WorldWideScience

Sample records for carbon nanotubes decorated

  1. Decoration of Multi-walled Carbon Nanotubes by Metal ...

    African Journals Online (AJOL)

    NICO

    tures inside the nanotubes to increase the available surface for catalysis6 or in ... most common method to decorate CNTs by metal nanoparticles and metal oxides due .... 2.6 Characterization of Carbon Nanotubes, Metal Nano- particles and ...

  2. Hydrogen adsorption on N-decorated single wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Eduardo [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Ruiz-Chavarria, Gregorio [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico Ciudad Universitaria, Codigo Postal 04510, Mexico D.F. (Mexico); Magana, L.F., E-mail: fernando@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Arellano, J.S. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Unidad Azcapotzalco. Avenida San Pablo No. 180, Col. Reynosa Tamaulipas Codigo Postal 02200, Mexico D.F. (Mexico)

    2009-07-06

    Using density functional theory and molecular dynamics we found that N-decorated single walled (8,0) carbon nanotubes are potential high capacity hydrogen storage media. This system could store up to 6.0 wt% hydrogen at 300 K and ambient pressure, with average adsorption energy of -80 meV/(H{sub 2}). Nitrogen coverage was C{sub 8}N.

  3. Hydrogen adsorption on N-decorated single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Rangel, Eduardo; Ruiz-Chavarria, Gregorio; Magana, L.F.; Arellano, J.S.

    2009-01-01

    Using density functional theory and molecular dynamics we found that N-decorated single walled (8,0) carbon nanotubes are potential high capacity hydrogen storage media. This system could store up to 6.0 wt% hydrogen at 300 K and ambient pressure, with average adsorption energy of -80 meV/(H 2 ). Nitrogen coverage was C 8 N.

  4. Decoration of Multi-walled Carbon Nanotubes by Metal ...

    African Journals Online (AJOL)

    The powder patterns of the as-prepared and acid treated MWCNTs are shown by the XRD spectra. The TEM results show the microstructure of the multi-walled carbon nanotubes well decorated with metal nanoparticles (Cu, Fe, Ni) and metal oxides (CuO, Fe2O3, NiO), while the SEM show the surface morphology.

  5. Gas sensing with gold-decorated vertically aligned carbon nanotubes.

    Science.gov (United States)

    Mudimela, Prasantha R; Scardamaglia, Mattia; González-León, Oriol; Reckinger, Nicolas; Snyders, Rony; Llobet, Eduard; Bittencourt, Carla; Colomer, Jean-François

    2014-01-01

    Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.

  6. Gas sensing with gold-decorated vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Prasantha R. Mudimela

    2014-06-01

    Full Text Available Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2 at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.

  7. Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. G. Larrude

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition of cobalt nitrate hexahydrate diluted in acetone. Electron microscopy analysis indicated that dispersed particles were formed on the MWCNTs walls. The average size increased with the increasing concentration of cobalt nitrate in acetone in the precursor mixture. TEM images indicated that nanoparticles were strongly attached to the tube walls. The Raman spectroscopy results suggested that the MWCNT structure was slightly damaged after the nanoparticle growth.

  8. Decorating Mg/Fe oxide nanotubes with nitrogen-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yong, E-mail: caoyangel@126.com [Institute of Environment and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Jiao Qingze, E-mail: jiaoqz@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Zhao Yun [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Dong Yingchao [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-09-22

    Graphical abstract: Highlights: > Mg/Fe oxide nanotubes arrayed parallel to each other were prepared by an AAO template method. > The Mg/Fe oxide nanotubes decorated with CN{sub x} were realized by CVD of ethylenediamine on the outer surface of oxide nanotubes. > The magnetic properties of Mg/Fe oxide nanotubes were highly improved after being decorated. - Abstract: Mg/Fe oxide nanotubes decorated with nitrogen-doped carbon nanotubes (CN{sub x}) were fabricated by catalytic chemical vapor deposition of ethylenediamine on the outer surface of oxide nanotubes. Mg/Fe oxide nanotubes were prepared using a 3:1 molar precursor solution of Mg(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} and anodic aluminum oxide as the substrate. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The XRD pattern shows that the oxide nanotubes are made up of MgO and Fe{sub 2}O{sub 3}. TEM and SEM observations indicate the oxide nanotubes are arrayed roughly parallel to each other, and the outer surface of oxide nanotubes are decorated with CN{sub x}. XPS results show the nitrogen-doped level in CN{sub x} is about 7.3 at.%. Magnetic measurements with VSM demonstrate the saturated magnetization, remanence and coercivity of oxide nanotubes are obvious improved after being decorated with CN{sub x}.

  9. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    NARCIS (Netherlands)

    Pop, A.; Manea, F.; Orha, C.; Motoc, S.; Llinoiu, E.; Vaszilcsin, N.; Schoonman, J.

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite

  10. C{sub 60} fullerene decoration of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Demin, V. A., E-mail: victordemin88@gmail.com [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation); Blank, V. D.; Karaeva, A. R.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Parkhomenko, Yu. N. [National University of Science and Technology MISiS (Russian Federation); Perezhogin, I. A.; Popov, M. Yu. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Skryleva, E. A. [National University of Science and Technology MISiS (Russian Federation); Urvanov, S. A. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Chernozatonskii, L. A. [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation)

    2016-12-15

    A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C{sub 60} molecule to a defect on the nanotube surface.

  11. Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing

    International Nuclear Information System (INIS)

    Xie Jining; Wang Shouyan; Aryasomayajula, L; Varadan, V K

    2007-01-01

    Fine platinum nanoparticles (1-5 nm in diameter) were deposited on functionalized multi-walled carbon nanotubes (MWNTs) through a decoration technique. A novel type of enzymatic Pt/MWNTs paste-based mediated glucose sensor was fabricated. Electrochemical measurements revealed a significantly improved sensitivity (around 52.7 μA mM -1 cm -2 ) for glucose sensing without using any picoampere booster or Faraday cage. In addition, the calibration curve exhibited a good linearity in the range of 1-28 mM of glucose concentration. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) were performed to investigate the nanoscale structure and the chemical bonding information of the Pt/MWNTs paste-based sensing material, respectively. The improved sensitivity of this novel glucose sensor could be ascribed to its higher electroactive surface area, enhanced electron transfer, efficient enzyme immobilization, unique interaction in nanoscale and a synergistic effect on the current signal from possible multi-redox reactions

  12. Hierarchical carbon nanostructure design: ultra-long carbon nanofibers decorated with carbon nanotubes

    International Nuclear Information System (INIS)

    El Mel, A A; Achour, A; Gautron, E; Angleraud, B; Granier, A; Le Brizoual, L; Djouadi, M A; Tessier, P Y; Xu, W; Choi, C H

    2011-01-01

    Hierarchical carbon nanostructures based on ultra-long carbon nanofibers (CNF) decorated with carbon nanotubes (CNT) have been prepared using plasma processes. The nickel/carbon composite nanofibers, used as a support for the growth of CNT, were deposited on nanopatterned silicon substrate by a hybrid plasma process, combining magnetron sputtering and plasma-enhanced chemical vapor deposition (PECVD). Transmission electron microscopy revealed the presence of spherical nanoparticles randomly dispersed within the carbon nanofibers. The nickel nanoparticles have been used as a catalyst to initiate the growth of CNT by PECVD at 600 deg. C. After the growth of CNT onto the ultra-long CNF, SEM imaging revealed the formation of hierarchical carbon nanostructures which consist of CNF sheathed with CNTs. Furthermore, we demonstrate that reducing the growth temperature of CNT to less than 500 deg. C leads to the formation of carbon nanowalls on the CNF instead of CNT. This simple fabrication method allows an easy preparation of hierarchical carbon nanostructures over a large surface area, as well as a simple manipulation of such material in order to integrate it into nanodevices.

  13. Fluorescent nanohybrids based on asymmetrical cyanine dyes decorated carbon nanotubes

    OpenAIRE

    Çavuşlar, Özge; Cavuslar, Ozge

    2015-01-01

    In this thesis, we focused on imparting new optical properties to carbon nanotubes (CNTs) to allow their optical detection and visualization in biomedical applications. We investigated the interactions of CNTs and DNA wrapped CNTs with asymmetrical cyanine dye molecules to study the applicability of resulting hybrid materials to fluorescent based systems. When CNTs interacted with asymmetrical cyanine dyes, they constructed a light absorbing nanoarray. However, the fluorescence emission of th...

  14. Single Nucleotide Polymorphism Detection Using Au-Decorated Single-Walled Carbon Nanotube Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Keum-Ju Lee

    2011-01-01

    Full Text Available We demonstrate that Au-cluster-decorated single-walled carbon nanotubes (SWNTs may be used to discriminate single nucleotide polymorphism (SNP. Nanoscale Au clusters were formed on the side walls of carbon nanotubes in a transistor geometry using electrochemical deposition. The effect of Au cluster decoration appeared as hole doping when electrical transport characteristics were examined. Thiolated single-stranded probe peptide nucleic acid (PNA was successfully immobilized on Au clusters decorating single-walled carbon nanotube field-effect transistors (SWNT-FETs, resulting in a conductance decrease that could be explained by a decrease in Au work function upon adsorption of thiolated PNA. Although a target single-stranded DNA (ssDNA with a single mismatch did not cause any change in electrical conductance, a clear decrease in conductance was observed with matched ssDNA, thereby showing the possibility of SNP (single nucleotide polymorphism detection using Au-cluster-decorated SWNT-FETs. However, a power to discriminate SNP target is lost in high ionic environment. We can conclude that observed SNP discrimination in low ionic environment is due to the hampered binding of SNP target on nanoscale surfaces in low ionic conditions.

  15. Improved field emission from indium decorated multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sreekanth, M.; Ghosh, S., E-mail: santanu1@physics.iitd.ernet.in; Biswas, P.; Kumar, S.; Srivastava, P.

    2016-10-15

    Graphical abstract: Improved field emission properties have been achieved for Indium (In) decorated MWCNTs and are shown using the schematic of field emission set up with In/CNT cathode, and a plot of J-E characteristics for pristine and In decorated CNTs. - Highlights: • Field emission (FE) properties have been studied for the first time from Indium (In) decorated MWCNT films. • Observed increased density of states near the Fermi level for In decorated films. • Superior field emission properties have been achieved for In decorated CNT films. - Abstract: Multi-walled carbon nanotube (MWCNT) films were grown using thermal chemical vapor deposition (T-CVD) process and were decorated with indium metal particles by thermal evaporation technique. The In metal particles are found to get oxidized. The In decorated films show 250% enhancement in the FE current density, lower turn-on and threshold fields, and better temporal stability as compared to their undecorated counterpart. This improvement in field emission properties is primarily attributed to increased density of states near the Fermi level. The presence of O 2p states along with a small contribution from In 5s states results in the enhancement of density of states in the vicinity of the Fermi level.

  16. Improved thermal conductivity of Ag decorated carbon nanotubes water based nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Farbod, Mansoor, E-mail: farbod_m@scu.ac.ir; Ahangarpour, Ameneh

    2016-12-16

    The effect of Ag decoration of carbon nanotubes on thermal conductivity enhancement of Ag decorated MWCNTs water based nanofluids has been investigated. The pristine and functionalized MWCNTs were decorated with Ag nanoparticles by mass ratios of 1%, 2% and 4% and used to prepare water based nanofluids with 0.1 vol.%. An enhancement of 1–20.4 percent in thermal conductivity was observed. It was found that the decoration of functionalized MWCNTs can increase the thermal conductivity about 0.16–8.02 percent compared to the undecorated ones. The maximum enhancement of 20.4% was measured for the sample containing 4 wt.% Ag at 40 °C. - Highlights: • MWCNTs were decorated with Ag nanoparticles by the mass ratios of 1, 2 and 4%. • The decorated CNTs were used to prepare water based nanofluids with 0.1 Vol.%. • 1–20.4% increase was observed in thermal conductivity (TC) compared to pure water. • Ag decorated CNTs increased TC of nanofluid up to 8% compared to CNTs nanofluid.

  17. Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Marín, E. [Departamento de Ingeniería en Metalurgia y Materiales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México 07300 (Mexico); Villalpando, I. [Centro de Investigación para los Recursos Naturales, Salaices, Chihuahua 33941 (Mexico); Trejo-Valdez, M. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, México, Ciudad de México 07738 (Mexico); Cervantes-Sodi, F. [Departamento de Física y Matemáticas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, Ciudad de México 01219 (Mexico); Vargas-García, J.R. [Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico Nacional, Ciudad de México 07738 (Mexico); Torres-Torres, C., E-mail: ctorrest@ipn.mx [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738 (Mexico)

    2017-06-15

    Highlights: • Nickel oxide decorated carbon nanotubes were prepared by chemical vapor deposition. • Contrast in photoconductivity phenomena in the nanohybrid was analyzed. • Electrical and nonlinear optical properties were evaluated. • A Wheatstone bridge sensor based metal/carbon nanostructures was proposed. - Abstract: Within this work was explored the influence of nickel oxide decoration on the photoconductive effects exhibited by multiwall carbon nanotubes. Samples in thin film form were prepared by a chemical vapor deposition method. Experiments for evaluating the photo-response of the nanomaterials at 532 nanometers wavelength were undertaken. A contrasting behavior in the photoelectrical characteristics of the decorated nanostructures was analyzed. The decoration technique allowed us to control a decrease in photoconduction of the sample from approximately 100 μmhos/cm to −600 μmhos/cm. Two-wave mixing experiments confirmed an enhancement in nanosecond nonlinearities derived by nickel oxide contributions. It was considered that metallic nanoparticles present a strong responsibility for the evolution of the optoelectronic phenomena in metal/carbon nanohybrids. Impedance spectroscopy explorations indicated that a capacitive behavior correspond to the samples. A potential development of high-sensitive Wheatstone bridge sensors based on the optoelectrical performance of the studied samples was proposed.

  18. Lignin-based carbon fibers: Carbon nanotube decoration and superior thermal stability

    KAUST Repository

    Xu, Xuezhu

    2014-08-23

    Lignin-based carbon fibers (CFs) decorated with carbon nanotubes (CNTs) were synthesized and their structure, thermal stability and wettability were systematically studied. The carbon fiber precursors were produced by electrospinning lignin/polyacrylonitrile solutions. CFs were obtained by pyrolyzing the precursors and CNTs were subsequently grown on the CFs to eventually achieve a CF–CNT hybrid structure. The processes of pyrolysis and CNT growth were conducted in a tube furnace using different conditions and the properties of the resultant products were studied and compared. The CF–CNT hybrid structure produced at 850 °C using a palladium catalyst showed the highest thermal stability, i.e., 98.3% residual weight at 950 °C. A mechanism for such superior thermal stability was postulated based on the results from X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, and electron energy loss spectroscopy analyses. The dense CNT decoration was found to increase the hydrophobicity of the CFs.

  19. Gas Sensors Based on Locally Heated Multiwall Carbon Nanotubes Decorated with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    R. Savu

    2015-01-01

    Full Text Available We report the design and fabrication of microreactors and sensors based on metal nanoparticle-decorated carbon nanotubes. Titanium adhesion layers and gold films were sputtered onto Si/SiO2 substrates for obtaining the electrical contacts. The gold layers were electrochemically thickened until 1 μm and the electrodes were patterned using photolithography and wet chemical etching. Before the dielectrophoretic deposition of the nanotubes, a gap 1 μm wide and 5 μm deep was milled in the middle of the metallic line by focused ion beam, allowing the fabrication of sensors based on suspended nanotubes bridging the electrodes. Subsequently, the sputtering technique was used for decorating the nanotubes with metallic nanoparticles. In order to test the as-obtained sensors, microreactors (100 μL volume were machined from a single Kovar piece, being equipped with electrical connections and 1/4′′ Swagelok-compatible gas inlet and outlets for controlling the atmosphere in the testing chamber. The sensors, electrically connected to the contact pins by wire-bonding, were tested in the 10−5 to 10−2 W working power interval using oxygen as target gas. The small chamber volume allowed the measurement of fast characteristic times (response/recovery, with the sensors showing good sensitivity.

  20. High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gohier, Aurelien; Kim, Ki-Hwan; Maurice, Jean-Luc; Cojocaru, Costel Sorin [Laboratoire de Physique des Interfaces et des Couches Minces, LPICM, Ecole Polytechnique, route de Saclay, 91128 Palaiseau Cedex (France); Laik, Barbara; Pereira-Ramos, Jean-Pierre [Institut de Chimie et des Materiaux Paris-Est, ICMPE/GESMAT, UMR 7182 CNRS-UPEC, 2 rue Henri Dunant, 94320 Thiais (France); Van, Pierre Tran [Renault SAS, DREAM/DETA/SEE, 1, avenue du Golf, 78288 Guyancourt (France)

    2012-05-15

    The concept of a hybrid nanostructured collector made of thin vertically aligned carbon nanotubes (CNTs) decorated with Si nanoparticles provides high power density anodes in lithium-ion batteries. An impressive rate capability is achieved due to the efficient electronic conduction of CNTs combined with well defined electroactive Si nanoparticles: capacities of 3000 mAh g{sup -1} at 1.3C and 800 mAh g{sup -1} at 15C are achieved. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry

    International Nuclear Information System (INIS)

    Chen, Chia-Ling; Yang, Chih-Feng; Dokmeci, Mehmet R; Agarwal, Vinay; Sonkusale, Sameer; Kim, Taehoon; Busnaina, Ahmed; Chen, Michelle

    2010-01-01

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to ∼ 300% and ∼ 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications.

  2. Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: From synthesis to enhanced removal of phenol

    Directory of Open Access Journals (Sweden)

    Hamza A. Asmaly

    2015-09-01

    Full Text Available In this work, ferric oxide nanoparticle decorated carbon fibers and carbon nanotubes (CNF/Fe2O3 and CNT/Fe2O3 were synthesized and characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TGA, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, X-ray diffraction (XRD, zeta potential and BET surface area analyzer. The prepared nanocomposites were evaluated or the removal of phenol ions from aqueous solution. The effects of experimental parameters, such as shaking speed, pH, contact time, adsorbent dosage and initial concentration, were evaluated for the phenol removal efficiency. The adsorption experimental data were represented by both the Langmuir and Freundlich isotherm models. The Langmuir isotherm model best fitted the data on the adsorption of phenol, with a high correlation coefficient. The adsorption capacities, as determined by the Langmuir isotherm model were 0.842, 1.098, 1.684 and 2.778 mg/g for raw CNFs, raw CNTs, CNF–Fe2O3 and CNT–Fe2O3, respectively.

  3. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    Science.gov (United States)

    Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li

    2015-05-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).

  4. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    International Nuclear Information System (INIS)

    Li Xin; Zhou Wei-Man; Liu Wei-Hua; Wang Xiao-Li

    2015-01-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn–Plummer method. The ZnO NPs reconstruct the ZnO–CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. (paper)

  5. Adsorption of hydrogen in Scandium/Titanium decorated nitrogen doped carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mananghaya, Michael, E-mail: mikemananghaya@gmail.com [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines); DOST-ASTHRDP, PCIEERD, Gen. Santos Ave., Bicutan, Taguig City 1631 (Philippines); Belo, Lawrence Phoa; Beltran, Arnel [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines)

    2016-09-01

    Nitrogen doped Carbon Nanotube with divacancy (4ND-CN{sub x}NT) that is decorated with Scandium and Titanium as potential hydrogen storage medium using the pseudo potential density functional method was investigated. Highly localized states near the Fermi level, which are derived from the nitrogen defects, contribute to strong Sc and Ti bindings, which prevent metal aggregation and improve the material stability. A detailed Comparison of the Hydrogen adsorption capability with promising system-weight efficiency of Sc over Ti was elucidated when functionalized with 4ND-CN{sub x}NT. Finally, the (Sc/4ND){sub 10}-CN{sub x}CNT composite material has a thermodynamically favorable adsorption and consecutive adsorption energy for ideal reversible adsorption and desorption of hydrogen at room temperature such that it can hold at least 5.8 wt% hydrogen molecules at the LDA and GGA level. - Highlights: • Carbon Nanotube with divacancy (4ND-CN{sub x}NT) decorated with Sc and Ti. • Nitrogen defects, contribute to strong Sc and Ti bindings. • H{sub 2} and (Sc/4ND){sub 10}-CN{sub x}CNT has a favorable adsorption. • 5.8 wt% adsorption at the LDA and GGA level.

  6. Theoretical study of hydrogen adsorption of graphene and carbon nanotubes decorated with palladium

    International Nuclear Information System (INIS)

    Lopez Corral, Ignacio; German, Estefania; Volpe, Maria A; Brizuela, Graciela; Juan, Alfredo

    2008-01-01

    Since their discovery in 1991, carbon nanotubes (CNT) have awakened great interest in materials science thanks to their extraordinary structural, electronic and mechanical properties which facilitate their application in many different areas. One of the most promising applications is the possibility of using CNT to store hydrogen for use in small scale fuel cells. Unfortunately, experimental studies performed some years ago have often led to controversial conclusions, causing a continuing debate that has still not been resolved. The most recent work suggests that the storage of hydrogen for practical purposes can be achieved with CNT decorated with transition metals, for example Pd. In this context, theoretical modeling methods have to be used for a detailed understanding of the influence and scope of this type of modification in the interaction of the nanotubes with atomic or molecular hydrogen. This work studied hydrogen adsorption in single-walled carbon nanotubes (SWCNT) doped with Pd atoms, using density functional theory (DFT) and semi-empirical methods. As a preliminary approximation to the system a graphene sheet was used, modeled with a 190 atom cluster of C in a hexagonal arrangement, on which a single Pd atom was placed in adsorption sites. Then C 190 clusters were used to simulate two different types of SWCNT: the zigzag SWCNT of quirality (10.0) and the armchair SWCNT of quirality (5.5), both decorated similarly on the graphene. Geometric optimization procedures for the system's different components were carried out with these models, and then the changes produced during the adsorption process in the electronic occupation of atomic orbitals and unions, for which crystal orbital overlap population (COOP) curves and overlap population (OP) values were evaluated. The results obtained with the graphene and nanotube approximations are in agreement and show that the SWCNT modified with Pd have more capacity to trap hydrogen than the non doped SWCNT. The

  7. Mechanooptic Regulation of Photoconduction in Functionalized Carbon Nanotubes Decorated with Platinum

    Directory of Open Access Journals (Sweden)

    C. Mercado-Zúñiga

    2014-01-01

    Full Text Available The observation of photoconduction and nonlinear optical absorption on functionalized multiwall carbon nanotubes decorated with platinum is reported. The samples were prepared by a chemical vapor deposition method. The electrical conductivity of the carbon nanotubes seems to be decreased by the functionalization process; but this property is strongly enhanced after the incorporation of platinum particles. Nonresonant photoconductive experiments at 532 nm and 445 nm wavelengths allow us to detect a selective participation of the platinum to the photoelectrical response. A mechanooptic effect based on Fresnel reflection was obtained through a photoconductive modulation induced by the rotation of a silica substrate where the samples were deposited as a thin film. A two-photon absorption process was identified as the main physical mechanism responsible for the nonlinear optical absorption. We consider that important changes in the nonlinear photon interactions with carbon nanotubes can be related to the population losses derived from phonons and the detuning of the frequency originated by functionalization.

  8. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    Science.gov (United States)

    Wu, Yishan; Li, Jun; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei

    2017-10-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation.

  9. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    International Nuclear Information System (INIS)

    Wu, Yishan; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei; Li, Jun

    2017-01-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation. (paper)

  10. Polycyclopentene-Crystal-Decorated Carbon Nanotubes by Convenient Large-Scale In Situ Polymerization and their Lotus-Leaf-Like Superhydrophobic Films.

    Science.gov (United States)

    Xu, Lixin; Huang, Lingqi; Ye, Zhibin; Meng, Nan; Shu, Yang; Gu, Zhiyong

    2017-02-01

    In situ Pd-catalyzed cyclopentene polymerization in the presence of multi-walled carbon nanotubes (MWCNTs) is demonstrated to effectively render, on a large scale, polycyclopentene-crystal-decorated MWCNTs. Controlling the catalyst loading and/or time in the polymerization offers a convenient tuning of the polymer content and the morphology of the decorated MWCNTs. Appealingly, films made of the decorated carbon nanotubes through simple vacuum filtration show the characteristic lotus-leaf-like superhydrophobicity with high water contact angle (>150°), low contact angle hysteresis (<10°), and low water adhesion, while being electrically conductive. This is the first demonstration of the direct fabrication of lotus-leaf-like superhydrophobic films with solution-grown polymer-crystal-decorated carbon nanotubes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Carbon nanotubes decorated with palladium nanoparticles : Synthesis, characterization, and catalytic activity

    NARCIS (Netherlands)

    Karousis, Nikolaos; Tsotsou, Georgia-Eleni; Evangelista, Fabrizio; Rudolf, Petra; Ragoussis, Nikitas; Tagmatarchis, Nikos

    2008-01-01

    In this article, the in situ preparation of palladium nanoparticles, as mediated by the self-regulated reduction of palladium acetate with the aid of sodium dodecyl sulfate (SDS), followed by subsequent deposition onto single-walled carbon nanotubes and multimalled carbon nanotubes (MWCNTs), is

  12. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery.

    Science.gov (United States)

    Singh, Rahul Pratap; Sharma, Gunjan; Sonali; Singh, Sanjay; Bharti, Shreekant; Pandey, Bajarangprasad L; Koch, Biplob; Muthu, Madaswamy S

    2017-08-01

    The aim of this work was to formulate chitosan-folate conjugated multi-walled carbon nanotubes for the lung cancer targeted delivery of docetaxel. The chitosan-folate conjugate was synthesized and the conjugation was confirmed by Fourier transform infrared spectroscopy. The multi-walled carbon nanotubes were characterized for their particle size, polydispersity, zeta potential, surface morphology, drug encapsulation efficiency and in vitro release study. The in vitro cellular uptake, cytotoxicity, and cell cycle analysis of the docetaxel/coumarin-6 loaded multi-walled carbon nanotubes were carried out to compare the effectiveness of the formulations. The biocompatibility and safety of chitosan-folate conjugated multi-walled carbon nanotubes was analyzed by lung histopathology in comparison with marketed docetaxel formulation (Docel™) and acylated multi-walled carbon nanotubes. The cellular internalization study shown that the chitosan-folate conjugated multi-walled carbon nanotubes could be easily internalized into the lung cancer cells through a folate receptor-mediated endocytic pathway. The IC 50 values exhibited that chitosan-folate conjugated multi-walled carbon nanotubes could be 89-fold more effective than Docel™ in human lung cancer cells (A549 cells). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Hongyu; Ahmad, Mashkoor; Luo, Jun; Shi, Yingying; Shen, Wanci; Zhu, Jing

    2014-01-01

    Graphical abstract: The synthesized SnS 2 nanoflakes decorated multiwalled carbon nanotubes hybrid structures exhibit large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS 2 nanoflakes. - Highlights: • Synthesis of SnS 2 nanoflakes decorated multiwalled carbon nanotubes hybrid structures. • Simple solution-phase approach. • Morphology feature of SnS 2 . • Enhanced performance as Li-ion batteries. - Abstract: SnS 2 nanoflakes decorated multiwalled carbon nanotubes (MWCNTs) hybrid structures are directly synthesized via a simple solution-phase approach. The as-prepared SnS 2 /MWCNTs structures are investigated as anode materials for Li-ion batteries as compared with SnS 2 nanoflakes. It has been found that the composite structure exhibit excellent lithium storage performance with a large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS 2 nanoflakes. The first discharge and charge capacities have been found to be 1416 and 518 mA h g −1 for SnS 2 /MWCNTs composite electrodes at a current density of 100 mA g −1 between 5 mV and 1.15 V versus Li/Li + . A stable reversible capacity of ∼510 mA h g −1 is obtained for 50 cycles. The improved electrochemical performance may be attributed to the flake-morphology feature of SnS 2 and the addition of MWCNTs that can hinder the agglomeration of the active materials and improve the conductivity of the composite electrode simultaneously

  14. SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongyu [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Ahmad, Mashkoor, E-mail: mashkoorahmad2003@yahoo.com [Nanomaterials Research Group (NRG), Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Luo, Jun [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Shi, Yingying; Shen, Wanci [Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-01-01

    Graphical abstract: The synthesized SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures exhibit large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. - Highlights: • Synthesis of SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures. • Simple solution-phase approach. • Morphology feature of SnS{sub 2}. • Enhanced performance as Li-ion batteries. - Abstract: SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes (MWCNTs) hybrid structures are directly synthesized via a simple solution-phase approach. The as-prepared SnS{sub 2}/MWCNTs structures are investigated as anode materials for Li-ion batteries as compared with SnS{sub 2} nanoflakes. It has been found that the composite structure exhibit excellent lithium storage performance with a large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. The first discharge and charge capacities have been found to be 1416 and 518 mA h g{sup −1} for SnS{sub 2}/MWCNTs composite electrodes at a current density of 100 mA g{sup −1} between 5 mV and 1.15 V versus Li/Li{sup +}. A stable reversible capacity of ∼510 mA h g{sup −1} is obtained for 50 cycles. The improved electrochemical performance may be attributed to the flake-morphology feature of SnS{sub 2} and the addition of MWCNTs that can hinder the agglomeration of the active materials and improve the conductivity of the composite electrode simultaneously.

  15. In situ synthesis of carbon nanotubes decorated with palladium nanoparticles using arc-discharge in solution method

    International Nuclear Information System (INIS)

    Bera, Debasis; Kuiry, Suresh C.; McCutchen, Matthew; Seal, Sudipta; Heinrich, Helge; Slane, Grady C.

    2004-01-01

    A unique, simple, inexpensive, and one-step synthesis route to produce carbon nanotubes (CNTs) decorated with palladium nanoparticles using a simplified dc arc-discharge in solution is reported. Zero-loss energy filtered transmission electron microscopy and scanning transmission electron microscopy confirm the presence of 3 nm palladium nanoparticles. Such palladium nanoparticles form during the reduction of palladium tetra-chloro-square-planar complex. The deconvoluted x-ray photoelectron spectroscopy envelope shows the presence of palladium on the decorated CNTs. The energy dispersive spectroscopy suggests no functionalization of atomic chlorine to the sidewall of the CNTs. The presence of dislodged graphene sheets with wavy morphology supports the formation of CNTs through the 'scroll mechanism'

  16. Sensing of low concentration of ammonia at room temperature by decorated multi-walled carbon nanotube: fabrication and characteristics

    Science.gov (United States)

    Hasnahena, S. T.; Roy, M.

    2018-01-01

    A chemical sensor based on multi-walled carbon nanotube (MWCNT) decorated with densely populated thiol-capped gold nanoparticles (AuNPs) with sizes smaller than 3 nm for sensing low concentrations of ammonia gas is reported. The functionalized MWCNTs, subsequently decorated with AuNPs following an easy fabrication route were exposed to NH3 gas at the room temperature and the electrical resistance of the sensor changed upon exposure. The sensor also partially recovered the initial state after sensing in the normal air environment (without any dry air or N2 gas purge). The gold nanoparticles decoration is found to enhance the sensitivity and selectivity of MWCNT towards NH3 gas under ambient conditions with a reduced response and recovery time. The material was structurally characterized by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. Thermal stability of the sensor till 574 °C was demonstrated by TGA analysis. This papers describes how thiol-capped AuNPs are uniformly decorated on the outer walls of the MWCNTs with a separation of 2-3 nm making use of the ionic nature of Au and how this uniform distribution of AuNPs increases the active sites for absorption of NH3 gas molecules leading to sensing its low concentrations.

  17. Dye sensitized solar cell based on platinum decorated multiwall carbon nanotubes as catalytic layer on the counter electrode

    International Nuclear Information System (INIS)

    Mathew, Ambily; Rao, G. Mohan; Munichandraiah, N.

    2011-01-01

    Graphical abstract: I-V characteristics of the DSSCs with Pt CE and Pt/MWCNT CE measured at 100 mW/cm 2 . It shows relatively better performance with Pt/MWCNT counter electrodes. Highlights: → Synthesis of multiwalled carbon nanotubes by pyrolysis. → Synthesis of Pt/MWCNT composite by chemical reduction. → Fabrication DSSC using Pt/MWCNT as catalytic layer on the counter electrode. → Study of catalytic activity by Electrochemical Impedance Spectroscopy. -- Abstract: In this study we have employed multiwall carbon nanotubes (MWCNT), decorated with platinum as catalytic layer for the reduction of tri-iodide ions in dye sensitized solar cell (DSSC). MWCNTs have been prepared by a simple one step pyrolysis method using ferrocene as the catalyst and xylene as the carbon source. Platinum decorated MWCNTs have been prepared by chemical reduction method. The as prepared MWCNTs and Pt/MWCNTs have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In combination with a dye adsorbed TiO 2 photoanode and an organic liquid electrolyte, Pt/MWCNT composite showed an enhanced short circuit current density of 16.12 mA/cm 2 leading to a cell efficiency of 6.50% which is comparable to that of Platinum.

  18. Dye sensitized solar cell based on platinum decorated multiwall carbon nanotubes as catalytic layer on the counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Ambily [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 India (India); Rao, G. Mohan, E-mail: gmrao@isu.iisc.ernet.in [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 India (India); Munichandraiah, N. [Department of Inorgonic and Physical Chemistry, Indian Institute of Science, Bangalore 560012 India (India)

    2011-11-15

    Graphical abstract: I-V characteristics of the DSSCs with Pt CE and Pt/MWCNT CE measured at 100 mW/cm{sup 2}. It shows relatively better performance with Pt/MWCNT counter electrodes. Highlights: {yields} Synthesis of multiwalled carbon nanotubes by pyrolysis. {yields} Synthesis of Pt/MWCNT composite by chemical reduction. {yields} Fabrication DSSC using Pt/MWCNT as catalytic layer on the counter electrode. {yields} Study of catalytic activity by Electrochemical Impedance Spectroscopy. -- Abstract: In this study we have employed multiwall carbon nanotubes (MWCNT), decorated with platinum as catalytic layer for the reduction of tri-iodide ions in dye sensitized solar cell (DSSC). MWCNTs have been prepared by a simple one step pyrolysis method using ferrocene as the catalyst and xylene as the carbon source. Platinum decorated MWCNTs have been prepared by chemical reduction method. The as prepared MWCNTs and Pt/MWCNTs have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In combination with a dye adsorbed TiO{sub 2} photoanode and an organic liquid electrolyte, Pt/MWCNT composite showed an enhanced short circuit current density of 16.12 mA/cm{sup 2} leading to a cell efficiency of 6.50% which is comparable to that of Platinum.

  19. Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers

    Science.gov (United States)

    Yang, Tao; Han, Enlin; Wang, Xiaodong; Wu, Dezhen

    2017-09-01

    A new methodology to decorate the surface of polyimide (PI) fiber with carbon nanotubes (CNTs) has been developed in this study. This surface decoration was carried out through a surface alkali treatment, a carboxylation modification, surface functionalization with acyl chloride groups and then with amino groups, and a surface graft of CNTs onto PI fiber. Fourier-transform infrared and X-ray photoelectron spectroscopic characterizations confirmed that CNTs were chemically grafted onto the surface of PI fiber, and scanning electron microscopic observation demonstrated the fiber surface was uniformly and densely covered with CNTs. The surface energy and wettability of PI fiber were improved in the presence of CNTs on the fiber surface, which made a contribution to enhance the interfacial adhesion of PI fiber with other inorganic matrices when used as a reinforcing fiber. The application of CNTs-decorated PI fiber for the reinforcement of phosphoric acid-based geopolymers was investigated, and the results indicated that the geopolymeric composites gained a noticeable reinforcement. Compared to unreinforced geopolymer, the geopolymeric composites achieved a remarkable increase in compressive strength by 120% and in flexural strength by 283%. Fractography investigation demonstrated that the interaction adhesion between the fibers and matrix was enhanced due to the surface decoration of PI fiber with CNTs, which contributed to an improvement in fracture-energy dissipation by fiber pullout and fiber debonding from the matrix. As a result, a significant reinforcement effect on geopolymeric composites was achieved through a fiber-bridging mechanism. This study provided an effective methodology to improve the interracial bonding force for PI fiber and also proves a highly efficient application of CNTs-decorated PI fiber for the mechanical enhancement of geopolymeric composites.

  20. A General Strategy for the Preparation of Carbon Nanotubes and Graphene Oxide Decorated with PdO Nanoparticles in Water

    Directory of Open Access Journals (Sweden)

    Hongkun He

    2010-07-01

    Full Text Available The preparation of carbon nanotube (CNT/PdO nanoparticles and graphene oxide (GO/PdO nanoparticle hybrids via a general aqueous solution strategy is reported. The PdO nanoparticles are generated in situ on the CNTs and GO by a one-step “green” synthetic approach in aqueous Pd(NO32 solution under ambient conditions without adding any additional chemicals. The production of PdO is confirmed by energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. The morphologies of the resulting CNT/PdO and GO/PdO nanohybrids are characterized by transmission and/or scanning transmission electron microscopy. PdO nanoparticles with an average size of 2–3 nm in diameter are decorated evenly along the surfaces of CNTs and GO. This synthesis strategy is demonstrated to be compatible for 1 CNTs with different modifications, including pristine, oxidized, and polymer-functionalized CNTs; 2 different types of CNTs, including single-walled carbon nanotubes (SWCNTs, double-walled carbon nanotubes (DWCNTs, and multiwalled carbon nanotubes (MWCNTs; and 3 different shapes of carbon materials, including tubular CNTs and planar GO. The as-prepared CNT/PdO and GO/PdO nanohybrids can be transformed into CNT/Pd and GO/Pd nanohybrids by reduction with NaBH4, and can then be used as a heterogeneous catalyst in the catalytic reduction of 4-nitrophenol.

  1. A Room-temperature Hydrogen Gas Sensor Using Palladium-decorated Single-Walled Carbon Nanotube/Si Heterojunction

    Directory of Open Access Journals (Sweden)

    Yong Gang DU

    2016-05-01

    Full Text Available We report a room-temperature (RT hydrogen gas (H2 sensor based on palladium-decorated single-walled carbon nanotube/Si (Pd-SWNTs/Si heterojunction. The current-voltage (I-V curves of the Pd-SWNTs/Si heterojunction in different concentrations of H2 were measured. The experimental results reveal that the Pd-SWNTs/Si heterojunction exhibits high H2 response. After exposure to 0.02 %, 0.05 %, and 0.1 % H2 for 10 min, the resistance of the heterojunction increases dramatically. The response is 122 %, 269 % and 457 %, respectively. A simple interfacial theory is used to understand the gas sensitivity results. This approach is a step toward future CNTs-based gas sensors for practical application.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12925

  2. CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yan [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Huang Qinan [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Li Maoguo [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Huang Xingjiu [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Fang Bin, E-mail: binfang_47@yahoo.com.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Wang Lun, E-mail: wanglun@mail.ahnu.edu.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China)

    2011-10-01

    Sub-10 nm CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes has been constructed for electrochemial determination of guanine and adenine. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the nanoparticles CeO{sub 2}/MWCNTs. Electrochemical impedance spectroscopy (EIS) was used to characterize the electrode modifying process. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrocatalytic activity toward the electrochemical oxidation of guanine and adenine. The detection limit (S/N = 3) for adenine and guanine was found to be 20 and 10 nM, respectively. The obtained sensitivity toward guanine and adenine was 1.26 and 1.13 {mu}A/{mu}M in the linear concentration range 5-50 {mu}M and 5-35 {mu}M, respectively. These results demonstrate that the carbon nanotubes could provide huge locations and facilitate the adsorptive accumulation of the guanine and adenine, and the CeO{sub 2} nanoparticles are promising substrates for the development of high-performance electrocatalysts for biosensing.

  3. Synthesis of Fe3O4/Pt Nanoparticles Decorated Carbon Nanotubes and Their Use as Magnetically Recyclable Catalysts

    Directory of Open Access Journals (Sweden)

    Hongkun He

    2011-01-01

    Full Text Available We report a facile approach to prepare Fe3O4/Pt nanoparticles decorated carbon nanotubes (CNTs. The superparamagnetic Fe3O4 nanoparticles with average size of 4∼5 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl3. The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe3O4 nanopartilces and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanopaticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe3O4/Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.

  4. Thermal conductivity enhancements and viscosity properties of water based Nanofluid containing carbon nanotubes decorated with ag nanoparticles

    Science.gov (United States)

    Gu, Yanni; Xu, Sheng; Wu, Xiaoshan

    2018-01-01

    The water based nanofluid containing carbon nanotube (CNT) decorated with Ag nanoparticles (Ag/CNT) is prepared. Its thermal conductivity (k) enhancement increases with the thermal filler loading and the decoration quantity of Ag nanoparticles. The low absolute CNT content will decrease the tangles or aggregations among the CNTs, and it will be good at the Brownian motion of CNTs in the water. It has positive effects on the thermal conductivity of nanofluid. With the increase of Ag loading, the average size of Ag nanoparticles increased, and further results in the decrease of dispersing amount of Ag/CNT as the weight of Ag/CNT is fixed. Little dispersing quantity of Ag/CNT makes it possible that the Ag/CNT particles disperse well in the fluid. So it is not easy for CNTs to form aggregation. The high intrinsic k of CNT and the effective thermal conductive networks forming by CNTs and Ag nanoparticles are good at the k enhancement. With temperature increase the k of Ag/CNT nanofluid appears improvement. The study results make it possible to develop high-efficiency nanofluid for advanced thermal management regions.

  5. Thermal conductivity enhancements and viscosity properties of water based Nanofluid containing carbon nanotubes decorated with ag nanoparticles

    Science.gov (United States)

    Gu, Yanni; Xu, Sheng; Wu, Xiaoshan

    2018-06-01

    The water based nanofluid containing carbon nanotube (CNT) decorated with Ag nanoparticles (Ag/CNT) is prepared. Its thermal conductivity ( k) enhancement increases with the thermal filler loading and the decoration quantity of Ag nanoparticles. The low absolute CNT content will decrease the tangles or aggregations among the CNTs, and it will be good at the Brownian motion of CNTs in the water. It has positive effects on the thermal conductivity of nanofluid. With the increase of Ag loading, the average size of Ag nanoparticles increased, and further results in the decrease of dispersing amount of Ag/CNT as the weight of Ag/CNT is fixed. Little dispersing quantity of Ag/CNT makes it possible that the Ag/CNT particles disperse well in the fluid. So it is not easy for CNTs to form aggregation. The high intrinsic k of CNT and the effective thermal conductive networks forming by CNTs and Ag nanoparticles are good at the k enhancement. With temperature increase the k of Ag/CNT nanofluid appears improvement. The study results make it possible to develop high-efficiency nanofluid for advanced thermal management regions.

  6. Characterization of carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles as a novel electrochemical sensor: Application for highly selective determination of sotalol using voltammetry

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Allafchian, Ali R.; Rezaei, B.; Mohammadzadeh, R.

    2013-01-01

    A magnetic nano‐composite of multiwall carbon nanotube, decorated with NiFe 2 O 4 nanoparticles, was synthesized with citrate sol–gel method. The multiwall carbon nanotubes decorated with NiFe 2 O 4 nanoparticles (NiFe 2 O 4 –MWCNTs) were characterized with different methods such as Fourier transform infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The new nano-composite acts as a suitable electrocatalyst for the oxidation of sotalol at a potential of 500 mV at the surface of the modified electrode. Linear sweep voltammetry exhibited two wide linear dynamic ranges of 0.5–1000 μmol L −1 sotalol with a detection limit of 0.09 μmol L −1 . The modified electrode was used as a novel electrochemical sensor for the determination of sotalol in real samples such as pharmaceutical, patient and safe human urine. - Graphical abstract: Multiwall carbon nanotube, decorated with NiFe 2 O 4 nanoparticles, was prepared using citrate sol–gel method. We characterized the new nanoparticles with different spectroscopic and voltammetric methods. The nano sensor was used as a voltammetric sensor for the determination of trace amounts of sotalol at pH 7.0. Highlights: ► We synthesized and prepared new sensor, multiwall carbon nanotubes decorated with NiFe 2 O 4 . ► Several spectroscopic and voltammetric methods were used to study its characteristics. ► The nanoparticles act as suitable electrocatalyst for the oxidation of sotalol. ► Sotalol could be measured as low as 0.09 μmol L −1 using linear sweep voltammetry.

  7. Surface decoration of short-cut polyimide fibers with multi-walled carbon nanotubes and their application for reinforcement of lightweight PC/ABS composites

    Science.gov (United States)

    Zhang, Le; Han, Enlin; Wu, Yulun; Wang, Xiaodong; Wu, Dezhen

    2018-06-01

    The surface decoration of short-cut polyimide (PI) fibers with multi-walled carbon nanotubes (MWCNTs) was performed by fabricating a polydopamine (PDA) coating layer on the fiber surface and then immobilizing MWCNTs onto the coating layer via covalent bonding. This successful surface decoration was confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared microscopy and static water contact angle. The application of the surface-decorated PI fibers as reinforcing fibers for reinforcement of polycarbonate (PC)/acrylonitrile-butadiene-styrene copolymer (ABS) alloy was investigated, which indicated that the MWCNTs-decorated PI fibers not only could effectively reinforce the PC/ABS alloy but also generated a significant lightweighting effect on the resulting composites. The maximum mechanical properties were achieved for the composites at a fiber content of 20 wt.% and a fiber length of 3 mm. This significant reinforcement effect is attributed to the enhancement of interaction bonding strength between the fibers and matrix as a result of the surface decoration of PI fibers with MWCNTs. The morphological investigation suggested that fiber rupture was the major energy dissipation mechanism in the tensile and impact failures, whereas fiber debonding and pullout were partly involved in the fracture energy dissipation. In addition, the presence of surface-decorated PI fibers slightly enhanced the thermal stability and load bearing capability of composites. This work can provide a type of high-performance lightweight composite material for automobile and aviation industries.

