin Gong; Xinping Zeng

    2014-01-01

    A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good ...

  3. Interaction between Palladium Nanoparticles and Surface-Modified Carbon Nanotubes: Role of Surface Functionalities

    DEFF Research Database (Denmark)

    Zhang, Bingsen; Shao, Lidong; Zhang, Wei;

    2014-01-01

    feature, instability, and subtle response of the components upon application of an external field. Herein, we use insitu TEM, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy techniques to record the interaction in palladium on carbon nanotubes (CNTs) from room temperature to 600...... degrees C. We focus on probing the effects of oxygen and nitrogen-containing functional groups on supported palladium nanoparticles (NPs) in the model catalytic system. The stability of palladium NPs supported on CNTs depends strongly on the surface properties of CNTs. Moreover, the oxygen......-containing functional groups on the CNT surfaces, such as carboxylic acids and anhydrides, have an even stronger interaction with palladium NPs than the nitrogen-containing counterparts. Our work contributes to elucidation of the complex metal-carbon interaction and unlocks potential in activity and selectivity control...

  4. High-Flux Positively Charged Nanocomposite Nanofiltration Membranes Filled with Poly(dopamine) Modified Multiwall Carbon Nanotubes.

    Science.gov (United States)

    Zhao, Feng-Yang; Ji, Yan-Li; Weng, Xiao-Dan; Mi, Yi-Fang; Ye, Chun-Chun; An, Quan-Fu; Gao, Cong-Jie

    2016-03-01

    The poor dispensability of pristine carbon nanotubes in water impedes their implications in thin-film nanocomposite membranes for crucial utilities such as water purification. In this work, high-flux positively charged nanocomposite nanofiltration membranes were exploited by uniformly embedding poly(dopamine) modified multiwall carbon nanotubes (PDA-MWCNTs) in polyamide thin-film composite membranes. With poly(dopamine) modification, fine dispersion of MWCNTs in polyethyleneimine (PEI) aqueous solutions was achieved, which was interracially polymerized with trimesoyl chloride (TMC) n-hexane solutions to prepare nanocomposite membranes. The compatibility and interactions between modified MWCNTs and polyamide matrix were enhanced, attributed to the poly(dopamine) coatings on MWCNT surfaces, leading to significantly improved water permeability. At optimized conditions, pure water permeability of the PEI/PDA-MWCNTs/TMC nanofiltration membrane (M-4) was 15.32 L m(-2) h(-1) bar(-1), which was ∼1.6 times increased compared with that of pristine PEI/TMC membranes. Salt rejection of M-4 to different multivalent cations decreased in the sequence ZnCl2 (93.0%) > MgCl2 (91.5%) > CuCl2 (90.5%) ≈ CaCl2, which is well-suited for water softening and heavy metal ion removal. PMID:26901491

  5. Electrochemical detection of hydrogen peroxide at a waxed graphite electrode modified with platinum-decorated carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    SHI Qiao-cui; ZENG Wen-fang; ZHU Yunu

    2009-01-01

    Platinum-decorated carbon nanotubes (CNT-Pt) were produced by the chemical reduction method. A novel modified electrode was fabricated by intercalated CNT-Pt in the surface of waxed graphite, which provided excellent electro-catalytic activity and selectivity for both oxidation and reduction of hydrogen peroxide. The current response of the modified electrode for hydrogen peroxide was very rapid and the detection limits in amperometry are 2.5×10-6 mol/L at reduction potential and 4.8×10-6 mol/L at oxidation potential. It was desmonstrated that the electrode with high electro-activity was a suitable basic electrode for preparing enzyme electrode.

  6. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes.

    Directory of Open Access Journals (Sweden)

    Wenwei Tang

    Full Text Available A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM(-1 cm(-2 and a low detection limit of 5 µM (S/N = 3, with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.

  7. A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Fang Bin, E-mail: binfang_47@yahoo.com.c [Anhui Key Laboratory of Chemo-Biosensor, College of Chemistry and Materials Science, Anhui Normal University, Beijing East Road, No. 1, Wuhu 241000 (China); Zhang Cuihong; Zhang Wei; Wang Guangfeng [Anhui Key Laboratory of Chemo-Biosensor, College of Chemistry and Materials Science, Anhui Normal University, Beijing East Road, No. 1, Wuhu 241000 (China)

    2009-12-15

    ZnO nanoflowers were synthesized by a simple process (ammonia-evaporation-induced synthetic method) and were applied to the hydrazine electrochemical sensor. The prepared material was characterized by means of scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) and was then immobilized onto the surface of a glassy carbon electrode (GCE) via multi-walled carbon nanotubes (MWCNTs) to obtain ZnO/MWCNTs/GCE. The potential utility of the constructed electrodes was demonstrated by applying them to the analytical determination of hydrazine concentration. An optimized limit of detection of 0.18 muM was obtained at a signal-to-noise ratio of 3 and with a fast response time (within 3 s). Additionally, the ZnO/MWCNTs/GCE exhibited a wide linear range from 0.6 to 250 muM and higher sensitivity for hydrazine than did the ZnO modified electrode without immobilization of MWCNTs.

  8. Investigation of Cytotoxicity of Phosphoryl Choline Modified Single-Walled Carbon Nanotubes under a Live Cell Station

    Directory of Open Access Journals (Sweden)

    Yufeng Zhao

    2014-01-01

    Full Text Available Single-walled carbon nanotubes (SWCNTs and various modified SWCNTs have drawn a lot of attention due to their potential applications in biomedical field. Before further moving on to real clinical applications, hydrophobicity and toxicity of SWCNTs should be investigated thoroughly. In this paper, 2-methacryloyloxy ethyl phosphorylcholine (MPC was adopted to modify SWCNTs and phosphoryl choline was grafted onto SWCNTs as small molecule moieties and polymeric chains, which made SWCNTs dispersed stably both in water and in cell culture medium for a long time. Cytotoxicity of pristine and modified SWCNTs were assayed upon successful preparation of the designed modified SWCNT. Furthermore, the internalization of SWCNTs by three cells was investigated using a live cell station under normal culture temperature (37°C and low temperature (4°C. The results showed that the internalization of modified SWCNTs was related to both the active transport and the passive transport. Although the modification with phosphoryl choline remarkably reduced the cytotoxicity of SWCNTs, the results were probably due to other reasons such as the decrease in the ratio of cells which internalized modified SWCNTs since the cells without SWCNTs occupation still exhibited normal states.

  9. Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites with Modified Morphology and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Nasir Mahmood

    2013-12-01

    Full Text Available Pure polyamide 6 (PA6 and polyamide 6/carbon nanotube (PA6/CNT composite samples with 0.5 weight percent loading of pristine or functionalized CNTs were made using a solution mixing technique. Modification of nanotube surface as a result of chemical functionalization was confirmed through the presence of lattice defects as examined under high-resolution transmission electron microscope and absorption bands characteristic of carboxylic, sulfonic and amine chemical groups. Microstructural examination of the cryogenically fractured surfaces revealed qualitative information regarding CNT dispersion within PA6 matrix and interfacial strength. X-ray diffraction studies indicated formation of thermodynamically more stable α-phase crystals. Thermogravimetric analysis revealed that CNT incorporation delayed onset of thermal degradation by as much as 70 °C in case of amine-functionalized CNTs, thus increasing thermal stability of the composites. Furthermore, addition of amine-functionalized CNTs caused an increase in crystallization and melting temperatures from the respective values of 177 and 213 °C (for neat PA6 to 211 and 230 °C (for composite, respectively.

  10. Determination of Phenol and Chlorophenols at Single-Wall Carbon Nanotubes/Poly(3,4-ethylenedioxythiophene) Modified Glassy Carbon Electrode Using Flow Injection Amperometry

    OpenAIRE

    Negussie Negash; Hailemichael Alemu; Merid Tessema

    2014-01-01

    Phenol and chlorophenols were investigated using single-wall carbon nanotubes (SWCNT) and poly(3,4-ethylenedioxythiophene) (PEDOT) composite modified glassy carbon electrode (SWCNT/PEDOT/GCE) as a detector in flow injection system. Optimization of experimental variables such as the detection potential, flow rate, and pH of the carrier solution (0.1 M sodium acetate) for the determination of phenol (P), 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP), and pentachloro...

  11. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Penza, M; Rossi, R; Alvisi, M [ENEA, Department of Physical Technologies and New Materials, PO Box 51 Br-4, I-72100 Brindisi (Italy); Serra, E, E-mail: michele.penza@enea.it [ENEA, Department of Physical Technologies and New Materials, Via Anguillarese 301, I-00060 Rome (Italy)

    2010-03-12

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 deg. C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO{sub 2}, CH{sub 4}, H{sub 2}, NH{sub 3}, CO and NO{sub 2} has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO{sub 2} presence in the multicomponent mixture LFG. The NO{sub 2} gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO{sub 2} concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO{sub 2} gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 deg. C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 {mu}m and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified

  12. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications

    Science.gov (United States)

    Penza, M.; Rossi, R.; Alvisi, M.; Serra, E.

    2010-03-01

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 °C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO2, CH4, H2, NH3, CO and NO2 has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO2 presence in the multicomponent mixture LFG. The NO2 gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO2 concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO2 gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 °C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 µm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by

  13. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications

    International Nuclear Information System (INIS)

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 deg. C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO2, CH4, H2, NH3, CO and NO2 has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO2 presence in the multicomponent mixture LFG. The NO2 gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO2 concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO2 gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 deg. C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 μm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity

  14. Modifying the characteristics of carbon nanotubes grown on metallic substrates for ultracapacitor applications

    International Nuclear Information System (INIS)

    This paper reports the design, fabrication, and testing of carbon nanotube (CNT)-based ultracapacitor electrodes and provides quantitative results, showing that total electrode surface area—and, correspondingly, the total cell capacitance—is highly sensitive to the amount of catalyst material deposited prior to CNT growth. We deposit between 0.6 and 1.0 nm of iron catalyst on metallic (tungsten) substrates and synthesized vertically aligned CNT forests directly by thermal chemical vapor deposition. A capacitance maximum is observed with electrodes prepared with 0.8 nm of catalyst. Geometrical arguments based on average CNT diameter and areal density are used to corroborate this result. The CNTs' differential capacitance is found to be independent of their areal density, mean diameter, length, and the amount of catalyst used to grow them.

  15. Modifying the characteristics of carbon nanotubes grown on metallic substrates for ultracapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Jenicek, D. P., E-mail: djenicek@mit.edu; Kassakian, J. G. [Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McCarthy, A. [Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-05-28

    This paper reports the design, fabrication, and testing of carbon nanotube (CNT)-based ultracapacitor electrodes and provides quantitative results, showing that total electrode surface area—and, correspondingly, the total cell capacitance—is highly sensitive to the amount of catalyst material deposited prior to CNT growth. We deposit between 0.6 and 1.0 nm of iron catalyst on metallic (tungsten) substrates and synthesized vertically aligned CNT forests directly by thermal chemical vapor deposition. A capacitance maximum is observed with electrodes prepared with 0.8 nm of catalyst. Geometrical arguments based on average CNT diameter and areal density are used to corroborate this result. The CNTs' differential capacitance is found to be independent of their areal density, mean diameter, length, and the amount of catalyst used to grow them.

  16. Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates

    International Nuclear Information System (INIS)

    Vertical single-walled and double-walled carbon nanotube (SWNT and DWNT) arrays have been grown using a catalyst embedded within the pore walls of a porous anodic alumina (PAA) template. The initial film structure consisted of a SiOx adhesion layer, a Ti layer, a bottom Al layer, a Fe layer, and a top Al layer deposited on a Si wafer. The Al and Fe layers were subsequently anodized to create a vertically oriented pore structure through the film stack. CNTs were synthesized from the catalyst layer by plasma-enhanced chemical vapour deposition (PECVD). The resulting structure is expected to form the basis for development of vertically oriented CNT-based electronics and sensors

  17. Assembly of Modified Ferritin Proteins on Carbon Nanotubes and its Electrocatalytic Activity for Oxygen Reduction

    Science.gov (United States)

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol

    2012-01-01

    Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction

  18. Application of Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode for Determination of Mefenamic Acid in Pharmaceutical Preparations and Biological Fluids

    International Nuclear Information System (INIS)

    A chemically modified electrode is constructed based on multi-walled carbon nanotube modified glassy carbon electrode (MWCNTs/GCE). It is demonstrated that this sensor could be used for determination of pharmaceutically important compound mefenamic acid (MEF). Differential pulse voltammetry (DPV) experiments of various concentration of MEF showed two linear dynamic ranges. The first linear dynamic range was from 2 micro M to 40 micro M, and the second linear dynamic range was between 50 micro M to 360 micro M. A detection limit of 0.21 micro M (S/N = 3) was obtained. Under optimal conditions the modified electrode exhibited high sensitivity and stability for determination of MEF, making it a suitable sensor for the submicromolar detection of MEF in solutions. The analytical performance of this sensor has been evaluated for the detection of MEF in human serum, human urine and a pharmaceutical preparation with satisfactory results. (author)

  19. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  20. Magnetic and Electrical Properties of Nitrogen-Doped Multiwall Carbon Nanotubes Fabricated by a Modified Chemical Vapor Deposition Method

    Directory of Open Access Journals (Sweden)

    María Luisa García-Betancourt

    2015-01-01

    Full Text Available Chemical vapor deposition (CVD is a preferential method to fabricate carbon nanotubes (CNTs. Several changes have been proposed to obtain improved CNTs. In this work we have fabricated nitrogen-doped multiwall carbon nanotubes (N-MWCNTs by means of a CVD which has been slightly modified. Such modification consists in changing the content of the by-product trap. Instead of acetone, we have half-filled the trap with an aqueous solution of NaCl (0–26.82 wt.%. Scanning electron microscope (SEM characterization showed morphological changes depending upon concentration of NaCl included in the trap. Using high resolution transmission electron microscopy several shape changes on the catalyst nanoparticles were also observed. According to Raman spectroscopy results N-MWCNTs fabricated using pure distillate water exhibit better crystallinity. Resistivity measurements performed on different samples by physical properties measurement Evercool system (PPMS showed metallic to semiconducting temperature dependent transitions when high content of NaCl is used. Results of magnetic properties show a ferromagnetic response to static magnetic fields and the coercive fields were very similar for all the studied cases. However, saturation magnetization is decreased if aqueous solution of NaCl is used in the trap.

  1. Microbial biofuel cell operating effectively through carbon nanotube blended with gold–titania nanocomposites modified electrode

    International Nuclear Information System (INIS)

    In this study, we have explored the possibility to fabricate microbial biofuel cell operating with carbon nanotube–gold–titania nanocomposites (CNT/Au/TiO2) as anode modifier. The results demonstrate that the CNT/Au/TiO2 electrode could be utilized as a new and effective microbial fuel cell (MFC) anode, which integrate the advantages of relevant nanocomposites such as high conductivity, high specific surface area, and easy adsorption of the microorganism. It is evident that the three-dimensional network nanostructures of CNT/Au/TiO2 are propitious to improve the relevant anode surface area and thus the adsorption of the microorganism, which can efficiently promote the electronic transfer rate between the probe and electrode. Meanwhile, it is noted that open circuit voltage of the CNT/Au/TiO2 nanocomposites modified carbon paper anode increased to 0.77 V, which is more than twice that of the open circuit voltage obtained with bare carbon paper anode (0.36 V). And the MFC equipped with CNT/Au/TiO2 nanocomposites modified carbon paper anode delivers a maximum power density of 2.4 mW m−2, which is three times larger than that obtained from the MFC with bare carbon paper. This observation illustrates that the CNT/Au/TiO2 nanocomposites modified electrode could obviously increase the relevant electron transfer rate and promote the electron exchange at electrode surface, which could readily provide enhanced stability and relatively long life-span to facilitate the high electricity production efficiency, suggesting its promising prospect application in MFCs

  2. A novel nonenzymatic hydrogen peroxide sensor based on silver nanoparticles and ionic liquid functionalized multiwalled carbon nanotube composite modified electrode

    International Nuclear Information System (INIS)

    Highlights: • A novel nonenzymatic H2O2 sensor was constructed on AgNPs/MWCNTs-IL modified GCE. • Ionic liquid functionalized carbon nanotube was used as matrices for deposition of AgNPs effectively. • AgNPs were uniformly and less agglomerate formed on the MWCNTs-IL film. • AgNPs/MWCNTs-IL/GCE displayed good electrocatalytic activity to the reduction of H2O2 and applied to real samples. • The electrocatalytic mechanism of the constructed sensor was proposed. -- Abstract: A novel hydrogen peroxide (H2O2) sensor was fabricated by electrodepositing Ag nanoparticles (NPs) on a glassy carbon electrode (GCE) modified with ionic liquid functionalized multiwalled carbon nanotube (MWCNTs-IL) composites. The AgNPs/MWCNTs-IL composite was characterized by different methods including scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The constructed electrode exhibited good catalytic activity toward the reduction of H2O2, and obtained a linear response to logarithm of the H2O2 concentrations ranging from 1.2 × 10−8 to 4.8 × 10−6 M with a limit of detection (LOD) of 3.9 × 10−9 M. Moreover, it can be applied to real samples analysis. The excellent performance of hydrogen peroxide sensor were ascribed to the MWCNTs-IL composites being used as effective load matrix for the deposition of AgNPs and the synergistic amplification effect of the two kinds of nanomaterials – AgNPs and MWCNTs. Therefore, the catalytic mechanism of the constructed sensor was proposed. AgNPs dispersed on MWCNTs-IL were used as the catalyst for the H2O2 into O2, and the generated oxygen transported the electrode surrounding where it was detected by reduction on the electrode

  3. Applications of Carbon Nanotubes

    Science.gov (United States)

    Ajayan, Pulickel M.; Zhou, Otto Z.

    Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we discuss the electronic and electrochemical applications of nanotubes, nanotubes as mechanical reinforcements in high performance composites, nanotube-based field emitters, and their use as nanoprobes in metrology and biological and chemical investigations, and as templates for the creation of other nanostructures. Electronic properties and device applications of nanotubes are treated elsewhere in the book. The challenges that ensue in realizing some of these applications are also discussed from the point of view of manufacturing, processing, and cost considerations.

  4. Liquid composite molding-processing and characterization of fiber-reinforced composites modified with carbon nanotubes

    Science.gov (United States)

    Zeiler, R.; Khalid, U.; Kuttner, C.; Kothmann, M.; Dijkstra, D. J.; Fery, A.; Altstädt, V.

    2014-05-01

    The increasing demand in fiber-reinforced plastics (FRPs) necessitates economic processing of high quality, like the vacuum-assisted resin transfer molding (VARTM) process. FRPs exhibit excellent in-plane properties but weaknesses in off-plane direction. The addition of nanofillers into the resinous matrix phase embodies a promising approach due to benefits of the nano-scaled size of the filler, especially its high surface and interface areas. Carbon nanotubes (CNTs) are preferable candidates for resin modification in regard of their excellent mechanical properties and high aspect ratios. However, especially the high aspect ratios give rise to withholding or filtering by fibrous fabrics during the impregnation process, i.e. length dependent withholding of tubes (short tubes pass through the fabric, while long tubes are restrained) and a decrease in the local CNT content in the laminate along the flow path can occur. In this study, hybrid composites containing endless glass fiber reinforcement and surface functionalized CNTs dispersed in the matrix phase were produced by VARTM. New methodologies for the quantification of the filtering of CNTs were developed and applied to test laminates. As a first step, a method to analyze the CNT length distribution before and after injection was established for thermosetting composites to characterize length dependent withholding of nanotubes. The used glass fiber fabric showed no perceptible length dependent retaining of CNTs. Afterward, the resulting test laminates were examined by Raman spectroscopy and compared to reference samples of known CNT content. This Raman based technique was developed further to assess the quality of the impregnation process and to quantitatively follow the local CNT content along the injection flow in cured composites. A local decline in CNT content of approx. 20% was observed. These methodologies allow for the quality control of the filler content and size-distribution in CNT based hybrid

  5. Photoamperometric flow injection analysis of glucose based on dehydrogenase modified quantum dots-carbon nanotube nanocomposite electrode.

    Science.gov (United States)

    Ertek, Bensu; Dilgin, Yusuf

    2016-12-01

    In this work, a core-shell quantum dot (QD, ZnS-CdS) was electrodeposited onto multiwalled carbon nanotube modified glassy carbon electrode (ZnS-CdS/MWCNT/GCE) and following glucose dehydrogenase (GDH) was immobilized onto QD modified electrode. The proposed electrode (GDH/ZnS-CdS/MWCNT/GCE) was effectively used for the photoelectrochemical biosensing of glucose in flow injection analysis (FIA) system using a home-made flow cell. Results from cyclic voltammetric and FI amperometric measurements have revealed that GDH/ZnS-CdS/MWCNT/GCE is capable of signaling photoelectrocatalytic activity toward NADH when the surface of enzyme modified electrode was irradiated with a light source (250W Halogen lamp). Thus, photoelectrochemical biosensing of glucose was monitored by recording current-time curve of enzymatically produced NADH at optimized conditions. The biosensor response was found linear over the range 0.010-2.0mM glucose with detection limits of 6.0 and 4.0μM for amperometric and photoamperometric methods, respectively. The relative standard deviations (n=5) for 0.5mM glucose were 5.8% and 3.8% for photoamperometric and amperometric results, respectively. The photoelectrochemical biosensor was successfully applied to the real samples. The results with this biosensor showed good selectivity, repeatability and sensitivity for monitoring glucose in amperometric and photoamperometric FIA studies. PMID:26944347

  6. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  7. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nanotubes-Chitosan Modified Electrode

    OpenAIRE

    Shuping Zhang; Shaoyang Li; Jie Ma; Fei Xiong; Song Qu

    2013-01-01

    A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE) to MWNTs-modified glassy carbon electrode (GCE) with chitosan (CS) by layer-by-layer (LBL) technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran i...

  8. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, C.; Orozco, G. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Verde, Y. [Instituto Tecnologico de Cancun, Av. Kabah Km. 3, C.P. 77500, Cancun, Quintana Roo (Mexico); Jimenez, S. [Unidad Queretaro Centro de Investigacion y de Estudios Avanzados del I.P.N., Juriquilla, Santiago de Queretaro (Mexico); Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Juaristi, E. [Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico); Bustos, E. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)], E-mail: ebustos@cideteq.mx

    2009-02-15

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H{sub 2}O{sub 2}) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H{sub 2}O{sub 2} takes place. The proposed H{sub 2}O{sub 2} sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively.

  9. Pt-modified carbon nanotube networked layers for enhanced gas microsensors

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) networked films have been grown by chemical vapor deposition (CVD) technology onto miniaturized low-cost alumina substrates, coated by nanosized Co-catalyst for growing CNTs, to perform chemical detection of toxic gasses (NO2 and NH3), greenhouse gasses (CO2 and CH4) and domestic safety gasses (CO and C2H5OH) at an operating sensor temperature of 120 °C. The morphology and structure of the CNTs networks have been characterized by scanning electron microscopy (SEM). A dense network of bundles of multiple tubes consisting of multi-walled carbon nanostructures appears with a maximum length of 1–5 μm and single-tube diameter varying in the range of 5–40 nm. Surface modifications of the CNTs networks with sputtered Platinum (Pt) nanoclusters, at tuned loading of 8, 15 and 30 nm, provide higher sensitivity for significantly enhanced gas detection compared to un-decorated CNTs. This could be caused by a spillover of the targeted gas molecules onto Pt-catalyst surface with a chemical gating into CNTs layers. The measured electrical conductance of the functionalized CNTs upon exposures of a given oxidizing and reducing gas is modulated by a charge transfer model with p-type semiconducting characteristics. The effect of activated carbons as chemical filters to reduce the influence of the domestic interfering alcohols on CO gas detection has been studied. Functionalized CNT gas sensors exhibited better performances compared to unmodified CNTs, making them highly promising candidates for functional applications of gas control and alarms.

  10. Study of Carbon Nanotube-Substrate Interaction

    Directory of Open Access Journals (Sweden)

    Jaqueline S. Soares

    2012-01-01

    Full Text Available Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the substrate affects the structural, electronic, and vibrational properties of the tubes.

  11. Carbon nanotube macroelectronics

    Science.gov (United States)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  12. Conducting carbonized polyaniline nanotubes

    Science.gov (United States)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  13. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  14. Effect of Modified and Nonmodified Carbon Nanotubes on the Rheological Behavior of High Density Polyethylene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Adewunmi A. Ahmad

    2013-01-01

    Full Text Available This paper reports the results of studies on the rheological behavior of nanocomposites of high density polyethylene (HDPE with pristine multiwall carbon nanotubes (CNT as well as phenol and 1-octadecanol (C18 functionalized CNT at 1, 2, 3, 4, 5, and 7 wt% loading. The viscosity reduction at 1 wt% CNT follows the order, pristine CNT < phenol functionalized CNT < C18 functionalized CNT. As the filler loading increases from 1 to 2, 3, and 4 wt%, neat HDPE and filled HDPE systems show similar moduli and viscosity, particularly in the low frequency region. As the filler loading increases further to 5 and 7 wt%, the viscosity and moduli become greater than the neat HDPE. The storage modulus, tan, and the Cole-Cole plots show that CNT network formation occurs at higher CNT loading. The critical CNT loading or the rheological percolation threshold, where network formation occurs is found to be strongly dependant on the functionalization of CNT. For pristine CNT, the rheological percolation threshold is around 4 wt%, but for functionalized CNT it is around 7 wt%. The surface morphologies of CNT and functionalized CNT at 1 wt% loading showed good dispersion while at 7 wt% loading, dispersion was also achieved, but there are few regions with agglomeration of CNT.

  15. Germanomolybdate (GeMo12O404−) Modified Carbon Nanotube Composites for Electrochemical Capacitors

    International Nuclear Information System (INIS)

    Highlights: • GeMo12O404− (GeMo) was deposited onto MWCNT to fabricate capacitive electrodes. • GeMo electrode showed excellent conductivity and 6X the capacitance of bare MWCNT. • GeMo was superimposed with PMo12O403− or SiMo12O404− on dual-layer electrodes. • Dual-layer electrodes showed combination of both molecules and 12X bare capacitance. - Abstract: Keggin type germanomolybdate, GeMo12O404− (GeMo), was deposited onto multi-walled carbon nanotubes (MWCNT) via layer-by-layer (LbL) deposition to form composite electrodes for electrochemical capacitors (ECs). The GeMo composite electrode demonstrated charge storage six times greater than that of the bare MWCNT electrode while maintaining excellent conductivity and cycling stability. GeMo also demonstrated charge storage complementary to that of the commercial Keggin type POMs, PMo12O403− (PMo) and SiMo12O404− (SiMo). Dual-layer coatings superimposing GeMo with either PMo or SiMo showed an additive combination of both active layers, which resulted in cyclic voltammograms (CVs) with overlapping redox features and charge storage twelve times greater than that of the bare MWCNT electrode. Scanning Electron Microscopy (SEM) demonstrated successful single and dual layer coating of POMs on MWCNT with high coverage and uniform surface morphologies

  16. A sensor for determination of tramadol in pharmaceutical preparations and biological fluids based on multi-walled carbon nanotubes-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    A chemically modified electrode is constructed based on multi-walled carbon nanotube modified glassy carbon electrode (MWCNTs/GCE). It is demonstrated that this sensor could be used for determination of pharmaceutical important compound tramadol (TRA). The measurements were carried out using differential pulse voltammetry (DPV), cyclic voltammetry (CV) and chronoamperometry (CA) methods. DPV experiments of various concentration of TRA showed two linear dynamic ranges. The first linear dynamic range was from 4 micro M to 35 micro M, and the second linear dynamic range was between 60 micro M to 550 micro M. A detection limit of 0.38 micro M (S/N = 3) was obtained. The analytical performance of this sensor has been evaluated for the detection of TRA in human serum, human urine and some pharmaceutical preparations with satisfactory results. (author)

  17. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors.

    Science.gov (United States)

    Ghica, M Emilia; Brett, Christopher M A

    2014-12-01

    Poly(brilliant green) (PBG) and poly(thionine) (PTH) films have been formed on carbon film electrodes (CFEs) modified with carbon nanotubes (CNT) by electropolymerisation using potential cycling. Voltammetric and electrochemical impedance characterisation were performed. Glucose oxidase and uricase, as model enzymes, were immobilised on top of PBG/CNT/CFE and PTH/CNT/CFE for glucose and uric acid (UA) biosensing. Amperometric determination of glucose and UA was carried out in phosphate buffer pH 7.0 at -0.20 and +0.30 V vs. SCE, respectively, and the results were compared with other similarly modified electrodes existing in the literature. An interference study and recovery measurements in natural samples were successfully performed, indicating these architectures to be good and promising biosensor platforms. PMID:25159399

  18. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    Science.gov (United States)

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. PMID:25956790

  19. FLUIDIZATION OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    Fei Wei; Cang Huang; Yao Wang

    2005-01-01

    Carbon nanotubes (CNTs) can be fluidized in the form of fluidlike agglomerates made of many three-dimensional sub-agglomerates, having a multi-stage agglomerate (MSA) structure and containing large amounts of twisting CNTs of micrometer magnitude.

  20. Carbon nanotubes: Fibrillar pharmacology

    Science.gov (United States)

    Kostarelos, Kostas

    2010-10-01

    The mechanisms by which chemically functionalized carbon nanotubes flow in blood and are excreted through the kidneys illustrate the unconventional behaviour of these fibrillar nanostructures, and the opportunities they offer as components for the design of advanced delivery vehicles.

  1. Carbon nanotube epoxy modified CFRPs: toward improved mechanical and sensing for multifunctional aerostructures

    Science.gov (United States)

    Kostopoulos, Vassilis; Vavouliotis, Antonios; Karapappas, Petros

    2008-03-01

    In aerospace structures, the increase of mechanical performance of materials such as Carbon Fiber Reinforced Polymers (CFRPs) is always a key goal. In parallel, there is a constant demand for multi-functional solutions that provide continuous, integrated damage monitoring in an efficient and cost affordable way. Structural Health Monitoring systems are crucial for a variety of aerospace applications where safety, operational cost and the maintenance have increased significantly. The Electrical Resistance Technique (ERT) as a promising damage monitoring technique uses the CFRP materials themselves as inherent damage sensors. Currently method's medium sensitivity does not allow the identification of early damage stages requested for a potential application. By using highly conductive carbon-nanotubes as filler material into the epoxy matrix of CFRP is expected to increase the sensitivity of the method, allowing for wider field of applications. In addition, it is expected that the introduction of CNTs into the polymer matrix of CFRP laminates will increase the overall mechanical and electrical performance of the composite. This double role of the CNTs is investigated in the present study. Quasi-static tensile, cyclic loading-unloading-reloading with increase load level at each loading cycle and tension-tension fatigue tests with parallel monitoring of the longitudinal resistance performed on CFRP laminates with various contents of CNTs in the epoxy matrix showed that matrix cracking and fiber breakage caused resistance to increase irreversibly. Although the individual damage mechanisms could not be easily distinguished the overall damage state can be reliably characterized. Moreover significant increase in the fracture resistance was shown, for both Mode I and Mode II tests in the case of CNT doped laminates, compared against the reference laminate where neat epoxy matrix was used. Finally, low velocity impact tests showed that the CNT doped laminates appear to have

  2. Preparation of glass carbon electrode modified with nanocrystalline nickel-decorated carbon nanotubes and electrocatalytic oxidation of methanol in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nanocrystalline nickel with an average diameter of about 16 nm and a face-centered cubic (fcc)structure was uniformly attached to the surface of carbon nanotubes (CNT) by wet chemistry.The sample was characterized by X-ray powder diffraction and transmission electron microscopy (TEM).A glass carbon electrode modified with nickel-modified multi-wall carbon nanotubes (MWCNTs-Ni/GCE) was prepared.The electrochemical behavior of the MWCNTs-Ni/GCE and the electrocatalytic oxidation of methanol at the MWCNTsNi/GCE were investigated by cyclic voltammetry in 1.0 mol/L NaOH solution.The cyclic voltammograms showed that the electron transfer between β-Ni(OH)2 and β-NiOOH is mainly a diffusion-controlled quasireversible process,and that the electrode has high catalytic activity for the electrooxidation of methanol in alkaline medium,revealing its potential application in alkaline rechargeable batteries and fuel cells.

  3. Simultaneous determination of mycophenolate mofetil and its active metabolite, mycophenolic acid, by differential pulse voltammetry using multi-walled carbon nanotubes modified glassy carbon electrode

    International Nuclear Information System (INIS)

    A highly sensitive electrochemical sensor for the simultaneous determination of mycophenolate mofetil (MPM) and mycophenolic acid (MPA) was fabricated by multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE). The electrochemical behavior of these two drugs was studied at the modified electrode using cyclic voltammetry and adsorptive differential pulse voltammetry. MPM and MPA were oxidized at the GCE during an irreversible process. DPV analysis showed two oxidation peaks at 0.87 V and 1.1 V vs. Ag/AgCl for MPM and an oxidation peak at 0.87 V vs. Ag/AgCl for MPA in phosphate buffer solution of pH 5.0. The MWCNTs/GCE displayed excellent electrochemical activities toward oxidation of MPM and MPA relative to the bare GCE. The experimental design algorithm was used for optimization of DPV parameters. The electrode represents linear responses in the range 5.0 × 10−6 to 1.6 × 10−4 mol L−1 and 2.5 × 10−6 mol L−1 to 6.0 × 10−5 mol L−1 for MPM and MPA, respectively. The detection limit was found to be 9.0 × 10−7 mol L−1 and 4.0 × 10−7 mol L−1 for MPM and MPA, respectively. The modified electrode showed a good sensitivity and stability. It was successfully applied to the simultaneous determination of MPM and MPA in plasma and urine samples. - Highlights: • A new modified electrochemical sensor was constructed and used. • Multiwalled carbon nanotubes were used as the modifiers. • MPM and MPA were measured simultaneously at the low levels. • The sensor was used to the determination of MPA and MPM in real samples

  4. Voltammetric determination of polyphenolic content in pomegranate juice using a poly(gallic acid)/multiwalled carbon nanotube modified electrode.

