WorldWideScience

Sample records for carbon nano tubes

  1. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    S Prabhu; B K Vinayagam

    2010-12-01

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great challenge in the manufacturing industry. Finishing of micro components such as micro-moulds, micro-lenses and micro-holes need different processing techniques. Conventional finishing methods used so far become almost impossible or cumbersome. In this paper, a nano material especially multi wall carbon nano tube is used in the machining process like grinding to improve the surface characteristics from micro to nano level.

  2. Synthesis and Characterization of Carbon Metal Nano Tubes

    Science.gov (United States)

    Tiwari, B.; Tripathi, I. P.; Saxena, Sanjay; Singh, Sudhanshu; Haribhushan

    2010-11-01

    Nano technology is emerging as the latest technology these days. It is proving its importance in every sphere of life. Metal carbon nano tube due to their vast applications is being used very frequently. So to prepare CNTs a new method is developed. In this methods Complexes of transition metal Ni(II) with amino acids present in egg albumin have been synthesized. The complex is analyzed on the basis of spectroscopic methods of UV, IR, and NMR Spectroscopy. The amino acid metal Complex is decomposed at higher temperature to obtain metal carbon nano tubes. These metal carbon nano tubes are characterized using scanning probe instruments like DLS.

  3. Design and Fabrication of Carbon Nano tube for Medical Application

    International Nuclear Information System (INIS)

    Carbon nano tubes or known as CNTs are allotropes of carbon with a cylindrical nano structure. They exhibit extraordinary strength and unique electrical properties, and are efficient thermal conductors [1]. Due to its ordinary properties this research will based on BIOSENSOR device. Normally these CNTs biosensor are based on an enzyme catalyzed reaction that will produce either electrons or protons. In particular, it is useful in genetic profiling of human diseases, which includes in identifying genes that are expressed in certain diseases such as cancer [2]. This research will based on design and fabricate sensor or device using carbon nano tube and integrate carbon nano tube (CNTs) onto wafer using combination of dichlorophosphate and nano manipulation. Carbon nano tubes device mask are design using AUTOCAD software; there is four mask involved, first mask is Gate Formation,second mask is insulation layer third mask is source and drain and final mask forth mask is used as test channel. For fabrication and optimization of biosensor using carbon nano tube CNT that will be involve both microfabrication and nano fabrication. This process will involve conventional photolithography process, electron beam evaporator, thermal oxidation and wet etching process. To inspect and characterize carbon nano tube electrical properties it will involve tools such as SEM, AFM, Dielectric Analyzer, IV-CV and Semiconductor Parametric Analyzer system. This inspection is very important to produce a perfect profile to produce a good biosensor based on carbon nano tube structure. Preparation of various samples for testing functionality of the device this various samples and conditions will be done to ensure the detection is precise. Conductivity and capacitance effect will be tested electrically to detect the hybridization of the sample. (author)

  4. Carbon nano-tubes - what risks, what prevention?

    International Nuclear Information System (INIS)

    Carbon nano-tubes are arousing considerable interest in both the research world and industry because of their exceptional intrinsic properties and dimensional characteristics. Health risks of nano-tubes have been little studied, although the general public is already aware of their existence on account of their numerous promising applications. Existing, sometimes extremely brief, publications only reveal insufficient data for assessing risks sustained due to carbon nano-tube exposure. Yet, the great interest aroused by these new chemicals would indicate strongly that the number of exposed workers will increase over the coming years. It therefore appears essential to review not only the characteristics and applications of carbon nano-tubes, but also the prevention means to be implemented during their handling. We recommend application of the principle of precaution and measures to keep the exposure level as low as possible until the significance of occupational exposure and the corresponding human health risks are better known and have been assessed. (authors)

  5. Atomistic simulation of diffusion of hydrocarbons in carbon nano tubes

    International Nuclear Information System (INIS)

    Full Text:As an important research direction in nano science and nano technology, carbon nano tubes have aroused great interest, due to their unique structure and stability. This project deals with the transport of hydrocarbons inside Single Wall Carbon Nano tubes, which can be imagined to be rolled up rectangular strips of hexagonal graphite. We will present a simulation of diffusion of methane molecules inside carbon nano tubes using the Dual Control Volume Grand Canonical Molecular Dynamics method, in which a steady state chemical potential gradient is applied over the tube that enables us to calculate the transport diffusion coefficients Dt according to Fick Law. The trajectory of the particles allows the calculation of self diffusion coefficients, Ds , which are given by Einstein's relation. We used Equilibrium Molecular Dynamics to determine Ds of methane molecules taking into account their tetrahedral structure, modeled using the Bond Order Empirical Potential (Brenner potential). Transport phenomena in carbon depend on the pore size, the pore network structure, the molecule dimensions, the temperature of the gas and the interaction between the transported gas and the tube. Selections of these parameters were made for different runs, in order to explore their significance. The Atomic Visualization program was used to animate diffusion of hydrocarbons inside the carbon nano tube, in order to observe typical features. For example we observed that small pores lead to single file diffusion

  6. Aligned Carbon Nano tubes Array by DC Glow Plasma Etching for Super capacitor

    International Nuclear Information System (INIS)

    To open the end of carbon nano tubes and make these ends connect with functional carboxyl group, aligned carbon nano tubes (CNTs) arrays was etched by DC glow oxygen-argon plasma. With these open-ended carbon nano tubes array as electrode materials to build super capacitor, we found that the capacity (32.2 F/g) increased significantly than that of pure carbon nano tubes (6.7 F/g)

  7. Carbon Nano tubes Based Mixed Matrix Membrane for Gas Separation

    International Nuclear Information System (INIS)

    Carbon nano tubes based mixed matrix membrane (MMM) was prepared by the solution casting method in which the functionalized multi walled carbon nano tubes (f-MWNTs) were embedded into the polyimide membrane and the resulting membranes were characterized. The effect of nominal MWNTs content between 0.5 and 1.0 wt % on the gas separation properties were looked into. The morphologies of the MMM also indicated that at 0.7 % loading of f- MWNTs, the structures of the MMM showed uniform finger-like structures which have facilitated the fast gas transport through the polymer matrix. It may also be concluded that addition of open ended and shortened MWNTs to the polymer matrix can improve its permeability by increasing diffusivity through the MWNTs smooth cavity. (author)

  8. Carbon nano tubes -Buckypaper- radiation studies for medical physics application

    International Nuclear Information System (INIS)

    Radiation dosimetry underpins safe and effective clinical applications of radiation. Many materials have been used to measure the radiation dose deposited in human tissue, their radiation response requiring the application of correction factors to account for various influencing factors, including sensitivity to dose and energy dependence. In regard to the latter, account needs to be taken of difference from the effective atomic number of human tissue, soft or calcified. Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In both circumstances, dosimeters with atomic number similar to human tissue are needed. Carbon nano tubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nano tubes buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2 Gy. This finding suggests that carbon nano tubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance. (Author)

  9. Carbon nano tubes -Buckypaper- radiation studies for medical physics application

    Energy Technology Data Exchange (ETDEWEB)

    Alanazi, A.; Alkhorayef, M.; Dalton, A.; Bradley, D. A. [University of Surrey, Department of Physics, College for Nuclear and Radiation Physics, Guildford, Surrey GR2 7XH (United Kingdom); Alzimami, K. [King Saud University, Department of Radiological Sciences, P. O. Box 10219, Riyadh 11433 (Saudi Arabia); Abuhadi, N., E-mail: a.alanazi@surrey.ac.uk [Jazan University, Faculty of Medical Applied Sciences, Diagnostic Radiology Department, P. O. Box 114, Jazan (Saudi Arabia)

    2015-10-15

    Radiation dosimetry underpins safe and effective clinical applications of radiation. Many materials have been used to measure the radiation dose deposited in human tissue, their radiation response requiring the application of correction factors to account for various influencing factors, including sensitivity to dose and energy dependence. In regard to the latter, account needs to be taken of difference from the effective atomic number of human tissue, soft or calcified. Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In both circumstances, dosimeters with atomic number similar to human tissue are needed. Carbon nano tubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nano tubes buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2 Gy. This finding suggests that carbon nano tubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance. (Author)

  10. Application of Carbon nano tube field-effect transistor as sensor in analyzing of integrated circuits

    International Nuclear Information System (INIS)

    The purpose of this investigation is to develop a current-transport model for Carbon nano tube field effect transistor applicable in the analysis of detection of chemical material. We implemented an efficient numerical model of a Carbon nano tube field-effect transistor with regard to ultrasonic nano welding treatment. Our results have shown a strong dependence of the I-V characteristics on the wrapping angle and diameter of Carbon nano tubes. Also our calculations have indicated that Carbon nano tube field effect transistors based sensors are promising compact ultra-sensitive and ultra low-power advanced miniaturized sensors in comparison to conventional sensors.

  11. Modification of cement concrete by multilayer carbon nano-tubes

    International Nuclear Information System (INIS)

    The compact structure of protective concrete-conservative on the basis of Portland cement modified by carbon nano-dispersed systems has been studied. Multilayer carbon nano-tubes GraphistrengthTM by 'Arkema' dispersed in hydrodynamic plant in the solution of surfactant Polyplast SP-1 have been used as modifying additives. The bending strength of fine grain concrete has been observed to increase by 45.1% and compression strength - by 96.8%. The concrete strength increase is related to morphological changes of crystalline hydrate new formations providing the formation of less defective structure of cement matrix of high density, preventing the migration of radionuclides into the environment in the process of radioactive waste conservation

  12. Growth Temperature Effect on Carbon Nano tubes Formation by Spray Pyrolysis Method

    International Nuclear Information System (INIS)

    Carbon nano tubes has been produced by using spray pyrolysis method with no carrier gas. Carbon nano tubes were formulated from a mixture a ferrocene and benzene with certain ratio and then the mixture were injected by the sprayer into the furnace. Growth temperature was optimized in the range of 650 until 850 oC to get the high quality of carbon nano tubes. These were characterized by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX). (author)

  13. Static and dynamic response of carbon nano tube-based nano-tweezers

    International Nuclear Information System (INIS)

    In this paper static and dynamic responses of a nano-tweezer composed of two carbon nano-tube arms are investigated. Taking into account a continuum model and considering the electrostatic actuation as well as the presence of the van der Waals forces, the static nonlinear equations are solved by a step by step linearization and Galerkin projection method. Simulating the closing dynamics of the nano-tweezer, the specified effective diameters of the nano tubes compared to existing experimental data. Then by imposing a step DC voltage and taking into account the inertia effects, the dynamic responses and pull-in conditions of the nano-tweezer are studied. In the static and dynamic analysis, the effects of various parameters such as initial gap, length and diameter of the nano tubes on the pull-in conditions are investigated. Also the effect of damping and asymmetric stiffness of the arms on the pull-in voltages of the nano-tweezer is reported. Comparison of the results with the published experimental data shows that the use of continuum model and employing the Galerkin based step by step linearization method could effectively simulate the response of nano-tweezers.

  14. Optimizing of Synthesis of Carbon Nano tubes Fabricated by Spray Pyrolysis Method

    International Nuclear Information System (INIS)

    Carbon nano tubes material was fabricated by spray pyrolysis method. Benzene as source of carbon and ferrocene as catalyst were used to fabricate carbon nano tubes. Temperature optimizing was conducted at varied temperature in range of 700, 800, 900 and 1000 oC. Meanwhile, composition optimizing of ferrocene to benzene was conducted at varied ratio of 1.5/50, 3/50 and 4.5/50 g/mL. The characterization of carbon nano tubes material was conducted by SEM and EDS. Based on the these characterizations, the optimum synthesis parameter of carbon nano tubes was at temperature of 900 oC and composition of 3/50 g/mL. Purification of carbon nano tubes was conducted by using HNO3 solution at varied concentration of 25, 45, 65 and 85%. The result of purification showed that the highest decrease of Fe can be achieved by using 65 % HNO3 solution. (author)

  15. Effects of carbon nano-tubes treatments on their hydrogen adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Piquero, T.; Pierre, Y.; David, P. [CEA Centre d' Etudes du Ripault, 37 - Tours (France); Begin-Colin, S. [Institut National Polytechnique, Laboratoire de Sciences et Genie des Materiaux et de Metallurgie (INPL), 54 - Nancy (France); Lebbou, K.; Tillement, O. [Universite Claude Bernard, Laboratoire de Physico-chimie des Materiaux Luminescents, 69 - Villeurbanne (France); Perriat, P. [Institut National des Sciences Appliquees (INSA), GEMPPM, 69 - Villeurbanne (France)

    2003-09-01

    Since experimental confirmations of the excellent ability of gas storage of carbon nano-tubes have been carried out, tremendous work have been done to understand and to improve hydrogen adsorption in carbon nano-tubes. In this context, opening nano-tubes is a way to improve adsorption, since their internal volume may be considered as a supplementary gas reservoir. Experimentally, such an operation is carried out using thermal treatments, sonication or ball-milling. Herein, we studied ball-milling of bundle-organized single wall carbon nano-tubes. Experiments have been carried out in a planetary ball mill, using chemical agents as shock absorbers. Their effects are quantified by X-ray diffraction, transmission electronic microscope, nitrogen adsorption isotherms. Hydrogen adsorption measurements at low temperature show that it is not easy to improve in a significant way the H{sub 2} adsorption capacity of carbon nano-tubes. (authors)

  16. Inelastic continuum modeling of carbon nano tubes behavior using finite element method

    International Nuclear Information System (INIS)

    This paper describes a continuum model for analyzing the inelastic behavior of a single walled carbon nano tube in different loading conditions. Because of limitations in using molecular dynamics (and other atomic methods) to model the failure load of the single walled carbon nano tube. continuum mechanics methods are considered in this paper. Based on some experimental and theoretical results. an elasto-plastic model was used to analyze inelastic behavior of carbon nano tubes. 3D FEM model of single walled carbon nano tube including the Vander-Waalsinteractions was developed with advanced capabilities. The results obtained by this model in different conditions have been compared with other numerical and experimental results. The comparison shows that this method is efficient and could be expanded for numerical modeling of nano-composites

  17. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon

    International Nuclear Information System (INIS)

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS2, enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS2 + C nano tubes were synthesized by propylene pyrolysis inside MoS2 nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS2 layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS2 inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS2 layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS2 layers. Our results open up the possibility of using MoS2 nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  18. Influence of temperature and pressure in adsorption of uranium hexafluoride on carbon nano tube by Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Uranium hexafluoride physical adsorption on armchair carbon nano tubes is studied with Monte Carlo Simulations in a wide range of temperatures and pressures. All of the particle particle interaction are modeled with Lennard-Jones potential. We have written a FORTRAN program for Monte Carlo simulation and then calculated the inside density of carbon nano tube, out side density of carbon nano tube and total density of carbon nano tube. The conclusions drown from theses calculations are then contrasted and compared. Result show that the total amount of uranium hexafluoride adsorption on single-walled carbon nano tube, increases with high pressure and low temperature

  19. Densely Packed Linear Assembles of Carbon Nano tube Bundles in Polysiloxane-Based Nano composite Films

    International Nuclear Information System (INIS)

    Linear assemblies of carbon nano tubes (LACNTs) were fabricated and controlled in polysiloxane-based nano composite films and the effects of the LACNTs on the thermal and electrical properties of the films were investigated. CNTs were dispersed by mechanical stirring and sonication in a prepolymer of polysiloxane. Homogeneous suspensions were cast on polyamide spacers and oriented by linear-assembly by applying DC and switching DC electric fields before the mixture became cross-linked. Densely packed LACNTs that fixed the composite film surfaces were fabricated with various structures and thicknesses that depended on the DC and switching DC conditions. Polymer nano composites with different LACNT densities exhibited enhanced thermal and electrical conductivities and high optical transmittances. They are considered promising structural materials for electronic sectors in automotive and aerospace applications

  20. Theoretical Investigation on the Solubilization in Water of Functionalized Single-Wall Carbon Nano tubes

    International Nuclear Information System (INIS)

    An important technique to increase the solubility and reactivity of carbon nano tube is through functionalization. In this study, the effects of functionalization of some single-walled carbon nano tubes (SWCNTs) were investigated with the aid of density functional theory. The SWCNT model used in the study consists of a finite, (5, 0) zigzag nano tube segment containing 60 C atoms with hydrogen atoms added to the dangling bonds of the perimeter carbons. There are three water-dispersible SWCNTs used in this study that were functionalized with (a) formic acid, as a model of carboxylic acid, (b) isophthalic acid, as a model aromatic dicarboxylic acid, and (c) benzenesulfonic acid, as a model aromatic sulfonic acid. Binding energies of the organic radicals to the nano tubes are calculated, as well as the HOMO-LUMO gaps and dipole moments of both nano tubes and functionalized nano tubes. Binding was found out to be thermodynamically favorable. The functionalization increases the electrical dipole moments and results in an enhancement in the solubility of the nano tubes in water manifested through favorable changes in the free energies of solvation. This should lower the toxicity of nano tubes and improve their biocompatibility.

  1. Synthesis and Physical Characterization of Carbon Nano tubes Coated by Conducting Poly pyrrole

    International Nuclear Information System (INIS)

    This study describes the preparation of poly pyrrole multi walled carbon nano tube (PPy/ MWNT) composites by in situ chemical oxidative polymerization. Various ratios of functionalized MWNTs are dispersed in the water, and PPy are then synthesized via in-situ chemical oxidative polymerization on the surface of the carbon nano tubes. The morphology of the resulting complex nano tubes (MWNT-PPY) was characterized by scanning electron microscopy (SEM). The conductivity of each composite showed a maximum in the temperature scale of 120- 160 degree Celsius and then decreased dramatically with the increase of temperature. (author)

  2. Irradiation Modification of Epoxidized Natural Rubber/ ethylene Vinyl Acetate/ carbon Nano tubes Nano composites

    International Nuclear Information System (INIS)

    The effect of CNTs with irradiation modification on the properties of Epoxidized Natural Rubber/ Ethylene Vinyl Acetate/ Carbon Nano tubes (ENR/EVA/CNTs) nano composites were investigated. The CNTs at various amount (2, 3, 4 and 6 wt%) were incorporated into ENR50 by solving casting method. The ENR/ CNTs were then blended with EVA by mixing in a Brabender Plasticoder at 120 degree Celsius. Next, the samples were irradiated by using electron beam with 3 MeV electron beam machine in a dose range of 50 to 200 kGy. The mechanical properties especially Tensile strength (Ts), modulus at 100 % elongation (M100), elongation at break (Eb) and hardness were studied as a function of radiation dose. The thermal properties of the nano composites was investigated by TGA and DSC. Results showed that the irradiation induced crosslinking lead to further improvement in mechanical properties, thermal properties and compatibility of the nano composites. The irradiation modification up to 150 kGy, has increased the Ts and M100 almost 2 times and a downward trend thereafter. (author)

  3. Atomistic simulation of separation of hydrogen and hydrocarbons in carbon nano tubes

    International Nuclear Information System (INIS)

    Full Text:As an important research direction in nano-science and nano-technology, carbon nano tubes have aroused great interest: due to their unique structure and stability. We are studying the transport and separation of hydrogen and hydrocarbons mixtures, which is of considerable research interest in the chemical and pharmaceutical industries. Computational methods, such as molecular Dynamics or Monte Carlo simulation, have been widely applied to determine the nature of the diffusion of molecules inside carbon nano tubes. Transport phenomena in carbon nano tubes depend on the pore size, the pore network structure, the molecule dimensions, the temperature of the gas mixture and the interaction bets-Fen the transported mixture and the tube. The solid tube is modeled using the Brenner (Bond-Order) potential energy which can model intermolecular chemical bonding in a variety of small hydrocarbons as well as graphite. I will present a molecular dynamics simulation of diffusion of methane molecules inside carbon nano tube, and find obtain the apparent diffusivity values

  4. Preliminary Study of Fermented Tapioca for Synthesis of Carbon Nano tubes

    International Nuclear Information System (INIS)

    Carbon nano tubes had been produced by various precursor such as gas (methane, carbon dioxide), oil (camphor oil, olive oil, and cooking oil) and alcohol. Different methods used for carbon nano tubes synthesis like arc discharge method, laser ablation method and chemical vapour deposition method. In this experiment, thermal chemical vapour deposition method was selected for carbon nano tubes synthesis. Starting material of fermented tapioca was used as carbon source for the process. Argon gas flow were controlled at around 10-15 bubbles per minute and deposition time around 20 to 30 minute. Others parameters such as temperature of furnace 1 and 2, amount of inoculum and catalyst have been studied. The asThermogravimetri (TGA) was used to determine the volatile temperature of the mixing catalyst and fermented tapioca extract. The grown carbon nano tubes morphology was characterized through Raman spectroscopy, scanning and Field Emission Scanning Electron Microscopy (FESEM) techniques. The surface morphology and uniformity of carbon nano tubes are reliant to parameters used. (author)

  5. Fabrication and thermomechanical properties of nano-SiC/carbon nano-tubes composites

    International Nuclear Information System (INIS)

    Ceramic carbides materials such as SiC, due to their refractory nature and their low neutron absorption are believed to be promising candidates for high temperature nuclear or aerospace applications. However, SiC brittleness has limited its structural application. In this context this work examines in a first part the possibilities to perform dense nano-structured SiC matrix by SPS without the use of sintering additive. Indeed a reduction of grain size (below 100 nm) accompanied by a high final density seem to be the solutions to counteract the brittleness and thus to improve mechanical properties. Dense (95%) and nano-structured (grain size around 100 nm) SiC samples were obtained thanks to the realization of an effective dispersion technique and the study on the sintering parameters effect. High hardness (2200 Hv) and decent fracture toughness (3.0 MPa.m1/2) were achieved. This first work also showed the preponderant influence of recurrent pollutants (oxygen and carbon) found in SiC powders on the final microstructure and mechanical properties of sintered samples. The oxygen as silica or silicon oxycarbide seems to promote densification mechanisms while free carbon (3.5 %wt) causes lower grain size and densification state. Mechanical properties with carbon are also negatively impacted (950 Hv and 2.4 MPa.m1/2). Such degradation is due by the specific localization of carbon structure between the grains. In return of the expected mechanical properties improvement by reducing the grain size, the thermal conductivity is drastically decrease of due to the phonon scattering at the grain boundaries. With the aim of reducing this effect, a second study was initiated by introducing multi-walled carbon nano-tubes (MWCNTs) into the SiC matrix. The MWCNTs by exhibiting a high toughness could also help to enhance the mechanical properties. Green bodies with different amounts of well dispersed MWCNTs (0 %wt to 5 %wt) were realized. Like free carbon, MWCNTs are located between

  6. Mechanical Properties of Thermoplastic Natural Rubber (TPNR) Reinforced with Different Types of Carbon Nano tube

    International Nuclear Information System (INIS)

    The effect of various multi-walled carbon nano tubes (MWNTs) on the tensile properties of thermoplastic natural rubber (TPNR) nano composite was investigated. The nano composite was prepared using melt blending method. MWNTs were added to improve the mechanical properties of MWNTs/TPNR composites in different compositions of 1, 3, 5, and 7 wt. %. The results showed that the mechanical properties of nano composites were affected significantly by the composition and the properties of MWNTs. SEM micrographs confirmed the homogenous dispersion of MWNTs in the TPNR matrix and promoted strong interfacial adhesion between MWNTs and the matrix which was improved mechanical properties significantly. (author)

  7. Technologies for the 21st century: carbon nano tubes as adsorbents of metals

    International Nuclear Information System (INIS)

    Nowadays and in the recent past when the word nano appeared in almost anything it attracted immediate attention and interest, this is why carbon nano tubes, since its discovery nearly twenty years ago, caught the interest of a wide scientific and industrial population to apply the somewhat amazing properties of these nano materials in a number of applications. Among them, the removal of toxic and sometimes profitable metals from aqueous streams appeared, due to its economical and social impact, as one of the targets for their uses. This paper reviews some recent advances (2009-2013 years) in the application of carbon nano tubes materials in the removal of a variety of metals from these aqueous streams. (Author)

  8. Preparation of 14C-Labeled Multi-walled Carbon Nano-tubes for Biodistribution Investigations

    International Nuclear Information System (INIS)

    A new method allowing the 14C-labeling of carboxylic acid functions of carbon nano-tubes is described. The key step of the labeling process is a de-carbonylation reaction that has been developed and optimized with the help of a screening method. The optimized process has been successfully applied to multi-walled carbon nano-tubes (MWNTs), and the corresponding 14C-labeled nano-tubes were used to investigate their in vivo behavior. Preliminary results obtained after i.v. contamination of rats revealed liver as the main target organ. Radiolabeling of NTs with a long-life radioactive nucleus like 14C, coupled to a highly sensitive autoradiographic method, that provides a unique detection threshold, will make it possible to determine for a long time period whether or not NTs remain in any organs after animal exposure. (authors)

  9. Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Berkmans, A.; Jagannatham, M. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India); Priyanka, S. [Department of Electrical and Electronics Engineering, MS Ramaiah Institute of Technology, Bangalore 560054, Karnataka (India); Haridoss, Prathap, E-mail: prathap@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India)

    2014-11-15

    Highlights: • Polymer wastes are converted into ultrafine and nano carbon tubes and spheres. • Simple process with a minimal processing time. • It is a catalyst free and solvent free approach. • This process forms branched ultrafine carbon tubules with nano channels. - Abstract: Upcycling polymer wastes into useful, and valuable carbon based materials, is a challenging process. We report a novel catalyst-free and solvent-free technique for the formation of nano channeled ultrafine carbon tubes (NCUFCTs) and multiwalled carbon nanotubes (MWCNTs) from polyethylene terephthalate (PET) wastes, using rotating cathode arc discharge technique. The soot obtain from the anode contains ultrafine and nano-sized solid carbon spheres (SCS) with a mean diameter of 221 nm and 100 nm, respectively, formed at the lower temperature region of the anode where the temperature is approximately 1700 °C. The carbon spheres are converted into long “Y” type branched and non-branched NCUFCTs and MWCNTs at higher temperature regions where the temperature is approximately 2600 °C, with mean diameters of 364 nm and 95 nm, respectively. Soot deposited on the cathode is composed of MWCNTs with a mean diameter of 20 nm and other nanoparticles. The tubular structures present in the anode are longer, bent and often coiled with lesser graphitization compared to the nanotubes in the soot on the cathode.

  10. Properties of the chalcogenide–carbon nano tubes and graphene composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Abhay Kumar, E-mail: abhaysngh@rediffmail.com [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Department of Electronics Engineering, Incheon National University, Incheon 406-772 (Korea, Republic of); Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); Kim, JunHo [Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); Park, Jong Tae [Department of Electronics Engineering, Incheon National University, Incheon 406-772 (Korea, Republic of); Sangunni, K.S. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-04-05

    Highlights: • Chalcogenides. • Melt quenched. • Composite materials. • Multi walled carbon nano tubes. • Bilayer graphene. - Abstract: Composite can deliver more than the individual elemental property of the material. Specifically chalcogenide- multi walled carbon nano tubes and chalcogenide- bilayer graphene composite materials could be interesting for the investigation, which have been less covered by the investigators. We describe micro structural properties of Se{sub 55}Te{sub 25}Ge{sub 20,} Se{sub 55}Te{sub 25}Ge{sub 20} + 0.025% multi walled carbon nano tubes and Se{sub 55}Te{sub 25}Ge{sub 20} + 0.025% bilayer graphene materials. This gives realization of the alloying constituents inclusion/or diffusion inside the multi walled carbon nano tubes and bilayer graphene under the homogeneous parent alloy configuration. Raman spectroscopy, X-ray photoelectron spectroscopy, UV/Visible spectroscopy and Fourier transmission infrared spectroscopy have also been carried out under the discussion. A considerable core energy levels peak shifts have been noticed for the composite materials by the X-ray photoelectron spectroscopy. The optical energy band gaps are measured to be varied in between 1.2 and 1.3 eV. In comparison to parent (Se{sub 55}Te{sub 25}Ge{sub 20}) alloy a higher infrared transmission has been observed for the composite materials. Subsequently, variation in physical properties has been explained on the basis of bond formation in solids.

  11. Multi-walled Carbon Nano tubes/ Polyetherimide Composite Hollow Fibers for Gas Separation

    International Nuclear Information System (INIS)

    Composite hollow fibers were prepared by incorporating 1 wt % of multi walled carbon nano tubes (MWCNTs) within polyether imide (PEI) polymer matrix. Surfactant modification using non-ionic surfactant, Triton X100 was conducted to improve the dispersion of nano tubes in the polymer matrix during the preparation of polymer dope. The morphological structure and mechanical properties of the resulting composite hollow fibers were characterized. This study demonstrated the role of Triton X100 in facilitating the synergetic effects of MWCNTs and PEI where the resulting composite membrane is anticipated to have potential application in membrane based gas separation. (author)

  12. Interaction of carbon nano tubes with DNA segments

    International Nuclear Information System (INIS)

    Single- and double-stranded DNA (deoxyribonucleic acid) molecules can strongly bind to single-walled carbon nanotubes (SWNT) via non-covalent interactions. Under certain conditions, the DNA molecule spontaneously self-assembles into a helical wrapping around the tubular structure of the carbon nanotubes to form DNA/SWNT hybrids, which are both stable and soluble in water. This system has recently received extensive attention, since, besides rendering SWNTs dispersible in water as individual tubes, the DNA hybrids are very promising candidates for many applications in nanotechnology and molecular biology. All the possible applications for DNA-SWNT hybrids require, however, a fully understanding of DNA-nanotube wrapping mechanism which is still lacking in the literature. In this context, the aim of this work was to investigate the non-covalent interaction in aqueous medium between SWNTs and synthetic DNA segments having a known nucleotide sequence. Initially, the study was focused on poly d(GT)n sequences (n = 10, 30 and 45) that contain a sequence of alternating guanine and thymine bases and for which the efficiency to disperse and separate carbon nanotubes has already been demonstrated. Besides the size of GT sequences, the effects of ionic strength and pH in the interaction were also investigated. Afterwards, we studied the interaction of SWNT with DNA molecules that contain only a single type of nitrogenous base (DNA homopolymers), which has not been reported in details in the literature. We investigated homopolymers of poly dA20, poly dT20, poly dC20 and the duplex poly dA20:dT20. Most of the study was carried out with small-diameter HiPco SWNTs (with diameters between 0.7 and 1.2 nm). In some studies, SWNTs with diameter around 1.4 nm, synthesized via laser ablation and arc-discharge methods, were also investigated. The arc-discharge nanotubes used in this study were functionalized with carboxylic groups (-COOH) due to their purification using strong acid

  13. AC dielectrophoresis alignment of single-walled carbon nano tubes (SWNTS) and palladium nano wires for hydrogen gas sensor

    International Nuclear Information System (INIS)

    Full-text: Using AC electric field, nano wires or nano tubes can be aligned, chained or accelerated in a direction parallel to the applied field, oriented or concentrated onto designated locations as well as dispersed in controlled manner under high efficiencies. In this work, systematic study on the alignment of nano wires/ nano tubes across the 3 μm-gaps between pairs of micro fabricated gold electrodes was carried out using AC dielectrophoresis technique. Densities and alignment of the nano wires/ nano tubes across the gaps of the electrodes were controlled by the applied AC field strengths and frequencies on the electrodes. Good alignments of SWNTs and Pd nano wires were achieved at an applied frequency of 5 MHz and a field strength as high as 25 Vpp for Pd nano wires compared to only 2 Vpp for SWNTs. The aligned nano wires/ nano tubes will be functioned as sensor elements for hydrogen gas sensing. (author)

  14. Enhancement of Field Emission Properties of Carbon Nano tubes by ECR-Plasma Treatment

    International Nuclear Information System (INIS)

    We report a significant improvement in electron field emission property of carbon nano tubes film by using an electron cyclotron resonance plasma treatment. Our research results reveal that plasma treatment can modify the surface morphology and enhance the field emission characteristics of carbon nano tubes. Raman spectra indicate that plasma treated CNTs sample has lesser defects. Before plasma treatment, low current density of 6.5 mA/cm2 at 3.0 V/μm and at a high turn-on field of 2.4 V/μm was observed. ECR plasma treated CNTs showed a high current density of 20.0 mA/cm2 at 3.0 V/μm and at a low of 1.6 V/μm. The calculated enhancement factors are 694 and 8721 for ECR-plasma untreated and treated carbon nano tubes, respectively. We found an increase in the enhancement factor and emission current after the ECR-plasma treatment. This may be attributed to creation of geometrical features through the removal of amorphous carbon and catalyst particles.

  15. Electrochemical element on the base of carbon nano tubes, n-In P and on orange azo dye

    International Nuclear Information System (INIS)

    Properties of electrochemical element on the base of carbon nano tubes, n-In P and on orange azo dye are considered in this article. Investigation results of electrochemical elements on the base of carbon nano tubes, n-In P, water solution of orange azo dye and conductive glass are presented. It is shown that at increasing of electrolyte concentration the value of short circuit current and open circuit voltage of elements are increased.