  8. Rapid synthesis of tin oxide decorated carbon nanotube nanocomposities as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Lin, Jeng-Yu; Chou, Ming-Hung; Kuo, Yi-Chen

    2014-01-01

    Highlights: • SnO 2 –CNTs nanocomposite was synthesized by microwave-assisted hydrothermal route. • Adding glucose assisted SnO 2 nanoclusters uniformly grow on the surfaces of CNTs. • SnO 2 –CNTs nanocomposite shows improved electrochemical properties. -- Abstract: In this study, the tin oxide decorated carbon nanotubes (SnO 2 –CNTs) nanocomposites have been successfully synthesized using an ultrafast and environmentally friendly microwave-assisted hydrothermal method. According to X-ray diffraction pattern, field emission scanning electron microscopy and transmission electron microscopy, the SnO 2 nanoclusters can directly grow on the surfaces of CNTs with uniform coverage along the longitudinal axis by using glucose as a binding agent. The electrochemical properties of the SnO 2 –CNTs nanocomposite electrode have been further characterized by galvanostatic discharge/charge cycling tests, cyclic voltammetry and electrochemical impedance spectroscopy. Results demonstrate that the SnO 2 –CNTs nanocomposite electrode exhibited a superior reversible discharge capacity, cycling stability and rate capability as an anode material for Li-ion batteries compared to the pristine SnO 2 electrode. Such synergic improvements can be attributed to combining the SnO 2 nanoclusters onto the conductive CNTs matrix by taking advantage of the relatively high specific capacity of SnO 2 nanoclusters and the excellent cycling capability of the CNTs

  9. Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites

    KAUST Repository

    Patole, Archana S.

    2015-01-01

    We proposed a strategy to enhance the conductivity of polycarbonate by using three-phase hybrid metallic/non-metallic fillers. Ethylene diamine (EDA) functionalized multiwalled carbon nanotubes (MWCNT-EDA) are first decorated with silver nanoparticles. These Ag/ MWCNT-EDA fillers are then coated with a conductive layer of ethylene glycol treated PEDOT: PSS (poly [3,4-ethylenedioxythiophene]: poly [styrenesulfonate]) (EP). In such an approach, the MWCNT backbone is covered by a highly conductive coating made of Ag nanoparticles surrounded by EP. To understand how Ag and EP form a highly conductive coating, the effect of different wt% of Ag nanoparticles on EP was studied. Ag nanoparticles around the size of 128 ± 28 nmeffectively lowered the volume resistivity of bulk EP, resulting in a highly conducting Ag/EP blend. We found that in the final Ag/MWCNT-EDA/EP assembly, the EP coating enhances the electrical conductivity in two ways: (1) it is an efficient dispersing agent that helps in achieving a uniform dispersion of the Ag/MWCNT-EDA and (2) it acts as a conductive bridge between particles (Ag and MWCNT-EDA), reducing the particle to particle resistivity. When inserted into polycarbonate, this three-phase blend successfully reduced the volume resistivity of the polymer by two orders of magnitude compared with previous approaches.

  10. Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Adekunle, Abolanle S.; Ozoemena, Kenneth I. [Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa)

    2008-08-01

    The electron transfer behaviour of nickel film-decorated single-walled carbon nanotubes (SWCNTs-Ni) at edge plane pyrolytic graphite electrodes (EPPGEs) was investigated. The impact of SWCNTs on the redox properties of the nickel film was investigated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS). From EIS data, obtained using ferrocyanide/ferricyanide as a redox probe, we show that the electrodes based on nickel and nickel oxide films follow electrical equivalent circuit models typical of partial charge transfer or adsorption-controlled kinetics, resembling the 'electrolyte-insulator-semiconductor sensors (EIS)'. From the models, we prove that EPPGE-SWCNT-Ni exhibits the least resistance to charge transport compared to other electrodes (approximately 30 times faster than the EPPGE-SWCNT-NiO, 25 times faster than EPPGE-SWCNT, and over 300 times faster than the bare EPPGE) suggesting the ability of the SWCNTs to act as efficient conducting species that facilitate electron transport of the integrated nickel and nickel oxide particles. (author)

  11. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Science.gov (United States)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-07-01

    Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  12. A gold electrode modified with silver oxide nanoparticle decorated carbon nanotubes for electrochemical sensing of dissolved ammonia

    International Nuclear Information System (INIS)

    Rahman, Mohammed M.; Asiri, Abdullah M.; Balkhoyor, Hasan B.; Marwani, Hadi M.

    2016-01-01

    We have prepared silver oxide nanoparticles with a diameter of ∼ 15 nm and decorated with carbon nanotube nanocomposites (Ag_2O/CNT NCs) by a facile wet chemical method using reducing agents in alkaline medium. These NCs were characterized by UV/vis, FTIR and energy dispersive X-ray spectroscopy, by X-ray powder diffraction and field emission scanning electron microscopy. The NCs were then deposited on a flat gold electrode with the help of a conducting binder to result in an electrochemical sensor for aqueous ammonia using the I-V technique. Response is based on surface oxidation of ammonium hydroxide with electrode-adsorbed oxygen to form nitrogen oxide, these simultaneously liberating free electrons in the conduction band. Sensor features include a sensitivity of 32.856 μA.μM"-"1.cm"-"2, a low detection limit (1.3 pM at a signal to noise ratio of 3), reliability, reproducibility, ease of integration, and long term stability. The response to dissolved ammonia is linear (r"2: 0.9778) over the 0.01 nM to 0.1 mM concentration range. (author)

  13. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes.

    Science.gov (United States)

    Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Sheng-Tung; Huang, Tsung-Tao; Lin, Chun-Mao; Hwa, Kuo-Yuan; Chen, Ting-Yo; Chen, Bo-Jun

    2015-10-01

    Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV-vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of -0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10(-10) mol cm(-2) and 3.36 s(-1), respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM - 2 mM with LOD of 4.1 μM, (2) 2 mM - 5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube

    Science.gov (United States)

    Tang, Qingzi; Duan, Tongdan; Li, Peng; Zhang, Ping; Wu, Daishe

    2018-04-01

    In this work, the potential of a novel carbon nanotube-doped hydroxyapatite composite (CNT-HAP) for fluoride removal was investigated. The synthesized CNT-HAP composite was systematically characterized by X-ray diffraction(XRD), Fourier Transform infrared spectroscopy(FTIR), scanning electron microscope (SEM) and Brunauer–Emmett–Teller(BET). Batch adsorption experiments were conducted to investigate the defluorination capacity of CNT-HAP. The CNT-HAP composite has a maximum adsorption capacity of 11.05 mg·g-1 for fluoride, and the isothermal adsorption data were fitted by the Freundlich model to calculate the thermodynamic parameters. Thermodynamic analysis implies that the adsorption of fluoride on CNT-HAP is a spontaneous process. Furthermore, the adsorption of fluoride follows pseudo-second-order model. The effects of solution pH, co-existing anions and reaction temperature on defluorination efficiency were examined to optimize the operation conditions for fluoride adsorption. It is found that the optimized pH value for fluoride removal by CNT-HAP composite is 6. In addition, among five common anions studied in this work, the presence of HCO3- and PO43- could considerably affect the fluoride removal by CNT-HPA in aqueous media. Finally, the underlying mechanism for the fluoride removal by CNT-HAP is analysed, and an anion exchange process is proposed.

  15. Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate.

    Science.gov (United States)

    Hsu, Chun-Wei; Lin, Zhong-Yi; Chan, Tzu-Yi; Chiu, Tai-Chia; Hu, Cho-Chun

    2017-06-01

    A novel method for the detection of dimethoate based on the peroxidase-like activity of silver-nanoparticles-modified oxidized multiwalled carbon nanotubes (AgNPs/oxMWCNTs) has been developed. The synthesized AgNPs/oxMWCNTs showed excellent peroxidease-like catalytic activity in hydrogen peroxide-Amplex red (AR) system (AR is oxidized to resorufinat, with the resorufin fluorescence at 584nm being used to monitor the catalytic activity). After dimethoate was added to AgNPs/oxMWCNTs, the interaction between dimethoate and the AgNPs inhibited the catalytic activity of AgNPs/oxMWCNTs. The decrease in fluorescence was used for the detection of dimethoate in the range of 0.01-0.35μgmL -1 (R 2 =0.998) with a detection limit of 0.003μgmL -1 (signal/noise=3). This method exhibited good selectivity for the detection of dimethoate even in the presence of high concentration of other pesticides. Consequently, the method was applied to measure the concentration of dimethoate residue in lake water and fruit, thus obtaining satisfactory results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Unusual electrochemical response of ZnO nanowires-decorated multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Mo Guangquan; Ye Jianshan; Zhang Weide

    2009-01-01

    A novel type of ZnO nanowires-modified multiwalled carbon nanotubes (MWCNTs) nanocomposite (ZnO-NWs/MWCNTs) has been prepared by a hydrothermal process. The ZnO-NWs/MWCNTs nanocomposite has a uniform surface distribution and large coverage of ZnO nanowires onto MWCNTs with 3D configuration, which was characterized by scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy methods were applied to investigate the electrochemical properties of ZnO-NWs/MWCNTs nanocomposite. Surprisingly, unlike the conventional n-type semiconducting ZnO nanowires grown on Ta substrate, the ZnO-NWs/MWCNTs nanocomposite exhibits excellent electron transfer capability and gives a pair of well-defined symmetric redox peaks towards ferricyanide probe. What's more, the ZnO-NWs/MWCNTs nanocomposite shows remarkable electrocatalytic activity (current response increased 4 folds at 0.3 V) towards H 2 O 2 by comparing with bare MWCNTs. The ZnO-NWs/MWCNTs nanocomposite could find applications in novel biosensors and other electronic devices.

  17. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    DEFF Research Database (Denmark)

    Raie, Diana S; Mhatre, Eisha; El-Desouki, Doaa S

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed...

  18. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    Directory of Open Access Journals (Sweden)

    Diana S. Raie

    2018-01-01

    Full Text Available The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite.

  19. Gadolinium oxide decorated multiwalled carbon nanotube/tridoped titania nanocomposites for improved dye degradation under simulated solar light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mamba, Gcina [Department of Applied Chemistry, University of Johannesburg, Faculty of Science, P.O. Box 17011, Doornfontein 2028 (South Africa); Nanotechnology and Water Sustainability Research Unit, College of Engineering, Science and Technology, University of South Africa Florida Science Campus, 1709 Florida (South Africa); Mbianda, Xavier Yangkou [Department of Applied Chemistry, University of Johannesburg, Faculty of Science, P.O. Box 17011, Doornfontein 2028 (South Africa); Mishra, Ajay Kumar, E-mail: mishrak@unisa.ac.za [Nanotechnology and Water Sustainability Research Unit, College of Engineering, Science and Technology, University of South Africa Florida Science Campus, 1709 Florida (South Africa)

    2016-03-15

    Graphical abstract: Illustration of the collaborative effect between MWCNT-Gd and Gd,N,S-TiO{sub 2} towards degradation of AB 74. - Highlights: • MWCNT-Gd/tridoped titania was successfully prepared via a sol-gel method. • XPS revealed the presence of Ti, C, O, S, N and Gd in MWCNT-Gd/Gd,N,S-TiO{sub 2}. • MWCNT-Gd/Gd,N,S-TiO{sub 2} displayed 100% degradation of acid blue 74 in 150 min. • Over 60% TOC removal by MWCNT-Gd/Gd,N,S-TiO{sub 2}. - Abstract: Neodymium/gadolinium/europium, nitrogen and sulphur tridoped titania (Nd/Gd/Eu, N,S-TiO{sub 2}) was hybridised with pre-synthesised gadolinium oxide decorated multiwalled carbon nanotubes (MWCNT-Gd) using a sol–gel method. Subsequent to drying and calcination, composite photocatalysts: MWCNT-Gd/Nd,N,S-TiO{sub 2}, MWCNT-Gd/Gd,N,S-TiO{sub 2} and MWCNT-Gd/Eu,N,S-TiO{sub 2}, were obtained and characterised using TEM, SEM-EDX, UV–vis, XPS, XRD and FT-IR. Acid blue 74 (AB74) was used as a model dye to investigate the photocatalytic degradation properties of the prepared materials under simulated solar light irradiation. Coupling the different tridoped titania with MWCNT-Gd enhanced their activity compared to MWCNT/TiO{sub 2}, MWCNT-Gd/TiO{sub 2} and MWCNT/Gd,N,S-TiO{sub 2}. MWCNT-Gd/Gd,N,S-TiO{sub 2} showed the highest activity towards AB74 degradation reaching 100% decolourisation after 150 min of irradiation. Total organic carbon analysis revealed that over 50% of the AB74 molecules were completely mineralised after 180 min of irradiation in the presence of MWCNT-Gd/Gd,N,S-TiO{sub 2}.

  20. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications

    International Nuclear Information System (INIS)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan

    2008-01-01

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl 3 as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells

  1. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gen [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Pan, Zhanchang, E-mail: panzhanchang@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Li, Wuyi; Yu, Ke [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Xia, Guowei; Zhao, Qixiang; Shi, Shikun [Victory Giant Technology (Hui Zhou) Co., Ltd., Huizhou 516083 (China); Hu, Guanghui; Xiao, Chumin; Wei, Zhigang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China)

    2017-07-15

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  2. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    International Nuclear Information System (INIS)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-01-01

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  3. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.

    Science.gov (United States)

    Zhang, Yan; Xiao, Jian; Sun, Yimin; Wang, Lu; Dong, Xulin; Ren, Jinghua; He, Wenshan; Xiao, Fei

    2018-02-15

    The rapidly growing demand for in situ real-time monitoring of chemical information in vitro and in vivo has attracted tremendous research efforts into the design and construction of high-performance biosensor devices. Herein, we develop a new type of flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen-doped carbon nanotube arrays, and explore its practical application in in situ electrochemical detection of cancer biomarker H 2 O 2 secreted from live cancer cells. Our results demonstrate that carbon fiber material with microscale size and fascinating mechanical properties can be used as a robust and flexible microelectrode substrate in the electrochemical biosensor system. And the highly ordered nitrogen-doped carbon nanotube arrays that grown on carbon fiber possess high surface area-to-volume ratio and abundant active sites, which facilitate the loading of high-density and uniformly dispersed gold nanoparticles on it. Benefited from the unique microstructure and excellent electrocatalytic properties of different components in the nanohybrid fiber microelectrode, an effective electrochemical sensing platform based on it has been built up for the sensitive and selective detection of H 2 O 2 , the detection limit is calculated to be 50nM when the signal-to-noise ratio is 3:1, and the linear dynamic range is up to 4.3mM, with a high sensitivity of 142µAcm -2 mM -1 . These good sensing performances, coupled with its intrinsic mechanical flexibility and biocompatibility, allow for its use in in situ real-time tracking H 2 O 2 secreted from breast cancer cell lines MCF-7 and MBA-MD-231, and evaluating the sensitivity of different cancer cells to chemotherapy or radiotherapy treatments, which hold great promise for clinic application in cancer diagnose and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Flexible two-ply yarn supercapacitors based on carbon nanotube/stainless steel core spun yarns decorated with Co3O4 nanoparticles and MnOx composites

    International Nuclear Information System (INIS)

    Su, Fenghua; Lyu, Xiaoming; Liu, Cansen; Miao, Menghe

    2016-01-01

    Highlights: • Carbon nanotube/stainless steel core-sheath yarns as electrode for two-ply supercapacitor. • The yarns were decorated with Co 3 O 4 nanoparticles and MnO x composites. • Yarn electrodes deposited on Co 3 O 4 and MnO x have excellent specific capacitance. • The two-ply yarn supercapacitor based on MnO x has high energy density and power density. • The yarn supercapacitors are highly flexible and strong for wearable electronics. - Abstract: High performance two-ply yarn supercapacitors are fabricated by electrodeposition of transition metal oxide pseudocapacitive materials on carbon nanotube/stainless steel (CNT/SS) core spun yarns. The SS core incorporated in the carbon nanotube yarn has dramatically improved the conductivity of the substrate and the efficiency of electrodeposition of metal oxides on the electrodes. The SS core acts as current collector in the final two-ply yarn supercapacitors with significantly improved specific capacitance and up-scaled length of supercapacitors. Manganese oxide and cobalt oxide electrodeposited on as-spun CNT/SS yarn are compared for their electrochemical performance in two-ply yarn supercapacitors. Both supercapacitors displayed improvement in capacitance, energy and power densities, especially MnO x /CNT/SS yarn supercapacitor. The solid-state supercapacitor based on MnO x /CNT/SS composite yarn shows excellent electrochemical properties with a specific capacitance of 217.61 F/cm 3 at 0.02 V/s and an energy density of 4.84 mWh/cm 3 at a power density of 435.22 mW/cm 3 .

  5. Ru-decorated Pt nanoparticles on N-doped multi-walled carbon nanotubes by atomic layer deposition for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta; Yang, R.B.; Haugshøj, K.B.

    2013-01-01

    We present atomic layer deposition (ALD) as a new method for the preparation of highly dispersed Ru-decorated Pt nanoparticles for use as catalyst in direct methanol fuel cells (DMFCs). The nanoparticles were deposited onto N-doped multi-walled carbon nanotubes (MWCNTs) at 250 °C using trimethyl......(methylcyclopentadienyl)platinum MeCpPtMe3, bis(ethylcyclopentadienyl)ruthenium Ru(EtCp)2 and O2 as the precursors. Catalysts with 5, 10 and 20 ALD Ru cycles grown onto the CNT-supported ALD Pt nanoparticles (150 cycles) were prepared and tested towards the electro-oxidation of CO and methanol, using cyclic voltammetry...... and chronoamperometry in a three-electrode electrochemical set-up. The catalyst decorated with 5 ALD Ru cycles was of highest activity in both reactions, followed by the ones with 10 and 20 ALD Ru cycles. It is demonstrated that ALD is a promising technique in the field of catalysis as highly dispersed nanoparticles...

  6. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene

    Science.gov (United States)

    Hazarika, Ankita; Deka, Biplab K.; Kim, DoYoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-01

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90–100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene. PMID:28074877

  7. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene.

    Science.gov (United States)

    Hazarika, Ankita; Deka, Biplab K; Kim, DoYoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-11

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.

  8. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene

    Science.gov (United States)

    Hazarika, Ankita; Deka, Biplab K.; Kim, Doyoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-01

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.

  9. Interactions of lead with carboxyl and hydroxyl-decorated(10, 0) single-walled carbon nanotubes: First-principle calculations

    International Nuclear Information System (INIS)

    Bastos, M.; Camps, I.

    2013-01-01

    Absorption of Pb on a zigzag (10, 0) carbon nanotube (CNT) surface, pure and functionalized with carboxyl (-COOH) and hydroxyl (-OH) groups was investigated using the density functional theory. Binding energy calculations were performed and indicated that adsorption of the Pb metal on the surface of the three nanotubes were stable, through a chemisorption. Therefore, CNTs are a feasible active material for filters that retain such metal. After Pb adsorption, the CNT and COOH-CNT conductivity changed, from semiconductor to half-metallic for CNT and from semiconductor to metallic for COOH-CNT, which can serve as a signal for Pb sensor. In all three cases adsorption produced a change in nanotube magnetism, which can also serve as a sensitive signal for chemical sensors. After adsorption of Pb, the changes in binding energy, charge transfer, conductance and magnetism may lead to the different response in the CNTs-based sensors. Thus, it is expected that these results could provide helpful information for the design and fabrication of the Pb sensing devices.

  10. Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide.

    Science.gov (United States)

    Wang, Feng; Liu, Juewen

    2013-12-21

    Studying interactions between nano-carbons and lipid membranes is important for multiplexed drug delivery, device fabrication and for understanding toxicity. Herein, we report that nanodiamond (ND, sp(3) carbon) forms a complex with highly biocompatible zwitterionic liposomes based on hydrogen bonding, which is confirmed by pH-dependent and urea-dependent assays. Despite such weak interaction, the complex is highly stable. Comparisons were made with two sp(2) carbons: nanoscale graphene oxide (NGO) and carbon nanotubes (CNTs), where CNT adsorption is the weakest. Adsorption of the nano-carbons does not induce liposome leakage or affect lipid phase transition temperature. Therefore, the potential toxicity of nano-carbons is unlikely to be related to direct membrane damage. ND facilitates cellular uptake of liposomes and co-delivery of negatively charged calcein and positively charged doxorubicin has been demonstrated. ND has the lowest toxicity, while CNTs and NGO are slightly more toxic. The effect of introducing fusogenic lipids and cholesterol was further studied to understand the effect of lipid formulation.

  11. Decoration of carbon nanotube with size-controlled L10-FePt nanoparticles for storage media

    Science.gov (United States)

    Moradi, Reza; Sebt, Seyed Ali; Arabi, Hadi; Larijani, Majid Mojtahedzadeh

    2013-10-01

    In this work, first multi-wall carbon nanotubes (MWCNTs) with outer diameter about 20-30 nm are synthesized by a CVD method; they have been purified and functionalized with a two-step process. The approach consists of thermal oxidation and subsequent chemical oxidation. Then, monosize FePt nanoparticles along carbon nanotubes surface are synthesized by a Polyol process. The synthesized FePt nanoparticles are about 2.5 nm in size and they have superparamagnetic behavior with fcc structure. The CNTs surfaces as a substrate prevent the coalescence of particles during thermal annealing. Annealing at the temperature higher than 600 ∘C for 2 h under a reducing atmosphere (90 % Ar + 10 % H2) leads to phase transition from fcc to fct-L10 structure. So, the magnetic behavior changes from the superparamagnetic to the ferromagnetic. Furthermore, after the phase transition, the FePt nanoparticles have finite size with an average of about 3.5 nm and the coercivity of particles reaches 5.1 kOe.

  12. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. © 2014 Elsevier B.V. All rights reserved.

  13. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin

    2014-01-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. © 2014 Elsevier B.V. All rights reserved.

  14. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites.

    Science.gov (United States)

    Hsiao, An-En; Tsai, Shu-Ya; Hsu, Mei-Wen; Chang, Shinn-Jen

    2012-05-06

    We dispersed the non-covalent functionalization of multi-walled carbon nanotubes (CNTs) with a polymer dispersant and obtained a powder of polymer-wrapped CNTs. The UV-vis absorption spectrum was used to investigate the optimal weight ratio of the CNTs and polymer dispersant. The powder of polymer-wrapped CNTs had improved the drawbacks of CNTs of being lightweight and difficult to process, and it can re-disperse in a solvent. Then, we blended the polymer-wrapped CNTs and polyethylene (PE) by melt-mixing and produced a conductive masterbatch and CNT/PE composites. The polymer-wrapped CNTs showed lower surface resistivity in composites than the raw CNTs. The scanning electron microscopy images also showed that the polymer-wrapped CNTs can disperse well in composites than the raw CNTs.

  15. Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color fluorescent nanoprobes

    International Nuclear Information System (INIS)

    Jia Nengqin; Lian Qiong; Tian Zhong; Yin Min; Che, Shouhui; Shen Hebai; Duan Xin; Jing Lihong; Gao Mingyuan

    2010-01-01

    Novel multi-color fluorescent nanoprobes were prepared by electrostatically assembling differently sized CdTe quantum dots on polyethylenimine (PEI) functionalized multi-walled carbon nanotubes (MWNTs). The structural and optical properties of the nano-assemblies (MWNTs-PEI-CdTe) were characterized by transmission electron microscopy (TEM), electron diffraction spectra (EDS), Raman spectroscopy, confocal microscopy and photoluminescence spectroscopy (PL), respectively. Electrochemical impedance spectroscopy (EIS) was also applied to investigate the electrostatic assembling among oxidized MWNTs, PEI and CdTe. Furthermore, confocal fluorescence microscopy was used to monitor the nano-assemblies' delivery into tumor cells. It was found that the nano-assemblies exhibit efficient intracellular transporting and strong intracellular tracking. These properties would make this luminescent nano-assembly an excellent building block for the construction of intracellular nanoprobes, which could hold great promise for biomedical applications.

  16. Manganese dioxide decoration of macroscopic carbon nanotube fibers: From high-performance liquid-based to all-solid-state supercapacitors

    Science.gov (United States)

    Pendashteh, Afshin; Senokos, Evgeny; Palma, Jesus; Anderson, Marc; Vilatela, Juan J.; Marcilla, Rebeca

    2017-12-01

    Supercapacitors capable of providing high voltage, energy and power density but yet light, low volume occupying, flexible and mechanically robust are highly interesting and demanded for portable applications. Herein, freestanding flexible hybrid electrodes based on MnO2 nanoparticles grown on macroscopic carbon nanotube fibers (CNTf-MnO2) were fabricated, without the need of any metallic current collector. The CNTf, a support with excellent electrical conductivity, mechanical stability, and appropriate pore structure, was homogeneously decorated with porous akhtenskite ɛ-MnO2 nanoparticles produced via electrodeposition in an optimized organic-aqueous mixture. Electrochemical properties of these decorated fibers were evaluated in different electrolytes including a neutral aqueous solution and a pure 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid (PYR14TFSI). This comparison helps discriminate the various contributions to the total capacitance: (surface) Faradaic and non-Faradaic processes, improved wetting by aqueous electrolytes. Accordingly, symmetric supercapacitors with PYR14TFSI led to a high specific energy of 36 Wh· kgMnO2-1 (16 Wh·kg-1 including the weight of CNTf) and real specific power of 17 kW· kgMnO2-1 (7.5 kW kg-1) at 3.0 V with excellent cycling stability. Moreover, flexible all solid-state supercapacitors were fabricated using PYR14TFSI-based polymer electrolyte, exhibiting maximum energy density of 21 Wh·kg-1 and maximum power density of 8 kW kg-1 normalized by total active material.

  17. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites.

    Science.gov (United States)

    Fei, Airong; Liu, Qian; Huan, Juan; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-08-15

    Gold nanoparticles (Au NPs) decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon (Au/MWCNT-rGONR) composites were synthesized by a one-pot reaction. By employing the resulting Au/MWCNT-rGONR composites as the support for aptamer immobilization, we developed an ultrasensitive label-free electrochemical impedimetric aptasensor for acetamiprid detection, which was based on that the variation of electron transfer resistance was relevant to the formation of acetamiprid-aptamer complex at the modified electrode surface. Compared with pure Au NPs and MWCNT-rGONR, the Au/MWCNT-rGONR composites modified electrode was the most sensitive aptasensing platform for the determination of acetamiprid. The proposed aptasensor displayed a linear response for acetamiprid in the range from 5×10(-14) M to 1×10(-5) M with an extremely low detection limit of 1.7×10(-14) M (S/N=3). In addition, this impedimetric aptasensor possessed great advantages including the simple operation process, low-cost, selectivity and sensitivity, which provided a promising model for the aptamer-based detection with a direct impedimetric method. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Pd-NiO decorated multiwalled carbon nanotubes supported on reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation in alkaline medium

    Science.gov (United States)

    Rajesh, Dhanushkotti; Indra Neel, Pulidindi; Pandurangan, Arumugam; Mahendiran, Chinnathambi

    2018-06-01

    The synthesis of Pd-NiO nanoparticles decorated multiwalled carbon nanotubes (MWCNTs) on reduced graphene oxide (rGO) for ethanol electrooxidation is reported. NiO nanoparticles (NPs) were deposited on functionalized MWCNTs by wet impregnation method. Pd nanoparticles were formed on NiO-MWCNTs by the addition of PdCl2 and its reduction using NaBH4. The Pd-NiO/MWCNTs nanocomposite then deposited on rGO support using ultrasound irradiation which led to the formation of the Pd-NiO/MWCNTs/rGO electrocatalyst. The prepared electrocatalysts were characterized by XRD, SEM, HR-TEM and XPS analysis. Electrochemical measurements demonstrate that as synthesized Pd-NiO/MWCNTs/rGO electrocatalyst exhibit higher catalytic activity (90.89 mA/cm2) than either Pd/MWCNTs/rGO (43.05 mA/cm2) or Pd/C (28.0 mA/cm2) commercial catalyst. Chronoamperometry study of Pd-NiO/MWCNTs/rGO electrocatalyst showed long-term electrochemical stability. The enhanced catalytic activity of Pd-NiO/MWCNTs/rGO electrocatalyst for electrooxidation of ethanol can be attributed to the synergistic effect between Pd & NiO active sites.

  19. Electrochemically decorated ZnTe nanodots on single-walled carbon nanotubes for room-temperature NO2 sensor application.

    Science.gov (United States)

    Kim, Donguk; Park, Ki-Moon; Shanmugam, Rajakumar; Yoo, Bongyoung

    2014-11-01

    A gas sensor with ZnTe nanodot-modified single-walled carbon nanotubes (SWCNTs) is demonstrated for NO2 detection at room temperature. ZnTe nanodots are electrochemically deposited in an aqueous solution containing ZnSO4, TeO2 and citrate. A deposition potential range of ZnTe formation of -0.65 to -0.9 V is determined by cyclic voltammetry, and an intermetallic ZnTe compound is formed at above 50 degrees C bath. SWCNT-based sensors show the highly sensitive response down to 1 ppm NO2 gas at room temperature. In particular, the sensitivity of ZnTe nanodot-modified SWCNTs is increased by 6 times as compared to that of pristine SWCNT sensors. A selectivity test of SWCNT-ZnTe nanodots sensors is carried out with ammonia gas (NH3) and methanol vapor (MeOH), and the result confirms an excellent selectivity to NO2 gas.

  20. Photoluminescence quenching, structures, and photovoltaic properties of ZnO nanostructures decorated plasma grown single walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, Brahim, E-mail: brahim.aissa@mpbc.ca [University of Quebec, Centre Énergie, Matériaux et Télécommunications, INRS-EMT (Canada); Nedil, Mourad [Telebec Wireless Underground Communication Laboratory, UQAT (Canada); Belaidi, Abdelhak; Isaifan, Rima J. [Hamad Bin Khalifa University, Qatar Foundation, Qatar Environment and Energy Research Institute (Qatar); Bentouaf, Ali [University Hassiba Ben Bouali, Physics Department, Faculty of Science (Algeria); Fauteux, Christian; Therriault, Daniel [École Polytechnique de Montréal, Laboratory for Multiscale Mechanics (LM2), Mechanical Engineering Department (Canada)

    2017-05-15

    Zinc oxide (ZnO) nanostructures were successfully grown directly on single walled carbon nanotubes (SWCNT) template through the CO{sub 2} laser-induced chemical liquid deposition (LCLD) process. Photoluminescence (PL) of the deposited ZnO/SWCNT hybrid composites exhibits, at room temperature, a narrow near UV band located at 390 nm with no emission bands in the visible region, indicating a high degree of crystalline quality of the ZnO nanostructures. Moreover, when the relative SWCNT loads are varied within the composites, the PL intensity and the diffused optical reflectance diminish in comparison with those of ZnO alone, owing to the transfer of photo-excited electrons from ZnO to the SWCNT, and the enhancement of the optical absorbance, respectively. Finally, these ZnO/SWCNT hybrid composites are integrated into a heterojunction photovoltaic-based device, using PEDOT:PSS on ITO/glass substrate. The devices show an evident p–n junction behavior in the dark, and a clear I–V curve shift downward when illuminated with an open-circuit voltage of 1.1 V, a short circuit current density of 14.05 μA cm{sup −2}, and a fill factor of ∼35%. These results indicate that these composites fabricated via LCLD process could be promising for optoelectronic and energy-harvesting devices.

  1. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  2. Flexible Polydimethylsiloxane Foams Decorated with Multiwalled Carbon Nanotubes Enable Unprecedented Detection of Ultralow Strain and Pressure Coupled with a Large Working Range.

    Science.gov (United States)

    Iglio, Rossella; Mariani, Stefano; Robbiano, Valentina; Strambini, Lucanos; Barillaro, Giuseppe

    2018-04-25

    Low-cost piezoresistive strain/pressure sensors with large working range, at the same time able to reliably detect ultralow strain (≤0.1%) and pressure (≤1 Pa), are one of the challenges that have still to be overcome for flexible piezoresistive materials toward personalized health-monitoring applications. In this work, we report on unprecedented, simultaneous detection of ultrasmall strain (0.1%, i.e., 10 μm displacement over 10 mm) and subtle pressure (20 Pa, i.e., a force of only 2 mN over an area of 1 cm 2 ) in compression mode, coupled with a large working range (i.e., up to 60% for strain-6 mm in displacement-and 50 kPa for pressure) using piezoresistive, flexible three-dimensional (3D) macroporous polydimethylsiloxane (pPDMS) foams decorated with pristine multiwalled carbon nanotubes (CNTs). pPDMS/CNT foams with pore size up to 500 μm (i.e., twice the size of those of commonly used foams, at least) and porosity of 77%, decorated with a nanostructured surface network of CNTs at densities ranging from 7.5 to 37 mg/cm 3 are prepared using a low-cost and scalable process, through replica molding of sacrificial sugar templates and subsequent drop-casting of CNT ink. A thorough characterization shows that piezoresistive properties of the foams can be finely tuned by controlling the CNT density and reach an optimum at a CNT density of 25 mg/cm 3 , for which a maximum change of the material resistivity (e.g., ρ 0 /ρ 50 = 4 at 50% strain) is achieved under compression. Further static and dynamic characterization of the pPDMS/CNT foams with 25 mg/cm 3 of CNTs highlights that detection limits for strain and pressure are 0.03% (3 μm displacement over 10 mm) and 6 Pa (0.6 mN over an area of 1 cm 2 ), respectively; moreover, good stability and limited hysteresis are apparent by cycling the foams with 255 compression-release cycles over the strain range of 0-60%, at different strain rates up to 10 mm/min. Our results on piezoresistive, flexible pPDMS/CNT foams

  3. Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues

    Czech Academy of Sciences Publication Activity Database

    Sapurina, Irina; Stejskal, Jaroslav; Šeděnková, Ivana; Trchová, Miroslava; Kovářová, Jana; Hromádková, Jiřina; Kopecká, J.; Cieslar, M.; Abu El-Nasr, A.; Ayad, M. M.

    2016-01-01

    Roč. 214, April (2016), s. 14-22 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA13-00270S; GA MŠk(CZ) LH14199; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : conducting polymer * polypyrrole nanotubes * noble metals Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.435, year: 2016

  4. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  5. Multiwall carbon nanotubes decorated with FeCr{sub 2}O{sub 4}, a new selective electrochemical sensor for amoxicillin determination

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali Asghar, E-mail: Ensafi@cc.iut.ac.ir; Allafchian, Ali Reza; Rezaei, Behzad [Isfahan University of Technology, Department of Chemistry (Iran, Islamic Republic of)

    2012-11-15

    FeCr{sub 2}O{sub 4} nanoparticles were synthesized and then multiwall carbon nanotubes (MWCNTs) were decorated with FeCr{sub 2}O{sub 4} nanoparticles. The new nanoparticles were characterized with different techniques such as vibrating sample magnetometer, Fourier transform infrared spectroscopy, scanning surface microscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. The results of the study confirm that the particles are pure FeCr{sub 2}O{sub 4}-MWCNTs with a cubic structure. No diffraction peaks of other impurities such as FeO or Cr{sub 2}O{sub 3} were observed. The diffractive peaks of FeCr{sub 2}O{sub 4}-MWCNTs are broadened, implying that the crystalline size of FeCr{sub 2}O{sub 4}-MWCNTs particles is quite small. The mean particle size of FeCr{sub 2}O{sub 4}-MWCNTs calculated by Scherrer equation is about 25 nm, whereas the existence of particles with less than 30 nm size at FeCr{sub 2}O{sub 4}-MWCNTs is clearly reflected in 2D and 3D AFM images. The TEM image confirms that the spaghetti-like FeCr{sub 2}O{sub 4}-MWCNTs formed a porous structure. The synthesized FeCr{sub 2}O{sub 4}-MWCNTs nanoparticles could be used as a new electrocatalysis for voltammetric determination of amoxicillin (AMC). Under the optimized conditions at pH 7.5 and in differential pulse voltammetry, the oxidation peak current of AMC at the surface of the mediator has two linear dynamic ranges including 0.1-10.0 and 10.0-70.0 {mu}mol L{sup -1}. The detection limit of 0.05 {mu}mol L{sup -1} was achieved. The influence of potential interfering compounds on the selectivity was studied. Finally, the modified electrode showed good sensitivity, selectivity, and stability for the determination of AMC in real samples.

  6. Theoretical study of hydrogen adsorption of graphene and carbon nanotubes decorated with palladium; Estudio teorico de la adsorcion de hidrogeno sobre grafeno y nanotubos de carbono decorados con paladio

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Corral, Ignacio; German, Estefania [Departamento de Fisica, Universidad Nacional del Sur (UNS), Bahia Blanca (Argentina); Volpe, Maria A [Planta Piloto de Ingenieria Quimica (UNS/CONICET), Bahia Blanca (Argentina); Brizuela, Graciela; Juan, Alfredo [Departamento de Fisica, Universidad Nacional del Sur (UNS), Bahia Blanca (Argentina)

    2008-10-15

    Since their discovery in 1991, carbon nanotubes (CNT) have awakened great interest in materials science thanks to their extraordinary structural, electronic and mechanical properties which facilitate their application in many different areas. One of the most promising applications is the possibility of using CNT to store hydrogen for use in small scale fuel cells. Unfortunately, experimental studies performed some years ago have often led to controversial conclusions, causing a continuing debate that has still not been resolved. The most recent work suggests that the storage of hydrogen for practical purposes can be achieved with CNT decorated with transition metals, for example Pd. In this context, theoretical modeling methods have to be used for a detailed understanding of the influence and scope of this type of modification in the interaction of the nanotubes with atomic or molecular hydrogen. This work studied hydrogen adsorption in single-walled carbon nanotubes (SWCNT) doped with Pd atoms, using density functional theory (DFT) and semi-empirical methods. As a preliminary approximation to the system a graphene sheet was used, modeled with a 190 atom cluster of C in a hexagonal arrangement, on which a single Pd atom was placed in adsorption sites. Then C{sub 190} clusters were used to simulate two different types of SWCNT: the zigzag SWCNT of quirality (10.0) and the armchair SWCNT of quirality (5.5), both decorated similarly on the graphene. Geometric optimization procedures for the system's different components were carried out with these models, and then the changes produced during the adsorption process in the electronic occupation of atomic orbitals and unions, for which crystal orbital overlap population (COOP) curves and overlap population (OP) values were evaluated. The results obtained with the graphene and nanotube approximations are in agreement and show that the SWCNT modified with Pd have more capacity to trap hydrogen than the non doped SWCNT. The

  7. Functionalization of carbon nanotubes with silver clusters

    International Nuclear Information System (INIS)

    Cveticanin, Jelena; Krkljes, Aleksandra; Kacarevic-Popovic, Zorica; Mitric, Miodrag; Rakocevic, Zlatko; Trpkov, Djordje; Neskovic, Olivera

    2010-01-01

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  8. Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers

    International Nuclear Information System (INIS)

    Mani, Veerappan; Govindasamy, Mani; Chen, Shen-Ming; Karthik, Raj; Huang, Sheng-Tung

    2016-01-01

    We describe a hybrid material that consists of molybdenum sulfide flowers placed on graphene nanosheets and multiwalled carbon nanotubes (GNS-CNTs/MoS_2). It was deposited on a glassy carbon electrode (GCE) which then is well suited for sensitive and selective determination of dopamine. The GNS-CNTs/MoS_2 nanocomposite was prepared by a hydrothermal method and characterized by scanning electron and transmission emission microscopies, energy-dispersive X-ray spectroscopy, cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. Electrochemical studies show the composite to possess excellent electrochemical properties such as a large electrochemically active surface, high capacitance current, a wide potential window, high conductivity and large porosity. The electrode displays excellent electrocatalytic ability to oxidize dopamine. The modified GCE, best operated at a working potential as low as 0.15 V (vs. Ag/AgCl), responds linearly to dopamine in the 100 nM to 100 μM concentration range. The detection limit is 50 nM, and the sensitivity is 10.81 (± 0.26) μA⋅μM"−"1⋅cm"−"2. The sensor has good selectivity, appreciable stability, repeatability and reproducibility. It was applied to the determination of dopamine in (spiked) biological and pharmaceutical samples. (author)

  9. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  10. Exploring possible mechanisms of action for the nanotoxicity and protein binding of decorated nanotubes: interpretation of physicochemical properties from optimal QSAR models.

    Science.gov (United States)

    Esposito, Emilio Xavier; Hopfinger, Anton J; Shao, Chi-Yu; Su, Bo-Han; Chen, Sing-Zuo; Tseng, Yufeng Jane

    2015-10-01

    Carbon nanotubes have become widely used in a variety of applications including biosensors and drug carriers. Therefore, the issue of carbon nanotube toxicity is increasingly an area of focus and concern. While previous studies have focused on the gross mechanisms of action relating to nanomaterials interacting with biological entities, this study proposes detailed mechanisms of action, relating to nanotoxicity, for a series of decorated (functionalized) carbon nanotube complexes based on previously reported QSAR models. Possible mechanisms of nanotoxicity for six endpoints (bovine serum albumin, carbonic anhydrase, chymotrypsin, hemoglobin along with cell viability and nitrogen oxide production) have been extracted from the corresponding optimized QSAR models. The molecular features relevant to each of the endpoint respective mechanism of action for the decorated nanotubes are also discussed. Based on the molecular information contained within the optimal QSAR models for each nanotoxicity endpoint, either the decorator attached to the nanotube is directly responsible for the expression of a particular activity, irrespective of the decorator's 3D-geometry and independent of the nanotube, or those decorators having structures that place the functional groups of the decorators as far as possible from the nanotube surface most strongly influence the biological activity. These molecular descriptors are further used to hypothesize specific interactions involved in the expression of each of the six biological endpoints. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co3O4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application.

    Science.gov (United States)

    Wang, Shiyue; Zhang, Xiaohua; Huang, Junlin; Chen, Jinhua

    2018-03-01

    In this work, high-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co 3 O 4 nanododecahedras in situ decorated on carbon nanotubes (3D Co 3 O 4 -HPND/CNTs) were successfully prepared via direct carbonizing metal-organic framework-67 in situ grown on carbon nanotubes. The morphology, microstructure, and composite of 3D Co 3 O 4 -HPND/CNTs were characterized by scanning electron microscopy, transmission electron microscopy, micropore and chemisorption analyzer, and X-ray diffraction. The electrochemical characterizations indicated that 3D Co 3 O 4 -HPND/CNTs present considerably catalytic activity toward glucose oxidation and could be promising for constructing high-performance electrochemical non-enzymatic glucose sensors and glucose/O 2 biofuel cell. When used for non-enzymatic glucose detection, the 3D Co 3 O 4 -HPND/CNTs modified glassy carbon electrode (3D Co 3 O 4 -HPND/CNTs/GCE) exhibited excellent analytical performance with high sensitivity (22.21 mA mM -1  cm -2 ), low detection limit of 0.35 μM (S/N = 3), fast response (less than 5 s) and good stability. On the other hand, when the 3D Co 3 O 4 -HPND/CNTs/GCE worked as an anode of a biofuel cell, a maximum power density of 210 μW cm -2 at 0.15 V could be obtained, and the open circuit potential was 0.68 V. The attractive 3D hierarchical porous structural features, the large surface area, and the excellent conductivity based on the continuous and effective electron transport network in 3D Co 3 O 4 -HPND/CNTs endow 3D Co 3 O 4 -HPND/CNTs with the enhanced electrochemical performance and promising applications in electrochemical sensing, biofuel cell, and other energy storage and conversion devices such as supercapacitor. Graphical abstract High-performance non-enzymatic catalysts for enzymeless glucose sensing and biofuel cell based on 3D hierarchical hollow porous Co 3 O 4 nanododecahedras anchored on carbon nanotubes were successfully prepared via direct carbonizing

  12. Functionalization of vertically aligned carbon nanotubes.

    Science.gov (United States)

    Van Hooijdonk, Eloise; Bittencourt, Carla; Snyders, Rony; Colomer, Jean-François

    2013-01-01

    This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  13. Amplified solid-state electrochemiluminescence detection of cholesterol in near-infrared range based on CdTe quantum dots decorated multiwalled carbon nanotubes@reduced graphene oxide nanoribbons.

    Science.gov (United States)

    Huan, Juan; Liu, Qian; Fei, Airong; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-11-15

    An amplified solid-state electrochemiluminescence (ECL) biosensor for detection of cholesterol in near-infrared (NIR) range was constructed based on CdTe quantum dots (QDs) decorated multiwalled carbon nanotubes@reduced graphene nanoribbons (CdTe-MWCNTs@rGONRs), which were prepared by electrostatic interactions. The CdTe QDs decorated on the MWCNTs@rGONRs resulted in the amplified ECL intensity by ~4.5 fold and decreased onset potential by ~100 mV. By immobilization of the cholesterol oxidase (ChOx) and NIR CdTe-MWCNTs@rGONRs on the electrode surface, a solid-state ECL biosensor for cholesterol detection was constructed. When cholesterol was added to the detection solution, the immobilized ChOx catalyzed the oxidation of cholesterol to generate H2O2, which could be used as the co-reactant in the ECL system of CdTe-MWCNTs@rGONRs. The as-prepared biosensor exhibited good performance for cholesterol detection including good reproducibility, selectivity, and acceptable linear range from 1 μM to 1mM with a relative low detection limit of 0.33 μM (S/N=3). The biosensor was successfully applied to the determination of cholesterol in biological fluid and food sample, which would open a new possibility for development of solid-state ECL biosensors with NIR emitters. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Recent development of carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Yamabe, Tokio [Div. of Molecular Engineering, Kyoto Univ. (Japan); [Inst. for Fundamental Chemistry, Kyoto (Japan)

    1995-03-15

    Recent developments of carbon nanotubes are reviewed. Analytical solutions for the electronic structure of carbon nanotube on the basis of thight-binding approximation are presented and interpreted using the concepts of crystal orbital. The electronic properties of actual carbon nanotubes are presented. The electronic structures of carbon nanotubes in the presence of magnetic fiels are also summerized. (orig.)

  15. Purification of carbon nanotubes via selective heating

    Science.gov (United States)

    Rogers, John A.; Wilson, William L.; Jin, Sung Hun; Dunham, Simon N.; Xie, Xu; Islam, Ahmad; Du, Frank; Huang, Yonggang; Song, Jizhou

    2017-11-21

    The present invention provides methods for purifying a layer of carbon nanotubes comprising providing a precursor layer of substantially aligned carbon nanotubes supported by a substrate, wherein the precursor layer comprises a mixture of first carbon nanotubes and second carbon nanotubes; selectively heating the first carbon nanotubes; and separating the first carbon nanotubes from the second carbon nanotubes, thereby generating a purified layer of carbon nanotubes. Devices benefiting from enhanced electrical properties enabled by the purified layer of carbon nanotubes are also described.