    Science.gov (United States)

    Abdel-Hamid, Refat; Newair, Emad F

    2016-01-01

    A simple and sensitive poly(gallic acid)/multiwalled carbon nanotube modified glassy carbon electrode (PGA/MWCNT/GCE) electrochemical sensor was prepared for direct determination of the total phenolic content (TPC) as gallic acid equivalent. The GCE working electrode was electrochemically modified and characterized using scanning electron microscope (SEM), cyclic voltammetry (CV), chronoamperometry and chronocoulometry. It was found that gallic acid (GA) exhibits a superior electrochemical response on the PGA/MWCNT/GCE sensor in comparison with bare GCE. The results reveal that a PGA/MWCNT/GCE sensor can remarkably enhance the electro-oxidation signal of GA as well as shift the peak potentials towards less positive potential values. The dependence of peak current on accumulation potential, accumulation time and pH were investigated by square-wave voltammetry (SWV) to optimize the experimental conditions for the determination of GA. Using the optimized conditions, the sensor responded linearly to a GA concentration throughout the range of 4.97 × 10(-6) to 3.38 × 10(-5) M with a detection limit of 3.22 × 10(-6) M (S/N = 3). The fabricated sensor shows good selectivity, stability, repeatability and (101%) recovery. The sensor was successfully utilized for the determination of total phenolic content in fresh pomegranate juice without interference of ascorbic acid, fructose, potassium nitrate and barbituric acid. The obtained data were compared with the standard Folin-Ciocalteu spectrophotometric results. PMID:27547628

  5. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wenju [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wang Fang [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)] [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Yao Yanli [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Hu Shengshui [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Shiu, Kwok-Keung, E-mail: kkshiu@hkbu.edu.h [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-09-30

    The amperometric bienzyme glucose biosensor utilizing horseradish peroxidase (HRP) and glucose oxidase (GOx) immobilized in poly(toluidine blue O) (PTBO) film was constructed on multi-walled carbon nanotube (MWNT) modified glassy carbon electrode. The HRP layer could be used to analyze hydrogen peroxide with toluidine blue O (TBO) mediators, while the bienzyme system (HRP + GOx) could be utilized for glucose determination. Glucose underwent biocatalytic oxidation by GOx in the presence of oxygen to yield H{sub 2}O{sub 2} which was further reduced by HRP at the MWNT-modified electrode with TBO mediators. In the absence of oxygen, glucose oxidation proceeded with electron transfer between GOx and the electrode mediated by TBO moieties without H{sub 2}O{sub 2} production. The bienzyme electrode offered high sensitivity for amperometric determination of glucose at low potential, displaying Michaelis-Menten kinetics. The bienzyme glucose biosensor displayed linear response from 0.1 to 1.2 mM with a sensitivity of 113 mA M{sup -1} cm{sup -2} at an applied potential of -0.10 V in air-saturated electrolytes.

  6. Determination of beta-glucosidase activity in soils with a bioanalytical sensor modified with multiwalled carbon nanotubes.

    Science.gov (United States)

    Stege, Patricia W; Messina, Germán A; Bianchi, Guillermo; Olsina, Roberto A; Raba, Julio

    2010-06-01

    Soil microorganisms and enzymes are the primary mediators of soil biological processes, including organic matter degradation, mineralization, and nutrient recycling. They play an important role in maintaining soil ecosystem quality and functional diversity. Moreover, enzyme activities can provide an indication of quantitative changes in soil organic matter. Beta-glucosidase (beta-Glu) activity has been found to be sensitive to soil management and has been proposed as a soil quality indicator because it provides an early indication of changes in organic matter status and its turnover. The aims of the present study were to test and use a simple and convenient procedure for the assay of beta-Glu activity in agricultural soil. The method described here is based on the enzymatic degradation of cellobiose by beta-Glu present in the soil sample and the subsequent determination of glucose produced by the enzymatic reaction using screen-printed carbon electrodes modified with multiwalled carbon nanotubes (SPCE-CNT) equipped with coimmobilized glucose oxidase and horseradish peroxidase enzymes. The potential applied to the SPCE-CNT detection was -0.15 V versus a Ag/AgCl pseudo-reference electrode. A linear calibration curve was obtained in the range 2.7-11.3 mM with a correlation coefficient. In the present study, an easy and effective SPCE-CNT-modified electrode allowed an improved amperometric response to be achieved and this is attributed to the increased surface area upon electrode modification. PMID:20349226

  7. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nanotubes-Chitosan Modified Electrode

    Directory of Open Access Journals (Sweden)

    Shuping Zhang

    2013-01-01

    Full Text Available A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE to MWNTs-modified glassy carbon electrode (GCE with chitosan (CS by layer-by-layer (LBL technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran in the range from  g/L to  g/L with a detection limit of  g/L. This biosensor is a promising new method for pesticide analysis.

  8. Nanotube composite carbon fibers

    Science.gov (United States)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  9. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  10. A hydrogen peroxide sensor based on a horseradish peroxidase/polyaniline/carboxy-functionalized multiwalled carbon nanotube modified gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Mu-Yi, E-mail: huamy@mail.cgu.edu.t [Green Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Lin, Yu-Chen [Green Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Tsai, Rung-Ywan [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Rd., Hsinchu 31040, Taiwan (China); Chen, Hsiao-Chien; Liu, Yin-Chih [Green Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China)

    2011-10-30

    We have developed a polyaniline/carboxy-functionalized multiwalled carbon nanotube (PAn/MWCNTCOOH) nanocomposite by blending the emeraldine base form of polyaniline (PAn) and carboxy-functionalized multiwalled carbon nanotubes (MWCNT) in dried dimethyl sulfoxide (DMSO) at room temperature. The conductivity of the resulting PAn/MWCNTCOOH was 3.6 x 10{sup -3} S cm{sup -1}, mainly as a result of the protonation of the PAn with the carboxyl group and the radical cations of the MWCNT fragments. Horseradish peroxidase (HRP) was immobilized within the PAn/MWCNTCOOH nanocomposite modified Au (PAn/MWCNTCOOH/Au) electrode to form HRP/PAn/MWCNTCOOH/Au for use as a hydrogen peroxide (H{sub 2}O{sub 2}) sensor. The adsorption between the negatively charged PAn/MWCNTCOOH nanocomposite and the positively charged HRP resulted in a very good sensitivity to H{sub 2}O{sub 2} and an increased electrochemically catalytical current during cyclic voltammetry. The HRP/PAn/MWCNTCOOH/Au electrode exhibited a broad linear response range for H{sub 2}O{sub 2} concentrations (86 {mu}M-10 mM). This sensor exhibited good sensitivity (194.9 {mu}A mM{sup -1} cm{sup -2}), a fast response time (2.9 s), and good reproducibility and stability at an applied potential of -0.35 V. The construction of the enzymatic sensor demonstrated the potential application of PAn/MWCNTCOOH nanocomposites for the detection of H{sub 2}O{sub 2} with high performance and excellent stability.

  11. Layer-by-layer self-assembling copper tetrasulfonated phthalocyanine on carbon nanotube modified glassy carbon electrode for electro-oxidation of 2-mercaptoethanol

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Mahabul, E-mail: mshaik86@gmail.com; Rao, V.K.; Gupta, Manish; Pandey, P.

    2012-12-30

    This paper describes the electrocatalytic activity of layer-by-layer self-assembled copper tetrasulfonated phthalocyanine (CuPcTS) on carbon nanotube (CNT)-modified glassy carbon (GC) electrode. CuPcTS is immobilized on the negatively charged CNT surface by alternatively assembling a cationic poly(diallyldimethylammonium chloride) (PDDA) layer and a CuPcTS layer. UV-vis absorption spectra and electrochemical measurements suggested the successive linear depositions of the bilayers of CuPcTs and PDDA on CNT. The surface morphology was observed using scanning electron microscopy. The viability of this CuPcTS/PDDA/CNT modified GC electrode as a redox mediator for the anodic oxidation and sensitive amperometric determination of 2-mercaptoethanol (2-ME) in alkaline conditions is described. The effect of number of bilayers of CuPcTS/PDDA and pH on electrochemical oxidation of 2-ME was studied. The proposed electrochemical sensor displayed excellent characteristics towards the determination of 2-ME in 0.1 M NaOH; such as low overpotentials (- 0.15 V vs Ag/AgCl), linear concentration range of 3 Multiplication-Sign 10{sup -5} M to 6 Multiplication-Sign 10{sup -3} M, and with a detection limit of 2.5 Multiplication-Sign 10{sup -5} M using simple amperometry. - Highlights: Black-Right-Pointing-Pointer Carbon nanotubes (CNT) were drop-dried on glassy carbon electrode (GCE). Black-Right-Pointing-Pointer Copper tetrasulfonated phthalocyanine (CuPcTS) was deposited on CNT/GCE. Black-Right-Pointing-Pointer Layer-by-layer self-assembling method is used for depositing CuPcTS. Black-Right-Pointing-Pointer Electrocatalytic oxidation of 2-mercaptoethanol (ME) was studied at this electrode Black-Right-Pointing-Pointer The detection limit of ME at modified electrode was 25 {mu}M by amperometry.

  12. A novel non-enzymatic hydrogen peroxide sensor based on single walled carbon nanotubes-manganese complex modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@uok.ac.i [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Mahdioun, Monierosadat; Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Abdolmaleki, Amir [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156/83111 (Iran, Islamic Republic of); Ghavami, Raoof [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2011-03-30

    A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20-100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1-12). The surface coverages and heterogeneous electron transfer rate constants (k{sub s}) of immobilized Mn-complex were approximately 1.58 x 10{sup -10} mole cm{sup -2} and 48.84 s{sup -1}. The modified electrode showed excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Detection limit, sensitivity, linear concentration range and k{sub cat} for H{sub 2}O{sub 2} were, 0.2 {mu}M and 692 nA {mu}M{sup -1} cm{sup -2}, 1 {mu}M to 1.5 mM and 7.96({+-}0.2) x 10{sup 3} M{sup -1} s{sup -1}, respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.

  13. Carbon nanotubes decorating methods

    Directory of Open Access Journals (Sweden)

    A.D. Dobrzańska-Danikiewicz

    2013-06-01

    Full Text Available Purpose: The work is to present and characterise various methods of depositing carbon nanotubes with nanoparticles of precious metals, and also to present the results of own works concerning carbon nanotubes coated with platinum nanoparticles.Design/methodology/approach: Electron transmission and scanning microscopy has been used for imaging the structure and morphology of the nanocomposites obtained and the distribution of nanoparticles on the surface of carbon nanotubes.Findings: The studies carried out with the HRTEM and SEM techniques have confirmed differences in morphology, homogeneity and density of depositing platinum nanoparticles on the surface of carbon nanotubes and its structure.Research limitations/implications: The studies conducted pertained to the process of decorating carbon nanotubes with platinum nanoparticles. Further works are planned aimed at extending the application scope of the newly developed methodology to include the methods of nanotubes decorating with the nanoparticles of other precious metals (mainly palladium and rhodium.Practical implications: CNTs-NPs (Carbon NanoTube-NanoParticles composites can be used as the active elements of sensors featuring high sensitivity, fast action, high selectivity and accuracy, in particular in medicine as cholesterol and glucoses sensors; in the automotive industry for the precision monitoring of working parameters in individual engine components; in environmental conservation to examine CO2, NOx, and CH4 concentrations and for checking leak-tightness and detecting hazardous substances in household and industrial gas installations.Originality/value: The comprehensive characterisation of the methods employed for fabricating nanocomposites consisting of carbon nanotubes deposited with Pt, Pd, Rh, Au, Ag nanoparticles with special consideration to the colloidal process.

  14. Highly sensitive choline biosensor based on carbon nanotube-modified Pt electrode combined with sol-gel immobilization

    Institute of Scientific and Technical Information of China (English)

    SONG Zhao; ZHAO Zixia; QIN Xia; HUANG Jiadong; SHI Haibin; WU Baoyan; CHEN Qiang

    2007-01-01

    A novel amperometric choline biosensor has been fabricated with choline oxidase (ChOx) immobilized by the sol-gel method on the surface of multi-walled carbon nanotubes (MWCNT) modified platinum electrode to improve the sensitivity and the anti-interferential property of the sensor.By analyzing the electrocatalytic activity of the modified electrode by MWCNT,it was found that MWCNT could not only improve the current response to H2O2 but also decrease the electrocatalytic potential.The effects of experimental variables such as the buffer solutions,pH and the amount of loading enzyme were investigated for the optimum analytical performance.This sensor shows sensitive determination of choline with a linear range from 5.0×10-6 to 1.0×10-4 mol/L when the operating pH and potential are 7.2 and 0.15 V,respectively.The detection limit of choline was 5.0×10-7 mol/L.Selectivity for choline was 9.48 μA.(mmol/L)-1.The biosensor exhibits excellent anti-interferential property and good stability,retaining 85% of its original current value even after a month.It has been applied to the determination of choline in human serum.

  15. Role of iron oxide impurities in electrocatalysis by multiwall carbon nanotubes: An investigation using a novel magnetically modified ITO electrodes

    Indian Academy of Sciences (India)

    Kanchan M Samant; Vrushali S Joshi; Kashinath R Patil; Santosh K Haram

    2014-04-01

    The role of iron oxide impurities in the electrocatalytic properties of multiwall carbon nanotubes (MWCNTs) prepared by catalytic chemical vapour decomposition method (CCVD) is studied in detail. A novel magnetically modified electrodes have been developed by which MWCNTs were immobilized on indium-tin oxide (ITO) electrodes, without any chemical binders. The electro-catalytic oxidation of dopamine, and reduction of hydrogen peroxide have been studied by cyclic voltammetry on magnetically modified electrodes with (i) MWCNTs with occluded iron oxide impurities (Fe-MWCNTs), (ii) MWCNTs grown on iron oxide nanoparticle particulate films (Io-MWCNTs) and (iii) pristine iron oxide nanoparticle particulate film (Io-NPs). A shift towards less positive potentials for the oxidation of dopamine was observed which is in the order of Fe-MWCNTs < Io-MWCNTs < Io-NPs. Similarly, trend towards less negative potentials for the reduction of hydrogen peroxide was observed. Thus, the electrocatalytic activities displayed by MWCNTs have been attributed to the iron oxide impurities associated with it. The systematic variation was related to the nature of interaction of iron oxide nanoparticles with MWCNT surface.

  16. Enhanced sensitivity for biosensors: Functionalized P1,5-diaminonaphthalene-multiwall carbon nanotube composite film-modified electrode

    International Nuclear Information System (INIS)

    A homogeneous electroactive poly(1,5-diaminonaphthalene) (P1,5DAN) and multiwalled carbon nanotube (MWNT) composite film-modified electrode was fabricated by cyclic voltammetry and a casting method. The dispersion and morphology of the MWNTs/P1,5DAN composite film were investigated by scanning electron microscopy. The cyclic voltammograms of the electrode modified by the MWNTs/P15DAN composite film strongly depended on the film thickness and pH of the electrolyte solution. Two absolutely isolated oxidation potentials were found as the MWCNTs were immobilized onto the surface of P1,5DAN film in a pH 6.8 buffer solution containing ascorbic acid (AA) and uric acid (UA). Both peak currents linearly increased with increased concentrations. The electrochemical behavior of UA was not interrupted even in the presence of high-concentration AA given that AA had no observable electrochemical changes at the immobilized concentration. The electrocatalytic behavior of H2O2 was also investigated by steady-state amperometry for the immobilization of horseradish peroxidase on the P1,5DAN film. The plot of the response current vs. H2O2 concentration was linear over the wide concentration range of 0.015–5.37 mM.

  17. Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Highlights: ► MMMWCNTs effectively removes color from dye-containing wastewater. ► MMMWCNTs has high adsorption capacity and fast adsorption rate. ► MMMWCNTs showed high efficiency. ► The modified nanoparticles are highly monodisperse and magnetically separable. - Abstract: An adsorbent, magnetic-modified multi-walled carbon nanotubes, was used for removal of cationic dyes crystal violet (CV), thionine (Th), janus green B (JG), and methylene blue (MB) from water samples. Prepared nanoparticles were characterized by SEM, TEM, BET and XRD measurements. The prepared magnetic adsorbent can be well dispersed in the water and easily separated magnetically from the medium after loaded with adsorbate. The influences of parameters including initial pH, dosage of adsorbent and contact time have been investigated in order to find the optimum adsorption conditions. The optimum pH for removing of all the investigated cationic dyes from water solutions was found to be 7.0. The experimental data were analyzed by the Langmuir adsorption model. The maximum predicted adsorption capacities for CV, JG, Th and MB dyes were obtained as 227.7, 250.0, 36.4 and 48.1 mg g−1, respectively. Desorption process of the adsorbed cationic dyes was also investigated using acetonitrile as the solvent. It was notable that both the adsorption and desorption of dyes were quite fast probably due to the absence of internal diffusion resistance.

  18. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    A novel composite film modified glassy carbon electrode has been fabricated and characterized by scanning electron microscope (SEM) and voltammetry. The composite film comprises of single-wall carbon nanotube (SWNT), gold nanoparticle (GNP) and ionic liquid (i.e. 1-octyl-3-methylimidazolium hexafluorophosphate), thus has the characteristics of them. The resulting electrode shows good stability, high accumulation efficiency and strong promotion to electron transfer. On it, chloramphenicol can produce a sensitive cathodic peak at -0.66 V (versus SCE) in pH 7.0 phosphate buffer solutions. Parameters influencing the voltammetric response of chloramphenicol are optimized, which include the composition of the film and the operation conditions. Under the optimized conditions, the peak current is linear to chloramphenicol concentration in the range of 1.0 x 10-8-6.0 x 10-6 M, and the detection limit is estimated to be 5.0 x 10-9 M after an accumulation for 150 s on open circuit. The electrode is applied to the determination of chloramphenicol in milk samples, and the recoveries for the standards added are 97.0% and 100.3%. In addition, the electrochemical reaction of chloramphenicol and the effect of single-wall carbon nanotube, gold nanoparticle and ionic liquid are discussed

  19. Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine

    Directory of Open Access Journals (Sweden)

    Apetrei IM

    2013-11-01

    Full Text Available Irina Mirela Apetrei,1 Constantin Apetrei21Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, 2Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, RomaniaAbstract: A biosensor comprising tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode has been developed. The sensitive element, ie, tyrosinase, was immobilized using a drop-and-dry method followed by cross-linking. Tyrosinase maintained high bioactivity on this nanomaterial, catalyzing the oxidation of epinephrine to epinephrine-quinone, which was electrochemically reduced (-0.07 V versus Ag/AgCl on the biosensor surface. Under optimum conditions, the biosensor showed a linear response in the range of 10–110 µM. The limit of detection was calculated to be 2.54 µM with a correlation coefficient of 0.977. The repeatability, expressed as the relative standard deviation for five consecutive determinations of 10-5 M epinephrine solution was 3.4%. A good correlation was obtained between results obtained by the biosensor and those obtained by ultraviolet spectrophotometric methods.Keywords: amperometry, single-walled carbon nanotubes, spectrophotometry, catecholamine, pharmaceutical formula

  20. Templated Growth of Carbon Nanotubes

    Science.gov (United States)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  1. A Novel Electrochemical Sensor for Probing Doxepin Created on a Glassy Carbon Electrode Modified with Poly(4-Amino- benzoic Acid/Multi-Walled Carbon Nanotubes Composite Film

    Directory of Open Access Journals (Sweden)

    Ji-Lie Kong

    2010-09-01

    Full Text Available A novel electrochemical sensor for sensitive detection of doxepin was prepared, which was based on a glassy carbon electrode modified with poly(4-aminobenzoic acid/multi-walled carbon nanotubes composite film [poly(4-ABA/MWNTs/GCE]. The sensor was characterized by scanning electron microscopy and electrochemical methods. It was observed that poly(4-ABA/MWNTs/GCE showed excellent preconcentration function and electrocatalytic activities towards doxepin. Under the selected conditions, the anodic peak current was linear to the logarithm of doxepin concentration in the range from 1.0 ´ 10−9 to 1.0 ´ 10−6 M, and the detection limit obtained was 1.0 × 10−10 M. The poly(4-ABA/MWNTs/GCE was successfully applied in the measurement of doxepin in commercial pharmaceutical formulations, and the analytical accuracy was confirmed by comparison with a conventional ultraviolet spectrophotometry assay.

  2. Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    A highly sensitive and mercury-free method for determination of bisphenol A (BPA) was established using a glassy carbon electrode that was modified with carboxylated multi-walled carbon nanotubes. A sensitive oxidation peak is found at 550 mV in linear sweep voltammograms at pH 7. Based on this finding, trace levels of bisphenol A can be determined over a concentration range that is linear from 10 nM to 104 nM, the correlation coefficient being 0.9983, and the detection limit (S/N = 3) being 5.0 nM. The method was successfully applied to the determination of BPA in food package. (author)

  3. Gold Nanoparticle-based Layer-by-Layer Enhancement of DNA Hybridization Electrochemical Signal at Carbon Nanotube Modified Carbon Paste Electrode

    Institute of Scientific and Technical Information of China (English)

    Li Bo NIE; Jian Rong CHEN; Yu Qing MIAO; Nong Yue HE

    2006-01-01

    Colloid gold nanoparticle-based layer-by-layer amplification approach was applied to enhance the electrochemical detection sensitivity of DNA hybridization at carbon nanotube modified carbon paste electrodes (CNTPEs). Streptavidin was immobilized onto the surface of CNTPEs, and the conjugation of biotin labeled target oligonucleotides to the above immobilized streptavidin was performed, followed by the hybridization of target oligonucleotides with the gold nanoparticle-labeled DNA probe and then the layer-by-layer enhanced connection of gold nanoparticles, on which oligonucleotides complementary to the DNA probe were attached, to the hybridization system. The differential pulse voltammetry (DPV) signal of total gold nanoparticles was monitored. It was found that the layer-by-layer colloidal gold DPV detection enhanced the sensitivity by about one order of magnitude compared with that of one-layer detection. One-base mismatched DNA and complementary DNA could be distinguished clearly.

  4. A glassy carbon electrode modified with a multiwalled carbon nanotube-reduced graphene oxide nanoribbon core-shell structure for electrochemical sensing of p-dihydroxybenzene

    International Nuclear Information System (INIS)

    Multiwalled carbon nanotubes (MWCNT) were covered with reduced graphene oxide nanoribbons (rGONR) to give a material with a core-shell heterostructure of the type MWCNT-rGONR. It was obtained by (a) longitudinal partial unzipping of MWCNT to form MWCNT-GONR, and (b) subsequent chemical reduction with hydrazine to give MWCNT-rGONR. The MWCNT-rGONR heterostructure was used to modify a glassy carbon electrode (GCE) to obtain an electrochemical sensor for p-dihydroxybenzene (DHB). The synergistic effects of the MWCNT and the rGONR results in a distinctly improved redox current towards DHB compared to a bare GCE, an MWCNT/GCE, and an MWCNT-GONR/GCE. At the working voltage range from −100 to 400 mV, it displays a linear response to DHB in the 80 to 3000 nM concentration range with a 20 nM detection limit. (author)

  5. Square wave anodic stripping voltammetric determination of lead(II) using a glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    We report on a glassy carbon electrode (GCE) modified with a lead ionophore and multiwalled carbon nanotubes. It can be applied to square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at -1. 0 V (vs. SCE) for 300 s in pH 4. 5 acetate buffer containing 400 μg L-1 of Bi(III). The ionophore-MWCNTs film on the GCE possesses strong and highly selective affinity for Pb(II) as confirmed by quartz crystal microbalance experiments. Under the optimum conditions, a linear response was observed for Pb(II) ion in the range from 0. 3 to 50 μg L-1. The limit of detection (at S/N = 3) is 0. 1 μg L-1. The method was applied to the determination of Pb(II) in water samples with acceptable recovery. (author)

  6. Electrochemical behavior of propranolol hydrochloride in neutral solution on platinum nanoparticles doped multi-walled carbon nanotubes modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Graphical abstract: PtNPs/MWCNTs has been successfully stabilized onto the surface of GCE and used for electrochemical determination of PRO as a sensor. The results showed that the oxidation of PRO was catalyzed by PtNPs/MWCNTs film in neutral environment and that the peak potential of PRO was shifted to 1.10 V. Highlights: ► Pt nanoparticles and multi-walled carbon nanotubes mixture as the electrode modified material. ► The modified material doped directly onto the electrode surface. ► Detected in the neutral environment. - Abstract: Platinum nanoparticles (PtNPs) were used in combination with multi-walled carbon nanotubes (MWCNTs) with Nafion as the adhesives for fabricating sensitivity-enhanced electrochemical propranolol hydrochloride (PRO) sensor. The modifier, PtNPs doped MWCNTs (PtNPs/MWCNTs), was characterized by transmission electron microscopy (TEM) and electrochemical method which showed an excellent character for electrocatalytic oxidization of PRO. In addition, the experimental parameters such as pH values, the concentration of PtNPs/MWCNTs and the scan rate were optimized. Due to the fine characteristics of PtNPs/MWCNTs, a good linear relationship between the anodic peak current and PRO concentration in the range 6.76 × 10−7–3.8 × 10−5 M was observed. The detection limit of 8.45 × 10−8 M was achieved with the linear correlation coefficient R = 0.9965. The relative standard derivation was 2.74% for 3.38 10−6 M PRO in 11 repeated determinations. This modified electrode showed excellent sensitivity and stability for the determination of PRO.

  7. A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers

    International Nuclear Information System (INIS)

    We have prepared a novel sensor for hydrogen peroxide that is based on a glassy carbon electrode modified with a film containing multi-walled carbon nanotubes wired to CuO nanoflowers. The nanoflowers were characterized by X-ray powder diffraction, and the electrode was characterized by cyclic voltammetry (CV) and scanning electron microscopy. The response of the modified electrode towards hydrogen peroxide was investigated by CV and chronoamperometry and showed it to exhibit high electrocatalytic activity, with a linear range from 0. 5 μM to 82 μM and a detection limit of 0. 16 μM. The sensor also displays excellent selectivity and stability. (author)

  8. Electrochemical Characterization and Determination of Phenol and Chlorophenols by Voltammetry at Single Wall Carbon Nanotube/Poly(3,4-ethylenedioxythiophene) Modified Screen Printed Carbon Electrode

    Science.gov (United States)

    Negash, Negussie; Alemu, Hailemichael; Tessema, Merid

    2015-01-01

    Screen printed carbon electrode (SPCE) has been modified with single wall carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) composites for the determination of phenol and chlorophenols (phenol, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol). The effect of the modifiers on the electrode characteristics was evaluated and the responses were optimized for the voltammetric determination of phenol and chlorophenols. The parameters affecting the responses such as pH, scan rate, and stability were studied. The analytical performance of the SWCNT/PEDOT/SPCE using cyclic voltammetry was tested and found to be impressive. Under these conditions, the designed electrode showed a good performance for the voltammetric measurements of the phenolic compounds. The modified SPCE, when it is compared with other enzymatic and nonenzymatic sensors, showed a wider dynamic range for the detection of the phenolic compounds. The modified SPCE was used for the quantification of phenol in water samples. The results suggest that the method is quite useful for analyzing and monitoring phenols and chlorophenols. PMID:27347519

  9. A sensitive electrochemical sensor for paracetamole based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles

    International Nuclear Information System (INIS)

    We describe an electrochemical sensor for paracetamole that is based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. The functionalized nanospheres were prepared by a chemical route and characterized by scanning electron microscopy. The well-dispersed gold nanoparticles were anchored on the dopamine nanosphere via a chemical reduction of the gold precursor. The stepwise fabrication of the modified electrode and its electrochemical response to paracetamole were evaluated using electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode displayed improved electrocatalytic activity towards paracetamole, a lower oxidation potential (371 mV), and a larger peak current when compared to a bare electrode or other modified electrodes. The kinetic parameters governing the electro-oxidation of paracetamole were studied, and the analytical conditions were optimized. The peak current was linearly related to the concentration of paracetamole in 0.8–400 μM range, and the detection limit was 50 nM (at an SNR of 3). The method was successfully applied to the determination of paracetamole in spiked human urine samples and gave recoveries between 95.3 and 105.2 %. (author)

  10. Quantum transport in carbon nanotubes

    Science.gov (United States)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.; Grove-Rasmussen, Kasper; Nygârd, Jesper; Flensberg, Karsten; Kouwenhoven, Leo P.

    2015-07-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike in conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and valley freedom. The interplay between the two is the focus of this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are explained, together with their consequences for transport measurements through nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behavior. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, open questions for the field are also clearly stated. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.

  11. Carbon Nanotubes for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Li Jianyi

    2010-01-01

    Full Text Available Abstract As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  12. Solid-phase extraction using bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes for the simultaneous determination of flavonoids and aromatic organic acid preservatives.

    Science.gov (United States)

    Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun

    2015-12-01

    A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. PMID:26529362

  13. Mechanical and electrical properties of polymer-derived Si-C-N ceramics reinforced by octadecylamine ? modified single-wall carbon nanotubes

    OpenAIRE

    Shopova-Gospodinova, D.; Burghard, Z.; Dufaux, T.; Burghard, M; Bill, J

    2011-01-01

    Abstract Polymer-derived Si-C-N ceramics reinforced by homogeneously distributed octadecylamine?functionalized single-walled carbon nanotubes (SWCNTs) were synthesized using a casting process, successive pressureless cross-linking and thermolysis. We find that the incorporation of even small amounts of modified SWCNTs leads to a remarkable improvement of mechanical and electrical transport properties of our composites. In particular, we find two-fold enhancement of fracture toughne...

  14. Optimization of bioselective membrane of amperometric enzyme sensor on basis of glucose oxidase using NH2-modified multi-wall carbone nanotubes

    OpenAIRE

    Korpan Ya. I.; Rogaleva N. S.; Biloivan O. A.

    2010-01-01

    Aim. To investigate a possibility of application of multi-wall carbone nanotubes modified with NH2-groups (MWCNT-NH2) for creation of sensitive elements of the amperometric biosensor based on immobilized oxidoreductases, in particular, glucose oxidase (GOD). To study electrochemical properties of the membranes obtained. Methods. Experiments were carried out with amperometric methods using the ìStat 200 device («DropSens», Spain). The enzymes were immobilised in glutaraldehyde vapour. Results....

  15. Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries

    Science.gov (United States)

    Hwang, Taejin; Lee, Joong Kee; Mun, Junyoung; Choi, Wonchang

    2016-08-01

    Surface-modified carbon nanotubes were utilized as a coating for LiNi0.5Mn1.5O4 (LNMO) via a mechano-fusion method as a strategy to prevent unfavorable carbothermal reduction. Two types of carbon nanotubes were investigated as coating materials: carbon nanotubes (CNTs) and oxidized carbon nanotubes (OCNTs), which were prepared by a simple re-oxidation process. The samples coated with CNTs or OCNTs were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy, Raman spectroscopy, and elemental analyses. The OCNT-coated LNMO presented a highly enhanced discharge capacity retention (95.5%) and a coulombic efficiency of 99.9% after 80 cycles between 3.5 and 4.9 V (versus Li/Li+), whereas the CNT-coated LNMO exhibited poor retention of 47.2% and a coulombic efficiency of 95.3%. In addition, post-mortem XPS and electrochemical impedance spectroscopy (EIS) analysis proved that the OCNT coating improved the surface electrochemical stability and rate capability, whereas the CNT coating formed a thick resistive solid electrolyte interphase (SEI) film by accelerating the surface side reactions.

  16. Horizontal carbon nanotube alignment.

    Science.gov (United States)

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  17. Carbon Nanotube Solar Cells

    OpenAIRE

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabr...

  18. Carbon nanotube junctions and devices

    OpenAIRE

    Postma, H. W. Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or semiconducting behaviour. Due to their small diameter, electronic motion is directed in the length direction of the nanotube, making them ideal systems to study e.g. one-dimensional transport phenomena. First...

  19. Direct Electrochemistry of Hemoglobin Immobilized on a Functionalized Multi-Walled Carbon Nanotubes and Gold Nanoparticles Nanocomplex-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Nader Sheibani

    2013-07-01

    Full Text Available Direct electron transfer of hemoglobin (Hb was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs and gold nanoparticles (AuNPs nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis, transmission electron microscopy (TEM and Fourier transform infrared (FTIR methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of −0.270 ± 0.002 V (vs. Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks was evaluated to be 4.0 ± 0.2 s−1. The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10−10 mol cm−2. The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (Kmapp was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.

  20. Electromechanical instability in suspended carbon nanotubes

    OpenAIRE

    Jonsson, L. M.; Gorelik, L. Y.; Shekhter, R. I.; Jonson, M.

    2005-01-01

    We have theoretically investigated electromechanical properties of freely suspended carbon nanotubes when a current is injected into the tubes using a scanning tunneling microscope. We show that a shuttle-like electromechanical instability can occur if the bias voltage exceeds a dissipation-dependent threshold value. An instability results in large amplitude vibrations of the carbon nanotube bending mode, which modify the current-voltage characteristics of the system.

  1. Carbon nanotubes and graphene modified screen-printed carbon electrodes as sensitive sensors for the determination of phytochelatins in plants using liquid chromatography with amperometric detection.

    Science.gov (United States)

    Dago, Àngela; Navarro, Javier; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2015-08-28

    Nanomaterials are of great interest for the development of electrochemical sensors. Multi-walled carbon nanotubes and graphene were used to modify the working electrode surface of different screen-printed carbon electrodes (SPCE) with the aim of improving the sensitivity of the SPCE and comparing it with the conventional glassy carbon electrode. To assay the usability of these sensors, a HPLC methodology with amperometric detection was developed to analyze several phytochelatins in plants of Hordeum vulgare and Glycine max treated with Hg(II) or Cd(II) giving detection limits in the low μmolL(-1) range. Phytochelatins are low molecular weight peptides with the general structure γ-(Glu-Cys)n-Gly (n=2-5) which are synthesized in plants in the presence of heavy metal ions. These compounds can chelate heavy metal ions by the formation of complexes which, are transported to the vacuoles, where the toxicity is not threatening. For this reason phytochelatins are essential in the detoxification of heavy metal ions in plants. The developed HPLC method uses a mobile phase of 1% of formic acid in water with KNO3 or NaCl (pH=2.00) and 1% of formic acid in acetonitrile. Electrochemical detection at different carbon-based electrodes was used. Among the sensors tested, the conventional glassy carbon electrode offers the best sensitivity although modification improves the sensitivity of the SPCE. Glutathione and several isoforms of phytochelatin two were found in plant extracts of both studied species. PMID:26212803

  2. Methanol Oxidation over TiO2-modified Multi-walled Carbon Nanotubes Supported Pt-Mo Electrocatalyst

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-yu; JIANG Yuan-sheng; ZHU Hong; ZHANG Jing-chang

    2011-01-01

    In order to develop a novel and high-performance catalytic material for direct methanol fuel cells(DMFC),molybdenum oxide as a co-catalyst with Pt on multi-walled carbon nanotubes which were modified by titanium dioxide(denoted as CNTs@TiO2) was investigated. The physicochemical characterizations of the catalysts were carried out via X-ray diffraction(XRD), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS).Cyclic voltammetry(CV) showed that the CO-tolerance performance increased in the sequence of Pt/CNTs<Pt/CNTs@TiO2<Pt-Mo/CNTs@TiO2. The improved CO-tolerance performance of the Pt-Mo/CNTs@TiO2 catalyst can be attributed to the combined beneficial effects of highly dispersed Pt nanoparticles on the CNTs, the existence of oxygen holes in the MoO3 layer structure and the oxidation capability of TiO2.