  16. Electrochemical oxidation of ascorbic acid mediated by carbon nano tubes/ Li+/ carbon paste modified solid electrode

    International Nuclear Information System (INIS)

    Multi-walled carbon nano tube (MWCNT) was used to modify BPPG electrode because of its unique structure and extraordinary properties. MWCNT modified electrode exhibited obvious enhancing and electro catalyzing effects to the oxidation of ascorbic acid using cyclic voltammetry technique. MWCNT was bonded on BPPG electrode surface using carbon paste with ratio of 30 % (w/ W) carbon paste (binder): 70 % (w/ w) MWCNT. This method of modification has lowered the capacitance background current and enabled lower detection limit of ascorbic acid concentration. The electrical conductivity property of MWCNT modified electrode was further improved with the intercalation with lithium ion and resulted in current enhancement of 2 times on the oxidation current of ascorbic acid. Parameters of pH and temperature showed significant relation to the sensitivity of MWCNT modified electrode. Under the optimized parameters, the calibration curve constructed was linear up from 50 μM to 5 mM with sensitivity of 34.5 mA M-1. The practical application of MWCNT modified electrode was demonstrated with Vitamin C pill and orange juice. Good reproducibility and recovery of ascorbic acid concentration showed the feasibility of MWCNT modified electrode to be used in the detection of ascorbic acid in aqueous solution. This also proposed MWCNT modified BPPG electrode possessed advantages such as low detection limit, high stability, low cost and simplicity in fabrication. (author)

  17. Chemically Modified Multi-walled Carbon Nano tubes (MWCNTs) with Anchored Acidic Groups

    International Nuclear Information System (INIS)

    Surface functionalization of multi-walled carbon nano tubes (MWCNTs) was carried out using a gas phase treatment in a Universal Temperature Program (UTP) reactor by flowing SO3 gas onto the CNTs while being heated at different temperatures. The functionalized nano tubes were characterized using X-ray Fluorescence (XRF), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectroscopy. The amount of oxygen and sulfur containing groups was determined by acid-base titration. The titration results were in good agreement with elemental analysis using x-ray fluorescence. FTIR analysis showed the presence of oxygen and sulfur containing groups, S=O, C-S, C=O and -COOH. Raman spectroscopy confirmed that oxygen and sulfur containing acidic groups covalently attached to the sidewall of the MWCNTs. (author)

  18. Synthesis of Carbon Nano tubes Using Anadara Granosa Shells as Catalyst Support

    International Nuclear Information System (INIS)

    The synthesis of carbon nano tubes (CNTs) by chemical vapor deposition (CVD) method using natural calcite prepared from Anadara granosa shells (CS), as metal catalyst support was studied. Hexane and iron were used as carbon precursor and catalyst, respectively. The as synthesised CNTs was characterized using XRD, TEM and FESEM. From the XRD patterns the CNTs peak can be seen more incisive after purification process and from the FESEM micrographs the CNTs can be seen as a bunch of rope-like structures. (author)

  19. Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment

    International Nuclear Information System (INIS)

    Highlights: • A numerical model to predict thermal management of electronic modules using different composite materials. • Effect of insertion of RT65 as PCM and MWCNTs as thermal enhancer in the carbon foam micro cells is evaluated. • Delay and decrease of modules temperature increase with the inclusion of PCM and MWCNTs in the module. • Model prediction of previous experimental data was obtained. - Abstract: A numerical investigation of predicting thermal characteristics of electronic equipment using carbon foam matrix saturated with phase change material (PCM) and Nano carbon tubes as thermal management modules is presented. To study the effect of insertion of RT65 and Nano carbon tubes in carbon foam matrices of different porosities, three different modules; namely Pure CF-20, CF20 + RT65, and CF-20 + RT65/Nano carbon modules are numerically tested at different values of carbon foam porosities. Mathematical model is obtained using volume averaging technique based on single-domain energy equation and a control volume based numerical scheme. Interfacial effects influencing heat transfer process at enclosure wall, module surface and different interfacial surfaces within the composite have been addressed. Governing equations have been solved using a CFD code (Thétis, (http://thetis.enscbp.fr)). Mathematical model is validated by comparing its prediction with previous experimental measurements for pure CF-20 foam and CF-20 + RT65 composite modules. The model is used to predict thermal characteristics of CF-20 + RT65/Nano carbon tubes composite as a thermal management modules. Results reveal that insertion of RT65/MWCNTs in CF-20 leads to a 11.5% reduction in the module surface temperature for carbon foam porosities less than 75%. The reduction decrease to 7.8% for a porosity of 88%. Numerical results of transient and steady state temperature histories at different depths within the module are compared with previous experimental data and fair agreement is

  20. Quantifying the Aggregation Factor in Carbon Nano tube Dispersions by Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Absorption spectroscopy in the ultraviolet-visible-near infrared (UV-Vis-NIR) wavelength region has been used to quantify the aggregation factor of single-walled carbon nano tubes (SWCNTs) in liquid media through a series of controlled experiments. SWCNT bundles are dispersed in selected solvents using a calibrated ultrasonicator, which helps in determining the true amount of energy used in the exfoliation process. We also establish the selectivity of the centrifugation process, under the conditions used, in removing the nano tube aggregates as a function of the sonication time and the dispersion solvent. This study, along with the calibration of the sonication process, is shown to be very important for measuring the true aggregation factor of SWCNTs through a modified approach. We also show that the systematic characterization of SWCNT dispersions by optical spectroscopy significantly contributes to the success of di electrophoresis (DEP) of nano tubes at predefined on-chip positions. The presence of individually dispersed SWCNTs in the dispersions is substantiated by di electrophoretic assembly and post-DEP electromechanical measurements.

  1. Carbon nano-tubes: some potential applications related to adsorption on, confinement within and functionalization of the graphene surface

    Energy Technology Data Exchange (ETDEWEB)

    McRae, E.; Varlot, K.; Dupont-Pavlovsky, N.; Duval, X.

    2001-05-01

    After a short review of carbon nano-tube characteristics, some of the potential real-world uses of these novel materials are presented within the three domains indicated in the title. Some of the possible areas of application which are discussed include gas storage and sensing, quantum sieving, nano-metric test tubes and formation of 1{delta} wires with interesting magnetic, electrical or superconducting properties, catalysis,, chemical force microscopy, composite materials for mechanical, electrical or device-related purposes. (authors)

  2. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    International Nuclear Information System (INIS)

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  3. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  4. The Synthesized of Carbon Nano tubes from Palm Oil by Topas Atomizer Chemical Vapor Deposition Method

    International Nuclear Information System (INIS)

    This paper focused on preparation of Carbon Nano tubes (CNTs) based on palm oil as a natural resource precursor. The Topas Atomizer was utilized to vapor up the carbon gas into the reaction chamber of Chemical Vapor Deposition (CVD) to yield the CNTs in powder form at the inner wall of the Quartz tube. The purpose of this work was to investigate the effects of deposition temperature from 650 - 850 degree Celsius. The samples characteristics were analyzed by Raman spectroscopy. The results revealed that the increasing of the deposition temperature, the ID/IG ratio decreased from 650 - 850 degree Celsius. The results of Field Emission Scanning Electron Microscopy (FESEM) are also presented. (author)

  5. Purification and Functionalization of Single-Walled Carbon Nano tubes through Different Treatment Procedures

    International Nuclear Information System (INIS)

    Single-walled carbon nano tubes (SWCNTs) were purified by the combined use of ultrasonic- and microwave-assisted acid digestion. The results show that the method efficiently eliminates impurities, reduces solvent consumption, and prevents damage to the structure of the SWCNTs. The purified SWCNTs were given functionalization treatments with a nitric acid/sulfuric acid mixture. These acid-treated SWCNTs (A-SWCNTs) were then grafted with 3-isocyanatopropyl triethoxysilane (A-SWCNTs-Si). The A-SWCNTs and A-SWCNTs-Si were used to improve interfacial interactions with polymers and to produce a well-dispersed SWCNT composite.

  6. Trends in the Microwave-Assisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nano tubes and Their Applications

    International Nuclear Information System (INIS)

    The study of coating carbon nano tubes with metal/oxides nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon nano tubes in various applications, it is necessary to attach functional groups or other nano structures to their surface. The combination of the distinctive properties of carbon nano tubes and metal/oxides is expected to be applied in field emission displays, nano electronic devices, novel catalysts, and polymer or ceramic reinforcement. The synthesis of these composites is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors. These techniques based on thermal heating can be time consuming and often lack control of particle size and morphology. Hence, there is interest in microwave technology recently, where using microwaves represents an alternative way of power input into chemical reactions through dielectric heating. This paper covers the synthesis and applications of carbon-nano tube-coated metal/oxides nanoparticles prepared by a microwave-assisted method. The reviewed studies show that the microwave-assisted synthesis of the composites allows processes to be completed within a shorter reaction time with uniform and well-dispersed nanoparticle formation.

  7. Substrate engineering for Ni-assisted growth of carbon nano-tubes

    International Nuclear Information System (INIS)

    The growth of carbon multi-walled nano-tubes (MWCNTs) using metal catalyst (e.g. Ni, Co, and Fe) has been extensively investigated during the last decade. In general, the physical properties of CNTs depend on the type, quality and diameter of the tubes. One of the parameters which affects the diameter of a MWCNT is the size of the catalyst metal islands. Considering Ni as the metal catalyst, the formed silicide layer agglomerates (island formation) after a thermal treatment. One way to decrease the size of Ni islands is to apply SiGe as the base for the growth. In this study, different methods based on substrate engineering are proposed to change/control the MWCNT diameters. These include (i) well-controlled oxide openings containing Ni to miniaturize the metal island size, and (ii) growth on strained or partially relaxed SiGe layers for smaller Ni silicide islands.

  8. Al current collector surface treatment and carbon nano tubes influences on Carbon / Carbon super-capacitors performances

    Energy Technology Data Exchange (ETDEWEB)

    Portet, C.; Taberna, P.L.; Simon, P. [Universite Paul Sabatier, CIRIMAT-LCMIE, 31 - Toulouse (France)

    2004-07-01

    Performances of 4 cm{sup 2} carbon/carbon super-capacitors cells using Al current collectors foils in organic electrolyte are presented; the improvement of electrode material has been investigated. In a first part, a surface treatment of the Al current collector is proposed in order to improve contact surface between the current collector and the active material leading to an internal resistance decrease. The process consists in an etching of the Al foil and is followed by a carbonaceous sol-gel deposit. Galvano-static cycling and Electrochemical Impedance Spectroscopy measurements of super-capacitors all assembled with treated Al foil were tested over 10,000 cycles: an ESR of 0.5 {omega} cm{sup 2} and a capacitance of 95 F g{sup -1} of activated carbon are obtained and performances remain stable during cycling. The second part is devoted to the study of Carbon Nano Tubes (CNTs) adding into the active material on the performances of super-capacitors. A content of 15% of CNTs appears to be the best composition; the ESR is 0.4 {omega} cm{sup 2} (20% lowered as compared to a cell using activated carbon based electrode) and the capacitance remain high 93 F g{sup -1} of carbonaceous active material. (authors)

  9. Preparation of Palm Oil Based Carbon Nano tubes at Various Ferrocene Concentration

    International Nuclear Information System (INIS)

    In this work, different ferrocene concentration (1.0-10.0 wt %) in bio hydrocarbon palm oil precursor were utilized to investigate its effect on the produced carbon nano tubes (CNT). The palm oil-ferrocene mixture was vaporized at 450 degree Celsius and pyrolyzed at 800 degree Celsius for 30 min time in argon ambient. The CNT were analyzed using field emission scanning electron microscopy (FESEM), micro-Raman spectroscopy and thermal gravimetric analysis (TGA). The analysis confirmed different growth rate, diameter and morphologies of CNT were formed when different ferrocene concentration were used. Raman spectra revealed the presence of G-band and D-band peaks with varying ID/ IG ratio depending on the catalyst concentration used. The 4.0 wt % was considered to be the most optimum concentration to produce bulk amount with better crystallinity CNT production. (author)

  10. Multi-pulsed intense electron beam emission from velvet, carbon fibers, carbon nano-tubes and dispenser cathodes

    Science.gov (United States)

    Xia, Lian-Sheng; Yang, An-Min; Chen, Yi; Zhang, Huang; Liu, Xing-Guang; Li, Jin; Jiang, Xiao-Guo; Zhang, Kai-Zhi; Shi, Jin-Shui; Deng, Jian-Jun; Zhang, Lin-Wen

    2010-11-01

    The experimental results of studies of four kinds of cathode emitting intense electron beams are demonstrated under multi-pulsed mode based on an experimental setup including two multi-pulse high voltage sources. The tested cathodes include velvet, carbon fibers, carbon nano-tubes (CNTs) and dispenser cathodes. The results indicate that all four are able to emit multi-pulsed beams. For velvet, carbon fiber and CNTs, the electron induced cathode plasma emission may be the main process and this means that there are differences in beam parameters from pulse to pulse. For dispenser cathodes tested in the experiment, although there is a little difference from pulse to pulse for some reason, thermal-electric field emission may be the main process.

  11. Multi-pulsed intense electron beam emission from velvet, carbon fibers, carbon nano-tubes and dispenser cathodes

    International Nuclear Information System (INIS)

    The experimental results of studies of four kinds of cathode emitting intense electron beams are demonstrated under multi-pulsed mode based on an experimental setup including two multi-pulse high voltage sources. The tested cathodes include velvet, carbon fibers, carbon nano-tubes (CNTs) and dispenser cathodes. The results indicate that all four are able to emit multi-pulsed beams. For velvet, carbon fiber and CNTs, the electron induced cathode plasma emission may be the main process and this means that there are differences in beam parameters from pulse to pulse. For dispenser cathodes tested in the experiment, although there is a little difference from pulse to pulse for some reason, thermal-electric field emission may be the main process. (authors)

  12. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon; Sintesis y caracterizacion estructural de nanotubos coaxiales intercalados de disulfuro de molibdeno con carbono

    Energy Technology Data Exchange (ETDEWEB)

    Reza San German, C.M

    2005-07-01

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS{sub 2}, enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS{sub 2} + C nano tubes were synthesized by propylene pyrolysis inside MoS{sub 2} nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS{sub 2} layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS{sub 2} inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS{sub 2} layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS{sub 2} layers. Our results open up the possibility of using MoS{sub 2} nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  13. Electromechanical properties of multi-walled carbon nano-tubes; Proprietes electromecaniques des nanotubes de carbone multiparois

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, R.

    2005-12-15

    In this PhD thesis, we tackled theoretically and experimentally the problem of designing nano-electromechanical systems (NEMS) based on multi-walled carbon nano-tubes (MWCNTs). Furthermore, we applied our know-how to perform components like switches. We developed a theoretical model to describe the deflection of a suspended MWCNT stressed by an attractive electrostatic force. Our model highlights a scaling law linking up the electrostatic deflection, geometrical, electrical and physical parameters of MWCNTs based NEMS. This result constitutes a practical designing tool because it predicts their electromechanical behaviour on a 'large' range of operational parameters. At the same time, we developed several processes to fabricate nano-structures incorporating a suspended MWCNT electrostatically actuated. Among these different structures, the simplest was used to develop a method for probing electromechanical properties of MWCNTs. Our method is based on atomic force microscopy measurements on a doubly clamped suspended MWCNT electrostatically deflected by a drive voltage. These measurements show clearly for different MWCNTs (different diameter and length) the existence of such scaling law in agreement with the continuum model prediction. From these results, we extracted the Young's modulus of MWCNTs. For diameters smaller than 30 nm it is constant and its average value equals 400 GPa. Above, we observed a strong decrease that could be explained by the entry in a non-linear regime of deformation. Finally, we show the realization of an electromechanical switch based on a suspended MWCNT which presents good switching behaviour. (author)

  14. Study of the thermo-magnetic fluctuations in carbon nano-tubes added Bi-2223 superconductors

    Science.gov (United States)

    Saoudel, A.; Amira, A.; Boudjadja, Y.; Mahamdioua, N.; Amirouche, L.; Varilci, A.; Altintas, S. P.; Terzioglu, C.

    2013-11-01

    We have investigated the effect of addition of carbon nano-tubes (CNT) on the properties of Bi1.6Pb0.4Sr2Ca2Cu3Oy superconductors. The samples are prepared from commercial powders with addition of 0.1 wt% of CNT. They are characterized by XRD, SEM and magneto-resistivity in the transition region. As it was reported for CNT added Y-123 compounds, the refined cell parameters are practically independent of this kind of addition. Under applied magnetic field, a large broadening of resistive transition is observed. The dissipative behavior of resistivity can be explained using the well known expression, ρ=ρ0(T/Tg-1)S. The modified vortex-glass to liquid transition theory is used to calculate the values of the glass-transition temperature Tg and the temperature and magnetic field dependent activation energy U0(B,T). These parameters are seen to decrease with CNT addition and applied magnetic field. Also, we have found that the undoped sample proves a better transition width, residual resistivity (ρ0) and a higher onset critical transition temperature of about 117.75 K. Also, the appearance of a double resistive transition for both samples is a confirmation of the existence of a secondary phase which plays the role of the weak links at the grain boundaries.

  15. An Electrically Conductive and Organic Solvent Vapors Detecting Composite Composed of an Entangled Network of Carbon Nano tubes Embedded in Polystyrene

    International Nuclear Information System (INIS)

    A composite composed of electrically conductive entangled carbon nano tubes embedded in a polystyrene base has been prepared by the innovative procedure, when the nonwoven polystyrene filter membrane is enmeshed with carbon nano tubes. Both constituents are then interlocked by compression molding. The mechanical and electrical resistance testing show that the polymer increases nano tube network mechanical integrity, tensile strength, and the reversibility of electrical resistance in deformation cycles. Another obvious effect of the supporting polymer is the reduction of resistance temperature dependence of composite and the reproducibility of methanol vapor sensing.

  16. A Comparative study on the characteristics of carbon nano tubes and graph ene nano fluids for efficiency enhancement of nuclear power plant heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Seek; An, Eoung Jin; Kim, Nam Jin [Jeju National Univ., Jeju (Korea, Republic of)

    2012-10-15

    Heat transfer is one of the most important processes in many industrial and consumer products. The inherently poor thermal conductivity of conventional fluids puts a fundamental limit on heat transfer. Therefore, for more than a century since Maxwell, scientists and engineers have made great efforts to break this fundamental limit by dispersing micrometer or nano sized particles in liquids. The nano fluid terminology, which describes fluid combined nanoparticles, was introduced by Choi of the Argonne National Laboratory in the U.S Department of Energy. The carbon particles with metal lattice or graphite structures generally exhibit thermal conductivities that are hundreds of times greater than pure fluids. Especially due to their outstanding electric and thermal conductivities, carbon nano tubes and graph ene have become an important entity in the scientific field. Therefore, in this work, experiments are carried out to measure the thermal conductivity via transient hot wire method and the viscosity using a rotary type digital viscometer of carbon nano tubes and graph ene.

  17. Manipulation and functionalization of nano-tubes: application to boron nitride nano-tubes

    International Nuclear Information System (INIS)

    This PhD work is divided into two parts dealing with boron nitride (BNNT) and carbon nano-tubes. The first part is about synthesis, purification and chemical functionalization of BNNT. Single-walled BNNT are synthesized by LASER ablation of a hBN target. Improving the synthesis parameters first allowed us to limit the byproducts (hBN, boric acid). A specific purification process was then developed in order to enrich the samples in nano-tubes. Purified samples were then used to develop two new chemical functionalization methods. They both involve chemical molecules that present a high affinity towards the BN network. The use of long chain-substituted quinuclidines and borazines actually allowed the solubilization of BNNT in organic media. Purification and functionalization were developed for single-walled BNNT and were successfully applied to multi-walled BNNT. Sensibility of boron to thermic neutrons finally gave birth to a study about covalent functionalization possibilities of the network. The second part of the PhD work deals with separation of carbon nano-tubes depending on their properties. Microwave irradiation of carbon nano-tubes first allowed the enrichment of initially polydisperse samples in large diameter nano-tubes. A second strategy involving selective interaction between one type of tubes and fullerene micelles was finally envisaged to selectively solubilize carbon nano-tubes with specific electronic properties. (author)

  18. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    Science.gov (United States)

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. PMID:26897095

  19. The Synthesis of Carbon Nano tubes from Waste Cooking Palm Oil Using Nickel, Iron and Cobalt Catalyst

    International Nuclear Information System (INIS)

    In this work, the synthesis of carbon nano tubes (CNT) from waste cooking palm oil precursor by thermal chemical vapor deposition method was systematically investigated. The precursor decomposition was performed on nickel, iron and cobalt catalysts at precursor and synthesis temperature of 750 and 450 degree Celsius respectively. The catalyst was spin coated on silicon substrates at a speed of 3000 rev.min-1. The CNT obtained were characterized using field emission scanning electron microscopy and micro-Raman spectroscopy to examine its structural properties. Cobalt catalyst was considered the most suitable catalyst for higher quantity, reasonably good graphitized CNT with smaller diameter. These were followed by nickel and ferum catalyst. (author)

  20. ULTRA LOW POWER SINGLE EDGE TRIGGERED DELAY FLIP FLOP BASED SHIFT REGISTERS USING 10-NANOMETER CARBON NANO TUBE FIELD EFFECT TRANSISTOR

    Directory of Open Access Journals (Sweden)

    Ravi Thiyagarajan

    2013-01-01

    Full Text Available Carbon Nano Tube Field Effect Transistor is currently considered as promising successor of Metal Oxide Semiconductor Field Effect Transistor. The scaling down of the Metal Oxide Semiconductor device faced serious limits like short channel effect, tunnelling through gate oxide layer, associated leakage currents and power dissipation when its dimension shrink down to 22 nanometer range. Further scaling of Metal Oxide Semiconductor Field Effect Transistor will result in performance degradation. In this study, an ultra low power Single Edge Triggered Delay Flip Flop and shift registers are designed using 10 nanometre Carbon Nano Tube Field Effect Transistor. The Carbon Nano Tube Field Effect Transistor is an efficient device to supplant the current Complementary Metal Oxide Semiconductor technology for its excellent electrical properties. The high electron and hole mobility of semiconductor nano tubes, their compatibility with high k gate dielectrics, enhanced electrostatics, reduced short channel effects and ability to readily form metal ohmic contacts make these miniaturized structures an ideal material for high performance, nanoscale transistors. To evaluate the performance of Ultra low power Single Edge Triggered Delay Flip Flop and shift registers using 10 nanometer Carbon Nano Tube Field Effect Transistor technology, the results are depicted by analyzing average power, delay, power delay product, rise time and fall time using HSPICE at 1GHz operating frequency.

  1. Structural and Thermal Behaviours of Iron-filled Align Carbon Nano tubes Formulated by Two-stage Catalytic Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    This paper presents finding on the one-dimensional purified align carbon nano tubes (ACNT) are prepared using botanical hydrocarbon: camphor powder in a two-stage catalytic chemical vapor deposition. For the first time, the hydrocarbon source and catalyst are patterning at different alumina boats in the system. The growth of ACNT has achieved free standing formation with higher aspect ratio. In contrast, unpurified carbon nano tubes have some drawbacks and require some treatments to fully utilize their capabilities in various applications. The results reveal that the crystallinity and purity of functionalized align carbon nano tubes is increase after wet-chemical technique and heat treatment process. In this paper, the results provide evidence showing that it is good agreement with the field emission scanning electron microscopy, micro-Raman and thermogravimetric analysis. (author)

  2. Influence of Carbon Nano Tubes on the Thermo-Mechanical Properties of Unsaturated Polyester Nanocomposite

    Science.gov (United States)

    Moshiul Alam, A. K. M.; Beg, M. D. H.; Mohd Yunus, Rosli

    2015-04-01

    To date nano fillers are renowned reinforcing agent for polymer materials. In this work, unsaturated polyester (UPR) nanocomposites were fabricated by 0.1, 0.3 and 0.5 wt% multi walled carbon nanotubes (MWCNTs) through solution dispersion and casting method. The influence of MWCNT content was investigated by thermo-mechanical properties. Dispersion of nanotubes was observed by fracture morphology. The strength of nanocomposites rose with raising the CNT content. Moreover, DSC thermograms of nanocomposites represent noticeable improvement of glass transition temperature (Tg), melting temperature (Tm) and enthalpy (ΔHm). Micro-crystallinity of nanocomposites increased with increasing the CNT content. Moreover, the stiffness increased with increasing the CNT content.

  3. The Effect of DNA and Sodium Cholate Dispersed Single-Walled Carbon Nano tubes on the Green Algae Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Increasing use of single-walled carbon nano tubes (SWCNTs) will lead to their increased release into the environment. Previous work has shown negative effects of SWCNT on growth and survival of model organisms. The aim of the current study was to determine the effect of SWCNT well-dispersed by either DNA or sodium cholate (SC) on the unicellular green algae Chlamydomonas reinhardtii in stagnant water conditions. Growth measurements were taken up to ten days for algae treated with varied levels of DNA:SWCNT or SC:SWCNT or controls, and chlorophyll content after 10 days was determined. Results show no effect on either growth or chlorophyll content of algae at any concentration or duration. This is in contradiction to prior work showing toxicity of SWCNT to environmental model organisms.

  4. Temperature Effects on the Production of Carbon Nano tubes from Palm Oil by Thermal Chemical Vapor Deposition Method

    International Nuclear Information System (INIS)

    In this study we report the effect of various synthesis temperatures of 600-1000 degree Celsius for the synthesis of carbon nano tubes (CNT). Bio-hydrocarbon precursor namely palm oil was utilized as a starting material by thermal vapor deposition method. The ferrocene at 5.33 wt% was directly mixed with palm oil precursor for 30 m synthesis time. The prepared CNT was collected from the furnace wall then characterized by field emission scanning electron microscopy (FESEM), micro-Raman spectroscopy and thermal gravimetric analysis (TGA). The growth rate, diameter, crystallinity and the purities of CNT were found to be highly dependent on the temperature changes. The synthesis temperature of 800 degree Celsius was considered to be the optimum temperature for higher quality and quantity of CNT production. (author)

  5. Nonlinear free vibration of single walled Carbone NanoTubes conveying fluid

    Directory of Open Access Journals (Sweden)

    Azrar A.

    2014-04-01

    Full Text Available Nonlinear free vibration of single-walled carbon nanotubes (CNTs conveying fluid are modeled and numerically simulated based on von Kármán geometric nonlinearity and Eringen’s nonlocal elasticity theory. The CNTs are modelled as nanobeams where the effects of transverse shear deformation and rotary inertia are considered within the framework of Timoshenko beam theory. The governing equations and boundary conditions are derived using the Hamilton’s principle and the nonlinear equation of motion is solved by the Galerkin’s method. The small scale parameter and the fluid-tube interaction effects on the dynamic behaviours of the CNT-fluid system as well as the instabilities induced by the fluid-velocity can be investigated. The critical fluid-velocity and frequency-amplitude relationships as well as the flutter and divergence instability types and the associated time responses are obtained based on the presented methodological approach.

  6. Structuring carbon forms by energetic species: Amorphous, nano tubes and crystalline

    International Nuclear Information System (INIS)

    Full Text: Energetic species in different. forms play a major role in current thin film technology. The evolution of such films via energetic particle bombardment is a shallow implantation (sub plantation) process. The stopping of the energetic species A the bombarded target advances through three stages: (i) collisional stage in which the species are stopped by the target via atomic displacements, ionization and phonon excitations, ii) the thermal relaxation stage i) which the excess energy is dissipated in the target; iii) the long term relaxation stage in which long term processes (diffusion, chemical reactions) take place. The final evolution of the structure is determined by the equilibrium between subsurface trapping at the final site and detrapping processes. Carbon is an excellent model system to study the structuring of materials by energetic species due to the host of possible configurations it forms. By properly altering the energy and temperature it is possible to form: (i) amorphous carbon films with a local configuration and properties ranging between those of graphite (sp2 hybridization) and diamond (sp3), (ii) ordered graphite Sims including carbon multi wall tubes, (iii) nanocrystalline diamond. The processes leading to the different carbon structures will be highlighted through experimental data and molecular dynamic situations. 1 Y. Lifshitz, S.R. Kasi and J.W. Rabalais, ''Subplantation Model for Film Growth From Hyperthermal Species: Application to Diamond'', Phys. Rev. Lett., 62, 1290, 1989. 2 Y. Lifshitz, G.D. Lempert, E. Grossman, ''Substantiation of Subplanta-tion Model for Diamondlike Film Growth from by Atomic Force Microscopy'', Phys. Rev. Lett., 72 (17), 2753, 1994. 3 S. Uhlmann, Th. Frauenheim, Y. Lifshitz, Molecular Dynamics Study of the Fundamental Processes Involved in Subplantation of Diamondlike Carbon, Phys. Rev. Lett., 81(3), 641, 1998. 4 H.Y. Peng, N. Wang, Y.F. Zheng, Y. LifshitB, J. Kulik, R.Q. Zhang C. S. Lee and S.T. Lee

  7. Removals of aqueous sulfur dioxide and hydrogen sulfide using CeO2-NiAl-LDHs coating activated carbon and its mix with carbon nano-tubes

    KAUST Repository

    Li, Jing

    2015-07-01

    Ce-doped NiAl/layered double hydroxide was coated at activated carbon by urea hydrolysis method (CeO2-NiAl-LDHs/AC) in one pot, which was characterized by X-ray diffraction, infrared spectra, field emission scanning electron microscope and electrochemical techniques. CeO2-NiAl-LDHs/AC shows good uptake for aqueous sulfur dioxide (483.09mg/g) and hydrogen sulfide (181.15mg/g), respectively at 25°C. Meanwhile, the electrochemical removals of aqueous sulfur dioxide and hydrogen sulfide were respectively investigated at the mix of CeO2-NiAl-LDHs/AC and carbon nano-tubes modified homed paraffin-impregnated electrode. Both sulfur dioxide and hydrogen sulfide could be effectively oxidized to sulfuric acid at 1.0V in alkaline aqueous solution. © 2015 Elsevier B.V.

  8. Carbon Nano tube-Epoxy Nano composites: Correlation and Integration of Dynamic Impedance, Dielectric, and Mechanical Analyses

    International Nuclear Information System (INIS)

    This study focuses on the characterization of MWNT-epoxy composites for different MWNT concentrations of 0-7 wt % by correlating different dynamic analysis techniques, including DMA, impedance, and DEA. An optimum composition was established at 0.1 wt % MWNTs corresponding to the best MWNT dispersion which resulted in the formation of an optimum MWNT network. The addition of this low fraction of MWNTs in epoxy resulted in stiffening the molecular structure and suppressing certain molecular transitions, raising the dielectric constant especially in the low-to-medium frequency range, raising the electrical conductivity especially at the high frequencies, and increasing the electromagnetic shielding effectiveness. The 0.1% MWNT-epoxy nano composite switched the electromagnetic shielding behaviour from being a very effective absorber at low frequencies to being an effective reflector at high frequencies. Finally, the Nyquist plot derived from the dynamic impedance spectroscopy proved most useful at providing evidence of multiple size distribution of MWNT agglomerates

  9. Corrosion and Heat Transfer Characteristics of Water Dispersed with Carboxylate Additives and Multi Walled Carbon Nano Tubes

    Science.gov (United States)

    Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli

    2016-02-01

    This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.

  10. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    Science.gov (United States)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  11. Simulation and modelling of charge transport in dye-sensitized solar cells based on carbon nano-tube electrodes

    International Nuclear Information System (INIS)

    For a better understanding of the mechanisms of dye-sensitized solar cells (DSSCs), based on carbon nano-tube (CNT) electrodes, a phenomenological model is proposed. For modelling purposes, the meso-scopic porous CNT electrode is considered as a homogeneous nano-crystalline structure with thickness L. The CNT electrode is covered with light-absorbing dye molecules, and interpenetrated by the tri-iodide (I−/I3−) redox couple. A simulation platform, designed to study coupled charge transport in such cells, is presented here. The work aims at formulating a mathematical model that describes charge transfer and charge transport within the porous CNT window electrode. The model is based on a pseudo-homogeneous active layer using drift–diffusion transport equations for free electron and ion transport. Based on solving the continuity equation for electrons, the model uses the numerical finite difference method. The numerical solution of the continuity equation produces current–voltage curves that fit the diode equation with an ideality factor of unity. The calculated current–voltage (J–V) characteristics of the illuminated idealized DSSCs (100 mW cm−2, AM1.5), and the different series resistances of the transparent conductor oxide (TCO) layer were introduced into the idealized simulated photo J–V characteristics. The results obtained are presented and discussed in this paper. Thus, for a series resistance of 4 Ω of the TCO layer, the conversion efficiency (η) was 7.49% for the CNT-based cell, compared with 6.11% for the TiO2-based cell. Two recombination kinetic models are used, the electron transport kinetics within the nano-structured CNT film, or the electron transfer rate across the CNT–electrolyte interface. The simulations indicate that both electron and ion transport properties should be considered when modelling CNT-based DSSCs and other similar systems. Unlike conventional polycrystalline solar cells which exhibit carrier recombination, which

  12. Single-Walled Carbon Nano tubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    International Nuclear Information System (INIS)

    The possibility of using single-walled carbon nanotubes (SWCNTs) aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k) for S.aureus and E.coli determined from batch adsorption study was found to be 9 x108 and 2 x108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  13. Vibration and Buckling of In-Plane Loaded Double-Walled Carbon Nano-Tubes

    OpenAIRE

    ECE, Metin AYDOĞDU and Mehmet Cem

    2007-01-01

    The paper studies vibration and buckling of in-plane loaded double-walled carbon nanotubes. Timoshenko beam theory was used to investigate the vibration and buckling behavior of double-walled and simply supported carbon nanotubes. The influence of in-plane loads on the natural frequencies was determined. The results show that while the natural frequencies decrease with increasing compressive in-plane loads an increase in frequencies is observed for tension type of in-plane loads. T...