  16. Exploring possible mechanisms of action for the nanotoxicity and protein binding of decorated nanotubes: interpretation of physicochemical properties from optimal QSAR models

    International Nuclear Information System (INIS)

    Esposito, Emilio Xavier; Hopfinger, Anton J.; Shao, Chi-Yu; Su, Bo-Han; Chen, Sing-Zuo; Tseng, Yufeng Jane

    2015-01-01

    Carbon nanotubes have become widely used in a variety of applications including biosensors and drug carriers. Therefore, the issue of carbon nanotube toxicity is increasingly an area of focus and concern. While previous studies have focused on the gross mechanisms of action relating to nanomaterials interacting with biological entities, this study proposes detailed mechanisms of action, relating to nanotoxicity, for a series of decorated (functionalized) carbon nanotube complexes based on previously reported QSAR models. Possible mechanisms of nanotoxicity for six endpoints (bovine serum albumin, carbonic anhydrase, chymotrypsin, hemoglobin along with cell viability and nitrogen oxide production) have been extracted from the corresponding optimized QSAR models. The molecular features relevant to each of the endpoint respective mechanism of action for the decorated nanotubes are also discussed. Based on the molecular information contained within the optimal QSAR models for each nanotoxicity endpoint, either the decorator attached to the nanotube is directly responsible for the expression of a particular activity, irrespective of the decorator's 3D-geometry and independent of the nanotube, or those decorators having structures that place the functional groups of the decorators as far as possible from the nanotube surface most strongly influence the biological activity. These molecular descriptors are further used to hypothesize specific interactions involved in the expression of each of the six biological endpoints. - Highlights: • Proposed toxicity mechanism of action for decorated nanotubes complexes • Discussion of the key molecular features for each endpoint's mechanism of action • Unique mechanisms of action for each of the six biological systems • Hypothesized mechanisms of action based on QSAR/QNAR predictive models

  17. Exploring possible mechanisms of action for the nanotoxicity and protein binding of decorated nanotubes: interpretation of physicochemical properties from optimal QSAR models

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Emilio Xavier, E-mail: emilio@exeResearch.com [exeResearch, LLC, 32 University Drive, East Lansing, MI 48823 (United States); The Chem21 Group, Inc., 1780 Wilson Drive, Lake Forest, IL 60045 (United States); Hopfinger, Anton J., E-mail: hopfingr@gmail.com [The Chem21 Group, Inc., 1780 Wilson Drive, Lake Forest, IL 60045 (United States); College of Pharmacy MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131 (United States); Shao, Chi-Yu [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei 106, Taiwan (China); Su, Bo-Han [Department of Computer Science and Information Engineering, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei 106, Taiwan (China); Chen, Sing-Zuo [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei 106, Taiwan (China); Tseng, Yufeng Jane, E-mail: yjtseng@csie.ntu.edu.tw [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei 106, Taiwan (China); Department of Computer Science and Information Engineering, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei 106, Taiwan (China)

    2015-10-01

    Carbon nanotubes have become widely used in a variety of applications including biosensors and drug carriers. Therefore, the issue of carbon nanotube toxicity is increasingly an area of focus and concern. While previous studies have focused on the gross mechanisms of action relating to nanomaterials interacting with biological entities, this study proposes detailed mechanisms of action, relating to nanotoxicity, for a series of decorated (functionalized) carbon nanotube complexes based on previously reported QSAR models. Possible mechanisms of nanotoxicity for six endpoints (bovine serum albumin, carbonic anhydrase, chymotrypsin, hemoglobin along with cell viability and nitrogen oxide production) have been extracted from the corresponding optimized QSAR models. The molecular features relevant to each of the endpoint respective mechanism of action for the decorated nanotubes are also discussed. Based on the molecular information contained within the optimal QSAR models for each nanotoxicity endpoint, either the decorator attached to the nanotube is directly responsible for the expression of a particular activity, irrespective of the decorator's 3D-geometry and independent of the nanotube, or those decorators having structures that place the functional groups of the decorators as far as possible from the nanotube surface most strongly influence the biological activity. These molecular descriptors are further used to hypothesize specific interactions involved in the expression of each of the six biological endpoints. - Highlights: • Proposed toxicity mechanism of action for decorated nanotubes complexes • Discussion of the key molecular features for each endpoint's mechanism of action • Unique mechanisms of action for each of the six biological systems • Hypothesized mechanisms of action based on QSAR/QNAR predictive models.

  18. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    Science.gov (United States)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  19. Conducting carbonized polyaniline nanotubes

    International Nuclear Information System (INIS)

    Mentus, Slavko; Ciric-Marjanovic, Gordana; Trchova, Miroslava; Stejskal, Jaroslav

    2009-01-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min -1 up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 μm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 μm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm -1 , increased to 0.7 S cm -1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  20. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  1. P25 nanoparticles decorated on titania nanotubes arrays as effective drug delivery system for ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhang; Xie, Chunlin; Luo, Fei; Li, Ping; Xiao, Xiufeng, E-mail: xfxiao@fjnu.edu.cn

    2015-01-01

    Highlights: • P25 nanoparticles decorated on titania nanotube arrays were prepared by hydrothermal treatment. • P25 nanoparticles were conducive to improve the loading effect of ibuprofen into nanotube arrays. • The diameters of the decorated nanotubes were decrease markedly which led to an effective and prolonged drug release. - Abstract: In this study, uniformly distributed layer of P25 nanoparticles (NPs) decorated on titania (TiO{sub 2}) nanotubes (TNTs) arrays was prepared in a teflon-lined stainless steel autoclave by the hydrothermal treatment. To investigate the influence of the P25 concentration, different concentrations of P25 NPs were added into the solution to obtain the optimal decorative effect. TNTs decorated with P25 (TNTs–P25) and TNTs without P25 decorated on its surface were loaded with ibuprofen (IBU) via vacuum drying and its release properties were investigated. The samples were characterized by field emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results indicated that P25 NPs were successfully decorated on the surface of TNTs by hydrothermal method and the optimal concentration was found to be 7.5 × 10{sup −4} M. P25 NPs decorated on TNTs led to a significant increase in the specific surface area of TNTs which was conducive to improve the loading effect of IBU. Importantly, the diameters of the decorated nanotubes were reduced to 100 ± 10 nm and the increase in roughness led to an effective and prolonged drug release.

  2. Carbon nanotubes and methods of forming same at low temperature

    Science.gov (United States)

    Biris, Alexandru S.; Dervishi, Enkeleda

    2017-05-02

    In one aspect of the invention, a method for growth of carbon nanotubes includes providing a graphitic composite, decorating the graphitic composite with metal nanostructures to form graphene-contained powders, and heating the graphene-contained powders at a target temperature to form the carbon nanotubes in an argon/hydrogen environment that is devoid of a hydrocarbon source. In one embodiment, the target temperature can be as low as about 150.degree. C. (.+-.5.degree. C.).

  3. A DNA biosensor based on gold nanoparticle decorated on carboxylated multi-walled carbon nanotubes for gender determination of Arowana fish.

    Science.gov (United States)

    Saeedfar, Kasra; Heng, Lee Yook; Chiang, Chew Poh

    2017-12-01

    Multi-wall carbon nanotubes (MWCNTs) were modified to design a new DNA biosensor. Functionalized MWCNTs were equipped with gold nanoparticles (GNPs) (~15nm) (GNP-MWCNTCOOH) to construct DNA biosensors based on carbon-paste screen-printed (SPE) electrodes. GNP attachment onto functionalized MWCNTs was carried out by microwave irradiation and was confirmed by spectroscopic studies and surface analysis. DNA biosensors based on differential pulse voltammetry (DPV) were constructed by immobilizing thiolated single-stranded DNA probes onto GNP-MWCNTCOOH. Ruthenium (III) chloride hexaammoniate [Ru(NH 3 ) 6 ,2Cl - ] (RuHex) was used as hybridization redox indicator. RuHex and MWCNT interaction was low in compared to other organic redox hybridization indicators. The linear response range for DNA determination was 1×10 -21 to 1×10 -9 M with a lower detection limit of 1.55×10 -21 M. Thus, the attachment of GNPs onto functionalized MWCNTs yielded sensitive DNA biosensor with low detection limit and stability more than 30days. Constructed electrode was used to determine gender of arowana fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The study of structural properties of carbon nanotubes decorated with NiFe₂O₄ nanoparticles and application of nano-composite thin film as H₂S gas sensor.

    Science.gov (United States)

    Hajihashemi, R; Rashidi, Ali M; Alaie, M; Mohammadzadeh, R; Izadi, N

    2014-11-01

    Nano-composite of multiwall carbon nanotube, decorated with NiFe2O4 nanoparticles (NiFe2O4-MWCNT), was synthesized using the sol-gel method. NiFe2O4-MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (MS), coercivity (HC) and retentivity (MR) of NiFe2O4-MWCNTs are obtained as 15 emu g(-1), 21Oe and 5 emu g(-1), respectively. In this research, NiFe2O4-MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H2S gas sensor. The results suggest the possibility of the utilization of NiFe2O4-MWCNT nano-composite, as the H2S detector. The sensor shows appropriate response towards 100 ppm of H2S at 300°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Carbon nanotube junctions and devices

    NARCIS (Netherlands)

    Postma, H.W.Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or

  6. Hydrogen generation from the hydrolysis of sodium borohydride using chemically modified multiwalled carbon nanotubes with pyridinium based ionic liquid and decorated with highly dispersed Mn nanoparticles

    Science.gov (United States)

    Chinnappan, Amutha; Puguan, John Marc C.; Chung, Wook-Jin; Kim, Hern

    2015-10-01

    Multiwalled carbon nanotubes (MWCNTs)/Ionic liquid (IL)/Mn nanohybrids are synthesized and their catalytic activity is examined for hydrogen generation from the hydrolysis of sodium borohydride (NaBH4). Transmission electron microscopy reveals that Mn nanoparticles well-distributed on the MWCNTs surface. Energy dispersive x-ray spectrometer and x-ray photoelectron spectroscopy confirms the presence of Mn and Ni atom in the nanohybrids. The nanohybrids exhibit excellent catalytic lifetime and gives the total turnover number of 18496 mol H2/mol catalyst in the hydrolysis of NaBH4, which can be attributed to the presence of Mn atom and IL containing nickel halide anion. It is worthy of note that a very small amount of catalyst is used for this hydrolysis reaction. The activation energy is found to be 40.8 kJ/mol by MWCNTs/IL/Mn nanohybrids from the kinetic study of the hydrogen generation from the hydrolysis of NaBH4. The improved hydrogen generation rate, lower activation energy, and less expensive make the nanohybrids promising candidate as catalyst for the hydrogen generation from NaBH4 solution. The nanohybrids are easy to prepare, store and yet catalytically active. The recycling process is very simple and further purification is not tedious.

  7. In situ electropolymerization of polyaniline/cobalt sulfide decorated carbon nanotube composite catalyst toward triiodide reduction in dye-sensitized solar cells

    Science.gov (United States)

    Xiao, Yaoming; Wang, Wei-Yan; Chou, Shu-Wei; Lin, Tsung-Wu; Lin, Jeng-Yu

    2014-11-01

    In this study, we report a composite film composed of the cobalt sulfide (CoS1.097) nanoclusters/multi-wall carbon nanotube nanocomposites (MWCNT@CoS1.097) embedded polyaniline (PANI) film (denoted as PANI/MWCNT@CoS1.097) by an in situ electropolymerization onto a fluorinated tin oxide (FTO) glass substrate as a counter electrode (CE) for Pt-free dye-sensitized solar cells (DSCs) for the first time. The extensive cyclic voltammograms (CVs) and electrochemical impedance measurements show the PANI/MWCNT@CoS1.097 CE with an enhanced electrocatalytic activity for I3- reduction compared to PANI and MWCNT@CoS1.097 CEs. Moreover, the peak current densities of the PANI/MWCNT@CoS1.097 CE show no sign of degradation after consecutive 200 CV tests, suggesting its great chemical and electrochemical stability. Furthermore, the DSC based on the in situ electropolymerized PANI/MWCNT@CoS1.097 CE achieves an improved photovoltaic conversion efficiency of 7.02%, which is higher than those of the DSCs with PANI CE (6.06%) and with MWCNT@CoS1.097 CE (5.54%), and is even comparable to that of the DSC using the Pt CE (7.16%). Therefore, the PANI/MWCNT@CoS1.097 CE can be regarded as a promising alternative CE for Pt-free DSCs.

  8. Cobalt doped ZrO2 decorated multiwalled carbon nanotube: A promising nanocatalyst for photodegradation of indigo carmine and eosin Y dyes

    Directory of Open Access Journals (Sweden)

    William Wilson Anku

    2016-08-01

    Full Text Available This paper reports the degradation of indigo carmine and eosin Y dyes in water, catalyzed by cobalt and multiwalled carbon nanotube modified zirconium oxide nanocomposite (Co-ZrO2-MWCNTs under simulated visible light. The bare ZrO2, ZrO2-MWCNTs, Co-ZrO2 and Co-ZrO2-MWCNTs with different percentage compositions of cobalt were synthesized by homogeneous co-precipitation method. Characterization of the prepared nanocomposites was carried out using X-Ray powder Diffraction (XRD, Fourier Transformer Infrared (FTIR Spectroscopy, Transmission Electron Microscopy (TEM, Raman Spectroscopy, (UV–Vis-Spectroscopy and Energy Dispersive Spectroscopy (EDS for their structure, formation, morphology, size and elemental analysis. The experimental results indicated that all the cobalt and MWCNTs modified nanocomposites demonstrated higher photocatalytic activities compared to the bare ZrO2. The most efficient catalyst (0.5% Co-ZrO2-MWCNTs with the band gap and Ka values of 5.21 eV and 16.86×10−3 min−1 respectively exhibited 98% degradation efficiency toward indigo carmine and 87% toward eosin Y in 180 min.

  9. Three-Dimensional Porous Si and SiO2 with In Situ Decorated Carbon Nanotubes As Anode Materials for Li-ion Batteries.

    Science.gov (United States)

    Su, Junming; Zhao, Jiayue; Li, Liangyu; Zhang, Congcong; Chen, Chunguang; Huang, Tao; Yu, Aishui

    2017-05-31

    A high-capacity Si anode is always accompanied by very large volume expansion and structural collapse during the lithium-ion insertion/extraction process. To stabilize the structure of the Si anode, magnesium vapor thermal reduction has been used to synthesize porous Si and SiO 2 (pSS) particles, followed by in situ growth of carbon nanotubes (CNTs) in pSS pores through a chemical vapor deposition (CVD) process. Field-emission scanning electron microscopy and high-resolution transmission electron microscopy have shown that the final product (pSS/CNTs) possesses adequate void space intertwined by uniformly distributed CNTs and inactive silica in particle form. pSS/CNTs with such an elaborate structural design deliver improved electrochemical performance, with better coulombic efficiency (70% at the first cycle), cycling capability (1200 mAh g -1 at 0.5 A g -1 after 200 cycles), and rate capability (1984, 1654, 1385, 1072, and 800 mAh g -1 at current densities of 0.1, 0.2, 0.5, 1, and 2 A g -1 , respectively), compared to pSS and porous Si/CNTs. These merits of pSS/CNTs are attributed to the capability of void space to absorb the volume changes and that of the silica to confine the excessive lithiation expansion of the Si anode. In addition, CNTs have interwound the particles, leading to significant enhancement of electronic conductivity before and after Si-anode pulverization. This simple and scalable strategy makes it easy to expand the application to manufacturing other alloy anode materials.

  10. Thermodynamic investigation of ferrocyanide/ferricyanide redox system on nitrogen-doped multi-walled carbon nanotubes decorated with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tsierkezos, Nikos G., E-mail: nikos.tsierkezos@tu-ilmenau.de [Institut für Chemie und Biotechnik, Technische Universität Ilmenau, Weimarer Straße 25, 98693 Ilmenau (Germany); Knauer, Andrea [Institute of Chemistry and Biotechnology, Department of Physical Chemistry and Micro Reaction Technology, Ilmenau University of Technology, Gustav-Kirchhof Straße 1, 98693 Ilmenau (Germany); Ritter, Uwe [Institut für Chemie und Biotechnik, Technische Universität Ilmenau, Weimarer Straße 25, 98693 Ilmenau (Germany)

    2014-01-20

    Graphical abstract: - Highlights: • N-MWCNTs were fabricated and “decorated” with AuNPs. • N-MWCNTs/AuNPs were applied for study of [Fe(CN){sub 6}]{sup 3−/4−} in various temperatures. • The barrier for interfacial electron transfer decreases with temperature. • The kinetics of charge transfer enhances with temperature. • The AuNPs size affects the kinetic and thermodynamic parameters of [Fe(CN){sub 6}]{sup 3−/4−}. - Abstract: Films consisting of nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) were fabricated by means of chemical vapor deposition technique with decomposition of acetonitrile. The N-MWCNTs-based films were modified with gold nanoparticles (AuNPs) with diameter either 5 or 35 nm and applied for the electrochemical investigation of ferrocyanide/ferricyanide, [Fe(CN){sub 6}]{sup 3−/4−} redox system in the temperature range of 283.15–303.15 K. The findings demonstrate that on N-MWCNT films modified with AuNPs (further denoted as N-MWCNTs/AuNPs) the [Fe(CN){sub 6}]{sup 3−/4−} redox system is quasi-reversible and its reversibility is improved with increasing temperature. Namely, it was established that with the rise in temperature the barrier for interfacial electron transfer decreases leading to an enhancement of kinetics of charge transfer reaction. The Gibbs free energies display that the exergonic redox process occurring on N-MWCNTs/AuNPs is shifted toward formation of [Fe(CN){sub 6}]{sup 3−} with increasing temperature. With the increase of diameter of AuNPs a slight improvement of kinetics of redox process occurs.

  11. Fabrication of 3-methoxyphenol sensor based on Fe3O4 decorated carbon nanotube nanocomposites for environmental safety: Real sample analyses.

    Directory of Open Access Journals (Sweden)

    Mohammed M Rahman

    Full Text Available Iron oxide ornamented carbon nanotube nanocomposites (Fe3O4.CNT NCs were prepared by a wet-chemical process in basic means. The optical, morphological, and structural characterizations of Fe3O4.CNT NCs were performed using FTIR, UV/Vis., FESEM, TEM; XEDS, XPS, and XRD respectively. Flat GCE had been fabricated with a thin-layer of NCs using a coating binding agent. It was performed for the chemical sensor development by a dependable I-V technique. Among all interfering analytes, 3-methoxyphenol (3-MP was selective towards the fabricated sensor. Increased electrochemical performances for example elevated sensitivity, linear dynamic range (LDR and continuing steadiness towards selective 3-MP had been observed with chemical sensor. The calibration graph found linear (R2 = 0.9340 in a wide range of 3-MP concentration (90.0 pM ~ 90.0 mM. The limit of detection and sensitivity were considered as 1.0 pM and 9×10-4 μAμM-1cm-2 respectively. The prepared of Fe3O4.CNT NCs by a wet-chemical progression is an interesting route for the development of hazardous phenolic sensor based on nanocomposite materials. It is also recommended that 3-MP sensor is exhibited a promising performances based on Fe3O4.CNT NCs by a facile I-V method for the significant applications of toxic chemicals for the safety of environmental and health-care fields.

  12. Electron diffraction from carbon nanotubes

    International Nuclear Information System (INIS)

    Qin, L-C

    2006-01-01

    The properties of a carbon nanotube are dependent on its atomic structure. The atomic structure of a carbon nanotube can be defined by specifying its chiral indices (u, v), that specify its perimeter vector (chiral vector), with which the diameter and helicity are also determined. The fine electron beam available in a modern transmission electron microscope (TEM) offers a unique probe to reveal the atomic structure of individual nanotubes. This review covers two aspects related to the use of the electron probe in the TEM for the study of carbon nanotubes: (a) to understand the electron diffraction phenomena for inter-pretation of the electron diffraction patterns of carbon nanotubes and (b) to obtain the chiral indices (u, v), of the carbon nanotubes from the electron diffraction patterns. For a nanotube of a given structure, the electron scattering amplitude from the carbon nanotube is first described analytically in closed form using the helical diffraction theory. From a known structure as given by the chiral indices (u, v), its electron diffraction pattern can be calculated and understood. The reverse problem, i.e. assignment of the chiral indices from an electron diffraction pattern of a carbon nanotube, is approached from the relationship between the electron scattering intensity distribution and the chiral indices (u, v). We show that electron diffraction patterns can provide an accurate and unambiguous assignment of the chiral indices of carbon nanotubes. The chiral indices (u, v) can be read indiscriminately with a high accuracy from the intensity distribution on the principal layer lines in an electron diffraction pattern. The symmetry properties of electron diffraction from carbon nanotubes and the electron diffraction from deformed carbon nanotubes are also discussed in detail. It is shown that 2mm symmetry is always preserved for single-walled carbon nanotubes, but it can break down for multiwalled carbon nanotubes under some special circumstances

  13. Carbon nanotube filters

    Science.gov (United States)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  14. Dependence of QSAR models on the selection of trial descriptor sets: a demonstration using nanotoxicity endpoints of decorated nanotubes.

    Science.gov (United States)

    Shao, Chi-Yu; Chen, Sing-Zuo; Su, Bo-Han; Tseng, Yufeng J; Esposito, Emilio Xavier; Hopfinger, Anton J

    2013-01-28

    Little attention has been given to the selection of trial descriptor sets when designing a QSAR analysis even though a great number of descriptor classes, and often a greater number of descriptors within a given class, are now available. This paper reports an effort to explore interrelationships between QSAR models and descriptor sets. Zhou and co-workers (Zhou et al., Nano Lett. 2008, 8 (3), 859-865) designed, synthesized, and tested a combinatorial library of 80 surface modified, that is decorated, multi-walled carbon nanotubes for their composite nanotoxicity using six endpoints all based on a common 0 to 100 activity scale. Each of the six endpoints for the 29 most nanotoxic decorated nanotubes were incorporated as the training set for this study. The study reported here includes trial descriptor sets for all possible combinations of MOE, VolSurf, and 4D-fingerprints (FP) descriptor classes, as well as including and excluding explicit spatial contributions from the nanotube. Optimized QSAR models were constructed from these multiple trial descriptor sets. It was found that (a) both the form and quality of the best QSAR models for each of the endpoints are distinct and (b) some endpoints are quite dependent upon 4D-FP descriptors of the entire nanotube-decorator complex. However, other endpoints yielded equally good models only using decorator descriptors with and without the decorator-only 4D-FP descriptors. Lastly, and most importantly, the quality, significance, and interpretation of a QSAR model were found to be critically dependent on the trial descriptor sets used within a given QSAR endpoint study.

  15. Adhered Supported Carbon Nanotubes

    International Nuclear Information System (INIS)

    Johnson, Dale F.; Craft, Benjamin J.; Jaffe, Stephen M.

    2001-01-01

    Carbon nanotubes (NTs) in excess of 200 μm long are grown by catalytic pyrolysis of hydrocarbon vapors. The nanotubes grow continuously without the typical extinction due to catalyst encapsulation. A woven metal mesh supports the nanotubes creating a metal supported nanotube (MSNT) structure. The 140 μm wide mesh openings are completely filled by 70 nm diameter multiwalled nanotubes (MWNTs). The MWNTs are straight, uniform and highly crystalline. Their wall thickness is about 10 nm (30 graphite layers). The adherent NTs are not removed from the support in a Scotch tape pull test. A 12.5 cm 2 capacitor made from two MSNT structures immersed in 1 M KCl has a capacitance of 0.35 F and an equivalent series resistance of 0.18 Ω. Water flows through the MSNT at a flow velocity of 1 cm/min with a pressure drop of 15 inches of water. With the support removed, the MWNTs naturally form a carbon nanocomposite (CNC) paper with a specific area of 80 m 2 /gm, a bulk density of 0.21 g/cm 3 , an open pore fraction of 0.81, and a resistivity of 0.16 Ω-cm

  16. A comparative study for Hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers

    International Nuclear Information System (INIS)

    Lu, Jinlian; Guo, Yanhua; Zhang, Yun; Tang, Yingru; Cao, Juexian

    2015-01-01

    A comparative study for hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers has been investigated within the framework of first-principle calculations. Our results show that the binding energies of Li, Ca, Sc, Ti on graphyne nanotubes are stronger than that on graphyne monolayers. Such strong binding would prevent the formation of metal clusters on graphyne nanotubes. From the charge transfer and partial density of states, it is found that the curvature effect of nanotubes plays an important role for the strong binding strength of metal on graphyne nanotubes. And the hydrogen storage capacity is 4.82 wt%, 5.08 wt%, 4.88 wt%, 4.76 wt% for Li, Ca, Sc, Ti decorated graphyne nanotubes that promise a potential material for storing hydrogen. - Graphical abstract: Metal atoms (Li, Ca, Sc and Ti) can strongly bind to graphyne nanotubes to avoid the formation of metal clusters, and a capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015. Twenty-four hydrogen molecules absorb to Ti-decorated graphyne nanotube. - Highlights: • The binding strength for metal on graphyne nanotubes is much stronger than that on γ-graphyne monolayer. • Metal atoms can strongly bind to the curving triangle acetylenes rings to avoid the formation of metal clusters. • A capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015.

  17. Erratum: Correction to: Rapid and controllable perforation of carbon nanotubes by microwave radiation

    Science.gov (United States)

    Ojaghi, Neda; Mokhtarifar, Maryam; Sabaghian, Zahra; Arab, Hamed; Maghrebi, Morteza; Baniadam, Majid

    2018-06-01

    This study presents a new controlled approach to deep perforation of millimeter-long carbon nanotube arrays (CNTAs) by fast oxidative cutting. The approach is based on decorating CNTAs with silver (Ag) nanoparticles, followed by heating Ag-decorated CNTAs with microwave radiation (2.48 GHz, 300 W).

  18. Functionalization of vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Eloise Van Hooijdonk

    2013-02-01

    Full Text Available This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs. The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  19. Carbon nanotube plane fastener

    Directory of Open Access Journals (Sweden)

    Kaori Hirahara

    2011-12-01

    Full Text Available We report a feature of carbon nanotubes (CNTs that arises when the surfaces of two vertically-aligned CNT brushes are pressed together. Adhesion between the CNTs creates a plane fastener-like device. Observations from scanning electron microscopy and measurements of adhesion properties indicate a device-dependence on CNT density and shape near the tip region. Among other applications, such fasteners have the potential to attach small components onto micron-sized electronic devices.

  20. Carbon nanotube network varactor

    International Nuclear Information System (INIS)

    Generalov, A A; Anoshkin, I V; Lioubtchenko, D V; Räisänen, A V; Erdmanis, M; Ovchinnikov, V; Nasibulin, A G

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. (paper)

  1. Carbon Nanotubes and Modern Nanoagriculture

    KAUST Repository

    Serag, Maged F.

    2015-01-27

    Since their discovery, carbon nanotubes have been prominent members of the nanomaterial family. Owing to their extraordinary physical, chemical, and mechanical properties, carbon nanotubes have been proven to be a useful tool in the field of plant science. They were frequently perceived to bring about valuable biotechnological and agricultural applications that still remain beyond experimental realization. An increasing number of studies have demonstrated the ability of carbon nanotubes to traverse different plant cell barriers. These studies, also, assessed the toxicity and environmental impacts of these nanomaterials. The knowledge provided by these studies is of practical and fundamental importance for diverse applications including intracellular labeling and imaging, genetic transformation, and for enhancing our knowledge of plant cell biology. Although different types of nanoparticles have been found to activate physiological processes in plants, carbon nanotubes received particular interest. Following addition to germination medium, carbon nanotubes enhanced root growth and elongation of some plants such as onion, cucumber and rye-grass. They, also, modulated the expression of some genes that are essential for cell division and plant development. In addition, multi-walled carbon nanotubes were evidenced to penetrate thick seed coats, stimulate germination, and to enhance growth of young tomato seedlings. Multi-walled carbon nanotubes can penetrate deeply into the root system and further distribute into the leaves and the fruits. In recent studies, carbon nanotubes were reported to be chemically entrapped into the structure of plant tracheary elements. This should activate studies in the fields of plant defense and wood engineering. Although, all of these effects on plant physiology and plant developmental biology have not been fully understood, the valuable findings promises more research activity in the near future toward complete scientific understanding of

  2. Continuous carbon nanotube reinforced composites.

    Science.gov (United States)

    Ci, L; Suhr, J; Pushparaj, V; Zhang, X; Ajayan, P M

    2008-09-01

    Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3,300%) as well as damping capability (up to 2,100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.

  3. Mechanical properties of carbon nanotubes

    Science.gov (United States)

    Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.

    A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.

  4. Carbon nanotube based photocathodes

    International Nuclear Information System (INIS)

    Hudanski, Ludovic; Minoux, Eric; Schnell, Jean-Philippe; Xavier, Stephane; Pribat, Didier; Legagneux, Pierre; Gangloff, Laurent; Teo, Kenneth B K; Robertson, John; Milne, William I

    2008-01-01

    This paper describes a novel photocathode which is an array of vertically aligned multi-walled carbon nanotubes (MWCNTs), each MWCNT being associated with one p-i-n photodiode. Unlike conventional photocathodes, the functions of photon-electron conversion and subsequent electron emission are physically separated. Photon-electron conversion is achieved with p-i-n photodiodes and the electron emission occurs from the MWCNTs. The current modulation is highly efficient as it uses an optically controlled reconfiguration of the electric field at the MWCNT locations. Such devices are compatible with high frequency and very large bandwidth operation and could lead to their application in compact, light and efficient microwave amplifiers for satellite telecommunication. To demonstrate this new photocathode concept, we have fabricated the first carbon nanotube based photocathode using silicon p-i-n photodiodes and MWCNT bunches. Using a green laser, this photocathode delivers 0.5 mA with an internal quantum efficiency of 10% and an I ON /I OFF ratio of 30

  5. Carbon nanotube array actuators

    International Nuclear Information System (INIS)

    Geier, S; Mahrholz, T; Wierach, P; Sinapius, M

    2013-01-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750–2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs. (paper)

  6. Carbon nanotube biosensors

    Science.gov (United States)

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  7. Carbon Nanotube Biosensors

    Directory of Open Access Journals (Sweden)

    Carmen-Mihaela eTilmaciu

    2015-10-01

    Full Text Available Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  8. nanoparticles-decorated activated carbon nanocomposite based ...

    Indian Academy of Sciences (India)

    T K APARNA

    2018-02-07

    Feb 7, 2018 ... oxide nanohexagon-reduced graphene oxide nanocom- posite39 was reported ..... istic vibrations of the chemical bonds were inferred. The electrochemical .... hybrid decorated with molybdenum disulfide flowers. Microchim.

  9. Method for synthesizing carbon nanotubes

    Science.gov (United States)

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  10. Method for producing carbon nanotubes

    Science.gov (United States)

    Phillips, Jonathan [Santa Fe, NM; Perry, William L [Jemez Springs, NM; Chen, Chun-Ku [Albuquerque, NM

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  11. Electronics with carbon nanotubes

    International Nuclear Information System (INIS)

    Avouris, P.

    2007-01-01

    From mobile phones and laptops to Xboxes and iPods, it is difficult to think of any aspect of modern life that has not been touched by developments in electronics, computing and communications over the last few decades. Many of these technological advances have arisen from our ability to create ever smaller electronic devices, in particular silicon-based field effect transistors (FETs), which has led to denser, faster and less power-hungry circuits. The problem is that this device miniaturization, or 'scaling', cannot continue forever. Fundamental scientific and technological limitations exist that will make it impossible to build better performing silicon devices below a certain size. This potential show-stopper has inspired a worldwide effort to develop alternative device technologies based on 1D materials or those that exploit the spin, as well as the charge, of electrons. One promising and, in principle, simpler approach is to maintain the operating concept of today's silicon-based FETs but to replace a key component of the device - the semiconducting silicon channel - with 1D nanostructures that have much more versatile electrical-transport properties. Among the different 1D materials that have been developed, those with the most desirable properties are 'single-walled' carbon nanotubes, which were first created in 1993 by Sumio Ijima at the NEC Fundamental Research Laboratory in Tsukuba, Japan, and by Donald Bethune of IBM's Almaden Research Center in California. These materials are hollow tubes made from rolled up sheets of carbon just one atom thick, otherwise known as graphene. In the March issue of Physics World, Phaedon Avouris discusses some of the many properties and applications of carbon nanotubes, which he describes as an 'engineer's dream' because of their exceptionally high strength and heat conduction. (U.K.)

  12. Novel gas sensors based on carbon nanotube networks

    International Nuclear Information System (INIS)

    Sayago, I; Aleixandre, M; Horrillo, M C; Fernandez, M J; Gutierrez, J; Terrado, E; Lafuente, E; Maser, W K; Benito, A M; Martinez, M T; Munoz, E; Urriolabeitia, E P; Navarro, R

    2008-01-01

    Novel resistive gas sensors based on single-walled carbon nanotube (SWNT) networks as the active sensing element nave been investigated for gas detection. SWNTs networks were fabricated by airbrushing on alumina substrates. As-produced- and Pd-decorated SWNT materials were used as sensitive layers for the detection of NO 2 and H 2 , respectively. The studied sensors provided good response to NO 2 and H 2 as well as excellent selectivities to interfering gases.

  13. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  14. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  15. Carbon Nanotube based Nanotechnolgy

    Science.gov (United States)

    Meyyappan, M.

    2000-10-01

    Carbon nanotube(CNT) was discovered in the early 1990s and is an off-spring of C60(the fullerene or buckyball). CNT, depending on chirality and diameter, can be metallic or semiconductor and thus allows formation of metal-semiconductor and semiconductor-semiconductor junctions. CNT exhibits extraordinary electrical and mechanical properties and offers remarkable potential for revolutionary applications in electronics devices, computing and data storage technology, sensors, composites, storage of hydrogen or lithium for battery development, nanoelectromechanical systems(NEMS), and as tip in scanning probe microscopy(SPM) for imaging and nanolithography. Thus the CNT synthesis, characterization and applications touch upon all disciplines of science and engineering. A common growth method now is based on CVD though surface catalysis is key to synthesis, in contrast to many CVD applications common in microelectronics. A plasma based variation is gaining some attention. This talk will provide an overview of CNT properties, growth methods, applications, and research challenges and opportunities ahead.

  16. Proposal of Carbon Nanotube Inductors

    National Research Council Canada - National Science Library

    Tsubaki, K; Nakajima, Y; Hanajiri, T; Yamaguchi, H

    2006-01-01

    The inductors made of carbon Nanotube (CNT) have been proposed. Though the fabrication of the proposed inductor is still challenging and has many problems, merits of the proposed inductor are following...

  17. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  18. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  19. Functional materials based on carbon nanotubes: Carbon nanotube actuators and noncovalent carbon nanotube modification

    Science.gov (United States)

    Fifield, Leonard S.

    Carbon nanotubes have attractive inherent properties that encourage the development of new functional materials and devices based on them. The use of single wall carbon nanotubes as electromechanical actuators takes advantage of the high mechanical strength, surface area and electrical conductivity intrinsic to these molecules. The work presented here investigates the mechanisms that have been discovered for actuation of carbon nanotube paper: electrostatic, quantum chemical charge injection, pneumatic and viscoelastic. A home-built apparatus for the measurement of actuation strain is developed and utilized in the investigation. An optical fiber switch, the first demonstrated macro-scale device based on the actuation of carbon nanotubes, is described and its performance evaluated. Also presented here is a new general process designed to modify the surface of carbon nanotubes in a non-covalent, non-destructive way. This method can be used to impart new functionalities to carbon nanotube samples for a variety of applications including sensing, solar energy conversion and chemical separation. The process described involves the achievement of large degrees of graphitic surface coverage with polycyclic aromatic hydrocarbons through the use of supercritical fluids. These molecules are bifunctional agents that anchor a desired chemical group to the aromatic surface of the carbon nanotubes without adversely disrupting the conjugated backbone that gives rise the attractive electronic and physical properties of the nanotubes. Both the nanotube functionalization work and the actuator work presented here emphasize how an understanding and control of nanoscale structure and phenomena can be of vital importance in achieving desired performance for active materials. Opportunities for new devices with improved function over current state-of-the-art can be envisioned and anticipated based on this understanding and control.

  20. Carbon nanotube computer.

    Science.gov (United States)

    Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish

    2013-09-26

    The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.

  1. Preparation and electrocatalytic property of WC/carbon nanotube composite

    International Nuclear Information System (INIS)

    Li Guohua; Ma Chunan; Tang Junyan; Sheng Jiangfeng

    2007-01-01

    Tungsten carbide/carbon nanotube composite was prepared by surface decoration and in situ reduction-carbonization. The samples were characterized by XRD, SEM, EDS, TEM, HRTEM and BET, respectively. The XRD results show that the sample is composed of carbon nanotube, tungsten carbide and tungsten oxide. The EDS results show that the distribution of tungsten oxide is consistent with that of tungsten carbide. SEM, TEM and HRTEM results show that the tungsten carbide nanoparticle with irregular granule grows on the outside surface of carbon nanotube homogenously. The electrocatalytic activity of the sample for p-nitrophenol reduction was tested by a powder microelectrode in a basic solution. The results show that the electrocatalytic activity of the sample is higher than that of granular tungsten carbide, hollow globe tungsten carbide with mesoporosity and carbon nanotube purified. The improvement of the electrocatalytic activity of the sample can be attributed to its components and composite structure. These results indicate that tungsten carbide/carbon nanotube composite is one of the effective ways to improve the electrocatalytic activity of tungsten carbide

  2. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  3. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin...... blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two...

  4. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  5. Multiscale Modeling with Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  6. EDITORIAL: Focus on Carbon Nanotubes

    Science.gov (United States)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau, P Umek, K Hernadi, P Marcoux, B Lukic, Cs Mikó, M Milas, R Gaál and L Forró Transitional behaviour in the transformation from active end

  7. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, R. Naresh, E-mail: rnaresh7708@gmail.com; Rajashabala, S. [School of Physics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu (India); Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Department of Materials Science and Engineering, Cornell University, Ithaca 14850, New York (United States)

    2016-05-23

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  8. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    International Nuclear Information System (INIS)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-01-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  9. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-05-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138-175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  10. Dispersions of Carbon nanotubes in Polymer Matrices

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  11. Synthesis of carbon nanotubes bridging metal electrodes

    International Nuclear Information System (INIS)

    Kotlar, M.; Vojs, M.; Marton, M.; Vesel, M.; Redhammer, R.

    2012-01-01

    In our work we demonstrate growth of carbon nanotubes that can conductively bridge the metal electrodes. The role of different catalysts was examined. Interdigitated metal electrodes are made from copper and we are using bimetal Al/Ni as catalyst for growth of carbon nanotubes. We are using this catalyst composition for growth of the single-walled carbon nanotube network. (authors)

  12. Au Nanoparticles Decorated TiO2 Nanotube Arrays as a Recyclable Sensor for Photoenhanced Electrochemical Detection of Bisphenol A.

    Science.gov (United States)

    Hu, Liangsheng; Fong, Chi-Chun; Zhang, Xuming; Chan, Leo Lai; Lam, Paul K S; Chu, Paul K; Wong, Kwok-Yin; Yang, Mengsu

    2016-04-19

    A photorefreshable and photoenhanced electrochemical sensing platform for bisphenol A (BPA) detection based on Au nanoparticles (NPs) decorated carbon doped TiO2 nanotube arrays (TiO2/Au NTAs) is described. The TiO2/Au NTAs were prepared by quick annealing of anodized nanotubes in argon, followed by controllable electrodeposition of Au NPs. The decoration of Au NPs not only improved photoelectrochemical behavior but also enhanced electrocatalytic activities of the resulted hybrid NTAs. Meanwhile, the high photocatalytic activity of the NTAs allowed the electrode to be readily renewed without damaging the microstructures and surface states after a short UV treatment. The electrochemical detection of BPA on TiO2/Au NTAs electrode was significantly improved under UV irradiation as the electrode could provide fresh reaction surface continuously and the further increased photocurrent resulting from the improved separation efficiency of the photogenerated electron-hole pairs derived from the consumption of holes by BPA. The results showed that the refreshable TiO2/Au NTAs electrode is a promising sensor for long-term BPA monitoring with the detection limit (S/N = 3) of 6.2 nM and the sensitivity of 2.8 μA·μM(-1)·cm(-2).

  13. Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition.

    Science.gov (United States)

    Hong, Jinkee; Kang, Sang Wook

    2011-09-01

    We performed a comparative surface analysis of all-carbon nano-objects (multiwall carbon nanotubes (MWNT) or graphene oxide (GO) sheets) based multilayer coatings prepared using three widely used nanofilm fabrication methods: dip-, spin-, and spray-assisted layer-by-layer (LbL) deposition. The resultant films showed a marked difference in their growth mechanisms and surface morphologies. Various carbon decorative coatings were synthesized with different surface roughness values, despite identical preparation conditions. In particular, smooth to highly rough all-carbon surfaces, as determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM), were readily obtained by manipulating the LbL deposition methods. As was confirmed by the AFM and SEM analyses, this finding indicated the fundamental morphological evolution of one-dimensional nano-objects (MWNT) and two-dimensional nano-objects (GO) by control of the surface roughness through the deposition method. Therefore, an analysis of the three LbL-assembly methods presented herein may offer useful information about the industrial use of carbon decorative coatings and provide an insight into ways to control the structures of multilayer coatings by tuning the morphologies of carbon nano-objects.

  14. Structural transformations of carbon chains inside nanotubes

    International Nuclear Information System (INIS)

    Warner, Jamie H.; Ruemmeli, Mark H.; Bachmatiuk, Alicja; Buechner, Bernd

    2010-01-01

    In situ aberration-corrected high-resolution transmission electron microscopy is used to examine the structural transformations of carbon chains that occur in the interior region of carbon nanotubes. We find electron-beam irradiation leads to the formation of two-dimensional carbon structures that are freely mobile inside the nanotube. The inner diameter of the nanotube influences the structural transformations of the carbon chains. As the diameter of the nanotube increases, electron-beam irradiation leads to curling of the chains and eventually the formation of closed looped structures. The closed looped structures evolve into spherical fullerenelike structures that exhibit translational motion inside the nanotubes and also coalesce to form larger nanotube structures. These results demonstrate the use of carbon nanotubes as test tubes for growing small carbon nanotubes within the interior by using only electron-beam irradiation at 80 kV.

  15. Carbon nanotube: the inside story.

    Science.gov (United States)

    Ando, Yoshinori

    2010-06-01

    Carbon nanotubes (CNTs) were serendipitously discovered as a byproduct of fullerenes by direct current (DC) arc discharge; and today this is the most-wanted material in the nanotechnology research. In this brief review, I begin with the history of the discovery of CNTs and focus on CNTs produced by arc discharge in hydrogen atmosphere, which is little explored outside my laboratory. DC arc discharge evaporation of pure graphite rod in pure hydrogen gas results in multi-walled carbon nanotubes (MWCNTs) of high crystallinity in the cathode deposit. As-grown MWCNTs have very narrow inner diameter. Raman spectra of these MWCNTs show high-intensity G-band, unusual high-frequency radial breathing mode at 570 cm(-1), and a new characteristic peak near 1850 cm(-1). Exciting carbon nanowires (CNWs), consisting of a linear carbon chain in the center of MWCNTs are also produced. Arc evaporation of graphite rod containing metal catalysts results in single-wall carbon nanotubes (SWCNTs) in the whole chamber like macroscopic webs. Two kinds of arc method have been developed to produce SWCNTs: Arc plasma jet (APJ) and Ferrum-Hydrogen (FH) arc methods. Some new purification methods for as-produced SWCNTs are reviewed. Finally, double-walled carbon nanotubes (DWCNTs) are also described.

  16. Photodetector based on carbon nanotubes

    Science.gov (United States)

    Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y.

    2015-09-01

    Photodetector based on carbon nanotubes (CNT) was investigated. Sensors were done on quartz and silicon susbtrate. Samples of photodetectors sensors were produced by planar technology. This technology included deposition of first metal layer (Al), lithography for pads formation, etching, and formation of local catalyst area by inverse lithography. Vertically-aligned multi-wall carbon nanotubes were directly synthesized on substrate by PECVD method. I-V analysis and spectrum sensitivity of photodetector were investigated for 0.4 μm - 1.2 μm wavelength. Resistivity of CNT layers over temperature was detected in the range of -20°C to 100°C.

  17. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-01-01

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  18. All carbon nanotubes are not created equal

    International Nuclear Information System (INIS)

    Geohegan, David B.; Puretzky, Alexander A.; Rouleau, Christopher M.

    2010-01-01

    This chapter presents the various factors that enter into consideration when choosing the source of carbon nanotubes for a specific application. Carbon nanotubes are giant molecules made of pure carbon. They have captured the imagination of the scientific community by the unique structure that provides superior physical, chemical, and electrical properties. However, a surprisingly wide disparity exists between the intrinsic properties determined under ideal conditions and the properties that carbon nanotubes exhibit in real world situations. The lack of uniformity in carbon nanotube properties is likely to be the main obstacle holding back the development of carbon nanotube applications. This tutorial addresses the nonuniformity of carbon nanotube properties from the synthesis standpoint. This synthesis-related nonuniformity is on top of the intrinsic chirality distribution that gives the ∼1:2 ratio of metallic to semiconducting nanotubes. From the standpoint of carbon bonding chemistry the variation in the quality and reproducibility of carbon nanotube materials is not unexpected. It is an intrinsic feature that is related to the metastability of carbon structures. The extent to which this effect is manifested in carbon nanotube formation is governed by the type and the kinetics of the carbon nanotube synthesis reaction. Addressing this variation is critical if nanotubes are to live up to the potential already demonstrated by their phenomenal physical properties.

  19. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    International Nuclear Information System (INIS)

    Kruszka, Bartosz; Terzyk, Artur P; Wiśniewski, Marek; Gauden, Piotr A; Szybowicz, Mirosław

    2014-01-01

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices. (paper)

  20. Carbon nanotubes and methods of making carbon nanotubes

    KAUST Repository

    Basset, Jean-Marie; Zhou, Lu; Saih, Youssef

    2017-01-01

    Embodiments of the present disclosure provide for methods that can be used to produce carbon nanotubes (hereinafter CNT) having an inner diameter about 5-55 nm, methods of tuning the inner diameter of CNTs (e.g., by adjusting reaction pressure

  1. Carbon nanotubes and methods of making carbon nanotubes

    KAUST Repository

    Basset, Jean-Marie

    2017-04-27

    Embodiments of the present disclosure provide for methods that can be used to produce carbon nanotubes (hereinafter CNT) having an inner diameter about 5-55 nm, methods of tuning the inner diameter of CNTs (e.g., by adjusting reaction pressure), CNTs having an inner diameter of greater than 20 nm or more, and the like.