  3. Modified multi-walled carbon nanotube/Ag nanoparticle composite catalyst for the oxygen reduction reaction in alkaline solution

    International Nuclear Information System (INIS)

    Highlights: • Ag/m-MWCNT catalyst is prepared by a facile in situ growth method. • Ag nanoparticles with a mean diameter of 10.6 nm are anchored to the surfaces of m-MWCNTs. • Ag/m-MWCNT catalyst shows high electrocatalytic activity for ORR in alkaline solution. -- Abstract: The modified multi-walled carbon nanotubes (m-MWCNTs)/Ag composite catalyst (Ag/m-MWCNTs) is prepared successfully by a facile in situ growth method. The physicochemical properties of Ag/m-MWCNTs are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The results demonstrate that the dispersed Ag nanoparticles are anchored on the surface of m-MWCNTs with a mean diameter about 10.6 nm. The as-prepared Ag/m-MWCNTs catalyst shows high electrocatalytic activity toward the oxygen reduction reaction (ORR) in alkaline media. The ORR is dominated by four-electron pathway in the limiting diffusion zone, which is similar to the commercial Pt/C catalyst. The high catalytic activity of the Ag/m-MWCNTs can ascribe to the dispersed Ag nanoparticles on the m-MWCNTs which not only facilitate the ORR process, but also may promote the decomposition or further reduction of HO2− formed at the surfaces of the MWCNTs

  4. Chirality-Selective Photoluminescence Enhancement of ssDNA-Wrapped Single-Walled Carbon Nanotubes Modified with Gold Nanoparticles.

    Science.gov (United States)

    Yang, Juan; Zhao, Qinghua; Lyu, Min; Zhang, Zhenyu; Wang, Xiao; Wang, Meng; Gao, Zhou; Li, Yan

    2016-06-01

    In this work, a convenient method to enhance the photoluminescence (PL) of single-walled carbon nanotubes (SWNTs) in aqueous solutions is provided. Dispersing by single-stranded DNA (ssDNA) and modifying with gold nanoparticles (AuNPs), about tenfold PL enhancement of the SWNTs is observed. More importantly, the selective PL enhancement is achieved for some particular chiralities of interest over all other chiralities, by using certain specific ssDNA sequences that are reported to recognize these particular chiralities. By forming AuNP-DNA-SWNT nanohybrids, ssDNA serves as superior molecular spacers that on one hand protect SWNT from direct contacting with AuNP and causing PL quench, and on the other hand attract the AuNP in close proximity to the SWNT to enhance its PL. This PL enhancement method can be utilized for the PL analysis of SWNTs in aqueous solutions, for biomedical imaging, and may serve as a prescreening method for the recognition and separation of single chirality SWNTs by ssDNA. PMID:27128378

  5. The synergy of ultrasonic treatment and organic modifiers for tuning the surface chemistry and conductivity of multiwalled carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Omastová, M.; Mičušík, M.; Fedorko, P.; Pionteck, J.; Kovářová, Jana; Chehimi, M. M.

    2014-01-01

    Roč. 46, 10-11 (2014), s. 940-944. ISSN 0142-2421. [European Conference on Applications of Surface and Interface Analysis /15./ - ECASIA 2013. Cagliari, 13.10.2013-18.10.2013] Institutional support: RVO:61389013 Keywords : carbon nanotubes * surface modification * surfactant Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.245, year: 2014

  6. Detection of p53 Gene by Using Genomagnetic Assay Combined with Carbon Nanotube Modified Disposable Sensor Technology

    Czech Academy of Sciences Publication Activity Database

    Congur, G.; Plucnara, Medard; Erdem, A.; Fojta, Miroslav

    2015-01-01

    Roč. 27, č. 7 (2015), s. 1579-1586. ISSN 1040-0397 R&D Projects: GA ČR GAP206/11/1638 Institutional support: RVO:68081707 Keywords : p53 Gene * Carbon nanotubes * Magnetic particles Subject RIV: BO - Biophysics Impact factor: 2.138, year: 2014

  7. Nonenzymatic sensing of glucose using a carbon ceramic electrode modified with a composite film made from copper oxide, over oxidized polypyrrole and multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    A carbon ceramic electrode was modified with a thin film composed of over oxidized polypyrrole, CuO and multi-walled carbon nanotubes. The surface morphology, electrochemical properties and electrocatalytic activity towards the oxidation of glucose of the modified electrode were studied in detail. Benefiting from the high electrocatalytic activity of CuO, the selectivity of OPpy film, and the fast electron transfer rate promoted by MWCNTs, this modified electrode displays good stability, selectivity, high electrocatalytic activity and a low detection limit for the determination of glucose in pH 13 solution. Under the optimum conditions, the linear range for the determination of glucose by cyclic voltammetry is from 20 μM to 10 mM, and the detection limit is 4.0 μM (at an SNR of 3). The amperometric calibration plot covers the 0.20 μM to 2.0 mM concentration range, and the detection limit is 50 nM. The highest sensitivity for the determination of glucose is 3922.6 μA mM−1 cm2. (author)

  8. Potentiometric stripping analysis of bismuth based on carbon paste electrode modified with cryptand [2.2.1] and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    An electrochemical method based on potentiometric stripping analysis (PSA) employing a cryptand [2.2.1] (CRY) and carbon nanotube (CNT) modified paste electrode (CRY-CNT-PE) has been proposed for the subnanomolar determination of bismuth. The characterization of the electrode surface has been carried out by means of scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronocoulometry (CC). It was observed that by employing CRY-CNT-PE, a 9-fold enhancement in the PSA signal (dt/dE) was observed as compared to plain carbon paste electrode (PCPE). Under the optimized conditions, dt/dE (s/V) was proportional to the Bi(III) concentration in the range of 5.55 x 10-8 to 9.79 x 10-11 M (r = 0.9990) with the detection limit (S/N = 3) of 3.17 x 10-11 M. The practical analytical utilities of the modified electrode were demonstrated by the determination of bismuth in pharmaceutical formulations, human hair, sea water, urine and blood serum samples. The prepared modified electrode showed several advantages, such as a simple preparation method, high sensitivity, very low detection limits and excellent reproducibility. Moreover, the results obtained for bismuth analysis in commercial and real samples using CRY-CNT-PE and those obtained by atomic absorption spectroscopy (AAS) are in agreement at the 95% confidence level.

  9. Transport Through Carbon Nanotube Wires

    Science.gov (United States)

    Anantram, M. P.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation deals with the use of carbon nanotubes as a transport system. Contact, defects, tubular bend, phonons, and mechanical deformations all contribute to reflection within the nanotube wire. Bragg reflection, however, is native to an ideal energy transport system. Transmission resistance depends primarily on the level of energy present. Finally, the details regarding coupling between carbon nanotubes and simple metals are presented.

  10. Carbon nanotubes: synthesis and functionalization

    OpenAIRE

    Andrews, Robert

    2007-01-01

    This thesis focuses on two of the major challenges of carbon nanotube (CNT) research: understanding the growth mechanism of nanotubes by chemical vapour deposition (CVD) and the positioning of nanotubes on surfaces. The mechanism of growth of single–walled nanotubes (SWNTs) has been studied in two ways. Firstly, a novel iron nanoparticle catalyst for the production of single–walled nanotubes was developed. CVD conditions were established that produced high quality tubes. These optimised C...

  11. Electrohemical Properties of Carbon Nanotube Paste Electrodes Modified with Redox Cationic Dyes - doi: 10.4025/actascitechnol.v34i3.15250

    Directory of Open Access Journals (Sweden)

    Juliana Maria Ramos Antônio

    2012-05-01

    Full Text Available The present work describes the electrochemical behavior of cationic dyes (methylene blue and toluidine blue as electron mediators adsorbed in the multiwall carbon nanotubes paste in 0.5 KCl at pH 7.0 by using cyclic voltammetry. Based on midpoint potential [Em = (Eap + Ecp/2] and separation of cathodic and anodic peaks (ΔE, it was not observed interaction of different eletrolytes (LiCl, KCl, BaCl2, CaCl2, NaCl, NaNO3, Na2SO4 and NaClO4, with the cationic dyes by an ion exchange reaction and, as a consequence, absence of leaching of cationic dyes to the solution phase.  The kinetics of electron transfer on the surface electrode was not sufficiently fast showing a fairly resistence of carbon nanotube paste modified with the cationic dyes.  The midpoint potential and ΔE also were insentive to the pH range (4-8, confirming the protective effect of carbon nanotubes matrix, owing to strong interaction of between the latter and the nitrogen of nitrogen of cationic dyes with carbon nanotube matrix, minimizing the proton interaction under cationic dye. This result is very important for sensor/biosensor preparation, because the eletrooxidation behavior of the analyte will be only affected by its formal potencial shifting.  Carbon nanotubes proved to be an efficient solid matrix for the adsorption of mediator electron in comparison to the electrochemical behavior of free cationic dyes in solution phase.

  12. Enzyme entrapment by β-cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode.

    Science.gov (United States)

    Alarcón-Ángeles, G; Guix, M; Silva, W C; Ramírez-Silva, M T; Palomar-Pardavé, M; Romero-Romo, M; Merkoçi, A

    2010-12-15

    A novel enzyme entrapment approach based on an electropolymerization process utilizing multi-walled carbon nanotubes (MWCNT), β-cyclodextrin (β-CD) and glucose oxidase (GOx) is shown. Dopamine (DA) quantification is presented using a screen-printed electrode modified by electropolymerization of cyclodextrin with glucose oxidase, SPE/MWCNT/β-CD-GOx. In order to show the relevance of the enzyme entrapment strategy controlled by electropolymerization to develop a specific and efficient biosensor, the various parts composing the electrode: SPE, SPE/β-CD, SPE/GOx, SPE/β-CD/GOx, SPE/MWCNT/β-CD, SPE/MWCNT/GOx and SPE/MWCNT/β-CD/GOx were tested separately. It was shown that although DA determination can be achieved with all of them, the electrodes modified with MWCNT presented better analytical features that those built without MWCNT, the best being the one including all components. This biosensor displayed good reproducibility, repeatability, and prolonged life-time under cold storage conditions. Its DA limit of detection (LOD) was 0.48±0.02 μA in a linear range of 10-50 μM with a sensitivity of 0.0302±0.0003 μA μM(-1) that makes it comparable or even better than many other electrodes reported in the literature. Moreover, it was also shown that using this electrode, DA quantification can be done in the presence of interfering agents such as ascorbic and uric acid. These findings demonstrate that the approach employed is feasible for enzyme entrapment and may find applications in other biosensing systems, where better sensitivity, stability and fast response are required. PMID:20863684

  13. High frequency carbon nanotube devices

    Science.gov (United States)

    Goffman, M. F.; Chimot, N.; Mile, E.; Monteverde, M. C.; Bourgoin, J.-P.; Derycke, V.

    2008-08-01

    We investigate high frequency electrical and mechanical performances of carbon nanotube based devices. Using configurations with multiple single-wall nanotubes in parallel, we show that HF nanotube transistors with intrinsic cut-off frequencies as high as 30 GHz can be obtained on rigid substrates. Adapting our process to plastic substrates, we also obtained highly flexible HF transistors showing constant transconductances up to at least 6 GHz, as-measured cut-off frequencies as high as 1 GHz (5-8 GHz after de-embedding) and stable DC performances upon bending. We probed electromechanical properties of individual suspended carbon multiwall nanotubes by using a modified AFM. DC deflection measurements on different devices are in agreement with a continuum model prediction and consistent with a Young's modulus of 0.4 TPa. Preliminary HF measurements on a doubly clamped device showed a resonant frequency of 200MHz consistent with a Young's modulus of 0.43 TPa. This implies that built-in mechanical stress in the case of MWNTs is negligeable.

  14. Electrochemiluminescence biosensor for determination of organophosphorous pesticides based on bimetallic Pt-Au/multi-walled carbon nanotubes modified electrode.

    Science.gov (United States)

    Miao, Shan Shan; Wu, Mei Sheng; Ma, Li Ya; He, Xiao Jing; Yang, Hong

    2016-09-01

    A novel and highly sensitive electrochemiluminescence (ECL) biosensing system was designed and developed for individual detection of different organophosphorous pesticides (OPs) in food samples. Bimetallic Pt-Au nanoparticles were electrodeposited on multi-walled carbon nanotubes (MWNTs)-modified glass carbon electrode (GCE) to increase the surface area of electrode and ECL signals of luminol. Biocomposites of enzymes from acetylcholinesterase and choline oxidase (AChE and ChOx) were immobilized onto the electrode surface to produce massive hydrogen peroxides (H2O2), thus amplifying ECL signals. Based on the dual-amplification effects of nanoparticles and H2O2 produced by enzymatic reactions, the proposed biosensor exhibits highly sensitivity. The proposed biosensing approach was then used for detecting OPs by inhibition of OPs on AChE. Under optimized experimental conditions, the ECL intensity decreased accordingly with the increase in concentration of OPs, and the inhibition rates of OPs were proportional to their concentrations in the range of 0.1-50nmolL(-1) for malathion, methyl parathion and chlorpyrifos, with detection limit of 0.16nmolL(-1), 0.09nmolL(-1) and 0.08nmolL(-1), respectively. The linearity range of the biosensor for pesticide dufulin varied from 50 to 500nmolL(-1), with the detection limit of 29.7nmolL(-1). The resulting biosensor was further validated by assessment of OPs residues in cabbage, which showed a fine applicability for the detection of OPs in the realistic sample. PMID:27343588

  15. Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes-poly(acrylamide) nanocomposite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yanbo [Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663 Zhongshan Road(N), Shanghai, 200062 (China); College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001 (China); Yu, Dajun; Yu, Yanyan [Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663 Zhongshan Road(N), Shanghai, 200062 (China); Zhou, Tianshu [Department of Environmental Science, East China Normal University, 3663 Zhongshan Road(N), Shanghai, 200062 (China); Shi, Guoyue, E-mail: gyshi@chem.ecnu.edu.cn [Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663 Zhongshan Road(N), Shanghai, 200062 (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer A sensitive electrochemical sensor for detecting methyl parathion in environmental samples. Black-Right-Pointing-Pointer The preparation, characterization and application of this novel MWCNTs-PAAM nanocomposite. Black-Right-Pointing-Pointer The MWCNTs-PAAM/GCE exhibited a high adsorption and strong affinity toward methyl parathion. Black-Right-Pointing-Pointer Wide linear range and low detection limit of the proposed method for detecting methyl parathion. - Abstract: A sensitive electrochemical differential pulse voltammetry method was developed for detecting methyl parathion based on multiwalled carbon nanotubes-poly(acrylamide) (MWCNTs-PAAM) nanocomposite film modified glassy carbon electrode. The novel MWCNTs-PAAM nanocomposite, containing high content of amide groups, was synthesized by PAAM polymerizing at the vinyl group functionalized MWCNTs surface using free radical polymerization. The MWCNTs-PAAM nanocomposite was characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis and scanning electron microscopy. Electrochemical behavior and interference studies of MWCNTs-PAAM/GCE for methyl parathion were investigated. The experimental results demonstrated that the MWCNTs-PAAM/GCE exhibited a high adsorption and strong affinity toward methyl parathion compared with some metal ions and nitroaromatic compounds, which exist in environmental samples. The adsorbed amount of methyl parathion on the MWCNTs-PAAM/GCE approached the equilibrium value upon 5 min adsorption time. A linear calibration curve for methyl parathion was obtained in the concentration range from 5.0 Multiplication-Sign 10{sup -9} to 1.0 Multiplication-Sign 10{sup -5} mol L{sup -1}, with a detection limit of 2.0 Multiplication-Sign 10{sup -9} mol L{sup -1}. The MWCNTs-PAAM/GCE was proved to be a suitable sensing tool for the fast, sensitive and selective determination of methyl parathion in environmental water samples.

  16. Determination of cadmium(II) using glassy carbon electrodes modified with cupferron, β-naphthol, and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    We report on a simple and reliable method for the determination of trace cadmium ion using a glassy carbon electrode (GCE) modified with cupferron, β-naphthol and MWCNTs. The operational mechanism consists of several steps: first, the ligand cupferron on the modified electrode reacts with Cd2+ ion to form a chelate compound. Next, this chelate is adsorbed by the carrier β-following the principle of organic co-precipitation. Finally, the coprecipitated complex is detected by the GCE. This scheme is interesting because it combines preconcentration and electrochemical detection. Two linear responses are obtained, one in the concentration range of 5.0 x 10-11 to 1.6 x 10-8 M, the other in the range of 1.6 x 10-8 to 1.42 x 10-6 M, with a lower detection limit of 1.6 x 10-11 M. This modified GCE does not suffer from significant interferences by Cu(II), Hg(II), Ag(I), Fe(III), Pb(II), Cr(III), Zn(II), NO3-, Cl-, SO42- ions and EDTA. The response of the electrode remained constant for at least 3 weeks of successive operation. The method presented here provides a new way for the simultaneous separation, enrichment, and electrochemical detection of trace cadmium ion. (author)

  17. Modifying the electronic structure of semiconducting single-walled carbon nanotubes by Ar+ ion irradiation

    NARCIS (Netherlands)

    Tolvanen, A.; Buchs, G.; Ruffieux, P.; Gröning, P.; Gröning, O.; Krasheninnikov, A.V.

    2009-01-01

    Local controllable modification of the electronic structure of carbon nanomaterials is important for the development of carbon-based nanoelectronics. By combining density-functional theory simulations with Ar-ion-irradiation experiments and low-temperature scanning tunneling microscopy and spectrosc

  18. Application of carbon nanotubes in modified oxidase biosensors%碳纳米管在修饰酶传感器中的应用

    Institute of Scientific and Technical Information of China (English)

    赵文秀; 董宏博; 张伟萍; 崔桂花

    2008-01-01

    碳纳米管是一种新兴的纳米材料,碳纳米管良好的电子传递能力使其可用于修饰电极,可以降低化学物质氧化还原反应的过电位,改善生物分子氧化还原可逆性;其大比表面积有利于酶的固定化,还能促进酶活性中心与电极表面的电子传递;功能化的碳纳米管还能与各种生物分子键合将其固定于电极表面.随着制备和纯化工艺的改进,碳纳米管将为生物传感器的发展开创更广阔的前景.本文总结和分析碳纳米管在生物传感器中的应用、研究现状和发展趋势.综述了吸附型、糊类、原位生长(阵列)型和共价键合型等几种类型碳纳米管修饰酶传感器及在DNA生物传感器中的应用,并对各种传感器的制备、特点和研究现状进行了述评.%Carbon nanotubes are a novel kind of nano-materials, and contribute to modify electrodes using their good capacity of electric transmission. Furthermore, carbon nanotubes may reduce the overpotential caused by the oxidation-reduction reaction of chemical materials, and ameliorate the oxidation-reduction reversibility of the biomolecules; Their wide specific surface area leads to enzyme immobilization and promote the electric transmission between enzyme active center and electrode surface; Functionalized carbon nanotubes bonding with various biomolecules will benefit to fix these biomolecules on the electrode surface. With the development of preparation and purification techniques, carbon nanotubes may widen the prospect of biosensors applied. The aim of this paper is to summarize and analyze the application, research status and development tendency of carbon nanotubes with regard to biosensors. Moreover, this paper reviews various carbon nanotubes modified oxidase biosensors, such as adsorption, paste, array and covalent bond, together with their application on DNA biosensor. The preparation, characteristics and research status of various sensors are also summarized.

  19. Preparation of electrochemically reduced graphene oxide/multi-wall carbon nanotubes hybrid film modified electrode, and its application to amperometric sensing of rutin

    Indian Academy of Sciences (India)

    Uling Yang; Gang Li; Meifang Hu; Lingbo Qu

    2014-07-01

    Through a facile electrochemical method, we prepared an electrochemically reduced graphene oxide (ERGO)/multi-wall carbon nanotubes (MWNTs) hybrid film modified glassy carbon electrode (GCE), and characterized it by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and x-ray diffraction (XRD) The experimental results demonstrated that ERGO-MWNTs/GCE exhibited excellent electrocatalytic activity toward rutin as evidenced by the significant enhancement of redox peak currents in comparison with a bare GCE, ERGO/GCE and MWNTs/GCE. This method has been applied for the direct determination of rutin in real samples with satisfactory results.

  20. Direct electrochemistry and electrocatalysis of hemoglobin with carbon nanotube-ionic liquid-chitosan composite materials modified carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    A novel composite biomaterial was prepared by combining chitosan, multi-walled carbon nanotubes (MWCNTs), hemoglobin (Hb) and ionic liquid (IL) 1-butyl-3-methyl-imidazolium bromide together, which was further modified on the surface of a carbon ionic liquid electrode (CILE) with another ionic liquid 1-ethyl-3-methylimidazolium ethylsulphate as the binder. Ultraviolet-visible and Fourier transform infrared spectroscopic results indicated that Hb molecules in the composite film retained the native structure. Cyclic voltammetric results showed that a pair of well-defined redox peaks appeared in 0.1 mol/L phosphate buffer solution, indicating that the direct electron transfer of Hb in the composite film with the underlying electrode was realized. The results were attributed to the synergistic effect of MWCNTs and IL in the composite film, which promoted the electron transfer rate of Hb. The composite material modified electrode showed excellent electrocatalytic ability towards the reduction of different substrates such as trichloroacetic acid and NaNO2 with good stability and reproducibility.

  1. An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples.

    Science.gov (United States)

    Madrakian, Tayyebeh; Maleki, Somayeh; Heidari, Mozhgan; Afkhami, Abbas

    2016-06-01

    In this paper a sensitive and selective electrochemical sensor for determination of rizatriptan benzoate (RZB) was proposed. A glassy carbon electrode was modified with nanocomposite of multiwalled carbon nanotubes (MWCNTs) and Fe3O4 nanoparticles (Fe3O4/MWCNTs/GCE). The results obtained clearly show that the combination of MWCNTs and Fe3O4 nanoparticles definitely improves the sensitivity of modified electrode to RZB determination. The morphology and electroanalytical performance of the fabricated sensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), square wave voltammetry (SWV) and cyclic voltammetry (CV). Also, the effect of experimental and instrumental parameters on the sensor response was evaluated. The square wave voltammetric response of the electrode to RZB was linear in the range 0.5-100.0μmolL(-1) with a detection limit of 0.09μmolL(-1) under the optimum conditions. The investigated method showed good stability, reproducibility and repeatability. The proposed sensor was successfully applied for real life samples of blood serum and RZB determination in pharmaceutical. PMID:27040259

  2. Voltammetric and amperometric determination of hydrogen peroxide using a carbon-ceramic electrode modified with a nanohybrid composite made from single-walled carbon nanotubes and silver nanoparticles

    International Nuclear Information System (INIS)

    A nanohybrid composite material was prepared from single-walled carbon nanotubes and silver nanoparticles, and used to fabricate a modified carbon-ceramic electrode. The preparation of the composite is facile and efficient. The nanohybrid composite deposited on the carbon-ceramic electrode was characterized by X-ray diffraction and cyclic voltammetry. The new electrode displays favorable electrocatalytic ability towards hydrogen peroxide (HO2) and can be used to electrocatalytically reduce this species. Under the optimum conditions, the current measured during hydrodynamic amperometry is linearly related to the concentration of H2O2 over the concentration range from 0.01 to 8 mM, with a detection limit of 2 x 10-7 M at a signal-to-noise ratio of 3 and sensitivity of 3.23 μA/mM. The electrode exhibits good reproducibility, long-term stability and negligible interference by dopamine, uric acid, and other important biological compounds. The electrode was successfully applied to the determination of H2O2 in honey samples, and the recovery was 101.2%. (author)

  3. Reinforcing effect of plasma modified halloysite nanotubes in a carbon black filled natural rubber-butadien rubber matrix

    OpenAIRE

    Poikelispaa, Minna; Das, Amit; Dierkes, Wilma; Vuorinen, Jyrki

    2011-01-01

    Rubber composites are generally produced by the direct incorporation of fillers like carbon black and/or silica into the rubber matrix. The incorporation of different types of nanofillers is the subject of recent research with the aim of preparing composites with special compositions and properties. A successful application of such composites depends mainly on the degree of dispersion of the nano-sized fillers. Recently, a naturally occurring clay mineral, halloysite nanotubes (HNTs), is inve...

  4. Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin

    International Nuclear Information System (INIS)

    Single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and graphene have been tested as carbon allotropes for the modification of carbon screen-printed electrodes (CSPEs) to simultaneously determine melatonin (MT) and serotonin (5-HT). Two groups of CSPEs, both 4 mm in diameter, were explored: The first includes commercial SWCNT, MWCNT and graphene, the second includes SWCNT, MWCNT, graphene oxide nanoribbons and reduced nanoribbons that were drop casted on the electrodes. The carbon nanomaterials enhanced the electroactive area in the following order: CSPE carbon nanomaterials, in particular of graphene oxide nanoribbons on CSPEs, represents an excellent and disposable tool for sensing the two target molecules in even small sample volumes. Figures of merit for MT and 5-HT include (a) detection limit of 1.1 and 0.4 μM for MT and 5-HT, respectively; (b) an inter-electrode reproducibility with RSD ≤ 8 %; (c) 120 s response time, and (d) recoveries (in case of spiked samples) ranging from 94 to 103 % (with an RSD < 1 %). (author)

  5. Electrochemical sandwich immunoassay for the peptide hormone prolactin using an electrode modified with graphene, single walled carbon nanotubes and antibody-coated gold nanoparticles

    International Nuclear Information System (INIS)

    We describe a new kind of electrochemical immunoassay for the peptide hormone prolactin. A glassy carbon electrode (GCE) was modified with a hybrid material consisting of graphene, single walled carbon nanotubes and gold nanoparticles (AuNPs) in a chitosan (CS) matrix. The graphene and the single wall carbon nanotubes were first placed on the GCE, and the AuNPs were then electrodeposited on the surface by cyclic voltammetry. This structure results in a comparably large surface for immobilization of the capturing antibody (Ab1). The modified electrode was used in a standard sandwich-type of immunoassay. The secondary antibody (Ab2) consisted of AuNPs with immobilized Ab2 and modified with biotinylated DNA as signal tags. Finally, alkaline phosphatase was bound to the biotinylated DNA-AuNPs-Ab2 conjugate via streptavidin chemistry. The enzyme catalyzes the hydrolysis of the α-naphthyl phosphate to form α-naphthol which is highly electroactive at an operating voltage as low as 180 mV (vs. Ag/AgCl). The resulting immunoassay exhibits high sensitivity, wide linear range (50 to 3200 pg∙mL-1), low detection limit (47 pg∙mL-1), acceptable selectivity and reproducibility. The assay provides a pragmatic platform for signal amplification and has a great potential for the sensitive determination of antigens other than prolactine. (author)

  6. Synthesis and CO{sub 2} adsorption study of modified MOF-5 with multi-wall carbon nanotubes and expandable graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Sami, E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Bustam, M. A., E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Shariff, A. M., E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Elkhalifah, Ali E. I., E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Murshid, G., E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Riaz, Nadia, E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com [Research Center for Carbon Dioxide Capture, Dept. of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Sri Iskandar, Tronoh 31750 Perak (Malaysia)

    2014-10-24

    MOF-5 was synthesized by solvothermal method and its reactivation under anhydrous conditions. This research is conducted to investigate the effect of MOF-5 and MOF-5 modified with multi-wall carbon nanotubes (MWCNTs) and expandable graphite (EG) on the performance of CO{sub 2} adsorption. The synthesized MOFs were characterized using Field emission scanning electron microscopy (FESEM) for surface morphology, Thermogravimetric analysis (TGA) for thermal stability, X-ray diffraction (XRD) for crystals plane, Brunauer-Emmet-Teller (BET) for surface area and CO{sub 2} adsorption. The result had showed that the modified MOF-5 enhanced the CO{sub 2} adsorption compared to the pure MOF-5. The increment in the CO{sub 2} uptake capacities of MOF materials was attributed to the decrease in the pore size and enhancement of micropore volume of MOF-5 by multi-walled carbon nanotube and EG incorporation. The BET surface area of the synthesized MOF-5@MWCNTs is more than MOF-5. The CO{sub 2} sorption capacities of MOF-5 and MOF-5@MWCNTs were observed to increase from 0.00008 to 0.00048 mol g-1 at 298 K and 1 bar. The modified MOF-5@MWCNTs resulted in the highest CO{sub 2} adsorption followed by the modified MOF-5@ EG and lastly, MOF-5.

  7. Carbon nanotube network varactor

    International Nuclear Information System (INIS)

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. (paper)

  8. Carbon nanotube network varactor

    Science.gov (United States)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  9. Carbon nanotube IR detectors (SV)

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  10. An amperometric hydrogen peroxide biosensor based on Co{sub 3}O{sub 4} nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra, E-mail: erdenpe@gmail.com; Kiliç, Esma

    2014-08-30

    Highlights: • Hydrogen peroxide biosensor was constructed by combining the advantageous properties of MWCNTs and Co{sub 3}O{sub 4}. • Incorporating Co{sub 3}O{sub 4} nanoparticles into MWCNTs/gelatin film increased the electron transfer. • Co{sub 3}O{sub 4}/MWCNTs/gelatin/HRP/Nafion/GCE showed strong anti-interference ability. • Hydrogen peroxide was successfully determined in disinfector with an average recovery of 100.78 ± 0.89. - Abstract: In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co{sub 3}O{sub 4} nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co{sub 3}O{sub 4} nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at −0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10{sup −7}–1.9 × 10{sup −5} M with a detection limit of 7.4 × 10{sup −7}. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  11. From Carbon Nanotube Crystals to Carbon Nanotube Flowers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhengjun; ZHAO Ye; ZHOU Ya

    2005-01-01

    We have investigated the very initial deposition stages of chemical vapor deposition (CVD) with ferrocene (Fe(C5H5)2) and xylene (C8H10) for growing carbon nanotubes, and made clear that the mechanism for the self-organization behaviors of nanotubes at different growth stages by this approach. For instance, the organization of nanotubes into flower-like structures at prolonged deposition is developed from the crystal-like structures formed at early growth stages, both of which are closely related to and determined by the very initial deposition stages of this CVD approach. Based on this approach, ways have been established to build up different architectures of carbon nanotubes, by controlling the initial deposition stages of the CVD process, with which we have realized the selective growth of self-organized carbon nanotube structures. This study provides a new idea for growing carbon nanotube architectures by CVD.

  12. Geometric and electronic structure of carbon nanotube networks: 'super'-carbon nanotubes

    Science.gov (United States)

    Coluci, V. R.; Galvão, D. S.; Jorio, A.

    2006-02-01

    Structures of the so-called super-carbon nanotubes are proposed. These structures are built from single walled carbon nanotubes connected by Y-like junctions forming a 'super'-sheet that is then rolled into a seamless cylinder. Such a procedure can be repeated several times, generating a fractal structure. This procedure is not limited to carbon nanotubes, and can be easily modified for application to other systems. Tight binding total energy and density of states calculations showed that the 'super'-sheets and tubes are stable and predicted to present metallic and semiconducting behaviour.

  13. Process for derivatizing carbon nanotubes with diazonium species

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  14. Biosensor for bisphenol A leaching from baby bottles using a glassy carbon electrode modified with DNA and single walled carbon nanotubes

    International Nuclear Information System (INIS)

    We have developed a biosensor for highly sensitive and selective determination of the endocrinic disruptor bisphenol A (BPA). It is based on glassy carbon electrode modified with calf thymus DNA and a composite prepared from single walled carbon nanotubes (SWNT) and Nafion. The interaction between BPA and DNA was studied by voltammetry. The binding constant was determined to be 3.55 × 103 M−1, and the binding site has a length of 4.3 base pairs. These electrochemical studies provide further information for a better understanding of the toxicity and carcinogenicity of BPA. Under optimal conditions, the biosensor displays a linear electrochemical response to BPA in the 10 nM to 20 μM concentration range, with a detection limit as low as 5.0 nM (at an S/N of 3). The method was successfully applied to the quantification of BPA in leachates from plastic baby bottles. Recoveries range from 94.0 % to 106.0 % which underpins the excellent performance of this SWNT-based DNA sensor. (author)

  15. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    Science.gov (United States)

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3σ of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour. PMID:25435239

  16. Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles

    International Nuclear Information System (INIS)

    We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNT) and an ionic liquid (IL). Electrochemical studies revealed an optimized composition of 60 % graphite, 20 % paraffin, 10 % MWCNT and 10 % IL. In a next step, the optimized CPE was modified with palladium nanoparticles (Pd-NPs) by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. It gives three sharp and well separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA), with peak separations of 180 and 200 mV for AA-DA and DA-UA, respectively. The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.6 to 112, 0.1 to 151, and 0.5 to 225 μM, respectively, and with 200, 30 and 150 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine. (author)

  17. Immunoassay for serum amyloid A using a glassy carbon electrode modified with carboxy-polypyrrole, multiwalled carbon nanotubes, ionic liquid and chitosan

    International Nuclear Information System (INIS)

    We report on a highly sensitive electrochemical immunoassay for the serum inflammation marker amyloid A (SAA). It is making use of a glassy carbon electrode that was modified with carboxy-endcapped polypyrrole (PPy-α-COOH), multiwalled carbon nanotubes (MWCNTs), ionic liquid and chitosan acting as the support platform. The nanocomposite increases the sensitivity and stability of the assay. Antibody against SAA was immobilized on a monolayer surface consisting of PPy-α-COOH. The electrode material was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. The calibration plot for this assay, when operated at 0.16 V (vs. SCE) and applied to spiked serum samples, is linear in the 0.001 to 900 ng mL−1 SAA concentration range, and the detection limit is as low as 0.3 pg mL−1 (at an S/N ratio of 3). The electrode is stable and highly sensitive. The detection scheme is likely to be applicable to numerous other kinds of immunoassays. (author)

  18. Carbon nanotube core graphitic shell hybrid fibers.

    Science.gov (United States)

    Hahm, Myung Gwan; Lee, Jae-Hwang; Hart, Amelia H C; Song, Sung Moo; Nam, Jaewook; Jung, Hyun Young; Hashim, Daniel Paul; Li, Bo; Narayanan, Tharangattu N; Park, Chi-Dong; Zhao, Yao; Vajtai, Robert; Kim, Yoong Ahm; Hayashi, Takuya; Ku, Bon-Cheol; Endo, Morinobu; Barrera, Enrique; Jung, Yung Joon; Thomas, Edwin L; Ajayan, Pulickel M

    2013-12-23

    A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes. PMID:24224730

  19. Preparation of yttrium hexacyanoferrate/carbon nanotube/Nafion nanocomposite film-modified electrode: Application to the electrocatalytic oxidation of L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Qu Lingbo, E-mail: qulingbo@zzu.edu.c [Department of Chemistry, Zhengzhou University, Kexue Road, Zhengzhou 450001 (China); Chemistry and Chemical Engineering School, Henan University of Technology, Zhengzhou 450001 (China); College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455002 (China); Yang Suling [Department of Chemistry, Zhengzhou University, Kexue Road, Zhengzhou 450001 (China); Li Gang [College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455002 (China); Yang Ran; Li Jianjun; Yu Lanlan [Department of Chemistry, Zhengzhou University, Kexue Road, Zhengzhou 450001 (China)

    2011-02-28

    An yttrium hexacyanoferrate nanoparticle/multi-walled carbon nanotube/Nafion (YHCFNP/MWNT/Nafion)-modified glassy carbon electrode (GCE) was constructed. Several techniques, including infrared spectroscopy, energy dispersive spectrometry, scanning electron microscopy and electrochemistry, were performed to characterize the yttrium hexacyanoferrate nanoparticles. The electrochemical behavior of the YHCFNP/MWNT/Nafion-modified GCE in response to L-cysteine oxidation was studied. The response current of L-cysteine oxidation at the YHCFNP/MWNT/Nafion-modified GCE was obviously higher than that at the bare GCE or other modified GCE. The effects of pH, scan rate and interference on the response to L-cysteine oxidation were investigated. In addition, on the basis of these findings, a determination of L-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was carried out. Under the optimum experimental conditions, the electrochemical response to L-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was fast (within 4 s). Linear calibration plots were obtained over the range of 0.20-11.4 {mu}mol L{sup -1} with a low detection limit of 0.16 {mu}mol L{sup -1}. The YHCFNP/MWNT/Nafion-modified GCE exhibited several advantages, such as high stability and good resistance against interference by ascorbic acid and other oxidizable amino acids.