  14. Laminar heat transfer and friction factor characteristics of carbon nano tube/water nanofluids.

    Science.gov (United States)

    Rathnakumar, P; Mayilsamy, K; Suresh, S; Murugesan, P

    2014-03-01

    This paper presents an experimental investigation on the convective heat transfer and friction factor characteristics of CNT/water nanofluid through a circular tube fitted with helical screw tape inserts with constant heat flux under laminar flow condition. Nanofluids of 0.1% and 0.2% volume fractions are prepared by two step method. Thermo-physical properties like thermal conductivity and viscosity are measured by using KD2 thermal property analyzer and Brooke field cone and plate viscometer respectively. From the measurements, it is found that the viscosity increase is substantially higher than the increase in the thermal conductivity. The helical screw tape insets with twist ratios Y = 3, 2.44 and 1.78 are used to study the convective heat transfer and friction factor characteristics under laminar flow in the Reynolds number range of 520-2500. It is observed that, in a plain tube, maximum enhancement in Nusselt number for 0.1% and 0.2% volume fractions of nanofluids compared to pure water is 15% and 32% respectively. With the use of inserts, maximum enhancement in Nusselt number corresponding to twist ratios of 1.78, 2.44 and 3 are obtained as 8%, 16% and 4.6% for 0.1% volume fraction of nanofluid and 5%, 4% and 12% for 0.2% volume fraction of nanofluid when compared with water in plain tube. Thermal performance factor evaluation revealed that the values at all Reynolds number for all twist ratios and both concentration of CNT nanofluid are greater than unity which indicates that helical screw tape inserts with twist ratios considered are feasible in terms of energy saving in laminar flow. PMID:24745238

  15. Study of Carbon Nano-Tubes Effects on the Chondrogenesis of Human Adipose Derived Stem Cells in Alginate Scaffold

    Directory of Open Access Journals (Sweden)

    Ali Valiani

    2014-01-01

    Full Text Available Background: Osteoarthritis is one of the most common diseases in middle-aged populations in the World and could become the fourth principal cause of disability by the year 2020. One of the critical properties for cartilage tissue engineering (TE is the ability of scaffolds to closely mimic the extracellular matrix and bond to the host tissue. Therefore, TE has been presented as a technique to introduce the best combination of cells and biomaterial scaffold and to stimulate growth factors to produce a cartilage tissue resembling natural articular cartilage. The aim of study is to improve differentiation of adipose derived stem cells (ADSCs into chondrocytes in order to provide a safe and modern treatment for patients suffering from cartilage damages. Methods: After functionalization, dispersions and sterilizing carbon nano-tubes (CNTs, a new type of nanocomposite gel was prepared from water-soluble CNTs and alginate. ADSCs seeded in 1.5% alginate scaffold and cultured in chondrogenic media with and without transforming growth factor-β1 (TGF-β1 for 7 and 14 days. The genes expression of sex determining region Y-box 9 (SOX9, types II and X collagens was assessed by real-time polymerase chain reaction and the amount of aggrecan (AGC and type I collagen was measured by ELISA. Results: Our findings showed that the expression of essential cartilage markers, SOX9, type II collagen and AGC, in differentiated ADSCs at the concentration of 1 μg/ml CNTs in the presence of TGF-β1 were significantly increased in comparison with the control group (P < 0.001. Meanwhile, type X collagen expression and also type I collagen production were significantly decreased (P < 0.001. Conclusions: The results showed that utilized three-dimensional scaffold had a brilliant effect in promoting gene expression of chondrogenesis.

  16. Optimum quaternary galois field circuit design through carbon nano tube technology

    International Nuclear Information System (INIS)

    Full text: The geometry dependant threshold voltage of carbon nanotube FETs (CNFETs) , has been often used to design a ternary logic family. However , for the last couple of decades , multiple-valued logic (MVL) such as ternary (base=3) or quaternary (base=4) logic styles has attracted considerable attention. MVL circuits can reduce the number of operations necessary to implement a particular mathematical function and further , have an advantage in terms of reduced area. As we progress into an era of nanotechnology , molecular devices are becoming promising alternatives to the existing silicon technology. Carbon nanotube field effect transistors (CNFETs) are being extensively studied as possible successors to Silicon MOSFETs. Research has started in the earnest to understand the device physics of CNFETs as well as to explore possible circuit applications. Implementable CNTFET circuits have operational characteristics to approach the advantage of using MVL in voltage mode. In this paper through using of CNTFET characteristics , we presented new CNTFET circuit design to implement optimum Quaternary Galois Field logic. (authors)

  17. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nano tubes-Chitosan Modified Electrode

    International Nuclear Information System (INIS)

    A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE) to MWNTs-modified glassy carbon electrode (GCE) with chitosan (CS) by layer-by-layer (LBL) technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran in the range from 10-10  g/L to 10-3 g/L with a detection limit of 10-12 g/L. This biosensor is a promising new method for pesticide analysis

  18. High power laser coupling to carbon nano-tubes and ion Coulomb explosion

    International Nuclear Information System (INIS)

    Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific frequency that varies with the direction of laser propagation. It also shows surface plasmon resonance at ω=ωp/√(2), where ωp is the plasma frequency of free electrons inside a nanotube, assumed to be uniform plasma cylinder. The attenuation constant is also resonantly enhanced around these frequencies. At large laser amplitude, the nanotubes behave as thin plasma rods. As the electrons get heated, the nanotubes undergo hydrodynamic expansion. At an instant when plasma frequency reaches ωp=√(2)ω, the electron temperature rises rapidly and then saturates. For a Gaussian laser beam, the heating rate is maximum on the laser axis and falls off with the distance r from the axis. When the excursion of the electrons Δ is comparable or larger than the radius of the nanotube rc, the nanotubes undergo ion Coulomb explosion. The distribution function of ions turns out to be a monotonically decreasing function of energy

  19. Synthesis and characterization of poly lactic acid and multiwall carbon nano-tubes mixtures

    Science.gov (United States)

    Kumar LG, Santhosh; del A. Cardona, Rocío; Berríos-Soto, Melvin; Santiago-Avilés, Jorge J.

    2011-10-01

    The motivation for this study is to reproduce processing conditions which lead to the formation of photo or photoinduced thermal actuation, combined with inexpensive, environmentally friendly (easily degradable) materials. Commercially available polymer, poly lactic acid (PLA), was used in our studies. PLA is a well know biodegradable polymer naturally obtained from corn. PLA was received as a solid resin in pellet form and dissolved in 1:3 acetone/chloroform solutions, to achieve the proper electrospinning kinematic viscosity. Once in the liquid phase, the material was mixed with commercially available multi-walled carbon nanotubes (MWCNTs) at varying concentrations and dispersed by severe sonication. The mixtures was electrospun at room temperature using a home built electrospinning apparatus capable of depositing randomly oriented fiber mats or oriented fibers onto different substrates, ranging from oxidized silicon wafers, alumina squares or glass microscope slides. The fibers diameters and lengths are statistically distributed following a log-normal distribution and the mean and dispersion are controlled by spinning parameters. Once the fibers were electrospun, they were compositionally, morphologically and structurally characterized by thermal and gravimetric analysis (TGA/DTA), rheology, imaging using a focused Ion Beam Scanning Electron Microscope (IBSEM), and IR /Raman methodologies. These studies can be used to explore PLA-MWCNTs mixtures suitability in applications such as super-capacitor technology, which would enable us to pursue further research in this field, while focusing on improving the electro spinning conditions so as to be able to better anticipate fiber morphology to generate a consistent regime of fibers.

  20. An experimental study on pool boiling characteristics of carbon nano tube (CNT) and fullerene (C-60) nanofluids

    International Nuclear Information System (INIS)

    In recent years, it was found that pool boiling critical heat flux (CHF) increases in nanofluids. The CHF conditions are important for safe and economic design of many heat transfer units including nuclear reactor. In this study, our objective is to evaluate the impact of Carbone Nano Tubes (Singlewalled CNTs and Multiwalled CNTs) and Fullerene (C-60) nanofluids at different particle concentration on pool boiling critical heat flux experimentally at saturated conditions. Multiwalled CNT and fullerene (C-60) added in the pure water at three volume concentrations (0.01%, 0.001%, and 0.0001%). Singlewalled CNT nanoparticles added in the pure water at two volume concentrations (0.0005%, and 0.0001%). For the dispersion of nanoparticles in pure water, several treatments were performed. Multiwalled CNTs and Fullerene (C-60) prepared using acid treatment, meanwhile two treatment are using for Singlewalled CNTs: (1)Singlewalled CNTs prepared using polymer treatment, (2)Singlewalled CNTs prepared using pre polymerization of micelle treatment. The zeta potential of CNTs and Fullerene nanofluids were in the range of 13-71 mV. The zeta potential of nanofluids was constant for more than one month. It concludes that the treatment has been succeeded produces water dispersible CNTs and Fullerene nanofluids with good stability. The critical heat flux (CHFs) of the solution is enhanced greatly for all nanofluids. Enhanced (∼167.9%) CHF was observed for solutions with Multiwalled CNT nanoparticles with concentration 0.01 vol%. Enhanced (∼109.4%) CHF was observed for solutions with Singlewalled CNT nanoparticles with concentration 0.0005 vol%. Enhanced (∼108.9%) CHF was observed for solutions with Fullerene nanoparticles with concentration 0.01 vol%. The pool boiling Heat Transfer Coefficient (HTCs) of the CNTs nanofluids are lower than those of pure water in the entire nucleate boiling regime. On the other hand, the pool boiling HTCs of Fullerene nanofluids are higher than

  1. Synthesis of Carbon Nano tubes from Palm Oil Using Zinc Nitrate as a Catalyst by Aerosol-assisted Catalytic Single Furnace CVD

    International Nuclear Information System (INIS)

    Carbon nano tubes (CNTs) were formed by Aerosol-Assisted Catalytic Single furnace CVD (AACSFCVD) System. This method was based on the pyrolysis of liquid aerosols containing 0.05 M Zinc Nitrate Zn (NO3)2.H2O solution as catalyst into the furnace which contains hydrocarbons as carbon source (Palm Oil). The samples were prepared by vaporization of the catalyst source heated at 180 degree Celsius into the reaction furnace with the Palm Oil precursor in an alumina boat. The reaction furnace was heated at 800-900 degree Celsius for 1 hour depositing CNTs which was then annealed at 450 degree Celsius to eliminate impurities in the CNTs. Then, the sample was characterized using Raman Spectroscope (RS) obtaining Raman spectra and the image of the CNTs produced were obtained from Field Emission Scanning Electron Microscope (FE-SEM). (author)

  2. Nano-Carbons as Theranostics

    Directory of Open Access Journals (Sweden)

    Zhuang Liu, Xing-Jie Liang

    2012-01-01

    Full Text Available Nano-carbons, including fullerenes, carbon nanoparticles, carbon nanotubes, graphene, and nano-diamonds, are an important class of nanostructures attracting tremendous interests in the past two decades. In this special issue, seven review articles and research reports are collected, to summarize and present the latest progress in the exploration of various nano-carbons for theranostic applications.

  3. Intense green emission of ZnS:Cu, Al phosphor obtained by using diode structure of carbon nano-tubes field emission display

    International Nuclear Information System (INIS)

    ZnS:Cu, Al phosphor is prepared by conventional solid-state reaction and is confirmed as an efficient phosphor for field emission display (FED). Broad photoluminescence (PL) band centered at 528 nm is obtained from the phosphor. The ZnS:Cu, Al and carbon nano-tubes (CNTs) are screen-printed on indium tin oxide (ITO) substrate to prepare the anode and the cathode plates of FED, respectively. The luminous performance is studied by using a diode structure and is controllable by adjusting space distance between the anode and cathode plate as well as thickness of phosphor-layer on the anode plate. The optimized luminance is around 6231 cd m-2 when using a 0.25 mm spacer and applying an electric field of 6 V μm-1

  4. QM/MM & Monte Carlo simulation of single wall nano tube carbon SWNT (15, 15 binding with thymine dimer

    Directory of Open Access Journals (Sweden)

    Soudeh Safari

    2016-06-01

    Full Text Available In this research, we have studied of thymine dimer binding on the relative energies and dipole moment values and the structural properties of solvent effect (water, methanol and ethanol surrounding single-walled and multi walled carbon nanotube, by using QM/MM simulation, those calculations have carried out with the Gaussian and Hyper Chem package. In this study we investigated the polar solvents effects on SWCNT within the Onsager self - consistent reaction field (SCRF model using a Hartree-Fockmethod and the temperature effect on the stability of SWCNT in various. Because some of the Physicochemical parameters related to structural properties of SWCNT, we used different force fields to determine energy and other types of geometrical parameters, on the particular SWCNT, Because of the differences among force fields, the energy of a molecule calculated using two different force fields will not be the same. It is important to understand the energetic, stability dependent physical properties of armchair (m, n carbon nanotube. In this study, the difference in force fields illustrated by comparing the calculated energies by using force fields such as AMBER ,MM+, and BIO+ .The quantum Mechanics calculations were carried out with the GAUSSIAN 98 program based on density functional theory (DFT at the B1LYP/6-31G* level. Normal Mode Analysis is an important tool for studying the structure and dynamics of Nano-sized systems. The vibrational frequencies obtained can be used to relate observed spectra to the details of the molecular structure, dynamics and other thermodynamic properties.

  5. 碳纳米管导电涂料的导电机理及影响因素%The Conductive Mechanisms & Influencing Factors of the Carbon Nano-tube Conductive Coatings

    Institute of Scientific and Technical Information of China (English)

    王娴

    2012-01-01

    碳纳米管是一种纳米级无缝管状结构碳材料,具有优异的机械性能及独特的电学性能。它作为填料,加入到涂料中能极大地改善涂料的力学性能和电学性能。分析了碳纳米管导电涂料的导电机理、影响因素以及研究趋势。%The carbon nano-tube was a kind of nano-scale seamlessly tubular structure carbon materials. It possessed excellent mechanical electrical properties of the condu prop ctive erties and distinctive electrical properties. The mechanical properties and coatings were greatly improved by using the carbon nano-tube as filler. The conductive mechanisms, influencing factors and development trend of the carbon nano-tube conductive coatings were analyzed.

  6. Interaction of carbon nano tubes with DNA segments; Interacao de nanotubos de carbono com segmentos de DNA

    Energy Technology Data Exchange (ETDEWEB)

    Peressinotto, Valdirene Sullas Teixeira

    2007-07-01

    Single- and double-stranded DNA (deoxyribonucleic acid) molecules can strongly bind to single-walled carbon nanotubes (SWNT) via non-covalent interactions. Under certain conditions, the DNA molecule spontaneously self-assembles into a helical wrapping around the tubular structure of the carbon nanotubes to form DNA/SWNT hybrids, which are both stable and soluble in water. This system has recently received extensive attention, since, besides rendering SWNTs dispersible in water as individual tubes, the DNA hybrids are very promising candidates for many applications in nanotechnology and molecular biology. All the possible applications for DNA-SWNT hybrids require, however, a fully understanding of DNA-nanotube wrapping mechanism which is still lacking in the literature. In this context, the aim of this work was to investigate the non-covalent interaction in aqueous medium between SWNTs and synthetic DNA segments having a known nucleotide sequence. Initially, the study was focused on poly d(GT)n sequences (n = 10, 30 and 45) that contain a sequence of alternating guanine and thymine bases and for which the efficiency to disperse and separate carbon nanotubes has already been demonstrated. Besides the size of GT sequences, the effects of ionic strength and pH in the interaction were also investigated. Afterwards, we studied the interaction of SWNT with DNA molecules that contain only a single type of nitrogenous base (DNA homopolymers), which has not been reported in details in the literature. We investigated homopolymers of poly dA{sub 20}, poly dT{sub 20}, poly dC{sub 20} and the duplex poly dA{sub 20}:dT{sub 20}. Most of the study was carried out with small-diameter HiPco SWNTs (with diameters between 0.7 and 1.2 nm). In some studies, SWNTs with diameter around 1.4 nm, synthesized via laser ablation and arc-discharge methods, were also investigated. The arc-discharge nanotubes used in this study were functionalized with carboxylic groups (-COOH) due to their

  7. Preparing hydroxyapatite-silicon composite suspensions with homogeneous distribution of multi-walled carbon nano-tubes for electrophoretic coating of NiTi bone implant and their effect on the surface morphology

    Science.gov (United States)

    Khalili, Vida; Khalil-Allafi, Jafar; Xia, Wei; Parsa, Alireza B.; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther

    2016-03-01

    Preparing a stable suspension is a main step towards the electrophoretically depositing of homogeneous and dense composite coatings on NiTi for its biomedical application. In the present study, different composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes were prepared using n-butanol and triethanolamine as media and dispersing agent, respectively. Multi-walled carbon nanotubes were first functionalized in the nitric acid vapor for 15 h at 175 °C, and then mixed into suspensions. Thermal desorption spectroscopy profiles indicate the formation of functional groups on multi-walled carbon nano-tubes. An excellent suspension stability can be achieved for different amounts of triethanolamine. The amount of triethanolamine can be increased by adding a second component to a stable hydroxyapatite suspension due to an electrostatic interaction between components in suspension. The stability of composite suspension is less than that of the hydroxyapatite suspension, due to density differences, which under the gravitational force promote the demixing. The scanning electron microscopy images of the coatings surface show that more dense coatings are developed on NiTi substrate using electrophoretic deposition and sintering at 850 °C in the simultaneous presence of silicon and multi-walled carbon nanotubes in the hydroxyapatite coatings. The atomic force microscopy results of the coatings surface represent that composite coatings of hydroxyapatite-20 wt.% silicon and hydroxyapatite-20 wt.% silicon-1 wt.% multi-walled carbon nano-tubes with low zeta potential have rougher surfaces.

  8. 6. international conference on Nano-technology in Carbon: from synthesis to applications of nano-structured carbon and related materials

    International Nuclear Information System (INIS)

    This is the sixth international conference sponsored this year by the French Carbon Group (GFEC), the European Research Group on Nano-tubes GDRE 'Nano-E', in collaboration with the British Carbon Group and the 'Institut des Materiaux Jean Rouxel' (local organizer). The aim of this conference is to promote carbon science in the nano-scale as, for example, nano-structured carbons, nano-tubes, nano-wires, fullerenes, etc. This conference is designed to introduce those with an interest in materials to current research in nano-technology and to bring together research scientists working in various disciplines in the broad area of nano-structured carbons, nano-tubes and fullerene-related nano-structures. Elemental carbon is the simplest exemplar of this nano-technology based on covalent bonding, however other systems (for example containing hetero-atoms) are becoming important from a research point of view, and provide alternative nano-materials with unique properties opening a broad field of applications. Nano-technology requires an understanding of these materials on a structural and textural point of view and this will be the central theme. This year the conference will feature sessions on: S1. Control and synthesis of nano-materials 1.1 Nano-structured carbons: pyrolysis of polymers, activation, templates,... 1.2 Nano-tubes: Catalytic method, HiPCO, graphite vaporization, electrolysis,... 1.3 Fullerenes S2. Chemistry of carbon nano-materials 2.1 Purification of carbon nano-tubes 2.2 Functionalization - Self-assembling S3. Structural characterization S4. Theory and modelling S5. Relationship between structure and properties S6. Applications Water and air purification, Gas and energy storage, Composite materials, Field emission, Nano-electronics, Biotechnology,... S7. Environmental impact. Only one paper concerning carbon under irradiation has been added to the INIS database. (authors)

  9. Template synthesized chitosan nano test tubes for drug delivery applications

    Science.gov (United States)

    Perry, Jillian L. Moulton

    There is tremendous current interest in developing nanoscale drug delivery vehicles. Though intensive efforts have focused on developing spherical drug delivery vehicles, cylindrically shaped vehicles such as nanotubes offer many advantages. Typically, nanotubes can carry a larger inner payload than nanoparticles of the same diameter. Also, we can prepare nanotubes in templates whose geometries can be controlled, in turn allowing precise control over the length and diameter of the tubes. In addition, template synthesized nanotubes can be differentially functionalized on the inner and outer surfaces. Furthermore, templates that are closed on one end can be used to fabricate nano test tubes (closed on one end). The geometry of these nano test tubes allows them to be easily filled with a payload, the open end sealed with a nanoparticle to protect the payload from leaking out, and then the exterior of the tube can be functionalized with a targeting moiety. In an effort to develop such a system, we explored the fabrication of chitosan nano test tubes. Defect-free, chitosan nano test tubes of uniform size were synthesized within the pores of a nanoporous alumina template membrane. While the nano test tubes remained within the template membrane, their inner cavities were filled with a model payload. The payload was then trapped inside the nano test tubes by sealing the open ends of the tubes with latex nanoparticle caps. For proof-of-principle studies, imine linkages were used to attach the caps to the nano test tubes. To create a self-disassembling system, disulfide chemistry was used to covalently cap the nano test tubes. Once removed from the template, the exterior of the nano test tubes were modified with a targeting moiety, allowing them to be targeted to pathological sites. We have also shown that the chitosan nano test tubes are biodegradable by two systems: enzymatic cleavage by lysozymes and disulfide cleavage of the crosslinker by reducing environments

  10. SeZnSb alloy and its nano tubes, graphene composites properties

    OpenAIRE

    Abhay Kumar Singh

    2013-01-01

    Composite can alter the individual element physical property, could be useful to define the specific use of the material. Therefore, work demonstrates the synthesis of a new composition Se96-Zn2-Sb2 and its composites with 0.05% multi-walled carbon nano tubes and 0.05% bilayer graphene, in the glassy form. The diffused amorphous structure of the multi walled carbon nano tubes and bilayer gaphene in the Se96-Zn2-Sb2 alloy have been analyzed by using the Raman, X-ray photoluminescence spectrosc...

  11. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nano materials

    International Nuclear Information System (INIS)

    In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nano technology which is called carbon-related nano materials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nano materials. Carbon nano materials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nano materials such as zero-dimensional carbon nano materials (including fullerene, carbon-encapsulated metal nanoparticles, nano diamond, and onion-like carbons), one-dimensional carbon nano materials (including carbon nano fibers and carbon nano tubes), and two-dimensional carbon nano materials (including graphene and carbon nano walls) are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nano materials.

  12. Comparison of polyamide-carbon nanotube and polyamide- nano silica composite membranes performance for purification of ethanol

    Directory of Open Access Journals (Sweden)

    Azam Marjani

    2015-06-01

    Full Text Available The pervaporation (PV separation performance of carbon nano tube and nano silica filled polyamide membranes were compared with pure polyamide for the dehydration of ethanol. The separation of synthesized membranes was compared with each other in separation of ethanol from ethanol/water mixture via pervaporation process. Feed concentration and temperature factors effect on ethanol separation was investigated. The results demonstrated that separation factor of polyamide-carbon nano tube is approximately higher than polyamide-nano-silica. However, the permeate concentration of ethanol for polyamide-nano-silica is much better by comparison with nano tube-polyamide and pure polyamide mixed membrane membranes.

  13. Anti-corrosive Effects of Multi-Walled Carbon Nano Tube and Zinc Particle Shapes on Zinc Ethyl Silicate Coated Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, JiMan; Shon, MinYoung; Kwak, SamTak [Pukyong National University, Busan (Korea, Republic of)

    2016-01-15

    Zinc ethyl silicate coatings containing multi walled carbon nanotubes (MWCNTs) were prepared, to which we added spherical and flake shaped zinc particles. The anti-corrosive effects of MWCNTs and zinc shapes on the zinc ethyl silicate coated carbon steel was examined, using electrochemical impedance spectroscopy and corrosion potential measurement. The results of EIS and corrosion potential measurement showed that the zinc ethyl silicate coated with flake shaped zinc particles and MWCNT showed lesser protection to corrosion. These outcomes were in agreement with previous results of corrosion potential and corrosion occurrence.

  14. 聚酰亚胺/碳纳米管杂化薄膜电性能的研究%Electrical Properties of Polyimide/Carbon Nano-tube Hybrid Film

    Institute of Scientific and Technical Information of China (English)

    朱小影; 张明艳; 刁鹏鹤; 王文佳; 李晓东

    2011-01-01

    A kind of polyamide acid/carbon nano-tube hybrid liquid cement was fabricated by means of ultrasonic dispersion and in-situ polymerization.Then the polyimide/carbon nano-tube hybrid film was prepared according to filming technology.The surface morphology of the film was characterized by SEM.And the effects of incorporation of carbon nano-tube on the electrical property were researched.The results show that with the increase of CNTs content, the dielectric strength decreases gradually and has a sharp drop when the doped content is close to 0.6%, the dielectric constant and dielectric loss factor increase obviously.With the rise of test frequency, the dielectric constant declines slowly and the dielectric loss factor increases.The corona resistance time of the hybrid film is longer than that of pure polyimide.When the doped content of MWNTs is near to 0.38%, the time of corona resistance reaches a maximum of 10.2 h.%采用超声分散-原位聚合的方法制备聚酰胺酸/碳纳米管(CNTs)杂化胶液,并按一定成膜工艺制备出聚酰亚胺/碳纳米管杂化薄膜.利用扫描电子显微镜(SEM)对薄膜的表面形貌进行表征,讨论了碳纳米管的加入对杂化薄膜电性能的影响.结果表明:随着碳纳米管含量的增加,介电强度降低,介电常数与介质损耗因数均呈上升趋势,且随着测试频率的增加,介电常数缓慢下降,介质损耗因数增加;杂化薄膜的耐电晕性能均高于纯PI,且含量为0.38%时,耐电晕时间达到最大值10.2h.

  15. Semiconductor Nano wires and Nano tubes: From Fundamentals to Diverse Applications

    International Nuclear Information System (INIS)

    Research in the field of semiconductor nano wires (SNWs) and nano tubes has been progressing into a mature subject with several highly interdisciplinary sub areas such as nano electronics, nano photonics, nano composites, bio sensing, optoelectronics, and solar cells. SNWs represent a unique system with novel properties associated to their one-dimensional (1D) structures. The fundamental physics concerning the formation of discrete 1D subbands, coulomb blockade effects, ballistic transport, and many-body phenomena in 1D nano wires and nano tubes provide a strong platform to explore the various scientific aspects in these nano structures. A rich variety of preparation methods have already been developed for generating well-controlled 1D nano structures and from a broad range of materials. The present special issue focuses on the recent development in the mechanistic understanding of the synthesis, the studies on electrical/optical properties of nano wires and their applications in nano electronics, nano photonics, and solar-energy harvesting. In this special issue, we have several invited review articles and contributed papers that are addressing current status of the fundamental issues related to synthesis and the diverse applications of semiconducting nano wires and nano tubes. One of the papers reviews the progress of the top-down approach of developing silicon-based vertically aligned nano wires to explore novel device architectures and integration schemes for nano electronics and clean energy applications. Another paper reviews the recent developments and experimental evidences of probing the confined optical and acoustic phonon in nonpolar semiconducting (Si and Ge) nano wires using Raman spectroscopy. The paper by K. Hiruma et al. spotlights the III semiconductor nano wires and demonstrates selective-area metal organic vapor phase epitaxy grown GaAs/In(Al)GaAs and InP/InAs/InP nano wires with heterojunctions along their axial and radial directions. The paper

  16. Direct measurement of single soft lipid nano-tubes: nano-scale information extracted in non-invasive manner

    OpenAIRE

    Yamamoto, Akihisa; Ichikawa, Masatoshi

    2012-01-01

    We investigated the dynamics of single soft nano-tubes of phospholipids to extract nano-scale information such as size of tube, which are several tens to hundreds of nano-meters thick. The scaling law of the nano-tube dynamics in quasi-2-dimensional space was revealed to be constituent with that of a polymer. The dynamic properties of the tubes obtained from direct observation by fluorescent microscopy, such as their persistence length, enable us to access the nano-scale characteristics throu...

  17. Comparison of polyamide-carbon nanotube and polyamide- nano silica composite membranes performance for purification of ethanol

    OpenAIRE

    Azam Marjani; Homayon Ghanipour

    2015-01-01

    The pervaporation (PV) separation performance of carbon nano tube and nano silica filled polyamide membranes were compared with pure polyamide for the dehydration of ethanol. The separation of synthesized membranes was compared with each other in separation of ethanol from ethanol/water mixture via pervaporation process. Feed concentration and temperature factors effect on ethanol separation was investigated. The results demonstrated that separation factor of polyamide-carbon nano tube is app...

  18. SeZnSb alloy and its nano tubes, graphene composites properties

    Directory of Open Access Journals (Sweden)

    Abhay Kumar Singh

    2013-04-01

    Full Text Available Composite can alter the individual element physical property, could be useful to define the specific use of the material. Therefore, work demonstrates the synthesis of a new composition Se96-Zn2-Sb2 and its composites with 0.05% multi-walled carbon nano tubes and 0.05% bilayer graphene, in the glassy form. The diffused amorphous structure of the multi walled carbon nano tubes and bilayer gaphene in the Se96-Zn2-Sb2 alloy have been analyzed by using the Raman, X-ray photoluminescence spectroscopy, Furrier transmission infrared spectra, photoluminescence, UV/visible absorption spectroscopic measurements. The diffused prime Raman bands (G and D have been appeared for the multi walled carbon nano tubes and graphene composites, while the X-ray photoluminescence core energy levels peak shifts have been observed for the composite materials. Subsequently the photoluminescence property at room temperature and a drastic enhancement (upto 80% in infrared transmission percentage has been obtained for the bilayer graphene composite, along with optical energy band gaps for these materials have been evaluated 1.37, 1.39 and 1.41 eV.

  19. Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    2016-01-01

    behavior of Nafion ionomer on platinized carbon nano fibers (CNFs), carbon nano tubes (CNTs) and amorphous carbon (Vulcan). The interaction is affected by the catalyst surface oxygen groups as well as porosity. Comparisons between the carbon supports and platinized equivalents are carried out. It reveals......, the ionomer may have an adsorption preference to the platinum nano particle rather than to the overall catalyst. This was verified by a close examination on the decomposition temperature of the carbon support and the ionomer. The electrochemical stability of the catalyst ionomer composite electrode suggests...

  20. Development of an Innovative High-Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Subhash, Ghatu [Univ. of Florida, Gainesville, FL (United States); Wu, Kuang-Hsi [Florida International Univ. (FIU), Miami, FL (United States); Tulenko, James [Univ. of Florida, Gainesville, FL (United States)

    2014-03-10

    Uranium dioxide (UO2) is the most common fuel material in commercial nuclear power reactors. Despite its numerous advantages such as high melting point, good high-temperature stability, good chemical compatibility with cladding and coolant, and resistance to radiation, it suffers from low thermal conductivity that can result in large temperature gradients within the UO2 fuel pellet, causing it to crack and release fission gases. Thermal swelling of the pellets also limits the lifetime of UO2 fuel in the reactor. To mitigate these problems, we propose to develop novel UO2 fuel with uniformly distributed carbon nanotubes (CNTs) that can provide high-conductivity thermal pathways and can eliminate fuel cracking and fission gas release due to high temperatures. CNTs have been investigated extensively for the past decade to explore their unique physical properties and many potential applications. CNTs have high thermal conductivity (6600 W/mK for an individual single- walled CNT and >3000 W/mK for an individual multi-walled CNT) and high temperature stability up to 2800°C in vacuum and about 750°C in air. These properties make them attractive candidates in preparing nano-composites with new functional properties. The objective of the proposed research is to develop high thermal conductivity of UO2–CNT composites without affecting the neutronic property of UO2 significantly. The concept of this goal is to utilize a rapid sintering method (5–15 min) called spark plasma sintering (SPS) in which a mixture of CNTs and UO2 powder are used to make composites with different volume fractions of CNTs. Incorporation of these nanoscale materials plays a fundamentally critical role in controlling the performance and stability of UO2 fuel. We will use a novel in situ growth process to grow CNTs on UO2 particles for rapid sintering and develop UO2-CNT composites. This method is expected to provide a uniform distribution of CNTs at various volume fractions so that a high

  1. Preparation of novel bulk carbon nano tubes dental materials for implant%新型牙用碳纳米管种植体材料的制备

    Institute of Scientific and Technical Information of China (English)

    陈蕾; Mian Farrukh Imran; 蔡惠; 徐国富

    2008-01-01

    BACKGROUND: Carbon nanotubes (CNTs) is about 1 mm in diameter and about 1-10 μm in length cylinder-like material, and it only contains the spiral of carbon atoms arranged on the surface. Because of its unique tubular structure, lower density than that of graphite and with a high enough intensity, CNTs are expected to substitute bone.OBJECTIVE: To primarily study the influence of the content of polycarbosilane (PCS) and the sintering pressure on CNTs, look for the most optimum condition for the preparation of chunk CNTs, analyze the physical properties and biocompatibility of the material, and provide a choice for candidate implant denture material.DESIGN: The content of cement and the sintering pressure are adjusted in the experiment to make sure the most optimum condition for the preparation, and the capabilities of the material are observed and analyzed to make sure if that the material is suitable for implant denture.SETTING: Department of Stomatology, Xiangya Hospital, Central South University; Prosthodontics Staff Room, Oral Medical College of Central South University. MATERIALS: 80% pure molecules of CNT (Nano Lab Company USA), 20-40 nm in diameter, 5-20 mm in length, was provided by Nacheng Technology Development Corporation of Beijing. PCS was compounded by 502 Development Room of Defense Technology University, and the molecular weight is 1 300; Ten male white Wistar rats with 8 weeks old were provided by Animal Experiment Center of Guangxi Medical University. The treatments with the animals accorded to animal ethical standard in the experiment.METHODS: The experiment was carried out in the Experimental Center of Material College, Central South University from January to August 2005. By using the spark plasma sintering (SPS), at the sintering temperature of 1 200 ℃, the pressure from 20 MPa to 60 MPa, PCS was used as the cement to produce the new chunk multi-wall CNTs.MAIN OUTCOME MEASURES: By using Archimedes method and adsorption of gases method

  2. Molecular Dynamics Study of Double-Walled Carbon Nanotubes for Nano-Mechanical Manipulation

    Science.gov (United States)

    Kimoto, Yoshihisa; Mori, Hideki; Mikami, Tomohito; Akita, Seiji; Nakayama, Yoshikazu; Higashi, Kenji; Hirai, Yoshihiko

    2005-04-01

    Double-walled carbon nanotubes (DWNTs) are expected to be useful as elements in nano-mechanical systems such as nanobearings and nanosliders. A molecular dynamics simulation is carried out to estimate the relative motion between the inner and outer tubes. The force required to pull the inner tube out of the outer tube is evaluated quantitatively by pulling the inner tube under a constant velocity for DWNTs with various inter-tube spacings and chiralities. When the inner tube is pulled under smaller constant force, the inner tube vibrates inside the outer tube without being pulled out, and an energetics is applied to explain the critical force and vibrational amplitude. The constant force induces not only vibration along the tube axis but also rotation around the tube axis, which indicates the possibility of creating a slider crank mechanism using a DWNT.