  2. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  3. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This

  4. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149 ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  5. Polyurethane compounds having carbon nanotubes

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to semi-crystalline polyurethane (PUR) compositions filled with carbon nanotubes (CNT) and having improved electrical properties, which can be obtained on the basis of water-based polyurethane/CNT mixtures. The invention further relates to a method for producing polyurethane

  6. Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water

    Science.gov (United States)

    Kuvarega, Alex T.; Krause, Rui W. M.; Mamba, Bhekie B.

    2012-03-01

    Multiwalled carbon nanotube (MWCNT/N), Pd co-doped TiO2 nanocomposites were prepared by calcining the hydrolysis products of the reaction of titanium isopropoxide, Ti(OC3H7)4 containing multiwalled carbon nanotubes with aqueous ammonia. The prepared samples were characterised by Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, diffuse reflectance UV-Vis spectrophotometry (DRUV-Vis), XRD, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). DRUV-Vis analysis confirmed the red shift in the absorption edge at lower MWCNT percentages. SEM and TEM images showed the complete coverage of the MWCNTs with clusters of anatase TiO2 at low MWCNT percentages. Higher MWCNT levels led to their aggregation and consequently poor coverage by N, Pd co-doped TiO2. The photocatalytic activities of the nanocomposites were monitored by photodegradation of Eosin Yellow under simulated solar and visible light irradiation (λ > 450 nm). Irradiation with simulated solar radiation gave higher dye-degradation rates compared to visible radiation. The optimum MWCNT weight percentage in the composites was found to be 0.5. High degradation-rate constants of 3.42 × 10-2 and 5.18 × 10-3 min-1 were realised for the 0.5% MWCNT/N, Pd co-doped TiO2 composite, using simulated solar light and visible light, respectively.

  7. Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO{sub 2} (MWCNT/N, Pd co-doped TiO{sub 2}) for visible light photocatalytic degradation of Eosin Yellow in water

    Energy Technology Data Exchange (ETDEWEB)

    Kuvarega, Alex T.; Krause, Rui W. M., E-mail: rkrause@uj.ac.za; Mamba, Bhekie B. [University of Johannesburg, Department of Applied Chemistry, UJ Center for Nanomaterials Science (South Africa)

    2012-03-15

    Multiwalled carbon nanotube (MWCNT/N), Pd co-doped TiO{sub 2} nanocomposites were prepared by calcining the hydrolysis products of the reaction of titanium isopropoxide, Ti(OC{sub 3}H{sub 7}){sub 4} containing multiwalled carbon nanotubes with aqueous ammonia. The prepared samples were characterised by Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, diffuse reflectance UV-Vis spectrophotometry (DRUV-Vis), XRD, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). DRUV-Vis analysis confirmed the red shift in the absorption edge at lower MWCNT percentages. SEM and TEM images showed the complete coverage of the MWCNTs with clusters of anatase TiO{sub 2} at low MWCNT percentages. Higher MWCNT levels led to their aggregation and consequently poor coverage by N, Pd co-doped TiO{sub 2}. The photocatalytic activities of the nanocomposites were monitored by photodegradation of Eosin Yellow under simulated solar and visible light irradiation ({lambda} > 450 nm). Irradiation with simulated solar radiation gave higher dye-degradation rates compared to visible radiation. The optimum MWCNT weight percentage in the composites was found to be 0.5. High degradation-rate constants of 3.42 Multiplication-Sign 10{sup -2} and 5.18 Multiplication-Sign 10{sup -3} min{sup -1} were realised for the 0.5% MWCNT/N, Pd co-doped TiO{sub 2} composite, using simulated solar light and visible light, respectively.

  8. Functionalized carbon nanotubes containing isocyanate groups

    International Nuclear Information System (INIS)

    Zhao Chungui; Ji Lijun; Liu Huiju; Hu Guangjun; Zhang Shimin; Yang Mingshu; Yang Zhenzhong

    2004-01-01

    Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA)

  9. Enhanced visible light photocatalytic degradation of eriochrome black T and eosin blue shade in water using tridoped titania decorated on SWCNTs and MWCNTs: Effect of the type of carbon nanotube incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Mamba, G.; Mbianda, X.Y. [Department of Applied Chemistry, University of Johannesburg, Faculty of Science, P.O. Box 17011, Doornfontein, 2028 Johannesburg (South Africa); DST-NRF Centre of Excellence in Strong Materials, School of Physics, University of the Witwatersrand, Private Bag 3, WITS 2050 Johannesburg (South Africa); Mishra, A.K., E-mail: amishra@uj.ac.za [Department of Applied Chemistry, University of Johannesburg, Faculty of Science, P.O. Box 17011, Doornfontein, 2028 Johannesburg (South Africa); DST-NRF Centre of Excellence in Strong Materials, School of Physics, University of the Witwatersrand, Private Bag 3, WITS 2050 Johannesburg (South Africa)

    2015-01-15

    Oxidised single walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) were each incorporated into a neodymium, nitrogen and sulphur tridoped TiO{sub 2} (Nd,N,S–TiO{sub 2}) to form composite photocatalysts: SWCNT/Nd,N,S–TiO{sub 2} and MWCNT/Nd,N,S–TiO{sub 2}. The fabricated composite photocatalysts were exploited for the photocatalytic degradation of eriochrome black T (EBT) and eosin blue shade (EBS) from single and mixed dye solutions. Incorporation of the carbon nanotubes significantly improved visible light response and the photocatalytic activity of the composites compared to MWCNT/TiO{sub 2}, SWCNT/TiO{sub 2} and tridoped TiO{sub 2}. The SWCNTs incorporating photocatalyst displayed superior photocatalytic activity over its MWCNTs incorporating counterpart. From single dye solutions degradation studies, the SWCNT/Nd,N,S–TiO{sub 2} reached maximum degradation efficiencies of 96.9% and 89.2% for EBS and EBT, respectively. Similarly, maximum degradation efficiencies of 61.4% and 54.1% were recorded from mixed dye solutions using SWCNT/Nd,N,S–TiO{sub 2}, for EBS and EBT, respectively. First order kinetics studies revealed that EBS is degraded faster than EBT both from single and mixed dye solutions. Total organic carbon (TOC) analyses suggest a relatively high degree of complete mineralisation of both EBS (73.6% TOC removal) and EBT (66.2% TOC removal). The SWCNT/Nd,N,S–TiO{sub 2} composite photocatalyst displayed sufficient stability (88.8% EBS removal) after being reused for five times. - Highlights: • SWCNT/Nd,N,S–TiO{sub 2} and MWCNT/Nd,N,S–TiO{sub 2} were prepared via sol–gel method. • EBS and EBT degradation was studied in single and mixed dye solution. • SWCNT/Nd,N,S–TiO{sub 2} displayed higher photocatalytic activity than MWCNT/Nd,N,S–TiO{sub 2}. • Relatively high TOC removal for EBS and EBT by SWCNT/Nd,N,S–TiO{sub 2}. • SWCNT/Nd,N,S–TiO{sub 2} displayed good stability for reuse.

  10. Theoretical properties of carbon nanotubes

    International Nuclear Information System (INIS)

    Palser, A.H.

    2000-01-01

    Carbon nanotubes are invariably terminated with hemi-fullerene caps. In order to investigate the effect of these caps on the electronic structure, a method is developed to enumerate every hemi-fullerene cap which is commensurate with a given nanotube body. This algorithm is then applied to nanotubes for which I + m ≤ 25. The results of this algorithm are then used to study the effects of caps with different symmetries on the electronic structure of metallic and semi-conducting nanotubes within the Hueckel model. It is found that caps can cause localised and resonance states, although the likelihood of localised states occurring in capped metallic nanotubes is shown to be small. In addition, caps induce a non-uniform charge distribution, in which negative charge tends to accumulate on pentagon vertices. The thesis ends by describing two new density matrix methods for performing linear-scaling electronic-structure calculations within the independent electron approximation. Example calculations demonstrate that these methods provide efficient and robust ways of performing linear-scaling calculations, either grand canonically (at a fixed chemical potential) or canonically (at a fixed electron count). (author)

  11. Nitrotyrosine adsorption on carbon nanotube: a density functional theory study

    Science.gov (United States)

    Majidi, R.; Karami, A. R.

    2014-05-01

    We have studied the effect of nitrotyrosine on electronic properties of different single-wall carbon nanotubes by density functional theory. Optimal adsorption configurations of nitrotyrosine adsorbed on carbon nanotube have been determined by calculation of adsorption energy. Adsorption energies indicate that nitrotyrosine is chemisorbed on carbon nanotubes. It is found that the nitrotyrosine adsorption modifies the electronic properties of the semiconducting carbon nanotubes significantly and these nanotubes become n-type semiconductors, while the effect of nitrotyrosine on metallic carbon nanotubes is not considerable and these nanotubes remain metallic. Results clarify sensitivity of carbon nanotubes to nitrotyrosine adsorption and suggest the possibility of using carbon nanotubes as biosensor for nitrotyrosine detection.

  12. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Zhao, Chao; Wang, Qingxiao; Zhang, Qiang; Wang, Zhihong; Zhang, Xixiang; Abutaha, Anas I.; Alshareef, Husam N.

    2012-01-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed

  13. A novel antibody–antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode

    Energy Technology Data Exchange (ETDEWEB)

    Arkan, Elham [Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Saber, Reza [Department of Medical Nanotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Imam Khomeini Hospital, Tehran (Iran, Islamic Republic of); Karimi, Ziba [Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-05-18

    Highlights: • Design of a novel impedimetric immunosensor for detection of HER2 in serum samples. • Use of a multiwall carbon nanotube-ionic liquid electrode modified with AuNPs as a base. • Immobilization of monoclonal HER2 antibody on AuNPs/MWCILE using 1,6-hexanedithiol as a cross linker. • Achieving linear dynamic range and limit of detection of 10–110 ng mL{sup −1} and 7.4 ng mL{sup −1}, respectively. • Method development and validation and application to assay of HER2 in biological fluids. - Abstract: A highly sensitive impedimetric immunosensor based on a gold nanoparticles/multiwall carbon nanotube-ionic liquid electrode (AuNPs/MW-CILE) was developed for the determination of human epidermal growth factor receptor 2 (HER2). Gold nanoparticles were used to enhance the extent of immobilization and to retain the immunoactivity of the antibody Herceptin on the electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were employed for characterization of various layers coated onto the AuNPs/MW-CILE. The impedance measurements at different steps were based on the charge transfer kinetics of the [Fe(CN){sub 6}]{sup 3−/4−} redox pair. The immobilization of antibody and the corresponding antigen–antibody interaction at the electrode surface altered the interfacial electron transfer. The interactions of antibody with various concentrations of antigen were also monitored via the change of impedance response. The results showed that the charge transfer resistance increases linearly with increasing concentrations of HER2 antigen. The linear range and limit of detection were found as 10–110 ng mL{sup −1} and 7.4 ng mL{sup −1}, respectively. The sensitivity and specificity of the immunosensor were validated. The results showed that the prepared immunosensor is a useful tool for screening of trace amounts of HER2 in serum samples of breast cancer patients.

  14. Nanoparticle fractionation using an aligned carbon nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Lim Xiaodai [NUS Graduate School for Integrative Sciences and Engineering (NGS), Centre for Life Sciences (CeLS), 05-01, 28 Medical Drive, 117456 (Singapore); Xu Hairuo; Chin, Wee Shong [Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Nicole Chew, Yi Hui; Phua, Yi Hui [Dunman High School, 10 Tanjong Rhu Road, 436895 (Singapore); Sie, Edbert Jarvis; Sum, Tze Chien [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 (Singapore); Chia, Guo Hao; Sow, Chorng-Haur, E-mail: chmcws@nus.edu.sg, E-mail: physowch@nus.edu.sg [Department of Physics, Blk S12, Faculty of Science, National University of Singapore, 2 Science Drive 3, 117542 (Singapore)

    2010-07-23

    A technique utilizing the capillary assisted sieving capability of carbon nanotubes (CNTs) to achieve fractionation of nanoparticles of small size distribution is presented. By dipping aligned CNT arrays into a solution comprising different sized quantum dots (QDs), size-selective gradient decoration of QDs onto CNTs is achieved. The fractionating capability of CNTs is also demonstrated for poly-dispersed manganese doped zinc sulfide nanoparticles and QDs of varying sizes and chemical compositions, which we attribute to the size-selective sieving effect of CNTs. By controlling the terminating point for the flow of QDs across the CNT array, a QD size specific CNT/QD hybrid structure is achieved.

  15. Torsional carbon nanotube artificial muscles.

    Science.gov (United States)

    Foroughi, Javad; Spinks, Geoffrey M; Wallace, Gordon G; Oh, Jiyoung; Kozlov, Mikhail E; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D W; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H

    2011-10-28

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  16. Carbon Nanotubes: Molecular Electronic Components

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  17. Rapid and controllable perforation of carbon nanotubes by microwave radiation

    Science.gov (United States)

    Ojaghi, Neda; Mokhtarifar, Maryam; Sabaghian, Zahra; Arab, Hamed; Maghrebi, Morteza; Baniadam, Majid

    2018-05-01

    This study presents a new controlled approach to deep perforation of millimeter-long carbon nanotube arrays (CNTAs) by fast oxidative cutting. The approach is based on decorating CNTAs with silver (Ag) nanoparticles, followed by heating Ag-decorated CNTAs with microwave radiation (2.48 GHz, 300 W). The perforation was evaluated using different techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller method. The results of the oxidation of carbonaceous materials indicated that the relative amount of oxygen functional groups increased without total oxidation of carbon up to 60 s. After 60 s, the amount of functional groups decreased as the total oxidation started suddenly. Afterwards, at around 120 and 420 s, the oxidation of Ag-decorated CNTAs reached the point of total perforation and total cutting, respectively. Though carbon decomposition terminated at around 420 s, the total pore volume and surface area increased continuously. This was attributed to the steady growth of Ag nanoparticles located between CNTAs.

  18. Copper-encapsulated vertically aligned carbon nanotube arrays.

    Science.gov (United States)

    Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D

    2013-11-13

    A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.

  19. 1/f noise in carbon nanotubes

    International Nuclear Information System (INIS)

    Collins, Philip G.; Fuhrer, M. S.; Zettl, A.

    2000-01-01

    The electrical noise characteristics of single-walled carbon nanotubes have been investigated. For all three cases of individual isolated nanotubes, thin films of interconnected nanotubes, and bulk nanotube mats, anomalously large bias-dependent 1/f noise is found. The noise magnitude greatly exceeds that commonly observed in metal films, carbon resistors, or even carbon fibers with comparable resistances. A single empirical expression describes the noise for all nanotube samples, suggesting a common noise-generating mechanism proportional only to the number of nanotubes in the conductor. We consider likely sources of the fluctuations, and consequences for electronic applications of nanotubes if the excessive noise cannot be suppressed. (c) 2000 American Institute of Physics

  20. Carbon nanotubes for biological and biomedical applications

    International Nuclear Information System (INIS)

    Yang Wenrong; Thordarson, Pall; Gooding, J Justin; Ringer, Simon P; Braet, Filip

    2007-01-01

    Ever since the discovery of carbon nanotubes, researchers have been exploring their potential in biological and biomedical applications. The recent expansion and availability of chemical modification and bio-functionalization methods have made it possible to generate a new class of bioactive carbon nanotubes which are conjugated with proteins, carbohydrates, or nucleic acids. The modification of a carbon nanotube on a molecular level using biological molecules is essentially an example of the 'bottom-up' fabrication principle of bionanotechnology. The availability of these biomodified carbon nanotube constructs opens up an entire new and exciting research direction in the field of chemical biology, finally aiming to target and to alter the cell's behaviour at the subcellular or molecular level. This review covers the latest advances of bio-functionalized carbon nanotubes with an emphasis on the development of functional biological nano-interfaces. Topics that are discussed herewith include methods for biomodification of carbon nanotubes, the development of hybrid systems of carbon nanotubes and biomolecules for bioelectronics, and carbon nanotubes as transporters for a specific delivery of peptides and/or genetic material to cells. All of these current research topics aim at translating these biotechnology modified nanotubes into potential novel therapeutic approaches. (topical review)

  1. Preparation and antibacterial property of silver decorated carbon microspheres

    International Nuclear Information System (INIS)

    Li, Sha; Yan, Xiaoliang; Yang, Zhi; Yang, Yongzhen; Liu, Xuguang; Zou, Jing

    2014-01-01

    Carbon microspheres (CMSs) were prepared by glucose hydrothermal method. The effects of glucose concentration and reaction time on the size and morphology of CMSs were studied. CMSs with surface area of 642.5 m 2 /g and pore size of 0.8 nm were exploited to design hybrid material of CMSs with Ag decoration by radio frequency plasma (RF plasma). A series of investigations using X-ray diffraction, UV–vis spectrometry, Fourier transform infrared spectrometry, X-ray photoelectron spectrometry, thermogravimetric analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy was carried out to characterize the Ag decorated CMSs. RF plasma was employed to reduce Ag + ions to metallic nano-particles with the particle size of 10–20 nm and form a clean metal-support (Ag-CMSs) interface. The mechanism for the structure formation of Ag decorated CMSs was discussed. Plasma produced Ag/CMSs showed antibacterial property and proved suitable for potential biological and environmental applications.

  2. A phototactic micromotor based on platinum nanoparticle decorated carbon nitride.

    Science.gov (United States)

    Ye, Zhenrong; Sun, Yunyu; Zhang, Hui; Song, Bo; Dong, Bin

    2017-11-30

    In this paper, we report a unique phototactic (both positive and negative) micromotor based on platinum nanoparticle decorated carbon nitride. The phototaxis relies on the self-diffusiophoretic mechanism and different surface modifications. The micromotor reported in the current study does not require the addition of any external fuels and shows versatile motion behaviour, i.e. start, stop, directional and programmable motion, which is controlled by light. In addition, since the actuation of the precipitated micromotors at the bottom of a solution using light results in the opacity changes from transparent to translucent, we anticipate that the current micromotor may have potential application in the field of smart windows.

  3. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.; Cachim, P.B.; Da Costa, Pedro M. F. J.

    2014-01-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  4. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  5. Discovery of carbon nanotubes. Sara ni carbon nanotube e

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, S

    1994-01-20

    This paper describes the following matters on carbon nanotubes (CNt): CNt is discovered in carbon deposits generated in the tip of a negative electrode during DC arc discharge between carbon electrodes. CNt has a construction in which cylinders made of normally several layers are superposed, based on cylindrical crystals in a single layer with six-member rings of carbon atoms laid out. Spiral arrangement of carbon six-member rings has been discovered in the single-layered crystals. Five-member rings exist in a location where the CNt tip is closed, and seven-member rings in a location where the CNt presents a saddle-like curve, without exceptions. It is introduced theoretically that the electronic structure of the single-layered CNt depends on the cylinder diameter and spiral pitch. Replacing part of the carbon negative electrode with iron, and vaporizing iron and carbon simultaneously through arc discharge can result in a single-layered CNt with a diameter of 1 nm. Heating the CNt deposited with metallic lead in an oxygen atmosphere can form CNt containing lead compounds. 19 refs., 9 figs.

  6. Interaction of multiwalled carbon nanotube produces structural ...

    African Journals Online (AJOL)

    Abstract. Multiwalled carbon nanotube (MWCNT) has been found to produce structural changes in Calf Thymus-DNA (CT-DNA). The interaction or binding of the multi-walled carbon nanotubes (MWCNT) was investigated in order to discover if it brings about any significant changes of the DNA double helix using CD spectra ...

  7. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  8. Carbon Nanotube Supercapacitors

    OpenAIRE

    Lu, Wen; Dai, Liming

    2010-01-01

    In summary, CNTs have been explored as a new type of electrode materials for supercapacitors. Both randomly entangled and highly aligned CNTs have been investigated. The former is relatively easier to fabricate while the latter has a better capacitor performance. Combining the unique properties of CNTs with the high surface area of activated carbons or the additional pseduocapacitance of redox materials (electroactive polymers and metal oxides), high-capacitance and high-rate nanocomposites a...

  9. Optical properties of carbon nanotubes

    Science.gov (United States)

    Chen, Gugang

    This thesis addresses the optical properties of novel carbon filamentary nanomaterials: single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), and SWNTs with interior C60 molecules ("peapods"). Optical reflectance spectra of bundled SWNTs are discussed in terms of their electronic energy band structure. An Effective Medium Model for a composite material was found to provide a reasonable description of the spectra. Furthermore, we have learned from optical absorption studies of DWNTs and C60-peapods that the host tube and the encapsulant interact weakly; small shifts in interband absorption structure were observed. Resonant Raman scattering studies on SWNTs synthesized via the HiPCO process show that the "zone-folding" approximation for phonons and electrons works reasonably well, even for small diameter (d effect, rather than the vdW interaction. Finally, we studied the chemical doping of DWNTs, where the dopant (Br anions) is chemically bound to the outside of the outer tube. The doped DWNT system is a model for a cylindrical molecular capacitor. We found experimentally that 90% of the positive charge resides on the outer tube, so that most of electric field on the inner tube is screened, i.e., we have observed a molecular Faraday cage effect. A self-consistent theoretical model in the tight-binding approximation with a classical electrostatic energy term is in good agreement with our experimental results.

  10. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  11. Structural properties of water around uncharged and charged carbon nanotubes

    International Nuclear Information System (INIS)

    Dezfoli, Amir Reza Ansari; Mehrabian, Mozaffar Ali; Rafsanjani, Hassan Hashemipour

    2013-01-01

    Studying the structural properties of water molecules around the carbon nanotubes is very important in a wide variety of carbon nanotubes applications. We studied the number of hydrogen bonds, oxygen and hydrogen density distributions, and water orientation around carbon nanotubes. The water density distribution for all carbon nanotubes was observed to have the same feature. In water-carbon nanotubes interface, a high-density region of water molecules exists around carbon nanotubes. The results reveal that the water orientation around carbon nanotubes is roughly dependent on carbon nanotubes surface charge. The water molecules in close distances to carbon nanotubes were found to make an HOH plane nearly perpendicular to the water-carbon nanotubes interface for carbon nanotubes with negative surface charge. For uncharged carbon nanotubes and carbon nanotubes with positive surface charge, the HOH plane was in tangential orientation with water-carbon nanotubes interface. There was also a significant reduction in hydrogen bond of water region around carbon nanotubes as compared with hydrogen bond in bulk water. This reduction was very obvious for carbon nanotubes with positive surface charge. In addition, the calculation of dynamic properties of water molecules in water-CNT interface revealed that there is a direct relation between the number of Hbonds and self-diffusion coefficient of water molecules

  12. Improving the wettability of aluminum on carbon nanotubes

    International Nuclear Information System (INIS)

    So, Kang Pyo; Lee, Il Ha; Duong, Dinh Loc; Kim, Tae Hyung; Lim, Seong Chu; An, Kay Hyeok; Lee, Young Hee

    2011-01-01

    Research highlights: → The wettability of CNT in Al metal was improved by electroplating method. → This involves two steps: (i) Al electroplating and (ii) additional Al wetting. → The large surface tension difference was overcome by forming Al-C covalent bonds. → Al-C covalent bond was verified by Raman spectroscopy and XPS. → Density functional calculations confirmed structural model of CNT-vacancy-O-Al. - Abstract: The wetting of a metal on carbon nanotubes is fundamentally difficult due to the unusually large difference between their surface tensions and is a bottleneck for making metal-carbon nanotube (CNT) composites. Here, we report a simple method to enhance the wettability of metal particles on the CNT surface by applying aluminum, which is the material with the largest surface tension. This method involves two steps: (i) Al nanoparticles are decorated on multiwalled carbon nanotubes by electroplating and (ii) Al powder is further spread on Al-electroplated CNTs, followed by high-temperature annealing to accommodate complete wetting of the aluminum. The large surface tension difference is overcome by forming strong Al-C covalent bonds initiated by defects of the CNTs. The decrease in the D-band intensity, the G-band shift in the Raman spectroscopy and the formation of Al-C covalent bonds, as confirmed by X-ray photoelectron spectroscopy, were in agreement with our structural model of CNT-vacancy-O-Al determined by density functional calculations.

  13. Silver nanocrystal-decorated polyoxometalate single-walled nanotubes as nanoreactors for desulfurization catalysis at room temperature.

    Science.gov (United States)

    Zhang, Hao; Xu, Xiaobin; Lin, Haifeng; Ud Din, Muhammad Aizaz; Wang, Haiqing; Wang, Xun

    2017-09-14

    Ultrathin nanocrystals generally provide a remarkable catalytic performance due to their high specific surface area and exposure of certain active sites. However, deactivation caused by growth and gathering limits the catalytic application of ultrathin nanocrystals. Here we report Ag nanocrystal-decorated polyoxometalate (Ag-POM) single-walled nanotubes assembled via a concise, surfactant-free soaking method as a new kind of well-defined core-sheath nanoreactor. The diameter of Ag nanocrystals inside polyoxometalate nanotubes can be controlled via simply adjusting the reactant concentration. Ag-POM provided outstanding oxidative desulfurization (ODS) catalytic performance for aromatic sulfocompounds at room temperature. It was suggested that Ag nanocrystals decorated on the inner surface played a key role in adjusting the electronic distribution and enhancing the catalytic activity. The as-prepared Ag-POM nanotubes are promising candidate catalysts with enhanced performance for practical catalytic applications in the gasoline desulfurization industry.

  14. Review of carbon nanotube nanoelectronics and macroelectronics

    International Nuclear Information System (INIS)

    Che, Yuchi; Chen, Haitian; Gui, Hui; Liu, Jia; Liu, Bilu; Zhou, Chongwu

    2014-01-01

    Carbon nanotubes have the potential to spur future development in electronics due to their unequalled electrical properties. In this article, we present a review on carbon nanotube-based circuits in terms of their electrical performance in two major directions: nanoelectronics and macroelectronics. In the nanoelectronics direction, we direct our discussion to the performance of aligned carbon nanotubes for digital circuits and circuits designed for radio-frequency applications. In the macroelectronics direction, we focus our attention on the performance of thin films of carbon nanotube random networks in digital circuits, display applications, and printed electronics. In the last part, we discuss the existing challenges and future directions of nanotube-based nano- and microelectronics. (invited review)

  15. Carbon nanotube woven textile photodetector

    Science.gov (United States)

    Zubair, Ahmed; Wang, Xuan; Mirri, Francesca; Tsentalovich, Dmitri E.; Fujimura, Naoki; Suzuki, Daichi; Soundarapandian, Karuppasamy P.; Kawano, Yukio; Pasquali, Matteo; Kono, Junichiro

    2018-01-01

    The increasing interest in mobile and wearable technology demands the enhancement of functionality of clothing through incorporation of sophisticated architectures of multifunctional materials. Flexible electronic and photonic devices based on organic materials have made impressive progress over the past decade, but higher performance, simpler fabrication, and most importantly, compatibility with woven technology are desired. Here we report on the development of a weaved, substrateless, and polarization-sensitive photodetector based on doping-engineered fibers of highly aligned carbon nanotubes. This room-temperature-operating, self-powered detector responds to radiation in an ultrabroad spectral range, from the ultraviolet to the terahertz, through the photothermoelectric effect, with a low noise-equivalent power (a few nW/Hz 1 /2) throughout the range and with a Z T -factor value that is twice as large as that of previously reported carbon nanotube-based photothermoelectric photodetectors. Particularly, we fabricated a ˜1 -m-long device consisting of tens of p+-p- junctions and weaved it into a shirt. This device demonstrated a collective photoresponse of the series-connected junctions under global illumination. The performance of the device did not show any sign of deterioration through 200 bending tests with a bending radius smaller than 100 μ m as well as standard washing and ironing cycles. This unconventional photodetector will find applications in wearable technology that require detection of electromagnetic radiation.

  16. Structure of Carbon Nanotube-dendrimer composite

    OpenAIRE

    Vasumathi, V.; Pramanik, Debabrata; Sood, A. K.; Maiti, Prabal K

    2012-01-01

    Using all atomistic molecular dynamics (MD) simulations we report the microscopic picture of the nanotube-dendrimer complex for PAMAM dendrimer of generation 2 to 4 and carbon nanotube of chirality (6,5). We find compact wrapping conformations of dendrimer onto the nanotube surface for all the three generations of PAMAM dendrimer. The degree of wrapping is more for non-protonated dendrimer compared to the protonated dendrimer. For comparison we also study the interaction of another dendrimer,...

  17. Carbon nanotubes as heat dissipaters in microelectronics

    DEFF Research Database (Denmark)

    Pérez Paz, Alejandro; García-Lastra, Juan María; Markussen, Troels

    2013-01-01

    We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties...... of nanotubes in presence of an interface with various substances, including air and water. Comparison with previous works is established whenever is possible....

  18. Dielectrophoretic assembly of carbon nanotube devices

    DEFF Research Database (Denmark)

    Dimaki, Maria

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane....... The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an electric field, thus enabling nanotube integration in microsystems. Dielectrophoresis offers also....... A model for the dielectrophoretic assembly of carbon nanotubes on microelectrodes was developed and several simulations were conducted using values from the available literature for the various key parameters. The model can give qualitative results regarding the parameters dominating the dielectrophoretic...

  19. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  20. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  1. Carbon Nanotubes as Optical Sensors in Biomedicine.

    Science.gov (United States)

    Farrera, Consol; Torres Andón, Fernando; Feliu, Neus

    2017-11-28

    Single-walled carbon nanotubes (SWCNTs) have become potential candidates for a wide range of medical applications including sensing, imaging, and drug delivery. Their photophysical properties (i.e., the capacity to emit in the near-infrared), excellent photostability, and fluorescence, which is highly sensitive to the local environment, make SWCNTs promising optical probes in biomedicine. In this Perspective, we discuss the existing strategies for and challenges of using carbon nanotubes for medical diagnosis based on intracellular sensing as well as discuss also their biocompatibility and degradability. Finally, we highlight the potential improvements of this nanotechnology and future directions in the field of carbon nanotubes for biomedical applications.

  2. Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing.

    Science.gov (United States)

    Teschome, Bezu; Facsko, Stefan; Gothelf, Kurt V; Keller, Adrian

    2015-11-24

    DNA origami has become an established technique for designing well-defined nanostructures with any desired shape and for the controlled arrangement of functional nanostructures with few nanometer resolution. These unique features make DNA origami nanostructures promising candidates for use as scaffolds in nanoelectronics and nanophotonics device fabrication. Consequently, a number of studies have shown the precise organization of metallic nanoparticles on various DNA origami shapes. In this work, we fabricated large arrays of aligned DNA origami decorated with a high density of gold nanoparticles (AuNPs). To this end, we first demonstrate the high-yield assembly of high-density AuNP arrangements on DNA origami adsorbed to Si surfaces with few unbound background nanoparticles by carefully controlling the concentrations of MgCl2 and AuNPs in the hybridization buffer and the hybridization time. Then, we evaluate two methods, i.e., hybridization to prealigned DNA origami and molecular combing in a receding meniscus, with respect to their potential to yield large arrays of aligned AuNP-decorated DNA origami nanotubes. Because of the comparatively low MgCl2 concentration required for the efficient immobilization of the AuNPs, the prealigned DNA origami become mobile and displaced from their original positions, thereby decreasing the alignment yield. This increased mobility, on the other hand, makes the adsorbed origami susceptible to molecular combing, and a total alignment yield of 86% is obtained in this way.

  3. Carbon nanotubes : from molecular to macroscopic sensors

    NARCIS (Netherlands)

    Wood, J.R.; Zhao, Qing; Frogley, M.D.; Meurs, E.R.; Prins, A.D.; Peijs, A.A.J.M.; Dunstan, D.J.; Wagner, H.D.

    2000-01-01

    The components that contribute to Raman spectral shifts of single-wall carbon nanotubes (SWNT’s) embedded in polymer systems have been identified. The temperature dependence of the Raman shift can be separated into the temperature dependence of the nanotubes, the cohesive energy density of the

  4. Quantum conductance of carbon nanotube peapods

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Mazzoni, Mario S.C.; Louie, Steven G.

    2003-01-01

    We present a first-principles study of the quantum conductance of hybrid nanotube systems consisting of single-walled carbon nanotubes (SWCNTs) encapsulating either an isolated single C60 molecule or a chain of C60 molecules (nanotube peapods). The calculations show a rather weak bonding interaction between the fullerenes and the SWCNTs. The conductance of a (10,10) SWCNT with a single C60 molecule is virtually unaffected at the Fermi level, but exhibits quantized resonant reductions at the molecular levels. The nanotube peapod arrangement gives rise to high density of states for the fullerene highest occupied molecular orbital and lowest unoccupied molecular orbital bands

  5. Glucose oxidase immobilization onto carbon nanotube networking

    International Nuclear Information System (INIS)

    Karachevtsev, V.A.; Glamazda, A.Yu.; Zarudnev, E.S.; Karachevtsev, M.V.; Leontiev, V.S.; Linnik, A.S.; Plokhotnichenko, A.M.; Stepanian, S.G.; Lytvyn, O.S.

    2012-01-01

    The efficient immobilization of GOX onto a carbon nanotube network through the molecular interface formed by PSE is carried out. This conclusion is based on the analysis of AFM images of the network with the adsorbed enzyme, whose globules locate mainly along a nanotube. The band corresponding to the high-frequency component of the G mode in the RR spectrum of the nanotube with adsorbed PSE is downshifted by 0.7 cm -1 relative to this band in the spectrum of pristine nanotubes. The analysis of the intensities of bands assigned to the RBM of nanotubes with adsorbed PSE in comparison with the spectrum of pristine SWNTs revealed the intensity transformation, which can be explained by a change of the resonance condition with variation of the laser energy. Thus, we concluded that PSE molecules create nanohybrids with SWNTs, which ensures the further enzyme immobilization. As the RR spectrum of an SWNT:PSE:GOX film does not essentially differ from SWNT:PSE ones, this indicates that the molecular interface (PSE) isolates the enzyme from nanotubes strongly enough. Our studies on the conductive properties of a single walled carbon nanotube network sprayed onto a quartz substrate from a solution of nanotubes in dichlorobenzene demonstrated that the I(U) dependence has nonlinear character. Most likely, the nonlinearity is related to Schottky barriers, which originate on the contact between nanotubes and the gold electrode, as well as between nanotubes with different conductivities. The deposition of bioorganic compounds (PSE and GOX) on the carbon nanotube network is accompanied by a decrease of their conductivity. Most probably, such a decrease is caused by adsorbed PSE molecules, which induce the appearance of scattering centers for charge carriers on the nanotube surface. The following GOX adsorption has practically no effect on the conductivity of the nanotube network that evidences the reliable isolation of the nanotube surface from the enzyme by means of the molecular

  6. Multiwall carbon nanotube microcavity arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rajib; Butt, Haider, E-mail: h.butt@bham.ac.uk [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Rifat, Ahmmed A. [Integrated Lightwave Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, Massachusetts 02139 (United States); Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2016-03-21

    Periodic highly dense multi-wall carbon nanotube (MWCNT) arrays can act as photonic materials exhibiting band gaps in the visible regime and beyond terahertz range. MWCNT arrays in square arrangement for nanoscale lattice constants can be configured as a microcavity with predictable resonance frequencies. Here, computational analyses of compact square microcavities (≈0.8 × 0.8 μm{sup 2}) in MWCNT arrays were demonstrated to obtain enhanced quality factors (≈170–180) and narrow-band resonance peaks. Cavity resonances were rationally designed and optimized (nanotube geometry and cavity size) with finite element method. Series (1 × 2 and 1 × 3) and parallel (2 × 1 and 3 × 1) combinations of microcavities were modeled and resonance modes were analyzed. Higher order MWCNT microcavities showed enhanced resonance modes, which were red shifted with increasing Q-factors. Parallel microcavity geometries were also optimized to obtain narrow-band tunable filtering in low-loss communication windows (810, 1336, and 1558 nm). Compact series and parallel MWCNT microcavity arrays may have applications in optical filters and miniaturized optical communication devices.

  7. Filled and empty states of carbon nanotubes in water: Dependence ...

    Indian Academy of Sciences (India)

    WINTEC

    We have carried out a series of molecular dynamics simulations of water containing a narrow carbon nanotube ..... tant system containing the nanotube is re-equilibrated for each ... quent production phase of the simulation run, the nanotube is ...

  8. Raman spectra of filled carbon nanotubes

    International Nuclear Information System (INIS)

    Bose, S.M.; Behera, S.N.; Sarangi, S.N.; Entel, P.

    2004-01-01

    The Raman spectra of a metallic carbon nanotube filled with atoms or molecules have been investigated theoretically. It is found that there will be a three way splitting of the main Raman lines due to the interaction of the nanotube phonon with the collective excitations (plasmons) of the conduction electrons of the nanotube as well as its coupling with the phonon of the filling material. The positions and relative strengths of these Raman peaks depend on the strength of the electron-phonon interaction, phonon frequency of the filling atom and the strength of interaction of the nanotube phonon and the phonon of the filling atoms. Careful experimental studies of the Raman spectra of filled nanotubes should show these three peaks. It is also shown that in a semiconducting nanotube the Raman line will split into two and should be observed experimentally

  9. Functionalized carbon nanotubes: biomedical applications

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  10. Carbon nanotubes based vacuum gauge

    Science.gov (United States)

    Rudyk, N. N.; Il'in, O. I.; Il'ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  11. Carbon Nanotube Tape Vibrating Gyroscope

    Science.gov (United States)

    Tucker, Dennis Stephen (Inventor)

    2016-01-01

    A vibrating gyroscope includes a piezoelectric strip having length and width dimensions. The piezoelectric strip includes a piezoelectric material and carbon nanotubes (CNTs) substantially aligned and polled along the strip's length dimension. A spindle having an axis of rotation is coupled to the piezoelectric strip. The axis of rotation is parallel to the strip's width dimension. A first capacitance sensor is mechanically coupled to the spindle for rotation therewith. The first capacitance sensor is positioned at one of the strip's opposing ends and is spaced apart from one of the strip's opposing faces. A second capacitance sensor is mechanically coupled to the spindle for rotation therewith. The second capacitance sensor is positioned at another of the strip's opposing ends and is spaced apart from another of the strip's opposing faces. A voltage source applies an AC voltage to the piezoelectric strip.

  12. Enhanced Carbon Nanotube Ultracapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  13. Nanoscratch technique for aligning multiwalled carbon nanotubes ...

    Indian Academy of Sciences (India)

    Carbon nanotube; arc discharge; characterization; alignment; nanoscratch. 1. Introduction ... During arc discharge, when the gap between the electrodes is ∼ 1 mm, ..... increase in the D band intensity in the aligned region may not be possibly ...

  14. Carbon Nanotube Infused Launch Vehicle Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — For the past 5 years Orbital ATK has been investing in, prototyping, and testing carbon nanotube infused composite structures to evaluate their impact on launch...

  15. Thermophoresis of water droplets inside carbon nanotubes

    DEFF Research Database (Denmark)

    Zambrano, Harvey; Walther, Jens Honore; Oyarzua, Elton

    2016-01-01

    Carbon Nanotubes(CNTs) offer unique possibilities as fluid conduits with applications ranging from lab on a chip devices to encapsulation media for drug delivery. CNTs feature high mechanical strength, chemical and thermalstability and biocompatibility therefore they are promising candidates...

  16. Carbon Nano-Tube (CNT) Reinforced COPV

    Data.gov (United States)

    National Aeronautics and Space Administration — Reduce the structural mass of future aerospace vehicles through the development of ultra lightweight materials and structures through the use of: Carbon nanotube...

  17. Synthesis and characterization of carbon nanotubes

    Science.gov (United States)

    Ritschel, Manfred; Bartsch, Karl; Leonhardt, Albrecht; Graff, Andreas; Täschner, Christine; Fink, Jörg

    2001-11-01

    The catalytic chemical vapor deposition (CCVD) is a very promising process with respect to large scale production of different kinds of carbon nanostructures. By modifying the deposition temperature, the catalyst material and the hydrocarbon nanofibers with herringbone structure, multi-walled nanotubes with tubular structure and single-walled nanotubes were deposited. Furthermore, layers of aligned multi-walled nanotubes could be obtained on oxidized silicon substrates coated with thin sputtered metal layers (Co, permalloy) as well as onto WC-Co hardmetals by using the microwave assisted plasma CVD process (MWCVD). The obtained carbon modifications were characterized by scanning (SEM) and transmission (TEM) electron microscopy. The hydrogen storage capability of the nanofibers and nanotubes and the electron field emission of the nanotube layers was investigated.

  18. Carbon nanotube temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Ilia N.; Geohegan, David B.

    2017-09-12

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  19. Carbon nanotube temperature and pressure sensors

    Science.gov (United States)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  20. Controlled Deposition and Alignment of Carbon Nanotubes

    Science.gov (United States)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  1. Ballistic resistance capacity of carbon nanotubes

    International Nuclear Information System (INIS)

    Mylvaganam, Kausala; Zhang, L C

    2007-01-01

    Carbon nanotubes have high strength, light weight and excellent energy absorption capacity and therefore have great potential applications in making antiballistic materials. By examining the ballistic impact and bouncing-back processes on carbon nanotubes, this investigation shows that nanotubes with large radii withstand higher bullet speeds and the ballistic resistance is the highest when the bullet hits the centre of the CNT; the ballistic resistance of CNTs will remain the same on subsequent bullet strikes if the impact is after a small time interval

  2. Method for nano-pumping using carbon nanotubes

    Science.gov (United States)

    Insepov, Zeke [Darien, IL; Hassanein, Ahmed [Bolingbrook, IL

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  3. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Zhenxia; Yu Liping; Zhang Wei; Ding Yinfeng; Li Yulan; Han Jiaguang; Zhu Zhiyuan; Xu Hongjie; He Guowei; Chen Yi; Hu Gang

    2004-01-01

    Experiments and molecular dynamics have demonstrated that electron irradiation could create molecular junctions between crossed single-wall carbon nanotubes. Recently molecular dynamics computation predicted that ion irradiation could also join single-walled carbon nanotubes. Employing carbon ion irradiation on multi-walled carbon nanotubes, we find that these nanotubes evolve into amorphous carbon nanowires, more importantly, during the process of which various molecular junctions of amorphous nanowires are formed by welding from crossed carbon nanotubes. It demonstrates that ion-beam irradiation could be an effective way not only for the welding of nanotubes but also for the formation of nanowire junctions

  4. Carbon nanotube stationary phases for microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Bøggild, Peter; Kutter, Jörg Peter

    , microfluidic devices with microfabricated carbon nanotube columns for electrochromatographic separations will be presented. The electrically conductive carbon nanotube layer has been patterned into hexoganol micropillars in order to support electroosmotic flow without forming gas bubbles from electrolysis......The use of nanomaterials in separation science has increased rapidly in the last decade. The reason for this is to take advantage of the unique properties of these materials, such as a very high surface-to-volume ratio and favourable sorbent behaviour. Carbon nanostructures, such as carbon...

  5. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  6. Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil-water separation

    Science.gov (United States)

    Hou, Kun; Zeng, Yicheng; Zhou, Cailong; Chen, Jiahui; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Lin, Yingguang; Pi, Pihui

    2017-09-01

    A durable underwater superoleophobic mesh was conveniently prepared by layer-by-layer (LBL) assembly of poly (diallyldimethylammonium chloride) (PDDA) and halloysite nanotubes (HNTs) on a stainless steel mesh. The hierarchical structure and roughness of the PDDA/HNTs coating surface were controlled by adjusting the number of layer deposition cycles. When the PDDA/HNTs coating with 10 deposition cycles was decorated on the mesh with pore size of about 54 μm, the underwater superoleophobic mesh was obtained. The as-prepared underwater superoleophobic PDDA/HNTs decorated mesh exhibits outstanding oil-water separation performance with a separation efficiency of over 97% for various oil/water mixtures, which allowed water to pass through while repelled oil completely. In addition, the as-prepared decorated mesh still maintained high separation efficiency above 97% after repeated 20 separation times for hexane/water mixture or chloroform/water mixture. More importantly, the as-prepared decorated mesh is durable enough to resist chemical and mechanical challenges, such as strong alkaline, salt aqueous and sand abrasion. Therefore, the as-prepared decorated mesh has practical utility in oil-water separation due to its stable oil-water performance, remarkable chemical and mechanical durability and the facile and eco-friendly preparation process.

  7. Carbon Nanotube Templated Microfabrication of Porous Silicon-Carbon Materials

    Science.gov (United States)

    Song, Jun; Jensen, David; Dadson, Andrew; Vail, Michael; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2010-10-01

    Carbon nanotube templated microfabrication (CNT-M) of porous materials is demonstrated. Partial chemical infiltration of three dimensional carbon nanotube structures with silicon resulted in a mechanically robust material, precisely structured from the 10 nm scale to the 100 micron scale. Nanoscale dimensions are determined by the diameter and spacing of the resulting silicon/carbon nanotubes while the microscale dimensions are controlled by lithographic patterning of the CNT growth catalyst. We demonstrate the utility of this hierarchical structuring approach by using CNT-M to fabricate thin layer chromatography (TLC) separations media with precise microscale channels for fluid flow control and nanoscale porosity for high analyte capacity.

  8. Carbon Nanotube-Based Synthetic Gecko Tapes

    Science.gov (United States)

    Dhinojwala, Ali

    2008-03-01

    Wall-climbing geckos have unique ability to attach to different surfaces without the use of any viscoelastic glues. On coming in contact with any surface, the micron-size gecko foot-hairs deform, enabling molecular contact over large areas, thus translating weak van der Waals (vdW) interactions into enormous shear forces. We will present our recent results on the development of synthetic gecko tape using aligned carbon nanotubes to mimic the keratin hairs found on gecko feet. The patterned carbon nanotube-based gecko tape can support a shear stress (36 N/cm^2) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micron-size setae (replicated by nanotube bundles) and nanometer-size spatulas (individual nanotubes) are necessary to achieve macroscopic shear adhesion and to translate the weak vdW interactions into high shear forces. The carbon nanotube based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics and space applications. The mechanism behind these large shear forces and self-cleaning properties of these carbon nanotube based synthetic gecko tapes will be discussed. This work was performed in collaboration with graduate students Liehui Ge, and Sunny Sethi, and collaborators from RPI; Lijie Ci and Professor Pulickel Ajayan.