  20. Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection

    International Nuclear Information System (INIS)

    Highlights: • CNTs/chitosan/GC electrode used as platform for electrodeposition of MnOx-nanoflakes. • Modified electrode has excellent catalytic activity for oxidation of Cr3+ at pH 3–7. • Detection limit and sensitivity of sensor for Cr3+ detection were 0.3 μM and 18.7 nA/μM. • Sensor has good stability and high selectivity in the presence of common interferences. • Sensor applied for the detection of Cr3+in real samples with satisfactory results. - Abstract: In this research a nanocomposite containing chitosan (Chit) and maltiwalled carbon nanotubes (MWCNTs) was applied as platform for immobilization of electrodeposited manganese oxide (MnOx) nanostructures. First, glassy carbon (GC) electrode modified with thin film of Chitosan/MWCNTs nanocomposite. Then MnOx nanostructures was electrodeposited onto Chitosan/MWCNTs modified GC electrode using combination of constant potential step (0.6 V) and cyclic voltammetry(0.3–0.6 V) techniques. The XRD patterns and scanning electron microscope images indicated immobilization of uniformly MnOx nanoflakes with high crystallite onto MWCNTs/Chit film. The modified electrode shows a well-defined redox couple for Mn2+/MnO2 system. Charge transfer coefficient (α), electron transfer rate constant (ks) and surface concentration (Γ) were 0.394, 3.44 s−1 and 3.3 × 10−11 mol cm−2, respectively. The modified electrode showed excellent electrocatalytic activity toward oxidation of chromium (III) at natural pH solutions. Cyclic voltammetry and hydrodynamic amperometery were applied as measuring techniques for chromium detection. Detection limit, sensitivity and linear concentration range of the sensor were, 0.3 (μM), 18.7 nAμ M−1 and 3 μM to 200 μM, respectively. Moreover, the sensor retained about 90% of its original response toward Cr(III) after storage three months in ambient condition. Furthermore, the sensor response toward different common interferences was negligible. Finally, the developed sensor

  1. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Afraz, Ahmadreza [Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan (Iran, Islamic Republic of); Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir [Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan (Iran, Islamic Republic of); Najafi, Mojgan [Department of Materials Engineering, Hamedan University of Technology (HUT), 65169 Hamedan (Iran, Islamic Republic of)

    2014-11-01

    We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNTs) and an ionic liquid (IL). Electrochemical studies by using a D-optimal mixture design in Design-Expert software revealed an optimized composition of 60% graphite, 14.2% paraffin, 10.8% MWCNT and 15% IL. The optimal modified CPE shows good electrochemical properties that are well matched with model prediction parameters. In the next step, the optimized CPE was modified with gold nanostructures by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electrochemical impedance spectroscopy. It gives three sharp and well-separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.3 to 285, 0.08 to 200, and 0.1 to 450 μM, respectively, and with 120, 30 and 30 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine. - Highlights: • New method for simultaneous determination of AA, DA and UA was developed. • MWCNT/ionic liquid/cauliflower-like Au nanostructure was used for CPE modification. • Optimization of electrode composition was done by Design-Expert software. • The pH effect, peak separation mechanism and real samples was thoroughly studied.

  2. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid

    International Nuclear Information System (INIS)

    We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNTs) and an ionic liquid (IL). Electrochemical studies by using a D-optimal mixture design in Design-Expert software revealed an optimized composition of 60% graphite, 14.2% paraffin, 10.8% MWCNT and 15% IL. The optimal modified CPE shows good electrochemical properties that are well matched with model prediction parameters. In the next step, the optimized CPE was modified with gold nanostructures by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electrochemical impedance spectroscopy. It gives three sharp and well-separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.3 to 285, 0.08 to 200, and 0.1 to 450 μM, respectively, and with 120, 30 and 30 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine. - Highlights: • New method for simultaneous determination of AA, DA and UA was developed. • MWCNT/ionic liquid/cauliflower-like Au nanostructure was used for CPE modification. • Optimization of electrode composition was done by Design-Expert software. • The pH effect, peak separation mechanism and real samples was thoroughly studied

  3. Sol-gel derived multiwalled carbon nanotubes ceramic electrode modified with molecularly imprinted polymer for ultra trace sensing of dopamine in real samples

    International Nuclear Information System (INIS)

    Highlights: → MWCNTs-CE was prepared by silane acrylate which provides a nanometer thin MIP film. → The sensor was modified by iniferter and MIP using 'surface grafting-from approach'. → A comparative study was performed between differentially designed ceramic electrodes. → The sensor can detect dopamine in real samples with LODs (0.143-0.154 ng mL-1). - Abstract: A new class of composite electrodes made of sol-gel derived ceramic-multiwalled carbon nanotubes is used for the growth of a nanometer thin film adopting 'surface grafting-from approach'. For this the multiwalled carbon nanotubes-ceramic electrode surface is first modified with an iniferter (benzyl N,N-diethyldithiocarbamate) and then dopamine imprinted polymer, under UV irradiation, for differential pulse anodic stripping voltammetric sensing of dopamine in aqueous, blood serum, cerebrospinal fluid, and pharmaceutical samples (detection limit 0.143-0.154 ng mL-1, 3σ), without any cross reactivity, interferences and false-positive contributions. Such composite electrodes offer higher stability, electron kinetics, and renewable porous surface of larger electroactive area (with insignificant capacitance) than carbon ceramic electrodes. Additional cyclic voltammetry (stripping mode) and chronocoulometry experiments were performed to explore electrodics and kinetics of electro-oxidation of dopamine.

  4. Highly sensitive amperometric sensor for micromolar detection of trichloroacetic acid based on multiwalled carbon nanotubes and Fe(II)–phtalocyanine modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kurd, Masoumeh [Department of Chemistry, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-04-01

    A highly sensitive electrochemical sensor for the detection of trichloroacetic acid (TCA) is developed by subsequent immobilization of phthalocyanine (Pc) and Fe(II) onto multiwalled carbon nanotubes (MWCNTs) modified glassy carbon (GC) electrode. The GC/MWCNTs/Pc/Fe(II) electrode showed a pair of well-defined and nearly reversible redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) with surface-confined characteristics. The surface coverage (Γ) and heterogeneous electron transfer rate constant (k{sub s}) of immobilized Fe(II)–Pc were calculated as 1.26 × 10{sup −10} mol cm{sup −2} and 28.13 s{sup −1}, respectively. Excellent electrocatalytic activity of the proposed GC/MWCNTs/Pc/Fe(II) system toward TCA reduction has been indicated and the three consequent irreversible peaks for electroreduction of CCl{sub 3}COOH to CH{sub 3}COOH have been clearly seen. The observed chronoamperometric currents are linearly increased with the concentration of TCA at concentration range up to 20 mM. Detection limit and sensitivity of the modified electrode were 2.0 μM and 0.10 μA μM{sup −1} cm{sup −2}, respectively. The applicability of the sensor for TCA detection in real samples was tested. The obtained results suggest that the proposed system can serve as a promising electrochemical platform for TCA detection. Highlights: ► Phthalocyanine (PC) and Fe(II) immobilized onto MWCNTs modified GC electrode. ► A pair of well-defined redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) observed. ► Modified electrode shows excellent catalytic activity to electroreduction of CCl{sub 3}COOH. ► Amperometry and cyclic voltammetry techniques were used for detection of CCl{sub 3}COOH. ► Detection limit and sensitivity were 2.0 μM and 0.10 μA μM{sup −1} cm{sup −2}, respectively.

  5. Studies of Carbon Nanotubes

    Science.gov (United States)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  6. Teslaphoresis of Carbon Nanotubes.

    Science.gov (United States)

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale. PMID:27074626

  7. Reactions over catalysts confined in carbon nanotubes.

    Science.gov (United States)

    Pan, Xiulian; Bao, Xinhe

    2008-12-21

    We review a new concept for modifying the redox properties of transition metals via confinement within the channels of carbon nanotubes (CNTs), and thus tuning their catalytic performance. Attention is also devoted to novel techniques for homogeneous dispersion of metal nanoparticles inside CNTs since these are essential for optimization of the catalytic activity. PMID:19048128

  8. Luminescence of carbon nanotube bulbs

    Institute of Scientific and Technical Information of China (English)

    LI ChuanGang; WU DeHai; WANG KunLin; WEI JinQuan; WEI BingQing; ZHU HongWei; WANG ZhiCheng; LUO JianBin; LIU WenJin; ZHENG MingXin

    2007-01-01

    Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400-2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.

  9. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications.

    Science.gov (United States)

    Yan, Yibo; Miao, Jianwei; Yang, Zhihong; Xiao, Fang-Xing; Yang, Hong Bin; Liu, Bin; Yang, Yanhui

    2015-05-21

    Carbon nanotubes are promising materials for various applications. In recent years, progress in manufacturing and functionalizing carbon nanotubes has been made to achieve the control of bulk and surface properties including the wettability, acid-base properties, adsorption, electric conductivity and capacitance. In order to gain the optimal benefit of carbon nanotubes, comprehensive understanding on manufacturing and functionalizing carbon nanotubes ought to be systematically developed. This review summarizes methodologies of manufacturing carbon nanotubes via arc discharge, laser ablation and chemical vapor deposition and functionalizing carbon nanotubes through surface oxidation and activation, doping of heteroatoms, halogenation, sulfonation, grafting, polymer coating, noncovalent functionalization and nanoparticle attachment. The characterization techniques detecting the bulk nature and surface properties as well as the effects of various functionalization approaches on modifying the surface properties for specific applications in catalysis including heterogeneous catalysis, photocatalysis, photoelectrocatalysis and electrocatalysis are highlighted. PMID:25855947

  10. Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode

    Directory of Open Access Journals (Sweden)

    Hayati Filik

    2016-05-01

    Full Text Available In this paper, multi-walled carbon nanotube/Azure A/gold nanoparticle composites (Nafion/AuNPs/AzA/MWCNTs were prepared by binding gold nanoparticles to the surfaces of Azure A-coated carbon nanotubes. Nafion/AuNPs/AzA/MWCNTs based electrochemical sensor was fabricated for the simultaneous determination of ascorbic acid, dopamine, uric acid, and tryptophan. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrochemical properties of the modified electrodes. The modified electrode showed excellent electrocatalytic activity toward ascorbic acid, dopamine, uric acid, and tryptophan (pH 7.0. The experiment results showed that the linear response range for simultaneous detection of AA, DA, UA and Trp were 300–10,000 μM, 0.5–50 μM, 0.5–50 μM and 1.0–100 μM, respectively, and the detection limits were 16 μM, 0.014 μM, 0.028 μM and 0.56 μM (S/N = 3. The proposed method offers promise for simple, rapid, selective and cost-effective analysis of small biomolecules. The procedure was also applied to the determination of tryptophan in spiked milk samples.

  11. Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin)

    International Nuclear Information System (INIS)

    We describe a nonenzymatic electrochemical sensor for uric acid. It is based on a carbon nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin) that was prepared in-situ by electropolymerization. The functionalized multi-walled carbon nanotubes and the surface morphology of the modified electrodes were characterized by transmission electronic microscopy and scanning electron microscopy. The electrochemical response of uric acid was studied by cyclic voltammetry and linear sweep voltammetry. The effects of scan rate, pH value, electropolymerization cycles and accumulation time were also studied. Under optimized experimental conditions and at a working voltage of 500 mV vs. Ag/AgCl (3 M KCl), response to uric acid is linear in the 0.6 to 400 μΜ and in the 0.4 to 1 mΜ concentration ranges, and the detection limit is 0.3 μΜ (at an S/N of 3). The electrode was successfully applied to the detection of uric acid in (spiked) human urine samples. (author)

  12. Boron carbide nanolumps on carbon nanotubes

    Science.gov (United States)

    Lao, J. Y.; Li, W. Z.; Wen, J. G.; Ren, Z. F.

    2002-01-01

    Boron carbide nanolumps are formed on the surface of multiwall carbon nanotubes by a solid-state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. Inner layers of multiwall carbon nanotubes are also bonded to boron carbide nanolumps. These multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal reinforcing fillers for high-performance composites because of the favorable morphology.

  13. An Effective Approach towards the Immobilization of PtSn Nanoparticles on Noncovalent Modified Multi-Walled Carbon Nanotubes for Ethanol Electrooxidation

    Directory of Open Access Journals (Sweden)

    Xi Geng

    2016-03-01

    Full Text Available In this article, we describe an effective method to tether Pt and PtSn nanoparticles (NPs on polyelectrolyte modified multi-walled carbon nanotubes (MWCNTs for ethanol electrooxidation. By using a polymer wrapping technique, positively charged polyethyleneimine (PEI was attached onto carbon nanotubes (CNTs to provide preferential linking sites for metal precursors. Well-dispersed Pt and PtSn nanocrystals (2–5 nm were subsequently decorated on PEI-functionalized MWCNTs through the polyol reduction method. The successful non-covalent modification of MWCNTs was confirmed by Fourier transform infrared spectroscopy (FTIR and Zeta potential measurements. Energy dispersive X-ray (EDX spectrum indicates approximately 20 wt % Pt loading and a desirable Pt:Sn atomic ratio of 1:1. Electrochemical analysis demonstrated that the as-synthesized PtSn/PEI-MWCNTs nanocomposite exhibited improved catalytic activity and higher poison tolerance for ethanol oxidation as compared to Pt/PEI-MWCNTs and commercial Pt/XC-72 catalysts. The enhanced electrochemical performance may be attributed to the uniform dispersion of NPs as well as the mitigating of CO self-poisoning effect by the alloying of Sn element. This modification and synthetic strategy will be studied further to develop a diversity of carbon supported Pt-based hybrid nanomaterials for electrocatalysis.

  14. Green-tea modified multiwalled carbon nanotubes for efficient poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)/n-silicon hybrid solar cell

    Science.gov (United States)

    Khatri, Ishwor; Tang, Zeguo; Liu, Qiming; Ishikawa, Ryo; Ueno, Keiji; Shirai, Hajime

    2013-02-01

    Poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) (PEDOT:PSS)/n-Si hybrid solar cells were studied with and without embedding green-tea modify multiwalled carbon nanotubes (MWCNTs) at interface. Devices fabricated with embedding green-tea modified MWCNTs show much better performance than that of a device without MWCNTs with short circuit current density (Jsc), open circuit voltage (Voc), fill factor, and power conversion efficiency (η) as 30.31 mA/cm2, 0.54 V, 0.66, and 10.93%, respectively. Here, we believe that green-tea disperse MWCNTs bundles to individual and its incorporation improved built-in potential (Vb) of the device for better hole transport, easy exciton splitting, and suppression of charge recombination, thereby improving photovoltaic response.

  15. Electrocatalytic determination of L-cysteine using a modified carbon nanotube paste electrode: Application to the analysis of some real samples

    Institute of Scientific and Technical Information of China (English)

    Malihe Ahmadipour; Mohammad Ali Taher; Hadi Beitollahi; Rahman Hosseinzadeh

    2012-01-01

    The electrooxidation of L-cysteine (L-Cys) was studied using a benzoylferrocene (BF) modified multi-wall carbon nanotube paste electrode (BFCNPE) using cyclic voltammetry (CV),square wave voltammetry (SWV) and chronoamperometry (CHA).Under optimum pH in CV the oxidation of L-Cys occurs at a potential about 215 mV less positive than that at the surface of unmodified carbon paste electrode.The catalytic oxidation peak currents were dependent on the L-Cys concentration and a linearcalibration curve was obtained in the range 0.7-350.0 μmol/L of L-Cys with SWV method.The detection limit (3σ) was determined as 0.1 μmolL.This method was also used for the determination of L-Cys in some real samples.

  16. Corrosion protection of cold-rolled steel with alkyd paint coatings composited with submicron-structure types polypyrrole-modified nano-size alumina and carbon nanotubes

    International Nuclear Information System (INIS)

    Highlights: ► Alumina/carbon nanotube (CNT) supported polypyrrole (PPy) particles were prepared. ► Various paint compositions with alkyd binder were immersion tested. ► Alumina-supported PPy based coating provided steel protection in NaCl solution. ► Polyelectrolyte modified CNT embedded coating afforded long-term stable protection. ► sulphonated CNT loaded coating indicated firm corrosion resistance in HCL solution. ► Results are interpreted on the basis of nano and microstructure of the particles. - Abstract: This paper is focused on studying corrosion protection of cold-rolled steel with alkyd paint coatings comprising nano-size alumina and either polystyrene-sulphonate (PSS) modified or sulphonated multi-walled carbon nanotube (MWCNT) supported polypyrrole (PPy). Single layer coatings (in thickness of 40 ± 5 μm) comprising PPy deposited alumina and PSS modified MWCNT supported PPy afforded viable protection during the 1 M sodium chloride test. The coatings containing PSS modified and weakly sulphonated MWCNTs (at volume fractions of 9.9 × 10−4 and 2.5 × 10−4) with PPy volume fractions of 3.5 × 10−3 and 2.5 × 10−3 provided effective corrosion prevention during the 1 M sodium chloride and hydrochloric acid solution tests. While inhibitor particles were characterised by infrared spectroscopy, corrosion products formed at the paint–steel interface were studied by X-ray photoelectron spectroscopy. Apart from the electron microscopy observations, rheology study of three-dimensional structure of the inhibitor particles was performed in dispersions at similar compositions to those used for the paint formulations. Thus, protection mechanism relating to both types of immersion tests is discussed in terms of properties of the inhibitor particles and their microstructure in the coatings.

  17. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s−1. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L−1 with a detection limit of 0.0153 mmol L−1 (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L−1 with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L−1 with a detection limit of 0.282 μmol L−1 (3σ). So the proposed electrode had the

  18. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Cao, Lili; Deng, Ying; Gong, Shixing [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Shi, Fan; Li, Gaonan; Sun, Zhenfan [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China)

    2013-06-05

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (k{sub s}) as 0.97 s{sup −1}. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L{sup −1} with a detection limit of 0.0153 mmol L{sup −1} (3σ), H{sub 2}O{sub 2} in the concentration range from 0.1 to 516.0 mmol L{sup −1} with a detection limit of 34.9 nmol/L (3σ) and NaNO{sub 2} in the concentration range from 0.5 to 650.0 mmol L{sup −1} with a detection limit of 0

  19. Modifying the electrical behaviour of polypropylene/carbon nanotube composites by adding a second nanoparticle and by annealing processes

    Directory of Open Access Journals (Sweden)

    H. Palza

    2012-08-01

    Full Text Available The effect of different nanoparticles on the geometrical percolation transition of multi-wall carbon nanotubes (CNT in polypropylene (PP composites was studied. Our results show that the electrical conductivity of PP/CNT composites (around 2 vol% can be tuned depending on the characteristic of the third component. Non-conductive layered silica fillers disrupt the CNT percolated network reducing the electrical conductivity of the composite. Spherical nanoparticles otherwise, either copper metal or silica-based, decrease the percolation threshold down to 0.5 vol% of CNT. These results cannot be explained by previous theories about the effect of a second particle on the electrical behaviour of polymer/CNT composites such as the interparticle bridging or the excluded volume. The effect of annealing in the melt was further analyzed and our results show that depending on the concentration and the type of filler, the electrical conductivity of the composites can be increased several orders of magnitude.

  20. Torsional Electromechanics of Carbon Nanotubes

    Science.gov (United States)

    Joselevich, Ernesto; Cohen-Karni, Tzahi; Segev, Lior; Srur-Lavi, Onit; Cohen, Sidney R.

    2007-03-01

    Carbon nanotubes are known to be distinctly metallic or semiconducting depending on their diameter and chirality. Here we show that continuously varying the chirality by mechanical torsion can induce conductance oscillations, which can be attributed to metal-semiconductor periodic transitions. The phenomenon is observed in multi-walled carbon nanotubes, where both the torque and the current are shown to be carried predominantly by the outermost wall. The oscillation period with torsion is consistent with the theoretical shifting of the corners of the first Brillouin zone of graphene across different subbands allowed in the nanotube. Beyond a critical torsion, the conductance irreversibly drops due to torsional failure, allowing us to determine the torsional strength of carbon nanotubes. Our experiments indicate that carbon nanotubes could be used as self-sensing torsional springs for nanoelectromechanical systems (NEMS). [1] E. Joselevich, Twisting nanotubes: From torsion to chirality, ChemPhysChem 2006, 7, 1405. [2] T. Cohen-Karni, L. Segev, O. Srur-Lavi, S. R. Cohen, E. Joselevich, Torsional electromechanical quantum oscillations in carbon nanotubes, Nature Nanotechnology, 2006, 1, 36.

  1. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  2. Carbon nanotube optical mirrors

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  3. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  4. Carbon nanotube biconvex microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Haider, E-mail: h.butt@bham.ac.uk; Ahmed, Rajib [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  5. Enhanced Carbon Nanotube Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  6. A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxy-propionate herbicides and their metabolites in water

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Mai; Liu, Donghui; Zhao, Lu; Han, Jiajun; Liang, Yiran; Wang, Peng; Zhou, Zhiqiang, E-mail: zqzhou@cau.edu.cn

    2014-12-10

    Highlights: • A new kind of ionic liquid modified carbon nanotube has been synthesized and applied for simultaneous analysis of AOPPs and their metabolites. • The potential pollutants, such as metabolites of AOPPs, have been analyzed. • The mechanism of absorption has been discussed. • Varieties of experiment factors were optimized and selected. • This method has been successfully applied in the analysis of real water samples. - Abstract: A reliable, sensitive, rapid and environmentally friendly analysis procedure for the simultaneous determination of the analytes with a wide range of polarity in the environmental water was developed by coupling dispersive magnetic solid-phase extraction (d-MSPE) with high-performance liquid chromatography (HPLC)–diode array detector (DAD) and ultra-high pressure liquid chromatography (UHPLC)-triple quadrupole mass spectrometer (MS/MS), in this work. Magnetic ionic liquid modified multi-walled carbon nanotubes (m-IL-MWCNTs) were prepared by spontaneous assembly of magnetic nanoparticles and imidazolium-modified carbon nanotubes, and used as the sorbent of d-MSPE to simultaneously extract aryloxyphenoxy-propionate herbicides (AOPPs) and their polar acid metabolites due to the excellent π–π electron donor–acceptor interactions and anion exchange ability. The factors, including the amount of sorbent, pH of the sample solution, extraction time and the volume of elution solvent were investigated. Under the optimized conditions, the proposed d-MSPE coupling to HPLC–DAD system had a satisfactory performance, the limits of detection (LODs, defined as the signal to noise ratio of 3) and the limits of quantification (LOQs, defined as the signal to noise ratio of 10) for analytes in Milli-Q water were in the range of 2.8–14.3 and 9.8–43.2 μg L{sup −1} respectively. Calibration curves were linear (r{sup 2} > 0.998) over the concentration range from 0.02 to 1 mg L{sup −1}. The recoveries of the eight analytes ranged

  7. Molybdenum Disulfide Sheathed Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xu Chun SONG; Zhu De XU; Yi Fan ZHENG; Gui HAN; Bo LIU; Wei Xiang CHEN

    2004-01-01

    Single and double layered MoS2-coated multiwalled carbon nanotubes (MWCNs) were successfully prepared by pyrolyzing (NH4)2MoS4-coated multiwalled carbon nanotubes in an H2 atmosphere at 900℃. MoS2-coated MWCNs would be expected to have different tribological and mechanical properties compared to MoS2, so it may have potential applications in many fields.

  8. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  9. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K;

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  10. Carbon nanotubes for coherent spintronics

    Directory of Open Access Journals (Sweden)

    F. Kuemmeth

    2010-03-01

    Full Text Available Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications.

  11. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    OpenAIRE

    Ram Pavani; Kodithyala Vinay

    2011-01-01

    Carbon nanotubes (CNTs) are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Funct...

  12. Electrodeposition of palladium on carbon nanotubes modified nickel foam as an efficient electrocatalyst towards hydrogen peroxide reduction

    Science.gov (United States)

    Yang, Fan; Cao, Bo; Tao, Yue; Hu, Miao; Feng, Chengcheng; Wang, Lei; Jiang, Zhao; Cao, Dianxue; Zhang, Ying

    2015-12-01

    In this article, a three-dimensional electrode (Pd-CNT/Ni foam) based on Pd nanoparticles and carbon nanotubes (CNTs) is successfully developed by a simple "dipping and drying" process and a potentiostatic deposition technology for H2O2 reduction in base medium. The composition and structure of Pd-CNT/Ni foam electrode are examined by X-ray diffractometer, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, respectively. The cyclic voltammetry (CV) and chronoamperometry (CA) techniques are applied to determine the electrochemical performance. The electrode exhibits a high catalytic activity for H2O2 electroreduction, and it outperforms Pd/Ni foam electrode without CNT coating. At the reduction potential of -0.8 V, the reduction currents on Pd-CNT/Ni foam electrode can reach 323 mA cm-2, however, it is only 192 mA cm-2 on Pd/Ni foam electrode, which is increased by 68.2%. The impressive electrocatalytic performance is largely attributed to the superior open structure and high electronic conductivity, which allows the high utilization of Pd surfaces and makes the electrode have higher electrochemical activity. These findings may provide the opportunity on preparing binder-free carbon-supported electrode in the application of fuel cells.

  13. Hydrogen peroxide biosensor based on gold nanoparticles/thionine/gold nanoparticles/multi-walled carbon nanotubes-chitosans composite film-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li Shenfeng; Zhu Xiaoying; Zhang Wei; Xie Guoming [Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Feng Wenli, E-mail: fengwlcqmu@sina.com [Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2012-01-15

    In this paper, an amperometric electrochemical biosensor for the detection of hydrogen peroxide (H{sub 2}O{sub 2}), based on gold nanoparticles (GNPs)/thionine (Thi)/GNPs/multi-walled carbon nanotubes (MWCNTs)-chitosans (Chits) composite film was developed. MWCNTs-Chits homogeneous composite was first dispersed in acetic acid solution and then the GNPs were in situ synthesized at the composite. The mixture was dripped on the glassy carbon electrode (GCE) and then the Thi was deposited by electropolymerization by Au-S or Au-N covalent bond effect and electrostatic adsorption effect as an electron transfer mediator. Finally, the mixture of GNPs and horseradish peroxidase (HRP) was assembled onto the modified electrode by covalent bond. The electrochemical behavior of the modified electrode was investigated by scanning electron microscope, cyclic voltammetry and chronoamperometry. This study introduces the in situ-synthesized GNPs on the other surface of the modified materials in H{sub 2}O{sub 2} detection. The linear response range of the biosensor to H{sub 2}O{sub 2} concentration was from 5 Multiplication-Sign 10{sup -7} mol L{sup -1} to 1.5 Multiplication-Sign 10{sup -3} mol L{sup -1} with a detection limit of 3.75 Multiplication-Sign 10{sup -8} mol L{sup -1} (based on S/N = 3).

  14. Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration

    International Nuclear Information System (INIS)

    Highlights: • Ti/SnO2-Sb-CNT electrodes were prepared by pulse electrodeposition technology. • The characteristics of Ti/SnO2-Sb-CNT was compared with Ti/SnO2-Sb. • We combined electro-catalytic oxidation with NF to treat dye wastewater. - Abstract: A new type of Ti/SnO2-Sb electrode modified with carbon nanotube (CNT) has been fabricated using a pulse electrodeposition method. The electrode modified with CNT versus without CNT has larger surface area and smaller crystallite particles (41.9 nm versus 46.8 nm) as seen by scanning electron microscopy (SEM), and calculated through X-ray diffraction (XRD), respectively. It means that the CNT-modified electrode can provide more active sites for electrochemical oxidation of organic pollutants. Oxygen evolution potential of the CNT-modified electrode has 0.07 V higher overpotential in the Linear sweep voltammetry (LSV) curve. The service lifetime of Ti/SnO2-Sb-CNT electrode is 4.8 times longer than that of the Ti/SnO2-Sb electrode without CNT modifying. The Ti/SnO2-Sb-CNT electrode is demonstrated to have a superior electrochemical oxidation and degradation abilities using Acid Red 73 (AR 73) as a model organic pollutant. The CNT-modified electrode has higher kinetic rate constant, chemical oxygen demand (COD) and total organic carbon (TOC) removals, and mineralization current efficiency, which is 1.93, 1.27, 1.26, and 1.38 times those of the Ti/SnO2-Sb electrode, respectively. The repeated experiments prove the reproducibility of the data. Ti/SnO2-Sb-CNT electrode is 1.15 times more effective in permeation flux than the Ti/SnO2-Sb electrode when combining electro-catalytic oxidation and nanofiltration for treating dye wastewater

  15. The fabrication and tribological behavior of epoxy composites modified by the three-dimensional polyurethane sponge reinforced with dopamine functionalized carbon nanotubes

    Science.gov (United States)

    Wang, Rui; Wang, Huaiyuan; Sun, Liyuan; Wang, Enqun; Zhu, Yixing; Zhu, Yanji

    2016-01-01

    Three-dimensional (3D) interpenetrating network structure epoxy composites were fabricated based on the modified carbon nanotube (CNT) reinforced flexible polyurethane (PU) sponge. CNTs were first functionalized with polydopamine (PDA) as revealed by TEM imaging, which is formed via the oxidative self-polymerization of dopamine. Then the functionalized CNTs (CNT-PDA) were successfully anchored on the skeleton surfaces of sponge, forming a continuous 3D carbon network. The interfacial interaction between modified PU sponge and epoxy (EP) matrix was significantly enhanced due to the covalent linkage of PDA. Improvement in the thermal stability of CNT-PDA/PU3D/EP composites was observed by TG analysis and related to the CNTs anchored on the skeleton of sponge. The tribological properties of pure EP, PU3D/EP and CNT-PDA/PU3D/EP composites were comparatively investigated in terms of different loads and velocities. Results demonstrated that CNT-PDA/PU3D/EP composites exhibited the best tribological performance owing to the strong interfacial interaction and the 3D carbon network structure. In particular, the wear resistance of CNT-PDA/PU3D/EP composites was 6.2 times and 3 times higher than those of pure EP and PU3D/EP composites under the applied load of 1.6 MPa, respectively.

  16. Connecting carbon nanotubes using Sn.

    Science.gov (United States)

    Mittal, Jagjiwan; Lin, Kwang Lung

    2013-08-01

    Process of Sn coating on mutiwalled carbon nanotubes (MWCNT) and formation of interconnections among nanotubes are studied using high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDX). Surface oxidation of nanotubes during heating with HNO3 prior to the SnCl2 treatment and the bonding between functional groups and Sn are found to be responsible for the coating and its stability. Open nanotubes are filled as well as coated during tin chloride treatment. Coating and filling are converted into the coatings on the inner as well as outer walls of the nanotubes during reduction with H2/N2. EDX studies show the formation of intermetallic compounds e.g., Cu6Sn5 and Cu3Sn at the joints between nanotubes. Formation of intermetallic compounds is supposed to be responsible for providing the required strength for bending and twisting of nanotubes joining of nanotubes. Paper presents a detailed mechanism of coating and filling processes, and interconnections among nanotubes. PMID:23882800

  17. Multiwalled carbon nanotube modified screen-printed electrodes for the detection of p-aminophenol: Optimisation and application in alkaline phosphatase-based assays

    International Nuclear Information System (INIS)

    Carboxylated multiwalled carbon nanotubes (MWCNT-COOH) were used to modify the working electrode surface of different screen-printed electrodes. The effect of this modification on the electrodic characteristics (double layer capacitance, electroactive area and heterogeneous rate constants for the electron transfer) was evaluated and optimized for the cyclic voltammetric determination of p-aminophenol. The enzymatic hydrolysis of p-aminophenylphosphate was employed for the quantification of alkaline phosphatase, one of the most important label enzymes in immunoassays. Finally, ELISA assays were carried out to quantify pneumolysin using this enzymatic system. Results obtained indicated that low superficial densities of MWCNT-COOH (0.03-0.06 μg mm-2) yielded the same electrodic improvements but with better analytical properties

  18. Synthesis and characterization of novel dopamine-derivative:Application of modified multi-wall carbon nanotubes paste electrode for electrochemical investigation

    Institute of Scientific and Technical Information of China (English)

    Shadpour Mallakpour; Mehdi Hatami; Ali A. Ensafi; Hassan Karimi-Maleh

    2011-01-01

    Novel dopamine-derivative compound, 3,5-diamino-N-(3,4-dihydroxyphenethyl)benzamide (3,5-DAB) was prepared in two steps. In the first step dopamine hydrochloride was reacted with 3,5-dinitrobenzoyl chloride in the presence of propylene oxide. In the second step reduction of nitro groups resulted in preparation of 3,5-DAB in quantitative yield. This material was characterized using conventional spectroscopic methods such as FT-IR and 1H NMR. In addition, the redox response of a modified carbon nanotubes paste electrode of 3,5-DAB was investigated in aqueous solution at a neutral pH. The result showed that the electrode process has a guasi-reversible response, with △Ep, greater than the (59/n) mV expected for a reversible system. Finally, the diffusion coefficient for redox process in paraffin oil matrix obtained using chronoamperometry methods.

  19. Multiwalled carbon nanotube modified screen-printed electrodes for the detection of p-aminophenol: Optimisation and application in alkaline phosphatase-based assays

    Energy Technology Data Exchange (ETDEWEB)

    Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Queipo, Paula [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo, Asturias (Spain); Fanjul-Bolado, Pablo [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Costa-Garcia, Agustin [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain)], E-mail: costa@fq.uniovi.es

    2008-05-12

    Carboxylated multiwalled carbon nanotubes (MWCNT-COOH) were used to modify the working electrode surface of different screen-printed electrodes. The effect of this modification on the electrodic characteristics (double layer capacitance, electroactive area and heterogeneous rate constants for the electron transfer) was evaluated and optimized for the cyclic voltammetric determination of p-aminophenol. The enzymatic hydrolysis of p-aminophenylphosphate was employed for the quantification of alkaline phosphatase, one of the most important label enzymes in immunoassays. Finally, ELISA assays were carried out to quantify pneumolysin using this enzymatic system. Results obtained indicated that low superficial densities of MWCNT-COOH (0.03-0.06 {mu}g mm{sup -2}) yielded the same electrodic improvements but with better analytical properties.

  20. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS.