  3. Ni/Mn based catalyst for methane decomposition to hydrogen and carbon nano tube: the effect of temperature and space time

    International Nuclear Information System (INIS)

    Hydrogen production is of great significance on seeking a better way to use natural gas resources. If an efficient means of converting natural gas to hydrogen were developed, natural gas would take on new value. The catalytic activities and lifetimes of Ni/Mn-based catalyst using different temperature (600-850 degree C) and gas hourly space velocity (GHSV) (650, 1300 and 2700 h-1) for methane decomposition showed that the deactivation was affected by diffusion phenomena in the particle-carbon system and is determined by the rate ratio of formation of carbon atoms to their diffusion toward the deposition sites. At 850 degree C and GHSV of 650 h-1, the yield of hydrogen was 84%

  4. Research on Dispersion of Carbon Nano Tubes in Cement Based Composite%碳纳米管在水泥基复合材料中的分散性研究

    Institute of Scientific and Technical Information of China (English)

    张姣龙; 朱洪波; 柳献; 袁勇

    2012-01-01

    In this paper, the effects of different CNTs (Carbon Nano Tubes) proportion, ultrasonic and surfactant on both the dispersion of CNTs and mechanical performance of composite were studied through experiments. The images of SEM presented the microstructures of cement based composite modified with CNTs. As for the dispersion of CNTs in cement based composite, influential factors were discussed. Finally, this article analyzed the relationship between dispersion of CNTs and mechanical performance of composite. The results indicate that the dispersion of CNTs in cement paste is improved a lot with reasonable CNTs proportion, ultrasonic vibration and surfactant, making the compressive strength of cement/CNTs composite increase by 14%.%通过试验研究了碳纳来管在不同掺量、超声波分散以及表面活性剂作用下的分散性及其对水泥基复合材料力学性能的影响;采用SEM观测了碳纳米管改性水泥基复合材料的微观结构,讨论了影响碳纳米管在水泥基复合材料中分散性的因素;综合分析了分散性与力学性能的关系.结果表明:合理的碳纳米管掺量在超声波分散和PVP表面活性剂共同作用下能够显著提高碳纳米管在水泥浆体中的分散性,使水泥/碳纳米管复合材料的抗压强度提高14%.

  5. Carbon nanoelectronics: unzipping tubes into graphene ribbons

    OpenAIRE

    Santos, H.; Chico, L.; Brey, L.

    2009-01-01

    We report on the transport properties of novel carbon nanostructures made of partially unzipped carbon nanotubes, which can be regarded as a seamless junction of a tube and a nanoribbon. We find that graphene nanoribbons act at certain energy ranges as a perfect valley filters for carbon nanotubes, with the maximum possible conductance. Our results show that a partially unzipped carbon nanotube is a magnetoresistive device, with a very large value of the magnetoresistance. We explore the prop...

  6. Facile Synthesis of Fe-Doped Titanate Nano tubes with Enhanced Photo catalytic Activity for Castor Oil Oxidation

    International Nuclear Information System (INIS)

    Iron-doped titanate nano tubes were synthesized by hydrothermal method, and the photo catalytic activity was greatly enhanced by iron doping. Followed by the discovery of carbon nano tubes, synthesis of one-dimensional (1D) nano materials has attracted great interest because of their exceptional electrical and mechanical properties [1-4]. Some inorganic 1D nano materials including ZnO, VOx, and TiO2 have been synthesized in recent years [5-8]. Among these materials, titanic compound nanotubes have stimulated particular interest. Titanic nano crystals have been extensively studied in photo catalytic or photoelectrochemical systems and so forth [9-12], and fabrication of tubular structures offers an effective approach to adjust their properties, which are crucial in practical applications. For example, the photo catalytic activity of TiO2 could be enhanced by the tubular structures because of their large specific surface, which leads to a higher potential of applications in environmental purification and generation of hydrogen gas and so forth [13]. Recently, particular interest is devoted to obtain H2Ti3O7-type nano tubes synthesized by hydrothermal method [14-16], and these nano tubes show excellent ion-exchange ability and photo catalytic activities and may be applied to photo catalysis, photoluminescence, and dye-sensitized solar cells [3]. However, their structures are still not well understood. The photo catalytic property is originated from the charge carriers produced by the excitation process on the particle surface, and the photo catalytic efficiency is determined by the transfer rate and recombination rate of carriers [17]. However, the carriers are usually unstable and easy to recombine. To improve the photo catalytic efficiency, the transfer rate must be enhanced and recombination rate should be reduced. Introducing other elements especially the transition metal ions into the matrix has been proved to be an effective method to improve the photo catalytic

  7. Radiation resistance of nano carbon polymers

    International Nuclear Information System (INIS)

    Present article is devoted to radiation resistance of polymers containing nano carbon fillers. Therefore, the influence of ultraviolet and gamma-irradiation on structure and radiation resistance of nano carbon polymers was studied. The light resistance of polymers was studied under the light ageing conditions and the radiation resistance was studied under the static radiation ageing conditions. It is defined that injection of fillers in to the polymers and irradiation them by ultraviolet and gamma beams changes their mechanical and thermal properties and their light and radiation resistance as well.

  8. Preparation, characterization, and application of titanium nano-tube array in dye-sensitized solar cells

    OpenAIRE

    Ho, Shih-Yu; Su, Chaochin; Cheng, Chieh-Chung; Kathirvel, Sasipriya; Li, Chung-Yen; Li, Wen-Ren

    2012-01-01

    The vertically orientated TiO2 nanotube array (TNA) decorated with TiO2 nano-particles was successfully fabricated by electrochemically anodizing titanium (Ti) foils followed by Ti-precursor post-treatment and annealing process. The TNA morphology characterized by SEM and TEM was found to be filled with TiO2 nano-particles interior and exterior of the TiO2 nano-tubes after titanium (IV) n-butoxide (TnB) treatment, whereas TiO2 nano-particles were only found inside of TiO2 nano-tubes upon tita...

  9. Some aspects of the electrochemical formation of carbon micro-tubes from molten chlorides

    Directory of Open Access Journals (Sweden)

    Yaghmaee M.S.

    2003-01-01

    Full Text Available Carbon nano/micro-tubes have been successfully synthesized by an electrochemical way from the NaCl-KCl-5% MgCl2 molten salt on the surface of a graphite cathode. The length of the tubes is above 100 µm, while their diameter ranges from hundreds of nanometers to 1-2 µm. A new cleaning procedure of the carbon tubes from the remaining salt has been developed with acetone found to be the best cleaning agent. It has been shown that in addition to carbon micro-tubes, some tube-like or rod-like structures can be formed, which do not actually consist of carbon but of the remained salt.

  10. Carbon Nanoelectronics: Unzipping Tubes into Graphene Ribbons

    Science.gov (United States)

    Santos, H.; Chico, L.; Brey, L.

    2009-08-01

    We report on the transport properties of novel carbon nanostructures made of partially unzipped carbon nanotubes, which can be regarded as a seamless junction of a tube and a nanoribbon. We find that graphene nanoribbons act at certain energy ranges as perfect valley filters for carbon nanotubes, with the maximum possible conductance. Our results show that a partially unzipped carbon nanotube is a magnetoresistive device, with a very large value of magnetoresistance. We explore the properties of several structures combining nanotubes and graphene nanoribbons, demonstrating that they behave as optimal contacts for each other, and opening a new route for the design of mixed graphene-nanotube devices.

  11. Binary TLBO algorithm assisted to investigate the supper scattering plasmonic nano tubes

    Science.gov (United States)

    Balvasi, Mohsen; Akhlaghi, Majid; Shahmirzaee, Hossein

    2016-01-01

    One of the most promising plasmonics nano-particle platforms is studying the effect of non-periodic structure of nano-particles on transmitted light. Since properties of transmitted light strongly depend on the localized positions of plasmonic nano particles, a new efficient binary optimization method based on Teaching-Learning-Based Optimization (TLBO) algorithm is proposed to design an array of plasmonic nano tubes in order to achieve maximum scattering coefficient spectrum. In binary TLBO (BTLBO), a group of learners consisting of a matrix with binary entries controls the presence ('1') or the absence ('0') of nano tubes in the array. Simulation results show that scattering coefficient strongly depends on the localized position of nano particles and non-periodic structures have more appropriate response in term of scattering coefficient. This approach can be useful in optical applications such as plasmonic nano antenna.

  12. The world of Nano

    International Nuclear Information System (INIS)

    The contents of this book are the beginning of nano technology, definition of nano, commercialization of nano technology, prospect of nano technology, survive with nano t-, development strategy of n-t in the U.S, and Japan, Korea, and other countries, comparison of development strategy of n-t among each country, various measurement technology for practical n-t, scanning tunneling microscopy, nano device, carbon nano tube, nano belt and nano wire, application of sensor in daily life, energy, post-Genome period and using as medicine with nano bio technology.

  13. Degradation of Tannic Acid Using TiO2 Nano tubes as Electro catalyst

    International Nuclear Information System (INIS)

    Structured TiO2 nano tubes were grown on 2 mm thick titanium sheet by anodization of titanium in ethylene glycol medium containing 0.025 M NaF. The morphology of TiO2 nano tubes (TNT) was characterized using field emission scanning electron microscope. The potential of TNT as anode and also as photo catalyst for the degradation of tannic acid was studied. The mineralization of tannic acid was measured in terms Total Organic Carbon (TOC). Only 50% of TOC could be removed by exposing the tannic acid solution to UV-radiation (photolysis), whereas it was improved to 70% by electro oxidation (EO) using TNT as anode. Maximum degradation of 83% was achieved when electro oxidation was conducted under the influence of UV-radiation (photo electrocatalytic process (PEC)). Among the electrolytes tried, Na2SO4 was observed to be very effective for the degradation of tannic acid. The kinetics of tannic acid degradation by photo electrocatalytic process was found to follow zero-order rate expression.

  14. Optimization of Nano-Carbon Materials for Hydrogen Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Yakobson, Boris I [Rice University

    2013-08-02

    Research undertaken has added to the understanding of several critical areas, by providing both negative answers (and therefore eliminating expensive further studies of unfeasible paths) and positive feasible options for storage. Theoretical evaluation of the early hypothesis of storage on pure carbon single wall nanotubes (SWNT) has been scrutinized with the use of comprehensive computational methods (and experimental tests by the Center partners), and demonstrated that the fundamentally weak binding energy of hydrogen is not sufficiently enhanced by the SWNT curvature or even defects, which renders carbon nanotubes not practical media. More promising direction taken was towards 3-dimensional architectures of high porosity where concurrent attraction of H2 molecule to surrounding walls of nano-scale cavities can double or even triple the binding energy and therefore make hydrogen storage feasible even at ambient or somewhat lower temperatures. An efficient computational tool has been developed for the rapid capacity assessment combining (i) carbon-foam structure generation, (ii) accurate empirical force fields, with quantum corrections for the lightweight H2, and (iii) grand canonical Monte Carlo simulation. This made it possible to suggest optimal designs for carbon nanofoams, obtainable via welding techniques from SWNT or by growth on template-zeolites. As a precursor for 3D-foams, we have investigated experimentally the synthesis of VANTA (Vertically Aligned NanoTube Arrays). This can be used for producing nano-foams. On the other hand, fluorination of VANTA did not show promising increase of hydrogen sorption in several tests and may require further investigation and improvements. Another significant result of this project was in developing a fundamental understanding of the elements of hydrogen spillover mechanisms. The benefit of developed models is the ability to foresee possible directions for further improvement of the spillover mechanism.

  15. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    International Nuclear Information System (INIS)

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  16. Study of Mg doped ZnO Nano wires Synthesized Using Double Tube System

    International Nuclear Information System (INIS)

    Mg doped ZnO nano wires were grown by thermal evaporation method using the double tube system. As precursor material, mixture of ZnO powder and Mg2O powder were placed inside an inner smaller tube in a bigger quartz tube. The furnace temperature was increased to evaporate the source material while nitrogen gas was introduced as carrier gas. The white layer of nano structure was deposited in the substrate. The product were characterised by field emission scanning electron microscopy (FESEM) for study the morphological structure. The presence of each materials consists of in the nano structure was checked with electron dispersive X-Ray (EDX), all elements was found the spectra. The crystallinity of the structure was observed by X-Ray diffraction (XRD). Photoluminescence measurement was applied to observe optical property of the nano structure. (author)

  17. Heat dissipation from carbon nano-electronics

    Science.gov (United States)

    Ong, Zhun Yong

    2011-12-01

    The incorporation of graphitic compounds such as carbon nanotubes (CNTs) and graphene into nano-electronic device packaging holds much promise for waste heat management given their high thermal conductivities. However, as these graphitic materials must be used in together with other semiconductor/insulator materials, it is not known how thermal transport is affected by the interaction. Using different simulation techniques, in this thesis, we evaluate the thermal transport properties --- thermal boundary conductance (TBC) and thermal conductivity --- of CNTs and single-layer graphene in contact with an amorphous SiO2 (a-SiO2) substrate. First, the theoretical methodologies and concepts used in our simulations are presented. In particular, two concepts are described in detail as they are necessary for the understanding of the subsequent chapters. The first is the linear response Green-Kubo (GK) theory of thermal boundary conductance (TBC), which we develop in this thesis, and the second is the spectral energy density method, which we use to directly compute the phonon lifetimes and thermal transport coefficients. After we set the conceptual foundations, the TBC of the CNT-SiO 2 interface is computed using non-equilibrium molecular dynamics (MD) simulations and the new Green-Kubo method that we have developed. Its dependence on temperature, the strength of the interaction with the substrate, and tube diameter are evaluated. To gain further insight into the phonon dynamics in supported CNTs, the scattering rates are computed using the spectral energy density (SED) method. With this method, we are able to distinguish the different scattering mechanisms (boundary and CNT-substrate phonon-phonon) and rates. The phonon lifetimes in supported CNTs are found to be reduced by contact with the substrate and we use that lifetime reduction to determine the change in CNT thermal conductivity. Next, we examine thermal transport in graphene supported on SiO 2. The phonon

  18. Preparation and Characterization of Cu loaded TiO2 Nano tube Arrays and their Photo catalytic Activity

    International Nuclear Information System (INIS)

    This paper described the preparation of Cu loaded TiO2 nano tube arrays. Firstly, TiO2 nano tube arrays were formed by anodization. Afterwards, the formed nano tube arrays were incorporated with Cu by wet impregnation method. The soaking time and concentration were varied to obtain an optimum set of parameter for Cu incorporation in TiO2 nano tubes. After anodization, all samples were annealed at 400 degree Celsius for 4 hours to obtain anatase phase. The nano tube arrays were characterized by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD) and x-ray photoelectron spectra (XPS). An average diameter 63.02 nm and length 12.15 μm were obtained for TiO2 nano tubes. The photo catalytic activity of these nano tubes were investigated with methyl orange (MO) and the TiO2 nano tube prepared in 0.01 M of Cu (NO3)2 solution within 3 hours demonstrates the highest photo catalytic activity with 83.6 % degradation of methyl orange. (author)

  19. Synthesis and Characterization of Glassy Carbon Nano wires

    International Nuclear Information System (INIS)

    The advent of carbon-based micro- and nano electromechanical systems has revived the interest in glassy carbon, whose properties are relatively unknown at lower dimensions. In this paper, electrical conductivity of individual glassy carbon nano wires was measured as a function of microstructure (controlled by heat treatment temperature) and ambient temperature. The semiconducting nano wires with average diameter of 150 nm were synthesized from poly furfuryl alcohol precursors and characterized using transmission electron and Raman microscopy. DC electrical measurements made at 90 K to 450 K show very strong dependence of temperature, following mixed modes of activation energy and hopping-based conduction.

  20. Carbon-Based Nano-Electro-Mechanical-Systems

    Science.gov (United States)

    Kaul, A. B.; Khan, A. R.; Megerian, K. G.; Epp, L.; LeDuc, G.; Bagge, L.; Jennings, A. T.; Jang, D.; Greer, J. R.

    2011-01-01

    We provide an overview of our work where carbon-based nanostructures have been applied to two-dimensional (2D) planar and three-dimensional (3D) vertically-oriented nano-electro-mechanical (NEM) switches. In the first configuration, laterally oriented single-walled nanotubes (SWNTs) synthesized using thermal chemical vapor deposition (CVD) were implemented for forming bridge-type 2D NEMS switches, where switching voltages were on the order of a few volts. In the second configuration, vertically oriented carbon nanofibers (CNFs) synthesized using plasma-enhanced (PE) CVD have been explored for their potential application in 3D NEMS. We have performed nanomechanical measurements on such vertically oriented tubes using nanoindentation to determine the mechanical properties of the CNFs. Electrostatic switching was demonstrated in the CNFs synthesized on refractory metallic nitride substrates, where a nanoprobe was used as the actuating electrode inside a scanning-electron-microscope. The switching voltages were determined to be in the tens of volts range and van der Waals interactions at these length scales appeared significant, suggesting such structures are promising for nonvolatile memory applications. A finite element model was also developed to determine a theoretical pull-in voltage which was compared to experimental results.

  1. Biphasic Osteogenic Characteristics of Human Mesenchymal Stem Cells Cultured on Ti 2 Nano tubes of Different Diameters

    International Nuclear Information System (INIS)

    We cultured human mesenchymal stem cells (hMSCs) on TiO2 nano tubes with diameters of 30-100 nm to assess the size-effect of TiO2 nano tubes on the behavior and osteogenic functionality of hMSCs. Most studies of the expression of genes encoding alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and integrin-β (INT-B), after 1 week of incubation, supported the results of cell viability and MTT assays at 48 hrs of plating. However, after 2 weeks of incubation, expression of ALP, OPN, INT-B, and protein kinase R-like ER kinase (PERK) genes were significantly higher in cells cultured on 70 nm TiO2 nano tubes than that in cells cultured on other TiO2 nano tubes and Ti. This biphasic osteogenic characteristic of hMSCs is supposed to relating to the nature of the hMSCs adhering to the substrate at the beginning of incubation, and the nano structural stimulation caused by the topography of TiO2 nano tubes at a later stage of incubation. The discovery of these biphasic characteristics of hMSCs cultured on different-sized TiO2 nano tubes may contribute to resolving the discrepant results relating to the size-effect of TiO2 nano tubes on the adhesion, proliferation, and functionality of cells.

  2. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    OpenAIRE

    Zhu, Z.; Song, W.; Burugapalli, K; Moussy, F; Li, Y-L; Zhong, X-H

    2010-01-01

    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 IOP Publishing Ltd. A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon...

  3. Method for nano-pumping using carbon nanotubes

    Science.gov (United States)

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  4. Effects of freeze drying and silver staining on carbonization of cellulose: carbon nano-materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Young; Im, Hyun Sik [Dongguk University, Seoul (Korea, Republic of)

    2012-05-15

    We investigated the effects of sulfuric acid and silver particles on the carbonization of natural cellulose from Halocynthia. We carried out thermogravimetry and used transmission electron microscopy measurements to study the yield of carbon and the structure of the carbonized nano-fiber. We found that the addition of sulfuric acid and silver particles to the cellulose fiber enhanced the yield of carbon while keeping the original structure of the carbon nano-fiber.

  5. Visible Light Irradiation-Mediated Drug Elution Activity of Nitrogen-Doped TiO2 Nano tubes

    International Nuclear Information System (INIS)

    We have developed nitrogen-doped TiO2 nano tubes showing photo catalytic activity in the visible light region and have investigated the triggered release of antibiotics from these nano tubes in response to remote visible light irradiation. Scanning electron microscopy (SEM) observations indicated that the structure of TiO2 nano tubes was not destroyed on the conditions of 0.05 and 0.1 M diethanolamine treatment. The results of X-ray photoelectron spectroscopy (XPS) confirmed that nitrogen, in the forms of nitrite (TiO2 ) and nitrogen monoxide (NO), had been incorporated into the TiO2 nano tube surface. A drug-release test revealed that the antibiotic-loaded TiO2 nano tubes showed sustained and prolonged drug elution with the help of polylactic acid. Visible light irradiation tests showed that the antibiotic release from nitrogen-doped nano tubes was significantly higher than that from pure TiO2 nano tubes (ρ ≨ 0.05).

  6. Self-Organized One-Dimensional TiO2 Nano tube/Nano wire Array Films for Use in Excitonic Solar Cells

    International Nuclear Information System (INIS)

    We review the use of self-assembled, vertically oriented one-dimensional (1 D) titania nano wire and nano tube geometries in several third-generation excitonic solar cell designs including those based upon bulk heterojunction, ordered heterojunction, Forester resonance energy transfer (FRET), and liquid-junction dye-sensitized solar cells (DSSCs)

  7. Glucose biosensor based on the synergy between carbon nano-tubes and titanium oxide%二氧化钛与碳纳米管协同作用的葡萄糖生物传感研究

    Institute of Scientific and Technical Information of China (English)

    黄小梅; 邓祥; 吴狄

    2012-01-01

    A novel glucose biosensor has been presented in this paper. First, the TiO2-MWNT-CS composite was immobilized onto the surface of the glass carbon electrode(GCE). then,a stable nano-Pt film was electrodeposited on the TiO2-MWNT-CS modified e-lectrode by applying an constant potential. Finally, glueose oxidase(GOD)and Nafion were modified onto the film subsequently to fabrieate a glueose biosensor. The modified process and the electrochemical characteristics of the resulting biosensor were characterized by cyclic voltammetry( CV) .electrochemical impedance spectroscopy( EIS) ,and chrpnoamperometry. Under the optimal conditions,a linear dependence of the catalytic current upon glucose concentration was obtained in the range of 3. Oxl0-6 tol.45xl0-3 'mol/L with a detection limit of 9. 5xl0-7mol/L(S/iV=3). In addition,the biosensor showed high sensitivity,good stability and excellent selectivity%在玻碳电极表面滴涂二氧化钛纳米颗粒-碳纳米管-壳聚糖(TiO2-MWNT-CS)复合物,待于后在其TiO2 -MWNT-CS修饰电极表面电沉积一层均匀而致密的纳米铂(Pt),然后将葡萄糖氧化酶(GOD)固定于修饰电极表面,最后,为了防止酶的泄漏和干扰物质的干扰,将Nafion滴涂于修饰电极表面,制得新型的葡萄糖传感器.通过循环伏安法,交流阻抗技术和计时电流法考察了电极的电化学特性.在最佳的实验条件下,该传感器在3.0×10-6 ~ 1.45×10-3mol/L范围内对葡萄糖有良好的线性响应,相关系数为0.9967 (n=15),检测下限为9.5×10-7 mol/L( S/N=3).由于纳米粒子间的协同作用,该传感器具有灵敏度高、稳定性和选择性好等优点.

  8. Nano-sized Particles Formed by Pulsed Discharge of Powders Sealed in Heat-shrinkable Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, S; Suematsu, H; Nakayama, T; Suzuki, T; Niihara, K, E-mail: ishihara@etigo.nagaokaut.ac.jp [Extreme Energy-Density Research Institute, Nagaoka University of Tech. 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan)

    2011-03-15

    Pulsed wire discharge has been developed as a method to form nano-sized particles, wherein a large electrical current pulse is passed through a thin metal wire. Various wire materials have been used to form nano-sized particles by this method so far. However, materials which are not sufficiently ductile to form thin wires are unsuitable for this method. We have developed a new method for powders to be discharged to form nano-scale particles instead of wires. The powders were placed in heat-shrinkable tubes and sealed by heating. Short metal wires were set at both the ends of each tube for electrical connection to the electrodes of the discharge equipment. These tubes were set in a chamber whose atmosphere could be controlled. A large current pulse was then applied to the powders in the tubes. SiC particles with a cubic crystalline structure were synthesized in N{sub 2} gas from mixed powders of Si and C with a C/Si molar ratio of unity. However, mostly the Si phase remained in the particles. Then, mixed powders with a C/Si ratio of 2 were discharged. The obtained particles were mainly composed of the SiC phase, although Si and graphite phases remained mingled.

  9. Nano-sized Particles Formed by Pulsed Discharge of Powders Sealed in Heat-shrinkable Tubes

    Science.gov (United States)

    Ishihara, S.; Suematsu, H.; Nakayama, T.; Suzuki, T.; Niihara, K.

    2011-03-01

    Pulsed wire discharge has been developed as a method to form nano-sized particles, wherein a large electrical current pulse is passed through a thin metal wire. Various wire materials have been used to form nano-sized particles by this method so far. However, materials which are not sufficiently ductile to form thin wires are unsuitable for this method. We have developed a new method for powders to be discharged to form nano-scale particles instead of wires. The powders were placed in heat-shrinkable tubes and sealed by heating. Short metal wires were set at both the ends of each tube for electrical connection to the electrodes of the discharge equipment. These tubes were set in a chamber whose atmosphere could be controlled. A large current pulse was then applied to the powders in the tubes. SiC particles with a cubic crystalline structure were synthesized in N2 gas from mixed powders of Si and C with a C/Si molar ratio of unity. However, mostly the Si phase remained in the particles. Then, mixed powders with a C/Si ratio of 2 were discharged. The obtained particles were mainly composed of the SiC phase, although Si and graphite phases remained mingled.

  10. Field emission digital display tube with nano-graphite film cathode

    Institute of Scientific and Technical Information of China (English)

    Jicai Deng; Zhanling Lu; Binglin Zhang

    2008-01-01

    The field emission digital display tube with a nano-crystalline graphite cold cathode is designed and fabricated. Under the control of the driving circuits, a dynamic digital display with uniform luminance distribution is realized. The luminance of the character segments is 190 cd/m2 at the operating voltage of 900 V. And the stable emission is attained with a fluctuation of about 3% at an average segment current of 75 μA. The results demonstrate that nano-crystalline graphite film is a promising material for cold cathode.

  11. Nano-solenoid: helicoid carbon-boron nitride hetero-nanotube

    Science.gov (United States)

    Zhang, Zi-Yue; Miao, Chunyang; Guo, Wanlin

    2013-11-01

    As a fundamental element of a nanoscale passive circuit, a nano-inductor is proposed based on a hetero-nanotube consisting of a spiral carbon strip and a spiral boron nitride strip. It is shown by density functional theory associated with nonequilibrium Green function calculations that the nanotube exhibits attractive transport properties tunable by tube chirality, diameter, component proportion and connection manner between the two strips, with excellent `OFF' state performance and high current on the order of 10-100 μA. All the hetero-nanotubes show negative differential resistance. The transmission peaks of current are absolutely derived from the helicoid carbon strips or C-BN boundaries, giving rise to a spiral current analogous with an energized nano-solenoid. According to Ampere's Law, the energized nano-solenoid can generate a uniform and tremendous magnetic field of more than 1 tesla, closing to that generated by the main magnet of medical nuclear magnetic resonance. Moreover, the magnitude of magnetic field can be easily modulated by bias voltage, providing great promise for a nano-inductor to realize electromagnetic conversion at the nanoscale.As a fundamental element of a nanoscale passive circuit, a nano-inductor is proposed based on a hetero-nanotube consisting of a spiral carbon strip and a spiral boron nitride strip. It is shown by density functional theory associated with nonequilibrium Green function calculations that the nanotube exhibits attractive transport properties tunable by tube chirality, diameter, component proportion and connection manner between the two strips, with excellent `OFF' state performance and high current on the order of 10-100 μA. All the hetero-nanotubes show negative differential resistance. The transmission peaks of current are absolutely derived from the helicoid carbon strips or C-BN boundaries, giving rise to a spiral current analogous with an energized nano-solenoid. According to Ampere's Law, the energized nano

  12. Evaluation of Synthesis & Processing Routes for the High K- Boron Nitride Nano Tubes (BNNTS) for Thermal Management Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this proposal is to develop and demonstrate the feasibility of processing the High Thermal Conductivity Boron Nitride Nano Tubes (High-K BNNTs) that...

  13. Investigation of electron paramagnetic resonance in carbon tubes

    Science.gov (United States)

    Byszewski, P.; Nabialek, A.

    1996-04-01

    Electron paramagnetic resonance (EPR) on carbon nanotubes was measured in a wide range of temperatures, the resonance disappeared after oxidizing the tubes. The results are discussed in terms of graphite properties and a model introducing a deformation potential to describe tubular structure. It leads to persistent ring currents in the magnetic field due to the carriers circular motion around a tube. A spin angular-momentum interaction is discussed in an attempt to explain the lack of EPR in purified carbon nanotubes.

  14. The adsorption of hydrogen on nano-structured carbons

    Energy Technology Data Exchange (ETDEWEB)

    Antoine Didion; Roger Gadiov; Cathie Vix Guterl [Institut de Chimie des Surfaces et Interfaces, CNRS UPR 9069, 15, rue Jean Starcky, BP 2488, 68093 Mulhouse cedex (France); Thierry Piquero; Patrick David [CEA Le Ripault, BP 16, 37260 Monts (France)

    2005-07-01

    A major key point for the development of hydrogen as an energy source is the design of a safe and compact storage device. The adsorption of molecular hydrogen on various carbon structures has been widely studied during the last two decades, and the storage capacities which are obtained are of the order of a few weight percents. Nano-structured carbons can be obtained by templating from ordered meso-porous silicas, different carbon precursors have been used such as sucrose solutions, pitch, or propylene. Compared to conventional activated carbons, these carbon materials have specific features such as an ordered network of meso-pores and a microporous volume which is obtained without activation. It has been shown that the storage capacity of these carbons materials is comparable to the one of activated carbons, and further investigation is needed to understand the influence of the pore shape and connectivity on the adsorption. The objective of this study was to obtained more insight in the determination of the pore size distribution of nano-structured carbons, and to correlate this measurement with hydrogen adsorption capacities. Five nano-structured carbons were studied and compared to three activated carbons. For all samples, the adsorption isotherms of nitrogen at 77 K, and CO{sub 2} at 273 K were measured. From these isotherms, the following textural parameters were determined: BET surface area, total porous volume, the volume of micropores and super-micropores were obtained from Dubinin-Radushkevich equation on CO{sub 2} and nitrogen isotherm respectively. The pore size distribution was obtained with a DFT analysis on the N{sub 2} adsorption isotherm. DFT analysis showed that nano-structured carbon materials have a bimodal distribution with ultra-micro-pores and a large volume of small meso-pores. The hydrogen capacity of these carbon materials was then measured at 77 K with a manometric device. Although hydrogen is in supercritical state in the pores, a first

  15. The adsorption of hydrogen on nano-structured carbons

    International Nuclear Information System (INIS)

    A major key point for the development of hydrogen as an energy source is the design of a safe and compact storage device. The adsorption of molecular hydrogen on various carbon structures has been widely studied during the last two decades, and the storage capacities which are obtained are of the order of a few weight percents. Nano-structured carbons can be obtained by templating from ordered meso-porous silicas, different carbon precursors have been used such as sucrose solutions, pitch, or propylene. Compared to conventional activated carbons, these carbon materials have specific features such as an ordered network of meso-pores and a microporous volume which is obtained without activation. It has been shown that the storage capacity of these carbons materials is comparable to the one of activated carbons, and further investigation is needed to understand the influence of the pore shape and connectivity on the adsorption. The objective of this study was to obtained more insight in the determination of the pore size distribution of nano-structured carbons, and to correlate this measurement with hydrogen adsorption capacities. Five nano-structured carbons were studied and compared to three activated carbons. For all samples, the adsorption isotherms of nitrogen at 77 K, and CO2 at 273 K were measured. From these isotherms, the following textural parameters were determined: BET surface area, total porous volume, the volume of micropores and super-micropores were obtained from Dubinin-Radushkevich equation on CO2 and nitrogen isotherm respectively. The pore size distribution was obtained with a DFT analysis on the N2 adsorption isotherm. DFT analysis showed that nano-structured carbon materials have a bimodal distribution with ultra-micro-pores and a large volume of small meso-pores. The hydrogen capacity of these carbon materials was then measured at 77 K with a manometric device. Although hydrogen is in supercritical state in the pores, a first computation of the

  16. Formation of High Aspect Ratio TiO2 Nano tube Arrays by Anodization of Ti Foil in Organic Solution

    International Nuclear Information System (INIS)

    Titanium oxide (TiO2) nano tubes were successfully formed by anodization of pure titanium foil in a standard two-electrode bath consisting of ethylene glycol solution containing 5 wt % NH4F. The pH of the solution was ∼7 and the anodization voltage was 60 V. It was observed that such anodization condition results in ordered arrays of TiO2 nano tubes with smooth surface and a very high aspect ratio. It was observed that a minimum of 1 wt % water addition was required to form well ordered TiO2 nano tubes with length of approximately 18.5 μm. As-anodized sample, the self-organized TiO2 nano tubes have amorphous structure and annealing at 500 degree Celsius of the nano tubes promote formation of anatase and rutile phase. Photo catalytic activity of well ordered TiO2 nano tubes with two different lengths was evaluated by measuring the degradation of methyl orange (MO). The elaboration of this observation is described in detail in this paper. (author)

  17. The adsorption of hydrogen on nano-structured carbons

    Energy Technology Data Exchange (ETDEWEB)

    Didion, A.; Gadiou, R.; Vix-Guterl, C. [Institut de Chimie des Surfaces et Interfaces, CNRS UPR 9069, 68 - Mulhouse (France); Piquero, Th.; David, P. [CEA Centre d' Etudes du Ripault, 37 - Tours (France)

    2005-07-01

    A major key point for the development of hydrogen as an energy source is the design of a safe and compact storage device. The adsorption of molecular hydrogen on various carbon structures has been widely studied during the last two decades, and the storage capacities which are obtained are of the order of a few weight percents. Nano-structured carbons can be obtained by templating from ordered meso-porous silicas, different carbon precursors have been used such as sucrose solutions, pitch, or propylene [1-3]. Compared to conventional activated carbons, these carbon materials have specific features such as an ordered network of meso-pores and a micro-porous volume which is obtained without any activation. It has been shown that the storage capacity of these carbons materials is comparable to the one of activated carbo4], and further investigation is needed to understand the influence of the pore shape and connectivity on the adsorption. The objective of this study was to obtained more insight in the determination of the pore size distribution of nano-structured carbons, and to correlate this measurement with hydrogen adsorption capacities. Five nano-structured carbons were studied and compared to three activated carbons. For all samples, the adsorption isotherms of nitrogen at 77 K, and CO{sub 2} at 273 were measured. From these isotherms, the following textural parameters were determined: BET surface area, total porous volume, the volume of micro-pores and super-micro-pores were obtained from Dubinin-Radushkevich equation on CO{sub 2} and nitrogen isotherm respectively. The pore size distribution was obtained with a DFT analysis on the N{sub 2} adsorption isotherm. DFT analysis showed that nano-structured carbon materials have a bimodal distribution with ultra-micropores and a large volume of small meso-pores. The hydrogen capacity of these carbon materials was then measured at 77 K with a manometric device. Although hydrogen is in supercritical state in the pores

  18. NANO-TESTS OF CONCRETE SAMPLES WITH AND WITHOUT NANO-TUBES

    OpenAIRE

    B. Khroustalev; Eberhardsteiner, J.; O. Lahayn; S. Leonovich; G. Yakovlev; G. Pervushin

    2014-01-01

    The concrete samples originate from fracture mechanics tests performed on February 19, 2012, at the Department of Geo-Engineering and Building Materials of the Izhevsk State Technical University.After the fracture mechanics tests three types of small specimens (marked with CNT, C3 and control sample) have been prepared and tested by means of Nano-Indentation (NI) and Atomic Force Microscopy (AFM), at the Institute for Mechanics of Materials and Structures and Institute of Automation and Contr...