  9. Physical removal of metallic carbon nanotubes from nanotube network devices using a thermal and fluidic process

    International Nuclear Information System (INIS)

    Ford, Alexandra C; Shaughnessy, Michael; Wong, Bryan M; Kane, Alexander A; Krafcik, Karen L; Léonard, François; Kuznetsov, Oleksandr V; Billups, W Edward; Hauge, Robert H

    2013-01-01

    Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is versatile and is applied to devices post-fabrication. (paper)

  10. Synthesis and Characterization Carbon Nanotubes Doped Carbon Aerogels

    Science.gov (United States)

    Xu, Yuelong; Yan, Meifang; Liu, Zhenfa

    2017-12-01

    Polycondensation of phloroglucinol, resorcinol and formaldehyde with carbon nanotube (CNT) as the additives, using sodium carbonate as the catalyst, leads to the formation of CNT - doped carbon aerogels. The structure of carbon aerogels (CAs) with carbon nanotubes (CNTs) were characterized by X-ray diffraction and scanning electron microscopy. The specific surface area, pore size distribution and pore volume were measured by surface area analyzer. The results show that when the optimum doping dosage is 5%, the specific surface area of CNT - doped carbon aerogel is up to 665 m2 g-1 and exhibit plentiful mesoporous.

  11. Selective Functionalization of Carbon Nanotubes: Part II

    Science.gov (United States)

    Meyyappan, Meyya; Khare, Bishun

    2010-01-01

    An alternative method of low-temperature plasma functionalization of carbon nanotubes provides for the simultaneous attachment of molecular groups of multiple (typically two or three) different species or different mixtures of species to carbon nanotubes at different locations within the same apparatus. This method is based on similar principles, and involves the use of mostly the same basic apparatus, as those of the methods described in "Low-Temperature Plasma Functionalization of Carbon Nanotubes" (ARC-14661-1), NASA Tech Briefs, Vol. 28, No. 5 (May 2004), page 45. The figure schematically depicts the basic apparatus used in the aforementioned method, with emphasis on features that distinguish the present alternative method from the other. In this method, one exploits the fact that the composition of the deposition plasma changes as the plasma flows from its source in the precursor chamber toward the nanotubes in the target chamber. As a result, carbon nanotubes mounted in the target chamber at different flow distances (d1, d2, d3 . . .) from the precursor chamber become functionalized with different species or different mixtures of species. In one series of experiments to demonstrate this method, N2 was used as the precursor gas. After the functionalization process, the carbon nanotubes from three different positions in the target chamber were examined by Fourier-transform infrared spectroscopy to identify the molecular groups that had become attached. On carbon nanotubes from d1 = 1 cm, the attached molecular groups were found to be predominantly C-N and C=N. On carbon nanotubes from d2 = 2.5 cm, the attached molecular groups were found to be predominantly C-(NH)2 and/or C=NH2. (The H2 was believed to originate as residual hydrogen present in the nanotubes.) On carbon nanotubes from d3 = 7 cm no functionalization could be detected - perhaps, it was conjectured, because this distance is downstream of the plasma source, all of the free ions and free radicals of

  12. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  13. Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes

    DEFF Research Database (Denmark)

    Schoen, Philipp A.E.; Walther, Jens Honore; Poulikakos, Dimos

    2007-01-01

    The authors investigate the thermally driven mass transport of gold nanoparticles confined inside carbon nanotubes using molecular dynamics simulations. The observed thermophoretic motion of the gold nanoparticles correlates with the phonon dispersion exhibited by a standard carbon nanotube and...

  14. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  15. Carbon nanotubes : their synthesis and integration into nanofabricated structures

    NARCIS (Netherlands)

    Druzhinina, Tamara

    2011-01-01

    The field of nanotechnology has experienced constantly increasing interest over the past decades both from industry and academy. Commonly used nanomaterials include: nanoparticles, nanowires, quantum dots, fullerenes, and carbon nanotubes. Carbon nanotubes, in particular, are promising building

  16. Thermal conductivity and thermal rectification in unzipped carbon nanotubes

    International Nuclear Information System (INIS)

    Ni Xiaoxi; Li Baowen; Zhang Gang

    2011-01-01

    We study the thermal transport in completely unzipped carbon nanotubes, which are called graphene nanoribbons, partially unzipped carbon nanotubes, which can be seen as carbon-nanotube-graphene-nanoribbon junctions, and carbon nanotubes by using molecular dynamics simulations. It is found that the thermal conductivity of a graphene nanoribbon is much less than that of its perfect carbon nanotube counterparts because of the localized phonon modes at the boundary. A partially unzipped carbon nanotube has the lowest thermal conductivity due to additional localized modes at the junction region. More strikingly, a significant thermal rectification effect is observed in both partially unzipped armchair and zigzag carbon nanotubes. Our results suggest that carbon-nanotube-graphene-nanoribbon junctions can be used in thermal energy control.

  17. Release characteristics of selected carbon nanotube polymer composites

    Science.gov (United States)

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  18. Electrical conductivity of metal–carbon nanotube structures: Effect of ...

    Indian Academy of Sciences (India)

    Administrator

    The electrical properties of asymmetric metal–carbon nanotube (CNT) structures have been studied using ... The models with asymmetric metal contacts and carbon nanotube bear resemblance to experimental ... ordinary mechanical strength.

  19. Liquid crystalline order of carbon nanotubes

    Science.gov (United States)

    Georgiev, Georgi; Ahlawat, Aditya; Mulkern, Brian; Doyle, Robert; Mongeau, Jennifer; Ogilvie, Alex

    2007-03-01

    Topological defects formed during phase transitions in liquid crystals provide a direct proof of the standard Cosmological model and are direct links to the Early Universe. On the other hand in Nanotechnology, carbon nanotubes can be manipulated and oriented directly by changing the liquid crystalline state of the nanotubes, in combination with organic liquid crystals. Currently there are no nano-assemblers, which makes the liquid crystal state of the nanotubes, one of the few ways of controlling them. We show the design of a fast and efficient polarized light ellipsometric system (a new modification of previous optical systems) that can provide fast quantitative real time measurements in two dimensions of the formation of topological defects in liquid crystals during phase transitions in lab settings. Our aim is to provide fundamental information about the formation of optically anisotropic structures in liquid crystals and the orientation of carbon nanotubes in electric field.

  20. Carbon Nanotubes and Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Barbara P. Barna

    2014-06-01

    Full Text Available Use of nanomaterials in manufactured consumer products is a rapidly expanding industry and potential toxicities are just beginning to be explored. Combustion-generated multiwall carbon nanotubes (MWCNT or nanoparticles are ubiquitous in non-manufacturing environments and detectable in vapors from diesel fuel, methane, propane, and natural gas. In experimental animal models, carbon nanotubes have been shown to induce granulomas or other inflammatory changes. Evidence suggesting potential involvement of carbon nanomaterials in human granulomatous disease, has been gathered from analyses of dusts generated in the World Trade Center disaster combined with epidemiological data showing a subsequent increase in granulomatous disease of first responders. In this review we will discuss evidence for similarities in the pathophysiology of carbon nanotube-induced pulmonary disease in experimental animals with that of the human granulomatous disease, sarcoidosis.

  1. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  2. Carbon nanotube fiber terahertz polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Ahmed [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Tsentalovich, Dmitri E.; Young, Colin C. [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Heimbeck, Martin S. [Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Pasquali, Matteo [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2016-04-04

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ∼−30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2–1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  3. Carbon Nanotube Underwater Acoustic Thermophone

    Science.gov (United States)

    2016-09-23

    nanotubes (unless encapsulated or housed) are quite fragile and are susceptible to disintegration especially if the nanotubes are touched or moved too...The acoustic impedance (defined as the product of material density and sound speed) of the top shell 12 should match the Attorney Docket No. 300009

  4. Chemical reactions confined within carbon nanotubes.

    Science.gov (United States)

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  5. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    Science.gov (United States)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  6. Functionalization of carbon nanotubes/graphene by polyoxometalates and their enhanced photo-electrical catalysis

    International Nuclear Information System (INIS)

    Zhang Shuang-Shuang; Liu Rong-Ji; Zhang Guang-Jin; Gu Zhan-Jun

    2014-01-01

    Carbon nanotubes and graphene are carbon-based materials, which possess not only unique structure but also properties such as high surface area, extraordinary mechanical properties, high electronic conductivity, and chemical stability. Thus, they have been regarded as an important material, especially for exploring a variety of complex catalysts. Considerable efforts have been made to functionalize and fabricate carbon-based composites with metal nanoparticles. In this review, we summarize the recent progress of our research on the decoration of carbon nanotubes/graphene with metal nanoparticles by using polyoxometalates as key agents, and their enhanced photo-electrical catalytic activities in various catalytic reactions. The polyoxometalates play a key role in constructing the nanohybrids and contributing to their photo-electrical catalytic properties. (invited review — international conference on nanoscience and technology, china 2013)

  7. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity.

    Science.gov (United States)

    Hajjaji, A; Elabidi, M; Trabelsi, K; Assadi, A A; Bessais, B; Rtimi, S

    2018-06-05

    This study investigates the effect of the diameter of TiO 2 nanotubes and silver decorated nanotubes on optical properties and photocatalytic inactivation of Escherichia coli under visible light. The TiO 2 nanotubes (TiO 2 -NTs) were prepared using the electrochemical method varying the anodization potential starting from 20 V until 70 V. The Ag nanoparticles were carried out using the photoreduction process under the same experimental conditions. The diameter size was determined using the scanning electronic microscopy (SEM). TiO 2 -NTs diameter reached ∼100 nm at 70 V. Transmission electronic microscopy (TEM) imaging confirmed the TiO 2 -NTs surface decoration by silver nanoparticles. The Ag-NPs average size was found to be equal to 8 nm. The X-Ray diffraction (XRD) analysis confirm that all TiO 2 -NTs crystallize in the anatase phases regardless the used anodization potential. The decrease of the photoluminescence (PL) intensity of Ag NPs decorated TiO 2 -NTs indicates the decrease of the specific area when the nanotubes diameter increases. The UV-vis absorbance show that the absorption edges was bleu shifted with the increasing of nanotubes diameter, which can be explained by the increase of the crystallites average size. The bacterial adhesion and inactivation tests were carried in the dark and under light. Bacteria were seen to adhere on TiO 2 -NTs in the dark; however, under light the bacteria were killed before they establish a strong contact with the TiO 2 -NTs and Ag/TiO 2 -NTs surfaces. Bacterial inactivation kinetics were faster when the anodizing potential of the NTs-preparation increases. A total bacterial inactivation was obtained on ∼100 nm nanotubes diameter within 90 min. This result was attributed to the enhancement of the TNTs crystallinity leading to reduced surface defects. Redox catalysis was seen to occur under light on the TiO 2 -NTs and Ag/TiO 2 -NTs. the photo-induced antibacterial activity on the AgO/Ag 2 O decorated Ti

  8. Graphene-carbon nanotube hybrid materials and use as electrodes

    Science.gov (United States)

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  9. Carbon nanotubes in neuroregeneration and repair.

    Science.gov (United States)

    Fabbro, Alessandra; Prato, Maurizio; Ballerini, Laura

    2013-12-01

    In the last decade, we have experienced an increasing interest and an improved understanding of the application of nanotechnology to the nervous system. The aim of such studies is that of developing future strategies for tissue repair to promote functional recovery after brain damage. In this framework, carbon nanotube based technologies are emerging as particularly innovative tools due to the outstanding physical properties of these nanomaterials together with their recently documented ability to interface neuronal circuits, synapses and membranes. This review will discuss the state of the art in carbon nanotube technology applied to the development of devices able to drive nerve tissue repair; we will highlight the most exciting findings addressing the impact of carbon nanotubes in nerve tissue engineering, focusing in particular on neuronal differentiation, growth and network reconstruction. © 2013.

  10. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    Science.gov (United States)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  11. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  12. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  13. High-temperature hydrogenation of pure and silver-decorated titanate nanotubes to increase their solar absorbance for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, Milivoj [Ruđer Bošković Institute, Bijenička 54, HR-1002 Zagreb (Croatia); Gajović, Andreja, E-mail: gajovic@irb.hr [Ruđer Bošković Institute, Bijenička 54, HR-1002 Zagreb (Croatia); Jakša, Gregor; Žagar, Kristina; Čeh, Miran [Institute Jožef Stefan, Jamova 39, 1000 Ljubljana (Slovenia)

    2014-04-05

    Graphical abstract: The aim of the work is to study how annealing in a reducing atmosphere of titanate nanotubes (TiNT) and Ag decorated titanate nanotubes (TiNT@Ag) influenced on their structure, morphology, phase transitions, UV–ViS-NIR absorbance and photocatalytic activity. An increase of photocatalytic activity after a heat treatment in a reducing atmosphere was observed in the TiNT and TiNT@Ag. We found that the hydrogenated TiNT@Ag samples (TiNT@Ag-HA) had a two-times higher photodegradation impact on the caffeine than the TiNT samples, which is a consequence of the increased absorption of visible light and the synergetic effects between the silver and the TiO{sub 2} nanoparticles that increase the efficiency of the formation of electron–hole pairs and the charge transfer to the surface of the nanoparticles. -- Highlights: • Titanate nanotubes with and without Ag nanoparticles were hydrogenated at 550 °C. • TiO{sub 2} nanostructures obtained by hydrogenation have core–shell structure. • Hydrogenated samples show absorption in the visible spectral region. • Hydrogenated Ag decorated sample show stronger absorption in visible than in UV. • Photocatalytic efficiency is improved by hydrogenation and by Ag nanoparticles. -- Abstract: Titanate nanotubes (TiNTs) and silver-decorated titanate nanotubes (TiNTs@Ag) were synthesized using the hydrothermal method. In the decorated nanotubes the silver particles were obtained by the photoreduction of AgNO{sub 3} under UV light. Pure and Ag-decorated nanotubes were high-temperature heat treated at 550 °C in a hydrogen atmosphere and the “core–shell”-structured TiO{sub 2} nanoparticles were formed. For the structural characterization of all the titanate nanostructures we used conventional and analytical transmission electron microscopy (TEM) techniques, X-ray diffraction (XRD) and Raman spectroscopy. The Ag-decorated titanate nanostructures were additionally studied by X-ray photo

  14. A carbon nanotube optical rectenna

    Science.gov (United States)

    Sharma, Asha; Singh, Virendra; Bougher, Thomas L.; Cola, Baratunde A.

    2015-12-01

    An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of ˜2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (˜10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna, a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current-voltage scans between 5 and 77 °C, indicating a potential for robust operation.

  15. Nitrogen in highly crystalline carbon nanotubes

    International Nuclear Information System (INIS)

    Ducati, C; Koziol, K; Stavrinadis, A; Friedrichs, S; Windle, A H; Midgley, P A

    2006-01-01

    Multiwall carbon nanotubes (MWCNTs) with an unprecedented degree of internal order were synthesised by chemical vapour deposition (CVD) adding a nitrogen-containing compound to the hydrocarbon feedstock. Ferrocene was used as the metal catalyst precursor. The remarkable crystallinity of these nanotubes lies both in the isochirality and in the crystallographic register of their walls, as demonstrated by electron diffraction and high resolution electron microscopy experiments. High resolution transmission electron microscopy analysis shows that the walls of the nanotubes consist of truncated stacked cones, instead of perfect cylinders, with a range of apex angles that appears to be related to the nitrogen concentration in the synthesis process. The structure of armchair, zigzag and chiral nanotubes is modelled and discussed in terms of density of topological defects, providing an interesting comparison with our microscopy experiments. A growth mechanism based on the interplay of base- and tip-growth is proposed to account for our experimental observations

  16. Topological phase diagram of superconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Milz, Lars; Marganska-Lyzniak, Magdalena; Grifoni, Milena [Institut I - Theoretische Physik Universitaet Regensburg (Germany)

    2016-07-01

    The topological superconducting phase diagram of superconducting carbon nanotubes is discussed. Under the assumption of a short-ranged pairing potential, there are two spin-singlet states: an s-wave and an exotic p + ip-wave that are possible because of the special structure of the honeycomb lattice. The consequences for the possible presence of Majorana edge states in carbon nanotubes are addressed. In particular, regions in the magnetic field-chemical potential plane possibly hosting localized Majorana modes are discussed.

  17. Carbon nanotubes as anti-bacterial agents.

    Science.gov (United States)

    Mocan, Teodora; Matea, Cristian T; Pop, Teodora; Mosteanu, Ofelia; Buzoianu, Anca Dana; Suciu, Soimita; Puia, Cosmin; Zdrehus, Claudiu; Iancu, Cornel; Mocan, Lucian

    2017-10-01

    Multidrug-resistant bacterial infections that have evolved via natural selection have increased alarmingly at a global level. Thus, there is a strong need for the development of novel antibiotics for the treatment of these infections. Functionalized carbon nanotubes through their unique properties hold great promise in the fight against multidrug-resistant bacterial infections. This new family of nanovectors for therapeutic delivery proved to be innovative and efficient for the transport and cellular translocation of therapeutic molecules. The current review examines the latest progress in the antibacterial activity of carbon nanotubes and their composites.

  18. Laser ablative synthesis of carbon nanotubes

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  19. Underwater Acoustic Carbon Nanotube Thermophone

    Science.gov (United States)

    2016-09-23

    decreases rapidly as the distance from the conductor increases. Based on the rapid production of these temperature waves; the net effect is to produce a...fragile and are susceptible to disintegration especially if the nanotube fibers are touched or moved too quickly. A bare nanotube configuration also has...impedance (defined as the product of material density and sound speed) of the top shell 42 should match the radiation medium for higher efficiency

  20. Geckolike high shear strength by carbon nanotube fiber adhesives

    Science.gov (United States)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  1. Enhancement in photoluminescence performance of carbon-decorated T-ZnO

    International Nuclear Information System (INIS)

    Jian, Xian; Chen, Guozhang; Wang, Chao; Yin, Liangjun; Yang, Ping; Chen, Lei; Xu, Bao; Gao, Yang; Feng, Yanyu; Tang, Hui; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Cao, Yu; Wang, Siyuan; Gao, Xin; Li, Gang

    2015-01-01

    The facile preparation of ZnO possessing high visible luminescence intensity remains challenging due to an unclear luminescence mechanism. Here, two basic approaches are proposed to enhance the luminescent intensity based on the theoretical analysis over surface defects. Based on the deduction, we introduce a methodology for obtaining hybrid tetrapod-like zinc oxide (T-ZnO), decorated by carbon nanomaterials on T-ZnO surfaces through the catalytic chemical vapor deposition approach. The intensity of the T-ZnO green emission can be modulated by topography and the proportion of carbon. Under proper experiment conditions, the carbon decorating leads to dramatically enhanced luminescence intensity of T-ZnO from 400 to 700 nm compared with no carbon decorated, which elevates this approach to a simple and effective method for the betterment of fluorescent materials in practical applications. (paper)

  2. PdCu alloy nanoparticle-decorated copper nanotubes as enhanced electrocatalysts: DFT prediction validated by experiment

    Science.gov (United States)

    Wu, Dengfeng; Xu, Haoxiang; Cao, Dapeng; Fisher, Adrian; Gao, Yi; Cheng, Daojian

    2016-12-01

    In order to combine the advantages of both 0D and 1D nanostructured materials into a single catalyst, density functional theory (DFT) calculations have been used to study the PdCu alloy NP-decorated Cu nanotubes (PdCu@CuNTs). These present a significant improvement of the electrocatalytic activity of formic acid oxidation (FAO). Motivated by our theoretical work, we adopted the seed-mediated growth method to successfully synthesize the nanostructured PdCu@CuNTs. The new catalysts triple the catalytic activity for FAO, compared with commercial Pd/C. In summary, our work provides a new strategy for the DFT prediction and experimental synthesis of novel metal NP-decorated 1D nanostructures as electrocatalysts for fuel cells.

  3. Carbon nanotube and graphene nanoribbon interconnects

    CERN Document Server

    Das, Debaprasad

    2014-01-01

    "The book, Caron Nanotube and Graphene Nanoribbon Interconnects, authored by Drs. Debapraad Das and Hafizur Rahaman serves as a good source of material on CNT and GNR interconnects for readers who wish to get into this area and also for practicing engineers who would like to be updated in advances of this field."-Prof. Ashok Srivastava, Louisiana State University, Baton Rouge, USA"Mathematical analysis included in each and every chapter is the main strength of the materials. ... The book is very precise and useful for those who are working in this area. ... highly focused, very compact, and easy to apply. ... This book depicts a detailed analysis and modelling of carbon nanotube and graphene nanoribbon interconnects. The book also covers the electrical circuit modelling of carbon nanotubes and graphene nanoribbons."-Prof. Chandan Kumar Sarkar, Jadavpur University, Kolkata, India.

  4. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yue; Zhang, Min, E-mail: congmingyang123@163.com; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli, E-mail: xujingli@sues.edu.cn

    2016-05-15

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N{sub 2} adsorption–desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO{sub 2}-coated maghemite/CNTs nanoparticles (CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites) were synthesized by the combination of high temperature decomposition process and an sol–gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO{sub 2}, respectively. The CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites revealed a core–shell structure, Then, CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature. - Graphical abstract: Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis, which can be a good adsorbent for the organic pollutant in the ambient temperature. - Highlights: • The surface of CNTs/Fe{sub 3}O{sub 4} is hydrophilic, which facilitates the silica coating. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was synthesized by a facile method. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} can be a good adsorbent for the organic pollutant.

  5. Application of Nanoparticles/Nanowires and Carbon Nanotubes for Breast Cancer Research

    National Research Council Canada - National Science Library

    Panchapakesan, Balaji

    2005-01-01

    .... Variety of techniques such as fabrication of single wall carbon nanotubes, functionalization of nanotubes with antibodies, interaction of cells with antibodies on nanotube surfaces, and finally cell...

  6. Immobilization of redox mediators on functionalized carbon nanotube

    Indian Academy of Sciences (India)

    Chemical functionalization of single-walled carbon nanotubes with redox mediators, namely, toluidine blue and thionin have been carried out and the performance of graphite electrode modified with functionalized carbon nanotubes is described. Mechanical immobilization of functionalized single-walled nanotube (SWNT) ...

  7. Black silicon maskless templates for carbon nanotube forests

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Schmidt, Michael Stenbæk; Boisen, Anja

    2013-01-01

    allows maskless definition of carbon nanotube forests with control of their density, nanotube diameter and height. Four nanograss reactive ion etching recipes are investigated and their wafer-to-wafer repeatability, wafer uniformity, and density control is discussed. Evaluation of carbon nanotube forests...

  8. Nanotubes on Display: How Carbon Nanotubes Can Be Integrated into Electronic Displays

    KAUST Repository

    Opatkiewicz, Justin; LeMieux, Melburne C.; Bao, Zhenan

    2010-01-01

    Random networks of single-walled carbon nanotubes show promise for use in the field of flexible electronics. Nanotube networks have been difficult to utilize because of the mixture of electronic types synthesized when grown. A variety of separation

  9. Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qun [Institute of Analytical Chemistry, Dushu Lake Campus, Soochow University, Industrial Park, Suzhou, 215123 (China); College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019 (China); Tang, Shan [Institute of Analytical Chemistry, Dushu Lake Campus, Soochow University, Industrial Park, Suzhou, 215123 (China); Fang, Chen [Institute of Analytical Chemistry, Dushu Lake Campus, Soochow University, Industrial Park, Suzhou, 215123 (China); Second Affiliated Hospital, Soochow University, Suzhou, 215004 (China); Tu, Yi-Feng, E-mail: tuyf@suda.edu.cn [Institute of Analytical Chemistry, Dushu Lake Campus, Soochow University, Industrial Park, Suzhou, 215123 (China)

    2016-09-14

    A glycated hemoglobin (HbA1c) biosensor with high performance has been constructed in this work. Here the fructosyl amino acid oxidase was immobilized onto a pre-functionalized indium tin oxide glass with titania nanotubes decorated with gold nanoparticles. The property of nanocomposite was characterized by transmission electromicroscopy, scanning electron microscopy, electrochemistry and spectroscopy. Under the optimum conditions, fructosyl valine was detected by this biosensor. It exhibited a linear detection range from 4.0 × 10{sup −9} M to 7.2 × 10{sup −7} M, and a limit of detection for 3.8 × 10{sup −9} M at the signal-to-noise ratio of 3. Thus the HbA1c level in whole blood samples of healthy individuals or diabetic patients were evaluated with designed biosensor after pre-treatment of hydrolysis. The results of our detection were closely consistent with that of the standard method. At the same time, our biosensor has some advantages including high sensitivity, disposable usage and low cost, which implies its great promising application in point-of-care testing of HbA1c. - Highlights: • The enhanced electrochemiluminescence of luminol by AuNPs/TiNTs. • An ECL biosensor for HbA1c assay with ultra-high sensitivity. • A promising disposable device for diabetic diagnosis and treatment even for POCT. • The excellent regression of detected results with gold-standard method.

  10. Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin

    International Nuclear Information System (INIS)

    Zhao, Qun; Tang, Shan; Fang, Chen; Tu, Yi-Feng

    2016-01-01

    A glycated hemoglobin (HbA1c) biosensor with high performance has been constructed in this work. Here the fructosyl amino acid oxidase was immobilized onto a pre-functionalized indium tin oxide glass with titania nanotubes decorated with gold nanoparticles. The property of nanocomposite was characterized by transmission electromicroscopy, scanning electron microscopy, electrochemistry and spectroscopy. Under the optimum conditions, fructosyl valine was detected by this biosensor. It exhibited a linear detection range from 4.0 × 10"−"9 M to 7.2 × 10"−"7 M, and a limit of detection for 3.8 × 10"−"9 M at the signal-to-noise ratio of 3. Thus the HbA1c level in whole blood samples of healthy individuals or diabetic patients were evaluated with designed biosensor after pre-treatment of hydrolysis. The results of our detection were closely consistent with that of the standard method. At the same time, our biosensor has some advantages including high sensitivity, disposable usage and low cost, which implies its great promising application in point-of-care testing of HbA1c. - Highlights: • The enhanced electrochemiluminescence of luminol by AuNPs/TiNTs. • An ECL biosensor for HbA1c assay with ultra-high sensitivity. • A promising disposable device for diabetic diagnosis and treatment even for POCT. • The excellent regression of detected results with gold-standard method.

  11. Electrochemical Metal Deposition on Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Dunsch, L.; Janda, Pavel; Mukhopadhyay, K.; Shinohara, H.

    2001-01-01

    Roč. 11, č. 6 (2001), s. 427-435 ISSN 1344-9931 Institutional research plan: CEZ:AV0Z4040901 Keywords : carbon nanotubes * electrodeposition * cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 0.800, year: 2001

  12. A New Resistance Formulation for Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2008-01-01

    Full Text Available A new resistance formulation for carbon nanotubes is suggested using fractal approach. The new formulation is also valid for other nonmetal conductors including nerve fibers, conductive polymers, and molecular wires. Our theoretical prediction agrees well with experimental observation.

  13. Carbon nanotubes for high-performance logic

    NARCIS (Netherlands)

    Chen, Zhihong; Philip Wong, H.-S.; Mitra, S.; Bol, A.A.; Peng, Lianmao; Hills, Gage; Thissen, N.F.W.

    2014-01-01

    Single-wall carbon nanotubes (CNTs) were discovered in 1993 and have been an area of intense research since then. They offer the right dimensions to explore material science and physical chemistry at the nanoscale and are the perfect system to study low-dimensional physics and transport. In the past

  14. Chemistry of Carbon Nanotubes for Everyone

    Science.gov (United States)

    Basu-Dutt, Sharmistha; Minus, Marilyn L.; Jain, Rahul; Nepal, Dhriti; Kumar, Satish

    2012-01-01

    Carbon nanotubes (CNTs) have the extraordinary potential to change our lives by improving existing products and enabling new ones. Current and future research and industrial workforce professionals are very likely to encounter some aspects of nanotechnology including CNT science and technology in their education or profession. The simple structure…

  15. New approach to synthesis of carbon nanotubes

    International Nuclear Information System (INIS)

    Ha, Jong Keun; Choi, Kyo Hong; Cho, Kwon Koo; Kim, Ki Won; Nam, Tae Hyun; Ahn, Hyo Jun; Ahn, Jou Hyun; Cho, Gyu Bong

    2007-01-01

    Carbon nanotubes (CNTs) have been synthesized through chemical vapor deposition in argon gas atmosphere using Fe-2.5%Mo alloyed nanoparticles as a catalyst and H 2 /CH 4 gas mixture as a reaction gas. Fe-2.5 wt.%Mo alloyed nanoparticles with average diameter of 7, 20, 45 and 85 nm are prepared by the chemical vapor condensation process using the pyrolysis of iron pentacarbonyl (Fe(CO) 5 ) and molybdenum hexacarbonyl (Mo(CO) 6 ). The morphologies of the CNTs are controlled by adjusting the nanoparticle size, reaction gas ratio and reaction temperature. With decreasing nanoparticle size under the same experimental conditions, the degree of crystalline perfection increases gradually and the morphologies of the carbon nanotubes vary from multi wall carbon nanotubes to single wall carbon nanotubes. Also, the ratio of reaction gas has an effect on the morphology and the degree of crystallinity of CNTs. In this work, it is suggested that morphology, diameter and degree of crystallinity of CNTs could be controlled by adjusting the reaction gas ratio, reaction temperature and catalyst size

  16. Synthesis of Carbon Nanotube (CNT Composite Membranes

    Directory of Open Access Journals (Sweden)

    Dusan Losic

    2010-12-01

    Full Text Available Carbon nanotubes are attractive approach for designing of new membranes for advanced molecular separation because of their unique transport properties and ability to mimic biological protein channels. In this work the synthetic approach for fabrication of carbon nanotubes (CNTs composite membranes is presented. The method is based on growth of multi walled carbon nanotubes (MWCNT using chemical vapour deposition (CVD on the template of nanoporous alumina (PA membranes. The influence of experimental conditions including carbon precursor, temperature, deposition time, and PA template on CNT growth process and quality of fabricated membranes was investigated. The synthesis of CNT/PA composites with controllable nanotube dimensions such as diameters (30–150 nm, and thickness (5–100 µm, was demonstrated. The chemical composition and morphological characteristics of fabricated CNT/PA composite membranes were investigated by various characterisation techniques including scanning electron microscopy (SEM, energy-dispersive x-ray spectroscopy (EDXS, high resolution transmission electron microscopy (HRTEM and x-ray diffraction (XRD. Transport properties of prepared membranes were explored by diffusion of dye (Rose Bengal used as model of hydrophilic transport molecule.

  17. Carbon Nanotubes as Thermally Induced Water Pumps

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, Jens Honore; Megaridis, Constantine M

    2017-01-01

    Thermal Brownian motors (TBMs) are nanoscale machines that exploit thermal fluctuations to provide useful work. We introduce a TBM-based nanopump which enables continuous water flow through a carbon nanotube (CNT) by imposing an axial thermal gradient along its surface. We impose spatial asymmetry...

  18. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum is well described by a one-dimensional effective Hamiltonian...

  19. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    2007-01-01

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with opposite charges and a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum of their relative motion is well described...

  20. Bioaccumulation and ecotoxicity of carbon nanotubes

    DEFF Research Database (Denmark)

    Jackson, Petra; Jacobsen, Nicklas Raun; Baun, Anders

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review...

  1. Biodistribution of Carbon Nanotubes in Animal Models

    DEFF Research Database (Denmark)

    Jacobsen, Nicklas Raun; Møller, Peter Horn; Clausen, Per Axel

    2017-01-01

    The many interesting physical and chemical properties of carbon nanotubes (CNT) make it one of the most commercially attractive materials in the era of nanotechnology. Here, we review the recent publications on in vivo biodistribution of pristine and functionalized forms of single-walled and multi...

  2. Chemical vapor deposition of carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J.; Zhong, G.; Esconjauregui, S.; Zhang, C.; Fouquet, M.; Hofmann, S. [Engineering Department, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2012-12-15

    We review the growth mechanisms of vertically aligned carbon nanotube forests, in terms of what controls the growth rate and control of the catalyst lifetime. We also review the production of very high-density forests, in terms of increasing the catalyst particle density. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Chemical vapor deposition of carbon nanotube forests

    International Nuclear Information System (INIS)

    Robertson, J.; Zhong, G.; Esconjauregui, S.; Zhang, C.; Fouquet, M.; Hofmann, S.

    2012-01-01

    We review the growth mechanisms of vertically aligned carbon nanotube forests, in terms of what controls the growth rate and control of the catalyst lifetime. We also review the production of very high-density forests, in terms of increasing the catalyst particle density. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Carbon Nanotubes in Drug and Gene Delivery

    Science.gov (United States)

    Karimi, Mahdi; Ghasemi, Amir; Mirkiani, Soroush; Moosavi Basri, Seyed Masoud; Hamblin, Michael R.

    2017-10-01

    Recent important discoveries and developments in nanotechnology have had a remarkable and ever-increasing impact on many industries, especially materials science, pharmaceuticals, and biotechnology. Within this book, the authors describe different features of carbon nanotubes, survey the properties of both the multi-walled and single-walled varieties, and cover their applications in drug and gene delivery.

  5. In-line manufacture of carbon nanotubes

    Science.gov (United States)

    Brambilla, Nicol Michele; Signorelli, Riccardo; Martini, Fabrizio; Corripio Luna, Oscar Enrique

    2015-04-28

    Mass production of carbon nanotubes (CNT) are facilitated by methods and apparatus disclosed herein. Advantageously, the methods and apparatus make use of a single production unit, and therefore provide for uninterrupted progress in a fabrication process. Embodiments of control systems for a variety of CNT production apparatus are included.

  6. Analysis of ionic conductance of carbon nanotubes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2016-01-01

    We use space-charge (SC) theory (also called the capillary pore model) to describe the ionic conductance, G, of charged carbon nanotubes (CNTs). Based on the reversible adsorption of hydroxyl ions to CNT pore walls, we use a Langmuir isotherm for surface ionization and make calculations as a

  7. Fluorescently labeled bionanotransporters of nucleic acid based on carbon nanotubes

    International Nuclear Information System (INIS)

    Novopashina, D.S.; Apartsin, E.K.; Venyaminova, A.G.

    2012-01-01

    We propose an approach to the design of a new type of hybrids of oligonucleotides with fluorescein-functionalized single-walled carbon nanotubes. The approach is based on stacking interactions of functionalized nanotubes with pyrene residues in conjugates of oligonucleotides. The amino- and fluorescein-modified single walled carbon nanotubes are obtained, and their physico-chemical properties are investigated. The effect of the functionalization type of carbon nanotubes on the efficacy of the sorption of pyrene conjugates of oligonucleotides was examined. The proposed noncovalent hybrids of fluorescein-labeled carbon nanotubes with oligonucleotides may be used for the intracellular transport of functional nucleic acids.

  8. Magnetoresponsive conductive colloidal suspensions with magnetized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Ahmed M. [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Abdel Fattah, Abdel Rahman [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Ghosh, Suvojit [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Puri, Ishwar K., E-mail: ikpuri@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2017-01-01

    We synthesize a novel and hitherto unreported class of colloidal suspensions for which the dispersed phase, which consists of multiwall carbon nanotubes (MWNTs) decorated with magnetic nanoparticles (MNPs), is both magnetoresponsive and electrically conductive. Synthesis of the dispersed phase merges processes for producing ferrofluids and magnetic MWNTs (mMWNTs). We explore means to tune the properties of these magnetic conductive colloids (MCCs) by varying the (1) MNP material composition, and (2) MNP:MWNT (w/w) magnetization weight ratio (γ). The mMWNTs are examined using XRD, TEM, EDX and SQUID and MCCs are by measuring their zeta potential and electric conductivity. Magnetite (Fe{sub 3}O{sub 4}) MNPs, which possess a high Curie temperature, produce mMWNTs with high saturation magnetization that respond relatively weakly to temperature variations. Mn{sub 0.2}Cu{sub 0.2}Zn{sub 0.6}Fe{sub 2}O{sub 4} and Cu{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} MNPs with lower Curie temperatures are more sensitive to changing temperature. Increasing the MNP Cu content improves the electric conductivity of the corresponding MCC while increasing γ enhances its magnetic response. After γ is raised above a threshold value, mMWNT decoration on the CNT surface becomes nonuniform since the MNPs now agglomerate perpendicular to the nanotube surface. These colloidal suspensions are a promising new class of material that can be manipulated with a magnetic field to tune their electrical conductivity. - Highlights: ●We synthesize a novel and hitherto unreported class of colloidal suspensions. ●These colloidal suspensions are both magnetoresponsive and electrically conductive. ●The dispersed phase consists of MWNTs decorated with different magnetic nanoparticles. ●These colloids have enhanced magnetic response and electric conductivity (up to 169.5 mS cm{sup −1}). ●It is a promising new class of material that can be manipulated with a magnetic field.

  9. Degradation of multiwall carbon nanotubes by bacteria

    International Nuclear Information System (INIS)

    Zhang, Liwen; Petersen, Elijah J.; Habteselassie, Mussie Y.; Mao, Liang; Huang, Qingguo

    2013-01-01

    Understanding the environmental transformation of multiwall carbon nanotubes (MWCNTs) is important to their life cycle assessment and potential environmental impacts. We report that a bacterial community is capable of degrading 14 C-labeled MWCNTs into 14 CO 2 in the presence of an external carbon source via co-metabolism. Multiple intermediate products were detected, and genotypic characterization revealed three possible microbial degraders: Burkholderia kururiensis, Delftia acidovorans, and Stenotrophomonas maltophilia. This result suggests that microbe/MWCNTs interaction may impact the long-term fate of MWCNTs. Highlights: •Mineralization of MWCNTs by a bacterial community was observed. •The mineralization required an external carbon source. •Multiple intermediate products were identified in the MWCNT degrading culture. •Three bacterial species were found likely responsible for MWCNT degradation. -- The 14 C-labeled multiwall carbon nanotubes can be degraded to 14 CO 2 and other byproducts by a bacteria community under natural conditions

  10. A built-in sensor with carbon nanotubes coated by Ag clusters for deformation monitoring of glass fibre/epoxy composites

    Science.gov (United States)

    Slobodian, P.; Riha, P.; Matyas, J.; Olejnik, R.; Lloret Pertegás, S.; Schledjewski, R.; Kovar, M.

    2018-03-01

    A multiwalled carbon nanotube network embedded in a polyurethane membrane was integrated into a glass fibre reinforced epoxy composite by means of vacuum infusion to become a part of the composite and has been serving for a strain self-sensing functionality. Besides the pristine nanotubes also nanotubes with Ag nanoparticles attached to their surfaces were used to increase strain sensing. Moreover, the design of the carbon nanotube/polyurethane sensor allowed formation of network micro-sized cracks which increased its reversible electrical resistance resulted in an enhancement of strain sensing. The resistance sensitivity, quantified by a gauge factor, increased more than hundredfold in case of a pre-strained sensor with Ag decorated nanotubes in comparison with the sensor with pristine nanotubes.

  11. Exploring the Immunotoxicity of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yu Yanmei

    2008-01-01

    Full Text Available Abstract Mass production of carbon nanotubes (CNTs and their applications in nanomedicine lead to the increased exposure risk of nanomaterials to human beings. Although reports on toxicity of nanomaterials are rapidly growing, there is still a lack of knowledge on the potential toxicity of such materials to immune systems. This article reviews some existing studies assessing carbon nanotubes’ toxicity to immune system and provides the potential mechanistic explanation.

  12. Exploring the Immunotoxicity of Carbon Nanotubes

    Science.gov (United States)

    Yu, Yanmei; Zhang, Qiu; Mu, Qingxin; Zhang, Bin; Yan, Bing

    2008-08-01

    Mass production of carbon nanotubes (CNTs) and their applications in nanomedicine lead to the increased exposure risk of nanomaterials to human beings. Although reports on toxicity of nanomaterials are rapidly growing, there is still a lack of knowledge on the potential toxicity of such materials to immune systems. This article reviews some existing studies assessing carbon nanotubes’ toxicity to immune system and provides the potential mechanistic explanation.

  13. Highly thermal conductivity and infrared emissivity of flexible transparent film heaters utilizing silver-decorated carbon nanomaterials as fillers

    International Nuclear Information System (INIS)

    Li, Yu-An; Chen, Yin-Ju; Tai, Nyan-Hwa

    2014-01-01

    A flexible transparent film heater using functionalized few-walled carbon nanotubes and graphene nanosheets decorated with silver nanoparticles as fillers and poly(3,4-ethylenedioxythiophene)- poly(4-stryrenesulfonate) (PEDOT:PSS) as a dispersant possesses excellent optoelectronic and electrothermal properties. The film possesses a low sheet resistance of 53.0 ± 4.2 ohm · sq −1 , a transmittance of 80.2 ± 0.8% at a wavelength of 550 nm, a high thermal conductivity of 142.0 ± 9.6 W · m −1  · K −1 , a quick response time of less than 60 s, stable heating performance, good reliability, low power consumption, flexibility, and uniform heat diffusion. Besides, the film shows an average infrared emissivity of 0.53 in the wavelength range of 4 to 14 μm, which shows an outstanding heat release performance by radiation. The flexible transparent film heaters adopting graphene and carbon nanotubes as fillers boast excellent electrothermal performance through heat conduction and infrared radiation, suggesting that they are good substitutes for traditional metallic and indium tin oxide film heaters. (papers)

  14. Defect complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-05-01

    Full Text Available The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented...

  15. Intrinsic Chirality Origination in Carbon Nanotubes.

    Science.gov (United States)

    Pierce, Neal; Chen, Gugang; P Rajukumar, Lakshmy; Chou, Nam Hawn; Koh, Ai Leen; Sinclair, Robert; Maruyama, Shigeo; Terrones, Mauricio; Harutyunyan, Avetik R

    2017-10-24

    Elucidating the origin of carbon nanotube chirality is key for realizing their untapped potential. Currently, prevalent theories suggest that catalyst structure originates chirality via an epitaxial relationship. Here we studied chirality abundances of carbon nanotubes grown on floating liquid Ga droplets, which excludes the influence of catalyst features, and compared them with abundances grown on solid Ru nanoparticles. Results of growth on liquid droplets bolsters the intrinsic preference of carbon nuclei toward certain chiralities. Specifically, the abundance of the (11,1)/χ = 4.31° tube can reach up to 95% relative to (9,4)/χ = 17.48°, although they have exactly the same diameter, (9.156 Å). However, the comparative abundances for the pair, (19,3)/χ = 7.2° and (17,6)/χ = 14.5°, with bigger diameter, (16.405 Å), fluctuate depending on synthesis temperature. The abundances of the same pairs of tubes grown on floating solid polyhedral Ru nanoparticles show completely different trends. Analysis of abundances in relation to nucleation probability, represented by a product of the Zeldovich factor and the deviation interval of a growing nuclei from equilibrium critical size, explain the findings. We suggest that the chirality in the nanotube in general is a result of interplay between intrinsic preference of carbon cluster and induction by catalyst structure. This finding can help to build the comprehensive theory of nanotube growth and offers a prospect for chirality-preferential synthesis of carbon nanotubes by the exploitation of liquid catalyst droplets.

  16. Review on properties, dispersion and toxicology of carbon nanotubes

    International Nuclear Information System (INIS)

    Saeed, K.

    2010-01-01

    Carbon nanotubes (CNTs) have the most intensely studied nano structures because of their unique properties. There are two types of carbon nanotubes CNTs, single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), prepared by chemical-vapour deposition (CVD), plasma enhanced chemical-vapour deposition, thermal chemical vapour deposition, Vapour phase growth, Arc discharge and Lasser ablation. Both single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) possess high mechanical and electrical conductivity, ultra-light weight, high aspect ratio and have excellent chemical and thermal stabilities. They also possess semi- and metallic-conductive properties depending upon their chirality. This review focuses on progress toward functionalization (not only dispersed nano tube but also dramatically improve their solubility), preparation and purification, composites and the toxicity of the carbon nanotubes (CNTs). The functional groups attached to carbon nanotubes (CNTs) should react with polymers and improve the mechanical properties of the nano composites. Carbon nanotubes (CNTs) has significant application in pharmaceutical field such as drug delivery and nano medicine, but the available literature also suggests that carbon nanotubes (CNTs) may have unusual toxicity and have more adverse effects than the same mass of nano size carbon and quartz. (author)

  17. Lithium storage properties of multiwall carbon nanotubes prepared by CVD

    International Nuclear Information System (INIS)

    Ahn, J.-O.; Andong National University,; Wang, G.X.; Liu, H.K.; Dou, S.X.

    2003-01-01

    Full text: Multiwall carbon nanotubes (MWCNTs) were synthesised by chemical vapour deposition (CVD) method using acetylene gas. The XRD pattern of as prepared carbon nanotubes showed that the d 002 value is 3.44 Angstroms. The morphology and microstructure of carbon nanotubes were characterized by HRTEM. Most of carbon nanotubes are entangled together to form bundles or ropes. The diameter of the carbon nanotubes is in the range of 10 ∼ 20 nm. There is a small amount of amorphous carbon particles presented in the sample. However, the yield of carbon nanotubes is more than 95%. Electrochemical properties of carbon nanotubes were characterised via a variety of electrochemical testing techniques. The result of CV test showed that the Li insertion potential is quite low, which is very close to O V versus Li + /Li reference electrode, whereas the potential for Li de-intercalation is in the range of 0.2-0.4 V. There exists a slight voltage hysteresis between Li intercalation and Li de-intercalation, which is similar to the other carbonaceous materials. The intensity of redox peaks of carbon nanotubes decrease with scanning cycle, indicating that the reversible Li insertion capacity gradually decreases. The carbon nanotubes electrode demonstrated a reversible lithium storage capacity of 340 mAh/g with good cyclability at moderate current density. Further improvement of Li storage capacity is possible by opening the end of carbon nanotubes to allow lithium insertion into inner graphene sheet of carbon nanotubes. The kinetic properties of lithium insertion in carbon nanotube electrodes were characterised by a.c. impedance measurements. It was found that the lithium diffusion coefficient d Li decreases with an increase of Li ion concentration in carbon nanotube host

  18. Nicotine adsorption on single wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Eduardo C. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil); Fagan, Solange B.; Zanella, Ivana [Area de Ciencias Tecnologicas, Centro Universitario Franciscano - UNIFRA, 97010-032 Santa Maria, RS (Brazil); Filho, Antonio G. Souza, E-mail: agsf@fisica.ufc.br [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil)

    2010-12-15

    This work reports a theoretical study of nicotine molecules interacting with single wall carbon nanotubes (SWCNTs) through ab initio calculations within the framework of density functional theory (DFT). Different adsorption sites for nicotine on the surface of pristine and defective (8,0) SWCNTs were analyzed and the total energy curves, as a function of molecular position relative to the SWCNT surface, were evaluated. The nicotine adsorption process is found to be energetically favorable and the molecule-nanotube interaction is intermediated by the tri-coordinated nitrogen atom from the nicotine. It is also predicted the possibility of a chemical bonding between nicotine and SWCNT through the di-coordinated nitrogen.