    Science.gov (United States)

    Truong, Thi Ngoc Lien; Tran, Dai Lam; Vu, Thi Hong An; Tran, Vinh Hoang; Duong, Tuan Quang; Dinh, Quang Khieu; Tsukahara, Toshifumi; Lee, Young Hoon; Kim, Jong Seung

    2010-01-15

    In this paper, we describe DNA electrochemical detection for genetically modified organism (GMO) based on multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole (PPy). DNA hybridization is studied by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). An increase in DNA complementary target concentration results in a decrease in the faradic charge transfer resistance (R(ct)) and signifying "signal-on" behavior of MWCNTs-PPy-DNA system. QCM and EIS data indicated that the electroanalytical MWCNTs-PPy films were highly sensitive (as low as 4pM of target can be detected with QCM technique). In principle, this system can be suitable not only for DNA but also for protein biosensor construction. PMID:20006069

  1. Optimization of bioselective membrane of amperometric enzyme sensor on basis of glucose oxidase using NH2-modified multi-wall carbone nanotubes

    Directory of Open Access Journals (Sweden)

    Korpan Ya. I.

    2010-02-01

    Full Text Available Aim. To investigate a possibility of application of multi-wall carbone nanotubes modified with NH2-groups (MWCNT-NH2 for creation of sensitive elements of the amperometric biosensor based on immobilized oxidoreductases, in particular, glucose oxidase (GOD. To study electrochemical properties of the membranes obtained. Methods. Experiments were carried out with amperometric methods using the ìStat 200 device («DropSens», Spain. The enzymes were immobilised in glutaraldehyde vapour. Results. The method of formation of bioselective matrix based on immobilised GOD with MNP-NH2 on the surface of gold amperometric electrodes was optimised. Optimal working conditions of the biosensor developed were determined. Conclusion. MWCNT integration into a bioselective matrix improves the biosensor analytical characteristics which means: higher signal value, wider linear range of glucose analysis, and possibility of substrate determination in wide range of working potential.

  2. A glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and multi-walled carbon nanotubes, and its use as a sensor for ascorbic acid

    International Nuclear Information System (INIS)

    A glassy carbon electrode (GCE) was modified with the nickel(II)-bis(1,10-phenanthroline) complex and with multi-walled carbon nanotubes (MWCNTs). The nickel complex was electrodeposited on the MWCNTs by cyclic voltammetry. The modified GCE displays excellent electrocatalytic activity to the oxidation of ascorbic acid (AA). The effects of fraction of MWCNTs, film thickness and pH values were optimized. Response to AA is linear in the 10 to 630 μM concentration range, and the detection limit is 4 μM (at a signal-to-noise ratio of 3:1). The modified electrode was applied to determine AA in vitamin C tablets and in spiked fruit juice. (author)

  3. Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna

    OpenAIRE

    Böhmler, Miriam; Hartmann, Nicolai; Georgi, Carsten; Hennrich, Frank; Green, Alexander A.; Hersam, Mark C.; Hartschuh, Achim

    2010-01-01

    We observe the angular radiation pattern of single carbon nanotubes' photoluminescence in the back focal plane of a microscope objective and show that the emitting nanotube can be described by a single in-plane point dipole. The near-field interaction between a nanotube and an optical antenna modifies the radiation pattern that is now dominated by the antenna characteristics. We quantify the antenna induced excitation and radiation enhancement and show that the radiative rate enhancement is c...

  4. Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application

    Science.gov (United States)

    Cui, Hongzhi; Yang, Shuqing; Memon, Shazim Ali

    2015-01-01

    Microencapsulated phase-change materials (MPCM) can be used to develop a structural–functional integrated cement paste having high heat storage efficiency and suitable mechanical strength. However, the incorporation of MPCM has been found to degrade the mechanical properties of cement based composites. Therefore, in this research, the effect of carbon nanotubes (CNTs) on the properties of MPCM cement paste was evaluated. Test results showed that the incorporation of CNTs in MPCM cement paste accelerated the cement hydration reaction. SEM micrograph showed that CNTs were tightly attached to the cement hydration products. At the age of 28 days, the percentage increase in flexural and compressive strength with different dosage of CNTs was found to be up to 41% and 5% respectively. The optimum dosage of CNTs incorporated in MPCM cement paste was found to be 0.5 wt %. From the thermal performance test, it was found that the cement paste panels incorporated with different percentages of MPCM reduced the temperature measured at the center of the room by up to 4.6 °C. Inverse relationship was found between maximum temperature measured at the center of the room and the dosage of MPCM. PMID:25867476

  5. Electrochemical Degradation Characteristics of Refractory Organic Pollutants in Coking Wastewater on Multiwall Carbon Nanotube-Modified Electrode

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-01-01

    Full Text Available The multiwall carbon nanotube-mollified electrode (MWCNT-ME was fabricated and its electrocatalytic activity of refractory organic pollutants of coking wastewater was investigated. The surface morphology, absorption properties, and the electrochemical behavior of phenol and aniline at the MWCNT-ME were analyzed. Using ultraviolet-visible adsorption spectroscopy (UV-vis, Gas chromatography mass spectrometry (GC/MS, and chemical oxygen demand (COD test, the electrochemical oxidation properties of refractory organic pollutants of coking wastewater using the MWCNT-ME and the IrSnSb/Ti electrode were analyzed. Compared with the powder adsorption media, the MWCNT-ME was proved to have weaker adsorption activity, which means electrochemical degradation is the decisive factor of the removal of organic pollutants. The MWCNT-ME shows high electrochemical reactivity with oxidation peaks of 0.18 A and 0.12 A for phenol and aniline, respectively. Under the same working conditions, the MWCNT-ME COD removal rate 51% is higher than IrSnSb/Ti electrode’s rate 35%. The MWCNT-ME has application potential of electrochemical oxidation of refractory organic pollutants of coking wastewater.

  6. 碳纳米管改性聚氨酯复合材料%Polyurethane composites modified by carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    吕君亮; 刘意; 易运红

    2011-01-01

    用原位聚合法制备两组聚氨酯(PUR)/碳纳米管(CNTs)复合材料.一组是在超声波作用下将CNTs直接和PUR复合;另一组是将硅烷偶联剂处理的CNTs在超声波作用下与PUR原位聚合制备PUR/CNTs复合材料.探讨了CNTs含量对复合材料电性能的影响,在w(CNTs)为1.0%时可用作抗静电材料.经硅烷偶联剂处理的CNTs分散较好,复合材料的拉伸强度、悬臂梁缺口冲击强度,拉伸模量更高.%The authors propared two sets of specimens of polyurethane/carbon nanotube(PUR/CNTs)composites via in-situ polymerization under the action of ultrasonic wave. either compounding PUR with CNTs directly or polymerizing PUR with the CNTs treated by silane coupling agent. The effect of CNTs content on electrical properties of the composites was diseussed. The composite could be used as antistatic material when the CNTs content was 1.0% in mass fraction. The CNTs treated by silane coupling agent could be dispersed well in the composite. The tensile strength, notched Izod impact strength and tensile modulus of the composites were superior.

  7. Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode

    International Nuclear Information System (INIS)

    Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E°′) of − 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s−1; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M−1 cm−2 and an apparent Michaelis–Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid. - Highlights: ► A film composed of MWCNT-ACS was used for biosensor application. ► High sensitivity and good selectivity were obtained for the detection of glucose. ► This approach is potential for fabrication of mediator-free biosensor.

  8. Enzyme-free sensing of glucose on a copper electrode modified with nickel nanoparticles and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    We describe a new electrochemical platform for direct sensing of glucose. The electrode was prepared by controlled electrodeposition of nickel nanoparticles onto carbon nanotubes on a copper electrode. The sensor was optimized by investigating the effects of the concentration of nickel precursor, electrolysis time and acidity of the medium. The nanocomposite was characterized by scanning electron microscopy and energy dispersive spectroscopy. Cyclic voltammetry of glucose in 0.1 M NaOH solution gives a well-defined anodic wave with a peak potential at 0.53 V (vs. Ag/AgCl) that indicates the direct electrooxidation of glucose at the nanomaterial. The electrode responds to glucose over a wide linear range (from 2 μM to 10 mM), with high sensitivity (3.8 mA∙mM−1∙cm−2) and a low detection limit (0.7 μM). The sensor was applied to the determination of glucose in blood samples, and the results were in good agreement with data obtained by a commercially available glucometer. The method holds promise due to the ease of sensor fabrication and its robust performance and longevity. (author)

  9. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  10. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  11. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.;

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin...... of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the...

  12. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  13. Multiscale Modeling with Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  14. Synthesis, characterization and electrochemical behavior of polypyrrole/carbon nanotube composites using organometallic-functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Thorn-like, organometallic-functionalized carbon nanotubes were successfully developed via a novel microwave hydrothermal route. The organometallic complex with methyl orange and iron (III) chloride served as reactive seed template, resulting in the oriented polymerization of pyrrole on the modified carbon nanotubes without the assistance of other oxidants. Morphological and structural characterizations of the carbon nanotube/methyl orange-iron (III) chloride and polypyrrole/carbon nanotube composites were examined using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), infrared spectroscopy and X-ray diffraction (XRD). The electrochemical property of the polypyrrole/carbon nanotube composite was elucidated by cyclic voltammetry and galvanostatic charge-discharge. A specific capacitance of 304 F g-1 was obtained within the potential range of -0.5-0.5 V in 1 M KCl solution.

  15. Kondo physics in carbon nanotubes

    OpenAIRE

    Nygard, Jesper; Cobden, David Henry; Lindelof, Poul Erik

    2000-01-01

    The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger-liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically-contacted single-wall nanotubes can serve as powerful probes of Kondo ph...

  16. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying; LI WenXin

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained,lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However,experimental information obtained thus far on CNTs' cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTa in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs' cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  17. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However, experimental information obtained thus far on CNTs’ cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTs in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs’ cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  18. Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly(l-arginine)-β-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode.

    Science.gov (United States)

    Yi, Yinhui; Zhu, Gangbing; Wu, Xiangyang; Wang, Kun

    2016-03-15

    Owing to the similar characteristics and physiochemical property of 2-aminophenol (2-AP) and 4-aminophenol (4-AP), the highly sensitive simultaneous electrochemical determination of 2- and 4-AP is a great challenge. In this paper, by electropolymerizing β-cyclodextrin (β-CD) and l-arginine (l-Arg) on the surface of carbon nanotubes@graphene nanoribbons (CNTs@GNRs) core-shell heterostructure, a P-β-CD-l-Arg/CNTs@GNRs nanohybrid modified electrode was prepared successfully, and it could exhibit the synergetic effects of β-CD (high host-guest recognition and enrichment ability), l-Arg (excellent electrocatalytic activity) and CNTs@GNRs (prominent electrochemical properties and large surface area), the P-β-CD-l-Arg/CNTs@GNRs modified electrode was used in the electrochemical determination of 2- and 4-AP, the results demonstrated that the highly sensitive and simultaneous determination of 2- and 4-AP is successfully achieved and the modified electrode has a linear response range of 25.0-1300.0 nM for both 2- and 4-AP, and the detection limits of 2- and 4-AP obtained in this work are 6.2 and 3.5 nM, respectively. PMID:26433068

  19. Hybrid Composite of Polyaniline Containing Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotube-polyaniline hybrid material was synthesized by emulsion polymerization in-situ. The morphology of hybrid material was studied by TEM and X-ray diffraction. The conductivity of nanocomposite increases with the increasing of carbon nanotube content because of the new conductivity passageways formed by carbon nanotubes.

  20. Synthesis and Application of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Qun Zeng; Zhenhua Li; Yuhong Zhou

    2006-01-01

    Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In this article, the basic properties and the main production processes of carbon nanotubes are introduced in brief, and the progress of applied research for carbon nanotubes is reviewed.

  1. Dispersions of Carbon nanotubes in Polymer Matrices

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  2. Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei-Che; Huang, Jian-Lung; Tsai, Yu-Chen, E-mail: yctsai@dragon.nchu.edu.tw

    2012-05-01

    Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E Degree-Sign Prime ) of - 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s{sup -1}; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M{sup -1} cm{sup -2} and an apparent Michaelis-Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid. - Highlights: Black-Right-Pointing-Pointer A film composed of MWCNT-ACS was used for biosensor application. Black-Right-Pointing-Pointer High sensitivity and good selectivity were obtained for the detection of glucose. Black-Right-Pointing-Pointer This approach is potential for fabrication of mediator-free biosensor.

  3. Fluoride and lead adsorption on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Shuguang; LI Yanhui

    2004-01-01

    The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on. However, the study on the potential application of CNT, environmental protection field in particular, was hardly begun.Long[8] et al. reported that CNT had a significantly higher dioxin removal efficiency than that of activated carbon. The Langmuir adsorption constant is 2.7 × 1052, 1.3 × 1018 respectively. The results indicated that CNT is potential candidate for the removal of micro-organic pollutants. However, the reports on the CNT used as fluoride and heavy metal adsorbent are seldom.In this paper, A novel material, alumina supported on carbon nanotubes (Al2O3/CNT), was prepared from carbon nanotubes and Al(NO3)3. X-ray diffraction (XRD) spectra demonstrate that alumina is amorphous, and scanning electron microscope (SEM) images show that CNT and alumina are homogeneously mixed. Furthermore, the fluoride adsorption behavior on the surface of Al2O3/CNT has been investigated and compared with other adsorbents. The results indicate that Al2O3/CNT has a high adsorption capacity, with a saturation adsorption capacity of 39.4 mg/g. It is also found that the adsorption capacity of Al2O3/CNT is 3.0~4.5 times that of γ-Al2O3while almost equal to that of IRA-410 polymeric resin at 25 ℃. The adsorption isotherms of fluoride on Al2O3/CNT is fit the Freundlich equation well, optimal pH ranging from 5.0 to 9.0.Also in this paper, a novel material, modified carbon nanotubes (CNT), was prepared from carbon nanotubes and HNO3 under boiling condition. Infrared spectroscopy (IR

  4. Properties of Acrylic Acid Resin Coating Materials Modified by Carbon Nanotubes%碳纳米管改性丙烯酸树脂涂饰材料的性能研究

    Institute of Scientific and Technical Information of China (English)

    孙友昌; 马建中; 鲍艳; 刘海腾; 于玉龙

    2011-01-01

    Firstly, carbon nanotubes were modified and purified by the mix acids, then surface properties of carbon nanotubes were analyzed with the help of the infrared detector. Vinyl leather finishing agent was modified by carbon nanotubes using physical blending and in - situ emulsion polymerization. Tensile strength, elongation at break and water resistance of acrylic resin mem- brane nano- composite coating agent were determined. The results show that carbon nanotubes has the obvious enhancement toughening effect to acrylic resin membrane. Acrylic resin modified by carbon nanotubes has better tensile strength and elongation at break with an increase in the amount of carbon nanotubes, but has worse water resistance. Acrylic resin membrane modified by carbon nanotubes using physical blending and in - situ emulsion polymerization, the comprehensive performance is the best when the dosage of CNTs respectively is 0.04% and 0. 03%. Ultrasonic treatment will decrease the tensile strength and elongation at break, but the water resistance of the film will be increased slightly.%采用混酸对碳纳米管(CNTs)进行改性和纯化,并以此为原料,分别采用物理共混与原位乳液聚合法制备碳纳米管改性丙烯酸树脂皮革涂饰剂,将制备的丙烯酸树脂乳液分别成膜,并对所成薄膜的抗张强度、断裂伸长率、耐水性等进行测定。结果表明:碳纳米管对丙烯酸树脂薄膜有明显的增强增韧效果,随着碳纳米管用量的增加,薄膜的抗张强度、断裂伸长率增加,但耐水性略有下降。采用物理共混法与原位乳液聚合法改性丙烯酸树脂乳液,当CNTs的用量分别为0.04%和0.03%时,改性丙烯酸树脂薄膜的综合性能最好。对改性后的乳液进行超声处理,可使

  5. A glassy carbon electrode modified with a polyaniline doped with silicotungstic acid and carbon nanotubes for the sensitive amperometric determination of ascorbic acid

    International Nuclear Information System (INIS)

    We report on an electrochemical sensor for the sensitive amperometric determination of ascorbic acid (AA). Aniline containing suspended silicotungstic acid and carbon nanotubes was electropolymerized on the surface of a glassy carbon electrode in a single step which provides a simple and controllable method and greatly improves the electrocatalytic oxidation of AA. The effects of scan rate, solution pH and working potential were studied. A linear relationship exists between the current measured and the concentration of AA in the range from 1 μM to 10 μM and 0.01 mM to 9 mM, with a limit of detection as low as 0.51 μM (S/N = 3). The sensor is selective, stable and satisfyingly reliable in real sample experiments. In our eyes, it has a large potential for practical applications. (author)

  6. A Voltammetric Biosensor Based on Glassy Carbon Electrodes Modified with Single-Walled Carbon Nanotubes/Hemoglobin for Detection of Acrylamide in Water Extracts from Potato Crisps

    Directory of Open Access Journals (Sweden)

    Hanna Radecka

    2008-09-01

    Full Text Available The presence of toxic acrylamide in a wide range of food products such as potato crisps, French fries or bread has been confirmed by Swedish scientists from Stockholm University. The neurotoxicity, possible carcinogenicity of this compound and its metabolites compels us to control them by quantitative and qualitative assays. Acrylamide forms adduct with hemoglobin (Hb as a result of the reaction the -NH2 group of the Nterminal valine with acrylamide. In this work we present the use of glassy carbon electrodes coated with single-walled carbon nanotubes (SWCNTs and Hb for voltammetric detection of acrylamide in water solutions. The electrodes presented a very low detection limit (1.0×10-9 M. The validation made in the matrix obtained by water extraction of potato crisps showed that the electrodes presented are suitable for the direct determination of acrylamide in food samples.

  7. Amperometric biosensor for bisphenol A based on a glassy carbon electrode modified with a nanocomposite made from polylysine, single walled carbon nanotubes and tyrosinase

    International Nuclear Information System (INIS)

    We have prepared a nanocomposite consisting of single-walled carbon nanotubes and polylysine. It was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and by UV/vis and FTIR spectroscopy. Tyrosinase was covalently immobilized on the nanocomposite, and the resulting bioconjugate deposited on a glassy carbon electrode to form a biosensor for bisphenol A. The biosensor was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Under optimized experimental conditions, the biosensor gives a linear response to bisphenol A in the 4.00 nM to 11.5 μM concentration range. Its sensitivity is 788 mA M−1 cm−2, and the lower detection limit is 0.97 nM (at an S/N of 3). The biosensor shows good repeatability, reproducibility and long-term stability. In a preliminary practical application, it was successfully applied to the determination of bisphenol A in leachates of plastic spoons. (author)

  8. Carbon nanotube-polymer composite actuators

    Science.gov (United States)

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  9. Deposition of new thia-containing Schiff-base iron (III) complexes onto carbon nanotube-modified glassy carbon electrodes as a biosensor for electrooxidation and determination of amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Saghatforoush, Lotfali [Department of Chemistry, Faculty of Science, Payame Noor University (PNU), P.O. Box 58168-45164, Khoy (Iran, Islamic Republic of); Hasanzadeh, Mohammad, E-mail: mhmmd_hasanzadeh@yahoo.co [Department of Chemistry, Faculty of Science, Payame Noor University (PNU), P.O. Box 58168-45164, Khoy (Iran, Islamic Republic of); Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology (KNTU), Tehran (Iran, Islamic Republic of); Shadjou, Nasrin [Department of Chemistry, Faculty of Science, Payame Noor University (PNU), P.O. Box 58168-45164, Khoy (Iran, Islamic Republic of); Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology (KNTU), Tehran (Iran, Islamic Republic of); Khalilzadeh, Balal [Department of Analytical Chemistry, Faculty of Science, Arak University, Arak (Iran, Islamic Republic of)

    2011-01-01

    Multiwall carbon nanotubes (MWCNTs) were used as an immobilization matrix to incorporate an Fe (III)-Schiff base complex as an electron-transfer mediator onto a glassy carbon electrode surface. First, the preheated glassy carbon was subjected to abrasive immobilization of MWCNTs by gently rubbing the electrode surface on filter paper supporting the carbon nanotubes. Second, the electrode surface was modified by casting 100 {mu}L of an Fe (III)-complex solution (0.01 M in ACN). The cyclic voltammograms of the modified electrode in an aqueous solution displayed a pair of well-defined, stable and nearly reversible reductive oxidation redox systems with surface confined characteristics. Combinations of unique electronic and electrocatalytic properties of MWCNTs and Fe (III)-Schiff base complexes resulted in a remarkable synergistic augmentation of the response. The electrochemical behavior and stability of the modified electrode in aqueous solutions at pH 1-9 were characterized by cyclic voltammetry. The apparent electron transfer rate constant (K{sub s}) and transfer coefficient (a) were determined by cyclic voltammetry and were approximately 7 s{sup -1} and 0.55, respectively. The modified electrodes showed excellent catalytic activity towards the oxidation of amino acids at an unusually positive potential in acidic solution. They also displayed inherent stability at a wide pH range, fast response time, high sensitivity, low detection limit and had a remarkably positive potential oxidation of amino acids that decreased the effect of interferences in analysis. The linear concentration range, limits of detection (LOD), limits of quantization (LOQ) and relative standard deviation of the proposed sensor for the amino acid detection were 1-55,000, 1.10-13.70, 2.79-27.14 and 1.30-5.11, respectively.

  10. Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities.

    Science.gov (United States)

    Lawrence, J R; Waiser, M J; Swerhone, G D W; Roy, J; Tumber, V; Paule, A; Hitchcock, A P; Dynes, J J; Korber, D R

    2016-05-01

    Commercial production of nanoparticles (NP) has created a need for research to support regulation of nanotechnology. In the current study, microbial biofilm communities were developed in rotating annular reactors during continuous exposure to 500 μg L(-1) of each nanomaterial and subjected to multimetric analyses. Scanning transmission X-ray spectromicroscopy (STXM) was used to detect and estimate the presence of the carbon nanomaterials in the biofilm communities. Microscopy observations indicated that the communities were visibly different in appearance with changes in abundance of filamentous cyanobacteria in particular. Microscale analyses indicated that fullerene (C60) did not significantly (p fullerene. Biolog assessment of carbon utilization revealed few significant effects with the exception of the utilization of carboxylic acids. PCA and ANOSIM analyses of denaturing gradient gel electrophoresis (DGGE) results indicated that the bacterial communities exposed to fullerene were not different from the control, the MWCNT and SWNT-OH differed from the control but not each other, whereas the SWCNT and SWCNT-COOH both differed from all other treatments and were significantly different from the control (p fullerene or MWCNT but a trend for increases in all SWCNT exposures. Observations indicated that at 500 μg L(-1), carbon nanomaterials significantly alter aspects of microbial community structure and function supporting the need for further evaluation of their effects in aquatic habitats. PMID:26867687

  11. Gears Based on Carbon Nanotubes

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  12. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  13. Epoxide composite materials with carbon nanotubes

    International Nuclear Information System (INIS)

    Methods of formation and physical properties of epoxide composite materials reinforced with carbon nanotubes are considered. An analogy is made between the relaxation properties of carbon nanotubes and macromolecules. The concentration dependences of the electrical conductivity of the epoxy polymers filled with single-walled and multi-walled carbon nanotubes are discussed. Modern views on the mechanism of reinforcement of polymers with nanotubes are outlined. The bibliography includes 143 references.

  14. Modified carbon nanotubes as a sorbent for solid-phase extraction of gold, and its determination by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A simple, sensitive and accurate method was developed for solid-phase extraction and preconcentration of trace levels of gold in various samples. It is based on the adsorption of gold on modified oxidized multi-walled carbon nanotubes prior to its determination by graphite furnace atomic absorption spectrometry. The type and volume of eluent solution, sample pH value, flow rates of sample and eluent, sorption capacity and breakthrough volume were optimized. Under these conditions, the method showed linearity in the range of 0.2–6.0 ng L−1 with coefficients of determination of >0.99 in the sample. The relative standard deviation for seven replicate determinations of gold (at a level of 0.6 ng L−1) is ±3.8 %, the detection limit is 31 pg L−1 (in the initial solution and at an S/N ratio of 3; for n = 8), and the enrichment factor is 200. The sorption capacity of the modified MWCNTs for gold(III) is 4.15 mg g−1. The procedure was successfully applied to the determination of gold in (spiked) water samples, human hair, human urine and standard reference material with recoveries ranging from 97.0 to 104.2 %. (author)

  15. Determination of Tetracycline Antibiotic Residues in Honey and Milk by Miniaturized Solid Phase Extraction Using Chitosan-Modified Graphitized Multiwalled Carbon Nanotubes.

    Science.gov (United States)

    Xu, Jing-Jing; An, Mingrui; Yang, Rui; Tan, Zhijing; Hao, Jie; Cao, Jun; Peng, Li-Qing; Cao, Wan

    2016-03-30

    A rapid, simple, and strongly selective miniaturized solid phase extraction (SPE) technique, requiring only small amounts of sorbent (24 mg) and elution solvent (600 μL), coupled with ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry was developed for detecting tetracycline antibiotics. These analytes were extracted from honey and milk using chitosan-modified graphitized multiwalled carbon nanotubes (G-MWNTs) as the solid sorbent and acetonitrile/acetic acid (8:2, v/v) as the eluent in miniaturized SPE. Under the optimum experimental conditions, a satisfactory linearity (r(2) > 0.992) was obtained, and the limits of detection were in the range of 0.61-10.34 μg/kg for the analytes. The mean recoveries of the five tetracycline antibiotic residues in the real samples were between 81.5 and 101.4%. The results demonstrated that chitosan-modified G-MWNTs comprise a promising material for the enrichment of tetracycline antibiotics from complex food matrices. PMID:26971393

  16. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    International Nuclear Information System (INIS)

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk

  17. Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid using single-walled carbon nanotubes modified electrode.

    Science.gov (United States)

    Li, Yaya; Du, Jie; Yang, Jiandong; Liu, Dong; Lu, Xiaoquan

    2012-09-01

    Single-walled carbon nanotubes (SWCNTs) fabricated by sodium dodecyl sulfate (SDS) (f-SWCNTs) modified glassy carbon electrodes (f-SWCNTs/GCE) for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The f-SWCNTs/GCE displayed very good electrochemical catalytic activities with respect to GCE. The oxidation over-potentials of DA and UA decreased dramatically, and their oxidation peak currents increased significantly at f-SWCNTs/GCE compared to those obtained at the bare GCE. Simultaneously, the oxidation peak currents of AA decreased accordingly. The f-SWCNTs/GCE not only divide the overlapping voltammetric responses of them into individual voltammetric peaks, but also totally eliminate the interference from AA and distinguish DA from UA. The catalytic peak currents obtained from square-wave voltammetry increased linearly with increasing DA concentrations in the range of 5.0×10(-6) to 1.0×10(-4)M with a detection limit of 2.0×10(-8)M (S/N=3). The method was also successfully applied for determination of DA and showed good recovery in some biological fluids. PMID:22580482

  18. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: mbgholivand2013@gmail.com; Mohammadi-Behzad, Leila

    2015-12-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk.

  19. Spectroscopic and thermal characterization of carbon nanotubes functionalized through diazonium salt reduction

    International Nuclear Information System (INIS)

    Chemical reduction of anthraquinone diazonium chloride (Fast Red AL salt) in presence of hypophosphorous acid and carbon nanotubes results in anthraquinonyl functionalized carbon nanotubes. The surface functionalized moieties have been examined electrochemically by immobilizing them onto the surface of basal plane pyrolytic graphite electrode and studying its voltammetric behaviour. The effect of pH, and scan rate has revealed that the modified species are confined on the electrode surface. The spectroscopic characterization of the modified single walled carbon nanotubes using Fourier transform infrared spectroscopy, X-ray photoemission spectroscopy, thermogravimetric analysis and transmission electron microscopy have revealed that the modifier molecules are covalently bonded on the surface of carbon nanotubes.

  20. Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions

    Science.gov (United States)

    Jiang, Lili; Li, Shujun; Yu, Haitao; Zou, Zongshu; Hou, Xingang; Shen, Fengman; Li, Chuantong; Yao, Xiayan

    2016-04-01

    The novel functionalization of multi-walled carbon nanotubes (MWCNTs) was synthesized by reacting trimethoxysilylpropanethiol (MPTs), hydrazine, ammonium ferrous sulfate, and ammonium ferric sulfate in sequence as efficient ways to introduce Fe3O4, amino and thiol groups onto the nanotubes sidewalls. The magnetic MWCNTs composite material (N2H4-SH-Fe3O4/o-MWCNTs) was characterized by transmission electron microscopy, field emission scanning electron microscopy, X-ray diffraction, thermo-gravimetric analysis, x-ray photoelectron spectroscopy, Fourier transformation infrared spectroscopy and magnetization curve. The results revealed that MPTs and hydrazine were coated on the surface of N2H4-SH-Fe3O4/o-MWCNTs. A series of batch adsorption experiments were conducted to study the experimental conditions, such as pH, contact time, initial concentrations and temperatures, which affected the adsorption process. The adsorption experiment results showed that the maximum equilibrium adsorption capacity of N2H4-SH-Fe3O4/o-MWCNTs for lead, zinc and phenol was 195.81 mg/g, 169.89 mg/g and 38.97 mg/g at pH 6, respectively. The adsorption isotherm was better fitted by the Freundlich model, and the adsorption kinetics was consistent with pseudo-second order kinetics model. Furthermore, thermodynamic data showed that the adsorption process was spontaneous and exothermic. These results indicated that N2H4-SH-Fe3O4/o-MWCNTs may be promising surface modified materials for removing heavy metal ions and phenol from aqueous solutions.

  1. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This revie

  2. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149. ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  3. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ram Pavani

    2011-07-01

    Full Text Available Carbon nanotubes (CNTs are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Functionalized carbon nanotubes can also act as vaccine delivery systems.Carbon nanotubes (CNTs are considered to be one of the innovative resources in nanotechnology with possible use in wide range of biomedical applications viz. cancer treatment, bioengineering, cardiac autonomic regulation, platelet activation and tissue regeneration. The effect of CNTs on cells and tissues are extremely important for their use in various complex biological systems. With the increasing interest shown by the nanotechnology research community in this field, it is expected that plenty of applications of CNTs will be explored in future.

  4. Thermoelectrics: Carbon nanotubes get high

    Science.gov (United States)

    Crispin, Xavier

    2016-04-01

    Waste heat can be converted to electricity by thermoelectric generators, but their development is hindered by the lack of cheap materials with good thermoelectric properties. Now, carbon-nanotube-based materials are shown to have improved properties when purified to contain only semiconducting species and then doped.

  5. Developing Carbon Nanotube Standards at NASA

    Science.gov (United States)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs. The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST. Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  6. Studies on electrochemical behaviour on NpO22+/NpO2+ redox couple at single walled carbon nanotube modified glassy carbon electrode (SWCNT-GC)

    International Nuclear Information System (INIS)

    Electrochemistry of NpO22+/NpO2+ couple in 1 M H2SO4 was studied on bare and modified glassy carbon (GC) electrodes by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The modified electrode (SWCNTs-GC) was characterized by scanning electron microscopy (SEM). Electrocatalysis of NpO22+/NpO2+ redox reaction was observed on SWCNT-GC electrode. The lower charge transfer resistance at SWCNT-GC reflects faster rate of electron transfer reaction of Np(VI)/Np(V) couple. These results are interesting to develop electroanalytical methodologies for neptunium determination using SWCNT modified electrode. To the best of our knowledge, this is the first study on the electrocatalysis of neptunium on SWCNT modified electrode.

  7. Formation of a robust and stable film comprising ionic liquid and polyoxometalate on glassy carbon electrode modified with multiwalled carbon nanotubes: Toward sensitive and fast detection of hydrogen peroxide and iodate

    International Nuclear Information System (INIS)

    A robust and stable film comprising n-octylpyridinum hexafluorophosphate ([C8Py][PF6]) and 1:12 phosphomolybdic acid (PMo12) was prepared on glassy carbon electrodes modified with multiwall carbon nanotubes (GCE/MWCNTs) by dip-coating. The cyclic voltammograms of the GCE/MWCNTs/[C8Py][PF6]-PMo12 showed three well-defined pairs of redox peaks due to the PMo12 system. The surface coverage for the immobilized PMo12 and the average values of the electron transfer rate constant for three pairs of redox peaks were evaluated. The GCE/MWCNTs/[C8Py][PF6]-PMo12 showed great electrocatalytic activity towards the reduction of H2O2 and iodate. The kinetic parameters of the catalytic reduction of hydrogen peroxide and iodate at the electrode surface and analytical features of the sensor for amperometric determination of hydrogen peroxide and iodate were evaluated.

  8. Nonlinear buckling analyses of a small-radius carbon nanotube

    International Nuclear Information System (INIS)

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained

  9. Enhanced photocatalytic activity over Cd0.5Zn0.5S with stacking fault structure combined with Cu2+ modified carbon nanotubes

    Science.gov (United States)

    Gong, Beini; Lu, Yonghong; Wu, Pingxiao; Huang, Zhujian; Zhu, Yajie; Dang, Zhi; Zhu, Nengwu; Lu, Guining; Huang, Junyi

    2016-03-01

    For enhanced photocatalytic performance of visible light responsive CdZnS, a series of Cd0.5Zn0.5S solid solutions were fabricated by different methods. It was found that the semiconductor obtained through the precipitation-hydrothermal method (CZS-PH) exhibited the highest photocatalytic hydrogen production rate of 2154 μmol h-1 g-1. The enhanced photocatalytic hydrogen production of CZS-PH was probably due to stacking fault formation as well as narrow bandgap, a large surface area and a small crystallite size. Based on this, carbon nanotubes modified with Cu2+ (CNTs (Cu)) were used as a cocatalyst for CZS-PH. The addition of CNTs (Cu) enhanced notably the absorption of the composites for visible light. The highest photocatalytic hydrogen production rate of the Cd0.5Zn0.5S-CNTs (Cu) composite was 2995 μmol h-1 g-1 with 1.0 wt.% of CNTs (Cu). The improvement of the photocatalytic activity by loading of CNTs (Cu) was not due to alteration of bandgap energy or surface area, and was probably attributed to suppression of the electron-hole recombination by the CNTs, with Cu2+ anchored in the interface optimizing the photogenerated electron transfer pathway between the semiconductor and CNTs. We report here the successful combination of homojunction and heterojunction in CdZnS semiconductor, which resulted in promotion of charge separation and enhanced photocatalytic activity.

  10. Preparation, characterization and adsorption properties of chitosan modified magnetic graphitized multi-walled carbon nanotubes for highly effective removal of a carcinogenic dye from aqueous solution

    International Nuclear Information System (INIS)

    Novel chitosan-modified magnetic graphitized multi-walled carbon nanotubes (CS-m-GMCNTs) were synthesized via a suspension cross-linking method. Composition, morphology and magnetic properties of as-prepared CS-m-GMCNTs were characterized by XRD, SEM-EDS, BET and VSM. The large saturation magnetization (12.27 emu g−1) allows fast separation of CS-m-GMCNTs from treated aqueous solution. The adsorption of congo red (CR) on CS-m-GMCNTs was strongly dependent on pH, temperature of the aqueous phase and adsorbent dosage. Up to 100 and 94.58% color removal could be achieved in 100 min contact time with 10 and 50 mg L−1 of initial concentrations, respectively. The adsorption capacity of CR onto CS-m-GMCNTs could reach 262.9 mg g−1. The pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999) was suitable to describe the process of CR adsorption onto CS-m-GMCNTs. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model. Values of thermodynamic parameters (ΔG°, ΔH° and ΔS°) indicated that the adsorption process was strongly dependent on temperature of the aqueous phase, and spontaneous and endothermic process in nature. Therefore, CS-m-GMCNTs adsorbent displays main advantages of excellent dispersion, convenience separation and high adsorption capacity, which implies their potential application in the environmental cleanup.