  19. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst

    International Nuclear Information System (INIS)

    Densely agglomerated, high specific surface area carbon nano onions with diameter of 30–40 nm have been synthesized. Liquefied petroleum gas and air mixtures produced carbon nano onions in diffusion flames without catalyst. The optimized oxidant to fuel ratio which produces carbon nano onions has been found to be 0.1 slpm/slpm. The experiment yielded 70% pure carbon nano onions with a rate of 5 g/h. X-ray diffraction, high-resolution electron microscopy and Raman spectrum reveal the densely packed sp2 hybridized carbon with (002) semi-crystalline hexagonal graphite reflection. The carbon nano onions are thermally stable up to 600 °C. - Highlights: ►Flame synthesized carbon nano onions with 30–40 nm diameters. ►LPG/air, diffusion type flame used in absence of catalyst to produce nano onions. ►Carbon nano onion production rate is 5 g/hr and with 70% purity.

  20. Tuning the oscillation of nested carbon nanotubes by insertion of an additional inner tube

    Science.gov (United States)

    Motevalli, B.; Liu, Jefferson Z.

    2013-12-01

    Different mechanisms of nano-oscillators with telescopic oscillations have attracted lots of attention due to the possible generation of GHz frequencies. In particular, nested carbon nanotubes are of special interest for which different mechanisms have been examined. In this paper, we will show that insertion of an additional inner tube into a conventional double walled carbon nanotube (DWCNT) oscillator not only can increase the oscillatory frequency considerably but also provides a wide range of system parameters for tuning the oscillatory behavior as well as its frequency. The insertion of an additional tube results in a number of different vdW force profiles (which only depend on the length ratios of the three tubes). Being subject to these different vdW force profiles and trigged with different initial velocity, an oscillating tube can exhibit various types of motions. We use a phase division diagram to discriminate the system parameters according to the different types of motions. Accordingly, a comprehensive study of the oscillatory frequency is also carried out. To perceive an insight into the effectiveness of insertion, a comparison is also made with the counterpart DWCNT oscillator. It is observed that this new mechanism offers a number of new possibilities in designing and characterizing a carbon nanotube based oscillator.

  1. High Surface Area of Nano Pores Activated Carbon Derived From Agriculture Waste

    International Nuclear Information System (INIS)

    In this study, the high surface area of nano pores activated carbon rice husk originated from local biomass was investigated. The comparison in terms of surface area, porosity and behavior in electrochemical analysis with commercial activated carbon was studied in details. The nano pores activated carbon rice husk was synthesis using consecutive of carbonization and activation under purified nitrogen and carbon dioxide purge. Interestingly, the surface area and capacity of the nano pores activated carbon rice indicated higher in comparison to commercial activated carbon. This indicated that the nano pores activated carbon has potential to be developed further as an alternative material in reducing suspension on commercial activated carbon. (author)

  2. Adsorption of rare earth ions using carbonized polydopamine nano carbon shells

    Institute of Scientific and Technical Information of China (English)

    孙晓琦; LUO Huimin; Shannon M. Mahurin; LIU Rui; HOU Xisen; DAI Sheng

    2016-01-01

    Herein we reported the structure effects of carbon nano-shells prepared by the carbonization of polydopamine for the ad-sorption of rare earth elements (REEs) for the first time. Solid carbon spheres, 60 nm carbon shells and 500 nm carbon shells were prepared and evaluated for adsorption and desorption of REEs. The adsorption performance of carbon nano-shells for REEs was far superior to the solid carbon spheres. In addition, the effect of acidity on the adsorption and desorption properties was discussed. The good adsorption performance of the carbon nano-shells could be attributed to their pore structure, specific surface area, and the pres-ence of both amine and carbonyl groups from the grafted dopamine.

  3. Carbon nano structures: Production and characterization

    Science.gov (United States)

    Beig Agha, Rosa

    recherche sur l'hydrogene (IRH). Nos echantillons presentaient toujours une grande quantite de carbure de fer au detriment de la formation de nanostructures de carbone. Apres plusieurs mois de recherche nous avons constate que les metaux de base, soit le fer et le cobalt, etaient contamines. Neanmoins, ces recherches nous ont enseigne beaucoup et les resultats sont presentes aux Appendices I a III. Le carbone de depart est du charbon active commercial (CNS201) qui a ete prealablement chauffe a 1,000°C sous vide pendant 90 minutes pour se debarrasser de toute humidite et autres impuretes. En premiere etape, dans un creuset d'acier durci du CNS201 pretraite fut melange a une certaine quantite de Fe et de Co (99.9 % purs). Des proportions typiques sont 50 pd. %, 44 pd. %, et 6 pd. % pour le C, le Fe, et le Co respectivement. Pour les echantillons prepares avec le broyeur SPEX, trois a six billes en acier durci furent utilisees pour le broyage, de masse relative echantillon/poudre de 35 a 1. Pour les echantillons prepares avec le broyeur planetaire, trente-six billes en acier durci furent utilisees pour le broyage, de masse relative echantillon/poudre de 10 a 1. L'hydrogene fut alors introduit dans le creuset pour les deux types de broyeur a une pression de 1.4 MPa, et l'echantillon fut broye pendant 12 h pour le SPEX et 24 h pour le planetaire. Le broyeur SPEX a un rendement de transfert d'energie mecanique plus grand qu'un broyeur planetaire, mais il a le desavantage de contaminer davantage l'echantillon en Fe par attrition. Cependant, ceci peut etre neglige vu que le Fe etait un des catalyseurs metalliques ajoutes au creuset. En deuxieme etape, l'echantillon broye est transfere sous gaz inerte (argon) dans un tube en quartz, qui est alors chauffe a 700°C pendant 90 minutes. Des mesures de patrons de diffraction a rayons-X sur poudre furent faites pour caracteriser les changements structurels des CNS lors des etapes de synthese. Ces mesures furent prises avec un

  4. High Speed Multiple Valued Logic Full Adder Using Carbon Nano Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Ashkan Khatir

    2011-03-01

    Full Text Available High speed Full-Adder (FA module is a critical element in designing high performance arithmeticcircuits. In this paper, we propose a new high speed multiple-valued logic FA module. The proposed FAis constructed by 14 transistors and 3 capacitors, using carbon nano-tube field effect transistor (CNFETtechnology. Furthermore, our proposed technique has been examined in different voltages (i.e., 0.65v and0.9v. The observed results reveal power consumption and power delay product (PDP improvementscompared to existing FA counterparts.

  5. Effects of confinement in meso-porous silica and carbon nano-structures

    International Nuclear Information System (INIS)

    Physico-chemical properties of materials can be strongly modified by confinement because of the quantum effects that appear at such small length scales and also because of the effects of the confinement itself. The aim of this thesis is to show that both the nature of the confining material and the size of the pores and cavities have a strong impact on the confined material. We first show the effect of the pore size of the host meso-porous silica on the temperature of the solid-solid phase transition of silver selenide, a semiconducting material with enhanced magnetoresistive properties under non-stoichiometric conditions. Narrowing the pores from 20 nm to 2 nm raises the phase transition temperature from 139 C to 146 C. This result can be explained by considering the interaction between the confining and confined materials as a driving force. The effects of confinement are also studied in the case of hydrogen and deuterium inside cavities of organized carbon nano-structures. The effects that appear in the adsorption/desorption cycles are much stronger with carbon nano-horns as the host material than with C60 pea-pods and single-walled carbon nano-tubes. (author)

  6. Production and Properties of Nano Fiber (NCC) and Nano Tube (CNT) Reinforced Biodegradable Packaging Films: Effect of Gamma Radiation

    International Nuclear Information System (INIS)

    Biopolymeric (methylcellulose, chitosan and alginate) films were prepared by solution casting and their thermo-mechanical properties were evaluated. Nano crystalline cellulose (NCC) was incorporated into the optimized biopolymeric films. It was found that NCC acted as an excellent reinforcing agent which improved the mechanical properties of the films significantly. The NCC containing biopolymeric films were exposed to gamma radiation (2-25 kGy) and it revealed that biopolymeric films gained strength below 5 kGy dose. Monomer grafting onto the biopolymers were carried out to improve the filler (NCC)-matrix (biopolymers) compatibility. Two monomers (Trimethylol propane tri-methacrylate and 2-Hydroxyethyl methacrylate) were grafted using gamma radiation at 5-25 kGy doses. It was found that monomers were successfully grafted with biopolymers and NCC. Grafted films showed excellent mechanical properties. NCC and carbon nanotubes (CNT) were also incorporated in polycaprolactone-based films prepared by compression molding. It was found that NCC (5% by wt) and CNT (0.2% by wt) improved the mechanical properties of the PCL films significantly. The nano materials containing PCL films were gamma irradiated and found better mechanical and barrier properties. Surface morphology of the nano films was studied by scanning electron microscopy. (author)

  7. Modelling the side impact of carbon fibre tubes

    International Nuclear Information System (INIS)

    Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to improve fuel economy and reduce vehicle emissions has led automobile manufacturers to explore the crash properties of light weight materials such as fibre reinforced polymer composites, metallic foams and sandwich structures in order to use them as crash barriers. This paper discusses the response of carbon fibre reinforced polymer (CFRP) tubes and their failure mechanisms during side impact. The energy absorption of CFRP tubes is compared to similar Aluminium tubes. The response of the CFRP tubes during impact was modelled using Abaqus finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.

  8. 78 FR 34340 - Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Preliminary Results of...

    Science.gov (United States)

    2013-06-07

    ... Order; Welded Carbon Steel Standard Pipe and Tube Products from Turkey, 51 FR 17784 (May 15, 1986). The... International Trade Administration Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Preliminary... antidumping duty order on welded carbon steel standard pipe and tube products (welded pipe and tube)...

  9. Local Field Effects in the Energy Transfer between a Chromophore and a Carbon Nanotube : a Single Nano-compound Investigation.

    OpenAIRE

    Roquelet, Cyrielle; Vialla, Fabien; Diederichs, Carole; Roussignol, Philippe; Delalande, Claude; Deleporte, Emmanuelle; Lauret, Jean-Sébastien; Voisin, Christophe

    2012-01-01

    Energy transfer in non-covalently bound porphyrin / carbon nanotube compounds is investigated at the single nano-compound scale. Excitation spectroscopy of the luminescence of the nanotube shows two resonances arising from intrinsic excitation of the nanotube and from energy transfer from the porphyrin. Polarization diagrams show that both resonances are highly anisotropic with a preferred direction along the tube axis. The energy transfer is thus strongly anisotropic despite the almost isotr...

  10. The investigation of the diameter dimension effect on the Si nano-tube transistors

    OpenAIRE

    M.-H. Liao; C.-H. Yeh; C.-C. Lee; C.-P. Wang

    2016-01-01

    The vertical gate-all-around (V-GAA) Si nano-tube (NT) devices with different diameter dimensions are studied in this work with the promising device performance. The V-GAA structure makes the transistor easy to be scaled down continuously to meet the complementary metal-oxide-semiconductor (CMOS) scaling requirements of the 7/10 nm technology node and beyond. The Si NT device with the hollow structure is demonstrated to have the capability to “deplete” and “screen-out” the out-of gate control...

  11. Method of producing carbon coated nano- and micron-scale particles

    Science.gov (United States)

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  12. The demonstration of the Si nano-tube device with the promising short channel control

    Science.gov (United States)

    Liao, M.-H.; Chen, P.-G.

    2015-10-01

    In addition to the development of the nano-wire device, the vertical gate-all-around (V-GAA) Si nano-tube (NT) device structure is proposed with the promising device performance in this work. The vertical device structure makes the transistor easy to be scaled down continuously to meet the complementary metal-oxide-semiconductor scaling needs of the 10/7 nm technology node and beyond. The NT device with the center hollow structure has the capability to deplete the out-of gate control carriers in the center of the nano-wire device and further results in the better device short channel control. Based on the simulation data, the V-GAA Si NT device can keep the Ion-state current the same and reduce the Ioff-state stand-by power. With the demonstration of the promising device performance, the proposed V-GAA Si NT device can be regarded as one of the most promising candidates for the future application of the sub-10/7 nm logic device.

  13. Synthesis of Vanadium Oxide Nano tubes From V2O5 Gel Via An Ultrasonic and Hydrothermal Method

    International Nuclear Information System (INIS)

    Vanadium oxide nano tubes have been prepared by using two types of amine, hexadecenylamine and hexylamine. The amines and V2O5.nH2O gel were combined via ultrasonic method for better mixing and distribution. This was followed by one- step hydrothermal treatment between 1 to 7 days. The main objective of the study is to produce good quality VOX-NTS at the fastest synthesis time. Well-developed vanadium oxide nano tubes using hexadecenylamine template were obtained with just two days of hydrothermal treatment. (author)

  14. Chirality in MoS2 nano tubes studied by molecular dynamics simulation and images of high resolution microscopy

    International Nuclear Information System (INIS)

    The nano tubes is a new material intensely studied from 1991 due to their characteristics that are the result of their nano metric size and of the associated quantum effects. Great part of these investigations have been focused to the characterization, modelling and computerized simulation, in order to studying its properties and possible behavior without necessity of the real manipulation of the material. The obtention of the structural properties in the different forms of particles of nano metric dimensions observed in the Transmission Electron Microscope is of great aid to study them mesoscopic characteristic of the material. (Author)

  15. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhigang; Burugapalli, Krishna; Moussy, Francis [Brunel Institute for Bioengineering, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Song, Wenhui [Wolfson Centre for Materials Processing, Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Li Yali; Zhong Xiaohua, E-mail: wenhui.song@brunel.ac.uk [School of Materials Science and Engineering, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300073 (China)

    2010-04-23

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 {mu}m in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 deg. C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 {mu}M. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  16. A nano universal joint made from curved double-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Kun; Cai, Haifang; Shi, Jiao [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Qin, Qing H., E-mail: Qinghua.qin@anu.edu.au [Research School of Engineering, the Australian National University, Acton, Australian Capital Territory 2601 (Australia)

    2015-06-15

    A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors are investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp{sup 1} or sp{sup 2} atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp{sup 1} carbon atoms. When they become the new sp{sup 2} atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp{sup 2} atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.

  17. A nano universal joint made from curved double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors are investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp1 or sp2 atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp1 carbon atoms. When they become the new sp2 atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp2 atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor

  18. A nano universal joint made from curved double-walled carbon nanotubes

    Science.gov (United States)

    Cai, Kun; Cai, Haifang; Shi, Jiao; Qin, Qing H.

    2015-06-01

    A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors are investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp1 or sp2 atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp1 carbon atoms. When they become the new sp2 atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp2 atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.

  19. Synthesis of carbon nano structures by plasma discharge

    International Nuclear Information System (INIS)

    Due to the great quantity of applications of carbon neocarcinostatin (NEC) in diverse areas like: synthesis of super-resistant materials, hydrogen storage, nano sensors generation and nano catalysts, one has seen the necessity to generate new synthesis processes of these materials as well as to already improve those existent. The present work has as objective to optimize the NEC synthesis process by means of the electric arc method which uses alternating current to high frequencies (HF), obtaining relatively clean products; that is to say, it hardly presents amorphous material neither impurities. They stand out the obtaining of carbon nano fibers (NFC) by means of a luminescent-arc discharge, in a gas mixture He-CH4 with 34% at.Ni/10.32%at.Y like catalyst; to a frequency of 42 k Hz and low power (300 W). This method benefits the agglomeration of the particles in both electrodes due to the high frequencies. The time of duration of the process oscillates between 5 and 20 minutes. The obtained product was characterized by scanning electron microscopy (MEB), transmission electron microscopy (MET) to determine the type of obtained NEC and by X-ray diffraction analysis and Raman spectroscopy to determine the purity of the samples. The NFC are relatively free of amorphous coal. The surface and structural analysis indicates that the fibers have a half diameter of 80 nm. It is also made, a study by optical emission spectroscopy of the plasma using the Swan band to determine the temperature. (Author)

  20. Plasma-enhanced Deposition of Nano-Structured Carbon Films

    Institute of Scientific and Technical Information of China (English)

    Yang Qiaoqin (杨巧勤); Xiao Chijin (肖持进); A. Hirose

    2005-01-01

    By pre-treating substrate with different methods and patterning the catalyst, selective and patterned growth of diamond and graphitic nano-structured carbon films have been realized through DC Plasma-Enhanced Hot Filament Chemical Vapor Deposition (PE-HFCVD).Through two-step processing in an HFCVD reactor, novel nano-structured composite diamond films containing a nanocrystalline diamond layer on the top of a nanocone diamond layer have been synthesized. Well-aligned carbon nanotubes, diamond and graphitic carbon nanocones with controllable alignment orientations have been synthesized by using PE-HFCVD. The orientation of the nanostructures can be controlled by adjusting the working pressure. In a Microwave Plasma Enhanced Chemical Vapor Deposition (MW-PECVD) reactor, high-quality diamond films have been synthesized at low temperatures (310 ℃~550 ℃) without adding oxygen or halogen gas in a newly developed processing technique. In this process, carbon source originates from graphite etching, instead of hydrocarbon. The lowest growth temperature for the growth of nanocrystalline diamond films with a reasonable growth rate without addition of oxygen or halogen is 260 ℃.

  1. Microstructural and Photoelectrochemical Properties of Gap-TiO2 Nano tubes

    International Nuclear Information System (INIS)

    GaP/ TiO2/ Ti arrays have been prepared via anodization of Ti foil and electrodeposition of GaP. TiO2 nano tubes (TNT) were grown from a Ti foil by direct anodic oxidation using 0.5M phosphoric acid and 0.14 M NaF as electrolyte at 20 V for 45 min. Various concentrations aqueous solution of Ga(NO3)3 were used to deposit GaP nanoparticles onto the TNT in the electrodeposition step. Morphology and microstructure of GaP/ TNT were investigated by FESEM and XRD techniques. In addition the photocurrent of the GaP/ TNT were also investigated. It was found that the amount of GaP deposited on TNT considerably improved the efficiency of TNT as photo anode for photoelectrochemical applications. (author)

  2. Synthesis of Carbon nano structures by plasma discharge

    International Nuclear Information System (INIS)

    Due to the great quantity of applications of the carbon nano structures (NEC) in diverse areas like: synthesis of super-resistant materials, hydrogen storage, nano sensors generation and nano catalysts, it has seen the necessity to generate new processes of synthesis of this materials as well as to already improve those existent. The present work has as objective to optimize the NEC synthesis process by means of the electric arc method which uses alternating current to high frequencies (HF), obtaining relatively clean products; that is to say, it hardly presents amorphous material neither sludges. They stand out the obtaining of carbon nano fibers (NFC) by means of a luminescent-arch discharge, in a gas mixture of He-CH4 with 34% at. Ni/10.32% at.Y like catalyst; at a frequency of 42 kHz and low power (300 W). This method benefits the amass of the particles in both electrodes due to the high frequencies. The time of duration of the process oscillates between 5 and 20 minutes. The obtained product was characterized by scanning electron microscopy (MEB), transmission electron microscopy (MET) to determine the NEC type obtained and by X-ray diffraction analysis and Raman spectroscopy for determining the purity of the samples. The NFC is relatively free of amorphous coal. The surface and structural analysis indicates that the fibers have a half diameter of 80 nm. It is also made, a study by optical emission spectroscopy of plasma using the Swan band for determining the temperature. (Author)

  3. Water-Driven Assembly of Laser Ablation-Induced Au Condensates as Mesomorphic Nano- and Micro-Tubes

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2009-01-01

    Full Text Available Abstract Reddish Au condensates, predominant atom clusters and minor amount of multiply twinned particles and fcc nanoparticles with internal compressive stress, were produced by pulsed laser ablation on gold target in de-ionized water under a very high power density. Such condensates were self-assembled as lamellae and then nano- to micro-diameter tubes with multiple walls when aged at room temperature in water for up to 40 days. The nano- and micro-tubes have a lamellar- and relaxed fcc-type wall, respectively, both following partial epitaxial relationship with the co-existing multiply twinned nanoparticles. The entangled tubes, being mesomorphic with a large extent of bifurcation, flexibility, opaqueness, and surface-enhanced Raman scattering, may have potential encapsulated and catalytic/label applications in biomedical systems.

  4. Nano-engineered composites: interlayer carbon nanotubes effect

    International Nuclear Information System (INIS)

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with ≈ 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  5. Nano-engineered composites: interlayer carbon nanotubes effect

    Directory of Open Access Journals (Sweden)

    Glaucio Carley

    2013-06-01

    Full Text Available The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with ≈ 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed.

  6. Nano-engineered composites: interlayer carbon nanotubes effect

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Glaucio, E-mail: carleyone@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Geraldo, Viviany; Oliveira, Sergio de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Avila, Antonio Ferreira [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica

    2013-11-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with Almost-Equal-To 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  7. Synthesis, characterization and application of functional carbon nano materials

    Science.gov (United States)

    Chu, Jin

    The synthesis, characterizations and applications of carbon nanomaterials, including carbon nanorods, carbon nanosheets, carbon nanohoneycombs and carbon nanotubes were demonstrated. Different growth techniques such as pulsed laser deposition, DC/RF sputtering, hot filament physical vapour deposition, evaporative casting and vacuum filtration methods were introduced or applied for synthesizing carbon nanomaterials. The morphology, chemical compositions, bond structures, electronic, mechanical and sensing properties of the obtained samples were investigated. Tilted well-aligned carbon micro- and nano- hybrid rods were fabricated on Si at different substrate temperatures and incident angles of carbon source beam using the hot filament physical vapour deposition technique. The morphologic surfaces and bond structures of the oblique carbon rod-like structures were investigated by scanning electron microscopy, field emission scanning electron microscopy, transmission electron diffraction and Raman scattering spectroscopy. The field emission behaviour of the fabricated samples was also tested. Carbon nanosheets and nanohoneycombs were also synthesized on Si substrates using a hot filament physical vapor deposition technique under methane ambient and vacuum, respectively. The four-point Au electrodes are then sputtered on the surface of the nanostructured carbon films to form prototypical humidity sensors. The sensing properties of prototypical sensors at different temperature, humidity, direct current, and alternative current voltage were characterized. Linear sensing response of sensors to relative humidity ranging from 11% to 95% is observed at room temperature. Experimental data indicate that the carbon nanosheets based sensors exhibit an excellent reversible behavior and long-term stability. It also has higher response than that of the humidity sensor with carbon nanohoneycombs materials. Conducting composite films containing carbon nanotubes (CNTs) were prepared in

  8. Carbon nanotube vacuum gauges utilizing long, dissipative tubes

    Science.gov (United States)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-04-01

    A carbon nanotube-based thermal conductivity vacuum gauge is described which utilizes 5-10 μm long diffusively contacted SWNTs for vacuum sensing. By etching the thermal SiO II beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward higher vacuums. The pressure response of unannealed and annealed devices was compared to that of released devices. The released devices showed sensitivity to pressure as low as 1 x 10 -6 Torr. The sensitivity increased more dramatically with power for the released device compared to that of the unreleased device. Low temperature electronic transport measurements of the tubes were suggestive of a thermally activated hopping mechanism where the activation energy for hopping was calculated to be ~ 39 meV.

  9. Plume diagnostics and room-temperature deposition of carbon nanotubes and nano-onions at 248 nm

    International Nuclear Information System (INIS)

    We report on the deposition of carbon nanotubes and nano-onions at room temperature using excimer laser radiation at 248 nm to ablate mixed graphite-nickel/cobalt targets in the presence of O2 gas. The carbon nanotubes are frequently seen to connect individual onions and have a wall thickness on the order of 20-25 nm, with an overall external tube diameter of 100-200 nm. These tubes have notably large channel diameters and are significantly larger than typically reported single and multi-walled carbon nanotubes. The observed onion structures are both single and clustered and are 100-200 nm in diameter. Ablation of the same targets in comparable pressures of Ar does not result in these nanostructures but instead produces amorphous carbon. Ablating a pure graphite target under the same laser conditions, with or without metal, also does not yield the tubes and onions. In-situ time-resolved emission spectroscopy has been used to follow the emission from molecular carbon such as C2, as well as metals such as Ni or Co in the different ambients

  10. Generation of coherent attosecond pulses from a nano-tube array illuminated by a high-power femtosecond laser

    International Nuclear Information System (INIS)

    A method to generate an isolated single-cycle attosecond pulse from the interaction of a high-power femtosecond laser pulse with a nano-tube array is demonstrated using a two-dimensional relativistic particle-in-cell simulation. The radiation mechanism is relativistic nonlinear Thomson scattering from the electrons in a target material. Coherent radiation is emitted in the direction of specular reflection for the incident laser pulse while the electrons make a bunch size smaller than a wavelength of the laser pulse. Maintaining the coherence of the radiation from the electrons is essential to get an intense attosecond duration, which is achieved by using a nano-tube array target and a sharply increasing laser pulse. Optimal conditions for attosecond pulse generation are investigated by parameter scanning over plasma density, target thickness and laser pulse duration. (paper)

  11. The investigation of the diameter dimension effect on the Si nano-tube transistors

    Science.gov (United States)

    Liao, M.-H.; Yeh, C.-H.; Lee, C.-C.; Wang, C.-P.

    2016-03-01

    The vertical gate-all-around (V-GAA) Si nano-tube (NT) devices with different diameter dimensions are studied in this work with the promising device performance. The V-GAA structure makes the transistor easy to be scaled down continuously to meet the complementary metal-oxide-semiconductor (CMOS) scaling requirements of the 7/10 nm technology node and beyond. The Si NT device with the hollow structure is demonstrated to have the capability to "deplete" and "screen-out" the out-of gate control carriers in the center of the NT and further result in the better device short channel control. Based on the study in this work, the V-GAA Si NT device with the optimized diameter dimension (=20 nm) can benefit the Ion-state current and reduce the Ioff-state stand-by power simultaneously, due to the less surface roughness scattering and the better short channel control characteristics. The proposed V-GAA Si NT device is regarded as one of the most promising candidates for the future application of the sub-7/10 nm logic era.

  12. The cooling performance of SiC/water nano fluid during reflood heat transfer in a long vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Man; Lee, Seung Won; Bang, In Cheol [UNIST, Ulasn, (Korea, Republic of)

    2012-10-15

    Many researchers have been trying to create new kinds of heat transfer fluids in order to enhance the heat transfer performance of the base fluids. Nano fluids as new kinds of heat transfer fluids are a new class of nano technology based heat transfer fluids engineered by dispersing nanoparticles into conventional heat transfer fluids such as water, ethylene glycol, and engine oil. Most of the studies on a heat transfer of nano fluids have been concentrated on the nucleate boiling region and the C HF phenomenon. A quenching phenomenon is important for analysis of the reflood phase associated with the emergency cooling in water cooled nuclear reactor core under a loss of coolant accident and the reflood is happened when water refills the reactor vessel and quenches the fuel rod at the time of the severe accident in nuclear power plant. The use of other fluids instead of water for the quenching experiment in the sphere and rod let specimens has been investigated by many researchers. In this work, we have observed a quenching phenomenon of a hot vertical tube during a reflood using SiC/water nano fluid as a coolant, instead of water. Experiments were conducted to investigate the effect of SiC/water nano fluid on reflood heat transfer in a long vertical tube. The cause selecting SiC nanoparticles is that applying SiC as a cladding material for a light water nuclear reactor is considering because the resistance of SiC to the high-temperature and high radiation environment is good. 0.01 volume fraction (%) SiC/water nano fluid was prepared by two step method.

  13. Enhanced field emission from nano-graphite coated carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    LI Qintao; NI Zhichun; GONG Jinlong; ZHU Dezhang; ZHU Zhiyuan

    2007-01-01

    An effective method by low energy carbonhydrogen ion treatment to enhance field emission of the carbon nanotubes (CNTs) is demonstrated. Comparing with control, field emission (FE) currents of the CNTs by carbonhydrogen ion irradiation increased, and the turn-on field and the threshold field decreased significantly. The structure characteristic revealed by transmission electron microscopy demonstrates that CNTs are coated by nano-graphite particles after being treated with low energy carbonhydrogen ion and that there are large quantities of defects and grain boundaries in the coated layer. It is considered that the coating layer can decrease the effective surface work function of CNTs and correspondingly increase field emission. In addition, the defects, the grain boundaries and the C-H dipoles forming in the process of the low energy ions irradiation can effectively enhance the field emission.

  14. Water-triggered luminescent "nano-bombs" based on supra-(carbon nanodots).

    Science.gov (United States)

    Lou, Qing; Qu, Songnan; Jing, Pengtao; Ji, Wenyu; Li, Di; Cao, Junsheng; Zhang, Hong; Liu, Lei; Zhao, Jialong; Shen, Dezhen

    2015-02-25

    Novel luminescent "nano-bombs" based on a self-assembled system of carbon-nanodots, termed supra-CDs, are developed. The luminescence of these luminescent "nano-bombs" depends strongly on water contact; they show weak emission in toluene and decompose in contact with water, resulting in strong photoluminescence. Paper coated with these "nano-bombs" is successfully applied for water-jet printing of luminescence patterns and the mapping of human sweat-pore patterns. PMID:25447963

  15. 75 FR 33578 - Certain Welded Carbon Steel Standard Pipes and Tubes from India: Preliminary Results of...

    Science.gov (United States)

    2010-06-14

    ... FR 20278 (May 1, 2009). On June 24, 2009, in response to a request from the Wheatland Tube Company... Antidumping Duty Order; Certain Welded Carbon Steel Standard Pipes and Tubes from India, 51 FR 17384 (May 12... Tubes from India, 51 FR 17384 (May 12, 1986). On May 1, 2009, the Department published in the...

  16. Synthesis and characterization of carbon nano fibers for its application in the adsorption of toxic gases

    International Nuclear Information System (INIS)

    The production of carbon nano fibers (CNF's) by diverse techniques as the electric arc, laser ablation, or chemical deposition in vapor phase, among other, they have been so far used from final of the 90's. However, the synthesis method by discharge Glow arc of alternating current and high frequency developed by Pacheco and collaborators, is a once alternative for its obtaining. In the plasma Application Laboratory (LAP) of the National Institute of Nuclear Research (INlN) it was designed and manufactured a reactor of alternating current and high frequency that produces a Glow arc able to synthesize carbon nano fibers. Its were carried out nano fibers synthesis with different catalysts to different proportions and with distinct conditions of vacuum pressure and methane flow until obtaining the best nano fibers samples and for it, this nano structures were characterized by Scanning and Transmission Electron Microscopy, X-ray Diffraction, Raman spectrometry and EDS spectrometry. Once found the optimal conditions for the nano fibers production its were contaminated with NO2 toxic gas and it was determined if they present adsorption, for it was used the thermal gravimetric analysis technique. This work is divided in three parts, in the first one, conformed by the chapters 1, at the 3, they are considered the foundations of the carbon nano fibers, their history, their characteristics, growth mechanisms, synthesis techniques, the thermal gravimetric analysis principles and the adsorption properties of the nano fibers. In the second part, consistent of the chapters 4 and 5, the methodology of synthesis and characterization of the nano fibers is provided. Finally, in third part its were carried out the activation energy calculation, the adsorption of the CNF's is analyzed and the conclusions are carried out. The present study evaluates the adsorption of environmental gas pollutants as the nitrogen oxides on carbon nano fibers at environmental or near conditions. Also, they

  17. Water-Triggered Luminescent "Nano-bombs" Based on Supra-(Carbon Nanodots)

    NARCIS (Netherlands)

    Q. Lou; S. Qu; P. Jing; W. Ji; D. Li; J. Cao; H. Zhang; L. Liu; J. Zhao; D. Shen

    2015-01-01

    Novel luminescent "nano-bombs" based on a self-assembled system of carbon-nanodots, termed supra-CDs, are developed. The luminescence of these luminescent "nano-bombs" depends strongly on water contact; they show weak emission in toluene and decompose in contact with water, resulting in strong photo

  18. Nano-porous carbide derived carbon with tunable pore size: synthesis and energy-related applications

    International Nuclear Information System (INIS)

    The large surface area and adjustable internal surface chemistry of porous carbons are attractive for a wide range of energy applications, including gas separation and storage, high power super-capacitors and lithium ion batteries. Major efforts in the field have been directed toward control of pore size, shape and uniformity, and total pore volume. Here we demonstrate that pore size can be precisely tuned with sub-Angstroms accuracy over a 0.5-3.0 nm range by preferentially removing metals from metal carbides. This is achieved by 'burning out' the metals (and metalloids) in halogen atmospheres at modest temperatures. The resulting carbide-derived carbon (CDC) retains the original shape of the carbide and shows linear reaction kinetics, allowing conversion of a carbide surface to a CDC layer of any thickness, including the entire monolith, film or particle. CDCs produced from binary and ternary carbides have been investigated, and specific surface areas (SSA) in excess of 2000 m2/g have been achieved. Pore size is determined by the structure and chemistry of the precursor, and by process parameters including temperature and composition of the reaction mixture. Most CDCs show smaller and more uniform pores when processed below 400-800 C, while larger and less uniform pores are found at 600-1200 C. Some CDCs (e.g. from B4C) have relatively broad pore size distributions, including meso-pores, even when processed at low temperatures. In contrast, other CDCs, e.g from SiC maintain a narrow distribution up to 1200 C. CDC microstructures become more ordered, evolving from amorphous to graphitic, with increasing process temperature. Other carbon forms, e.g. nano-tubes, onions, and nanocrystalline diamonds have also been obtained as CDC. The ability to fine tune the pore size, and independently to control the microstructure and surface termination, offers unique opportunities for parametric studies of gas sorption and desorption phenomena. Our recent studies show that pores

  19. A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters

    Science.gov (United States)

    Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2012-05-01

    A vacuum-sealed miniature X-ray tube based on a carbon nanotube field-emission electron source has been demonstrated. The diameter of the X-ray tube is 10 mm; the total length of the tube is 50 mm, and no external vacuum pump is required for the operation. The maximum tube voltage reaches up to 70 kV, and the X-ray tube generates intense X-rays with the air kerma strength of 108 Gy·cm2 min-1. In addition, X-rays produced from the miniature X-ray tube have a comparatively uniform spatial dose distribution.