  19. Energy structure of fullerenes and carbon nanotubes

    International Nuclear Information System (INIS)

    Byszewski, P.; Kowalska, E.

    1997-01-01

    The absorption spectrum of C 60 can be reasonably well reproduced theoretically with the use of the quantum chemistry calculation methods. It allows investigation of the influence of a deformation of C 60 on the absorption spectrum. The deformation of the electronic density on C 60 can occur under the influence of molecules of good solvent. Similar calculations of the energetic structure of carbon nanotubes does not support the idea that their chirality may strongly influence the energy levels distribution, in particular that it may open the energy gap of nanotubes. (author). 40 refs, 13 figs, 1 tab

  20. Aligned carbon nanotubes patterned photolithographically by silver

    Science.gov (United States)

    Huang, Shaoming; Mau, Albert H. W.

    2003-02-01

    Selective growth of aligned carbon nanotubes (CNTs) by pyrolysis of iron (II) phthalocyanine (FePc) on quartz substrate patterned photolithographically by metallic silver has been demonstrated. Micro/nanopattern of aligned CNTs can be achieved by using a photomask with features on a microscale. With convenient use of simple high-contract black and white films as a photomask, aligned nanotubes patterned with 20 μm resolution in large scale can be fabricated. This practical fabrication of aligned CNTs on patterned conducting substrate could be applied to various device applications of CNTs.

  1. Vertically aligned multiwalled carbon nanotubes as electronic interconnects

    Science.gov (United States)

    Gopee, Vimal Chandra

    The drive for miniaturisation of electronic circuits provides new materials challenges for the electronics industry. Indeed, the continued downscaling of transistor dimensions, described by Moore’s Law, has led to a race to find suitable replacements for current interconnect materials to replace copper. Carbon nanotubes have been studied as a suitable replacement for copper due to its superior electrical, thermal and mechanical properties. One of the advantages of using carbon nanotubes is their high current carrying capacity which has been demonstrated to be three orders of magnitude greater than that of copper. Most approaches in the implementation of carbon nanotubes have so far focused on the growth in vias which limits their application. In this work, a process is described for the transfer of carbon nanotubes to substrates allowing their use for more varied applications. Arrays of vertically aligned multiwalled carbon nanotubes were synthesised by photo-thermal chemical vapour deposition with high growth rates. Raman spectroscopy was used to show that the synthesised carbon nanotubes were of high quality. The carbon nanotubes were exposed to an oxygen plasma and the nature of the functional groups present was determined using X-ray photoelectron spectroscopy. Functional groups, such as carboxyl, carbonyl and hydroxyl groups, were found to be present on the surface of the multiwalled carbon nanotubes after the functionalisation process. The multiwalled carbon nanotubes were metallised after the functionalisation process using magnetron sputtering. Two materials, solder and sintered silver, were chosen to bind carbon nanotubes to substrates so as to enable their transfer and also to make electrical contact. The wettability of solder to carbon nanotubes was investigated and it was demonstrated that both functionalisation and metallisation were required in order for solder to bond with the carbon nanotubes. Similarly, functionalisation followed by metallisation

  2. Separator Decoration with Cobalt/Nitrogen Codoped Carbon for Highly Efficient Polysulfide Confinement in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Hu, Wen; Hirota, Yuichiro; Zhu, Yexin; Yoshida, Nao; Miyamoto, Manabu; Zheng, Tao; Nishiyama, Norikazu

    2017-09-22

    A macro-/mesoporous Co-N-C-decorated separator is proposed to confine and reutilize migrating polysulfides. Endowed with a desirable structure and synchronous lithio- and sulfiphilic chemistry, the macro-/mesoporous Co-N-C interface manipulates large polysulfide adsorption uptake, enabling good polysulfide adsorption kinetics, reversible electrocatalysis toward redox of anchored polysulfides, and facile charge transport. It significantly boosts the performance of a simple 70 wt % S/MWCNTs (MWCNTs=multi-walled carbon nanotubes) cathode, achieving high initial capacities (e.g., 1406 mAh g -1 at 0.2C, 1203 mAh g -1 at 1C), nearly 100 % Coulombic efficiencies, and high reversible capacities after cycle tests (e.g., 828.4 mAh g -1 at 1C after 100 cycles) at both low and high current rates. These results demonstrate that decorating separator with macro-/mesoporous Co-N-C paves a feasible way for developing advanced Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Optical trapping of carbon nanotubes and graphene

    Directory of Open Access Journals (Sweden)

    S. Vasi

    2011-09-01

    Full Text Available We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fluctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double frequency optical tweezers. Finally, we integrate optical trapping with Raman and photoluminescence spectroscopy demonstrating the use of a Raman and photoluminescence tweezers by investigating the spectroscopy of nanotubes and graphene flakes in solution. Experimental results are compared with calculations based on electromagnetic scattering theory.

  4. Carbon nanotubes: Sensor properties. A review

    Directory of Open Access Journals (Sweden)

    Irina V. Zaporotskova

    2016-12-01

    Full Text Available Recent publications dealing with dealing with the fabrication of gas and electrochemical biosensors based on carbon nanotubes have been reviewed. Experimental and theoretical data on the working principles of nanotubes have been presented. The main regularities of the structure, energy parameters and sensor properties of modified semiconducting systems on the basis of cabon nanotubes have been studied by analyzing the mechanisms of nanotubule interaction with functional groups (including carboxyl and amino groups, metallic nanoparticles and polymers leading to the formation of chemically active sensors. The possibility of using boundary modified nanotubes for the identification of metals has been discussed. Simulation results have been reported for the interaction of nanotubes boundary modified by –СООН and –NH2 groups with atoms and ions of potassium, sodium and lithium. The simulation has been carried out using the molecular cluster model and the MNDO and DFT calculation methods. Sensors fabricated using this technology will find wide application for the detection of metallic atoms and their ions included in salts and alkali.

  5. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  6. Carbon Micronymphaea: Graphene on Vertically Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Jong Won Choi

    2013-01-01

    Full Text Available This paper describes the morphology of carbon nanomaterials such as carbon nanotube (CNT, graphene, and their hybrid structure under various operating conditions during a one-step synthesis via plasma-enhanced chemical vapor deposition (PECVD. We focus on the synthetic aspects of carbon hybrid material composed of heteroepitaxially grown graphene on top of a vertical array of carbon nanotubes, called carbon micronymphaea. We characterize the structural features of this unique nanocomposite by uses of electron microscopy and micro-Raman spectroscopy. We observe carbon nanofibers, poorly aligned and well-aligned vertical arrays of CNT sequentially as the growth temperature increases, while we always discover the carbon hybrids, called carbon micronymphaea, at specific cooling rate of 15°C/s, which is optimal for the carbon precipitation from the Ni nanoparticles in this study. We expect one-pot synthesized graphene-on-nanotube hybrid structure poses great potential for applications that demand ultrahigh surface-to-volume ratios with intact graphitic nature and directional electronic and thermal transports.

  7. Carbon nanotubes and graphene in analytical sciences

    International Nuclear Information System (INIS)

    Perez-Lopez, B.; Merkoci, A.

    2012-01-01

    Nanosized carbon materials are offering great opportunities in various areas of nanotechnology. Carbon nanotubes and graphene, due to their unique mechanical, electronic, chemical, optical and electrochemical properties, represent the most interesting building blocks in various applications where analytical chemistry is of special importance. The possibility of conjugating carbon nanomaterials with biomolecules has received particular attention with respect to the design of chemical sensors and biosensors. This review describes the trends in this field as reported in the last 6 years in (bio)analytical chemistry in general, and in biosensing in particular. (author)

  8. Carbon nanotube formation by laser direct writing

    International Nuclear Information System (INIS)

    Wu, Y.-T.; Su, H.-C.; Tsai, C.-M.; Liu, K.-L.; Chen, G.-D.; Huang, R.-H.; Yew, T.-R.

    2008-01-01

    This letter presents carbon nanotube (CNT) formation by laser direct writing using 248 nm KrF excimer pulsed laser in air at room temperature, which was applied to irradiate amorphous carbon (a-C) assisted by Ni catalysts underneath for the transformation of carbon species into CNTs. The CNTs were synthesized under appropriate combination of laser energy density and a-C thickness. The growth mechanism and key parameters to determine the success of CNT formation were also discussed. The demonstration of the CNT growth by laser direct writing in air at room temperature opens an opportunity of in-position CNT formation at low temperatures

  9. Remote Joule heating by a carbon nanotube.

    Science.gov (United States)

    Baloch, Kamal H; Voskanian, Norvik; Bronsgeest, Merijntje; Cumings, John

    2012-04-08

    Minimizing Joule heating remains an important goal in the design of electronic devices. The prevailing model of Joule heating relies on a simple semiclassical picture in which electrons collide with the atoms of a conductor, generating heat locally and only in regions of non-zero current density, and this model has been supported by most experiments. Recently, however, it has been predicted that electric currents in graphene and carbon nanotubes can couple to the vibrational modes of a neighbouring material, heating it remotely. Here, we use in situ electron thermal microscopy to detect the remote Joule heating of a silicon nitride substrate by a single multiwalled carbon nanotube. At least 84% of the electrical power supplied to the nanotube is dissipated directly into the substrate, rather than in the nanotube itself. Although it has different physical origins, this phenomenon is reminiscent of induction heating or microwave dielectric heating. Such an ability to dissipate waste energy remotely could lead to improved thermal management in electronic devices.

  10. Tailoring the contact thermal resistance at metal-carbon nanotube interface

    Energy Technology Data Exchange (ETDEWEB)

    Firkowska, Izabela; Boden, Andre; Vogt, Anna-Maria; Reich, Stephanie [Department of Physics, Freie Universitaet, Arnimallee 14, 14195 Berlin (Germany)

    2011-11-15

    Copper-decorated carbon nanotubes (CNTs) were synthesized and used as conductive filler to improve the heat transport capabilities of copper matrix. Thermal properties, i.e., thermal diffusivity and thermal conductivity, of copper composite were measured and compared with those containing pristine and functionalized CNTs. Experimental results revealed that composites enriched with nanohybrids where Cu nanoparticles were covalently bonded to CNTs had thermal conductivity four times higher than those containing the same content of pristine CNTs. Evaluation of thermal interface resistance in copper-CNTs composites by means of the flash method. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  12. Graphene nanoribbons production from flat carbon nanotubes

    International Nuclear Information System (INIS)

    Melo, W. S.; Guerini, S.; Diniz, E. M.

    2015-01-01

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons

  13. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide......The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...... integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance...

  14. The Mossbauer spectra of carbon nanotubes synthesize using ferrite catalyst

    International Nuclear Information System (INIS)

    Zhang Haiyan; Lin Jiapeng; Peng Zuxiong; Zeng Guoxun; Pang Jinshan; Chen Yiming

    2009-01-01

    The ferrite powder with honeycombed structure obtained by chemical combustion was used as catalyst to synthesize multi-walled carbon nanotubes by chemical vapor deposition. The magnetic components and characters of the the carbon nanotubes synthesized were investigated by X-ray diffraction (XRD), Mossbauer spectra and vibrating-sample magnetometer (VSM). The ferric components of the carbon nanotubes samples can be identified by Mossbauer spectra. The Mossbauer spectra of carbon nanotubes sample after purification contains two ferromagnetic sextet components corresponding to α-Fe species and Fe 3 C (cementite) species. While the Mossbauer spectra of the carbon nanotubes sample before purification contains three ferromagnetic sextet components corresponding to α-Fe species, Fe 3 C species and γ-Fe 2 O 3 . The saturation magnetization intensity Ms of carbon nanotubes sample after purification is decreased from 46.61 to 2.94 emu/g, but the coercive force increasd and reached 328Oe.

  15. Electrophoretic deposition and field emission properties of patterned carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao Haifeng; Song Hang; Li Zhiming; Yuan Guang; Jin Yixin

    2005-01-01

    Patterned carbon nanotubes on silicon substrates were obtained using electrophoretic method. The carbon nanotubes migrated towards the patterned silicon electrode in the electrophoresis suspension under the applied voltage. The carbon nanotubes arrays adhered well on the silicon substrates. The surface images of carbon nanotubes were observed by scanning electron microscopy. The field emission properties of the patterned carbon nanotubes were tested in a diode structure under a vacuum pressure below 5 x 10 -4 Pa. The measured emission area was about 1.0 mm 2 . The emission current density up to 30 mA/cm 2 at an electric field of 8 V/μm has been obtained. The deposition of patterned carbon nanotubes by electrophoresis is an alternative method to prepare field emission arrays

  16. Ag-catalysed cutting of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    La Torre, A; Rance, G A; Miners, S A; Lucas, C Herreros; Smith, E F; Giménez-López, M C; Khlobystov, A N; Fay, M W; Brown, P D; Zoberbier, T; Kaiser, U

    2016-01-01

    In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon–carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes. (paper)

  17. The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Konyushenko, Elena; Stejskal, Jaroslav; Kovářová, Jana; Ciric-Marjanovic, G.

    2009-01-01

    Roč. 94, č. 6 (2009), s. 929-938 ISSN 0141-3910 R&D Projects: GA ČR GA203/08/0686; GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * carbonization * FTIR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.154, year: 2009

  18. Process for derivatizing carbon nanotubes with diazonium species

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  19. Oscillation of nested fullerenes (carbon onions) in carbon nanotubes

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2008-01-01

    Nested spherical fullerenes, which are sometimes referred to as carbon onions, of I h symmetries which have N(n) carbon atoms in the nth shell given by N(n) = 60n 2 are studied in this paper. The continuum approximation together with the Lennard-Jones potential is utilized to determine the resultant potential energy. High frequency nanoscale oscillators or gigahertz oscillators created from fullerenes and both single- and multi-walled carbon nanotubes have attracted much attention for a number of proposed applications, such as ultra-fast optical filters and ultra-sensitive nano-antennae that might impact on the development of computing and signalling nano-devices. Further, it is only at the nanoscale where such gigahertz frequencies can be achieved. This paper focuses on the interaction of nested fullerenes and the mechanics of such molecules oscillating in carbon nanotubes. Here we investigate such issues as the acceptance condition for nested fullerenes into carbon nanotubes, the total force and energy of the nested fullerenes, and the velocity and gigahertz frequency of the oscillating molecule. In particular, optimum nanotube radii are determined for which nested fullerenes oscillate at maximum velocity and frequency, which will be of considerable benefit for the design of future nano-oscillating devices

  20. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  1. Continuous Growth of Vertically Aligned Carbon Nanotubes Forests

    OpenAIRE

    Guzman de Villoria, Roberto; Wardle, Brian L.

    2011-01-01

    Vertically aligned carbon nanotubes are one of the most promising materials due their numerous applications in flexible electronic devices, biosensors and multifunctional aircraft materials, among others. However, the costly production of aligned carbon nanotubes, generally in a batch process, prevents their commercial use. For the first time, a controlled process to grow aligned carbon nanotubes in a continuous manner is presented. Uniform growth is achieved using 2D and 3D substrates. A sig...

  2. Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth

    Science.gov (United States)

    Hu, Hui; Ni, Yingchun; Montana, Vedrana; Haddon, Robert C.; Parpura, Vladimir

    2009-01-01

    We report the use of chemically modified carbon nanotubes as a substrate for cultured neurons. The morphological features of neurons that directly reflect their potential capability in synaptic transmission are characterized. The chemical properties of carbon nanotubes are systematically varied by attaching different functional groups that confer known characteristics to the substrate. By manipulating the charge carried by functionalized carbon nanotubes we are able to control the outgrowth and branching pattern of neuronal processes. PMID:21394241

  3. Synthesis and magnetic properties of highly dispersed tantalum carbide nanoparticles decorated on carbon spheres

    CSIR Research Space (South Africa)

    Bhattacharjee, K

    2016-01-01

    Full Text Available The decoration of carbon spheres (CS) by highly dispersed tantalum carbide nanoparticles (TaC NPs) was achieved, for the first time by a unique carbothermal reduction method at 1350 °C for 30 min under reduced oxygen partial pressure. TaC NPs...

  4. Carbon Nanotube Flexible and Stretchable Electronics.

    Science.gov (United States)

    Cai, Le; Wang, Chuan

    2015-12-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  5. Density controlled carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  6. Molecular discriminators using single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr; Ray, Nihar Ranjan; Sarkar, Sabyasachi

    2012-01-01

    The interaction between single wall carbon nanotubes (SWNTs) and amphiphilic molecules has been studied in a solid phase. SWNTs are allowed to interact with different amphiphilic probes (e.g. lipids) in a narrow capillary interface. Contact between strong hydrophobic and amphiphilic interfaces leads to a molecular restructuring of the lipids at the interface. The geometry of the diffusion front and the rate and the extent of diffusion of the interface are dependent on the structure of the lipid at the interface. Lecithin having a linear tail showed greater mobility of the interface as compared to a branched tail lipid like dipalmitoyl phosphatidylcholine, indicating the hydrophobic interaction between single wall carbon nanotube core and the hydrophobic tail of the lipid. Solid phase interactions between SWNT and lipids can thus become a very simple but efficient means of discriminating amphiphilic molecules in general and lipids in particular. (paper)

  7. Electrostatic sensing and electrochemistry with single carbon nanotubes

    NARCIS (Netherlands)

    Heller, I.

    2009-01-01

    This thesis describes the experimental study of devices based on single carbon nanotubes in the context of (bio)sensing in aqueous solutions. Carbon nanotubes are cylindrical molecules of sp2- carbon, about one nanometer in diameter and typically several micrometers long, which have semiconducting

  8. A Carbon Nanotube Cable for a Space Elevator

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    In this paper the mechanical properties of carbon nanotubes are discussed in connection with the possibility to use them for the construction of a space elevator. From the fundamental information about the structure of a carbon nanotube and the chemical bond between carbon atoms, Young's modulus and the ultimate tensile strength are…

  9. Synthesis of PbI(2) single-layered inorganic nanotubes encapsulated within carbon nanotubes.

    Science.gov (United States)

    Cabana, Laura; Ballesteros, Belén; Batista, Eudar; Magén, César; Arenal, Raúl; Oró-Solé, Judith; Rurali, Riccardo; Tobias, Gerard

    2014-04-02

    The template assisted growth of single-layered inorganic nanotubes is reported. Single-crystalline lead iodide single-layered nanotubes have been prepared using the inner cavities of carbon nanotubes as hosting templates. The diameter of the resulting inorganic nanotubes is merely dependent on the diameter of the host. This facile method is highly versatile opening up new horizons in the preparation of single-layered nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Carbon Nanotubes as Future Energy Storage System

    OpenAIRE

    Vasu , V; Silambarasan , D

    2017-01-01

    International audience; Hydrogen is considered to be a clean energy carrier. At present the main drawback in using hydrogen as the fuel is the lack of proper hydrogen storage vehicle, thus ongoing research is focused on the development of advance hydrogen storage materials. Many alloys are able to store hydrogen reversibly, but the gravimetric storage density is too low for any practical applications. Theoretical studies have predicted that interaction of hydrogen with carbon nanotubes is by ...

  11. Aqueous solution dispersement of carbon nanotubes

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  12. Passive Mode Carbon Nanotube Underwater Acoustic Transducer

    Science.gov (United States)

    2016-09-20

    Acoustical transducer arrays can reflect a sound signal in reverse to the sender which can be used for echo location devices. [0008] In Jiang...States Patent No. 8,494,187) a sound wave generator is disclosed which includes a carbon nanotube structure and an insulating reinforcement structure... acoustic device that includes an electrode layer and a sound wave generator. The sound wave generator is disposed on a surface of the electrode

  13. Carbon nanotubes: do they toughen brittle matrices?

    Czech Academy of Sciences Publication Activity Database

    Chao, J.; Inam, F.; Reece, M.J.; Chlup, Zdeněk; Dlouhý, Ivo; Shaffer, M.S.P.; Boccaccini, A. R.

    2011-01-01

    Roč. 46, č. 14 (2011), s. 4770-4779 ISSN 0022-2461 R&D Projects: GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : fracture toughness * carbon nanotube * silica glass Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.015, year: 2011 http://www.springerlink.com/content/74106l0458326n91/

  14. Carbon nanotube-based black coatings

    Science.gov (United States)

    Lehman, J.; Yung, C.; Tomlin, N.; Conklin, D.; Stephens, M.

    2018-03-01

    Coatings comprising carbon nanotubes are very black, that is, characterized by uniformly low reflectance over a broad range of wavelengths from the visible to far infrared. Arguably, there is no other material that is comparable. This is attributable to the intrinsic properties of graphitic material as well as the morphology (density, thickness, disorder, and tube size). We briefly describe a history of other coatings such as nickel phosphorous, gold black, and carbon-based paints and the comparable structural morphology that we associate with very black coatings. The need for black coatings is persistent for a variety of applications ranging from baffles and traps to blackbodies and thermal detectors. Applications for space-based instruments are of interest and we present a review of space qualification and the results of outgassing measurements. Questions of nanoparticle safety depend on the nanotube size and aspect ratio as well as the nature and route of exposure. We describe the growth of carbon nanotube forests along with the catalyst requirements and temperature limitations. We also describe coatings derived from carbon nanotubes and applied like paint. Building the measurement apparatus and determining the optical properties of something having negligible reflectance are challenging and we summarize the methods and means for such measurements. There exists information in the literature for effective media approximations to model the dielectric function of vertically aligned arrays. We summarize this along with the refractive index of graphite from the literature that is necessary for modeling the optical properties. In our experience, the scientific questions can be overshadowed by practical matters, so we provide an appendix of recipes for making as-grown and sprayed coatings along with an example of reflectance measurements.

  15. New Insight into Carbon Nanotube Electronic Structure Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Jiang, Deen [ORNL

    2009-01-01

    The fundamental role of aryl diazonium salts for post synthesis selectivity of carbon nanotubes is investigated using extensive electronic structure calculations. The resulting understanding for diazonium salt based selective separation of conducting and semiconducting carbon nanotubes shows how the primary contributions come from the interplay between the intrinsic electronic structure of the carbon nanotubes and that of the anion of the salt. We demonstrate how the electronic transport properties change upon the formation of charge transfer complexes and upon their conversion into covalently attached functional groups. Our results are found to correlate well with experiments and provide for the first time an atomistic description for diazonium salt based chemical separation of carbon nanotubes

  16. Conformational changes of fibrinogen in dispersed carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Park SJ

    2012-08-01

    Full Text Available Sung Jean Park,1 Dongwoo Khang21College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea; 2School of Nano and Advanced Materials Science Engineering and Center for PRC and RIGET, Gyeongsang National University, Jinju, South KoreaAbstract: The conformational changes of plasma protein structures in response to carbon nanotubes are critical for determining the nanotoxicity and blood coagulation effects of carbon nanotubes. In this study, we identified that the functional intensity of carboxyl groups on carbon nanotubes, which correspond to the water dispersity or hydrophilicity of carbon nanotubes, can induce conformational changes in the fibrinogen domains. Also, elevation of carbon nanotube density can alter the secondary structures (ie, helices and beta sheets of fibrinogen. Furthermore, fibrinogen that had been in contact with the nanoparticle material demonstrated a different pattern of heat denaturation compared with free fibrinogen as a result of a variation in hydrophilicity and concentration of carbon nanotubes. Considering the importance of interactions between carbon nanotubes and plasma proteins in the drug delivery system, this study elucidated the correlation between nanoscale physiochemical material properties of carbon nanotubes and associated structural changes in fibrinogen.Keywords: carbon nanotubes, fibrinogen, nanotoxicity, conformational change, denaturation

  17. Carbon nanotubes from synthesis to in vivo biomedical applications.

    Science.gov (United States)

    Sajid, Muhammad Imran; Jamshaid, Usama; Jamshaid, Talha; Zafar, Nadiah; Fessi, H; Elaissari, Abdelhamid

    2016-03-30

    Owing to their unique and interesting properties, extensive research round the globe has been carried out on carbon nanotubes and carbon nanotubes based systems to investigate their practical usefulness in biomedical applications. The results from these studies demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Although, carbon nanotubes possess quite interesting properties, which make them potential candidates in the biomedical science, but they also have some inherent properties which arise great concern regarding their biosafety. In this comprehensive review, we have discussed different aspects of carbon nanotubes and carbon nanotube based systems related to biomedical applications. In the beginning, a short historical account of these tiny yet powerful particles is given followed by discussion regarding their types, properties, methods of synthesis, large scale production method, purification techniques and characterization aspects of carbon nanotubes. In the second part of the review, the functionalization of carbon nanotubes is reviewed in detail, which is not only important to make them biocompatible and stable in biological systems but also render them a great property of loading various biomolecules, diagnostic and therapeutic moieties resulting in diversified applications. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Simulation of the Band Structure of Graphene and Carbon Nanotube

    International Nuclear Information System (INIS)

    Mina, Aziz N; Awadallah, Attia A; Ahmed, Riham R; Phillips, Adel H

    2012-01-01

    Simulation technique has been performed to simulate the band structure of both graphene and carbon nanotube. Accordingly, the dispersion relations for graphene and carbon nanotube are deduced analytically, using the tight binding model and LCAO scheme. The results from the simulation of the dispersion relation of both graphene and carbon nanotube were found to be consistent with those in the literature which indicates the correctness of the process of simulation technique. The present research is very important for tailoring graphene and carbon nanotube with specific band structure, in order to satisfy the required electronic properties of them.

  19. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  20. Carbon Nanotube Paper-Based Electroanalytical Devices

    Directory of Open Access Journals (Sweden)

    Youngmi Koo

    2016-04-01

    Full Text Available Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT array, grown using chemical vapor deposition (CVD, was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The device was fabricated using the following methods: (1 cellulose-based paper was patterned using a wax printer, (2 electrical connection was made using a silver ink-based circuit printer, and (3 three electrodes were stacked on a 2D Origami cell. Electrochemical behavior was evaluated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. We believe that this platform could attract a great deal of interest for use in various chemical and biomedical applications.

  1. Preparation of carbon nanotubes by MPECVD

    International Nuclear Information System (INIS)

    El-Shazly Duraia, M.A.; Mansorov, Z.A.; Tokmoldin, S.Zh.; Klimenov, V.V.; Nevmerzhitsky, I.S.; Dochshanov, A.M.

    2009-01-01

    Microwave plasma-enhanced chemical vapor deposition (MPECVD) method has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the large area growth, the lower growth temperature, uniform heat distribution and the good control of the different growth parameters. In this work we present our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapor deposition MPECVD. Well aligned, curly and coiled carbon nanotubes have been prepared. We have investigated the effect of the different growth condition parameters such as type of the catalyst, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results were showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. There is a linear relation between the growth rate and the methane to hydrogen ratio. We found that the growth rate has a great dependence on the amount of methane. For example the growth rate varied from the value 1,34 μm/min when the methane flow rate was 10 sccm to more than 14 μm/min when the methane flow rate was raised to 50 sccm. This growth rate is greater than that reported in the literature. The effect of the gas pressure on the CNTs was also studied. The Raman spectra (excitation wavelength 473 nm) of all samples show D-band peak at around 1300 cm -1 and G-band peak at around 1580 cm -1 , which indicate that our CNTs are multi wall CNTs (MWCNTs). The D-band and the G-band correspond to sp 2 and sp 3 carbon stretching modes relatively, and their intensity ratio is a measure of the amount of disorder in the CNTs. The D-band is known to be attributed to the carbonaceous particles, defects in the curved graphitic sheet and tube ends. It has been suggested that lower I g /I d ratios and narrower first and second order D and G bands are suggestive of well-aligned NNTs. The photoluminescence PL

  2. Carbon paste electrode incorporating multi-walled carbon nanotube ...

    Indian Academy of Sciences (India)

    The preparation and electrochemical performance of the carbon nanotube paste electrode modified with ferrocene (FCMCNPE) was investigated for electrocatalytic behaviour toward oxidation of -acetyl--cysteine (NAC) in the presence of tryptophan (Trp) using cyclic voltammetry (CV) and differential pulse voltammetry ...

  3. Carbon nanotube network-silicon oxide non-volatile switches.

    Science.gov (United States)

    Liao, Albert D; Araujo, Paulo T; Xu, Runjie; Dresselhaus, Mildred S

    2014-12-08

    The integration of carbon nanotubes with silicon is important for their incorporation into next-generation nano-electronics. Here we demonstrate a non-volatile switch that utilizes carbon nanotube networks to electrically contact a conductive nanocrystal silicon filament in silicon dioxide. We form this device by biasing a nanotube network until it physically breaks in vacuum, creating the conductive silicon filament connected across a small nano-gap. From Raman spectroscopy, we observe coalescence of nanotubes during breakdown, which stabilizes the system to form very small gaps in the network~15 nm. We report that carbon nanotubes themselves are involved in switching the device to a high resistive state. Calculations reveal that this switching event occurs at ~600 °C, the temperature associated with the oxidation of nanotubes. Therefore, we propose that, in switching to a resistive state, the nanotube oxidizes by extracting oxygen from the substrate.

  4. Preparation of carbon nanotubes from vacuum pyrolysis of polycarbosilane

    International Nuclear Information System (INIS)

    Jou, S.; Hsu, C.K.

    2004-01-01

    Carbon nanotubes (CNTs) were synthesized by vacuum pyrolysis of two types of polycarbosilane (PCS) with iron nano-particles between 800 and 1100 deg. C. Straight nanotubes were obtained from low molecular weight (990 g/mol) PCS whereas curled nanotubes were derived from medium molecular weight (1290 g/mol) PCS. Diameters of these straight and curled nanotubes were between 5 and 20 nm. The mechansim of condensed phase growth of carbon nanotubes was discussed. Electron emission capability of these carbon nanotubes increased with their pyrolyzing temperature. The electric fields required to emit a current density of 10 -2 A/cm 2 from the straight nanotubes being pyrolyzed at 800, 900, 1000, and 1100 deg. C were 1.17, 0.73, 0.67, and 0.33 V/μm, respectively

  5. Zinc oxide nanotubes decorated with silver nanoparticles as an ultrasensitive substrate for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Gao, M.; Feng, B.; Sun, Y.; Xing, G.; Li, S.; Yang, J.; Yang, L.; Zhang, Y.; Liu, H.; Fan, H.; Sui, Y.; Zhang, Z.; Liu, S.; Song, H.

    2012-01-01

    We report on the fabrication of a highly aligned silver-decorated array of zinc oxide nanotubes for use in surface-enhanced Raman spectroscopy (SERS). The ZnO nanotube array was first prepared by chemical etching, and the silver nanoparticles (AgNPs) were then deposited on their surface by magnetron sputtering. Such ZnO/Ag hybrid structures are shown to act as SERS-active substrates with remarkable sensitivity. The enhancement factor can be as high as 10 5 when using 4-mercaptopyridine in solution as a SERS probe. The synergistic combination between SERS 'hot spots' and the formation of an interfacial electric field between the zinc oxide nanotubes and the AgNPs in our opinion contribute to the high sensitivity. The relative standard deviations of signal intensities for the major SERS peaks are <7 %. This demonstrates that the optimized ZnO/Ag hybrid represents an excellent SERS substrate that may be used in trace analysis and ultrasensitive molecular sensing. (author)

  6. Magnetic and optical properties of carbon and silicon decorated free standing buckled germanene: A DFT approach

    Science.gov (United States)

    Dhar, Namrata; Jana, Debnarayan

    2018-04-01

    Ab initio magnetic and optical properties of group IV elements (carbon (C) and silicon (Si)) decorated free standing (FS) buckled germanene systems have been employed theoretically. Our study elucidates that, decoration of these elements in proper sites with suitable concentrations form dynamically stable configurations. Band structure is modified due to decoration of these atoms in Ge-nanosheet and pristine semi-metallic germanene undergoes to semiconductors with a finite amount of bandgap. Interestingly, this bandgap value meets closely the requirement of gap for field effect transistor (FET) applications. Moreover, significant magnetic moment is induced in non-magnetic germanene for C decorated structure and ground state in anti-ferromagnetic in nature for this structure. Along with magnetic property, optical properties like dielectric functions, optical absorption, electron energy loss spectra (EELS), refractive index and reflectivity of these systems have also been investigated. Maximum number of plasma frequencies appear for Si decorated configuration considering both parallel and perpendicular polarizations. In addition, birefringence characteristics of these configurations have also been studied as it is an important parameter in various applications of optical devices, liquid crystal displays, light modulators etc.

  7. Efficient electrochemical degradation of multiwall carbon nanotubes.

    Science.gov (United States)

    Reipa, Vytas; Hanna, Shannon K; Urbas, Aaron; Sander, Lane; Elliott, John; Conny, Joseph; Petersen, Elijah J

    2018-07-15

    As the production mass of multiwall carbon nanotubes (MWCNT) increases, the potential for human and environmental exposure to MWCNTs may also increase. We have shown that exposing an aqueous suspension of pristine MWCNTs to an intense oxidative treatment in an electrochemical reactor, equipped with an efficient hydroxyl radical generating Boron Doped Diamond (BDD) anode, leads to their almost complete mineralization. Thermal optical transmittance analysis showed a total carbon mass loss of over two orders of magnitude due to the electrochemical treatment, a result consistent with measurements of the degraded MWCNT suspensions using UV-vis absorbance. Liquid chromatography data excludes substantial accumulation of the low molecular weight reaction products. Therefore, up to 99% of the initially suspended MWCNT mass is completely mineralized into gaseous products such as CO 2 and volatile organic carbon. Scanning electron microscopy (SEM) images show sporadic opaque carbon clusters suggesting the remaining nanotubes are transformed into structure-less carbon during their electrochemical mineralization. Environmental toxicity of pristine and degraded MWCNTs was assessed using Caenorhabditis elegans nematodes and revealed a major reduction in the MWCNT toxicity after treatment in the electrochemical flow-by reactor. Published by Elsevier B.V.

  8. Imaging active topological defects in carbon nanotubes

    Science.gov (United States)

    Suenaga, Kazu; Wakabayashi, Hideaki; Koshino, Masanori; Sato, Yuta; Urita, Koki; Iijima, Sumio

    2007-06-01

    A single-walled carbon nanotube (SWNT) is a wrapped single graphene layer, and its plastic deformation should require active topological defects-non-hexagonal carbon rings that can migrate along the nanotube wall. Although in situ transmission electron microscopy (TEM) has been used to examine the deformation of SWNTs, these studies deal only with diameter changes and no atomistic mechanism has been elucidated experimentally. Theory predicts that some topological defects can form through the Stone-Wales transformation in SWNTs under tension at 2,000 K, and could act as a dislocation core. We demonstrate here, by means of high-resolution (HR)-TEM with atomic sensitivity, the first direct imaging of pentagon-heptagon pair defects found in an SWNT that was heated at 2,273 K. Moreover, our in situ HR-TEM observation reveals an accumulation of topological defects near the kink of a deformed nanotube. This result suggests that dislocation motions or active topological defects are indeed responsible for the plastic deformation of SWNTs.

  9. Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading

    International Nuclear Information System (INIS)

    Worsley, Marcus A.; Pauzauskie, Peter J.; Kucheyev, Sergei O.; Zaug, Joseph M.; Hamza, Alex V.; Satcher, Joe H.; Baumann, Theodore F.

    2009-01-01

    Here, we present the synthesis and characterization of low-density single-walled carbon nanotube-based aerogels (SWNT-CA). Aerogels with varying nanotube loading (0-55 wt.%) and density (20-350 mg cm -3 ) were fabricated and characterized by four-probe method, electron microscopy, Raman spectroscopy and nitrogen porosimetry. Several properties of the SWNT-CAs were highly dependent upon nanotube loading. At nanotube loadings of 55 wt.%, shrinkage of the aerogel monoliths during carbonization and drying was almost completely eliminated. Electrical conductivities are improved by an order of magnitude for the SWNT-CA (55 wt.% nanotubes) compared to those of foams without nanotubes. Surface areas as high as 184 m 2 g -1 were achieved for SWNT-CAs with greater than 20 wt.% nanotube loading.

  10. Water desalination by electrical resonance inside carbon nanotubes.

    Science.gov (United States)

    Feng, Jia-Wei; Ding, Hong-Ming; Ma, Yu-Qiang

    2016-10-12

    Although previous studies have indicated that the carbon nanotube (CNT) can be used for directed transportation of water and ions, it is still a challenging problem to design a CNT-based device for high performance water desalination. In this study, by using molecular dynamics simulations, we successfully design one type of CNT as a highly efficient desalination membrane through electrical resonance. By decorating the two ends of the CNT with vibrational charges, an alternating electric field is created inside the CNT. When the amplitude of the vibrational charge is 0.05 e, and the vibrational frequency is between 10 THz and 20 THz, the CNT can completely block the transportation of ions. The decrease of the amplitude or the deviation of the frequency in an appropriate range will gradually increase the ion flow. Besides, we also reveal the underlying molecular mechanism of ion blockage, i.e., the electric resonance can disrupt the water structure inside the CNT and then alter the hydration energy of ions inside the CNT. More importantly, we further demonstrate that this mechanism is universal, which is independent of the type of ions and the size of CNT. The present work could be useful for designing water desalination membranes with lower energy consumption and higher fresh water production.

  11. Low-frequency plasmons in metallic carbon nanotubes

    International Nuclear Information System (INIS)

    Lin, M.F.; Chuu, D.S.; Shung, K.W.

    1997-01-01

    A metallic carbon nanotube could exhibit a low-frequency plasmon, while a semiconducting carbon nanotube or a graphite layer could not. This plasmon is due to the free carriers in the linear subbands intersecting at the Fermi level. The low-frequency plasmon, which corresponds to the vanishing transferred angular momentum, belongs to an acoustic plasmon. For a smaller metallic nanotube, it could exist at larger transferred momenta, and its frequency is higher. Such a plasmon behaves as that in a one-dimensional electron gas (EGS). However, it is very different from the π plasmons in all carbon nanotubes. Intertube Coulomb interactions in a metallic multishell nanotube and a metallic nanotube bundle have been included. They have a strong effect on the low-frequency plasmon. The intertube coupling among coaxial nanotubes markedly modifies the acoustic plasmons in separate metallic nanotubes. When metallic carbon nanotubes are packed in the bundle form, the low-frequency plasmon would change into an optical plasmon, and behave like that in a three-dimensional EGS. Experimental measurements could be used to distinguish metallic and semiconducting carbon nanotubes. copyright 1997 The American Physical Society

  12. Fullerenes, nanotubes, onions and related carbon structures

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C N.R.; Seshadri, Ram; Govindaraj, A; Sen, Rahul [Solid State and Structural Chemistry Unit, CSIR Centre of Excellence in Chemistry and Materials Research Centre, Indian Institute of Science, Bangalore (India)

    1995-12-01

    Fullerenes, containing five- and six-membered carbon rings, of which C{sub 6}0 and C{sub 7}0 are the prominent members, exhibit phase transitions associated with orientational ordering. When C{sub 6}0 is suitably doped with electrons, it shows novel superconducting and magnetic properties. We review these and other properties of fullerenes in bulk or in film form along with the preparative and structural aspects. Carbon nanotubes and onions (hyperfullerenes) are the other forms of carbon whose material properties have aroused considerable interest. Besides discussing these new forms of carbon, we briefly introduce other possible forms, such as those involving five-, six- and seven-membered rings and hybrids between diamond and graphite

  13. Magnetic properties of carbon nanotubes with and without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lipert, Kamil; Ritschel, Manfred; Leonhardt, Albrecht; Krupskaya, Yulia; Buechner, Bernd; Klingeler, Ruediger, E-mail: k.lipert@ifw-dresden.d [Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany)

    2010-01-01

    In this paper we report on the magnetic properties of single- and multiwalled carbon nanotubes synthesized using different chemical vapour deposition methods and with variety of catalyst materials (ferromagnetic Fe, FeCo and diamagnetic Re). Different methods yield carbon nanotubes with different morphologies and different quantity of residual catalyst material. Catalyst particles are usually encapsulated in the nanotubes and influence the magnetic respond of the samples. Varying ferromagnetic properties depending on the shape, size and type of catalyst are discussed in detail. The data are compared with M(H) characteristics of carbon nanotubes without catalysts and with nonmagnetic rhenium, as a reference.

  14. A carbon nanotube-based pressure sensor

    International Nuclear Information System (INIS)

    Karimov, Kh S; Saleem, M; Khan, Adam; Qasuria, T A; Mateen, A; Karieva, Z M

    2011-01-01

    In this study, a carbon nanotube (CNT)-based Al/CNT/Al pressure sensor was designed, fabricated and investigated. The sensor was fabricated by depositing CNTs on an adhesive elastic polymer tape and placing this in an elastic casing. The diameter of multiwalled nanotubes varied between 10 and 30 nm. The nominal thickness of the CNT layers in the sensors was in the range ∼300-430 μm. The inter-electrode distance (length) and the width of the surface-type sensors were in the ranges 4-6 and 3-4 mm, respectively. The dc resistance of the sensors decreased 3-4 times as the pressure was increased up to 17 kN m -2 . The resistance-pressure relationships were simulated.

  15. A carbon nanotube immunosensor for Salmonella

    Science.gov (United States)

    Lerner, Mitchell B.; Goldsmith, Brett R.; McMillon, Ronald; Dailey, Jennifer; Pillai, Shreekumar; Singh, Shree R.; Johnson, A. T. Charlie

    2011-12-01

    Antibody-functionalized carbon nanotube devices have been suggested for use as bacterial detectors for monitoring of food purity in transit from the farm to the kitchen. Here we report progress towards that goal by demonstrating specific detection of Salmonella in complex nutrient broth solutions using nanotube transistors functionalized with covalently-bound anti-Salmonella antibodies. The small size of the active device region makes them compatible with integration in large-scale arrays. We find that the on-state current of the transistor is sensitive specifically to the Salmonella concentration and saturates at low concentration (Salmonella and other bacteria types, with no sign of saturation even at much larger concentrations (108 cfu/ml).

  16. Modeling of a carbon nanotube ultracapacitor.

    Science.gov (United States)

    Orphanou, Antonis; Yamada, Toshishige; Yang, Cary Y

    2012-03-09

    The modeling of carbon nanotube ultracapacitor (CNU) performance based on the simulation of electrolyte ion motion between the cathode and the anode is described. Using a molecular dynamics (MD) approach, the equilibrium positions of the electrode charges interacting through the Coulomb potential are determined, which in turn yield the equipotential surface and electric field associated with the capacitor. With an applied ac voltage, the current is computed based on the nanotube and electrolyte particle distribution and interaction, resulting in the frequency-dependent impedance Z(ω). From the current and impedance profiles, the Nyquist and cyclic voltammetry (CV) plots are then extracted. The results of these calculations compare well with existing experimental data. A lumped-element equivalent circuit for the CNU is proposed and the impedance computed from this circuit correlates well with the simulated and measured impedances.

  17. Batch fabrication of carbon nanotube bearings

    International Nuclear Information System (INIS)

    Subramanian, A; Dong, L X; Tharian, J; Sennhauser, U; Nelson, B J

    2007-01-01

    Relative displacements between the atomically smooth, nested shells in multiwalled carbon nanotubes (MWNTs) can be used as a robust nanoscale motion enabling mechanism. Here, we report on a novel method suited for structuring large arrays of MWNTs into such nanobearings in a parallel fashion. By creating MWNT nanostructures with nearly identical electrical circuit resistance and heat transport conditions, uniform Joule heating across the array is used to simultaneously engineer the shell geometry via electric breakdown. The biasing approach used optimizes process metrics such as yield and cycle-time. We also present the parallel and piecewise shell engineering at different segments of a single nanotube to construct multiple, but independent, high density bearings. We anticipate this method for constructing electromechanical building blocks to be a fundamental unit process for manufacturing future nanoelectromechanical systems (NEMS) with sophisticated architectures and to drive several nanoscale transduction applications such as GHz-oscillators, shuttles, memories, syringes and actuators

  18. Carbon nanotubes: from nano test tube to nano-reactor.

    Science.gov (United States)

    Khlobystov, Andrei N

    2011-12-27

    Confinement of molecules and atoms inside carbon nanotubes provides a powerful strategy for studying structures and chemical properties of individual molecules at the nanoscale. In this issue of ACS Nano, Allen et al. explore the nanotube as a template leading to the formation of unusual supramolecular and covalent structures. The potential of carbon nanotubes as reactors for synthesis on the nano- and macroscales is discussed in light of recent studies.

  19. Catalytic growth of carbon nanotubes with large inner diameters

    Directory of Open Access Journals (Sweden)

    WEI REN ZHONG

    2005-02-01

    Full Text Available Carbon nanotubes (2.4 g/g catalyst, with large inner diameters were successfully synthesized through pyrolysis of methane on a Ni–Cu–Al catalyst by adding sodium carbonate into the carbon nanotubes growth system. The inner diameter of the carbon nanotubes prepared by this method is about 20–60 nm, while their outer diameter is about 40–80 nm. Transmission electron microscopy and X-ray diffraction were employed to investigate the morphology and microstructures of the carbon nanotubes. The analyses showed that these carbon nanotubes have large inner diameters and good graphitization. The addition of sodium carbonate into the reaction system brings about a slight decrease in the methane conversion and the yield of carbon. The experimental results showed that sodium carbonate is a mildly toxic material which influenced the catalytic activity of the Ni–Cu–Al catalyst and resulted in the formation of carbon nanotubes with large inner diameters. The growth mechanism of the carbon nanotubes with large inner diameters is discussed in this paper.