  11. A third-generation biosensor for hydrogen peroxide based on the immobilization of horseradish peroxidase on a disposable carbon nanotubes modified screen–printed electrode

    International Nuclear Information System (INIS)

    A screen-printed carbon nanotube (CNTs) based disposable third generation biosensor for hydrogen peroxide (H2O2) was constructed by mixing CNTs with a cellulose acetate binder on an epoxy substrate. The surface was covered with a layer consisting of horseradish peroxidase (HRP) crosslinked to bovine serum albumin with glutaraldehyde. The CNTs acted as both the electrode material and charge promoter to facilitate the direct electron transfer between immobilized HRP and the modified electrode. At a working potential of −300 mV (vs. Ag/AgCl), the biosensor displays an excellent electrocatalytic response to the reduction of H2O2 without the aid of a mediator. It has a fast (3 s) amperometric response and a linear calibration in the concentration range 0.005–0.1 mmol L−1, with a 0.85 μM detection limit (at an S/N of 3). The biosensor can be easily produced, is stable and reproducible. (author)

  12. Second order advantage obtained by spectroelectrochemistry along with novel carbon nanotube modified mesh electrode: Application for determination of acetaminophen in Novafen samples

    Science.gov (United States)

    Asadpour-Zeynali, Karim; Maryam Sajjadi, S.; Taherzadeh, Fatemeh

    2016-01-01

    A matrix-augmentation multivariate curve resolution-alternating least-squares (MA-MCR-ALS) has been conducted on the spectroelectrochemical data of acetaminophen oxidation in order to quantify acetaminophen in Novafen capsule in the presence of unknown interferences. The experiments were carried out using new cheap mesh electrode, namely carbon nanotube modified mesh electrode (CNMME) as optically transparent thin layer electrode (OTTLE). For each sample, a second order spectroelectrochemical data was obtained and MA-MCR-ALS method was applied to analyze these data. Unlike full trilinear models such as PARAFAC, MCR-ALS is flexible in applying trilinearity constraint for each component, a fact which makes it manage deviations from trilinearity of data effectively. This method was employed in both spectral and kinetic augmentation mode of data under examining different trilinear components. However, spectral augmentation was the only setting which allows MA-MCR-ALS to solve the analytical problem achieving the second order advantage. Therefore, here the results of the augmentation in this mode have been described. In order to obtain the best analytical figures of merit in the analysis, different constraints were investigated. The results indicated the accuracy of the proposed method.

  13. Synthesis of carbon nanotubes with Ni/CNTs catalyst

    Institute of Scientific and Technical Information of China (English)

    LI; Chunhua; (李春华); YAO; Kefu; (姚可夫); RUAN; Dianbo; (阮殿波); LIANG; Ji; (梁; 吉); XU; Cailu; (徐才录); WU; Dehai; (吴德海)

    2003-01-01

    Carbon nanotubes (CNTs), owing to their large specific area, good chemical stability and modifiable surface properties after acidic or basic treatment, can be used as catalytic support materials. In this paper, the activities and selectivities of two catalysts, i. e. Ni catalyst supported by carbon nanotubes (Ni/CNTs) and that supported by diatomite (Ni/SiO2), are compared. It is found that the quality of the carbon nanotubes synthesized by the two catalysts is similar, but the yield of the former is 1.5 times higher than that of the latter. The excellent performance of the Ni/CNTs catalyst should be ascribed to the larger specific surface area and proper pore distribution and the structure of the carbon nanotube support.

  14. Roping and wrapping carbon nanotubes

    Science.gov (United States)

    Ausman, Kevin D.; O'Connell, Michael J.; Boul, Peter; Ericson, Lars M.; Casavant, Michael J.; Walters, Deron A.; Huffman, Chad; Saini, Rajesh; Wang, Yuhuang; Haroz, Erik; Billups, Edward W.; Smalley, Richard E.

    2001-11-01

    Single-walled carbon nanotubes can be dispersed into solvents by ultrasonication to the point that primarily individual tubes, cut to a few hundred nanometers in length, are present. However, when such dispersions are filtered to a thick mat, or paper, only tangles of uniform, seemingly endless ropes are observed. The factors contributing to this "roping" phenomenon, akin to aggregation or crystallization, will be discussed. We have developed methods for generating "super-ropes" more than twenty times the diameter of those formed by filtration, involving the extraction of nanotube material from an oleum dispersion. Nanotubes have been solubilized in water, largely individually, by non-covalently wrapping them with linear polymers. The general thermodynamic drive for this wrapping involves the polymer disrupting both the hydrophobic interface with water and the smooth tube-tube interaction in aggregates. The nanotubes can be recovered from their polymeric wrapping by changing their solvent system. This solubilization process opens the door to solution chemistry on pristine nanotubes, as well as their introduction into biologically relevant systems.

  15. Synthesis and Characterization Of Fe-modified Imogolite Nanotubes

    OpenAIRE

    Shafia, Ehsan

    2015-01-01

    During the past decades, and after introducing the most famous carbon nanotubes, the main role in these fields has been playing by the single- and multi-wall carbon nanotubes which have received tremendous research interest due to their superior mechanical, chemical, electrical and thermal properties. However, several problems in carbon nanotube technology, such as high-temperature process with low yield product, imprecise control over nanotube dimensions and chirality, limitations of chemica...

  16. A glassy carbon electrode modified with bismuth nanotubes in a silsesquioxane framework for sensing of trace lead and cadmium by stripping voltammetry

    International Nuclear Information System (INIS)

    Single-walled bismuth nanotubes (sw-BiNTs) were self-assembled with octa(3-aminopropyl) silsesquioxane as a framework and to govern morphology. Deposited on a glassy carbon electrode (GCE), the sw-BiNTs were used for the simultaneous analysis of Pb(II) and Cd(II) by square wave stripping voltammetry. The sw-BiNTs were prepared by (a) coordination interaction between the amino groups of the silsesquioxane and the Bi(III) ions, and by (b) reduction with sodium borohydride. Transmission electron microscopy images revealed single-walled tubular structures with diameters of ∼4–6 nm, and with lengths of several hundreds nanometers. GCEs modified with such sw-BiNTs perform much better than bare GCEs in stripping analysis of Pb(II) and Cd(II). The effects of adsorption quantity of sw-BiNTs, solution pH, pulse amplitude, and pulse width were optimized. The modified electrode was then used for the analysis of Pb(II) and Cd(II) in a linear response range from 0.4 to 6 μM with a sensitivity of 4.692 μA μM−1 and 3.835 μA μM−1, and detection limits of 1 nM and 5 nM, respectively. The method was successfully applied to the analysis of Pb(II) and Cd(II) in toy leachates, and the results were in good agreement with those obtained with atomic absorption spectrometry. Sensitivity and detection limits were compared with other voltammetric methods, and the sw-BiNTs are deemed to be an attractive alternative for practical applications. Other features of the electrode include low costs, a well reproducible nanostructure, and ease of scale-up of the fabrication process. (author)

  17. Carbon Nanotubes - Polymer Composites with Enhanced Conductivity using Functionalized Nanotubes

    Science.gov (United States)

    Ramasubramaniam, Rajagopal; Chen, Jian; Gupta, Rishi

    2003-03-01

    Individual carbon nanotubes show superior electrical, mechanical and thermal properties [1]. Composite materials using carbon nanotubes as fillers are predicted to show similar superior properties. However, realization of such composites has been plagued by poor dispersion of carbon nanotubes in solvents and in polymer matrices. We have developed a method to homogenously disperse carbon nanotubes in polymer matrices using functionalized nanotubes [2]. Thin films of functionalized single walled nanotubes (SWNT) - polystyrene composites and functionalized SWNT - polycarbonate composites were prepared using solution evaporation and spin coating. Both of the composites show several orders of magnitude increase in conductivity for less than 1 wt thresholds of the composites are less than 0.2 wt nanotubes. We attribute the enhanced conduction to the superior dispersion of the functionalized nanotubes in the polymer matrix and to the reduced nanotube waviness resulting from the rigid backbone of the conjugated polymer. References: [1]. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science v297, p787 (2002); [2]. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck and G. C. Walker, J. Am. Chem. Soc. v124, p9034 (2002).

  18. Simultaneous determination of 2,4,6-trichlorophenol and pentachlorophenol based on poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified electrode

    Science.gov (United States)

    Zhu, Xiaolin; Zhang, Kexin; Lu, Nan; Yuan, Xing

    2016-01-01

    In the present study, a poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes nanocomposite modified glass carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The PRhB/GO/MWCNTs film was extensively characterized by emission scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The electrochemical behaviors of 2,4,6-TCP and PCP were investigated by cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetry. Due to the synergistic effect, the PRhB/GO/MWCNTs/GCE significantly facilitated the simultaneous electro-oxidation of 2,4,6-TCP and PCP with peak potential difference of 160 mV and enhanced oxidation currents. Under optimum conditions, the oxidation current of 2,4,6-TCP was linear to its concentration in the ranges of 4.0 × 10-9 to 1.0 × 10-7 M and 1.0 × 10-7 to 1.0 × 10-4 M with the detection limit (S/N = 3) of 8.0 × 10-10 M. And the linear concentration ranges for PCP were 2.0 × 10-9 to 1.0 × 10-7 M and 1.0 × 10-7 to 9.0 × 10-5 M with the detection limit of 5.0 × 10-10 M. Moreover, the proposed PRhB/GO/MWCNTs/GCE was successfully applied to the simultaneous determination of 2,4,6-TCP and PCP in practical water samples.

  19. Emerging Carbon Nanotube Electronic Circuits, Modeling, and Performance

    OpenAIRE

    Ashok Srivastava; Yao Xu; Sharma, Ashwani K.

    2010-01-01

    Current transport and dynamic models of carbon nanotube field-effect transistors are presented. A model of single-walled carbon nanotube as interconnect is also presented and extended in modeling of single-walled carbon nanotube bundles. These models are applied in studying the performances of circuits such as the complementary carbon nanotube inverter pair and carbon nanotube as interconnect. Cadence/Spectre simulations show that carbon nanotube field-effect transistor circuits can operate a...

  20. Characterization methods of carbon nanotubes: a review

    International Nuclear Information System (INIS)

    Carbon nanotubes due to their specific atomic structure have interesting chemical and physical properties according to those of graphite and diamond. This review covers the characterization methods of carbon nanotubes which are most employed today. The structure of carbon nanotubes is first briefly summarized followed by a description of the characterization methods such as STM, TEM, neutron diffraction, X-ray diffraction, X-ray photoelectron spectroscopy, infrared and Raman spectroscopy. The most interesting features are indexed for each technique

  1. Structure and properties of carbon nanotubes

    OpenAIRE

    MEYER, Jannik

    2006-01-01

    The properties of nanoscopic objects depend critically on the position of each atom, since finite-size and quantization effects play an important role. For carbon nanotubes, the electronic, mechanical, and vibrational properties vary significantly depending on their structure. For example, a carbon nanotube can be metallic or semiconducting with varying band-gaps depending on its lattice structure. Yet, most investigations on individual carbon nanotubes are carried out on objects with unknown...

  2. Photonics based on carbon nanotubes

    OpenAIRE

    Gu, Qingyuan; Gicquel-Guézo, Maud; Loualiche, Slimane; Pouliquen, Julie Le; Batte, Thomas; Folliot, Hervé; Dehaese, Olivier; Grillot, Frederic; Battie, Yann; Loiseau, Annick; Liang, Baolai; Huffaker, Diana

    2013-01-01

    Among direct-bandgap semiconducting nanomaterials, single-walled carbon nanotubes (SWCNT) exhibit strong quasi-one-dimensional excitonic optical properties, which confer them a great potential for their integration in future photonics devices as an alternative solution to conventional inorganic semiconductors. In this paper, we will highlight SWCNT optical properties for passive as well as active applications in future optical networking. For passive applications, we directly compare the effi...

  3. Photoluminescence Study of Carbon Nanotubes

    OpenAIRE

    Han, H. X.; Li, G. H.; Ge, W. K.; Wang, Z. P.; Xu, Z. Y.; Xie, S. S.; Chang, B H; Sun, L. F.; Wang, B S; G. Xu; Su, Z.B.

    2000-01-01

    ultiwalled carbon nanotubes, prepared by both electric arc discharge and chemical vapor deposition methods, show a strong visible light emission in photoluminescence experiments. All the samples employed in the experiments exhibit nearly same super-linear intensity dependence of the emission bands on the excitation intensity, and negligible temperature dependence of the central position and the line shapes of the emission bands. Based upon theoretical analysis of the electronic band structure...

  4. OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    I. V. Mitrofanova

    2015-12-01

    Full Text Available Nanomaterials  –  materials,  whouse  structure  elements  has  proportions  doesn’t  exceed  100  nm.  In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.

  5. Sensitive immunoassay for the β-agonist ractopamine based on glassy carbon electrode modified with gold nanoparticles and multi-walled carbon nanotubes in a film of poly-arginine

    International Nuclear Information System (INIS)

    We are presenting an electrochemical immunosensor for the determination of the β-agonist and food additive ractopamine. A glassy carbon electrode (GCE) was modified with gold nanoparticles and a film of a composite made from poly(arginine) and multi-walled carbon nanotubes. Antibody against ractopamine was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin. The assembly of the immunosensor was followed by electrochemical impedance spectroscopy. Results demonstrated that the semicircle diameter increases, indicating that the film formed on the surface hinders electron transfer due to formation of the antibody-antigen complex on the modified electrode. Under optimal conditions, the peak current obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol•L−1 to 1 μmol•L−1 concentration range. The lower detection limit is 0.1 nmol•L−1. The sensor displays good stability and reproducibility. The method was applied to the analysis of spiked swine feed samples and gave satisfactory results. (author)

  6. Carbon nanotube atomic force microscopy probes

    Science.gov (United States)

    Yamanaka, Shigenobu; Okawa, Takashi; Akita, Seiji; Nakayama, Yoshikazu

    2005-05-01

    We have developed a carbon nanotube atomic force microscope probe. Because the carbon nanotube are well known to have high aspect ratios, small tip radii and high stiffness, carbon nanotube probes have a long lifetime and can be applied for the observation deep trenches. Carbon nanotubes were synthesized by a well-controlled DC arc discharge method, because this method can make nanotubes to have straight shape and high crystalline. The nanotubes were aligned on the knife-edge using an alternating current electrophoresis technique. A commercially available Si probe was used for the base of the nanotube probe. The nanotube probe was fabricated by the SEM manipulation method. The nanotube was then attached tightly to the Si probe by deposition of amorphous carbon. We demonstrate the measurement of a fine pith grating that has vertical walls. However, a carbon nanotube has a problem that is called "Sticking". The sticking is a chatter image on vertical like region in a sample. We solved this problem by applying 2 methods, 1. a large cantilever vibration amplitude in tapping mode, 2. an attractive mode measurement. We demonstrate the non-sticking images by these methods.

  7. Heteronuclear carbon nanotubes: applications to study carbon nanotube growth

    International Nuclear Information System (INIS)

    Full text: Synthesis of heteronuclear carbon nanotubes and their application for a variety of studies is presented. SWCNTs peapods encapsulating highly 13C enriched fullerenes and double wall carbon nanotubes (DWCNTs) based on the peapods were prepared. Raman studies indicate that the inner tubes are highly 13C enriched with no carbon exchange between the two walls during the synthesis. The material enables the straightforward identification of the inner and outer tube vibrational spectra. An inhomogeneous broadening, assigned to the random distribution of 12C and 13C nuclei is observed and is explained by ab initio vibrational analysis. The growth of inner tubes from organic solvents was proven by the use of 13C labeled organic materials such as toluene. The simultaneous encapsulation of fullerenes with the solvents was found crucial as these prevent the solvents from evaporating during the high temperature synthesis of the inner tubes. Nuclear magnetic resonance on the peapods and DWCNTs with highly 13C enriched fullerenes or inner walls proves the significant contrast of the isotope enriched SWCNTs as compared to other carbon phases. The NMR experiment on the DWCNTs yield direct information on the electronic properties of small diameter SWCNTs. The significantly different chemical shift of the inner tubes is related to a curvature effect. Relaxation data on the inner tubes shows a deviation from a Fermi-liquid behavior. (author)

  8. Nanoengineering of carbon nanotubes for nanotools

    International Nuclear Information System (INIS)

    We have developed a well controlled method for manipulating carbon nanotubes. The first crucial process involved is to prepare a nanotube array, named a nanotube cartridge. We have discovered ac electrophoresis of nanotubes by which nanotubes are aligned at the knife-edge. The nanotubes used were multiwalled and prepared by an arc discharge with a relatively high gas temperature. The second important process is to transfer a nanotube from the nanotube cartridge onto a substrate in a scanning electron microscope (SEM). Using this method, we have developed nanotube tips and nanotube tweezers that operate in a scanning probe microscope (SPM). The nanotube probes have been applied for the observation of biological samples and industrial samples to clarify their advantages. The nanotube tweezers have demonstrated their motion in an SEM and have operated to carry nanomaterials in a SPM. We have also developed the electron ablation of a nanotube to adjust its length and the sharpening of a multiwall nanotube to have its inner layer with or without an end cap at the tip. For the sharpening process, the free end of a nanotube protruding from the cartridge was attached to a metal-coated Si tip and a voltage was applied to the nanotube. When a high voltage was used in the saturation current regime, the current decreased stepwise in the temporal variation, indicating the sequential destruction of individual nanotube layers. The nanotube was finally cut at the middle of the nanotube bridge, and its tip was sharpened to have an inner layer with an opened end. Moving up the cartridge before cutting enables us to extract the inner layer with an end cap. It is evidenced that the maximum current in each layer during the stepwise decrease depends on its circumference, and the force for extracting the inner layer with ∼5-nm diameter is ∼4-nN

  9. Draw out Carbon Nanotube from Liquid Carbon

    OpenAIRE

    ZHANG, SHUANG; Hoshi, Takeo; Fujiwara, Takeo

    2006-01-01

    Carbon nanotube (CNT) is expected for much more important and broader applications in the future, because of its amazing electrical and mechanical properties. However, today, the prospect is detained by the fact that the growth of CNTs cannot be well controlled. In particular, controlling the chirality of CNTs seems formidable to any existing growth method. In addition, a systematic method for a designed interconnected network has not been established yet, which is focused particularly in nan...

  10. 碳纳米管改性聚氨酯复合材料%Polyurethane composites modified by carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    吕君亮; 刘意; 易运红

    2012-01-01

    The authors prepared two sets of specimens of polyurethane/earbon nanotube(PUR/CNTs) composites via in-situ polymerization under the action of ultrasonic wave, either compounding PUR with CNTs directly or polymerizing PUR with the CNTs treated by silane coupling agent. The effect of CNTs content on electrical properties of the composites was discussed. The composite could be used as antistatic material when the CNTs content was 1.0% in mass fraction. The CNTs treated by silane coupling agent could be dispersed well in the composite. The tensile strength, notched Izod impact strength and tensile modulus of the composites were superior.%用原位聚合法制备两组聚氨酯(PUR)/碳纳米管(CNTs)复合材料.一组是在超声波作用下将CNTs直接和PUR复合;另一组是将硅烷偶联剂处理的CNTs在超声波作用下与PUR原位聚合制备PUR/CNTs复合材料.探讨了CNTs含量对复合材料电性能的影响,在w(CNTs)为1.0%时可用作抗静电材料.经硅烷偶联剂处理的CNTs分散较好,复合材料的拉伸强度、悬臂梁缺口冲击强度,拉伸模量更高.

  11. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides

    International Nuclear Information System (INIS)

    Graphical abstract: The stepwise amperometric biosensor fabrication process and immobilized acetylcholinesterase inhibition in pesticide solution. Highlights: · Constructed a novel composite material using Fe3O4NP and c-MWCNT at Au electrode for electrocatalysis. · The properties of nanoparticles modified electrodes were studied by SEM, FTIR, CVs and EIS. · The biosensor exhibited good sensitivity (0.475 mA μM-1) · The half life of electrode was 2 months. · The sensor was suitable for trace detection of OP pesticide residues in milk and water. - Abstract: An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe3O4NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe3O4/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe3O4NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 deg. C, 600 μM substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1-40 nM, 0.1-50 nM, 1-50 nM and 10-100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The biosensor exhibited good sensitivity (0.475 mA μM-1), reusability (more than 50 times) and stability (2

  12. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Nidhi [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India); Pundir, Chandra Shekhar, E-mail: pundircs@rediffmail.com [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India)

    2011-09-02

    Graphical abstract: The stepwise amperometric biosensor fabrication process and immobilized acetylcholinesterase inhibition in pesticide solution. Highlights: {center_dot} Constructed a novel composite material using Fe{sub 3}O{sub 4}NP and c-MWCNT at Au electrode for electrocatalysis. {center_dot} The properties of nanoparticles modified electrodes were studied by SEM, FTIR, CVs and EIS. {center_dot} The biosensor exhibited good sensitivity (0.475 mA {mu}M{sup -1}) {center_dot} The half life of electrode was 2 months. {center_dot} The sensor was suitable for trace detection of OP pesticide residues in milk and water. - Abstract: An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe{sub 3}O{sub 4}NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe{sub 3}O{sub 4}/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe{sub 3}O{sub 4}NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 deg. C, 600 {mu}M substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1-40 nM, 0.1-50 nM, 1-50 nM and 10-100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The

  13. Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna.

    Science.gov (United States)

    Böhmler, Miriam; Hartmann, Nicolai; Georgi, Carsten; Hennrich, Frank; Green, Alexander A; Hersam, Mark C; Hartschuh, Achim

    2010-08-01

    We observe the angular radiation pattern of single carbon nanotubes' photoluminescence in the back focal plane of a microscope objective and show that the emitting nanotube can be described by a single in-plane point dipole. The near-field interaction between a nanotube and an optical antenna modifies the radiation pattern that is now dominated by the antenna characteristics. We quantify the antenna induced excitation and radiation enhancement and show that the radiative rate enhancement is connected to a directional redistribution of the emission. PMID:20721031

  14. Electrochemical behavior of an indenedione derivative electrodeposited on a renewable sol-gel derived carbon ceramic electrode modified with multi-wall carbon nanotubes: Application for electrocatalytic determination of hydrazine

    International Nuclear Information System (INIS)

    A novel modified carbon ceramic electrode (CCE) containing multi-wall carbon nanotubes (MWCNTs) was fabricated by a sol-gel technique. The prepared MWCNT-CCE was modified by the electrodeposition of an indenedione derivative. The indenedione modified MWCNT-CCE (IMWCNT-CCE) shows one pair of peaks with surface confined characteristics. According to the theoretical model of Laviron, estimations were made in different pHs of the surface charge transfer rate constant, ks, and the charge transfer coefficient, α, for electron transfer between the indenedione derivative and MWCNT-CCE. The modified electrode shows a highly catalytic activity toward hydrazine electrooxidation at a wide pH range (5-9). The kinetic parameters such as the electron transfer coefficient, α, the heterogeneous rate constant, k', and the exchange current of hydrazine at the IMWCNT-CCE were calculated as 0.29 ± 0.01, 2.7(±0.3) x 10-3 cm s-1 and 0.17 ± 0.03 μA, respectively. Also, the modified electrode shows an excellent analytical performance for voltammetric determination of hydrazine. Differential pulse voltammetry (DPV) exhibits two linear dynamic ranges, 0.6-8.0 μM and 8.0-100.0 μM, and a lower detection limit of 0.29 μM for hydrazine. Finally, the practical analytical utility is illustrated by differential pulse voltammetric determination of hydrazine in auxiliary cooling water at IMWCNT-CCE and the accuracy of the results is verified in comparison with those obtained from the standard ASTM method

  15. 基于碳纳米管修饰电极的甲醛生物传感器%An Formaldehyde Biosensor Based on Carbon Nanotubes Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    张仁彦; 张学骜; 贾红辉; 李新华

    2012-01-01

    A novel formaldehyde biosensor based on the detection of reduced coenzyme I by using the formaldehyde dehydrogenase and carboxyl multi-walled carbon nanotubes modified screen printed electrode was reported. The best detection conditions in experiments were examined. The experiment results showed that the sensor had good electrocatalytic oxidization function to formaldehyde, and it significantly reduced the formaldehyde oxidation peak voltage. The concentrate of formaldehyde in the range of 1 nmol/L to 11 mmol/L presented excellent linear relationship to its peak currents and its the linear regression equation was i(μ)=0. 944c (mmol/L) + 0.0623, with a correlation coefficient of 0. 9934. The response time was about 20 s. The detection limit was 0. 2 u,mol/L(S/N=3).%利用甲醛脱氢酶和羧基化多壁碳纳米管修饰的丝网印刷电极,制备了基于还原型辅酶Ⅰ检测的甲醛生物传感器,并优化了传感器的检测条件.结果表明,此传感器对甲醛有较好的电催化氧化作用,显著降低了甲醛的氧化峰电位.在0.001~11nmol/L范围内,响应电流与甲醛的浓度线性相关,其线性回归方程为z(μA)=0.944c(mmol/L,) +0.0623,相关系数为0.9934,响应时间约为20 s,检出限为0.2 μmol/L( S/ N=3).

  16. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, John, E.

    2009-07-24

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of

  17. Reinforcing effect of plasma modified halloysite nanotubes in a carbon black filled natural rubber-butadien rubber matrix

    NARCIS (Netherlands)

    Poikelispaa, Minna; Das, Amit; Dierkes, Wilma; Vuorinen, Jyrki

    2011-01-01

    Rubber composites are generally produced by the direct incorporation of fillers like carbon black and/or silica into the rubber matrix. The incorporation of different types of nanofillers is the subject of recent research with the aim of preparing composites with special compositions and properties.

  18. Functional Materials based on Carbon Nanotubes

    OpenAIRE

    Jung, Adrian Thomas

    2007-01-01

    Carbon nanotubes, no matter if they are single-walled or multi-walled, are an integral component in the vastly growing field of nanotechnology. Since their discovery by TEM and the invention of numerous large-scale production techniques, nanotubes are close to making their way into industrial products. Although many properties and modification processes are still under intensive research, the first real-market applications for carbon nanotubes have already been presented. However, if function...

  19. Dielectrophoretic assembly of carbon nanotube devices

    OpenAIRE

    Dimaki, Maria; BØGGILD, Peter

    2004-01-01

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane. The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an ele...

  20. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  1. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G

    2012-01-01

    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  2. Chromatographic size separation of single-wall carbon nanotubes

    Science.gov (United States)

    Duesberg, G. S.; Muster, J.; Krstic, V.; Burghard, M.; Roth, S.

    The efficient purification of single-wall carbon nanotubes (SWNTs) is reported. Carbon nanospheres, metal particles, and amorphous carbon could be successfully removed by size exclusion chromatography (SEC) applied to surfactant stabilised dispersions of SWNT raw material. In addition, length separation of the tubes was achieved. The SWNTs obtained can be adsorbed in high densities onto chemically modified substrates. As determined by AFM investigations, the purified material consists of about equal fractions of both individual SWNTS and ropes of SWNTs.

  3. Carbon nanotubes composites for microwave applications

    OpenAIRE

    Herrero Fernández, Diego

    2015-01-01

    Carbon nanotubes have become a focus of study due to the great applications you can have and its excellent properties. In this thesis the compounds formed by a host and a percentage of carbon nanotubes are modelled. The models used are the Debye model, the Maxwell Garnett model and McLachlan model. These models have been implemented in ...

  4. Carbon nanotube flow sensor device and method

    OpenAIRE

    Sood, Ajay Kumar; Ghosh, Shankar

    2004-01-01

    A method and device for measuring the flow of a liquid utilizes at least one carbon nanotube. More particularly, the velocity of a liquid along the direction of the flow is measured as a function of them current/voltage generated in at least one carbon nanotube due to the flow of the liquid along its surface.

  5. Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts.

    Science.gov (United States)

    Lolli, Giulio; Zhang, Liang; Balzano, Leandro; Sakulchaicharoen, Nataphan; Tan, Yongqiang; Resasco, Daniel E

    2006-02-01

    The (n,m) population distribution of single-walled carbon nanotubes obtained on supported CoMo catalysts has been determined by photoluminescence and optical absorption. It has been found that the (n,m) distribution can be controlled by varying the gaseous feed composition, the reaction temperature, and the type of catalyst support used. When using CO as a feed over CoMo/SiO2 catalysts, increasing the synthesis temperature results in an increase in nanotube diameter, without a change in the chiral angle. By contrast, by changing the support from SiO2 to MgO, nanotubes with similar diameter but different chiral angles are obtained. Finally, keeping the same reaction conditions but varying the composition of the gaseous feed results in different (n,m) distribution. The clearly different distributions obtained when varying catalysts support and/or reaction conditions demonstrate that the (n,m) distribution is a result of differences in the growth kinetics, which in turn depends on the nanotube cap-metal cluster interaction. PMID:16471791

  6. Electrochemical studies of U(VI)/U(IV) redox reaction in 1M H{sub 2}SO{sub 4} at single-walled carbon nanotubes (SWCNTs) modified gold (Au) electrode

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ruma; Aggarwal,S.K. [Bhabha Atomic Reseach Centre, Trombay, Mumbai (India). Fuel Chemistry Div.

    2013-08-01

    Electrochemistry of U(VI)/U(IV) couple in 1 M H{sub 2}SO{sub 4} was studied on bare and SWCNT modified gold (Au) electrodes by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The gold electrode modified with single-walled carbon nanotubes (SWCNTs-Au) was characterized by scanning electron microscopy (SEM). Electrocatalysis of U(VI)/U(IV) redox reaction was observed on SWCNT-Au. The lower charge transfer resistance at SWCNT-Au promoted the rate of electron transfer reaction of U(VI)/U(IV) couple. These results are interesting to develop electroanalytical methodologies for uranium determination using SWCNT modified electrodes. To the best of our knowledge, this is the first study on the electrocatalysis of uranium on SWCNT modified electrode. (orig.)

  7. Electrochemically selective determination of dopamine in the presence of ascorbic and uric acids on the surface of the modified Nafion/single wall carbon nanotube/poly(3-methylthiophene) glassy carbon electrodes.

    Science.gov (United States)

    Quan, Do Phuc; Tuyen, Do Phuc; Lam, Tran Dai; Tram, Phan Thi Ngoc; Binh, Nguyen Hai; Viet, Pham Hung

    2011-12-01

    A voltammetric method based on a combination of incorporated Nafion, single-walled carbon nanotubes and poly(3-methylthiophene) film-modified glassy carbon electrode (NF/SWCNT/PMT/GCE) has been successfully developed for selective determination of dopamine (DA) in the ternary mixture of dopamine, ascorbic acid (AA) and uric acid (UA) in 0.1M phosphate buffer solution (PBS) pH 4. It was shown that to detect DA from binary DA-AA mixture, the use of NF/PMT/GCE was sufficient, but to detect DA from ternary DA-AA-UA mixture NF/SWCNT/PMT/GCE was required. The later modified electrode exhibits superior electrocatalytic activity towards AA, DA and UA thanks to synergic effect of NF/SWCNT (combining unique properties of SWCNT such as high specific surface area, electrocatalytic and adsorptive properties, with the cation selectivity of NF). On the surface of NF/SWCNT/PMT/GCE AA, DA, UA were oxidized respectively at distinguishable potentials of 0.15, 0.37 and 0.53 V (vs. Ag/AgCl), to form well-defined and sharp peaks, making possible simultaneous determination of each compound. Also, it has several advantages, such as simple preparation method, high sensitivity, low detection limit and excellent reproducibility. Thus, the proposed NF/SWCNT/PMT/GCE could be advantageously employed for the determination of DA in real pharmaceutical formulations. PMID:21907551

  8. The use of cheap polyaniline and melamine co-modified carbon nanotubes as active and stable catalysts for oxygen reduction reaction in alkaline medium

    International Nuclear Information System (INIS)

    In this work, an active and stable electrocatalyst for alkaline electrolyte oxygen reduction reaction was prepared by using single-wall carbon nanotubes with high specific surface area as the carbon source, and polyaniline and melamine as dual nitrogen sources via high-temperature pyrolysis process. Electrochemical experiments suggest that the metallic cobalt in the precursor can facilitate the oxygen reduction reaction to be carried out with an efficient 4-electron transfer pathway. Besides, the prepared catalyst has exhibited superior tolerance against methanol crossover effect and outstanding stability compared with commercial Pt-based catalysts in alkaline medium

  9. Conducting carbonized polyaniline nanotubes

    Czech Academy of Sciences Publication Activity Database

    Mentus, S.; Ciric-Marjanovic, G.; Trchová, Miroslava; Stejskal, Jaroslav

    2009-01-01

    Roč. 20, č. 24 (2009), 245601/1-245601/10. ISSN 0957-4484 R&D Projects: GA ČR GA203/08/0686; GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymers * polyaniline * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.137, year: 2009

  10. Voltammetric behavior of 3,5-dinitrobenzoic acid in solution on GCE and encapsulated on multiwalled carbon nanotube modified electrode

    OpenAIRE

    Moscoso, R.; Carbajo Timoteo, José Coronada; Mozo Llamazares, Juan Daniel; Squella Serrano, Juan Arturo

    2016-01-01

    The cyclic voltammetric behavior of 3,5-dinitrobenzoic acid (3,5-DNB) in 0.1 M PBS of pH 7 was examined at a glassy carbon electrode (GCE). 3,5-DNB was found to produce two irreversible reduction peaks corresponds to the reduction of each nitro group in the 3,5-DNB molecule. Our results contradict previous studies (P.Gopal et al. Journal of Molecular Liquids 178 (2013) 168-174) wherein the same peaks are assigned as, the first, to the reduction of the nitro group to hydroxylami...

  11. Surface Functionalization of Multiwalled Carbon Nanotube with Trifluorophenyl

    Directory of Open Access Journals (Sweden)

    Li-Pei Zhang

    2006-09-01

    Full Text Available A new approach to dispersion of multiwalled carbon nanotube (MWNT in common polar solvents was reported. Here, a detailed study of nanotube chemistry by using trifluorophenyl (TFP to modify the surface of MWNT was discussed, which was not reported before. A characterization of the reaction products using a variety of techniques was provided. The results confirmed that the surface of MWNT was successfully functionalized. Furthermore, trifluorophenyl multiwalled carbon nanotube (TFP-MWNT was well dispersed in polar solvents, such as tetrahydrofuran (THF, acetic acid (Ac, N,N-dimethyl formamide (DMF, dimethyl sulfoxide (DMSO, due to the adsorption of trifluorophenyl groups on the surface of raw MWNT. Following chemical modification, dispersed individual nanotube suggests the potentials for wide applications.