  20. 78 FR 49255 - Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Partial Rescission of...

    Science.gov (United States)

    2013-08-13

    ... Request for Revocation in Part, 78 FR 38924 (June 28, 2013). On July 25, 2013, Petitioner withdrew its... International Trade Administration Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Partial... certain circular welded carbon steel pipes and tubes from Taiwan. The period of review (POR) is May...

  1. 75 FR 18788 - Circular Welded Carbon Steel Pipes and Tubes from Thailand: Preliminary Results and Rescission...

    Science.gov (United States)

    2010-04-13

    ...: Circular Welded Carbon Steel Pipes and Tubes from Thailand, 51 FR 8341 (March 11, 1986). On March 2, 2009... Shipper Review Final Results, 75 FR at 4529-4530 (January 28, 2010). Allied Tube responded to Pacific Pipe... Review, 73 FR 61019 (October 15, 2008) (2006-2007 AR Final Results); see Circular Welded Carbon...

  2. Preparation, characterization and applications of functionalized carbon nano-onions

    Science.gov (United States)

    Sreeramoju, Mahendra K.

    Carbon nano-onions (CNOs) discovered by Ugarte in 1992 are multi-layered fullerenes that are spherical analogs of multi-walled carbon nanotubes with diameters varying from 6 nm to 30 nm. Among the various methods of synthesis, CNOs prepared by graphitization of nanodiamonds (N-CNOs) and underwater electric arc of graphite rods (A-CNOs) are the subject of our research. N-CNOs are considered as more reactive than A-CNOs due to their smaller size, high curvature and surface defects. This dissertation focuses on structural analysis and surface functionalization of NCNOs with diameters ranging from 6---10 nm. Synthetic approaches such as oleumassisted oxidation, Freidel-Crafts acylation and Billups reductive alkylation were used to functionalize N-CNOs to improve their dispersion properties in aqueous and organic solvents. Functionalized N-CNOs were characterized using various techniques such as TGA, TG-MS, Raman spectroscopy and pH-titrimetry. We designed an experimental method to isolate polycyclic aromatic adsorbates formed on the surface of oleum oxidized N-CNOs (ON-CNOs) and characterized them. A-CNOs, on the other hand are bigger than N-CNOs with diameters ranging from 20---40 nm. In this dissertation, we discuss the preparation of graphene structures by unzipping of A-CNOs using KMnO4 as oxidizing agent. These graphene structures were characterized using powder X-ray diffraction, TGA, BET nitrogen adsorption/desorption studies and compressed powder conductivity. This dissertation also focuses on lithiation/delithiation studies of N-CNOs, ACNOs and A-CNO-derived graphene structures to use them as negative electrode materials in lithium-ion batteries. The cycling performances of these materials at a charge/discharge rate of C/10 were discussed. The cycling performance of N-CNOs was tested at faster charge/discharge rate of C. KEYWORDS: Nano-onions, oleum-assisted oxidation, Friedel-Crafts acylation, graphene, lithium ion batteries.

  3. Nano-coatings on carbon structures for interfacial modification

    Science.gov (United States)

    Pulikollu, Rajasekhar V.

    Surface modification of materials is a rapidly growing field as structures become smaller, more integrated and complex. It opens up the possibility of combining the optimum bulk properties of a material with optimized surface properties such as enhanced bonding, corrosion resistance, reactivity, stress transfer, and thermal, optical or electrical behavior. Therefore, surface functionalization or modification can be an enabling step in a wide variety of modern applications. In this dissertation several surface modification approaches on carbon foam and carbon nano-fibers will be discussed. These are recently developed sp2 graphitic carbon based structures that have significant potential in aerospace, automotive and thermal applications. Influence of surface modification on composite formation and properties have also been investigated. Two types of property changes have been investigated: one for enhancing the surface reactivity and another for surface inertness. Characterization techniques such as X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Contact Angle Measurement, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and mechanical testing are used in this study to find out the influence of these coatings on surface composition, chemistry and morphology. Mechanical testing has been performed on composites and stand alone foam to study the influence of surface modification on physical and mechanical properties of the composite materials. The effectiveness of these coatings on metallic/graphite interface has also been investigated for metal-matrix composite related applications. Additionally, the influence of plasma coatings on nucleation and growth of nanotubes on larger carbon structures (to produce multiscale, multifunctional materials) have also been studied. It is seen that the liquid phase activation treatment introduces oxygen functional groups on the surface, but may cause severe enough degradation that

  4. Electron emission from nano-structured carbon films fabricated by hot-filament chemical-vapor deposition and microwave plasma-enhanced chemical vapor deposition

    CERN Document Server

    Park, K H; Lee, K M; Oh, S G; Lee, S I; Koh, K H

    2000-01-01

    The electron-emission characteristics of nano-structured carbon films fabricated by using the HFCVD (hot- filament chemical-vapor deposition) and the MPECVD (microwave plasma-enhanced chemical-vapor deposition) methods with a metal catalyst are presented. According to our observation, neither the formation nor the alignment of nano tubes is absolutely necessary to realize carbon-based electron emitters. However, utilization of chrome as an interlayer between Si substrates and metal catalyst particles results in a great improvement in the emission characteristics and the mechanical stability. Also, fabrication of good electron-emitting carbon films on glass substrates, with sputter-deposited chrome electrodes,at a nominal temperature approx 615 .deg. C was demonstrated.

  5. Decorating multiwalled carbon nanotubes with zinc oxide nano-crystallines through hydrothermal growth process

    Institute of Scientific and Technical Information of China (English)

    LI ChenSha; QIAO YingJie; LI YuMing

    2012-01-01

    Multiwalled-carbon nanotubes coated with nano-crystalline zinc oxide (ZnO) was prepared by in situ growth of nano zinc oxide on the surfaces of carbon nanotubes through hydrothermal method.X-ray diffraction,transmission electron microscopy and scanning electron microscopy analysis techniques were used to characterize the samples.It was observed that a layer of nano-crystalline ZnO with the wurtzite hexagonal crystal structure was uniformly coated on the nanotube surfaces with good adhesion,which resulted in the formation of a novel ZnO-nanotube nano composite.In this work,the carbon nanotubes decorated by metal oxide nanoparticles were synthesized by a simple chemical-solution route which is suitable for the large-scale production with low cost.

  6. 76 FR 66893 - Certain Circular Welded Carbon Steel Pipes and Tubes From India, Thailand, and Turkey; Final...

    Science.gov (United States)

    2011-10-28

    ..., 75 FR 69626, 69627 (November 15, 2010). Thailand--Welded Carbon Steel Pipe and Tube (A-549-502) The.... See Scope Rulings, 58 FR 27542, (May 10, 1993). Turkey--Welded Carbon Steel Pipe and Tube (A-489-501... Tubes from India, 51 FR 17384 (May 12, 1986); Antidumping Duty Order; Circular Welded Carbon Steel...

  7. 76 FR 64900 - Welded Carbon Steel Pipe and Tube From Turkey: Final Results of Expedited Sunset Review of...

    Science.gov (United States)

    2011-10-19

    ... International Trade Administration Welded Carbon Steel Pipe and Tube From Turkey: Final Results of Expedited...) initiated a sunset review of the countervailing duty order (CVD) on welded carbon steel pipe and tube from... CVD order on welded carbon steel pipe and tube from Turkey was published in the Federal Register...

  8. 76 FR 33204 - Certain Welded Carbon Steel Pipe and Tube From Turkey; Notice of Preliminary Results of...

    Science.gov (United States)

    2011-06-08

    ... Order; Welded Carbon Steel Standard Pipe and Tube Products From Turkey, 51 FR 17784 (May 15, 1986... Carbon Steel Pipe and Tube from Turkey, 71 FR 26043 (May 3, 2006), unchanged in Notice of Final Results of Antidumping Duty New Shipper Review: Certain Welded Carbon Steel Pipe and Tube From Turkey, 71...

  9. 78 FR 79665 - Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Final Results of Antidumping...

    Science.gov (United States)

    2013-12-31

    ... Antidumping Duty Order; Welded Carbon Steel Standard Pipe and Tube Products From Turkey, 51 FR 17784, 17784... International Trade Administration Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Final... administrative review of the antidumping duty order on welded carbon steel standard pipe and tube...

  10. Surface Modification of Exfoliated Graphite Nano-Reinforcements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nano forms of graphite and carbon, such as flakes, worms, and tubes, can significantly modify the properties of polymers when used as reinforcements. Challenges...

  11. Properties of carbon deposits on tungsten nano-structure

    International Nuclear Information System (INIS)

    C deposition characteristics on W nano-structure by two different deposition methods are investigated to study C deposition mechanisms on W nano-structure and its characteristics. The two methods were as follows: irradiation by mixed D and C ion beam, and deposition by magnetron sputtering. Differences on deposition condition such as deposition temperature, incident species and energy affected properties of C deposits. Structure of C deposits was investigated by SEM and Raman spectroscopy. D retention properties were investigated by thermal desorption spectroscopy. It was found that C deposits on nano-structured surface have low internal stress and porous structure compared with C deposits on flat surfaces. Increase of CD4 release from C deposition layers on nano-structured surface was investigated by TDS. These results showed the effects of nano-structure on structure and thermal desorption properties of C deposits

  12. 碳-蒙脱石二维纳米复合粉体制备与提纯%Preparation and Purify of Carbon-Montmorillonite Nano-composite Particles with Two-dimensional Structure

    Institute of Scientific and Technical Information of China (English)

    张泽朋; 汤加伦; 廖立兵; 杜高翔

    2013-01-01

    The preparation of montmorillonite -polyvinyl alcohol (PVA) nano-composite particles and formation of corresponding carbon -montmorillonite nano-composite particles with nano-sheet and nano-tube structures were investigated. The montmorillonite-PVA nano-composite particles were prepared by solution intercalation combined with ultrasonic radiation and mechanical stirring. The results show that the nano-composite particles with d(001)=2.11 run are successfully obtained with optimum mass ratio of montmorillonite, PVA and H2O(5:5:90).The carbon-montmorillonite nano-composite particles (d(001)=1.56nm)with sandwich structure are prepared by carbonizing montmorillonite -PVA nano-composite particles at 400 ℃, and carbon-montmorillonite nano-sheets or nano-tubes with carbon mass fraction of 6% are obtained by exfoliating sandwich-like composites by airflow pulverization. The average diameter and thickness of the carbon -montmorillonite nano-sheets is about 2 μm and 30 nm, respectively. Different tablet diameter of carbon -montmorillonite two-dimensional nano-particles can be extracted by gradient centrifugation.%以聚乙烯醇、钙基蒙脱石为原料,通过溶液插层、碳化和气流粉碎工艺和技术制备碳-蒙脱石二维纳米粉体.物相和粒径分析结果表明:在钙基蒙脱石、聚乙烯醇、水的质量比为5∶5∶90的反应体系中,获得层间距d(001)=2.11 nm的聚乙烯醇-蒙脱石插层型复合粉体;400℃碳化该复合粉体获得具有三明治结构特征的碳-蒙脱石复合粉体(d(001)=1.56 nm);将碳-蒙脱石复合粉体气流粉碎可得含碳质量分数为6%左右,平均片径约为2 μm,厚度小于30 nm的碳-蒙脱石二维纳米粉体,以管状、单片和多片层堆积等形态存在于体系中.通过梯度离心分离法可以提取不同片径的碳-蒙脱石二维纳米复合粉体.

  13. Pico-nano bubble column flotation using static mixer-venturi tube for Pittsburgh No. 8 coal seam

    Institute of Scientific and Technical Information of China (English)

    Peng Felicia F.; Yu Xiong

    2015-01-01

    The flotation process is a particle-hydrophobic surface-based separation technique. To improve the essential flotation steps of collision and attachment probabilities, and reduce the step of detachment probabilities between air bubbles and hydrophobic particles, a selectively designed cavitation venturi tube combined with a static mixer can be used to generate very high numbers of pico and nano bubbles in a flotation column. Fully embraced by those high numbers of tiny bubbles, hydrophobic particles readily attract the tiny bubbles to their surfaces. The results of column flotation of Pittsburgh No. 8 seam coal are obtained in a 5.08 cm ID and 162 cm height flotation column equipped with a static mixer and cavitation venturi tube, using kerosene as collector and MIBC as frother. Design of the experimental procedure is combined with a statistical two-stepwise analysis to determine the optimal operating conditions for maximum recovery at a specified grade. The effect of independent variables on the responses has been explained. Combustible material recovery of 85–90% at clean coal product of 10–11%ash is obtained from feed of 29.6%ash, with a much-reduced amount of frother and collector than that used in conventional column flotation. The column flotation process utilizing pico and nano bubbles can also be extended to the lower limit and upper limit of particle size ranges, minus 75 lm and 300–600 lm, respectively, for better recovery.

  14. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    Science.gov (United States)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2015-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  15. ABOUT MECHANISM OF STRUCTURE FORMATION OF PARTICULAR SOLID CARBONIC PHASE IN NANOCOMPOSITE ON THE BASIS OF IRON AND NANO-DISPERSE CARBON

    OpenAIRE

    D. V. Kuis; N. A. Svidunovich; G. P. Okatova; V. S. Urbanovich; V. M. Oichenko

    2016-01-01

    The mechanism of structure formation in super-solid carbon phase in nanocomposite on the basis of iron and nano-disperse carbon, which can be used at development of technology and composition of creation of new materials using inexpensive nano-carbon materials is offered.

  16. ABOUT MECHANISM OF STRUCTURE FORMATION OF PARTICULAR SOLID CARBONIC PHASE IN NANOCOMPOSITE ON THE BASIS OF IRON AND NANO-DISPERSE CARBON

    Directory of Open Access Journals (Sweden)

    D. V. Kuis

    2010-01-01

    Full Text Available The mechanism of structure formation in super-solid carbon phase in nanocomposite on the basis of iron and nano-disperse carbon, which can be used at development of technology and composition of creation of new materials using inexpensive nano-carbon materials is offered.

  17. Effects of deposited pyrolytic carbon on some mechanical properties of zircaloy-4 tubes. Vol. 3

    International Nuclear Information System (INIS)

    Zircaloy cladding tubes are not compatible with the uranium fuel pellets as they suffer from failure due to pelletclad interaction (PCI). A carbon coating, as used in the canadian CANLUB fuel elements, is thought to improve the cladding performance with respect to the PCI problem. In this paper pyrolytic carbon coating was deposited on zircaloy-4 cladding tubes by the thermal cracking of commercial butant gas at the temperature range 250-450 degree C. In order to evaluate the effect of gaseous species on the mechanical properties of the tubes tensile and microhardness testing measurements were performed on samples prepared from the coated tubes. The fractured surface of the tensile zircaloy tubes and the deposited carbon coating, both, were examined by the SEM. The results of the tensile tests of zircaloy-4 tubes indicated that the coating process has insignificant effect on the ultimate strength of the tubes tested. The values of Vickers hardness numbers were not significantly changed across the tubes thickness. The microstructure of deposited carbon, due to the cracking process, was granular in all the temperature range (250-450 degree C) studied. 9 figs., 1 tab

  18. 77 FR 20782 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Preliminary Results of Antidumping...

    Science.gov (United States)

    2012-04-06

    ... investigation. See Antidumping Duty Order: Circular Welded Carbon Steel Pipes and Tubes From Thailand, 51 FR... Pipes and Tubes from Thailand, 51 FR 8341 (March 11, 1986). On March 1, 2011, the Department published a... Duty Order, Finding, or Suspended Investigation; Opportunity to Request Administrative Review, 76...

  19. 78 FR 34335 - Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Preliminary Results of...

    Science.gov (United States)

    2013-06-07

    ... of Antidumping Duties, 68 FR 23954 (May 6, 2003). Cash Deposit Requirements The following cash... Steel Pipes and Tubes From Taiwan: Antidumping Duty Order, 49 FR 19369 (May 7, 1984). These cash deposit... International Trade Administration Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan:...

  20. Nano silica modified carbon-phenolic composites for enhanced ablation resistance

    International Nuclear Information System (INIS)

    High ablation resistant carbon-phenolic (C-Ph) composites were fabricated by the addition of nano silica powder and tested under plasma arc jet at a flux of 2.5 MW m-2. Nano silica C-Ph composites exhibited much higher ablation resistance compared to conventional C-Ph composites under similar conditions. Microstructure and X-ray diffraction studies reveal that nano silica reacts with char at high-temperature, forming ablation resistant silicon carbide phase. The mechanism of in situ siliconization and the thermophysical properties of the C-Ph composites are discussed.

  1. Formation of carbon nano- and micro-structures on C+1 irradiated copper surfaces

    International Nuclear Information System (INIS)

    A series of experiments has identified mechanisms of carbon nano- and micro-structure formation at room temperature, without catalyst and in the environment of immiscible metallic surroundings. The structures include threaded nano fibres, graphitic sheets and carbon onions. Copper as substrate was used due to its immiscibility with carbon. Energetic carbon ions (C+1) of 0.2–2.0 MeV irradiated Cu targets. Cu substrates, apertures and 3 mm dia TEM Cu grids were implanted with the carbon. We observed wide range of μm-size structures formed on Cu grids and along the edges of the irradiated apertures. These are shown to be threaded nano fibers (TNF) of few μm thicknesses with lengths varying from 10 to 3000 μm. Secondary electron microscopy (SEM) identifies the μm-size structures while Confocal microscopy was used to learn about the mechanisms by which C+1 irradiated Cu provides the growth environment. Huge carbon onions of diameters ranging from hundreds of nm to μm were observed in the as-grown and annealed samples. Transformations of the nanostructures were observed under prolonged electron irradiations of SEM and TEM. A mechanism for the formation of carbon nano- and micro-structures is proposed.

  2. 77 FR 32508 - Circular Welded Carbon Steel Pipes and Tubes From Turkey: Notice of Preliminary Results of...

    Science.gov (United States)

    2012-06-01

    ... Order; Welded Carbon Steel Standard Pipe and Tube Products From Turkey, 51 FR 17784 (May 15, 1986..., 76 FR 33204, 33208 (June 8, 2011), unchanged in Certain Welded Carbon Steel Pipe and Tube From Turkey... Tube from Turkey; Notice of Preliminary Results of Antidumping Duty Administrative Review, 76 FR...

  3. 75 FR 33262 - Certain Welded Carbon Steel Pipe and Tube from Turkey: Notice of Preliminary Results of...

    Science.gov (United States)

    2010-06-11

    ... and Tube From Turkey, 74 FR 6368 (February 9, 2009), unchanged in Certain Welded Carbon Steel Pipe and Tube from Turkey: Notice of Final Results of Antidumping Duty Administrative Review, 74 FR 22883 (May... International Trade Administration Certain Welded Carbon Steel Pipe and Tube from Turkey: Notice of...

  4. Growth dynamics of inner tubes inside cobaltocene-filled single-walled carbon nanotubes

    Science.gov (United States)

    Kharlamova, M. V.; Kramberger, Christian; Saito, Takeshi; Shiozawa, Hidetsugu; Pichler, Thomas

    2016-08-01

    We have synthesized cobaltocene-filled 1.7-nm-mean diameter single-walled carbon nanotubes (SWCNTs) and transformed them into double-walled carbon nanotubes by annealing at temperatures between 500 and 1000 °C for 2 h in vacuum. We analyze the temperature-dependent inner tube growth inside the filled SWCNTs by Raman spectroscopy. The changes in intensity of the Raman peaks of inner tubes with the diameters ranging from 0.832 to 1.321 nm with increasing annealing temperature are traced. It is revealed that the growth temperatures of larger diameter inner tubes are higher than the ones of smaller diameter tubes. A decrease in the diameter of the inner tubes by ~0.4 nm leads to a decrease in the growth temperature by ~200 °C.

  5. Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO2 nano-particles decorated TiO2 nano-tubes arrays photoelectrode

    International Nuclear Information System (INIS)

    In this study, TiO2 nano-particles decorated TiO2 nano-tubes arrays (TiO2 NPs/TiO2 NTAs) photoelectrodes have been successfully prepared through anodization, combined with ultrasonic strategy, followed by annealing post-treatment. The morphology and structure of the as-prepared TiO2 NPs/TiO2 NTAs photoelectrodes were characterized by scanning electrons microscopy (SEM), N2 adsorption/desorption isotherms, X-ray diffraction (XRD) and UV–visible light diffuse reflection spectroscopy (DRS). In addition, the generation of hydroxyl radicals (·OH) was detected by a photoluminescence (PL) spectra using terephthalic acid (TA) as a probe molecule. Furthermore, the photoelectrochemical (PECH) properties of TiO2 NPs/TiO2 NTAs photoanode were investigated through transient open circuit potential (OCP), photocurrent response (PCR) and electrochemical impedance spectroscopy (EIS). It was found that TiO2 NPs/TiO2 NTAs photoelectrode exhibited a distinct decrease of OCP of −0.219 mV cm−2 and PCR of 0.049 mA cm−2, while a significantly enhanced photoelectrocatalytic (PEC) efficiency of 63.6% (0.4 V vs. SCE) for the degradation of diclofenac. Moreover, the enhanced PEC mechanism of TiO2 NPs/TiO2 NTAs photoanode was proposed. The high PEC performance could be attributed to the decoration of TiO2 NPs, which could improve the mobility and separation efficiency of photoinduced charge carriers under external potential

  6. Nano

    DEFF Research Database (Denmark)

    Nørgaard, Bent; Engel, Lars Romann

    2007-01-01

    Gennem de sidste par år har et lille ord med et meget stort potentiale gentagende trængt sig på i den offentlige bevidsthed, det er ordet "nano". Nanovidenskab og nanoteknologi er lige nu to af de "hotteste" forskningsområder og betragtes af mange som porten til en helt ny verden af muligheder....... Muligheder, vi endnu ikke kender konsekvenserne af. Center for Kunst og Videnskabs forestilling NANO giver dig chancen for at blive bekendt med verdens mindste byggesten og idégrundlaget for nanoforskningen. Vi har skabt et rum, som på mange måder minder om et laboratorium. Rummet er forsynet med storskærme......, kolber, væsker og nanopartikler. Her vil du f.eks. opleve, hvordan forskere tilfører guld helt nye egenskaber. Forestillingen veksler mellem kemiske arbejdsdemonstrationer, stemningsskabende musik og livlig debat på storskærme mellem eksperter. NANO opfordrer publikum til at tage stilling til forskningen...

  7. Amorphous carbon film deposition on inner surface of tubes using atmospheric pressure pulsed filamentary plasma source

    OpenAIRE

    Pothiraja, Ramasamy; Bibinov, Nikita; Awakowicz, Peter

    2011-01-01

    Uniform amorphous carbon film is deposited on the inner surface of quartz tube having the inner diameter of 6 mm and the outer diameter of 8 mm. A pulsed filamentary plasma source is used for the deposition. Long plasma filaments (~ 140 mm) as a positive discharge are generated inside the tube in argon with methane admixture. FTIR-ATR, XRD, SEM, LSM and XPS analyses give the conclusion that deposited film is amorphous composed of non-hydrogenated sp2 carbon and hydrogenated sp3 carbon. Plasma...

  8. Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam

    OpenAIRE

    Yining Ding; Zhipei Chen; Zhibo Han; Yulin Zhang; Torgal, Fernando Pacheco

    2013-01-01

    The nano-carbon black (NCB) and carbon fiber (CF) as electric conductive materials were added into the concrete. The effect of the NCB and CF on the mechanical properties and on the fractional change in resistance (FCR) of concrete was investigated. The relationships among the FCR, the strain of initial geometrical neutral axis (IGNA) and the beam damage degree were developed. The results showed that the relationship between the FCR and IGNA strain can be described by the First Or...

  9. Modelling of induction heating of carbon steel tubes: Mathematical analysis, numerical simulation and validation

    International Nuclear Information System (INIS)

    Highlights: ► Numerical simulations of the heating by induction in steel tubes were performed. ► Finite element method was employed in this electromagnetic-heat transfer coupled problem. ► The outside temperature evolution of the steel tubes was determined experimentally and numerically. ► Temperatures in the inner and outer tube surface and the heat affected zone were determined. - Abstract: The transient liquid phase bonding process is been performed to join carbon steel tubes. Fe96.2B3.8 wt% amorphous ribbons of thickness a ≈20 μm have been employed as filler material. The tubes are aligned with their butted surfaces in contact with the amorphous layer. The joint is heated into a high frequency induction coil under Argon atmosphere. The temperature is raised at the highest possible rate to the process temperature (at about ≈1250 °C) and then held for a predetermined time. In this paper, the numerical simulations of the heating stage of the bonding process have been made using the finite element method. This method had shown of being able to deal with these kind of coupled problems: electromagnetic field generated by alternating currents, eddy currents generated on the steel tube, heating of the steel tube due to joule effect and heat transfer by conduction, convection and radiation. The experimental heating stage, for its further simulation, was done with carbon steel tubes. In particular, we are interested in the temperature evolution of the tube upon heating: time to reach the process temperature at the joint, temperature differences between the inner and outer surface of the tube and the extension of the heat affected zone, taking into account the ferromagnetic–paramagnetic transition. The numerical simulations are validated by comparison with infrared radiation thermometer measurements of the outer surface of the tube at remarkable positions (e.g.: the joint, the zone at the end of the joint, etc.).

  10. 76 FR 76939 - Certain Welded Carbon Steel Pipe and Tube From Turkey: Notice of Final Results of Antidumping...

    Science.gov (United States)

    2011-12-09

    ... International Trade Administration Certain Welded Carbon Steel Pipe and Tube From Turkey: Notice of Final... welded carbon steel pipe and tube from Turkey. The administrative review covers the Borusan Group \\1\\ and... preliminary results of the antidumping duty administrative view of certain welded carbon steel pipe and...

  11. Nano-engineered composites: interlayer carbon nanotubes effect

    OpenAIRE

    Glaucio Carley; Viviany Geraldo; Sergio Oliveira; Antonio Ferreira Avila

    2013-01-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also r...

  12. In situ modifying of carbon tube-in-tube nanostructures with highly active Fe(2)O(3) nanoparticles.

    Science.gov (United States)

    Bai, Shuli; Zhao, Jianghong; Du, Guixiang; Zheng, Jianfeng; Zhu, Zhenping

    2008-05-21

    A novel in situ method based on a liquid membrane templated self-assembly process is employed to modify carbon tube-in-tube nanostructures (TTCNTs) with Fe(2)O(3) nanoparticles. The as-obtained Fe(2)O(3) modified TTCNTs (Fe(2)O(3)/TTCNTs) nanocomposites are well constructed and the Fe(2)O(3) nanoparticles are well dispersed and decorated on the outer, inner and intramolecular surfaces of TTCNTs. In addition, the Fe(2)O(3)/TTCNTs nanocomposites are employed as catalysts for selective catalytic reduction (SCR) of NO with NH(3) and show high SCR catalytic activity, indicating that the novel multiple intramolecular channels and unique surface chemistry of the TTCNTs should play an important role in improving the properties of TTCNTs. PMID:21825743

  13. Molecular dynamics simulation study on capacitive nano-accelerometers based on telescoping carbon nanotubes

    International Nuclear Information System (INIS)

    We investigated the characteristics of a capacitive nano-accelerometer based on a telescoping carbon nanotube by means of classical molecular dynamics simulations. The position of the telescoping nanotube was controlled by an externally applied force, and feedback sensing was based on the capacitance change. The capacitance variations, which were almost linearly proportional to the applied acceleration, were monitored within an error tolerance

  14. Experimental and Modeling Study of the Turning Process of PA 6/Nano Calcium Carbonate Composite

    Directory of Open Access Journals (Sweden)

    Mehdi Haghi

    2013-01-01

    Full Text Available Nowadays, polymeric nanocomposites have emerged as a new material class with rapidly growing use in industrial products because of good mechanical, thermal, and physical properties. Recently, the requirement of the direct machining of these materials has increased due to the production of the most of them by extrusion method in simple cross section and the increased demand for personalized products. In this work, the effect of turning parameters (cutting speed and feed and nano calcium carbonate content on the machinability properties of polyamide 6/nano calcium carbonate composites was investigated by analysis of variance. A novel modeling approach of modified harmony search-based neural network was also utilized to create predictive models of surface roughness and total cutting force from the experimental data. The results revealed that the nano calcium carbonate content on polyamide 6 decreased the cutting forces significantly but did not have a significant effect on surface roughness. Moreover, the results for modeling total cutting forces and surface roughness showed that modified harmony search-based neural network is effective, reliable, and authoritative in modeling the turning process of polyamide 6/nano calcium carbonate composite.

  15. Effects of confinement in meso-porous silica and carbon nano-structures; Etude des effets de confinement dans la silice mesoporeuse et dans certaines nanostructures carbonees

    Energy Technology Data Exchange (ETDEWEB)

    Leon, V

    2006-07-15

    Physico-chemical properties of materials can be strongly modified by confinement because of the quantum effects that appear at such small length scales and also because of the effects of the confinement itself. The aim of this thesis is to show that both the nature of the confining material and the size of the pores and cavities have a strong impact on the confined material. We first show the effect of the pore size of the host meso-porous silica on the temperature of the solid-solid phase transition of silver selenide, a semiconducting material with enhanced magnetoresistive properties under non-stoichiometric conditions. Narrowing the pores from 20 nm to 2 nm raises the phase transition temperature from 139 C to 146 C. This result can be explained by considering the interaction between the confining and confined materials as a driving force. The effects of confinement are also studied in the case of hydrogen and deuterium inside cavities of organized carbon nano-structures. The effects that appear in the adsorption/desorption cycles are much stronger with carbon nano-horns as the host material than with C60 pea-pods and single-walled carbon nano-tubes. (author)

  16. Self-repairing technology by electrophoresis of nano- particles for heat exchanger tubes

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Chang Kyu; Lee, Min Ku; Uhm, Young Rang; Park, Jin Ju; Lee, Eun Hee [KAERI, Daejeon (Korea, Republic of)

    2007-08-15

    Since the discovery of pitting corrosion and stress cracking corrosion in heat exchanger tubes of Inconel alloy 600, a number of methods to solve the problems arising from the corrosion of heat exchanger tubes have been developed. Among those, recently, the electrophoretic deposition method has attracted considerable attention in repairing the pit or crack due to the rapid and low-cost process. The electrophoretic deposition consists of two processes: the movement of the charged powder particles in a suspension under the applied electric field between the working electrode and the counter electrode, i.e., electrophoresis followed by the deposition of these particles on the working electrode. For the damaged electrode specimen, since the current value is higher for the pit or crack rather than the outer surfaces of the specimen, the more charged particles notably move to the pit or crack, leading to the self-repairing of the pit or crack

  17. Nano-sized Fe3O4/carbon as anode material for lithium ion battery

    International Nuclear Information System (INIS)

    Nano-sized Fe3O4/carbon material is prepared via a simple citric-nitrate combustion method combining with a hydrothermal carbon coating technique. The synthesized Fe3O4/carbon composite shows a high reversible specific capacity (ca. 850 mAh g−1 at 100 mA g−1; ca. 600 mAh g−1 at 500 mA g−1), good rate-capability as well as superior cycling stability as anode for lithium-ion batteries. The ameliorated electrochemical performance of Fe3O4/carbon electrode is associated to the nano-sized particle feature and the continuous carbon coating layer. The former provides short lithium-ion/electron diffusion distance, while the latter enables the fast electron transport pathways. Besides, the carbon layer can act as a protective component to prevent the active particle Fe3O4 from aggregation and pulverization during the charge/discharge processes. - Highlights: • Nano-sized Fe3O4/C was prepared by a simple citric-nitrate combustion process. • Fe3O4/C particles show core–shell structure. • Fe3O4/C powder displays high specific capacity and good cycling stability. • Fe3O4/C composite exhibits a superior rate-capability

  18. A thin-lip rupture of carbon steel superheater boiler tube

    International Nuclear Information System (INIS)

    A ruptured A 42 medium carbon steel tube was collected by the engineering department in one of our steam power stations. Inspection of ruptured tube revealed a thin - lip fracture with brownish thin layer of oxide film on inner tube surfaces. There was no evidence of pitting, the outer surfaces of the tube exhibited a general oxidized conditions. A micro section taken near the fracture surface consists of ferrite and martensite, the amount of martensite decreased as we away from the fracture surface. Presence of martensite phase in the microstructure indicates that the tube material has been overheated. An erosion corrosion mechanism in conjunction with overheated. An erosion corrosion mechanism in conjunction with overheating resulted in strength deterioration with consequent premature failure. 4 fig., 1 tab

  19. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    Science.gov (United States)

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively. PMID:24734654

  20. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite biocomposite

    International Nuclear Information System (INIS)

    As an FDA-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses excellent mechanical properties similar to those of human cortical bone and is a prime candidate to replace conventional metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. The present work aimed at developing a novel carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite (PEEK/CF/n-HA) ternary biocomposite with micro/nano-topographical surface for the enhancement of the osteogenesis as a potential bioactive material for bone grafting and bone tissue-engineering applications. The combined modification of oxygen plasma and sand-blasting could improve the hydrophily and generate micro/nano-topographical structures on the surface of the CFRPEEK-based ternary biocomposite. The results clearly showcased that the micro-/nano-topographical PEEK/n-HA/CF ternary biocomposite demonstrated the outstanding ability to promote the proliferation and differentiation of MG-63 cells in vitro as well as to boost the osseointegration between implant and bone in vivo, thereby boding well application to bone tissue engineering. - Highlights: • A novel micro/nano-topographical PEEK/n-HA/CF ternary biocomposite was developed. • The modified PEEK biocomposite promotes proliferation and differentiation of cells. • In vivo osseointegration of the micro/nano-topographical PEEK/n-HA/CF was enhanced

  1. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Anxiu [College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147 (China); Liu, Xiaochen [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Gao, Xiang; Deng, Feng [College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147 (China); Deng, Yi, E-mail: 18210357357@163.com [College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147 (China); Wei, Shicheng, E-mail: weishicheng99@163.com [College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147 (China)

    2015-03-01

    As an FDA-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses excellent mechanical properties similar to those of human cortical bone and is a prime candidate to replace conventional metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. The present work aimed at developing a novel carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite (PEEK/CF/n-HA) ternary biocomposite with micro/nano-topographical surface for the enhancement of the osteogenesis as a potential bioactive material for bone grafting and bone tissue-engineering applications. The combined modification of oxygen plasma and sand-blasting could improve the hydrophily and generate micro/nano-topographical structures on the surface of the CFRPEEK-based ternary biocomposite. The results clearly showcased that the micro-/nano-topographical PEEK/n-HA/CF ternary biocomposite demonstrated the outstanding ability to promote the proliferation and differentiation of MG-63 cells in vitro as well as to boost the osseointegration between implant and bone in vivo, thereby boding well application to bone tissue engineering. - Highlights: • A novel micro/nano-topographical PEEK/n-HA/CF ternary biocomposite was developed. • The modified PEEK biocomposite promotes proliferation and differentiation of cells. • In vivo osseointegration of the micro/nano-topographical PEEK/n-HA/CF was enhanced.