  20. Carbon composites composites with carbon fibers, nanofibers, and nanotubes

    CERN Document Server

    Chung, Deborah D L

    2017-01-01

    Carbon Composites: Composites with Carbon Fibers, Nanofibers, and Nanotubes, Second Edition, provides the reader with information on a wide range of carbon fiber composites, including polymer-matrix, metal-matrix, carbon-matrix, ceramic-matrix and cement-matrix composites. In contrast to other books on composites, this work emphasizes materials rather than mechanics. This emphasis reflects the key role of materials science and engineering in the development of composite materials. The applications focus of the book covers both the developing range of structural applications for carbon fiber composites, including military and civil aircraft, automobiles and construction, and non-structural applications, including electromagnetic shielding, sensing/monitoring, vibration damping, energy storage, energy generation, and deicing. In addition to these new application areas, new material in this updated edition includes coverage of cement-matrix composites, carbon nanofibers, carbon matrix precursors, fiber surface ...

  1. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  2. Softening of the Radial Breathing Mode in Metallic Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Farhat, H. (ed.); Sasaki, K.; Kalbáč, Martin; Hofmann, M.; Saito, R.; Dresselhaus, M. S.; Kong, J.

    2009-01-01

    Roč. 102, č. 12 (2009), 126804-1-126804-4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallic carbon nanotubes * radial breathing mode * single waled carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 7.328, year: 2009

  3. Apparatus for the laser ablative synthesis of carbon nanotubes

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin

    2010-02-16

    An RF-induction heated side-pumped synthesis chamber for the production of carbon nanotubes. Such an apparatus, while capable of producing large volumes of carbon nanotubes, concurrently provides a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization.

  4. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    International Nuclear Information System (INIS)

    Fetterman, Abe; Raitses, Yevgeny; Keidar, Michael

    2008-01-01

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  5. Very short functionalized carbon nanotubes for membrane applications

    NARCIS (Netherlands)

    Fonseca, A.; Reijerkerk, Sander; Potreck, Jens; Nijmeijer, Dorothea C.; Mekhalif, Z.; Delhalle, J.

    2010-01-01

    The cutting and functionalization of carbon nanotubes is described, applying a single-step ball-mill based process. Very short carbon nanotubes bearing primary amine functions were produced, characterized and incorporated in polymeric membranes. The gas separation performance of the composite

  6. Catalyst deposition for the preparation of carbon nanotubes

    DEFF Research Database (Denmark)

    2013-01-01

    patterned surface is configured to ensure that no more than a single island of catalyst is formed on each plateau, so that a sub sequent growth of carbon nanotubes from the deposited islands result in that no more than a single carbon nanotube is grown from each plateau....

  7. Nitrogen doped carbon nanotubes : synthesis, characterization and catalysis

    NARCIS (Netherlands)

    van Dommele, S.

    2008-01-01

    Nitrogen containing Carbon Nanotubes (NCNT) have altered physical- and chemical properties with respect to polarity, conductivity and reactivity as compared to conventional carbon nanotubes (CNT) and have potential for use in electronic applications or catalysis. In this thesis the incorporation of

  8. Synthesis of nano-carbon (nanotubes, nanofibres, graphene ...

    Indian Academy of Sciences (India)

    In the present study, we report the synthesis of carbon nanotubes (CNTs) using a new natural precursor: castor oil. The CNTs were synthesized by spray pyrolysis of castor oil–ferrocene solution at 850°C under an Ar atmosphere. We also report the synthesis of carbon nitrogen (C–N) nanotubes using castor ...

  9. Electrical conductivity of metal–carbon nanotube structures

    Indian Academy of Sciences (India)

    The electrical properties of asymmetric metal–carbon nanotube (CNT) structures have been studied using density functional theory and non-equilibrium Green's function method with Atomistix tool kit. The models with asymmetric metal contacts and carbon nanotube bear resemblance to experimental set-ups. The study ...

  10. A thermodynamic model for growth mechanisms of multiwall carbon nanotubes.

    Energy Technology Data Exchange (ETDEWEB)

    Kaatz, Forrest H.; Overmyer, Donald L.; Siegal, Michael P.

    2006-02-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830 C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60 eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  11. Thermodynamic model for growth mechanisms of multiwall carbon nanotubes

    Science.gov (United States)

    Kaatz, F. H.; Siegal, M. P.; Overmyer, D. L.; Provencio, P. P.; Tallant, D. R.

    2006-12-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830°C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  12. Magnetoelectronic properties of chiral carbon nanotubes and tori

    International Nuclear Information System (INIS)

    Shyu, F L; Tsai, C C; Lee, C H; Lin, M F

    2006-01-01

    Magnetoelectronic properties of chiral carbon nanotubes and toroids are studied for any magnetic field. They are sensitive to the changes in the magnitude and the direction of the magnetic field, as well as the chirality. The important differences between chiral and achiral carbon nanotubes include band symmetry, band curvature, band crossing, band-edge state, state degeneracy, band spacing, energy gap, and semiconductor-metal transition. Carbon tori also exhibit the strong chirality dependence on the field modulation of discrete states. Chiral carbon tori might differ from chiral carbon nanotubes in energy-gap modulation, density of states, and state degeneracy

  13. Carbon nanotubes significance in Darcy-Forchheimer flow

    Science.gov (United States)

    Hayat, Tasawar; Rafique, Kiran; Muhammad, Taseer; Alsaedi, Ahmed; Ayub, Muhammad

    2018-03-01

    The present article examines Darcy-Forchheimer flow of water-based carbon nanotubes. Flow is induced due to a curved stretchable surface. Heat transfer mechanism is analyzed in presence of convective heating process. Xue model of nanofluid is employed to study the characteristics of both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Results for both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are achieved and compared. Appropriate transformations correspond to strong nonlinear ordinary differential system. Optimal homotopy analysis method (OHAM) is used for the solution development of the resulting system. The contributions of different sundry variables on the velocity and temperature are studied. Further the skin friction coefficient and local Nusselt number are analyzed graphically for both SWCNTs and MWCNTs cases.

  14. Layered growth of aligned carbon nanotube arrays by pyrolysis

    International Nuclear Information System (INIS)

    Zhang Hongrui; Liang Erjun; Ding Pei; Chao Mingju

    2003-01-01

    Based on the study of reaction temperature and duration of the growth of aligned carbon nanotube arrays, layered aligned multi-wall carbon nanotube (MWNT) films grown directly around a reaction quartz tube in an Ar/H 2 atmosphere by pyrolysis of ferrocene in xylene in a suitable reaction furnace with the help of cobalt powder. The scanning electron microscope and transmission electron microscope images indicated that the obtained arrays were composed of many separated layers with MWNTs. The reaction temperature significantly influenced the alignment of the MWNTs, and an appropriate reaction temperature range for growth was 800-900 deg. C. The diameter of the carbon nanotube increased from 46 to 75 nm with the growth temperature. Besides temperature, the reaction duration influenced the length of the well-aligned carbon nanotubes. There was no significant relation between the growth time and the diameter of the carbon nanotubes in the array

  15. Thermophoretic Motion of Water Nanodroplets confined inside Carbon Nanotubes

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Koumoutsakos, Petros

    2009-01-01

    We study the thermophoretic motion of water nanodroplets confined inside carbon nanotubes using molecular dynamics simulations. We find that the nanodroplets move in the direction opposite the imposed thermal gradient with a terminal velocity that is linearly proportional to the gradient....... The translational motion is associated with a solid body rotation of the water nanodroplet coinciding with the helical symmetry of the carbon nanotube. The thermal diffusion displays a weak dependence on the wetting of the water-carbon nanotube interface. We introduce the use of the Moment Scaling Spectrum (MSS......) in order to determine the characteristics of the motion of the nanoparticles inside the carbon nanotube. The MSS indicates that affinity of the nanodroplet with the walls of the carbon nanotubes is important for the isothermal diffusion, and hence for the Soret coefficient of the system....

  16. Fabrication and characterization of nanocomposites reinforced by carbon nanotubes - (1) synthesis of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hseuh Hsiangming; Tai Nyanhwa; Perng Tongping [Dept. of Material Science, National Tsing-Hwa Univ., TW (China); Chyou Sander [Taiwan Power Research Inst., Taiwan Power Co., Taipei (China)

    2003-07-01

    Multi-walled carbon nanotubes (MWCNTs) produced by floating catalyst method were used for reinforcing material in polymeric nanocomposites. Five different kinds of carbon sources (benzene, toluene, xylene, cyclo-hexane, n-hexane) were used as precursors in the thermal chemical vapor deposition process. The products were collected and examined by Raman, HRTEM, and FESEM. The differences in microstructure and morphologies among these products are analyzed and discussed. (orig.)

  17. Towards self-assembled devices, a carbon nanotube approach

    OpenAIRE

    Del Rio Castillo, Antonio Esau

    2012-01-01

    2010/2011 In the last decade the nanostructured carbon materials, especially single walled carbon nanotubes (SWNTs), had emerged as probable substitutes for Silicon in the next generation of electronic devices. This is due to their unique physic and chemical properties. Likewise, scientists all around the world have made a huge effort to introduce carbon materials into the market. Despite this effort, commercial application for carbon nanotubes in electronic devices has not yet been achiev...

  18. Influence of surface chemistry on inkjet printed carbon nanotube films

    International Nuclear Information System (INIS)

    Hopkins, Alan R.; Straw, David C.; Spurrell, Kathryn C.

    2011-01-01

    Carbon nanotube ink chemistry and the proper formulation are crucial for direct-write printing of nanotubes. Moreover, the correct surface chemistry of the self-assembled monolayers that assist the direct deposition of carbon nanotubes onto the substrate is equally important to preserve orientation of the printed carbon nanotubes. We report that the successful formulation of two single walled carbon nanotube (SWNT) inks yields a consistent, homogenous printing pattern possessing the requisite viscosities needed for flow through the microcapillary nozzles of the inkjet printer with fairly modest drying times. The addition of an aqueous sodium silicate allows for a reliable method for forming a uniform carbon nanotube network deposited directly onto unfunctionalized surfaces such as glass or quartz via inkjet deposition. Furthermore, this sodium silicate ingredient helps preserve applied orientation to the printed SWNT solution. Sheet resistivity of this carbon nanotube ink formula printed on quartz decreases as a function of passes and is independent of the substrate. SWNTs were successfully patterned on Au. This amine-based surface chemistry dramatically helps improve the isolation stabilization of the printed SWNTs as seen in the atomic force microscopy (AFM) image. Lastly, using our optimized SWNT ink formula and waveform parameters in the Fuji materials printer, we are able to directly write/print SWNTs into 2D patterns. Dried ink pattern expose and help orient roped carbon nanotubes that are suspended in ordered arrays across the cracks.

  19. Mechanochemical treatment of amorphous carbon from brown sphagnum moss for the preparation of carbon nanotubes

    International Nuclear Information System (INIS)

    Onishchenko, D.V.

    2013-01-01

    Under consideration is the mechanism of multiwalled nanotubes formation during mechanical activation of amorphous carbon synthesized by pyrolysis of sphagnum moss. The formation of nanotubes has been shown to take place in the array of carbon particles. A complex study of the sorption characteristics of carbon nanotubes has been carried out. The dependence of the sorption capacity of carbon nanotubes on their storage time, as well as the effect of the process parameters of nanotubes formation on their ability for oxidative modification, is represented. (authors)

  20. Surface plasmon observed for carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L A; Stadelmann, P A [Ecole Polytechnique Federale, Lausanne (Switzerland); Peng, J L; Prawer, S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-12-31

    This paper presents parallel electron energy loss spectra (PEELS) results, obtained for individual carbon nanotubes, using nanoprobe techniques (1-2 nm diameter electron beam), energy resolution 0.5 eV and collection times of 4-25 sec. The aim was to use a nanoprobe to compare PEELS spectra from different parts of a tube, in order to search for variations in sp{sup 2}/sp{sup 3} bonding ratios as well as to look for orientation dependent plasmon and core-loss phenomena. It also seemed interesting to compare results for nanotubes with those for other varieties of graphitized carbons. The most interesting result so far was the appearance of a 15 eV plasmon peak, which appeared only for tubes containing {<=} about 12 graphite-like layers. This peak did not shift significantly with tube size. A low-loss peaks at 6 eV of variable relative intensity was also observed this peak was relatively very weak for amorphous tubes; it appears to be characteristic of graphite-like layers, as found for nanotubes and, of course, graphite itself. This paper is restricted to discussion of the low-loss results. The experimental techniques are first described, including some details of the methods which may be used to disperse and support sooty carbons for high-resolution transmission electron microscopy. The results are then presented, followed by an interpretation of all the low-loss PEELS results, including those of the other authors. 14 refs., 2 figs.

  1. TiO2 nanotubes with different spacing, Fe2O3 decoration and their evaluation for Li-ion battery application

    Science.gov (United States)

    Ozkan, Selda; Cha, Gihoon; Mazare, Anca; Schmuki, Patrik

    2018-05-01

    In the present work, we report on the use of organized TiO2 nanotube (NT) layers with a regular intertube spacing for the growth of highly defined α-Fe2O3 nano-needles in the interspace. These α-Fe2O3 decorated TiO2 NTs are then explored for Li-ion battery applications and compared to classic close-packed (CP) NTs that are decorated with various amounts of nanoscale α-Fe2O3. We show that NTs with tube-to-tube spacing allow uniform decoration of individual NTs with regular arrangements of hematite nano-needles. The tube spacing also facilitates the electrolyte penetration as well as yielding better ion diffusion. While bare CP NTs show a higher capacitance of 71 μAh cm-2 compared to bare spaced NTs with a capacitance of 54 μAh cm-2, the hierarchical decoration with secondary metal oxide, α-Fe2O3, remarkably enhances the Li-ion battery performance. Namely, spaced NTs with α-Fe2O3 decoration have an areal capacitance of 477 μAh cm-2, i.e. they have nearly ˜8 times higher capacitance. However, the areal capacitance of CP NTs with α-Fe2O3 decoration saturates at 208 μAh cm-2, i.e. is limited to ˜3 times increase.

  2. Carbon nanotubes for high-performance logic

    OpenAIRE

    Chen, Zhihong; Wong, H.S. Phillip; Mitra, Subhasish; Bol, Aggeth; Peng, Lianmao; Hills, Gage; Thissen, Nick

    2014-01-01

    Single-wall carbon nanotubes (CNTs) were discovered in 1993 and have been an area of intense research since then. They offer the right dimensions to explore material science and physical chemistry at the nanoscale and are the perfect system to study low-dimensional physics and transport. In the past decade, more attention has been shifted toward making use of this unique nanomaterial in real-world applications. In this article, we focus on potential applications of CNTs in the high-performanc...

  3. Metallic Carbon Nanotubes and Ag Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis E

    2014-03-04

    The goal of this DOE solar energy research was to understand how visible light interacts with matter, and how to make electric excitations evolve into separated electrons and holes in photovoltaic cells, especially in nanoparticles and nanowires. Our specific experiments focused on A) understanding plasmon enhanced spectroscopy and charge-transfer (metal-to-molecule) photochemistry on the surface of metallic particles and B) the spectroscopy and photochemistry of carbon nanotubes and graphene. I also worked closely with R. Friesner on theoretical studies of photo-excited electrons near surfaces of titanium dioxide nanoparticles; this process is relevant to the Gratzel photovoltaic cell.

  4. Carbon Nanotubes Filled with Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Albrecht Leonhardt

    2010-08-01

    Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.

  5. Fibrous composites comprising carbon nanotubes and silica

    Science.gov (United States)

    Peng, Huisheng [Shanghai, CN; Zhu, Yuntian Theodore [Cary, NC; Peterson, Dean E [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2011-10-11

    Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO).sub.3Si--(CH.sub.2).sub.n--NR.sub.1R.sub.2) or (SiO).sub.3Si--(CH.sub.2).sub.n--NCO; where n is from 1 to 6, and R.sub.1 and R.sub.2 are each independently H, CH.sub.3, or C.sub.2H.sub.5.

  6. Biomineralization of superhydrophilic vertically aligned carbon nanotubes.

    Science.gov (United States)

    Marsi, Teresa Cristina O; Santos, Tiago G; Pacheco-Soares, Cristina; Corat, Evaldo J; Marciano, Fernanda R; Lobo, Anderson O

    2012-03-06

    Vertically aligned carbon nanotubes (VACNT) promise a great role for the study of tissue regeneration. In this paper, we introduce a new biomimetic mineralization routine employing superhydrophilic VACNT films as highly stable template materials. The biomineralization was obtained after VACNT soaking in simulated body fluid solution. Detailed structural analysis reveals that the polycrystalline biological apatites formed due to the -COOH terminations attached to VACNT tips after oxygen plasma etching. Our approach not only provides a novel route for nanostructured materials, but also suggests that COOH termination sites can play a significant role in biomimetic mineralization. These new nanocomposites are very promising as nanobiomaterials due to the excellent human osteoblast adhesion.

  7. Carbon Nanotubes Filled with Ferromagnetic Materials

    Science.gov (United States)

    Weissker, Uhland; Hampel, Silke; Leonhardt, Albrecht; Büchner, Bernd

    2010-01-01

    Carbon nanotubes (CNT) filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD) methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology. PMID:28883334

  8. Disorder, Pseudospins, and Backscattering in Carbon Nanotubes

    International Nuclear Information System (INIS)

    McEuen, Paul L.; Bockrath, Marc; Cobden, David H.; Yoon, Young-Gui; Louie, Steven G.

    1999-01-01

    We address the effects of disorder on the conducting properties of metal and semiconducting carbon nanotubes. Experimentally, the mean free path is found to be much larger in metallic tubes than in doped semiconducting tubes. We show that this result can be understood theoretically if the disorder potential is long ranged. The effects of a pseudospin index that describes the internal sublattice structure of the states lead to a suppression of scattering in metallic tubes, but not in semiconducting tubes. This conclusion is supported by tight-binding calculations. (c) 1999 The American Physical Society

  9. Carbon Nanotube Integration with a CMOS Process

    Science.gov (United States)

    Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330

  10. Superconductivity in single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    H Yavari

    2009-08-01

    Full Text Available   By using Greens function method we first show that the effective interaction between two electrons mediated by plasmon exchange can become attractive which in turn can lead to superconductivity at a high critical temperature in a singl wall carbon nanotubes (SWCNT. The superconducting transition temperature Tc for the SWCNT (3,3 obtained by this mechanism agrees with the recent experimental result. We also show as the radius of SWCNT increases, plasmon frequency becomes lower and leads to lower Tc.

  11. Spin transport in ferromagnetically contacted carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Morgan, C.; Schneider, C.M. [Peter Gruenberg Institut, PGI-6, Forschungszentrum Juelich and JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany)

    2011-11-15

    We present magnetoresistance (MR) measurements on carbon nanotubes (CNTs) with different ferromagnetic leads. A sample with permalloy (Ni{sub 80}Fe{sub 20}) contacts shows the expected tunneling-type MR effect. Measurements on devices with CoPd contacts show a larger change of resistance with magnetic field. However, only minor loops are observed, which is explained with domain wall pinning. This is supported by magnetic force microscopy (MFM) measurements, which reveal a complicated bubble and stripe domain pattern. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Thermodynamics on Soluble Carbon Nanotubes: How Do DNA Molecules Replace Surfactants on Carbon Nanotubes?

    Science.gov (United States)

    Kato, Yuichi; Inoue, Ayaka; Niidome, Yasuro; Nakashima, Naotoshi

    2012-01-01

    Here we represent thermodynamics on soluble carbon nanotubes that enables deep understanding the interactions between single-walled carbon nanotubes (SWNTs) and molecules. We selected sodium cholate and single-stranded cytosine oligo-DNAs (dCn (n = 4, 5, 6, 7, 8, 10, 15, and 20)), both of which are typical SWNT solubilizers, and successfully determined thermodynamic properties (ΔG, ΔH and ΔS values) for the exchange reactions of sodium cholate on four different chiralities of SWNTs ((n,m) = (6,5), (7,5), (10,2), and (8,6)) for the DNAs. Typical results contain i) the dC5 exhibited an exothermic exchange, whereas the dC6, 8, 10, 15, and 20 materials exhibited endothermic exchanges, and ii) the energetics of the dC4 and dC7 exchanges depended on the associated chiral indices and could be endothermic or exothermic. The presented method is general and is applicable to any molecule that interacts with nanotubes. The study opens a way for science of carbon nanotube thermodynamics. PMID:23066502

  13. Tuning the conductance of carbon nanotubes with encapsulated molecules

    International Nuclear Information System (INIS)

    Meunier, Vincent; Sumpter, Bobby G

    2007-01-01

    It was recently shown that a molecule encapsulated inside a carbon nanotube can be used to devise a novel type of non-volatile memory element. At the heart of the mechanism for storing and reading information is the new concept of a molecular gate where the molecule acts as a passive gate that hinders the flow of electrons for a given position relative to the nanotube host. By systematically exploring the effects of encapsulation of an acceptor molecule in a series of carbon nanotubes, we show that the reliability of the memory mechanism is very sensitive to the interaction between the nanotube host and the molecule guest

  14. Nanotube bundle oscillators: Carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2009-01-01

    In this paper, we investigate the oscillation of a fullerene that is moving within the centre of a bundle of nanotubes. In particular, certain fullerene-nanotube bundle oscillators, namely C 60 -carbon nanotube bundle, C 60 -boron nitride nanotube bundle, B 36 N 36 -carbon nanotube bundle and B 36 N 36 -boron nitride nanotube bundle are studied using the Lennard-Jones potential and the continuum approach which assumes a uniform distribution of atoms on the surface of each molecule. We address issues regarding the maximal suction energies of the fullerenes which lead to the generation of the maximum oscillation frequency. Since bundles are also found to comprise double-walled nanotubes, this paper also examines the oscillation of a fullerene inside a double-walled nanotube bundle. Our results show that the frequencies obtained for the oscillation within double-walled nanotube bundles are slightly higher compared to those of single-walled nanotube bundle oscillators. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures.

  15. Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus.

    Science.gov (United States)

    Kong, Lingjun; Han, Meina; Shih, Kaimin; Su, Minhua; Diao, Zenghui; Long, Jianyou; Chen, Diyun; Hou, Li'an; Peng, Yan

    2018-02-01

    Recovering phosphorus (P) from waste streams takes the unique advantage in simultaneously addressing the crisis of eutrophication and the shortage of P resource. A novel calcium decorated sludge carbon (Ca-SC) was developed from dyeing industry wastewater treatment sludge by decorating calcium (Ca) to effectively adsorb phosphorus from solution. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques were used to characterize the Ca-SCs, followed by isotherm and kinetic sorption experiments. A preferred design with CaCO 3 to sludge mass ratio of 1:2 was found to have a sorption capacity of 116.82 mg/g for phosphorus. This work reveals the crucial role of well-dispersed nano-rod calcium on the Ca-SC surface for the sorption of phosphorus. Moreover, the decoration of nano-rod calcium was found to further promote the uptake of phosphorus through the formation of hydroxylapatite (Ca 5 (PO 4 ) 3 (OH)). Thus, the development of decorated Ca-SC for sorption of phosphorus is very important in solving the P pollution and resource loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Methanol wetting enthalpy on few-layer graphene decorated hierarchical carbon foam for cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R., E-mail: paul24@purdue.edu [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Zemlyanov, D. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Voevodin, A.A.; Roy, A.K. [Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States); Fisher, T.S. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2014-12-01

    Vertical few-layer thick graphene petals are grown on macro-porous carbon foam surfaces having an intrinsic open porosity of 75%. This provides a hierarchical porous structure with a potential for surface adsorption/desorption or wetting/dewetting based thermal energy storage applications. Carbon foams have a combined advantage of large surface area and high thermal conductivity critical for thermal energy storage, but they are prone to oxidation and exhibit low adsorption enthalpies for lightweight hydrocarbons. Here we report graphene petal decoration of carbon foam surfaces and subsequent chemical modification through boron nitride incorporation in hexagonal carbon planes of both carbon foams and graphene petals. This chemically reactive hierarchical structure is characterized with FESEM, Raman, XRD, and XPS measurements. Methanol wetting enthalpy of this three-dimensional hierarchical material was measured with a solution calorimeter, and had shown a six fold increase (from 78 to 522 J/g of foam) as compared to the carbon foam prior to the surface modification. Influences of petal decoration on the surface morphology of carbon foam, BN chemical modification, structure and stoichiometry of the hierarchical material surface, and methanol wetting enthalpy improvement are discussed in detail. The applicability of this hierarchical porous material for thermal energy applications is established. - Highlights: • 500 nm thick few layer graphene petals decoration vertically on macroporous carbon foam surface. • Microwave heating assisted chemical treatment for boron-nitride modification. • Defective petals edges due to boron nitride domain formation. • 20 at. % boron and nitrogen incorporation. • Six fold increase in methanol wetting enthalpy on boron-nitride modification.

  17. Methanol wetting enthalpy on few-layer graphene decorated hierarchical carbon foam for cooling applications

    International Nuclear Information System (INIS)

    Paul, R.; Zemlyanov, D.; Voevodin, A.A.; Roy, A.K.; Fisher, T.S.

    2014-01-01

    Vertical few-layer thick graphene petals are grown on macro-porous carbon foam surfaces having an intrinsic open porosity of 75%. This provides a hierarchical porous structure with a potential for surface adsorption/desorption or wetting/dewetting based thermal energy storage applications. Carbon foams have a combined advantage of large surface area and high thermal conductivity critical for thermal energy storage, but they are prone to oxidation and exhibit low adsorption enthalpies for lightweight hydrocarbons. Here we report graphene petal decoration of carbon foam surfaces and subsequent chemical modification through boron nitride incorporation in hexagonal carbon planes of both carbon foams and graphene petals. This chemically reactive hierarchical structure is characterized with FESEM, Raman, XRD, and XPS measurements. Methanol wetting enthalpy of this three-dimensional hierarchical material was measured with a solution calorimeter, and had shown a six fold increase (from 78 to 522 J/g of foam) as compared to the carbon foam prior to the surface modification. Influences of petal decoration on the surface morphology of carbon foam, BN chemical modification, structure and stoichiometry of the hierarchical material surface, and methanol wetting enthalpy improvement are discussed in detail. The applicability of this hierarchical porous material for thermal energy applications is established. - Highlights: • 500 nm thick few layer graphene petals decoration vertically on macroporous carbon foam surface. • Microwave heating assisted chemical treatment for boron-nitride modification. • Defective petals edges due to boron nitride domain formation. • 20 at. % boron and nitrogen incorporation. • Six fold increase in methanol wetting enthalpy on boron-nitride modification

  18. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    Science.gov (United States)

    Hampel, Silke; Spizzirri, Umile Gianfranco; Parisi, Ortensia Ilaria; Picci, Nevio; Iemma, Francesca

    2014-01-01

    The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability) with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior). The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review. PMID:24587993

  19. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    Science.gov (United States)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  20. Carbon nanotube/carbon nanotube composite AFM probes prepared using ion flux molding

    Science.gov (United States)

    Chesmore, Grace; Roque, Carrollyn; Barber, Richard

    The performance of carbon nanotube-carbon nanotube composite (CNT/CNT composite) atomic force microscopy (AFM) probes is compared to that of conventional Si probes in AFM tapping mode. The ion flux molding (IFM) process, aiming an ion beam at the CNT probe, aligns the tip to a desired angle. The result is a relatively rigid tip that is oriented to offset the cantilever angle. Scans using these probes reveal an improvement in image accuracy over conventional tips, while allowing higher aspect ratio imaging of 3D surface features. Furthermore, the lifetimes of CNT-CNT composite tips are observed to be longer than both conventional tips and those claimed for other CNT technologies. Novel applications include the imaging of embiid silk. Supported by the Clare Boothe Luce Research Scholars Award and Carbon Design Innovations.

  1. Oxidation of Carbon Nanotubes in an Ionizing Environment.

    Science.gov (United States)

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2016-02-10

    In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.

  2. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    International Nuclear Information System (INIS)

    Martinez, D S T; Alves, O L; Barbieri, E

    2013-01-01

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO 3 -MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO 3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO 3 -treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO 3 -MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO 3 -MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO 3 -MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  3. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  4. Carbon nanotube-based ethanol sensors

    International Nuclear Information System (INIS)

    Brahim, Sean; Colbern, Steve; Gump, Robert; Moser, Alex; Grigorian, Leonid

    2009-01-01

    Sensors containing metal-carbon nanotube (CNT) hybrid materials as the active sensing layer were demonstrated for ethanol vapor detection at room temperature. The metal-CNT hybrid materials were synthesized by infiltrating single wall carbon nanotubes (SWNTs) with the transition metals Ti, Mn, Fe, Co, Ni, Pd or Pt. Each sensor was prepared by drop-casting dilute dispersions of a metal-CNT hybrid onto quartz substrate electrodes and the impedimetric responses to varying ethanol concentration were recorded. Upon exposure to ethanol vapor, the ac impedance (Z') of the sensors was found to decrease to different extents. The sensor containing pristine CNT material was virtually non-responsive at low ethanol concentrations (<50 ppm). In contrast, all metal-CNT hybrid sensors showed extremely high sensitivity to trace ethanol levels with 100-fold or more gains in sensitivity relative to the starting SWNT sensor. All hybrid sensors, with the exception of Ni filled CNT, exhibited significantly larger sensor responses to ethanol vapor up to 250 ppm compared to the starting SWNT sensor.

  5. Substitution reactions of carbon nanotube template

    Science.gov (United States)

    Li, Chi Pui; Chen, Ying; Gerald, John Fitz

    2006-05-01

    Substitution reactions between carbon nanotube (CNT) template and SiO with the formation of carbon rich silicon oxide nanowires (SiO-C-NWs) have been investigated using transmission electron microscopy and x-ray energy dispersive spectroscopy. The reaction was carried out by thermal annealing at 1200°C for 1h of a mixture of silicon monoxide (SiO) and iron (II) phthalocyanine, FeC32N8H16 (FePc) powders. Multiwalled CNTs were produced first via pyrolysis of FePc at a lower temperature (1000°C ). SiO vapors reacted with the CNTs at higher temperatures to produce amorphous SiO-C-NWs with a uniform diameter and a length in tens of micrometers. The special bamboolike structure of the CNTs allows the reaction to start from the external surface of the tubes and transform each CNT into a solid nanowire section by section.

  6. Fabrication of mesoporous and high specific surface area lanthanum carbide-carbon nanotube composites

    International Nuclear Information System (INIS)

    Biasetto, L.; Carturan, S.; Maggioni, G.; Zanonato, P.; Bernardo, P. Di; Colombo, P.; Andrighetto, A.; Prete, G.

    2009-01-01

    Mesoporous lanthanum carbide-carbon nanotube composites were produced by means of carbothermal reaction of lanthanum oxide, graphite and multi-walled carbon nanotube mixtures under high vacuum. Residual gas analysis revealed the higher reactivity of lanthanum oxide towards carbon nanotubes compared to graphite. After sintering, the composites revealed a specific surface area increasing with the amount of carbon nanotubes introduced. The meso-porosity of carbon nanotubes was maintained after thermal treatment.

  7. Illuminating the future of silicon photonics: optical coupling of carbon nanotubes to microrings

    International Nuclear Information System (INIS)

    Kato, Y K

    2015-01-01

    Advances in carbon nanotube material quality and processing techniques have led to an increased interest in nanotube photonics. In particular, emission in the telecommunication wavelengths makes nanotubes compatible with silicon photonics. Noury et al (2014 Nanotechnology 25 215201) have reported on carbon nanotube photoluminescence coupled to silicon microring resonators, underscoring the advantage of combining carbon nanotube emitters with silicon photonics. Their results open up the possibility of using nanotubes in other waveguide-based devices, taking advantage of well-established technologies. (viewpoint)

  8. Carbon Nanotube Microarrays Grown on Nanoflake Substrates

    Science.gov (United States)

    Schmidt, Howard K.; Hauge, Robert H.; Pint, Cary; Pheasant, Sean

    2013-01-01

    This innovation consists of a new composition of matter where single-walled carbon nanotubes (SWNTs) are grown in aligned arrays from nanostructured flakes that are coated in Fe catalyst. This method of growth of aligned SWNTs, which can yield well over 400 percent SWNT mass per unit substrate mass, exceeds current yields for entangled SWNT growth. In addition, processing can be performed with minimal wet etching treatments, leaving aligned SWNTs with superior properties over those that exist in entangled mats. The alignment of the nanotubes is similar to that achieved in vertically aligned nanotubes, which are called "carpets. " Because these flakes are grown in a state where they are airborne in a reactor, these flakes, after growing SWNTs, are termed "flying carpets. " These flakes are created in a roll-to-roll evaporator system, where three subsequent evaporations are performed on a 100-ft (approx. =30-m) roll of Mylar. The first layer is composed of a water-soluble "release layer, " which can be a material such as NaCl. After depositing NaCl, the second layer involves 40 nm of supporting layer material . either Al2O3 or MgO. The thickness of the layer can be tuned to synthesize flakes that are larger or smaller than those obtained with a 40-nm deposition. Finally, the third layer consists of a thin Fe catalyst layer with a thickness of 0.5 nm. The thickness of this layer ultimately determines the diameter of SWNT growth, and a layer that is too thick will result in the growth of multiwalled carbon nanotubes instead of single-wall nanotubes. However, between a thickness of 0.5 nm to 1 nm, single-walled carbon nanotubes are known to be the primary constituent. After this three-layer deposition process, the Mylar is rolled through a bath of water, which allows catalyst-coated flakes to detach from the Mylar. The flakes are then collected and dried. The method described here for making such flakes is analogous to that which is used to make birefringent ink that is

  9. Dephasing and hyperfine interaction in carbon nanotubes double quantum dots

    DEFF Research Database (Denmark)

    Reynoso, Andres Alejandro; Flensberg, Karsten

    2012-01-01

    We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....

  10. Spontaneously Bi decorated carbon supported Pd nanoparticles for formic acid electro-oxidation

    International Nuclear Information System (INIS)

    Bauskar, Akshay S.; Rice, Cynthia A.

    2013-01-01

    Highlights: • Selective decoration of Bi onto commercial Pd/C is carried out by a simple gas controlled surface potential modulation technique. • Bi decorated Pd/C catalyst exhibits higher and sustained formic acid oxidation activity presumably via the electronic effect. • Shielding of Pd atoms by Bi increases long term stability. • Formic acid electro-oxidation current increased by 121% at 0.2 V vs. RHE. -- Abstract: The activity and stability of carbon supported palladium (Pd/C) nanoparticles decorated with a submonolayer of bismuth (Bi) for formic acid (FA) electro-oxidation was investigated herein. The FA electro-oxidation activity enhancement of Bi decorated Pd/C was evaluated electrochemically using a rotating disk electrode configuration by linear sweep voltammetric and chronoamperometric measurements. Commercial Pd/C was decorated by irreversible adsorption of Bi via a simple gas controlled surface potential modulation technique, and the coverage of Bi adatoms as measured by cyclic voltammetry was controlled in the range of 30–87%. An optimal Bi coverage was observed to be 40%, resulting in a favorable decrease in the FA onset potential by greater than 0.1 V and increase in electro-oxidation current density from 0.25 mA cm −2 SA to 0.55 mA cm −2 SA at 0.2 V vs. RHE, compared to commercial Pd/C. The results indicate that Bi decorated Pd nanoparticles have excellent properties for the electro-oxidation of FA, i.e. high electro-catalytic activity and excellent stability, due to sustained promotion of dehydrogenation pathway attributed to the electronic effect, thereby promoting FA adsorption in the CH-down orientation. Based on no significant shifting in the CO stripping peak position, minimal impact of Bi on the Pd-CO bond strength is observed. Chronoamperometry results show much better long-term electro-catalytic activity for Bi decorated Pd nanoparticles attributed to shielding of surface Pd atoms by Bi and reducing Pd dissolution

  11. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    Science.gov (United States)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed

  12. Carbon Textile Decorated with Pseudocapacitive VC/Vx Oy for High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Van Lam, Do; Shim, Hyung Cheoul; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2017-11-01

    It is demonstrated that, via V 2 O 5 coating by low temperature atomic layer deposition and subsequent pyrolysis, ubiquitous cotton textile can readily turn into high-surface-area carbon textile fully decorated with pseudocapacitive V x O y /VC widely usable as electrodes of high-performance supercapacitor. It is found that carbothermic reduction of V 2 O 5 (C + V 2 O 5 → C' + VC + CO/CO 2 (g)) leads to chemical/mechanical activation of carbon textile, thereby producing high-surface-area conductive carbon textile. In addition, sequential phase transformation and carbide formation (V 2 O 5 → V x O y → VC) occurred by carbothermic reduction trigger decoration of the carbon textile with redox-active V x O y /VC. Thanks to the synergistic effect of electrical double layer and pseudocapacitance, the supercapacitors made of the hybrid carbon textile exhibit far better energy density (over 30-fold increase) with excellent cycling stability than the carbon textile simply undergone pyrolysis. The method can open up a promising and facile way to synthesize hybrid electrode materials for electrochemical energy storages possessing advantages of both electrical double layer and pseudocapacitive material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Local gate control in carbon nanotube quantum devices

    Science.gov (United States)

    Biercuk, Michael Jordan

    This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single

  14. Controlled self-decoration of Mo6SyIz (8.2 ≤ y + z ≤ 10) nanowires and their transformation to MoS2 nanotubes with gold nanoparticles

    International Nuclear Information System (INIS)

    Kovič, Andrej; Vengust, Damjan; Vilfan, Mojca; Mrzel, Aleš

    2013-01-01

    Nanowires and nanotubes decorated with gold nanoparticles are known for their excellent sensing and catalytic properties. However, the decoration of transition–metal dichalcogenide nanotubes can be very complex. Here we report on a simple procedure that enables efficient production and purification of thin bundles of Mo 6 S y I z (8.2 ≤ y + z ≤ 10) nanowires decorated with gold nanoparticles and their transformation to gold-decorated MoS 2 nanotubes. We isolated several hundred milligrams of nanowire bundles that were several microns long with average diameters of around 40 nm, and formed a stable dispersion in water without added surfactants. Gold nanoparticles were directly deposited on the nanowire bundles either in a solution or on a substrate at room temperature in a single-step reaction without any additional reducing reagents. The number of gold nanoparticles on a nanowire bundle is controlled by changing the concentration of chloroauric acid HAuCl 4 ·3H 2 O in the solution. Since the nanowires can serve as precursor crystals for fabrication of nanotubes, we were able to transform gold-decorated nanowires and produce gold-decorated MoS 2 nanotubes

  15. Electrophoretic deposition of carbon nanotubes on a carbon fiber surface with different index graphitization

    International Nuclear Information System (INIS)

    Almeida, E.C.; Baldan, M.R.; Ferreira, N.G.; Edwards, E.R.

    2009-01-01

    Full text: The purpose of this work is to examine the electrophoretic deposition of carbon nanotubes powder on carbon fibers, produced at different heat treatments temperatures. Besides, a systematic study of the effects of graphitization index from substrate on the structure and morphology of CNTs has been available. Carbon fibers were produced from polyacrylonitrile at three different heat treatments temperatures, 1000, 1500 and 2000 deg C. The carbon fibers microstructure or its graphitization index may be controlled by the heat treatments temperatures. The electrophoretic deposition of carbon nanotubes was obtained with the powder of carbon nanotubes dispersed in water by ultrasonication to obtain dispersions of 0.05 mg/mL. The carbon fibers were immersed in the nanotube dispersion, and a positive potential of 10 V/cm was applied. Morphology and microstructure of carbon nanotubes on carbon fibers were obtained by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. (author)

  16. Rotational actuator of motor based on carbon nanotubes

    Science.gov (United States)

    Zettl, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2008-11-18

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  17. Structural and electronic properties of carbon nanotubes under hydrostatic pressures

    International Nuclear Information System (INIS)

    Zhang Ying; Cao Juexian; Yang Wei

    2008-01-01

    We studied the structural and electronic properties of carbon nanotubes under hydrostatic pressures based on molecular dynamics simulations and first principles band structure calculations. It is found that carbon nanotubes experience a hard-to-soft transition as external pressure increases. The bulk modulus of soft phase is two orders of magnitude smaller than that of hard phase. The band structure calculations show that band gap of (10, 0) nanotube increases with the increase of pressure at low pressures. Above a critical pressure (5.70GPa), band gap of (10, 0) nanotube drops rapidly and becomes zero at 6.62GPa. Moreover, the calculated charge density shows that a large pressure can induce an sp 2 -to-sp 3 bonding transition, which is confirmed by recent experiments on deformed carbon nanotubes

  18. Fabrication of Carbon Nanotube Polymer Actuator Using Nanofiber Sheet

    Science.gov (United States)

    Kato, Hayato; Shimizu, Akikazu; Sato, Taiga; Kushida, Masahito

    2017-11-01

    Carbon nanotube polymer actuators were developed using composite nanofiber sheets fabricated by multi-walled carbon nanotubes(MWCNTs) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Nanofiber sheets were fabricated by electrospinning method. The effect of flow rate and polymer concentration on nanofiber formation were verified for optimum condition for fabricating nanofiber sheets. We examined the properties of MWCNT/PVDF-HFP nanofiber sheets, as follows. Electrical conductivity and mechanical strength increased as the MWCNT weight ratio increased. We fabricated carbon nanotube polymer actuators using MWCNT/PVDF-HFP nanofiber sheets and succeeded in operating of our actuators.

  19. Correlation and dimensional effects of trions in carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2010-01-01

    We study the binding energies of singlet trions, i.e., charged excitons, in carbon nanotubes. The problem is modeled, through the effective-mass model, as a three-particle complex on the surface of a cylinder, which we investigate using both one- and two-dimensional expansions of the wave function...... are used to compute physical binding energies for a wide selection of carbon nanotubes. In addition, the dependence on dielectric screening is examined. Our findings indicate that trions are detectable at room temperature in carbon nanotubes with radius below 8 Å....

  20. Control of carbon nanotube growth using cobalt nanoparticles as catalyst

    International Nuclear Information System (INIS)

    Huh, Yoon; Green, Malcolm L.H.; Kim, Young Heon; Lee, Jeong Yong; Lee, Cheol Jin

    2005-01-01

    We have controllably grown carbon nanotubes using uniformly distributed cobalt nanoparticles as catalyst. Cobalt nanoparticles with a uniform size were synthesized by chemical reaction and colloidal solutions including the cobalt nanoparticles were prepared. The cobalt nanoparticles were uniformly distributed on silicon substrates by a spin-coating method. Carbon nanotubes with a uniform diameter were synthesized on the cobalt nanoparticles by thermal chemical vapor deposition of acetylene gas. The density and vertical alignment of carbon nanotubes could be controlled by adjusting the density of cobalt (Co) nanoparticles

  1. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites

    Directory of Open Access Journals (Sweden)

    L. Bokobza

    2012-07-01

    Full Text Available In this work Raman spectroscopy was used for extensive characterization of multiwall carbon nanotube (MWNTs and of MWCNTs/rubber composites. We have measured the Raman spectra of bundled and dispersed multiwall carbon nanotubes. All the Raman bands of the carbon nanotubes are seen to shift to higher wavenumbers upon debundling on account of less intertube interactions. Effects of laser irradiation were also investigated. Strong effects are observed by changing the wavelength of the laser excitation. On the other hand, at a given excitation wavelength, changes on the Raman bands are observed by changing the laser power density due to sample heating during the measurement procedure.

  2. Applications of Carbon Nanotubes in Biotechnology and Biomedicine

    Science.gov (United States)

    Bekyarova, Elena; Ni, Yingchun; Malarkey, Erik B.; Montana, Vedrana; McWilliams, Jared L.; Haddon, Robert C.; Parpura, Vladimir

    2009-01-01

    Due to their electrical, chemical, mechanical and thermal properties, carbon nanotubes are one of the most promising materials for the electronics, computer and aerospace industries. Here, we discuss their properties in the context of future applications in biotechnology and biomedicine. The purification and chemical modification of carbon nanotubes with organic, polymeric and biological molecules are discussed. Additionally we review their uses in biosensors, assembly of structures and devices, scanning probe microscopy and as substrates for neuronal growth. We note that additional toxicity studies of carbon nanotubes are necessary so that exposure guidelines and safety regulations can be established in a timely manner. PMID:19763242

  3. The mechanisms for filling carbon nanotubes with molten salts: carbon nanotubes as energy landscape filters

    International Nuclear Information System (INIS)

    Bishop, Clare L; Wilson, Mark

    2009-01-01

    The mechanisms for filling carbon nanotubes with molten salts are investigated using molecular dynamics computer simulation. Inorganic nanotubular structures, whose morphologies can be rationalized in terms of the folding, or the removal of sections from, planes of square nets are found to form. The formation mechanisms are found to follow a 'chain-by-chain' motif in which the structures build systematically from charge neutral M-X-M-Xc chains. The formation mechanisms are rationalized in terms of the ion-ion interactions (intra-chain and inter-chain terms). In addition, the mechanisms of filling are discussed in terms of a 'hopping' between basins on the underlying energy landscape. The role of the carbon nanotube as an energy landscape filter is discussed.

  4. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Wang, Qingxiao; Yue, Weisheng; Guo, Zaibing; LI, LIANG; Zhao, Chao; Wang, Xianbin; Abutaha, Anas I.; Alshareef, Husam N.; Zhang, Yafei; Zhang, Xixiang

    2014-01-01

    Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations. This journal is © the Partner Organisations 2014.

  5. Direct integration of carbon nanotubes in Si microstructures

    International Nuclear Information System (INIS)

    Aasmundtveit, Knut E; Ta, Bao Q; Halvorsen, Einar; Hoivik, Nils; Lin, Liwei

    2012-01-01

    In this paper we present a low-cost, room-temperature process for integrating carbon nanotubes on Si microsystems. The process uses localized resistive heating by controlling current through suspended microbridges, to provide local temperatures high enough for CVD growth of carbon nanotubes. Locally grown carbon nanotubes make electrical connections through guidance by electric fields, thus eventually making circuits. The process is scalable to a wafer level batch process. Furthermore, it is controlled electrically, thus enabling automated control. Direct integration of carbon nanotubes in microstructures has great promise for nano-functional devices, such as ultrasensitive chemical sensors. Initial measurements demonstrate the Si–carbon nanotube–Si circuit's potential as a NH 3 sensor. (paper)

  6. Filled carbon nanotubes in biomedical imaging and drug delivery.

    Science.gov (United States)

    Martincic, Markus; Tobias, Gerard

    2015-04-01

    Carbon nanotubes have been advocated as promising candidates in the biomedical field in the areas of diagnosis and therapy. In terms of drug delivery, the use of carbon nanotubes can overcome some limitations of 'free' drugs by improving the formulation of poorly water-soluble drugs, allowing targeted delivery and even enabling the co-delivery of two or more drugs for combination therapy. Two different approaches are currently being explored for the delivery of diagnostic and therapeutic agents by carbon nanotubes, namely attachment of the payload to the external sidewalls or encapsulation into the inner cavities. Although less explored, the latter confers additional stability to the chosen diagnostic or therapeutic agents, and leaves the backbone structure of the nanotubes available for its functionalization with dispersing and targeting moieties. Several drug delivery systems and diagnostic agents have been developed in the last years employing the inner tubular cavities of carbon nanotubes. The research discussed in this review focuses on the use of carbon nanotubes that contain in their interior drug molecules and diagnosis-related compounds. The approaches employed for the development of such nanoscale vehicles along with targeting and releasing strategies are discussed. The encapsulation of both biomedical contrast agents and drugs inside carbon nanotubes is further expanding the possibilities to allow an early diagnosis and treatment of diseases.