  12. Light Emission in Silicon from Carbon Nanotubes

    CERN Document Server

    Gaufrès, Etienne; Noury, Adrien; Roux, Xavier Le; Rasigade, Gilles; Beck, Alexandre; Vivien, Laurent

    2015-01-01

    The use of optics in microelectronic circuits to overcome the limitation of metallic interconnects is more and more considered as a viable solution. Among future silicon compatible materials, carbon nanotubes are promising candidates thanks to their ability to emit, modulate and detect light in the wavelength range of silicon transparency. We report the first integration of carbon nanotubes with silicon waveguides, successfully coupling their emission and absorption properties. A complete study of this coupling between carbon nanotubes and silicon waveguides was carried out, which led to the demonstration of the temperature-independent emission from carbon nanotubes in silicon at a wavelength of 1.3 {\\mu}m. This represents the first milestone in the development of photonics based on carbon nanotubes on silicon.

  13. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    马仁志; 魏秉庆; 徐才录; 梁吉; 吴德海

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2 ·xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2· xH2O in the composite electrodes reaches 75% . In addition , supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  14. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2.xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2.xH2O in the composite electrodes reaches 75%. In addition, supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  15. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.;

    2008-01-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms are...... an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  16. Molecular Dynamics Simulations of Carbon Nanotubes in Water

    Science.gov (United States)

    Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P.

    2000-01-01

    We study the hydrophobic/hydrophilic behavior of carbon nanotubes using molecular dynamics simulations. The energetics of the carbon-water interface are mainly dispersive but in the present study augmented with a carbon quadrupole term acting on the charge sites of the water. The simulations indicate that this contribution is negligible in terms of modifying the structural properties of water at the interface. Simulations of two carbon nanotubes in water display a wetting and drying of the interface between the nanotubes depending on their initial spacing. Thus, initial tube spacings of 7 and 8 A resulted in a drying of the interface whereas spacing of > 9 A remain wet during the course of the simulation. Finally, we present a novel particle-particle-particle-mesh algorithm for long range potentials which allows for general (curvilinear) meshes and "black-box" fast solvers by adopting an influence matrix technique.

  17. Growing carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Yoshinori Ando

    2004-10-01

    Full Text Available The discovery of ‘fullerenes’ added a new dimension to the knowledge of carbon science1; and the subsequent discovery of ‘carbon nanotubes’ (CNTs, the elongated fullerene added a new dimension to the knowledge of technology2;. Today, ‘nanotechnology’ is a hot topic attracting scientists, industrialists, journalists, governments, and even the general public. Nanotechnology is the creation of functional materials, devices, and systems through control of matter on the nanometer scale and the exploitation of novel phenomena and properties of matter (physical, chemical, biological, electrical, etc. at that length scale. CNTs are supposed to be a key component of nanotechnology. Almost every week a new potential application of CNTs is identified, stimulating scientists to peep into this tiny tube with ever increasing curiosity.

  18. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    F L Deepak; A Govindaraj; C N R Rao

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Yjunction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallicthiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives nanotubes with T- and Y-junctions.

  19. Ambient effects on the electrical conductivity of carbon nanotubes

    DEFF Research Database (Denmark)

    Roch, Aljoscha; Greifzu, Moritz; Roch Talens, Esther;

    2015-01-01

    We show that the electrical conductivity of single walled carbon nanotubes (SWCNT) networks is affected by oxygen and air humidity under ambient conditions by more than a magnitude. Later, we intentionally modified the electrical conductivity by functionalization with iodine and investigated the...

  20. Effect of chemical potential on the computer simulation of hydrogen storage in single walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Hong; WANG; Shaoqing; CHENG; Huiming

    2004-01-01

    Grand canonical Monte Carlo molecular simulations were carried out for hydrogen adsorption in single-walled carbon nanotubes. It was found that variations in chemical potential may result in a great change in the hydrogen storage capacity of single-walled carbon nanotubes. Hydrogen adsorption isotherms of single-walled carbon nanotubes at 298.15 K were calculated using a modified chemical potential, and the result obtained is closer to the experimental results. By comparing the experimental and simulation results, it is proposed that chemical adsorption may exist for hydrogen adsorption in single-walled carbon nanotubes.

  1. Carbon nanotube growth density control

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  2. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    NARCIS (Netherlands)

    Pop, A.; Manea, F.; Orha, C.; Motoc, S.; Llinoiu, E.; Vaszilcsin, N.; Schoonman, J.

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite

  3. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    OpenAIRE

    Pop, A.(National Institute for Physics and Nuclear Engineering, Bucharest, Romania); Manea, F.; Orha, C.; Motoc, S.; Llinoiu, E.; Vaszilcsin, N.; Schoonman, J.

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite electrode (Cu/CNT-epoxy) exhibited the highest sensitivity to glucose determination.

  4. Simulation of transport and 1/f noise in carbon nanotube films

    International Nuclear Information System (INIS)

    In this paper we present a simulator for electrical properties of carbon nanotube film field-effect transistors. The simulator, based on carbon nanotube physics uses Landauer formalism and Poisson equation. The total film is described as an electrical network. A modified nodal analysis provides DC and noise characteristics. These simulations are in good agreement with experimental results.

  5. Activity and stability studies of platinized multi-walled carbon nanotubes as fuel cell electrocatalysts

    DEFF Research Database (Denmark)

    Stamatin, Serban Nicolae; Borghei, Maryam; Dhiman, Rajnish;

    2015-01-01

    A non-covalent functionalization for multi-walled carbon nanotubes has been used as an alternative to the damaging acid treatment. Platinum nanoparticles with similar particle size distribution have been deposited on the surface modified multi-walled carbon nanotubes. The interaction between...

  6. Carbon nanotube cathode with capping carbon nanosheet

    Science.gov (United States)

    Li, Xin; Zhao, Dengchao; Pang, Kaige; Pang, Junchao; Liu, Weihua; Liu, Hongzhong; Wang, Xiaoli

    2013-10-01

    Here, we report a vertically aligned carbon nanotube (VACNT) film capped with a few layer of carbon nanosheet (FLCN) synthesized by chemical vapor deposition using a carbon source from iron phthalocyanine pyrolysis. The square resistance of the VACNT film is significantly reduced from 1500 Ω/□ to 300 Ω/□ when it is capped with carbon nanosheet. The VACNT capped with carbon nanosheet was transferred to an ITO glass substrate in an inverted configuration so that the carbon nanosheet served as a flexible transparent electrode at the bottom and the VACNT roots served as emission tips. Because all of the VACNTs start growing from a flat silicon substrate, the VACNT roots are very neat and uniform in height. A field emission test of the carbon nanosheet-capped VACNT film proved that the CNT roots show better uniformity in field emission and the carbon nanosheet cap could also potentially serve as a flexible transparent electrode, which is highly desired in photo-assisted field emission.

  7. On the elastic properties of carbon nanotube-based composites: modelling and characterization

    CERN Document Server

    Thostenson, E T

    2003-01-01

    The exceptional mechanical and physical properties observed for carbon nanotubes has stimulated the development of nanotube-based composite materials, but critical challenges exist before we can exploit these extraordinary nanoscale properties in a macroscopic composite. At the nanoscale, the structure of the carbon nanotube strongly influences the overall properties of the composite. The focus of this research is to develop a fundamental understanding of the structure/size influence of carbon nanotubes on the elastic properties of nanotube-based composites. Towards this end, the nanoscale structure and elastic properties of a model composite system of aligned multi-walled carbon nanotubes embedded in a polystyrene matrix were characterized, and a micromechanical approach for modelling of short fibre composites was modified to account for the structure of the nanotube reinforcement to predict the elastic modulus of the nanocomposite as a function of the constituent properties, reinforcement geometry and nanot...

  8. Electrochemistry of glucose oxidase on modified carbon nanotubes%葡萄糖氧化酶在修饰碳纳米管上的电化学

    Institute of Scientific and Technical Information of China (English)

    王佳; 李俊华; 周健

    2014-01-01

    Glucose oxidase (GOx) was immobilized on the electrode surface of multi-walled carbon nanotubes, amino functionalized carbon nanotubes (AMWNTs)and carboxyl functionalized carbon nanotubes (MWNTs-COOH). Electrochemical measurements indicated that the formal potentials of GOx immobilized on AMWNTs and MWNTs-COOH did not change, but their peak currents were improved. The peak current of GOx immobilized on AMWNTs was four times larger than that immobilized on MWNTs. The electrochemistry behavior of Nafion/GOx-AMWNTs/GC electrode were further characterized. The results indicated that GOx immobilized on AMWNTs could undergo a direct quasi-reversible electrochemical reaction and show good stability. Amino-functionalized electrodes could significantly improve the performance of GOx-based biofuel cells.%将葡萄糖氧化酶(GOx)分别固定在多壁碳纳米管(MWNT)、氨基化碳纳米管(AMWNTs)和羧基化碳纳米管(MWNTs-COOH)修饰的电极表面,电化学测量表明固定在羧基和氨基碳纳米管上的 GOx 式量电位基本没变,而峰电流得到了很大提高。尤其是氨基化碳纳米管上的GOx的峰电流是未功能化碳管上GOx的4倍多。进一步研究Nafion/GOx-AMWNTs/GC电极的电化学行为,发现固定在AMWNTs上的GOx可进行直接准可逆的氧化还原反应,而且固定在 AMWNTs 上的 GOx 有良好的稳定性。氨基改性碳纳米管电极载体材料有望显著提高 GOx生物燃料电池性能。

  9. Carbon nanotubes as heat dissipaters in microelectronics

    DEFF Research Database (Denmark)

    Pérez Paz, Alejandro; García-Lastra, Juan María; Markussen, Troels;

    2013-01-01

    We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties of...... nanotubes in presence of an interface with various substances, including air and water. Comparison with previous works is established whenever is possible....

  10. High content of pyridinic- and pyrrolic-nitrogen-modified carbon nanotubes derived from blood biomass for the electrocatalysis of oxygen reduction reaction in alkaline medium

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: •An ORR electrocatalyst was fabricated from blood biomass and carbon nanotube. •The N-CNT catalyst exhibits good ORR activity, methanol resistance and stability. •The pyrolysis process produces high contents of pyridinic and pyrrolic N species. •The pyridinic-N group may play more important role in the active sites for ORR. -- Abstract: Here we present a facile synthetic route to design nitrogen-doped nanostructured carbon-based electrocatalyst for oxygen reduction reaction (ORR) by the copyrolysis of blood biomass from pig and carbon nanotubes (CNTs) at high temperatures. The nitrogen-doped CNTs obtained at 800 °C not only results in excellent ORR activity with four-electron transfer selectivity in alkaline medium, but also exhibits superior methanol-tolerant property and long-term stability. It is confirmed that high-temperature pyrolysis processes can facilitate to produce higher contents of pyridinic- and pyrrolic-N binding groups in electrocatalysts, contributing to the enhancement of ORR performance in terms of onset potential, half-wave potential, and limited current density. We also propose that the planar-N configuration may be the active site that is responsible for the improved ORR electrocatalytic performance. The straight-forward and cheap synthesis of the active and stable electrocatalyst makes it a promising candidate for electrochemical power sources such as fuel cells or metal-air batteries

  11. An amperometric acetylcholinesterase sensor based on Fe3O4 nanoparticle/multi-walled carbon nanotube-modified ITO-coated glass plate for the detection of pesticides

    International Nuclear Information System (INIS)

    Highlights: ► Constructed AChE biosensor based on AChE/Fe3O4NPs/c-MWCNT/ITO electrode. ► Enzyme electrode was characterized by AFM, FTIR, CV and EIS. ► Detection limit and working range of biosensor were 0.1 nM and 0.1–100 nM. ► Half life of enzyme electrode was 3 months. ► Biosensor measured pesticides in environmental and food samples. - Abstract: A method is described for the construction of a highly sensitive electrochemical biosensor for the detection of malathion, chlorpyrifos, monocrotophos and endosulfan based on covalent immobilization of acetylcholinesterase (AChE) on iron oxide nanoparticles (Fe3O4NPs)-decorated carboxylated multi-walled carbon nanotubes (c-MWCNTs) electrodeposited onto indium tin oxide (ITO)-coated glass plate. Transmission electron microscopic (TEM) and UV analysis of nanocomposite materials demonstrated that Fe3O4NPs were well deposited on the outer walls of c-MWCNTs. The modified electrode was characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The resulting biosensor exhibited a linear response for acetylthiocholine in a concentration range of 0.1–700 μmol L−1 with a remarkable sensitivity of 0.402 mA/μmol L−1. Under optimum conditions, the inhibition rates of pesticides were proportional to their concentrations in the range of 0.1–70 nmol L−1, 0.1–50 nmol L−1, 0.1–70 nmol L−1 and 0.1–100 nmol L−1 for malathion, chlorpyrifos, monocrotophos and endosulfan, respectively. The detection limit of the biosensor for all pesticides was 0.1 nmol L−1 at a signal-to-noise ratio of 3. The biosensor showed good reproducibility, no interference by metal ions and long-term stability. The measurement results obtained by the present biosensor were in good agreement with those obtained by the standard gas chromatography–mass spectrometry method. The biosensor was employed for the determination

  12. Synthesis and microwave absorption property of graphene oxide/carbon nanotubes modified with cauliflower-like Fe3O4 nanospheres

    Science.gov (United States)

    Yan, Shaojiu; Wang, Lina; Wang, Tihong; Zhang, Liqiang; Li, Yongfeng; Dai, Shenglong

    2016-03-01

    We report a simple procedure to fabricate graphene oxide/carbon nanotube hybrids coated with cauliflower-like Fe3O4 sphere. Characterizations have been carried out to investigate the morphology, crystalline structure of the composites by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Fe3O4 particles have the morphologies of multi-lacuna; moreover, some spheres are hollow. As a kind of potential microwave absorption material, the composites are lightweight and exhibit excellent microwave absorbing ability in the range of 2-16 GHz.

  13. Poly-Alizarin red S/multiwalled carbon nanotube modified glassy carbon electrode for the boost up of electrocatalytic activity towards the investigation of dopamine and simultaneous resolution in the presence of 5-HT: A voltammetric study.

    Science.gov (United States)

    Reddaiah, K; Madhusudana Reddy, T; Venkata Ramana, D K; Subba Rao, Y

    2016-05-01

    Poly-Alizarin red S/multiwalled carbon nanotube film on the surface of glassy carbon electrode (poly-AzrS/MWCNT/GCE) was synthesized by electrochemical process and was used for the sensitive and selective determination of dopamine (DA) by employing voltammetric techniques. The electrocatalytic response of the modified electrode was found to exhibit admirable activity. The simultaneous determination of dopamine in the presence of serotonin (5-HT) was found to exhibit very good response at poly-AzrS/MWCNTs/GCE. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at the developed poly-AzrS/MWCNTs/GCE. The poly-AzrS/MWCNTs/GCE exhibited an efficient electron mediating behavior together with well resolved peaks for dopamine, in 0.1mol/dm(3) phosphate buffer (PBS) solution of pH7.0. The limit of detection (LOD) and limit of quantification (LOQ) were found to be as 1.89×10(-7)mol/dm(3) and 6.312×10(-7)mol/dm(3) respectively with a dynamic range from 1×10(-6) to 1.8×10(-5)mol/dm(3). The interfacial electron transfer behavior of DA was studied by electrochemical impedance spectroscopy (EIS); the studies showed that the charge transfer rate was enhanced at poly-AzrS/MWCNTs/GCE when compared with bare GCE and poly-AzrS/GCE. PMID:26952453

  14. Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian Blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles

    International Nuclear Information System (INIS)

    We described a sensitive, label-free electrochemical immunosensor for the detection of carcinoembryonic antigen. It is based on the use of a glassy carbon electrode (GCE) modified with a multi-layer films made from Prussian Blue (PB), graphene and carbon nanotubes by electrodeposition and assembling techniques. Gold nanoparticles were electrostatically absorbed on the surface of the film and used for the immobilization of antibody, while PB acts as signaling molecule. The stepwise assembly process was investigated by differential pulse voltammetry and scanning electron microscopy. It is found that the formation of antibody-antigen complexes partially inhibits the electron transfer of PB and decreased its peak current. Under the optimal conditions, the decrease of intensity of the peak current of PB is linearly related to the concentration of carcinoembryonic antigen in two ranges (0.2–1.0, and 1.0–40.0 ng·mL−1), with a detection limit of 60 pg·mL−1 (S/N = 3). The immunosensor was applied to analyze five clinical samples, and the results obtained were in agreement with clinical data. In addition, the immunosensor exhibited good precision, acceptable stability and reproducibility. (author)

  15. Carbon nanotube fiber spun from wetted ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  16. Carbon Nanotube Paper-Based Electroanalytical Devices

    OpenAIRE

    Youngmi Koo; Vesselin N. Shanov; Yeoheung Yun

    2016-01-01

    Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT) array, grown using chemical vapor deposition (CVD), was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT) sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The de...

  17. Ordered phases of cesium in carbon nanotubes

    International Nuclear Information System (INIS)

    We investigate the structural phases of Cs in carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, the structures are found in various phases from an atomic strand to multishell packs composed of coaxial cylindrical shells. Both helical structures and layered structures are found. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of the circular rolling of a triangular network can explain the structural phases of Cs in carbon nanotubes.

  18. Ordered phases of cesium in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Hwang, Ho Jung; Song, Ki Oh; Choi, Won Young; Byun, Ki Ryang [Chung-Ang University, Seoul (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Lee, Jun Ha [Sangmyung University, Chonan (Korea, Republic of); Kim, Won Woo [Juseong College, Cheongwon (Korea, Republic of)

    2003-10-15

    We investigate the structural phases of Cs in carbon nanotubes by using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, the structures are found in various phases from an atomic strand to multishell packs composed of coaxial cylindrical shells. Both helical structures and layered structures are found. The numbers of helical atom rows composed of coaxial tubes and the orthogonal vectors of the circular rolling of a triangular network can explain the structural phases of Cs in carbon nanotubes.

  19. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells

    OpenAIRE

    Vaibhav Rastogi; Pragya Yadav; Shiv Sankar Bhattacharya; Arun Kumar Mishra; Navneet Verma; Anurag Verma; Jayanta Kumar Pandit

    2014-01-01

    During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility,...

  20. Charge Screening Effect in Metallic Carbon Nanotubes

    OpenAIRE

    Sasaki, K

    2001-01-01

    Charge screening effect in metallic carbon nanotubes is investigated in a model including the one-dimensional long-range Coulomb interaction. It is pointed out that an external charge which is being fixed spatially is screened by internal electrons so that the resulting object becomes electrically neutral. We found that the screening length is given by about the diameter of a nanotube.

  1. Defect-Free Carbon Nanotube Coils.

    Science.gov (United States)

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  2. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  3. Synthesis and electrochemical capacitance of core-shell poly (3,4-ethylenedioxythiophene)/poly (sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chen Li; Yuan Changzhou; Dou Hui; Gao Bo; Chen Shengyao [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhang Xiaogang [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)], E-mail: azhangxg@163.com

    2009-03-01

    A noncovalent method was used to functionalize multiwalled carbon nanotubes with poly (sodium 4-styrene sulfonate). And then, the core-shell poly (3,4-ethylenedioxythiophene)/functionalized multiwalled carbon nanotubes (PEDOT/PSS-CNTs) nanocomposite was successfully realized via in situ polymerization under the hydrothermal condition. In the process, PSS served for not only solubilizing and dispersing CNTs well into an aqueous solution, but also tethering EDOT monomer onto the surface of CNTs to facilitate the formation of a uniform PEDOT coating. Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) were used to characterize the resultant PEDOT/PSS-CNTs. In addition, the PEDOT/PSS-CNTs nanocomposite (50 wt.% PEDOT) had a specific capacitance (SC) of 198.2 F g{sup -1} at a current density of 0.5 A g{sup -1} and a capacitance degradation of 26.9% after 2000 cycles, much better than those of pristine PEDOT and PEDOT/CNTs (50 wt.% PEDOT). The enhanced electrochemical performance of the PEDOT/PSS-CNTs nanocomposite (50 wt.% PEDOT) should be attributed to the high uniform system of the nanocomposite, resulting in the large surface easily contacted by abundant electrolyte ions through the three-dimensional conducting matrix.

  4. Carbon Nanotubes Used in Electroanalysis

    Science.gov (United States)

    Hu, C. G.; Feng, B.

    The fabrication of the carboxyl-modified CNT electrode was described. The electroanalytical investigation of sulfadiazine has been conducted in alkaline aqueous solution at the CNT electrode by voltammetry. Highly reproducible and well-defined cyclic voltammograms were obtained for sulfadiazine with a very good signal to background (S/B) ratio. However, no fouling of the electrode was observed at the CNT electrode within the experimental period of several hours, which illustrated that the CNT electrode was much better than traditional electrodes. Meanwhile, the detection of trace sulfadiazine in milk was also conducted by cyclic voltammetry with satisfactory ratio of recovery, indicating that the nanotube electrode can be used in routine monitoring of sulfadiazine residues in food.

  5. Functionalization of carbon nanotubes with silver clusters

    Science.gov (United States)

    Cveticanin, Jelena; Krkljes, Aleksandra; Kacarevic-Popovic, Zorica; Mitric, Miodrag; Rakocevic, Zlatko; Trpkov, Djordje; Neskovic, Olivera

    2010-09-01

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  6. Functionalization of carbon nanotubes with silver clusters

    International Nuclear Information System (INIS)

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  7. Deconvoluting hepatic processing of carbon nanotubes

    Science.gov (United States)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.

    2016-07-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.

  8. Magnetic Carbon Nanotubes Tethered with Maghemite Nanoparticles

    Science.gov (United States)

    Kim, Il Tae; Nunnery, Grady; Jacob, Karl; Schwartz, Justin; Liu, Xiaotao; Tannenbaum, Rina

    2011-03-01

    We describe a novel, facile method for the synthesis of magnetic carbon nanotubes (m-CNTs) decorated with monodisperse γ - Fe 2 O3 magnetic (maghemite) nanoparticles and their aligned feature in a magnetic field. The tethering of the nanoparticles was achieved by the initial activation of the surface of the CNTs with carboxylic acid groups, followed by the attachment of the γ - Fe 2 O3 nanoparticles via a modified sol-gel process. Sodium dodecylbenzene sulfonate (NaDDBS) was introduced into the suspension to prevent the formation of an iron oxide 3D network. Various characterization methods were used to confirm the formation of well-defined maghemite nanoparticles. The tethered nanoparticles imparted magnetic characteristics to the CNTs, which became superparamagnetic. The m-CNTs were oriented parallel to the direction of a magnetic field. This has the potential of enhancing various properties, e.g. mechanical and electrical properties, in composite materials.

  9. Carbon nanotube-based coatings on titanium

    Indian Academy of Sciences (India)

    Elzbieta Dlugon; Wojciech Simka; Aneta Fraczek-Szczypta; Wiktor Niemiec; Jaroslaw Markowski; Marzena Szymanska; Marta Blazewicz

    2015-09-01

    This paper reports results of the modification of titanium surface with multiwalled carbon nanotubes (CNTs). The Ti samples were covered with CNTs via electrophoretic deposition (EPD) process. Prior to EPD process, CNTs were functionalized by chemical treatment. Mechanical, electrochemical and biological properties of CNT-covered Ti samples were studied and compared to those obtained for unmodified titanium surface. Atomic force microscopy was used to investigate the surface topography. To determine micromechanical characteristics of CNT-covered metallic samples indentation tests were conducted. Throughout electrochemical studies were performed in order to characterize the impact of the coating on the corrosion of titanium substrate. In vitro experiments were conducted using the human osteoblast NHOst cell line. CNT layers shielded titanium from corrosion gave the surface-enhanced biointegrative properties. Cells proliferated better on the modified surface in comparison to unmodified titanium. The deposited layer enhanced cell adhesion and spreading as compared to titanium sample.

  10. Carbon Nanotube Amperometric Chips with Pneumatic Micropumps

    Science.gov (United States)

    Tsujita, Yuichi; Maehashi, Kenzo; Matsumoto, Kazuhiko; Chikae, Miyuki; Torai, Soichiro; Takamura, Yuzuru; Tamiya, Eiichi

    2008-04-01

    We fabricated carbon nanotube (CNT) amperometric chips with pneumatic micropumps by the combination of amperometric biosensors based on CNT-arrayed electrodes and microchannels with pneumatic micropumps made of poly(dimethylsiloxane). On the chip, phosphate buffer solution and potassium ferricyanide, K3[Fe(CN)6], were introduced into the CNT electrodes using each pneumatic micropump and electrochemically measured by differential pulse voltammetry. The results indicate that our chip can automatically exchange reagents on the CNT electrodes and clearly detect molecules. Moreover, by modifying the CNT electrodes with enzyme glucose oxidase, glucose molecules could be detected using our chips by cyclic voltammetry and chronoamperometry. We conclude that microfluidic chips with CNT-arrayed electrodes are a promising candidate for the development of hand-held electrochemical biosensors.

  11. Carbon nanotubes – becoming clean

    Directory of Open Access Journals (Sweden)

    Nicole Grobert

    2007-01-01

    Full Text Available Carbon nanotubes (CNTs are now well into their teenage years. Early on, theoretical predictions and experimental data showed that CNTs possess chemical and mechanical properties that exceed those of many other materials. This has triggered intense research into CNTs. A variety of production methods for CNTs have been developed; chemical modification, functionalization, filling, and doping have been achieved; and manipulation, separation, and characterization of individual CNTs is now possible. Today, products containing CNTs range from tennis rackets and golf clubs to vehicle fenders, X-ray tubes, and Li ion batteries. Breakthroughs for CNT-based technologies are anticipated in the areas of nanoelectronics, biotechnology, and materials science. In this article, I review the current situation in CNT production and highlight the importance of clean CNT material for the success of future applications.

  12. Self Assembled Carbon Nanotube Enhanced Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using...

  13. Calculating Young's modulus for a carbon nanotube

    Science.gov (United States)

    Alzubi, Feras; Cosby, Ronald

    2008-10-01

    Young's modulus for an armchair single-wall carbon nanotube was calculated using an atomistic approach and density functional theory (DFT). Atomic forces and total energies for strained carbon nanotube segments were computed using Atomistix's Virtual NanoLab (VNL) and ToolKit (ATK) software. For a maximum strain of one percent, elastic moduli were calculated using both force-strain and energy-strain data. The average values found for Young's modulus were in the range 1.2 to 3.9 TPa depending on the cross-sectional area taken for the carbon nanotube, consideration of Poisson's ratio, and the calculation method used. Three possible choices of cross-sectional area for the carbon nanotube are discussed and parameter and convergence tests for the DFT computations are described.

  14. Piezoresistive Sensors Based on Carbon Nanotube Films

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-wei; WANG Wan-lu; LIAO Ke-jun; WANG Yong-tian; LIU CHang-lin; Zeng Qing-gao

    2005-01-01

    Piezoresistive effect of carbon nanotube films was investigated by a three-point bending test.Carbon nanotubes were synthesized by hot filament chemical vapor deposition.The experimental results showed that the carbon nanotubes have a striking piezoresistive effect.The relative resistance was changed from 0 to 10.5×10-2 and 3.25×10-2 for doped and undoped films respectively at room temperature when the microstrain under stress from 0 to 500. The gauge factors for doped and undoped carbon nanotube films under 500 microstrain were about 220 and 67 at room temperature, respectively, exceeding that of polycrystalline silicon (30) at 35℃.The origin of the resistance changes in the films may be attributed to a strain-induced change in the band gap for the doped tubes and the defects for the undoped tubes.

  15. Non-covalent interactions between carbon nanotubes and conjugated polymers

    Science.gov (United States)

    Tuncel, Dönüs

    2011-09-01

    Carbon nanotubes (CNTs) are interest to many different disciplines including chemistry, physics, biology, material science and engineering because of their unique properties and potential applications in various areas spanning from optoelectronics to biotechnology. However, one of the drawbacks associated with these materials is their insolubility which limits their wide accessibility for many applications. Various approaches have been adopted to circumvent this problem including modification of carbon nanotube surfaces by non-covalent and covalent attachments of solubilizing groups. Covalent approach modification may alter the intrinsic properties of carbon nanotubes and, in turn make them undesirable for many applications. On the other hand, a non-covalent approach helps to improve the solubility of CNTs while preserving their intrinsic properties. Among many non-covalent modifiers of CNTs, conjugated polymers are receiving increasing attention and highly appealing because of a number of reasons. To this end, the aim of this feature article is to review the recent results on the conjugated polymer-based non-covalent functionalization of CNTs with an emphasis on the effect of conjugated polymers in the dispersibility/solubility, optical, thermal and mechanical properties of carbon nanotubes as well as their usage in the purification and isolation of a specific single-walled nanotube from the mixture of the various tubes.

  16. Controlled Deposition and Alignment of Carbon Nanotubes

    Science.gov (United States)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  17. Crosstalk analysis of carbon nanotube bundle interconnects

    OpenAIRE

    Zhang, Kailiang; Tian, Bo; Zhu, Xiaosong; WANG, FANG; Wei, Jun

    2012-01-01

    Carbon nanotube (CNT) has been considered as an ideal interconnect material for replacing copper for future nanoscale IC technology due to its outstanding current carrying capability, thermal conductivity, and mechanical robustness. In this paper, crosstalk problems for single-walled carbon nanotube (SWCNT) bundle interconnects are investigated; the interconnect parameters for SWCNT bundle are calculated first, and then the equivalent circuit has been developed to perform the crosstalk analys...

  18. Carbon nanotube temperature and pressure sensors

    Science.gov (United States)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  19. Electrical Transport in Carbon Nanotubes and Graphene

    OpenAIRE

    Liu, Gang

    2010-01-01

    This thesis summarizes our work in the past few years in the field of transport studies of carbon nanotubes and graphene. The first half of the thesis focuses on carbon nanotube (CNT) Josephson junctions (JJ) formed by coupling CNTs to superconducting electrodes. They exhibited Fabry Perot resonance patterns, enhanced differential conductance peaks, multiple Andreev reflection peaks, gate-tunable supercurrent transistor behaviors, hysteretic current-voltage line shape and "superconductor-insu...

  20. ALUMINUM FOIL REINFORCED BY CARBON NANOTUBES

    OpenAIRE

    A. V. Alekseev; PREDTECHENSKIY M.R.

    2016-01-01

    In our research, the method of manufacturing an Al-carbon nanotube (CNT) composite by hot pressing and cold rolling was attempted. The addition of one percent of multi-walled carbon nanotubes synthesized by OCSiAl provides a significant increase in the ultimate tensile strength of aluminum. The tensile strength of the obtained composite material is at the tensile strength level of medium-strength aluminum alloys.

  1. Conductivity-Dependent Strain Response of Carbon Nanotube Treated Bacterial Nanocellulose

    OpenAIRE

    S. Farjana; F. Toomadj; Lundgren, P.; Sanz-Velasco, A.; Naboka, O.; Enoksson, P.

    2013-01-01

    This paper reports the strain sensitivity of flexible, electrically conductive, and nanostructured cellulose which was prepared by modification of bacterial cellulose with double-walled carbon nanotubes (DWCNTs) and multiwalled carbon nanotubes (MWCNTs). The electrical conductivity depends on the modifying agent and its dispersion process. The conductivity of the samples obtained from bacterial cellulose (BNC) pellicles modified with DWCNT was in the range from 0.034 S·cm−1 to 0.39 S·cm−1, an...

  2. Transport theory of carbon nanotube Y junctions

    International Nuclear Information System (INIS)

    We describe a generalization of Landauer-Buettiker theory for networks of interacting metallic carbon nanotubes. We start with symmetric starlike junctions and then extend our approach to asymmetric systems. While the symmetric case is solved in closed form, the asymmetric situation is treated by a mixture of perturbative and non-perturbative methods. For N > 2 repulsively interacting nanotubes, the only stable fixed point of the symmetric system corresponds to an isolated node. Detailed results for both symmetric and asymmetric systems are shown for N = 3, corresponding to carbon nanotube Y junctions

  3. ON THE CONTINUUM MODELING OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    张鹏; 黄永刚; Philippe H.Geubelle; 黄克智

    2002-01-01

    We have recently proposed a nanoscale continuum theory for carbonnanotubes. The theory links continuum analysis with atomistic modeling by incor-porating interatomic potentials and atomic structures of carbon nanotubes directlyinto the constitutive law. Here we address two main issues involved in setting upthe nanoscale continuum theory for carbon nanotubes, namely the multi-body in-teratomic potentials and the lack of centrosymmetry in the nanotube structure. Weexplain the key ideas behind these issues in establishing a nanoscale continuum theoryin terms of interatomic potentials and atomic structures.

  4. Friction Properties of Surface-Fluorinated Carbon Nanotubes

    Science.gov (United States)

    Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.

    2005-01-01

    Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.

  5. Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes

    OpenAIRE

    Deepak, FL; Govindaraj, A.; Rao, CNR

    2006-01-01

    Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Y-junction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallic-thiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis-of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives ...

  6. Method for nano-pumping using carbon nanotubes

    Science.gov (United States)

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  7. Quantitative optical imaging of single-walled carbon nanotubes

    Science.gov (United States)

    Herman, Lihong H.

    The development and application of optical imaging tools and probing techniques have been the subject of exciting research. These tools and techniques allow for non-invasive, simple sample preparation and relatively fast measurement of electronic and optical properties. They also provided crucial information on optoelectronic device application and development. As the field of nanostructure research emerged, they were modified and employed to understand various properties of these structures at the diffraction limit of light. Carbon nanotubes, up to hundreds of micrometers long and several nanometers thin, are perfect for testing and demonstrating newly-developed optical measurement platforms for individual nanostructures, due to their heterogeneous nature. By employing two quantitative imaging techniques, wide-field on-chip Rayleigh scattering spectroscopy and spatial modulation confocal absorption microscopy, we investigate the optical properties of single-walled carbon nanotubes. These techniques allow us to obtain the Rayleigh scattering intensity, absolute absorption cross section, spatial resolution, and spectral information of single-walled carbon nanotubes. By probing the optical resonance of hundreds of single-walled carbon nanotubes in a single measurement, the first technique utilizes Rayleigh scattering mechanism to obtain the chirality of carbon nanotubes. The second technique, by using high numerical aperture oil immersion objective lenses, we measure the absolute absorption cross section of a single-walled carbon nanotube. Combining all the quantitative values obtained from these techniques, we observe various interesting and recently discovered physical behaviors, such as long range optical coupling and universal optical conductivity on resonance, and demonstrate the possibility of accurate quantitative absorption measurement for individual structures at nanometer scale.

  8. Manipulation and cutting of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nanomanipulation plays an important role in nanofabrication, it is also a technology necessary in exploring the secrets of nanoworld, and it thus beco mesa start point to research future nanomachine. In this study, manipulation and cutting of carbon nanotubes have been conducted in order to examine whether we can move a nanocomponent from one site to another by using the tip of atomic fo rce microscope (AFM). The technique may also be valuable for providing the const ructive materials of nanofabrication. While exploring the method for manipulatin g and cutting of nanotubes, some new phenomena have been observed during the process. Results show that carbon nanotubes present a feature of deformation combin ing bending and distortion when subjected to large mechanical forces exerted by the tip of AFM. In special cases, long carbon nanotubes can be cut into two part s, by which we can remove the part where crystal lattice is flawed, and therefor e a perfect nanocomponent can be obtained.