  2. Characterization of nano-scaled metal-hydrides confined in nano-porous carbon frameworks

    Science.gov (United States)

    Peaslee, David Edward

    Metal hydrides are currently being studied to provide hydrogen for use in fuel cells and for transportation applications. Hydrogen can be stored in chemical compounds at higher density and lower volume than liquid H2 or compressed gas. Thermodynamic properties of metal hydrides differ between bulk and nano-sized particles. Many metal hydrides with useful volumetric and gravimetric capacities have high decomposition temperatures, but when placed in nano-sized frameworks (or templates) desorption and adsorption temperatures can be fine-tuned to meet engineering requirements for real-world systems. Additionally, some metal hydrides have shown a change in the decomposition pathway when infiltrated into these frameworks, thereby reducing the amount of unwanted byproducts, and potentially improving the cyclability of the material. The Temperature Programmed Decomposition Mass Spectrum Residual Gas Analyzer can be used to characterize gas desorption, decomposition temperatures, picogram changes in mass, and ionization energies for a variety of materials and gasses. The goal of the system is to characterize desorption of the hydrogen (including byproduct gasses) and the decomposition of the metal hydrides. The experimental apparatus is composed of four main components: the residual gas analyzer (RGA), the low temperature stage quartz crystal microbalance (QCM), the high temperature heating stage, and two vacuum chambers separated by a small flow hole which allows a direct line-of-site to the RGA.

  3. Microwave plasma CVD of NANO structured tin/carbon composites

    Science.gov (United States)

    Marcinek, Marek; Kostecki, Robert

    2012-07-17

    A method for forming a graphitic tin-carbon composite at low temperatures is described. The method involves using microwave radiation to produce a neutral gas plasma in a reactor cell. At least one organo tin precursor material in the reactor cell forms a tin-carbon film on a supporting substrate disposed in the cell under influence of the plasma. The three dimensional carbon matrix material with embedded tin nanoparticles can be used as an electrode in lithium-ion batteries.

  4. The effect of temperature and nano-sized calcium carbonate on tensile properties of medium density polyethylene

    International Nuclear Information System (INIS)

    In the present work, high temperature tensile properties of medium density polyethylene and its nano composites are investigated. For this purpose medium density polyethylene reinforced with different weight percentages of nano-sized calcium (2, 5, 10) are produced by compression moulding method. Tensile tests have been carried out at different temperatures, i.e. 30, 60, 90degC using thermomechanical analysis apparatus. Besides, the fracture surface of medium density polyethylene and medium density polyethylene/CaC03 nano composites are also investigated using scanning electron microscopy. The thermomechanical analysis results indicate that the elastic modulus and yield stress have increased by addition of nano sized calcium carbonate as reinforcement for medium density polyethylene . At elevated temperature, the tensile strength is shown to be reduced in all materials including medium density polyethylene and its nano composites. The obtained results confirm that the reinforcing effect of nano-sized calcium carbonate becomes significant particularly at higher temperatures

  5. Fatigue Property of Nano-grained Delaminated Low-carbon Steel Sheet

    Institute of Scientific and Technical Information of China (English)

    X. Li; T.F. Jing; M.M. Lu; R. Xu; B.Y. Liang; J.W. Zhang

    2011-01-01

    Tension-tension fatigue life tests on nano-grained delaminated Iow-carbon steel sheet under different fatigue loads are carried out to study the fatigue properties of the steel. The three-dimensional microstructures of the steel are observed by TEM. In addition, the morphology of the fatigue fracture of the specimen under different loads is observed by SEM. The results show that micro-cracks form on the weak interface of the nano-grained steel under Iow-stress conditions, which hinders the propagation of the main cracks and reduces the fatigue crack propagation rate, resulting in the extending fatigue life of the steel.

  6. Application of nano-sized TiO2 as an inhibitor of stress corrosion cracking in the steam generator tube materials.

    Science.gov (United States)

    Kim, Kyung Mo; Lee, Eun Hee; Kim, Uh Chul; Choi, Byung Seon

    2010-01-01

    Several chemicals were studied to suppress the damage due to a stress corrosion cracking (SCC) of the steam generator (SG) tubes in nuclear power plants. SCC tests were carried out to investigate the performance of TiO2 on several types of SG tube materials. The SCC tests were conducted by using an m-RUB specimen in a 10% NaOH solution at a temperature of 315 degrees C. The test with the addition of TiO2 showed a decrease in the SCC rate for the SG tubing materials. In order to improve the inhibition property in a crevice of TiO2, a sonochemical technique was applied to reduce the size of the TiO2 particle. From the SCC tests with the RUB specimen, the SG tube materials showed an enhanced cracking resistance with the addition of nano-sized TiO2 and the surface property was also changed. PMID:20352829

  7. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement.

    Science.gov (United States)

    Babadi, Arman Amani; Bagheri, Samira; Hamid, Sharifah Bee Abdul

    2016-05-15

    Biofuel cells are bio-electrochemical devices, which are suitable for the environmentally friendly generation of energy. Enzymatic biofuel cell (EBFC) operates at ambient temperature and pH. Biofuel cells utilize vegetable and animal fluids (e.g. glucose) as a biofuel to produce energy. Fundamental part of each Glucose biofuel cell (GBFC) is two bioelectrodes which their surface utilizes as an enzyme immobilized site. Glucose oxidase (GOx) or glucose dehydrogenase (GDH) were immobilized on bioanode and oxidize glucose while oxygen reduced in biocathode using immobilized laccase or bilirubin oxidase in order to generate sufficient power. Glucose biofuel cells are capable to generate sufficient power for implanted devices. The key step of manufacturing a bioelectrode is the effective enzyme immobilization on the electrode surface. Due to the thin diameter of carbon nanomaterials, which make them accessible to the enzyme active sites, they are applicable materials to establish electronic communication with redox enzymes. Carbon nanomaterials regenerate the biocatalysts either by direct electron transfer or redox mediators which serve as intermediated for the electron transfer. Nano-carbon functionalization is perfectly compatible with other chemical or biological approaches to enhance the enzyme functions in implantable biofuel cells. Efficient immobilization of enzyme using the functionalized nano-carbon materials is the key point that greatly increases the possibilities of success. Current review highlights the progress on implantable biofuel cell, with focus on the nano-carbon functionalization for enzyme immobilization enhancement in glucose/O2 biofuel cells. PMID:26785309

  8. Method to obtain carbon nano-onions by pyrolisys of propane

    Science.gov (United States)

    Garcia-Martin, Tomas; Rincon-Arevalo, Pedro; Campos-Martin, Gemma

    2013-11-01

    We present a new and simple method for carbon nano-onions (CNOs) production which is based on the pyrolysis of Propane. CNOs are originated in a laminar premixed Propane/Oxygen flame of approximately 1.8 of stoichiometric coefficient. The stream of gasses resulting from the combustion drives the carbon particles towards the aluminium surface on which nano-onions are deposited and collected. The structure and size of the deposited carbon onion on the metal wall are characterized by High Resolution Transmission Electron Microscopy technique (HRTEM). The experimental images show the presence of two different types of CNOs. The first particles have diameters in the range of 18-25 nm and the second ones around 10 nm.

  9. 75 FR 64250 - Certain Welded Carbon Steel Pipe and Tube From Turkey: Notice of Final Antidumping Duty...

    Science.gov (United States)

    2010-10-19

    ... Tube ] from Turkey: Notice of Preliminary Results of Antidumping Duty Administrative Review, 75 FR... Standard Pipe and Tube Products From Turkey, 51 FR 17784 (May 15, 1986). Notification to Importers This... International Trade Administration Certain Welded Carbon Steel Pipe and Tube From Turkey: Notice of...

  10. 77 FR 5240 - Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan: Continuation of Antidumping Duty...

    Science.gov (United States)

    2012-02-02

    ... of Five-Year (``Sunset'') Review, 76 FR 38613 (July 1, 2011) and Certain Pipe and Tube From Brazil... Order; Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan, 54 FR 12467 (March 27, 1989). As... within a reasonably foreseeable time. See Light-Walled Rectangular Pipe and Tube From Taiwan, 77 FR...

  11. Functionalized Carbon Nanomaterial Supported Palladium Nano-Catalysts for Electrocatalytic Glucose Oxidation Reaction

    International Nuclear Information System (INIS)

    Highlights: • Glucose oxidation reaction (GOR) catalyzed by Pd on carbon nano-supports. • Polyol reduction used for nano-size Pd catalyst synthesis. • Effect of carbon support’s functionality on nano-Pd GOR catalysis disclosed. • Carboxylated MWCNT found to be the best carbon nano-support. • Peak current density of 5.5 mA cm−2 attained for alkaline GOR. - Abstract: Palladium nanoparticles (nPd) are grown on six carbon nanomaterials with different functionalities by one-pot, high-pH polyol reduction of PdCl2. The nanomaterials include pristine multi-walled carbon nanotubes (pMWCNT), carboxylated MWCNT (cMWCNT), amine-modified MWCNT (nMWCNT), hydroxyl-modified MWCNT (oMWCNT), XC72 carbon black (XC72), and carboxylated graphene (cGraphene). The effects of the carbon functionality on Pd-catalyzed glucose oxidation reaction (GOR) in an alkaline medium are studied. From the experimental data of X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM), it reveals that nPds with a particle size ranging from 4.5 nm to 7.4 nm are grown on carbon nanomaterials with a weight loading percentage from 11.1% to 18.6%. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), Tafel analysis, and chronoamperomtry (CA) are used to compare the electrochemical active surface area (ECSA), GOR onset potential, GOR peak current density, Tafel slope, poisoning rate, and cycling stability between the six nPd/C electrocatalysts for GOR. It is found that nPd grown on a functionalized carbon nano-support had better GOR performance than that grown on pMWCNT. Compared to nPd/pMWCNT, nPd/cMWCNT shows a 6.2-fold higher peak current density (5.6 mA cm−2) and a 100 mV lower over-potential (-0.55 V vs. Hg/HgO) for GOR. Besides, the data are among the best for nPd-catalyzed GOR reported to date

  12. Adsorption of phenol from aqueous solution by a hierarchical micro-nano porous carbon material

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with...

  13. Co-addition of nano-carbon and nano-silica: An effective method for improving the in-field properties of magnesium diboride superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Syju; Rahul, S.; Devadas, K.M.; Varghese, Neson [National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, Kerala 695019 (India); Sundaresan, A. [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Syamaprasad, U., E-mail: syamcsir@gmail.com [National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, Kerala 695019 (India)

    2014-11-14

    MgB{sub 2} superconductor sample co-doped with nano-carbon (n-C) and nano-silica (n-SiO{sub 2}) is prepared and its structural and superconducting properties are compared with pure and n-C and nano SiC (n-SiC) mono-doped samples. Shrinkage of a-lattice parameter is observed for all doped samples, among which the co-doped sample exhibits the maximum shrinkage, an evidence of effective carbon substitution at boron sites. All doped samples show significantly enhanced in-field critical current density J{sub C}(H), where the co-doped sample dominates others throughout the whole range of field studied. Lattice strains induced by carbon substitution and flux pinning caused by uniformly distributed nano sized Mg{sub 2}Si particles formed by the reaction between Mg and n-SiO{sub 2}, are the main reasons for the highly enhanced J{sub C}(H) behavior of the co-doped superconductor. - Highlights: • MgB{sub 2} pure and doped with n-C, n-SiC and n-C + n-SiO{sub 2} are prepared in bulk. • Addition of n-SiO{sub 2} with n-C improves carbon substitution. • Co-doped sample exhibits enhanced critical current density in entire range of field. • Uniformly distributed nano sized secondary phases provide additional flux pinning.

  14. Selectivity and limitations of carbon sorption tubes for capturing siloxanes in biogas during field sampling.

    Science.gov (United States)

    Tansel, Berrin; Surita, Sharon C

    2016-06-01

    Siloxane levels in biogas can jeopardize the warranties of the engines used at the biogas to energy facilities. The chemical structure of siloxanes consists of silicon and oxygen atoms, alternating in position, with hydrocarbon groups attached to the silicon side chain. Siloxanes can be either in cyclic (D) or linear (L) configuration and referred with a letter corresponding to their structure followed by a number corresponding to the number of silicon atoms present. When siloxanes are burned, the hydrocarbon fraction is lost and silicon is converted to silicates. The purpose of this study was to evaluate the adequacy of activated carbon gas samplers for quantitative analysis of siloxanes in biogas samples. Biogas samples were collected from a landfill and an anaerobic digester using multiple carbon sorbent tubes assembled in series. One set of samples was collected for 30min (sampling 6-L gas), and the second set was collected for 60min (sampling 12-L gas). Carbon particles were thermally desorbed and analyzed by Gas Chromatography Mass Spectrometry (GC/MS). The results showed that biogas sampling using a single tube would not adequately capture octamethyltrisiloxane (L3), hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). Even with 4 tubes were used in series, D5 was not captured effectively. The single sorbent tube sampling method was adequate only for capturing trimethylsilanol (TMS) and hexamethyldisiloxane (L2). Affinity of siloxanes for activated carbon decreased with increasing molecular weight. Using multiple carbon sorbent tubes in series can be an appropriate method for developing a standard procedure for determining siloxane levels for low molecular weight siloxanes (up to D3). Appropriate quality assurance and quality control procedures should be developed for adequately quantifying the levels of the higher molecular weight siloxanes in biogas with sorbent tubes

  15. Electron emission from nano-structured carbon composite materials and fabrication of high-quality electron emitters by using plasma technology

    International Nuclear Information System (INIS)

    Many trials have been done to fabricate high-quality electron-emitters from nano-composite carbon materials (such as nano-diamond, carbon nano tubes and others) by means of a variety of plasma chemical-vapor-deposition (CVD) techniques. Based upon the mechanism of electron emission, we have proposed several strategic guide lines for the fabrication of good emitters. Then, following these lines, several types of emitters were tried. One of the emitters has shown a worldclass, top ranking for fabricating very bright lamps: namely, a low turn-on voltage (0.5 ∼ 1 V/μm to induce 10 μA/cm2 emission current) to emit a 1 mA/cm2 current at 3 V/μm and 100 mA/cm2 current at a slightly higher applied voltage. The bright lamps are Mercury-free fluorescence lamps to exhibit brightness of ∼105 cd/m2 with high efficiency of ∼100 lm/w.

  16. Preparation by the nano-casting process of novel porous carbons from large pore zeolite templates

    Energy Technology Data Exchange (ETDEWEB)

    F Gaslain; J Parmentier; V Valtchev; J Patarin [Laboratoire de Materiaux a Porosite Controlee (LMPC), UMR CNRS 7016, ENSCMu Universite de Haute Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex, (France); C Vix Guterl [Institut de Chimie des Surfaces et Interfaces (ICSI), UPR CNRS 9069, 15 rue Jean Starky, 68057 Mulhouse Cedex (France)

    2005-07-01

    The development of new growing industrial applications such as gas storage (e.g.: methane or hydrogen) or electric double-layer capacitors has focussed the attention of many research groups. For this kind of application, porous carbons with finely tailored micro-porosity (i.e.: pore size diameter {<=} 1 nm) appear as very promising materials due to their high surface area and their specific pore size distribution. In order to meet these requirements, attention has been paid towards the feasibility of preparing microporous carbons by the nano-casting process. Since the sizes and shapes of the pores and walls respectively become the walls and pores of the resultant carbons, using templates with different framework topologies leads to various carbon replicas. The works performed with commercially available zeolites employed as templates [1-4] showed that the most promising candidate is the FAU-type zeolite, which is a large zeolite with three-dimensional channel system. The promising results obtained on FAU-type matrices encouraged us to study the microporous carbon formation on large pore zeolites synthesized in our laboratory, such as EMC-1 (International Zeolite Association framework type FAU), zeolite {beta} (BEA) or EMC-2 (EMT). The carbon replicas were prepared following largely the nano-casting method proposed for zeolite Y by the Kyotani research group [4]: either by liquid impregnation of furfuryl alcohol (FA) followed by carbonization or by vapour deposition (CVD) of propylene, or by an association of these two processes. Heat treatment of the mixed materials (zeolite / carbon) could also follow in order to improve the structural ordering of the carbon. After removal of the inorganic template by an acidic treatment, the carbon materials obtained were characterised by several analytical techniques (XRD, N{sub 2} and CO{sub 2} adsorption, electron microscopy, etc...). The unique characteristics of these carbons are discussed in details in this paper and

  17. Role of inter-tube coupling and quantum interference on electrical transport in carbon nanotube junctions

    Science.gov (United States)

    Tripathy, Srijeet; Bhattacharyya, Tarun Kanti

    2016-09-01

    Due to excellent transport properties, Carbon nanotubes (CNTs) show a lot of promise in sensor and interconnect technology. However, recent studies indicate that the conductance in CNT/CNT junctions are strongly affected by the morphology and orientation between the tubes. For proper utilization of such junctions in the development of CNT based technology, it is essential to study the electronic properties of such junctions. This work presents a theoretical study of the electrical transport properties of metallic Carbon nanotube homo-junctions. The study focuses on discerning the role of inter-tube interactions, quantum interference and scattering on the transport properties on junctions between identical tubes. The electronic structure and transport calculations are conducted with an Extended Hückel Theory-Non Equilibrium Green's Function based model. The calculations indicate conductance to be varying with a changing crossing angle, with maximum conductance corresponding to lattice registry, i.e. parallel configuration between the two tubes. Further calculations for such parallel configurations indicate onset of short and long range oscillations in conductance with respect to changing overlap length. These oscillations are attributed to inter-tube coupling effects owing to changing π orbital overlap, carrier scattering and quantum interference of the incident, transmitted and reflected waves at the inter-tube junction.

  18. Effect of BaTiO3 nano-particles on breakdown performance of propylene carbonate

    Science.gov (United States)

    Hou, Yanpan; Zhang, Zicheng; Zhang, Jiande; Liu, Zhuofeng; Song, Zuyin

    2015-05-01

    As an alternative to water, propylene carbonate (PC) has a good application prospect in the compact pulsed power sources for its breakdown strength higher than that of water, resistivity bigger than 109 Ω m, and low freezing temperature (-49 °C). In this paper, the investigation into dielectric breakdown of PC and PC-based nano-fluids (NFs) subjected to high amplitude electric field is presented with microsecond pulses applied to a 1 mm gap full of PC or NFs between spherical electrodes. One kind of NF is composed of PC mixed with 0.5-1.4 vol. % BaTiO3 (BT) nano-particles of mean diameter ≈100 nm and another is mixed with 0.3-0.8 vol. % BT nano-particles of mean diameter ≈30 nm. The experimental results demonstrate the rise of permittivity and improvement of the breakdown strength of NFs compared with PC. Moreover, it is found that there exists an optimum fraction for these NFs corresponding to tremendous surface area in nano-composites with finite mesoscopic thickness. In concrete, the dielectric breakdown voltage of NFs is 33% higher than that of PC as the volume concentration of nano-particles with a 100 nm diameter is 0.9% and the breakdown voltage of NFs is 40% higher as the volume concentration of nano-particles with a 30 nm diameter is 0.6%. These phenomena are considered as the dielectric breakdown voltage of PC-based NFs is increased because the interfaces between nano-fillers and PC matrices provide myriad trap sites for charge carriers, which play a dominant role in the breakdown performance of NFs.

  19. Carbon as a hard template for nano material catalysts

    Institute of Scientific and Technical Information of China (English)

    Kake Zhu; Junming Sun; He Zhang; Jun Liu; Yong Wang

    2012-01-01

    As one of the naturally abundant elements,carbon can present in different molecular structures (allotropes) and thus lead to various physical/chemical properties of carbon-based materials which have found wide applications in a variety of fields including electrochemistry,optical,adsorption and catalysis,etc.On the other hand,its different allotropes also endow carbon-based materials with various morphostructures,which have been recently explored to prepare oxides and zeolites/zeotypes with tailored structures.In this review,we mainly summarize the recent advances in using carbon materials as hard templates to synthesize structural materials.Specifically,we focus on the development in the synthetic strategies,such as endotemplating,exotemplating approaches and using carbon materials as chemical reagents for the synthesis of metal carbides or nitrides,with an emphasis laid on the control of morphostructure.Meanwhile,the applications of the obtained materials will be highlighted,especially,in the field of heterogeneous catalysis where enhanced performances have been achieved with the materials derived from carbon-templated methods.

  20. Enhanced dielectric breakdown performances of propylene carbonate modified by nano-particles under microsecond pulses

    Science.gov (United States)

    Hou, Yanpan; Zhang, Jiande; Zhang, Zicheng

    2016-06-01

    Propylene carbonate shows appealing prospects as an energy storage medium in the compact pulsed power sources because of its large permittivity, high dielectric strength, and broad operating temperature range. In this paper, TiO2 nano-particles coated with γ-aminopropyltriethoxylsilane coupling agent are homogeneously dispersed into propylene carbonate and these nano-fluids (NFs) exhibit substantially larger breakdown voltages than those of pure propylene carbonate. It is proposed that interfaces between nano-fillers and propylene carbonate matrix may provide myriad trap sites for charge carriers. The charge carriers can be easily captured at the interfaces between NFs and the electrode, resulting in an increased barrier height and suppressed charge carriers injection, and in the bulk of NFs, the charge carriers' mean free path can be greatly shortened by the scattering effect. As a result, in order for charge carriers acquiring enough energy to generate a region of low density (the bubble) and initiate breakdown in NFs, much higher applied field is needed.

  1. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  2. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    FU Jie; WU HuaJie; LIU YangChun; KANG YongLin

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength Iow carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in Iow carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have obvious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  3. Comparison of the mechanical properties between carbon nanotube and nanocrystalline cellulose polypropylene based nano-composites

    International Nuclear Information System (INIS)

    Highlights: • SWCNT and NCC can effectively improve the mechanical properties of nano-composites. • SWCNT is more effective than NCC to increase modulus and strength. • Longer NCC is more effective to improve the mechanical properties of nano-composites. • It is more economic to use NCC than SWCNT to improve mechanical properties. - Abstract: Using beam and tetrahedron elements to simulate nanocrystalline cellulose (NCC), single wall carbon nanotube (SWCNT) and polypropylene (PP), finite element method (FEM) is used to predict the mechanical properties of nano-composites. The bending, shear and torsion behaviors of nano-composites are especially investigated due to the limited amount of information in the present literature. First, mixed method (MM) and FEM are used to compare the bending stiffness of NCC/PP and SWCNT/PP composites. Second, based on mechanics of materials, the shear moduli of both types of nano-composites are obtained. Finally, fixing the number of fibers and for different volume contents, four NCC lengths are used to determine the mechanical properties of the composites. The bending and shearing performances are also compared between NCC and SWCNT based composites. In all cases, the elastic–plastic analyses are carried out and the stress or strain distributions for specific regions are also investigated. From all the results obtained, an economic analysis shows that NCC is more interesting than SWCNT to reinforce PP

  4. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Yanping Yuan

    2016-02-01

    Full Text Available In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2 is used to irradiate multi-walled carbon nanotubes (MWCNTs on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM. For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation.

  5. Electronic structure and field emission properties of nitrogen doped graphene nano-flakes (GNFs:N) and carbon nanotubes (CNTs:N)

    Science.gov (United States)

    Ray, Sekhar C.; Pong, W. F.; Papakonstantinou, P.

    2016-09-01

    Substitution of hetero-atom doping is a promising route to modulate the outstanding material properties of carbon nanotubes and graphene for customized applications. Nitrogen-doping has been introduced to ensure tunable work-function, enhanced n-type carrier concentration, diminished surface energy, and manageable polarization. Along with the promising assessment of N-doping effects, research on the N-doped carbon based composite structures is emerging for the synergistic integration with various functional materials. Nitrogen undoped/doped graphene nano-flakes (GNFs/GNFs:N) and multiwall carbon nano-tubes (MWCNTs/MWCNTs:N) are used for comparative study of their electronic/bonding structure along with their defects state. X-ray absorption near edge structure (XANES) spectroscopy shows that the GNFs:N produce mainly pyridine like structure; whereas MWCNTs:N shows graphitic nitrogen atoms are attached with the carbon lattice. The ID/IG ratio obtained from Raman spectroscopy shows that the defects is higher in MWCNTs:N than GNFs:N. The electron field emission result shows that the turn on electric field is lower (higher electron emission current) in case of MWCNTs:N than GNFs:N and are good agreement with XANES and the results obtained from Raman spectra.

  6. 1D Nano materials 2012

    International Nuclear Information System (INIS)

    We witnessed an initial hyped period and enthusiasm on carbon nano tubes in the 1990s later went through a significant expansion into nano tubes of other materials (metal di chalcogenides, boron nitride, etc.) as well as various nano wires and nano rods. While much of the hype might have gone, the research on one-dimensional (1D) nano materials has matured as one of the most active research areas within the nano science and nano technology community, flourishing with ample, exciting, and new research opportunities. Just like any other research frontier, researchers working in the 1D nano materials field are constantly striving to develop new fundamental science as well as potential applications. It remains a common belief that versatility and tunability of 1D nano materials would challenge many new rising tasks coming from our resource and energy demanding modern society. The traditional semiconductor industry has produced so many devices and systems from transistors, sensors, lasers, and LEDs to more sophisticated solar panels, which are now part of our daily lives. By down sizing the core components or parts to 1D form, one might wonder how fundamentally the dimensionality and morphology would impact the device performance, this is, as always, requiring us to fully understand the structure-property relationship in 1D nano materials. It may be equally crucial in connecting discovery-driven fundamental science to market-driven technology industry concerning potentially relevant findings derived from these novel materials. The importance of a platform that allows active researchers in this field to present their new development in a timely and efficient manner is therefore self-evident. Following the success of two early special issues devoted to 1D nano materials, this is the third one in a row organized by the same group of guest editors, attesting that such a platform has been well received by the readers

  7. 76 FR 57020 - Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Notice of Partial Rescission of...

    Science.gov (United States)

    2011-09-15

    ... Antidumping and Countervailing Duty Administrative Reviews and Request for Revocation in Part, 76 FR 37781... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Notice of Partial... welded carbon steel pipes and tubes from Taiwan. The review covers eight firms. Based on a withdrawal...

  8. 76 FR 71938 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Extension of Time Limit for...

    Science.gov (United States)

    2011-11-21

    ... Administrative Reviews, 76 FR 23545, 23546 (April 27, 2011). This review covers two producers/exporters of the... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Thailand: Extension of Time... the antidumping duty order on circular welded carbon steel pipes and tubes from Thailand for...

  9. 77 FR 41967 - Certain Circular Welded Carbon Steel Pipes and Tubes From India, Thailand, and Turkey; Certain...

    Science.gov (United States)

    2012-07-17

    ... Review, 75 FR 69626, 69627 (November 15, 2010). Thailand--Welded Carbon Steel Pipe and Tube (A-549-502... remand. See Scope Rulings, 58 FR 27542 (May 10, 1993). Turkey--Welded Carbon Steel Pipe and Tube (A-489... Initiation of Five-Year (``Sunset'') Review, 76 FR 38613 (July 1, 2011). \\2\\ See Certain Circular...

  10. 75 FR 2487 - Circular Welded Carbon Steel Pipes and Tubes from Thailand: Court Decision Not in Harmony with...

    Science.gov (United States)

    2010-01-15

    ... Steel Pipes and Tubes from Thailand: Final Results of Antidumping Duty Administrative Review, 73 FR... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes from Thailand: Court Decision... results of the administrative review of the antidumping order on circular welded carbon steel pipes...

  11. 77 FR 2511 - Certain Welded Carbon Steel Pipe and Tube From Turkey: Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2012-01-18

    ... International Trade Administration Certain Welded Carbon Steel Pipe and Tube From Turkey: Extension of Time... administrative review of the antidumping duty order on certain welded carbon steel pipe and tube from Turkey... Duty Administrative Reviews and Request for Revocation in Part, 76 FR 37781 (June 28, 2011)....

  12. 76 FR 3083 - Certain Welded Carbon Steel Pipe and Tube From Turkey: Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2011-01-19

    ... International Trade Administration Certain Welded Carbon Steel Pipe and Tube From Turkey: Extension of Time... administrative review of the antidumping duty order on certain welded carbon steel pipe and tube from Turkey... Duty Administrative Reviews and Requests for Revocation in Part, 75 FR 37759 (June 30, 2010)....

  13. 76 FR 56395 - Certain Welded Carbon Steel Pipe and Tube From Turkey: Notice of Extension of Time Limit for...

    Science.gov (United States)

    2011-09-13

    ... International Trade Administration Certain Welded Carbon Steel Pipe and Tube From Turkey: Notice of Extension of... and tube from Turkey for the period May 1, 2009, through April 30, 2010. See Certain Welded Carbon..., 76 FR 33204 (June 8, 2011). The final results are currently due no later than October 6,...

  14. 76 FR 63902 - Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-10-14

    ... Welded Carbon Steel Pipes and Tubes From Taiwan, 76 FR 33210 (June 8, 2011) (Preliminary Results). This... Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Antidumping Duty Order, 49 FR 19369 (May 7, 1984... section 773(b) of the Tariff Act of 1930, as amended (the Act). See Preliminary Results, 76 FR at...

  15. 77 FR 6542 - Certain Welded Carbon Steel Standard Pipe and Tube From Turkey: Notice of Final Rescission of...

    Science.gov (United States)

    2012-02-08

    ... International Trade Administration Certain Welded Carbon Steel Standard Pipe and Tube From Turkey: Notice of... of the countervailing duty (CVD) order on certain welded carbon steel pipe and tube from Turkey for... FR 11197 (March 1, 2011). On March 30, 2011, we received a letter from Erbosan Erciyas Boru Sanayi...

  16. 77 FR 55807 - Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Notice of Partial Rescission of...

    Science.gov (United States)

    2012-09-11

    ... Reviews and Request for Revocation in Part, 77 FR 40565 (July 10, 2012). On August 15, 2012, the... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Notice of Partial... welded carbon steel pipes and tubes from Taiwan. The review covers four respondents. Based on...

  17. 76 FR 78886 - Certain Welded Carbon Steel Standard Pipe and Tube From Turkey: Intent To Rescind Countervailing...

    Science.gov (United States)

    2011-12-20

    ... International Trade Administration Certain Welded Carbon Steel Standard Pipe and Tube From Turkey: Intent To... the countervailing duty (CVD) order on certain welded carbon steel pipe and tube from Turkey. See... Administrative Review, 76 FR 11197 (March 1, 2011). On March 30, 2011, we received a letter from Erbosan...

  18. 75 FR 68327 - Certain Welded Carbon Steel Standard Pipes and Tubes From India: Rescission of Antidumping Duty...

    Science.gov (United States)

    2010-11-05

    ... and Requests for Revocation in Part, 75 FR 37759 (June 30, 2010). Based on various requests for review... International Trade Administration Certain Welded Carbon Steel Standard Pipes and Tubes From India: Rescission... certain welded carbon steel standard pipes and tubes from India. The period of review is May 1,...

  19. Preparation of ZIF-8 membranes supported on macroporous carbon tubes via a dipcoating-rubbing method

    Science.gov (United States)

    Kong, Lingyin; Zhang, Xiongfu; Liu, Haiou; Wang, Tonghua; Qiu, Jieshan

    2015-02-01

    In the present work, a new dipcoating-rubbing method (DCRM) was developed to seed the surface of a macroporous carbon tube with a mixture of graphite and ZIF-8 nanoparticles. A continuous and low-defect ZIF-8 membrane was well formed on the seeded carbon tube by solvothermal growth. The DCRM involved a two-step process including first dipcoating a thin layer of the composite of graphite and ZIF-8 nanoparticles on the carbon surface and then rubbing the layer to form a stable seed layer. The graphite in the composite acting as binding agent could have two functions: (1) anchoring the ZIF-8 seeds onto the carbon surface; (2) smoothing the coarse surface of the macroporous carbon tube, thus forming a high quality ZIF-8 membrane. The as-prepared membrane was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and single gas permeation and was proved to be continuous and low-defect. The ideal selectivity of H2/CH4 is 7.9 with a H2 permeance of 7.15×10-8 mol Pa-1 s-1 m-2, which is higher than its corresponding Knudsen diffusion value. We could therefore expect the ZIF-8 membrane supported on macroporous tubular carbon to achieve a high selectivity of H2 over CH4 through a molecular sieving effect.

  20. 75 FR 36635 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Rescission of Antidumping Duty...

    Science.gov (United States)

    2010-06-28

    ... FR 9162 (March 1, 2010). On March 31, 2010, we received a timely request from Saha Thai Steel Pipe... Revocation in Part, 75 FR 22107 (April 27, 2010). Rescission of Antidumping Duty Administrative Review The... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Thailand: Rescission...

  1. 78 FR 21105 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Preliminary Results of Antidumping...

    Science.gov (United States)

    2013-04-09

    ..., available in Antidumping Duty Order: Circular Welded Carbon Steel Pipes and Tubes from Thailand, 51 FR 8341... Duty Administrative Review, 75 FR 26922, 26923 (May 13, 2010), unchanged in Magnesium Metal From the Russian Federation: Final Results of Antidumping Duty Administrative Review, 75 FR 56989 (September...

  2. Effective Degradation of Aqueous Tetracycline Using a Nano-TiO2/Carbon Electrocatalytic Membrane

    OpenAIRE

    Zhimeng Liu; Mengfu Zhu; Zheng Wang; Hong Wang; Cheng Deng; Kui Li

    2016-01-01

    In this work, an electrocatalytic membrane was prepared to degrade aqueous tetracycline (TC) using a carbon membrane coated with nano-TiO2 via a sol-gel process. SEM, XRD, EDS, and XPS were used to characterize the composition and structure of the electrocatalytic membrane. The effect of operating conditions on the removal rate of tetracycline was investigated systematically. The results show that the chemical oxygen demand (COD) removal rate increased with increasing residence time while it ...