  7. Reactor scale modeling of multi-walled carbon nanotube growth

    International Nuclear Information System (INIS)

    Lombardo, Jeffrey J.; Chiu, Wilson K.S.

    2011-01-01

    As the mechanisms of carbon nanotube (CNT) growth becomes known, it becomes important to understand how to implement this knowledge into reactor scale models to optimize CNT growth. In past work, we have reported fundamental mechanisms and competing deposition regimes that dictate single wall carbon nanotube growth. In this study, we will further explore the growth of carbon nanotubes with multiple walls. A tube flow chemical vapor deposition reactor is simulated using the commercial software package COMSOL, and considered the growth of single- and multi-walled carbon nanotubes. It was found that the limiting reaction processes for multi-walled carbon nanotubes change at different temperatures than the single walled carbon nanotubes and it was shown that the reactions directly governing CNT growth are a limiting process over certain parameters. This work shows that the optimum conditions for CNT growth are dependent on temperature, chemical concentration, and the number of nanotube walls. Optimal reactor conditions have been identified as defined by (1) a critical inlet methane concentration that results in hydrogen abstraction limited versus hydrocarbon adsorption limited reaction kinetic regime, and (2) activation energy of reaction for a given reactor temperature and inlet methane concentration. Successful optimization of a CNT growth processes requires taking all of those variables into account.

  8. Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain

    DEFF Research Database (Denmark)

    Dohn, Søren; Kjelstrup-Hansen, Jakob; Madsen, D.N.

    2005-01-01

    variations in the response. Using a simple resistor model we estimate the expected conductance-strain response for a multi-walled carbon nanotube, and compare to our results on multi-walled carbon nanotubes as well as measurements by others on single-walled carbon nanotubes. Integration of nanotubes...

  9. Theoretical study on the combined systems of peanut-shaped carbon nanotubes encapsulated in single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, Guo; Huang, Yuanhe

    2012-01-01

    Highlights: ► The combined systems of peanut-shaped carbon nanotubes encapsulated in single-walled carbon nanotubes are investigated. ► The band structures and related electronic properties are calculated by using crystal orbital method. ► The carrier mobility and mean free path are evaluated under the deformation potential theory. -- Abstract: The combined systems of peanut-shaped carbon nanotubes encapsulated in both semiconducting and metallic single-walled carbon nanotubes are investigated by using self-consistent field crystal orbital method based on the density functional theory. The investigation indicates that the interaction between the two constituents is mainly contributed by the π orbitals. The encapsulation does not change the semiconducting or metallic nature of the single-walled carbon nanotubes, but significantly changes the band dispersion and decreases the frontier band width of the metallic one. The carrier mobility and mean free path of the metallic single-walled carbon nanotube increase greatly after the encapsulation. The calculated mobilities have the order of 10 3 cm 2 V −1 s −1 for both of the semiconducting and metallic double-walled carbon nanotubes.

  10. NT10: recent advances in carbon nanotube science and applications.

    Science.gov (United States)

    Dresselhaus, Mildred S

    2010-08-24

    A review of recent advances in carbon nanotube science and applications is presented in terms of what was learned at the NT10 11th International Conference on the Science and Application of Nanotubes held in Montreal, Canada, June 29-July 2, 2010.

  11. A one-step single source route to carbon nanotubes

    Indian Academy of Sciences (India)

    Carbon nanotubes (CNTs) have been synthesized via directly pyrolyzing ferrocene in the autoclave. The nanotubes with several micrometers in length have outer and inner diameters in the range of 40–100 nm and 20–40 nm, respectively. An yield of ∼70% of CNTs can be obtained without any accessorial solvents and ...

  12. Novel fabrication of silica nanotubes using multi-walled carbon ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Silica nanotubes were synthesized using multi-walled carbon nanotubes (MWCNTs) as template. The as-obtained samples were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FE–SEM) and photo-.

  13. A Computational Experiment on Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…

  14. Locally addressable tunnel barriers within a carbon nanotube

    DEFF Research Database (Denmark)

    Biercuk, M.; Mason, N.; Chow, J.

    2003-01-01

    We report the realization and characterization of independently controllable tunnel barriers within a carbon nanotube. The nanotubes are mechanically bent or kinked using an atomic force microscope, and top gates are subsequently placed near each kink. Transport measurements indicate that the kin...

  15. Alignment of carbon nanotubes in nematic liquid crystals

    NARCIS (Netherlands)

    Schoot, van der P.P.A.M.; Popa-Nita, V.; Kralj, S.

    2008-01-01

    The self-organizing properties of nematic liquid crystals can be used to align carbon nanotubes dispersed in them. Because the nanotubes are so much thinner than the elastic penetration length, the alignment is caused by the coupling of the unperturbed director field to the anisotropic interfacial

  16. The study of explosive emission from carbon nanotubes

    International Nuclear Information System (INIS)

    Korenev, Sergey

    2002-01-01

    The carbon nanotubes (CNT) found applications for high density current electron emitters. The main interest for forming of high current electron beams using CNT is high concentration of electrical field on the nanotubes and high value of yield by electrons for field emission. The experimental results for time processes of forming cathode plasma and extraction of electron beam are presented in the report

  17. Multiporous carbon allotropes transformed from symmetry-matched carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yingxiang, E-mail: yingxiangcai@ncu.edu.cn; Wang, Hao; Xu, Shengliang; Hu, Yujie; Liu, Ning; Xu, Xuechun [Department of Physics, NanChang University, Jiangxi, Nanchang 330031 (China)

    2016-06-15

    Carbon nanotubes (CNTs) with homogeneous diameters have been proven to transform into new carbon allotropes under pressure but no studies on the compression of inhomogeneous CNTs have been reported. In this study, we propose to build new carbon allotropes from the bottom-up by applying pressure on symmetry-matched inhomogeneous CNTs. We find that the (3,0) CNT with point group C{sub 3v} and the (6,0) CNT with point group C{sub 6v} form an all sp{sup 3} hybridized hexagonal 3060-Carbon crystal, but the (4,0) CNT with point group D{sub 4h} and the (8,0) CNT with point group D{sub 8h} polymerize into a sp{sup 2}+sp{sup 3} hybridized tetragonal 4080-Carbon structure. Their thermodynamic, mechanical and dynamic stabilities show that they are potential carbon allotropes to be experimentally synthesized. The multiporous structures, excellently mechanical properties and special electronic structures (semiconductive 3060-Carbon and semimetallic 4080-Carbon) imply their many potential applications, such as gases purification, hydrogen storage and lightweight semiconductor devices. In addition, we simulate their feature XRD patterns which are helpful for identifying the two carbon crystals in future experimental studies.

  18. Multiporous carbon allotropes transformed from symmetry-matched carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Yingxiang Cai

    2016-06-01

    Full Text Available Carbon nanotubes (CNTs with homogeneous diameters have been proven to transform into new carbon allotropes under pressure but no studies on the compression of inhomogeneous CNTs have been reported. In this study, we propose to build new carbon allotropes from the bottom-up by applying pressure on symmetry-matched inhomogeneous CNTs. We find that the (3,0 CNT with point group C3v and the (6,0 CNT with point group C6v form an all sp3 hybridized hexagonal 3060-Carbon crystal, but the (4,0 CNT with point group D4h and the (8,0 CNT with point group D8h polymerize into a sp2+sp3 hybridized tetragonal 4080-Carbon structure. Their thermodynamic, mechanical and dynamic stabilities show that they are potential carbon allotropes to be experimentally synthesized. The multiporous structures, excellently mechanical properties and special electronic structures (semiconductive 3060-Carbon and semimetallic 4080-Carbon imply their many potential applications, such as gases purification, hydrogen storage and lightweight semiconductor devices. In addition, we simulate their feature XRD patterns which are helpful for identifying the two carbon crystals in future experimental studies.

  19. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  20. Carbon nanotubes and graphene towards soft electronics

    Science.gov (United States)

    Chae, Sang Hoon; Lee, Young Hee

    2014-04-01

    Although silicon technology has been the main driving force for miniaturizing device dimensions to improve cost and performance, the current application of Si to soft electronics (flexible and stretchable electronics) is limited due to material rigidity. As a result, various prospective materials have been proposed to overcome the rigidity of conventional Si technology. In particular, nano-carbon materials such as carbon nanotubes (CNTs) and graphene are promising due to outstanding elastic properties as well as an excellent combination of electronic, optoelectronic, and thermal properties compared to conventional rigid silicon. The uniqueness of these nano-carbon materials has opened new possibilities for soft electronics, which is another technological trend in the market. This review covers the recent progress of soft electronics research based on CNTs and graphene. We discuss the strategies for soft electronics with nano-carbon materials and their preparation methods (growth and transfer techniques) to devices as well as the electrical characteristics of transparent conducting films (transparency and sheet resistance) and device performances in field effect transistor (FET) (structure, carrier type, on/off ratio, and mobility). In addition to discussing state of the art performance metrics, we also attempt to clarify trade-off issues and methods to control the trade-off on/off versus mobility). We further demonstrate accomplishments of the CNT network in flexible integrated circuits on plastic substrates that have attractive characteristics. A future research direction is also proposed to overcome current technological obstacles necessary to realize commercially feasible soft electronics.

  1. Carbon based nanostructures: diamond clusters structured with nanotubes

    Directory of Open Access Journals (Sweden)

    O.A. Shenderova

    2003-01-01

    Full Text Available Feasibility of designing composites from carbon nanotubes and nanodiamond clusters is discussed based on atomistic simulations. Depending on nanotube size and morphology, some types of open nanotubes can be chemically connected with different facets of diamond clusters. The geometrical relation between different types of nanotubes and different diamond facets for construction of mechanically stable composites with all bonds saturated is summarized. Potential applications of the suggested nanostructures are briefly discussed based on the calculations of their electronic properties using environment dependent self-consistent tight-binding approach.

  2. Microtribology of aqueous carbon nanotube dispersions

    KAUST Repository

    Kristiansen, Kai De Lange; Zeng, Hongbo; Wang, Peng; Israelachvili, Jacob N.

    2011-01-01

    The tribological behavior of carbon nanotubes (CNTs) in aqueous humic acid (HA) solutions was studied using a surface forces apparatus (SFA) and shows promising lubricant additive properties. Adding CNTs to the solution changes the friction forces between two mica surfaces from "adhesion controlled" to "load controlled" friction. The coefficient of friction with either single-walled (SW) or multi-walled (MW) CNT dispersions is in the range 0.30-0.55 and is independent of the load and sliding velocity. More importantly, lateral sliding promotes a redistribution or accumulation, rather than squeezing out, of nanotubes between the surfaces. This accumulation reduced the adhesion between the surfaces (which generally causes wear/damage of the surfaces), and no wear or damage was observed during continuous shearing experiments that lasted several hours even under high loads (pressures â∼10 MPa). The frictional properties can be understood in terms of the Cobblestone Model where the friction force is related to the fraction of the adhesion energy dissipated during impacts of the nanoparticles. We also develop a simple generic model based on the van der Waals interactions between particles and surfaces to determine the relation between the dimensions of nanoparticles and their tribological properties when used as additives in oil- or water-based lubricants. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microtribology of aqueous carbon nanotube dispersions

    KAUST Repository

    Kristiansen, Kai De Lange

    2011-09-23

    The tribological behavior of carbon nanotubes (CNTs) in aqueous humic acid (HA) solutions was studied using a surface forces apparatus (SFA) and shows promising lubricant additive properties. Adding CNTs to the solution changes the friction forces between two mica surfaces from "adhesion controlled" to "load controlled" friction. The coefficient of friction with either single-walled (SW) or multi-walled (MW) CNT dispersions is in the range 0.30-0.55 and is independent of the load and sliding velocity. More importantly, lateral sliding promotes a redistribution or accumulation, rather than squeezing out, of nanotubes between the surfaces. This accumulation reduced the adhesion between the surfaces (which generally causes wear/damage of the surfaces), and no wear or damage was observed during continuous shearing experiments that lasted several hours even under high loads (pressures â∼10 MPa). The frictional properties can be understood in terms of the Cobblestone Model where the friction force is related to the fraction of the adhesion energy dissipated during impacts of the nanoparticles. We also develop a simple generic model based on the van der Waals interactions between particles and surfaces to determine the relation between the dimensions of nanoparticles and their tribological properties when used as additives in oil- or water-based lubricants. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Metal Nanoparticle Catalysts for Carbon Nanotube Growth

    Science.gov (United States)

    Pierce, Benjamin F.

    2003-01-01

    Work this summer involved and new and unique process for producing the metal nanoparticle catalysts needed for carbon nanotube (CNT) growth. There are many applications attributed to CNT's, and their properties have deemed them to be a hot spot in research today. Many groups have demonstrated the versatility in CNT's by exploring a wide spectrum of roles that these nanotubes are able to fill. A short list of such promising applications are: nanoscaled electronic circuitry, storage media, chemical sensors, microscope enhancement, and coating reinforcement. Different methods have been used to grow these CNT's. Some examples are laser ablation, flame synthesis, or furnace synthesis. Every single approach requires the presence of a metal catalyst (Fe, Co, and Ni are among the best) that is small enough to produce a CNT. Herein lies the uniqueness of this work. Microemulsions (containing inverse micelles) were used to generate these metal particles for subsequent CNT growth. The goal of this summer work was basically to accomplish as much preliminary work as possible. I strived to pinpoint which variable (experimental process, metal product, substrate, method of application, CVD conditions, etc.) was the determining factor in the results. The resulting SEM images were sufficient for the appropriate comparisons to be made. The future work of this project consists of the optimization of the more promising experimental procedures and further exploration onto what exactly dictated the results.

  5. Excitons in single-walled carbon nanotubes: environmental effect

    International Nuclear Information System (INIS)

    Smyrnov, O.A.

    2010-01-01

    The properties of excitons in semiconducting single-walled carbon nanotubes (SWCNTs) isolated in vacuum or a medium and their contributions to the optical spectra of nanotubes are studied within the elementary potential model, in which an exciton is represented as a bound state of two oppositely charged quasiparticles confined to the nanotube surface. The emphasis is given on the influence of the dielectric environment surrounding a nanotube on the exciton spectra. For nanotubes in the environment with a permittivity less than ∼ 1:8; the ground-state exciton binding energies exceed the respective energy gaps, whereas the obtained binding energies of excitons in nanotubes in a medium with permittivity greater than ∼ 4 are in good accordance with the corresponding experimental data and consistent with the known scaling relation for the environmental effect. The stabilization of a single-electron spectrum in SWCNTs in media with rather low permittivities is discussed.

  6. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  7. Application of carbon nanotubes flexible strain sensor in smart textiles

    Directory of Open Access Journals (Sweden)

    Qiong CHENG

    2017-10-01

    Full Text Available Smart textiles have not only the necessary functions of daily wear, but also the intelligence. The focus of the current textile materials research is the selection of flexible material. For flexible materials, carbon material is one of the ideal materials for preparing flexible strain gauges. The application of flexible strain sensor prepared by carbon nanotubes as a flexible material in smart textiles is the research content. The research status of carbon nanotubes flexible strain sensor is introduced from the aspects of the structure, properties and application. The characteristics and functions of flexible strain gages prepared with carbon nanotube fibers and carbon nanotube films as flexible materials are discussed in terms of selection, preparation method, performance test and application. At the same time, the advantages and disadvantages of the flexible strain sensor of carbon nanotubes are reviewed from the aspects of preparation difficulty, production cost and practical application effect. High sensitivity with high strain will be a key research direction for carbon nanotube flexible strain sensors.

  8. Electrochemical Sensors Based on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Md. Aminur Rahman

    2009-03-01

    Full Text Available This review focuses on recent contributions in the development of the electrochemical sensors based on carbon nanotubes (CNTs. CNTs have unique mechanical and electronic properties, combined with chemical stability, and behave electrically as a metal or semiconductor, depending on their structure. For sensing applications, CNTs have many advantages such as small size with larger surface area, excellent electron transfer promoting ability when used as electrodes modifier in electrochemical reactions, and easy protein immobilization with retention of its activity for potential biosensors. CNTs play an important role in the performance of electrochemical biosensors, immunosensors, and DNA biosensors. Various methods have been developed for the design of sensors using CNTs in recent years. Herein we summarize the applications of CNTs in the construction of electrochemical sensors and biosensors along with other nanomaterials and conducting polymers.

  9. Carbon Nanotube-Based Chemical Sensors.

    Science.gov (United States)

    Meyyappan, M

    2016-04-27

    The need to sense gases and vapors arises in numerous scenarios in industrial, environmental, security and medical applications. Traditionally, this activity has utilized bulky instruments to obtain both qualitative and quantitative information on the constituents of the gas mixture. It is ideal to use sensors for this purpose since they are smaller in size and less expensive; however, their performance in the field must match that of established analytical instruments in order to gain acceptance. In this regard, nanomaterials as sensing media offer advantages in sensitivity, preparation of chip-based sensors and construction of electronic nose for selective detection of analytes of interest. This article provides a review of the use of carbon nanotubes in gas and vapor sensing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Carbon-Nanotube-Based Chemical Gas Sensor

    Science.gov (United States)

    Kaul, Arunpama B.

    2010-01-01

    Conventional thermal conductivity gauges (e.g. Pirani gauges) lend themselves to applications such as leak detectors, or in gas chromatographs for identifying various gas species. However, these conventional gauges are physically large, operate at high power, and have a slow response time. A single-walled carbon-nanotube (SWNT)-based chemical sensing gauge relies on differences in thermal conductance of the respective gases surrounding the CNT as it is voltage-biased, as a means for chemical identification. Such a sensor provides benefits of significantly reduced size and compactness, fast response time, low-power operation, and inexpensive manufacturing since it can be batch-fabricated using Si integrated-circuit (IC) process technology.

  11. Fabrication of Microscale Carbon Nanotube Fibers

    Directory of Open Access Journals (Sweden)

    Gengzhi Sun

    2012-01-01

    Full Text Available Carbon nanotubes (CNTs have excellent mechanical, chemical, and electronic properties, but realizing these excellences in practical applications needs to assemble individual CNTs into larger-scale products. Recently, CNT fibers demonstrate the potential of retaining CNT's superior properties at macroscale level. High-performance CNT fibers have been widely obtained by several fabrication approaches. Here in this paper, we review several key spinning techniques including surfactant-based coagulation spinning, liquid-crystal-based solution spinning, spinning from vertical-aligned CNT arrays, and spinning from CNT aerogel. The method, principle, limitations, and recent progress of each technique have been addressed, and the fiber properties and their dependences on spinning parameters are also discussed.

  12. Oxygen evolution reaction in nanoconfined carbon nanotubes

    Science.gov (United States)

    Li, Ying; Lu, Xuefeng; Li, Yunfang; Zhang, Xueqing

    2018-05-01

    Improving oxygen electrochemistry through nanoscopic confinement has recently been highlighted as a promising strategy. In-depth understanding the role of confinement is therefore required. In this study, we simulate the oxygen evolution reaction (OER) on iron oxide nanoclusters under confinement of (7,7) and (8,8) armchair carbon nanotubes (CNTs). The free energies of the four proton coupled electron transfer (PCET) steps and the OER overpotentials are calculated. The Fe4O6 nanocluster confined in (7,7) CNT is found to be the most active for OER among the systems considered in this work. This leads to an increase in catalytic efficiency of OER compared to the hematite (110) surface, which was reported recently as an active surface towards OER. The calculated results show that the OER overpotential depends strongly on the magnetic properties of the iron oxide nanocluster. These findings are helpful for experimental design of efficient catalyst for water splitting applications.

  13. Carbon nanotube Schottky diode: an atomic perspective

    International Nuclear Information System (INIS)

    Bai, P; Li, E; Kurniawan, O; Koh, W S; Lam, K T

    2008-01-01

    The electron transport properties of semiconducting carbon nanotube (SCNT) Schottky diodes are investigated with atomic models using density functional theory and the non-equilibrium Green's function method. We model the SCNT Schottky diode as a SCNT embedded in the metal electrode, which resembles the experimental set-up. Our study reveals that the rectification behaviour of the diode is mainly due to the asymmetric electron transmission function distribution in the conduction and valence bands and can be improved by changing metal-SCNT contact geometries. The threshold voltage of the diode depends on the electron Schottky barrier height which can be tuned by altering the diameter of the SCNT. Contrary to the traditional perception, the metal-SCNT contact region exhibits better conductivity than the other parts of the diode

  14. Carbon Nanotube Embedded Nanostructure for Biometrics.

    Science.gov (United States)

    Park, Juhyuk; Youn, Jae Ryoun; Song, Young Seok

    2017-12-27

    Low electric energy loss is a very important problem to minimize the decay of transferred energy intensity due to impedance mismatch. This issue has been dealt with by adding an impedance matching layer at the interface between two media. A strategy was proposed to improve the charge transfer from the human body to a biometric device by using an impedance matching nanostructure. Nanocomposite pattern arrays were fabricated with shape memory polymer and carbon nanotubes. The shape recovery ability of the nanopatterns enhanced durability and sustainability of the structure. It was found that the composite nanopatterns improved the current transfer by two times compared with the nonpatterned composite sample. The underlying mechanism of the enhanced charge transport was understood by carrying out a numerical simulation. We anticipate that this study can provide a new pathway for developing advanced biometric devices with high sensitivity to biological information.

  15. DNA-FET using carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Sasaki, T K; Ikegami, A; Aoki, N; Ochiai, Y

    2006-01-01

    We demonstrate DNA field effect transistor (DNA-FET) using multiwalled carbon nanotube (MWNT) as nano-structural source and drain electrodes. The MWNT electrodes have been fabricated by focused ion-beam bombardment (FIBB). A very short channel, approximately 50 nm, was easily formed between the severed MWNT. The current-voltage (I-V) characteristics of DNA molecules between the MWNT electrodes showed hopping transport property. We have also measured the gate-voltage dependence in the I-V characteristics and found that poly DNA molecules exhibits p-type conduction. The transport of DNA-FET can be explained by two hopping lengths which depend on the range of the source-drain bias voltages

  16. High frequency electromechanical memory cells based on telescoping carbon nanotubes.

    Science.gov (United States)

    Popov, A M; Lozovik, Y E; Kulish, A S; Bichoutskaia, E

    2010-07-01

    A new method to increase the operational frequency of electromechanical memory cells based on the telescoping motion of multi-walled carbon nanotubes through the selection of the form of the switching voltage pulse is proposed. The relative motion of the walls of carbon nanotubes can be controlled through the shape of the interwall interaction energy surface. This allows the use of the memory cells in nonvolatile or volatile regime, depending on the structure of carbon nanotube. Simulations based on ab initio and semi-empirical calculations of the interwall interaction energies are used to estimate the switching voltage and the operational frequency of volatile cells with the electrodes made of carbon nanotubes. The lifetime of nonvolatile memory cells is also predicted.

  17. Carbon Nanotube Composite SHM Sensor using Additive Manufacturing

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a piezoelectric sensors made of carbon nanotube and lead zirconium titanate (PZT) nanopower dispersed in a polymer matrix. These sensors will...

  18. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.; Babaa, M.-R.; Bouhrara, M.; Kim, Y.; Saih, Y.; Dennler, S.; Mauri, F.; Basset, Jean-Marie; Goze-Bac, C.; Wå gberg, T.

    2011-01-01

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled

  19. Designed synthesis of tunable amorphous carbon nanotubes (a ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Designed synthesis of tunable amorphous carbon nanotubes (a-CNTs) by a novel route and their oxidation resistance properties by Longlong. Xu et al (pp 1397–1402).

  20. Synthesis of carbon nanotubes by catalytic vapor decomposition ...

    Indian Academy of Sciences (India)

    Carbon nanotubes (CNTs); catalytic vapor decomposition; soap bubble mass flowmeter. ... [4,13,14], makes them an excellent candidate for use as a dielectric in supercapac- itors [15]. ... the change in liquid level in the scrubber. After the ...

  1. Self-grafting carbon nanotubes on polymers for stretchable electronics

    Science.gov (United States)

    Morales, Piero; Moyanova, Slavianka; Pavone, Luigi; Fazi, Laura; Mirabile Gattia, Daniele; Rapone, Bruno; Gaglione, Anderson; Senesi, Roberto

    2018-06-01

    Elementary bidimensional circuitry made of single-wall carbon-nanotube-based conductors, self-grafted on different polymer films, is accomplished in an attempt to develop a simple technology for flexible and stretchable electronic devices. Unlike in other studies of polymer-carbon nanotube composites, no chemical functionalization of single-wall carbon nanotubes is necessary for stable grafting onto several polymeric surfaces, suggesting viable and cheap fabrication technologies for stretchable microdevices. Electrical characterization of both unstretched and strongly stretched conductors is provided, while an insight on the mechanisms of strong adhesion to the polymer is obtained by scanning electron microscopy of the surface composite. As a first example of technological application, the electrical functionality of a carbon-nanotube-based 6-sensor (electrode) grid was demonstrated by recording of subdural electrocorticograms in freely moving rats over approximately three months. The results are very promising and may serve as a basis for future work targeting clinical applications.

  2. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Science.gov (United States)

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  3. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    Science.gov (United States)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  4. Aligned carbon nanotubes. Physics, concepts, fabrication and devices

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Lan, Yucheng [Boston College, Chestnut Hill, MA (United States). Dept. of Physics; Wang, Yang [South China Normal Univ. Guangzhou (China). Inst. for Advanced Materials

    2013-07-01

    This book gives a survey of the physics and fabrication of carbon nanotubes and their applications in optics, electronics, chemistry and biotechnology. It focuses on the structural characterization of various carbon nanotubes, fabrication of vertically or parallel aligned carbon nanotubes on substrates or in composites, physical properties for their alignment, and applications of aligned carbon nanotubes in field emission, optical antennas, light transmission, solar cells, chemical devices, bio-devices, and many others. Major fabrication methods are illustrated in detail, particularly the most widely used PECVD growth technique on which various device integration schemes are based, followed by applications such as electrical interconnects, nanodiodes, optical antennas, and nanocoax solar cells, whereas current limitations and challenges are also be discussed to lay the foundation for future developments.

  5. Carbon nanotube based pressure sensor for flexible electronics

    International Nuclear Information System (INIS)

    So, Hye-Mi; Sim, Jin Woo; Kwon, Jinhyeong; Yun, Jongju; Baik, Seunghyun; Chang, Won Seok

    2013-01-01

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate

  6. Carbon nanotube based pressure sensor for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  7. Community effects of carbon nanotubes in aquatic sediments

    NARCIS (Netherlands)

    Velzeboer, I.; Kupryianchyk, D.; Peeters, E.T.H.M.; Koelmans, A.A.

    2011-01-01

    Aquatic sediments form an important sink for manufactured nanomaterials, like carbon nanotubes (CNT) and fullerenes, thus potentially causing adverse effects to the aquatic environment, especially to benthic organisms. To date, most nanoparticle effect studies used single species tests in the

  8. Application of multi-walled carbon nanotubes to enhance anodic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... Key words: Multi-walled carbon nanotubes, microbial fuel cell, Enterobacter cloacae, ... Aldrich) was prepared in absolute ethanol (Hu et al., 2006; Tkac .... incorporated Eu3+ by voltammetry and electrochemical impedance.

  9. Selective growth of carbon nanotube on silicon substrates

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOT; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    The carbon nanotube (CNT) growth of iron oxide-deposited trench-patterns and the locally-ordered CNT arrays on silicon substrate were achieved by simple thermal chemical vapor deposition(STCVD) of ethanol vapor. The CNTs were uniformly synthesized with good selectivity on trench-patterned silicon substrates. This fabrication process is compatible with currently used semiconductor-processing technologies,and the carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and can revolutionize the area of field-emitting electronic devices. The site-selective growth of CNT from an iron oxide nanoparticle catalyst patterned were also achieved by drying-mediated self-assembly technique. The present method offers a simple and cost-effective method to grow carbon nanotubes with self-assembled patterns.

  10. International Assessment of Carbon Nanotube Manufacturing and Applications

    National Research Council Canada - National Science Library

    Eklund, Peter; Ajayan, Pulickel; Blackmon, Robert; Hart, A. J; Kong, Jing; Pradhan, Bhabendra; Rao, Apparao; Rinzler, Andrew

    2007-01-01

    This WTEC study focuses on the manufacturing and applications of carbon nanotubes "CNTs" to identify recent progress in understanding the commercial potential of CNTs as viewed by academic, industrial...

  11. Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers

    KAUST Repository

    Zhou, Jian; Yu, Hu; Xu, Xuezhu; Han, Fei; Lubineau, Gilles

    2017-01-01

    The development of strain sensors featuring both ultra high sensitivity and high stretchability is still a challenge. We demonstrate that strain sensors based on fragmented single-walled carbon nanotube (SWCNT) paper embedded in poly

  12. Radar absorbing properties of carbon nanotubes/polymer ...

    Indian Academy of Sciences (India)

    This research is devoted to the study of radar absorbing properties of the composites, based on the epoxy binder and ... Radar absorbing materials; carbon nanotubes; nanocomposites; reflection loss. 1. ..... So, for example, the papers of [3–5 ...

  13. Radical scavenging reaction kinetics with multiwalled carbon nanotubes

    NARCIS (Netherlands)

    Tsuruoka, Shuji; Matsumoto, Hidetoshi; Koyama, Kenichi; Akiba, Eiji; Yanagisawa, Takashi; Cassee, Flemming R.; Saito, Naoto; Usui, Yuki; Kobayashi, Shinsuke; Porter, Dale W.; Castranova, Vincent; Endo, Morinobu

    2015-01-01

    Progress in the development of carbon nanotubes (CNTs) has stimulated great interest among industries providing new applications. Meanwhile, toxicological evaluations on nanomaterials are advancing leading to a predictive exposure limit for CNTs, which implies the possibility of designing safer

  14. Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes

    KAUST Repository

    Zhang, Yongyou; Zhang, Qingyun; Schwingenschlö gl, Udo

    2017-01-01

    Using time-dependent density functional theory, we study the optical excitations in finite length carbon nanotubes. Evidence of spin-charge separation is given in the spacetime domain. We demonstrate that the charge density wave is due to collective

  15. Self Assembled Carbon Nanotube Enhanced Ultracapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using...

  16. Carbon nanotubes for interconnects process, design and applications

    CERN Document Server

    Dijon, Jean; Maffucci, Antonio

    2017-01-01

    This book provides a single-source reference on the use of carbon nanotubes (CNTs) as interconnect material for horizontal, on-chip and 3D interconnects. The authors demonstrate the uses of bundles of CNTs, as innovative conducting material to fabricate interconnect through-silicon vias (TSVs), in order to improve the performance, reliability and integration of 3D integrated circuits (ICs). This book will be first to provide a coherent overview of exploiting carbon nanotubes for 3D interconnects covering aspects from processing, modeling, simulation, characterization and applications. Coverage also includes a thorough presentation of the application of CNTs as horizontal on-chip interconnects which can potentially revolutionize the nanoelectronics industry. This book is a must-read for anyone interested in the state-of-the-art on exploiting carbon nanotubes for interconnects for both 2D and 3D integrated circuits. Provides a single-source reference on carbon nanotubes for interconnect applications; Includes c...

  17. A concise review of carbon nanotube's toxicology

    Directory of Open Access Journals (Sweden)

    Seyed Yazdan Madani

    2013-12-01

    Full Text Available Carbon nanotubes can be either single-walled or multi-walled, each of which is known to have a different electron arrangement and as a result have different properties. However, the shared unique properties of both types of carbon nanotubes (CNT allow for their potential use in various biomedical devices and therapies. Some of the most common properties of these materials include the ability to absorb near-infra-red light and generate heat, the ability to deliver drugs in a cellular environment, their light weight, and chemical stability. These properties have encouraged scientists to further investigate CNTs as a tool for thermal treatment of cancer and drug delivery agents. Various promising data have so far been obtained about the usage of CNTs for cancer treatment; however, toxicity of pure CNTs represents a major challenge for clinical application. Various techniques both in vivo and in in vitro have been conducted by a number of different research groups to establish the factors which have a direct effect on CNT-mediated cytotoxicity. The main analysis techniques include using Alamar blue, MTT, and Trypan blue assays. Successful interpretation of these results is difficult because the CNTs can significantly disrupt the emission of the certain particles, which these assays detect. In contrast, in vivo studies allow for the measurement of toxicity and pathology caused by CNTs on an organismal level. Despite the drawbacks of in vitro studies, they have been invaluable in identifying important toxicity factors, such as size, shape, purity, and functionalisation, the latter of which can attenuate CNT toxicity.

  18. Net energy benefits of carbon nanotube applications

    International Nuclear Information System (INIS)

    Zhai, Pei; Isaacs, Jacqueline A.; Eckelman, Matthew J.

    2016-01-01

    Highlights: • Life cycle net energy benefits are examined. • CNT-enabled and the conventional technologies are compared. • Flash memory with CNT switches show significant positive net energy benefit. • Lithium-ion batteries with MWCNT cathodes show positive net energy benefit. • Lithium-ion batteries with SWCNT anodes tend to exhibit negative net energy benefit. - Abstract: Implementation of carbon nanotubes (CNTs) in various applications can reduce material and energy requirements of products, resulting in energy savings. However, processes for the production of carbon nanotubes (CNTs) are energy-intensive and can require extensive purification. In this study, we investigate the net energy benefits of three CNT-enabled technologies: multi-walled CNT (MWCNT) reinforced cement used as highway construction material, single-walled CNT (SWCNT) flash memory switches used in cell phones and CNT anodes and cathodes used in lithium-ion batteries used in electric vehicles. We explore the avoided or additional energy requirement in the manufacturing and use phases and estimate the life cycle net energy benefits for each application. Additional scenario analysis and Monte Carlo simulation of parameter uncertainties resulted in probability distributions of net energy benefits, indicating that net energy benefits are dependent on the application with confidence intervals straddling the breakeven line in some cases. Analysis of simulation results reveals that SWCNT switch flash memory and MWCNT Li-ion battery cathodes have statistically significant positive net energy benefits (α = 0.05) and SWCNT Li-ion battery anodes tend to have negative net energy benefits, while positive results for MWCNT-reinforced cement were significant only under an efficient CNT production scenario and a lower confidence level (α = 0.1).

  19. Multifunctional carbon nanotubes with nanoparticles embedded in their walls

    International Nuclear Information System (INIS)

    Mattia, D; Korneva, G; Sabur, A; Friedman, G; Gogotsi, Y

    2007-01-01

    Controlled amounts of nanoparticles ranging in size and composition were embedded in the walls of carbon nanotubes during a template-assisted chemical vapour deposition (CVD) process. The encapsulation of gold nanoparticles enabled surface enhanced Raman spectroscopy (SERS) detection of glycine inside the cavity of the nanotubes. Iron oxide particles are partially reduced to metallic iron during the CVD process giving the nanotubes ferromagnetic behaviour. At high nanoparticle concentrations, particle agglomerates can form. These agglomerates or larger particles, which are only partially embedded in the walls of the nanotubes, are covered by additional carbon layers inside the hollow cavity of the tube producing hillocks inside the nanotubes, with sizes comparable to the bore of the tube

  20. Carbon nanotube forests growth using catalysts from atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy); Sincrotone Trieste S.C.p.A., s.s. 14, km 163.4, I-34149 Trieste (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy)

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  1. Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells

    Science.gov (United States)

    Shvedova, Anna A.; Castranova, Vincent; Kisin, Elena R.; Schwegler-Berry, Diane; Murray, Ashley R.; Gandelsman, Vadim Z.; Maynard, Andrew; Baron, Paul

    2003-01-01

    Carbon nanotubes are new members of carbon allotropes similar to fullerenes and graphite. Because of their unique electrical, mechanical, and thermal properties, carbon nanotubes are important for novel applications in the electronics, aerospace, and computer industries. Exposure to graphite and carbon materials has been associated with increased incidence of skin diseases, such as carbon fiber dermatitis, hyperkeratosis, and naevi. We investigated adverse effects of single-wall carbon nanotubes (SWCNT) using a cell culture of immortalized human epidermal keratinocytes (HaCaT). After 18 h of exposure of HaCaT to SWCNT, oxidative stress and cellular toxicity were indicated by formation of free radicals, accumulation of peroxidative products, antioxidant depletion, and loss of cell viability. Exposure to SWCNT also resulted in ultrastructural and morphological changes in cultured skin cells. These data indicate that dermal exposure to unrefined SWCNT may lead to dermal toxicity due to accelerated oxidative stress in the skin of exposed workers.

  2. Thermal conductivity of carbon nanotube cross-bar structures

    International Nuclear Information System (INIS)

    Evans, William J; Keblinski, Pawel

    2010-01-01

    We use non-equilibrium molecular dynamics (NEMD) to compute the thermal conductivity (κ) of orthogonally ordered cross-bar structures of single-walled carbon nanotubes. Such structures exhibit extremely low thermal conductivity in the range of 0.02-0.07 W m -1 K -1 . These values are five orders of magnitude smaller than the axial thermal conductivity of individual carbon nanotubes, and are comparable to the thermal conductivity of still air.

  3. Single-walled carbon nanotube-induced mitotic disruption⋆

    OpenAIRE

    Sargent, L.M.; Hubbs, A.F.; Young, S.-H.; Kashon, M.L.; Dinu, C.Z.; Salisbury, J.L.; Benkovic, S.A.; Lowry, D.T.; Murray, A.R.; Kisin, E.R.; Siegrist, K.J.; Battelli, L.; Mastovich, J.; Sturgeon, J.L.; Bunker, K.L.

    2011-01-01

    Carbon nanotubes were among the earliest products of nanotechnology and have many potential applications in medicine, electronics, and manufacturing. The low density, small size, and biological persistence of carbon nanotubes create challenges for exposure control and monitoring and make respiratory exposures to workers likely. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to 24, 48 and 96 μg/cm2 single-walled c...

  4. Adsorption of multimeric T cell antigens on carbon nanotubes

    DEFF Research Database (Denmark)

    Fadel, Tarek R; Li, Nan; Shah, Smith

    2013-01-01

    Antigen-specific activation of cytotoxic T cells can be enhanced up to three-fold more than soluble controls when using functionalized bundled carbon nanotube substrates ((b) CNTs). To overcome the denaturing effects of direct adsorption on (b) CNTs, a simple but robust method is demonstrated...... to stabilize the T cell stimulus on carbon nanotube substrates through non-covalent attachment of the linker neutravidin....

  5. Methods for selective functionalization and separation of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H (Inventor); Smalley, Richard E. (Inventor); Marek, legal representative, Irene Marie (Inventor)

    2011-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  6. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    Science.gov (United States)

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  7. Electrochemical properties of double wall carbon nanotube electrodes

    OpenAIRE

    Pumera, Martin

    2007-01-01

    AbstractElectrochemical properties of double wall carbon nanotubes (DWNT) were assessed and compared to their single wall (SWNT) counterparts. The double and single wall carbon nanotube materials were characterized by Raman spectroscopy, scanning and transmission electron microscopy and electrochemistry. The electrochemical behavior of DWNT film electrodes was characterized by using cyclic voltammetry of ferricyanide and NADH. It is shown that while both DWNT and SWNT were significantly funct...

  8. Carbon Nanotube Fiber Pretreatments for Electrodeposition of Copper

    OpenAIRE

    Hannula, Pyry-Mikko; Junnila, Minttu; Janas, Dawid; Aromaa, Jari; Forsén, Olof; Lundström, Mari

    2018-01-01

    There is increasing interest towards developing carbon nanotube-copper (CNT-Cu) composites due to potentially improved properties. Carbon nanotube macroscopic materials typically exhibit high resistivity, low electrochemical reactivity, and the presence of impurities, which impede its use as a substrate for electrochemical deposition of metals. In this research, different CNT fiber pretreatment methods, such as heat treatment, immersion in Watts bath, anodization, and exposure to boric acid (...

  9. STIR: Microwave Response of Carbon Nanotubes in Polymer Nanocomposite Welds

    Science.gov (United States)

    2016-01-28

    STIR: RDRL-ROE-M: Microwave Response of Carbon Nanotubes in Polymer Nanocomposite Welds Thrust 1 of the STIR project examines the heat response of...polymer composites loaded with carbon nanotubes (CNTs) to microwave irradiation. This involves (1) a study of how CNT loading affects dielectric...properties of polymer composites and (2) a study of how CNT loading affects the heating response to microwave radiation. Our hypothesis is that the

  10. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    International Nuclear Information System (INIS)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto

    2016-01-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  11. One dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, P.; Pedersen, Thomas Garm

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  12. A Highly Viscous Imidazolium Ionic Liquid inside Carbon Nanotubes

    DEFF Research Database (Denmark)

    Ohba, T.; Chaban, Vitaly V.

    2014-01-01

    We report a combined experimental (X-ray diffraction) and theoretical (molecular dynamics, hybrid density functional theory) study of 1-ethyl-3-methylimidazolium chloride, [C2C1MIM][Cl], inside carbon nanotubes (CNTs). We show that despite its huge viscosity [C2C1MIM][Cl] readily penetrates into 1...... adsorption of [C2C1MIM][Cl] on the inner sidewalls of 1-3 nm carbon nanotubes....

  13. Membranes with functionalized carbon nanotube pores for selective transport

    Science.gov (United States)

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  14. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto, E-mail: carlos.couto.sjc@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  15. Synthesis of carbon nanotubes using natural carbon precursor: Castor oil

    Science.gov (United States)

    Raziah, A. Z.; Junizah, A. R.; Saifuddin, N.

    2012-09-01

    Castor oil has long been an article of commerce due to its versatility as it is widely used as a starting material for many industrial chemical products because of its unique structure. In this study, carbon nanotubes has been synthesized by thermal decomposition of castor oil in nitrogen atmosphere at 300-400δC using custom-made microwave processing unit. The precursor material was catalyzed by iron clusters originating from the addition of ferrocene. The morphology and characterization of the CNTs were studied and discussed by transmission electron microscopy (TEM).

  16. Polymer cantilever platform for dielectrophoretic assembly of carbon nanotubes

    DEFF Research Database (Denmark)

    Johansson, Alicia; Calleja, M.; Dimaki, Maria

    2004-01-01

    A polymer cantilever platform for dielectrophoretic assembly of carbon nanotubes has been designed and realized. Multi-walled carbon nanotubes from aqueous solution have been assembled between two metal electrodes that are separated by 2 mu m and embedded in the polymer cantilever. The entire chip......, except for the metallic electrodes and wiring, was fabricated in the photoresist SU-8. SU-8 allows for an inexpensive, flexible and fast fabrication method, and the cantilever platform provides a hydrophobic surface that should be well suited for nanotube assembly. The device can be integrated in a micro...

  17. In silico assembly and nanomechanical characterization of carbon nanotube buckypaper

    International Nuclear Information System (INIS)

    Cranford, Steven W; Buehler, Markus J

    2010-01-01

    Carbon nanotube sheets or films, also known as 'buckypaper', have been proposed for use in actuating, structural and filtration systems, based in part on their unique and robust mechanical properties. Computational modeling of such a fibrous nanostructure is hindered by both the random arrangement of the constituent elements as well as the time- and length-scales accessible to atomistic level molecular dynamics modeling. Here we present a novel in silico assembly procedure based on a coarse-grain model of carbon nanotubes, used to attain a representative mesoscopic buckypaper model that circumvents the need for probabilistic approaches. By variation in assembly parameters, including the initial nanotube density and ratio of nanotube type (single- and double-walled), the porosity of the resulting buckypaper can be varied threefold, from approximately 0.3 to 0.9. Further, through simulation of nanoindentation, the Young's modulus is shown to be tunable through manipulation of nanotube type and density over a range of approximately 0.2-3.1 GPa, in good agreement with experimental findings of the modulus of assembled carbon nanotube films. In addition to carbon nanotubes, the coarse-grain model and assembly process can be adapted for other fibrous nanostructures such as electrospun polymeric composites, high performance nonwoven ballistic materials, or fibrous protein aggregates, facilitating the development and characterization of novel nanomaterials and composites as well as the analysis of biological materials such as protein fiber films and bulk structures.

  18. Nonlinear buckling analyses of a small-radius carbon nanotube

    International Nuclear Information System (INIS)

    Liu, Ning; Li, Min; Jia, Jiao; Wang, Yong-Gang

    2014-01-01

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained

  19. Nonlinear buckling analyses of a small-radius carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ning, E-mail: liuxiao@ase.buaa.edu.cn; Li, Min; Jia, Jiao [School of Aeronautic Science and Engineering, Beihang University, Beijing 100091 (China); Wang, Yong-Gang [Department of Applied Mechanics, China Agricultural University, Beijing 100083 (China)

    2014-04-21

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained.

  20. High quantum yield graphene quantum dots decorated TiO_2 nanotubes for enhancing photocatalytic activity

    International Nuclear Information System (INIS)

    Qu, Ailan; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-01-01

    Highlights: • High concentration yellow GQDs and TiO_2 nanotubes were achieved by a simple and green method. • High quantum yield GQDs enhanced the photodegradation capacity of TiO_2 nanotube. • The catalytic performance of GQDs/TiO_2 depends on the GQDs loading. • The improved photocatalytic activity of GQDs/TiO_2 was attributed to three aspects. - Abstract: Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO_2 nanotubes (GQDs/TiO_2 NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600–800 nm. The photocatalytic activity of prepared GQDs/TiO_2 NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO_2 nanotubes (TiO_2 NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV–vis light irradiation (λ = 380–780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO_2 NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO_2 NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO_2 composite.