  9. Fabrication of nylon-6/carbon nanotube composites

    Science.gov (United States)

    Xu, C.; Jia, Z.; Wu, D.; Han, Q.; Meek, T.

    2006-05-01

    A new technique to fabricate nylon-6/carbon nanotube (PA6/CNT) composites is presented. The method involves a pretreatment of carbon nanotubes synthesized by catalytic pyrolysis of hydrocarbon and an improved in-situ process for mixing nanotubes with the nylon 6 matrix. A good bond between carbon nanotubes and the nylon-6 matrix is obtained. Mechanical property measurements indicate that the tensile strength of PA6/CNT composites is improved significantly while the toughness and elongation are somewhat compromised. Scanning electron microscopy (SEM) analysis of the fractured tensile specimens reveals cracking initiated at the wrapping of the CNTs PA6 layer/PA6 matrix interface rather than at the PA6/CNT interface.

  10. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  11. Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode

    International Nuclear Information System (INIS)

    Heterogeneous electron transfer dynamics and oxygen reduction reaction (ORR) activities using octabutylsulphonylphthalocyanine complexes of iron (FeOBSPc) and cobalt (CoOBSPc) supported on multi-walled carbon nanotube (MWCNT) platforms have been described. The MWCNT-based electrodes (MWCNT-CoOBSPc and MWCNT-FeOBSPc) showed larger Faradaic current responses than the electrodes without the MWCNTs, interpreted as a consequence of the trapped electrolyte species within the porous layers of MWCNTs undergoing a redox process. The EPPGE-MWCNT-FeOBSPc showed onset potential (-0.01 V vs Ag|AgCl) which is comparable and even much lower than recent reports. The MWCNT-FeOBSPc showed the best ORR activity involving a direct 4-electron mechanism, with a Tafel slope of about 124 mV, indicating a 1-electron process in the rate-determining step.

  12. Application of aromatization catalyst in synthesis of carbon nanotubes

    Indian Academy of Sciences (India)

    Song Rongjun; Yang Yunpeng; Ji Qing; Li Bin

    2012-02-01

    In a typical chemical vapour deposition (CVD) process for synthesizing carbon nanotubes (CNTs), it was found that the aromatization catalysts could promote effectively the formation of CNT. The essence of this phenomenon was attributed to the fact that the aromatization catalyst can accelerate the dehydrogenation–cyclization and condensation reaction of carbon source, which belongs to a necessary step in the formation of CNTs. In this work, aromatization catalysts, H-beta zeolite, HZSM-5 zeolite and organically modified montmorillonite (OMMT) were chosen to investigate their effects on the formation of multi-walled carbon nanotubes (MWCNTs) via pyrolysis method when polypropylene and 1-hexene as carbon source and Ni2O3 as the charring catalyst. The results demonstrated that the combination of those aromatization catalysts with nickel catalyst can effectively improve the formation of MWCNTs.

  13. Carbon linear chains inside multiwalled nanotubes

    Science.gov (United States)

    Cazzanelli, E.; Caputi, L.; Castriota, M.; Cupolillo, A.; Giallombardo, C.; Papagno, L.

    2007-09-01

    Multiwalled carbon nanotubes have been deposited on graphite cathodes by using an arc discharge technique in He atmosphere, with the insertion of a catalytic Ni-Cr mixture as well as without catalysers. The topography of such deposition has been investigated by SEM, while a parallel micro-Raman study has revealed, in particular regions of the deposited cathodes, strong bands in the range 1780-1860 cm -1, assignable to linear carbon chains inside the nanotubes. The variation of intensity, frequency and bandwidth of such bands has been investigated, in relation with the spectral characters of the host multiwalled carbon nanotube. In the cathode deposited without catalyst a quite ordered configuration of multiwalled carbon nanotubes is obtained in the central zone, while the maximum concentration of linear carbon chains is found in a ring shaped zone just inside the border. In sample obtained with catalyst the deposited multiwalled carbon nanotubes appear always more disordered, and a remarkable concentration of carbon chains appears in some zones, with a more casual distribution.

  14. Interaction of carbohydrate modified boron nitride nanotubes with living cells.

    Science.gov (United States)

    Emanet, Melis; Şen, Özlem; Çobandede, Zehra; Çulha, Mustafa

    2015-10-01

    Boron nitride nanotubes (BNNTs) are composed of boron and nitrogen atoms and they show significantly different properties from their carbon analogues (carbon nanotubes, CNTs). Due to their unique properties including low electrical conductivity, and imaging contrast and neutron capture properties; they can be used in biomedical applications. When their use in biological fields is considered, the route of their toxic effect should be clarified. Therefore, the study of interactions between BNNTs and living systems is important in envisaging biological applications at both cellular and sub-cellular levels to fully gain insights of their potential adverse effects. In this study, BNNTs were modified with lactose, glucose and starch and tested for their cytotoxicity. First, the interactions and the behavior of BNNTs with bovine serum albumin (BSA), Dulbecco's Modified Eagle's Medium (DMEM) and DMEM/Nutrient Mixture F-12Ham were investigated. Thereafter, their cellular uptake and the cyto- and genotoxicity on human dermal fibroblasts (HDFs) and adenocarcinoma human alveolar basal epithelial cells (A549) were evaluated. HDFs and A549 cells internalized the modified and unmodified BNNTs, and BNNTs were found to not cause significant viability change and DNA damage. A higher uptake rate of BNNTs by A549 cells compared to HDFs was observed. Moreover, a concentration-dependent cytotoxicity was observed on A549 cells while they were safer for HDFs in the same concentration range. Based on these findings, it can be concluded that BNNTs and their derivatives made with biomacromolecules might be good candidates for several applications in medicine and biomedical applications. PMID:26222410

  15. Modeling of carbon nanotubes and carbon nanotube-polymer composites

    Science.gov (United States)

    Pal, G.; Kumar, S.

    2016-01-01

    In order to meet stringent environmental, safety and performance requirements from respective regulatory bodies, various technology-based industries are promoting the use of advanced carbon nanotube (CNT) reinforced lightweight and high strength polymer nanocomposites (PNCs) as a substitute to conventional materials both in structural and non-structural applications. The superior mechanical properties of PNCs made up of CNTs or bundles of CNTs can be attributed to the interfacial interaction between the CNTs and matrix, CNT's morphologies and to their uniform dispersion in the matrix. In PNCs, CNTs physically bond with polymeric matrix at a level where the assumption of continuum level interactions is not applicable. Modeling and prediction of mechanical response and failure behavior of CNTs and their composites becomes a complex task and is dealt with the help of up-scale modeling strategies involving multiple spatial and temporal scales in hierarchical or concurrent manner. Firstly, the article offers an insight into various modeling techniques in studying the mechanical response of CNTs; namely, equivalent continuum approach, quasi-continuum approach and molecular dynamics (MD) simulation. In the subsequent steps, these approaches are combined with analytical and numerical micromechanics models in a multiscale framework to predict the average macroscopic response of PNCs. The review also discusses the implementation aspects of these computational approaches, their current status and associated challenges with a future outlook.

  16. Carbon Nanotube and Graphene Nanoelectromechanical Systems

    Science.gov (United States)

    Aleman, Benjamin Jose

    One-dimensional and two-dimensional forms of carbon are composed of sp 2-hybridized carbon atoms arranged in a regular hexagonal, honeycomb lattice. The two-dimensional form, called graphene, is a single atomic layer of hexagonally-bonded carbon atoms. The one-dimensional form, known as a carbon nanotube, can be conceptualized as a rectangular piece of graphene wrapped into a seamless, high-aspect-ratio cylinder or tube. This dissertation addresses the physics and applied physics of these one and two-dimensional carbon allotropes in nanoelectromechanical systems (NEMS). First, we give a theoretical background on the electrodynamics and mechanics of carbon nanotube NEMS. We then describe basic experimental techniques, such as electron and scanning probe microscopy, that we then use to probe static and dynamic mechanical and electronic behavior of the carbon nanotube NEMS. For example, we observe and control non-linear beam bending and single-electron quantum tunneling effects in carbon nanotube resonators. We then describe parametric amplification, self-oscillation behavior, and dynamic, non-linear effects in carbon nanotube mechanical resonators. We also report a novel approach to fabricate carbon nanotube atomic force microscopy (AFM) probes, and show that they can lead to exceptional lateral resolution enhancement in AFM when imaging both hard and soft (biological) materials. Finally, we describe novel fabrication techniques for large-area, suspended graphene membranes, and utilize these membranes as TEM-transparent, AFM-compatible, NEMS resonators. Laser-driven mechanical vibrations of the graphene resonators are detected by optical interferometry and several vibration harmonics are observed. A degeneracy splitting is observed in the vibrational modes of square-geometry resonators. We then attribute the observed degeneracy splitting to local mass inhomogeneities and membrane defects, and find good overall agreement with the developed theoretical model.

  17. Fabrication Of Titania Nanotubes By A Modified Hydrothermal Method

    OpenAIRE

    Meor Yusoff M.S; Masliana M M; Wilfred Paulus; Parimala Devi; Mahdi E. Mahmoud

    2011-01-01

    The main setback of the fabrication of titania nanotubes by the hydrothermal method is the long dissolution time and the usage of highly concentrated NaOH. Our group has managed to develop a modified hydrothermal process that is capable of fabricating titania nanotubes in a shorter timespan while using a more dilute NaOH solution. The study shows that the titania nanotubes starts to form from 7 hours of dissolution, and more nanotubes is produced as the dissolution duration is extended. Simil...

  18. Center for Applications of Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel E

    2008-02-21

    This report describes the activities conducted under a Congressional Direction project whose goal was to develop applications for Single-walled carbon nanotubes, under the Carbon Nanotube Technology Center (CANTEC), a multi-investigator program that capitalizes on OU’s advantageous position of having available high quality carbon nanotubes. During the first phase of CANTEC, 11 faculty members and their students from the College of Engineering developed applications for carbon nanotubes by applying their expertise in a number of areas: Catalysis, Reaction Engineering, Nanotube synthesis, Surfactants, Colloid Chemistry, Polymer Chemistry, Spectroscopy, Tissue Engineering, Biosensors, Biochemical Engineering, Cell Biology, Thermal Transport, Composite Materials, Protein synthesis and purification, Molecular Modeling, Computational Simulations. In particular, during this phase, the different research groups involved in CANTEC made advances in the tailoring of Single-Walled Carbon Nanotubes (SWNT) of controlled diameter and chirality by Modifying Reaction Conditions and the Nature of the catalyst; developed kinetic models that quantitatively describe the SWNT growth, created vertically oriented forests of SWNT by varying the density of metal nanoparticles catalyst particles, and developed novel nanostructured SWNT towers that exhibit superhydrophobic behavior. They also developed molecular simulations of the growth of Metal Nanoparticles on the surface of SWNT, which may have applications in the field of fuell cells. In the area of biomedical applications, CANTEC researchers fabricated SWNT Biosensors by a novel electrostatic layer-by-layer (LBL) deposition method, which may have an impact in the control of diabetes. They also functionalized SWNT with proteins that retained the protein’s biological activity and also retained the near-infrared light absorbance, which finds applications in the treatment of cancer.

  19. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  20. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  1. Thermal conductivity and thermal rectification in unzipped carbon nanotubes

    International Nuclear Information System (INIS)

    We study the thermal transport in completely unzipped carbon nanotubes, which are called graphene nanoribbons, partially unzipped carbon nanotubes, which can be seen as carbon-nanotube-graphene-nanoribbon junctions, and carbon nanotubes by using molecular dynamics simulations. It is found that the thermal conductivity of a graphene nanoribbon is much less than that of its perfect carbon nanotube counterparts because of the localized phonon modes at the boundary. A partially unzipped carbon nanotube has the lowest thermal conductivity due to additional localized modes at the junction region. More strikingly, a significant thermal rectification effect is observed in both partially unzipped armchair and zigzag carbon nanotubes. Our results suggest that carbon-nanotube-graphene-nanoribbon junctions can be used in thermal energy control.

  2. Release characteristics of selected carbon nanotube polymer composites

    Science.gov (United States)

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  3. Carbon Nanotube Tower-Based Supercapacitor

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  4. Carbon nanotube stationary phases for microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Bøggild, Peter; Kutter, Jörg Peter

    , microfluidic devices with microfabricated carbon nanotube columns for electrochromatographic separations will be presented. The electrically conductive carbon nanotube layer has been patterned into hexoganol micropillars in order to support electroosmotic flow without forming gas bubbles from electrolysis of......The use of nanomaterials in separation science has increased rapidly in the last decade. The reason for this is to take advantage of the unique properties of these materials, such as a very high surface-to-volume ratio and favourable sorbent behaviour. Carbon nanostructures, such as carbon...... nanotubes are very interesting for integration in especially microfluidic devices, because they can readily be grown on planar substrates by means of chemical vapour deposition. In this way the cumbersome process of packing of the stationary phase in the finished microfluidic channels is avoided and the CNT...

  5. Carbon Nanotubes and Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Barbara P. Barna

    2014-06-01

    Full Text Available Use of nanomaterials in manufactured consumer products is a rapidly expanding industry and potential toxicities are just beginning to be explored. Combustion-generated multiwall carbon nanotubes (MWCNT or nanoparticles are ubiquitous in non-manufacturing environments and detectable in vapors from diesel fuel, methane, propane, and natural gas. In experimental animal models, carbon nanotubes have been shown to induce granulomas or other inflammatory changes. Evidence suggesting potential involvement of carbon nanomaterials in human granulomatous disease, has been gathered from analyses of dusts generated in the World Trade Center disaster combined with epidemiological data showing a subsequent increase in granulomatous disease of first responders. In this review we will discuss evidence for similarities in the pathophysiology of carbon nanotube-induced pulmonary disease in experimental animals with that of the human granulomatous disease, sarcoidosis.

  6. Agglomeration defects on irradiated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Steini Moura, Cassio [Faculty of Physics, Pontificia Universidade Catolica do Rio Grande do Sul, 90619-900, Porto Alegre, RS (Brazil); Balzaretti, Naira Maria; Amaral, Livio [Institute of Physics, Universidade Federal do Rio Grande do Sul, C.P.: 15051, 91501-070, Porto Alegre, RS (Brazil); Gribel Lacerda, Rodrigo; Pimenta, Marcos A. [Universidade Federal de Minas Gerais, C.P.: 702, 31270-901, Belo Horizonte, MG (Brazil)

    2012-03-15

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  7. Agglomeration defects on irradiated carbon nanotubes

    International Nuclear Information System (INIS)

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  8. Non-carbon nanotubes: synthesis and simulation

    International Nuclear Information System (INIS)

    The discovery of a new allotropic form of carbon, extended nanometre-sized quasi-unidimensional tubular structures (carbon nanotubes), as well as broad prospects for the use of nanomaterials based on them initiated numerous studies in the search for, and design of, nanotubular structures based in other compounds. Some properties and the main methods for the synthesis of non-carbon nanotubes are considered. Studies on the simulation of the electronic structures of these unique objects are analysed. Results of experimental and theoretical studies along these lines are discussed. The bibliography includes 328 references.

  9. Non-carbon nanotubes: synthesis and simulation

    International Nuclear Information System (INIS)

    The discovery of a new allotropic form of carbon, extended nano-sized quasi-unidimensional tubular structures (carbon nanotubes) and the broad prospects for the use of nanomaterials based on them have initiated numerous studies on the search and design of nanotubular structures of other substances. Some properties and the main methods of synthesis of non-carbon nanotubes based in particular, on boron compounds molybdenum, tungsten, niobium chalcogenides and vanadium oxides are considered. The works on the simulation of the electronic structures of these unique objects are analysed. The results of experimental and theoretical studies along these lines are discussed

  10. Immobilization of enzymes onto carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Prlainović Nevena Ž.

    2011-01-01

    Full Text Available The discovery of carbon nanotubes (CNTs has opened a new door in nanotechnology. With their high surface area, unique electronic, thermal and mechanical properties, CNTs have been widely used as carriers for protein immobilization. In fact, carbon nanotubes present ideal support system without diffusional limitations, and also have the possibility of surface covalent functionalization. It is usually the oxidation process that introduces carboxylic acid groups. Enzymes and other proteins could be adsorbed or covalently attached onto carbon nanotubes. Adsorption of enzyme is a very simple and inexpensive immobilization method and there are no chemical changes of the protein. It has also been found that this technique does not alter structure and unique properties of nanotubes. However, a major problem in process designing is relatively low stability of immobilized protein and desorption from the carrier. On the other hand, while covalent immobilization provides durable attachment the oxidation process can reduce mechanical and electronic properties of carbon nanotubes. It can also affect the active site of enzyme and cause the loss of enzyme activity. Bioimmobilization studies have showed that there are strong interactions between carbon nanotubes surface and protein. The retention of enzyme structure and activity is critical for their application and it is of fundamental interest to understand the nature of these interactions. Atomic force microscopy (AFM, transmission electron microscopy (TEM, scanning electron microscopy (SEM and circular dichroism (CD spectroscopy provide an insight into the structural changes that occur during the immobilization. The aim of this paper is to summarize progress of protein immobilization onto carbon nanotubes.

  11. Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    We report on a highly sensitive glucose biosensor that was fabricated from a composite made from mesoporous hydroxyapatite and mesoporous titanium dioxide which then were ultrasonically mixed with multi-walled carbon nanotubes to form a rough nanocomposite film. This film served as a platform to immobilize glucose oxidase onto a glassy carbon electrode. The morphological and electrochemical properties of the film were examined by scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometry were used to characterize the electrochemical performances of the biosensor which exhibited excellent electrocatalytic activity to the oxidation of glucose. At an operating potential of 0. 3 V and pH 6. 8, the sensor displays a sensitivity of 57. 0 μA mM-1 cm-2, a response time of <5 s, a linear dynamic range from 0. 01 to 15. 2 mM, a correlation coefficient of 0. 9985, and a detection limit of 2 μM at an SNR of 3. No interferences are found for uric acid, ascorbic acid, dopamine and most carbohydrates. The sensor is stable and was successfully applied to the determination of glucose in real samples. (author)

  12. Multiscale simulation of carbon nanotube transistors

    OpenAIRE

    Maneux, Cristell; Roche, Stephan

    2013-01-01

    In recent years, the understanding and accurate simulation of carbon nanotube-based transistors has become very challenging. Conventional simulation tools of microelectronics are necessary to predict the performance and use of nanotube transistors and circuits, but the models need to be refined to properly describe the full complexity of such novel type of devices at the nanoscale. Indeed, many issues such as contact resistance, low dimensional electrostatics and screening effects, demand for...

  13. Efficiently Dispersing Carbon Nanotubes in Polyphenylene Sulfide

    OpenAIRE

    Sommer, Kevin M; Pipes, R. Byron

    2013-01-01

    Thermal plastics are replacing conventional metals in the aerospace, sporting, electronics, and other industries. Thermal plastics are able to withstand relatively high temperatures, have good fatigue properties, and are lighter than metals. Unfortunately, they are not very electrically conductive. However, adding carbon nanotubes to thermal plastics such as polyphenylene sulfide (PPS) can drastically increase the plastic's conductivity at a low weight percent of nanotubes called the percolat...

  14. Optical trapping of carbon nanotubes and graphene

    OpenAIRE

    Vasi, S.; M. A. Monaca; Donato, M. G.; Bonaccorso, F.; Privitera, G; Trushkevych, O.; G. Calogero; Fazio, B.; Irrera, A.; M.A. Iati'; Saija, R.; Denti, P.; F. Borghese; Jones, P H; Ferrari, A. C.

    2011-01-01

    We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fuctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double ...

  15. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  16. Localized Excitons in Carbon Nanotubes.

    Science.gov (United States)

    Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei

    2015-03-01

    It has been historically known that unintentional defects in carbon nanotubes (CNTs) may fully quench the fluorescence. However, some dopants may enhance the fluorescence by one order of magnitude thus turning the CNTs, which are excellent light absorbers, in good emitters. We have correlated the experimentally observed photoluminescence spectra to the electronic structure simulations. Our experiment reveals multiple sharp asymmetric emission peaks at energies 50-300 meV red-shifted from that of the lowest bright exciton peak. Our simulations suggest an association of these peaks with deep trap states tied to different specific chemical adducts. While the wave functions of excitons in undoped CNTs are delocalized, those of the deep-trap states are strongly localized and pinned to the dopants. These findings are consistent with the experimental observation of asymmetric broadening of the deep trap emission peaks, which can result from scattering of acoustic phonons on localized excitons. Our work lays the foundation to utilize doping as a generalized route for wave function engineering and direct control of carrier dynamics in SWCNTs toward enhanced light emission properties for photonic applications.

  17. Does water dope carbon nanotubes?

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Robert A.; Payne, Michael C. [Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge (United Kingdom); Mostofi, Arash A. [Department of Materials and Department of Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-10-28

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 Å, highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup −4} e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  18. Carbon nanotube fiber terahertz polarizer

    Science.gov (United States)

    Zubair, Ahmed; Tsentalovich, Dmitri E.; Young, Colin C.; Heimbeck, Martin S.; Everitt, Henry O.; Pasquali, Matteo; Kono, Junichiro

    2016-04-01

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ˜-30 dB with a low insertion loss (fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  19. Carbon Nanotube Areas - Printed on Textile and Paper Substrates

    OpenAIRE

    Hubler, Arved C.; Lothar Kroll; Holg Elsner; Nora Wetzold; Thomas Fischer

    2011-01-01

    Mass printing processes are the key technology to produce mass products to the point of one-disposable. Carbon nanotube (CNT) based structures were prepared by flexographic printing using multi-walled carbon nanotube (MWCNT) dispersions in water. The carbon nanotubes were applied to a textile substrate made of polyester and polyamide microfilaments and to both-side coated paper to produce electrically conductive layers that can be used, for example, as heating elements. Carbon nanotube layers...

  20. Different Technical Applications of Carbon Nanotubes

    Science.gov (United States)

    Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, Ahmed A.; Abdel-Daiem, A.

    2015-09-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  1. Chitosan-mediated synthesis of carbon nanotube-gold nanohybrids

    Institute of Scientific and Technical Information of China (English)

    GRAVEL; Edmond; FOILLARD; Stéphanie; DORIS; Eric

    2010-01-01

    Metal-nanotube nanohybrids were produced by in situ synthesis and stabilization of gold nanoparticles on chitosan-functionalized carbon nanotubes.The formation of gold nanoparticles from tetrachloroauric acid was observed after only a few minutes of contact with the functionalized nanotubes,at room temperature.These results suggest that adsorption of chitosan at the surface of carbon nanotubes permits smooth reduction of the metallic salt and efficient anchoring of gold nanoparticles to the nanotubes.

  2. Deposition of the platinum crystals on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new technique and the affecting factors for depositing platinum on the carbon nanotubes were investigated. The results show that the deposited platinum crystals in the atmosphere of hydrogen or nitrogen have a small size and a homogeneous distribution on the surface of the carbon nanotubes. The pretreatment would decrease the platinum particles on the carbon nanotubes significantly.

  3. Transport Properties of Carbon-Nanotube/Cement Composites

    NARCIS (Netherlands)

    Han, B.; Yang, Z.; Shi, X.; Yu, X.

    2012-01-01

    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) rei

  4. Anomalous aharonov-bohm gap oscillations in carbon nanotubes.

    Science.gov (United States)

    Sangalli, Davide; Marini, Andrea

    2011-10-12

    The gap oscillations caused by a magnetic flux penetrating a carbon nanotube represent one of the most spectacular observations of the Aharonov-Bohm effect at the nanoscale. Our understanding of this effect is, however, based on the assumption that the electrons are strictly confined on the tube surface, on trajectories that are not modified by curvature effects. Using an ab initio approach based on density functional theory, we show that this assumption fails at the nanoscale inducing important corrections to the physics of the Aharonov-Bohm effect. Curvature effects and electronic density that is spilled out of the nanotube surface are shown to break the periodicity of the gap oscillations. We predict the key phenomenological features of this anomalous Aharonov-Bohm effect in semiconductive and metallic tubes and the existence of a large metallic phase in the low flux regime of multiwalled nanotubes, also suggesting possible experiments to validate our results. PMID:21805987

  5. Carbon nanotube suspensions, dispersions, & composites

    Science.gov (United States)

    Simmons, Trevor John

    Carbon Nanotubes (CNTs) are amazing structures that hold the potential to revolutionize many areas of scientific research. CNTs can be behave both as semiconductors and metals, can be grown in highly ordered arrays and patterns or in random orientation, and can be comprised of one graphene cylinder (single wall nanotube, SWNT) or several concentric graphene cylinders (multi-wall nanotube, MWNT). Although these structures are usually only a few nanometers wide, they can be grown up to centimeter lengths, and in massive quantities. CNTs can be produced in a variety of processes ranging from repeated combustion of organic material such as dried grass, arc-discharge with graphite electrodes, laser ablation of a graphitic target, to sophisticated chemical vapor deposition (CVD) techniques. CNTs are stronger than steel but lighter than aluminum, and can be more conductive than copper or semiconducting like silicon. This variety of properties has been matched by the wide variety of applications that have been developed for CNTs. Many of these applications have been limited by the inability of researchers to tame these structures, and incorporating CNTs into existing technologies can be exceedingly difficult and prohibitively expensive. It is therefore the aim of the current study to develop strategies for the solution processing and deposition of CNTs and CNT-composites, which will enable the use of CNTs in existing and emerging technologies. CNTs are not easily suspended in polar solvents and are extremely hydrophobic materials, which has limited much of the solution processing to organic solvents, which also cannot afford high quality dispersions of CNTs. The current study has developed a variety of aqueous CNT solutions that employ surfactants, water-soluble polymers, or both to create suspensions of CNTs. These CNT 'ink' solutions were deposited with a variety of techniques that have afforded many interesting structures, both randomly oriented as well as highly

  6. Estudo teórico de propriedades ópticas não-lineares de nanotubos de carbono de parede única quimicamente modificados Theoretical analysis of non-linear optical properties for chemically modified single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Antônio M. Da Silva Jr.

    2009-01-01

    Full Text Available Structure and first hyperpolarizability for a series of armchair a(5,5 chemically modified carbon nanotubes (CNT were calculated at semiempirical and density functional levels of theory. The 4,4´-substituted stilbenes were selected as chromophore with substituents at position 4´ set to X=NO2, H, Cl, OH and NH2. The calculated values for static first hyperpolarizability (β were almost linearly dependent on the electronic effect of the group X, increasing from NO2 to NH2. At DFT level the effect of inserting the chromophore in the CNT surface was to enhance the β value up to 70% relative to the free 4,4´-substituted stilbene.

  7. Processing and Characterization of Carbon Nanotube Composites

    Science.gov (United States)

    Can, Roberto J.; Grimsley, Brian W.; Czabaj, Michael W.; Siochi, Emilie J.; Hull, Brandon

    2014-01-01

    Recent advances in the synthesis of large-scale quantities of carbon nanotubes (CNT) have provided the opportunity to study the mechanical properties of polymer matrix composites using these novel materials as reinforcement. Nanocomp Technologies, Inc. currently supplies large sheets with dimensions up to 122 cm x 244 cm containing both single-wall and few-wall CNTs. The tubes are approximately 1 mm in length with diameters ranging from 8 to 12 nm. In the present study being conducted at NASA Langley Research Center (LaRC), single and multiple layers of CNT sheets were infused or coated with various polymer solutions that included commercial toughened-epoxies and bismaleimides, as well as a LaRC developed polyimide. The resulting CNT composites were tested in tension using a modified version of ASTM D882-12 to determine their strength and modulus values. The effects of solvent treatment and mechanical elongation/alignment of the CNT sheets on the tensile performance of the composite were determined. Thin composites (around 50 wt% CNT) fabricated from acetone condensed and elongated CNT sheets with either a BMI or polyimide resin solution exhibited specific tensile moduli approaching that of toughened epoxy/ IM7 carbon fiber unidirectional composites.

  8. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    Directory of Open Access Journals (Sweden)

    Venkata K. K. Upadhyayula

    2008-01-01

    Full Text Available The possibility of using single-walled carbon nanotubes (SWCNTs aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k for S.aureus and E.coli determined from batch adsorption study was found to be 9×108 and 2×108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  9. Synthesis and Characterization of Modified Multi-walled Carbon Nanotubes/Polyurethane Emulsion%改性多壁碳纳米管/聚氨酯乳液的制备与研究

    Institute of Scientific and Technical Information of China (English)

    张兵; 石阳阳; 许戈文; 黄毅萍

    2014-01-01

    以聚醚多元醇(N-210)、异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)、一缩二乙二醇(DEG)为基料,合成了水性聚氨酯预聚体,采用改性多壁碳纳米管( MWCNTs )的悬浊液为分散介质得到水性聚氨酯复合乳液。通过TEM、拉力机、TGA对其胶膜的微观结构、力学性能以及热学性能进行测试,结果表明: MWCNTs均匀分散在聚氨酯胶膜中;当MWCNTs质量分数在0.5%时,拉伸强度达到最大值为17.91 MPa,比纯聚氨酯提高了81%;复合材料的断裂伸长率均达到500%以上,最大达到539%,明显高于未加改性碳纳米管的聚氨酯; MWCNTs的加入可明显提高复合材料的耐热性。%A series of waterborne polyurethanes ( WPU ) , which were dispersed in the turbid liquid of the multi -walled carbon nanotubes (MWCNTs), were prepared by polyether diol (N-210), isophorone diisocyanate (IPDI), dimethy lolpropionic acid ( DMPA) and diglycol ( DEG) .The microstructure , mechanical properties and the thermal properties of the coating films were investigated by TEM , tensile machine and TGA.The results showed that MWCNTs were well dispersed in the polyurethane films.The tensile strength was at the maximum 17.91MPa, increasing by 81%compared with that of pure WPU , when the mass fraction of MWCNTs was 0.5%.The elongation at break of the composite materials was all above 500% and had a maximum of 539%, which was significantly higher than the polyurethane without being modified by carbon nanotubes.The heat resistances of the composite materials were obviously improved by the addition of the modified multi -walled carbon nanotubes.

  10. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  11. Modelling carbon nanotubes-based mediatorless biosensor.

    Science.gov (United States)

    Baronas, Romas; Kulys, Juozas; Petrauskas, Karolis; Razumiene, Julija

    2012-01-01

    This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments): a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate. PMID:23012537

  12. Modelling Carbon Nanotubes-Based Mediatorless Biosensor

    Directory of Open Access Journals (Sweden)

    Julija Razumiene

    2012-07-01

    Full Text Available This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments: a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate.

  13. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-05-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  14. Boron-Filled Hybrid Carbon Nanotubes.

    Science.gov (United States)

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  15. Nanocrystalline cobalt oxides for carbon nanotube growth

    Science.gov (United States)

    Guo, Kun; Jayatissa, Ahalapitiya H.; Jayasuriya, Ambalangodage C.

    2007-09-01

    Thin Films of nanocrystalline cobalt oxide were formed by sol-gel method. Structure, optical properties and surface properties of these films were investigated by numerous characterization techniques. These films were successfully fabricated on glass substrates below 500°C. . Micropatterns of cobalt oxide thin films were also fabricated on glass and silicon substrates by employing a lift-off method. Crystal size of these nanocrystalline cobalt films could be successfully controllable by varying the amount of cobalt precursors and number of layers. These films were used as the seeding layers for carbon nanotube growth in a CVD process By changing the concentration of monomer precursors in the solgel coating solutions, different size nanoclusters hence different size carbon nanotubes could be synthesized in CVD process. This method can be used for controlled growth of carbon nanotubes for many different applications. In this paper, detail of these experimental results will be presented.

  16. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    Science.gov (United States)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  17. Carbon Nanotubes Synthesis Through Gamma Radiation

    Science.gov (United States)

    Tirado, Pablo; Garcia, Rafael; Montes, Jorge; Melendrez, Rodrigo; Barboza, Marcelino; Contreras, Oscar

    2015-03-01

    Carbon nanotubes show a great potential of applications since there discovery by Iijima in 1991[1] due to their numerous physical-chemical properties such as their high weight to strength relationship, which make them ideal to use in high resistance compound materials, and in many other applications[2] In this work, a novel method for the synthesis of carbon nanotubes is presented, starting from an ultra-thin sheet of graphite synthesized by the chemical vapor decomposition technique (CVD), using ultra high purity methane and hydrogen at 1200°C in a horizontal quartz reactor. For the synthesis of carbon nanotubes, the graphite sheets were exposed to different doses of radiation, with the objective of breaking the graphite bonds and form carbon nanotubes; a Gammacell equipment model 220 Excel was used for the purpose, which counts with a radiation source of cobalt 60, and a current radiation rate of 0.9 Gy/seconds. The time of exposure to radiation was varied in each sample, according to the desired dose of radiation in each case, afterwards the samples were characterized using the Raman spectroscopy and TEM microscopy techniques with the objective of observing the kind of nanotubes formed, their morphology and their number of defects. Results will be shown during the poster session.

  18. Investigating the effect of carbon nanotube diameter and wall number in carbon nanotube/silicon heterojunction solar cells

    OpenAIRE

    Tom Grace; LePing Yu; Christopher Gibson; Daniel Tune; Huda Alturaif; Zeid Al Othman; Joseph Shapter

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in...

  19. Molecular Dynamics Modeling of Carbon Nanotubes and Their Composites

    Science.gov (United States)

    Jensen, Lars R.; Pyrz, Ryszard

    2004-06-01

    The tensile modulus of individual nanotubes and nanotube-polypropylene composites has been determined using molecular dynamics simulations. Simulations of individual single-walled carbon nanotubes showed that their tensile modulus was dependent on the tube structure and the diameter if the diameter was below 1,6 nm. The tensile modulus was determined for an infinite single-walled carbon nanotube embedded in an amorphous polypropylene matrix and for a finite and capped single-walled carbon nanotube embedded in a polypropylene matrix. For the infinite nanotube-polypropylene system the modulus was found to correspond to the one given by the Voigt approximation. For the finite nanotube-polypropylene system the reinforcing effect of the nanotube was not very pronounced. A pull out simulation showed that the length of the nanotube in the simulation was much smaller than the critical length and hence no load transfer between the nanotube and the matrix existed.

  20. Multi-walled carbon nanotubes (MWCNTs) functionalized with amino groups by reacting with supercritical ammonia fluids

    International Nuclear Information System (INIS)

    For the first time, supercritical ammonia fluid was utilized to simply functionalize multi-walled carbon nanotube (MWCNT) with amino groups. The successful amino functionalization of MWCNTs was proven and the physicochemical properties of MWCNTs before and after supercritical ammonia fluids modifications were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM) and Raman spectroscopy. The results also indicated that the supercritical ammonia fluids had the visible effects on the nanostructure of carbon nanotubes. Our novel modification approach provides an easy way to modify MWCNTs with amino groups, which is very useful for realizing 'carbon nanotube economy' in the near future.