  3. Carbon nano-onions (multi-layer fullerenes): chemistry and applications

    OpenAIRE

    Juergen Bartelmess; Silvia Giordani

    2014-01-01

    This review focuses on the development of multi-layer fullerenes, known as carbon nano-onions (CNOs). First, it briefly summarizes the most important synthetic pathways for their preparation and their properties and it gives the reader an update over new developments in the recent years. This is followed by a discussion of the published synthetic procedures for CNO functionalization, which are of major importance when elucidating future applications and addressing drawbacks for possible appli...

  4. Modelling of induction heating of carbon steel tubes: Mathematical analysis, numerical simulation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Di Luozzo, N. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Fontana, M., E-mail: mfontan2006@gmail.com [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Arcondo, B. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Numerical simulations of the heating by induction in steel tubes were performed. Black-Right-Pointing-Pointer Finite element method was employed in this electromagnetic-heat transfer coupled problem. Black-Right-Pointing-Pointer The outside temperature evolution of the steel tubes was determined experimentally and numerically. Black-Right-Pointing-Pointer Temperatures in the inner and outer tube surface and the heat affected zone were determined. - Abstract: The transient liquid phase bonding process is been performed to join carbon steel tubes. Fe{sub 96.2}B{sub 3.8} wt% amorphous ribbons of thickness a Almost-Equal-To 20 {mu}m have been employed as filler material. The tubes are aligned with their butted surfaces in contact with the amorphous layer. The joint is heated into a high frequency induction coil under Argon atmosphere. The temperature is raised at the highest possible rate to the process temperature (at about Almost-Equal-To 1250 Degree-Sign C) and then held for a predetermined time. In this paper, the numerical simulations of the heating stage of the bonding process have been made using the finite element method. This method had shown of being able to deal with these kind of coupled problems: electromagnetic field generated by alternating currents, eddy currents generated on the steel tube, heating of the steel tube due to joule effect and heat transfer by conduction, convection and radiation. The experimental heating stage, for its further simulation, was done with carbon steel tubes. In particular, we are interested in the temperature evolution of the tube upon heating: time to reach the process temperature at the joint, temperature differences between the inner and outer surface of the tube and the extension of the heat affected zone, taking into account the ferromagnetic-paramagnetic transition. The numerical simulations are validated by comparison with infrared radiation thermometer measurements of the

  5. Study of the mechanism of electrochemical hydrogen storage in nano-porous carbons

    International Nuclear Information System (INIS)

    An efficient method of hydrogen storage in nano-porous carbons is its reversible sorption by electrochemical decomposition of a KOH water solution according to the following equation: C + xH2O + xe- → (CHx) + xOH- where (CHx) stands for the hydrogen inserted into the nano-porous carbon during charging and oxidized during discharging. Although various carbon materials have been investigated as hydrogen adsorbents, the information about the storage mechanism as well as the nature of the hydrogen/carbon interaction is still not sufficient. In order to extend the understanding of the process, carbon samples charged electrochemically were investigated by temperature programmed desorption (TPD). The nature of the hydrogen/carbon interaction was studied by electrochemical analysis at different temperatures. The TPD experiments consist of heating the samples from room temperature to 950 C and of quantitative analysis by On-line mass spectrometry, the di-hydrogen evolved from the carbon material. Fig 1 shows the desorption rate of hydrogen during the TPD experiment carried out on an activated carbon cloth loaded at -500 mA/g during 12 hours. The first peak below 300 C corresponds to the desorption of hydrogen fixed on the carbon surface during the charging process. The shape and the position of this peak suggests that the gas is released from sites of different and relatively high energies. The second hydrogen peak results from the reaction between the carbon material and KOH as already mentioned in literature. Carbon materials were also loaded at - 500 mA/g during different times (3, 6, 12 and 24 hours), and then analysed by TPD, showing that the intensity of the peak below 300 C increases with the charging time. Hence TPD gives the direct proof that hydrogen is really stored in nano-porous carbons by this electrochemical process. Moreover, the position of the desorption peaks demonstrates that at least a part of hydrogen presents stronger interactions than in the state

  6. Investigation of Carbon Nano structures Prepared by Thermolysis of Poly Acrylamide

    International Nuclear Information System (INIS)

    Carbon nano structures have been synthesized by thermal annealing of Poly (acryl amidosulfonic acid) gel. Poly (acryl amidosulfonic acid) gel had been prepared using the technique of chain polymerization utilizing acrylamide and ammonium persulphate. Differential thermal analysis and thermo gravimetric analysis were performed on the gel. Results showed the occurrence of three important conversions at 250 degree C, 350 degree C, and 460 degree C which leads to the formation of carbon nano structures. X-ray investigation of the products implied the formation of carbon nano structures with average size of 4 ± 1 nm. Conclusions showed that proceeding after the mentioned steps of gel treatment at 250 degree C, 350 degree C, and 460 degree C is necessary to obtain narrower crystal size distribution. Morphology obtained by scanning electron microscopy (SEM) explained the ability of the prepared material to adsorb ions from aqueous solution. The SEM Results showed average particle size of the formed fine particles as 150 nm, while X-ray diffraction showed that the crystal size is of about 4 ± 1 nm

  7. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of); Tabrizi, Mahmoud Amouzadeh [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of)

    2011-11-30

    Highlights: > A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. > A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. > The apparent electron transfer rate constant was measured to be 5.27 s{sup -1}. > A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E{sup o}') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k{sub s}) was calculated to be 5.27 s{sup -1}. The dependence of E{sup o}' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  8. Fabrication and modeling of electrochemical double-layer capacitors using carbon nano-onion electrode structures

    Science.gov (United States)

    Parigi, Fabio

    Electrochemical capacitors or ultracapacitors (UCs) that are commercially available today overcome battery limitations in terms of charging time (from tens of minutes to seconds) and limited lifetime (from a few thousand cycles up to more than one million) but still lack specific energy and energy density (2-5% of a lithium ion battery). The latest innovations in carbon nanomaterials, such as carbon nanotubes as an active electrode material for UCs, can provide up to five times as much energy and deliver up to seven times more power than today's activated carbon electrodes. Further improvements in UC power density have been achieved by using state-of-the-art carbon nano-onions (CNOs) for ultracapacitor electrodes. CNO UCs could exhibit up to five times the power density of single-wall CNT UCs and could substantially contribute to reducing the size of an energy storage system as well as the volume and weight, thus improving device performance. This dissertation describes the fabrication of CNO electrodes as part of an UC device, the measurement and analysis of the new electrode's performance as an energy storage component, and development of a new circuit model that accurately describes the CNO UC electrical behavior. The novel model is based on the impedance spectra of CNO UCs and cyclic voltammetry measurements. Further, the model was validated using experimental data and simulation. My original contributions are the fabrication process for reliable and repeatable electrode fabrication and the modeling of a carbon nano-onion ultracapacitor. The carbon nano-onion ultracapacitor model, composed of a resistor, an inductor, a capacitor (RLC), and a constant phase element (CPE), was developed along with a parameter extraction procedure for the benefit of other users. The new model developed, proved to be more accurate than previously reported UC models.

  9. Nano-particles

    International Nuclear Information System (INIS)

    Nano-particles (N.P.) are structures comprising from some hundred to some thousand atoms. Owing to their size (1 to 100 nanometers), the physical and chemical properties of these nano-objects differ from those of classical materials. They cover a wide development area, which includes medical research: they can be classified into two major groups, organic N.P. (liposomes, polymers N.P., carbon nano tubes, fullerenes) and inorganic N.P. (quantum dots, magnetic N.P., Raman probes). N.P. can be conceived to act as a drug delivery system (therapeutic), imaging probe (diagnostic) or both (theranostic). We report recent data from scientific literature and describe main N.P. within medical area, their state of development, and the limited knowledge of their toxicity in human being. (author)

  10. Amorphous carbon film deposition on inner surface of tubes using atmospheric pressure pulsed filamentary plasma source

    CERN Document Server

    Pothiraja, Ramasamy; Awakowicz, Peter

    2011-01-01

    Uniform amorphous carbon film is deposited on the inner surface of quartz tube having the inner diameter of 6 mm and the outer diameter of 8 mm. A pulsed filamentary plasma source is used for the deposition. Long plasma filaments (~ 140 mm) as a positive discharge are generated inside the tube in argon with methane admixture. FTIR-ATR, XRD, SEM, LSM and XPS analyses give the conclusion that deposited film is amorphous composed of non-hydrogenated sp2 carbon and hydrogenated sp3 carbon. Plasma is characterized using optical emission spectroscopy, voltage-current measurement, microphotography and numerical simulation. On the basis of observed plasma parameters, the kinetics of the film deposition process is discussed.

  11. Microscopic unravelling of nano-carbon doping in MgB{sub 2} superconductors fabricated by diffusion method

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.C.K. [School of Physics, The University of Sydney, New South Wales 2006 (Australia); Yeoh, W.K. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006 (Australia); Australian Centre for Microscopy & Microanalysis, The University of Sydney, New South Wales 2006 (Australia); De Silva, K.S.B. [Institute for Superconducting & Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Institute for Nanoscale Technology, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007 (Australia); Kondyurin, A.; Bao, P. [School of Physics, The University of Sydney, New South Wales 2006 (Australia); Li, W.X. [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Xu, X.; Peleckis, G.; Dou, S.X. [Institute for Superconducting & Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Ringer, S.P. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006 (Australia); Australian Centre for Microscopy & Microanalysis, The University of Sydney, New South Wales 2006 (Australia); Zheng, R.K., E-mail: rongkun.zheng@sydney.edu.au [School of Physics, The University of Sydney, New South Wales 2006 (Australia)

    2015-09-25

    Highlights: • First report on nano-carbon doped MgB{sub 2} superconductors synthesized by diffusion method. • Microstructure and superconducting properties of the superconductors are discussed. • B{sub 4}C region blocks the Mg from reacting with B in the 10% nano-carbon doped sample. • MgB{sub 2} with 2.5% nano-carbon doped showed the highest J{sub c}, ≈10{sup 4} A/cm{sup 2} for 20 K at 4 T. - Abstract: We investigated the effects of nano-carbon doping as the intrinsic (B-site nano-carbon substitution) and extrinsic (nano-carbon derivatives) pinning by diffusion method. The contraction of the in-plane lattice confirmed the presence of disorder in boron sublattice caused by carbon substitution. The increasing value in full width half maximum (FWHM) in the X-ray diffraction (XRD) patterns with each increment in the doping level reveal smaller grains and imperfect MgB{sub 2} crystalline. The strain increased across the doping level due to the carbon substitution in the MgB{sub 2} matrix. The broadening of the T{sub c} curves from low to high doping showed suppression of the connectivity of the bulk samples with progressive dirtying. At high doping, the presence of B{sub 4}C region blocked the Mg from reacting with crystalline B thus hampering the formation of MgB{sub 2}. Furthermore, the unreacted Mg acted as a current blocking phase in lowering down the grain connectivity hence depressing the J{sub c} of the 10% nano-carbon doped MgB{sub 2} bulk superconductor.

  12. Microscopic unravelling of nano-carbon doping in MgB2 superconductors fabricated by diffusion method

    International Nuclear Information System (INIS)

    Highlights: • First report on nano-carbon doped MgB2 superconductors synthesized by diffusion method. • Microstructure and superconducting properties of the superconductors are discussed. • B4C region blocks the Mg from reacting with B in the 10% nano-carbon doped sample. • MgB2 with 2.5% nano-carbon doped showed the highest Jc, ≈104 A/cm2 for 20 K at 4 T. - Abstract: We investigated the effects of nano-carbon doping as the intrinsic (B-site nano-carbon substitution) and extrinsic (nano-carbon derivatives) pinning by diffusion method. The contraction of the in-plane lattice confirmed the presence of disorder in boron sublattice caused by carbon substitution. The increasing value in full width half maximum (FWHM) in the X-ray diffraction (XRD) patterns with each increment in the doping level reveal smaller grains and imperfect MgB2 crystalline. The strain increased across the doping level due to the carbon substitution in the MgB2 matrix. The broadening of the Tc curves from low to high doping showed suppression of the connectivity of the bulk samples with progressive dirtying. At high doping, the presence of B4C region blocked the Mg from reacting with crystalline B thus hampering the formation of MgB2. Furthermore, the unreacted Mg acted as a current blocking phase in lowering down the grain connectivity hence depressing the Jc of the 10% nano-carbon doped MgB2 bulk superconductor

  13. An intraoral miniature x-ray tube based on carbon nanotubes for dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Kim, Hyun Nam; Raza, Hamid Saeed; Park, Han Beom; Cho, Sung Oh [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-06-15

    A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

  14. A study on hydrogen storage through adsorption in nano-structured carbons

    International Nuclear Information System (INIS)

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  15. Testing Supercritical Carbon Dioxide Flowing Up Vertical Tube

    International Nuclear Information System (INIS)

    Supercritical fluid is referred to a substance at a temperature and pressure above its critical point. Hence the occurrence of the critical heat flux due to the liquid-gas phase transition can be avoided. In addition, close to the critical point, minute changes in pressure or temperature cause large changes in density or specific heat. Thus, the supercritical carbon dioxide (SCO2) is currently being considered as working fluid for power conversion in some Generation IV Nuclear Energy Systems. SCO2 has such advantages as high density, easy accessibility, low price and no toxicity compared against other fluids. Nevertheless one of the most marked characteristics is its low critical point, which renders change from CO2 to SCO2 easier than other fluids. These benefits lead SCO2 to be used in power stations instead of water

  16. Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials

    Indian Academy of Sciences (India)

    Kalpana Awasthi; Rajesh Kumar; Himanshu Raghubanshi; Seema Awasthi; Ratnesh Pandey; Devinder Singh; T P Yadav; O N Srivastava

    2011-07-01

    In the present study, we report the synthesis of carbon nanotubes (CNTs) using a new natural precursor: castor oil. The CNTs were synthesized by spray pyrolysis of castor oil–ferrocene solution at 850°C under an Ar atmosphere. We also report the synthesis of carbon nitrogen (C–N) nanotubes using castor oil–ferrocene–ammonia precursor. The as-grown CNTs and C–N nanotubes were characterized through scanning and transmission electron microscopic techniques. Graphitic nanofibres (GNFs) were synthesized by thermal decomposition of acetylene (C2H2) gas using Ni catalyst at 600°C. As-grown GNFs reveal both planar and helical morphology. We have investigated the structural and electrical properties of multi-walled CNTs (MWNTs)–polymer (polyacrylamide (PAM)) composites. The MWNTs–PAM composites were prepared using as purified, with ball milling and functionalized MWNTs by solution cast technique and characterized through SEM. A comparative study has been made on the electrical property of these MWNTs–PAM composites with different MWNTs loadings. It is shown that the ball milling and functionalization of MWNTs improves the dispersion of MWNTs into the polymer matrix. Enhanced electrical conductivity was observed for the MWNTs–PAM composites. Graphene samples were prepared by thermal exfoliation of graphite oxide. XRD analysis confirms the formation of graphene.

  17. The emission carbonate crystallite and oxide cathode performance in electron tubes

    Science.gov (United States)

    Shafer, Don; Turnbull, John

    Emission from an oxide cathode is dependent upon the ratio of alkaline earth carbonates present at the cathodes surface. The method by which each carbonate is made plays a key role in its function in a cathode. Other factors effecting the performance of the oxide cathode are the type of constituents in the base metal. These constituents play key roles in barium diffusion and evaporation. It has been found that the crystalline structure of the alkaline earth carbonates affects the life of oxide cathode tubes. The rates of diffusion and evaporation of alkaline earth oxides, were studied with the use of the SEM-electron beam probe and energy dispersive X-ray Edax. Cathode surfaces to the depths of 1000 Å (approximately 200 atomic layers) were scanned. Many cathodes were studied after conversion from carbonates to oxides. It was found that barium oxide evaporated to 1/3 of the original formulation at oxide conversion. This diffusion and evaporation reaction took place throughout tube life. This work has shown that the crystal size, structure, and composition may be modified to lengthen the BaO half life and therefore lengthen the overall life of the electron tube.

  18. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles

    International Nuclear Information System (INIS)

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  19. Improvement of polydimethylsiloxane guide tube for nerve regeneration treatment by carbon negative-ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, H. E-mail: tsuji@kuee.kyoto-u.ac.jp; Izukawa, M.; Ikeguchi, R.; Kakinoki, R.; Sato, H.; Gotoh, Y.; Ishikawa, J

    2003-05-01

    Modification of polydimethylsiloxane (PDMS) rubber by negative ion-implantation was investigated for improvement of nerve regeneration property. The PDMS rubber surface was found to have more hydrophilic property after carbon negative-ion implantation than before. At the conditions of 10 keV and 3.0 x 10{sup 15} ions/cm{sup 2}, the contact angle decreased to 83 deg. from 100 deg. . The reason of the hydrophilic modification is due to hydrophilic functional groups such as hydroxyl formed at the surface by radiation effect of ion implantation. The in vivo regeneration test of rat sciatic nerve was performed by using 18-mm-long PDMS rubber tubes with inner diameter of 2 mm, the inner surface of which was implanted with carbon negative ions at the above conditions. At 24 weeks after the clinical surgery, the sciatic nerve was regenerated through the tube between the proximal and distal nerve stumps.

  20. Crushing Characteristics of Filament Wound Carbon Fiber/Epoxy Tube under Quasi-static Compression Condition

    Institute of Scientific and Technical Information of China (English)

    ZHU Jinming; LI Wenbin; YANG Guang; JIA Xiaolong; YANG Xiaoping

    2015-01-01

    We investigated the effect of structural factor and amide grafted multi-walled carbon nanotubes (MWNTs-NH2) on crushing characteristics of filament wound CFRP tube under quasi-static compression conditon. It was found that CFRP tubes sequentially showed the brittle fracturing mode, the local buckling fracturing mode and transverse shearing fracturing mode with increasing winding angle, respectively, with the characterizations by mechanical testing, SEM and optical microscopy. Moreover, crack propagation initiated by pre-crack and subsequent failure in the tube were strongly dependent on pre-crack angle due to delfection and penetration competition of crack evolution. The simulated compression failure behavior correlated well with the experimental results, revealing that the Chang-Chang failure criterion was effective in representing the quasi-static crushing characteristics of the tube. In addtion, the MWNTs-NH2 were sucessfully obtained by multi-step functionization. The compressvie properties of the tubes were signiifcantly improved by the addition of the MWNTs-NH2 due to their uniform dispersion and high interfacial chemical reactivity, whereas the as-received MWNTs and other functionalized MWNTs were not as effective.

  1. Preparation by the nano casting process of novel porous carbons from large pore zeolite templates

    Energy Technology Data Exchange (ETDEWEB)

    Gaslain, F.; Parmentier, J.; Valtchev, V.; Patarin, J. [Universite de Haute Alsace, Lab. de Materiaux a Porosite Controlee (LMPC), UMR CNRS 7016, ENSCMu, 68 - Mulhouse (France); Vix-Guterl, C. [Institut de Chimie des Surfaces et Interfaces (ICSI), UPR CNRS 9069, 68 - Mulhouse (France)

    2005-07-01

    The development of new growing industrial applications such as gas storage (e.g.: methane or hydrogen) or electric double-layer capacitors has focussed the attention of many research groups. For this kind of application, porous carbons with finely tailored micro-porosity (i.e.: pore size diameter {<=} 1 nm) appear as very promising materials due to their high surface area and their specific pore size distribution. In order to meet these requirements, attention has been paid towards the feasibility of preparing microporous carbons by the nano-casting process. Since the sizes and shapes of the pores and walls respectively become the walls and pores of the resultant carbons, using templates with different framework topologies leads to various carbon replicas. The works performed with commercially available zeolites employed as templates [1-4] showed that the most promising candidate is the FAU-type zeolite, which is a large zeolite with three-dimensional channel system. The promising results obtained on FAU-type matrices encouraged us to study the microporous carbon formation on large pore zeolites synthesized in our laboratory, such as EMC-1 (International Zeolite Association framework type FAU), zeolite {beta} (BEA) or EMC-2 (EMT). The carbon replicas were prepared following largely the nano-casting method proposed for zeolite Y by the Kyotani research group [4]: either by liquid impregnation of furfuryl alcohol (FA) followed by carbonisation or by vapour deposition (CVD) of propylene, or by an association of these two processes. Heat treatment of the mixed materials (zeolite / carbon) could also follow in order to improve the structural ordering of the carbon. After removal of the inorganic template by an acidic treatment, the carbon materials obtained were characterised by several analytical techniques (XRD, N{sub 2} and CO{sub 2} adsorption, electron microscopy, etc...). The unique characteristics of these carbons are discussed in details in this paper and

  2. Synthesis of Core-Shell SiOx/Carbon Nano fibers on Silicon Substrates by Ultrasonic Spray Pyrolysis

    International Nuclear Information System (INIS)

    We synthesized the core-shell SiOx/carbon nano fibers with diameters of 200-300 nm using ultrasonic spray pyrolysis with a phosphorus/ethanol mixture. High-resolution transmission electron microscopy (HRTEM) and energy-dispersive spectroscopy (EDS) investigations confirmed the core-shell structure, which consisted of a core of SiOx and a shell of amorphous carbon. The phosphorus atoms corroded the entire silicon substrate surface, and the Si-P liquid-catalyzed the solid-liquid-solid mechanism is proposed to explain the growth of the core-shell SiOx/carbon nano fibers.

  3. Electrochemical Performance of Iron Diphosphide/Carbon Tube Nanohybrids in Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: • Dehydrogenated FeP2/C nanohybrids were fabricated via a facile annealing process. • The nanohybrids as anode in LIB show excellent cycling stability and rate capability. • C-hybrid promotes buffering volume change and increasing electroconductibility. • The process can be applied for the fabrication of many more TMPs and nanohybrids. -- Abstract: Phosphorous-rich phase iron diphosphide/carbon tube (FeP2/C) nanohybrids, which are synthesized via a pyrolysis process and composed of heterostructures of orthorhombic FeP2 with conical carbon tubes, have been identified as a new anode in lithium-ion batteries. After an annealing treatment to eliminate the excessive hydrogen elements in the carbon tubes, the FeP2/C nanohybrids display good reversible capacity, long cycle life, and excellent rate capability. Specifically, the annealed hybrids exhibit a discharge capacity of 602 mA h g−1 on the second cycle and a discharge capacity of 435 mA h g−1 after 100 cycles at 0.1C (0.137 A g−1). Meanwhile, these annealed hybrids exhibit excellent rate capability, such as a reversible capability of 510 mA h g−1, 440 mA h g−1, 380 mA h g−1, 330 mA h g−1 and 240 mA h g−1 at 0.25C, 0.5C, 1C, 2.5C and 5C, respectively

  4. Preparation and characterization of PVC /ENR/CNTs Nano composites

    International Nuclear Information System (INIS)

    Poly (vinyl chloride), PVC/ epoxidized natural rubber blend, ENR/ carbon nano tubes, CNTs were prepared by using melt and solution blending methods. Addition of 2 phr of CNTs found to cause a drop in the tensile strength, Ts of the 50/ 50 PVC/ ENR blend. The nano composites prepared by the melt blending method exhibited higher values of Ts compared to the nano composites prepared by solution blending. Melt blending found to be an efficient method to prepare PVC/ ENR/ CNTs nano composites. (author)

  5. Synergy between Printex nano-carbons and silver nanoparticles for sensitive estimation of antioxidant activity.

    Science.gov (United States)

    Raymundo-Pereira, Paulo A; Campos, Anderson M; Prado, Thiago M; Furini, Leonardo N; Boas, Naiza V; Calegaro, Marcelo L; Machado, Sergio A S

    2016-07-01

    We report on the synthesis, characterization and applications of a Printex L6 carbon-silver hybrid nanomaterial (PC-Ag), which was obtained using a polyol method. In addition, we also highlight the use of Printex L6 nano-carbon as a much cheaper alternative to the use of carbon nanotubes and graphene. The silver nanoparticles (AgNP) were prepared directly on the surface of the Printex 6L carbon "nanocarbon" material using ethylene glycol as the reducing agent. The hybrid nanomaterial was characterized by High-angle annular dark-field transmission electron microscopy (HAADF-TEM), energy-dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), Raman spectroscopy and cyclic voltammetry. Optimized electrocatalytic activity on glassy carbon electrode was reached for the architecture GC/PC-Ag, the silver nanoparticles with size ranging between 1 and 2 nm were well-distributed throughout the hybrid material. The synergy between PC nano-carbons and AgNPs was verified by detection of gallic acid (GA) at a low applied potential (0.091 V vs. Ag/AgCl). GA detection was performed in a concentration range between 5.0 × 10(-7) and 8.5 × 10(-6) mol L(-1), with a detection limit of 6.63 × 10(-8) mol L(-1) (66.3 nmol L(-1)), which is considerably lower than similar devices. The approach for fabricating the reproducible GC/PC-Ag electrodes is entirely generic and may be explored for other types of (bio)sensors and devices. PMID:27216397

  6. A glass-sealed field emission x-ray tube based on carbon nanotube emitter for medical imaging

    Science.gov (United States)

    Yeo, Seung Jun; Jeong, Jaeik; Ahn, Jeung Sun; Park, Hunkuk; Kwak, Junghwan; Noh, Eunkyong; Paik, Sanghyun; Kim, Seung Hoon; Ryu, Jehwang

    2016-04-01

    We report the design and fabrication of a carbon nanotube based a glass-sealed field emission x-ray tube without vacuum pump. The x-ray tube consists of four electrodes with anode, focuser, gate, and cathode electrode. The shape of cathode is rectangular for isotropic focal spot size at anode target. The obtained x-ray images show clearly micrometer scale.

  7. 77 FR 46713 - Circular Welded Carbon Steel Pipes and Tubes From Turkey: Final Results of Countervailing Duty...

    Science.gov (United States)

    2012-08-06

    ... Steel Pipe and Tube Products From Turkey, 51 FR 7984 (March 7, 1986). \\5\\ See Preliminary Results, 77 FR... Results of Countervailing Duty Administrative Review, 77 FR 19623 (April 2, 2012) (Preliminary Results... Welded Carbon Steel Standard Pipe and Tube from Turkey: Notice of Rescission of Countervailing...

  8. Palladium nanoparticles on hierarchical carbon surfaces: A new architecture for robust nano-catalysts

    Science.gov (United States)

    Vijwani, Hema; Mukhopadhyay, Sharmila M.

    2012-12-01

    Surface activity of heterogeneous catalysts can be enhanced if their sizes are reduced to nanometers. However, loose nanomaterials pose potential health and environmental risks. This issue has been addressed by attachment of palladium nanoparticles on multi-scale hierarchical carbon supports that have exceptionally high surface area per volume. The supports consist of porous carbon foam whose surface has been either chemically functionalized, or morphologically altered by grafting of carbon-nanotubes. It is seen that whereas chemical functionalization does provide some increase in nano-catalyst loading, morphological modification is significantly more powerful. It has the potential to create orders of magnitude increase in catalytic activity within the same overall volume. The synthesis techniques have been investigated in sufficient detail to provide significant control over the density and size of nanoparticles. Abundant distribution of nanoparticles is observed even within the deeper pores of the microcellular foam. The nanoparticles are seen to be metallic Pd having face centered cubic structure. Additionally, the nano-particles and nanotubes are durable, and remain attached to the base support after long periods of rapid rotation in water. These robust hybrid structures show promise in future applications such as sensors, water purification systems, fuel cell electrodes and hydrogen storage sponges.

  9. Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds.

    Science.gov (United States)

    Zanin, H; Rosa, C M R; Eliaz, N; May, P W; Marciano, F R; Lobo, A O

    2015-06-14

    Electrodeposited nano-hydroxyapatite (nHAp) is more similar to biological apatite in terms of microstructure and dimension than apatites prepared by other processes. Reinforcement with carbon nanotubes (CNTs) enhances its mechanical properties and increases adhesion of osteoblasts. Here, we carefully studied nHAp deposited onto vertically aligned multi-walled CNT (VAMWCNT) scaffolds by electrodeposition and soaking in a simulated body fluid (SBF). VAMWCNTs are porous biocompatible scaffolds with nanometric porosity and exceptional mechanical and chemical properties. The VAMWCNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method, and then oxidized and exfoliated by oxygen plasma etching (OPE) to produce graphene oxide (GO) at the VAMWCNT tips. The attachment of oxygen functional groups was found to be crucial for nHAp nucleation during electrodeposition. A thin layer of plate-like and needle-like nHAp with high crystallinity was formed without any need for thermal treatment. This composite (henceforth referred to as nHAp-VAMWCNT-GO) served as the scaffold for in vitro biomineralization when soaked in the SBF, resulting in the formation of both carbonate-rich and carbonate-poor globular-like nHAp. Different steps in the deposition of biological apatite onto VAMWCNT-GO and during the short-term biomineralization process were analysed. Due to their unique structure and properties, such nano-bio-composites may become useful in accelerating in vivo bone regeneration processes. PMID:25990927

  10. Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds

    Science.gov (United States)

    Zanin, H.; Rosa, C. M. R.; Eliaz, N.; May, P. W.; Marciano, F. R.; Lobo, A. O.

    2015-05-01

    Electrodeposited nano-hydroxyapatite (nHAp) is more similar to biological apatite in terms of microstructure and dimension than apatites prepared by other processes. Reinforcement with carbon nanotubes (CNTs) enhances its mechanical properties and increases adhesion of osteoblasts. Here, we carefully studied nHAp deposited onto vertically aligned multi-walled CNT (VAMWCNT) scaffolds by electrodeposition and soaking in a simulated body fluid (SBF). VAMWCNTs are porous biocompatible scaffolds with nanometric porosity and exceptional mechanical and chemical properties. The VAMWCNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method, and then oxidized and exfoliated by oxygen plasma etching (OPE) to produce graphene oxide (GO) at the VAMWCNT tips. The attachment of oxygen functional groups was found to be crucial for nHAp nucleation during electrodeposition. A thin layer of plate-like and needle-like nHAp with high crystallinity was formed without any need for thermal treatment. This composite (henceforth referred to as nHAp-VAMWCNT-GO) served as the scaffold for in vitro biomineralization when soaked in the SBF, resulting in the formation of both carbonate-rich and carbonate-poor globular-like nHAp. Different steps in the deposition of biological apatite onto VAMWCNT-GO and during the short-term biomineralization process were analysed. Due to their unique structure and properties, such nano-bio-composites may become useful in accelerating in vivo bone regeneration processes.

  11. Study of the mechanism of electrochemical hydrogen storage in nano-porous carbons

    International Nuclear Information System (INIS)

    An efficient method of hydrogen storage in nano-porous carbons is its reversible sorption by electrochemical decomposition of a KOH water solution [1-3] according to the following equation: C + xH2O + xe- → (CHx) + xOH- where (CHx) stands for the hydrogen inserted into the nano-porous carbon during charging and oxidized during discharging. Although various carbon materials have been investigated as hydrogen adsorbents, the information about the storage mechanism as well as the nature of the hydrogen/carbon interaction is still not sufficient. In order to extend the understanding of the process, carbon samples charged electrochemically were investigated by temperature programmed desorption (TPD). The nature of the hydrogen/carbon interaction was studied by electrochemical analysis at different temperatures. The TPD experiments consist of heating the samples from room temperature to 950 C and of quantitative analysis by on-line mass spectrometry, the di-hydrogen evolved from the carbon material. Fig 1 shows the desorption rate of hydrogen during the TPD experiment carried out on an activated carbon cloth loaded at -500 mA/g during 12 hours. The first peak below 300 C corresponds to the desorption of hydrogen fixed on the carbon surface during the charging process. The shape and the position of this peak suggests that this gas is released from sites of different and relatively high energies. The second hydrogen peak results from the reaction between the carbon material and KOH as already mentioned in literature [4]. Carbon materials were also loaded at -500 mA/g during different times (3, 6, 12 and 24 hours), and then analysed by TPD, showing that the intensity of the peak below 300 C increases with the charging time. Hence TPD gives the direct proof that hydrogen is really stored in nano-porous carbons by this electrochemical process. Moreover, the position of the desorption peaks demonstrates that at least a part of hydrogen presents stronger interactions than in

  12. Carbon nano-onions (multi-layer fullerenes: chemistry and applications

    Directory of Open Access Journals (Sweden)

    Juergen Bartelmess

    2014-11-01

    Full Text Available This review focuses on the development of multi-layer fullerenes, known as carbon nano-onions (CNOs. First, it briefly summarizes the most important synthetic pathways for their preparation and their properties and it gives the reader an update over new developments in the recent years. This is followed by a discussion of the published synthetic procedures for CNO functionalization, which are of major importance when elucidating future applications and addressing drawbacks for possible applications, such as poor solubility in common solvents. Finally, it gives an overview over the fields of application, in which CNO materials were successfully implemented.

  13. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel

    International Nuclear Information System (INIS)

    The present work focuses on microstructure evolution and precipitation strengthening during tempering at region of 550–680 °C to elucidate the structure–property relationship in the steel. The effect of tempering on the development of a 700 MPa grade high strength hot rolled cost-effective bainitic steel was studied for infrastructure applications. Granular bainite with dispersed martenisit–austenite (M–A) constituents in the bainitic ferrite matrix was obtained after hot rolling and air cooling to room temperature. The decomposition of M–A constituents to cementite carbides and the precipitation of nano-sized NbC carbides in bainitic matrix on tempering were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nano-sized precipitates of NbC precipitated during tempering were in average diameter of ~4.1–6.1 nm. There were ~86–173 MPa increases in yield strength after tempering at region of 550–680 °C. It is noticeable that those nano-sized NbC precipitates provide an effective way to significantly increase the strength of the low carbon bainitic steel. High yield strength of 716 MPa with high ductility (uniform elongation of 9.3% and total elongation of 22.4%), low yield to tensile ratio of 0.9 and good low temperature toughness of 47 J (half thickness) at –40 °C was obtained after tempering at 680 °C for 30 min

  14. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Ma, X.P. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, X.M. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Subramanian, S.V. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada)

    2015-08-12

    The present work focuses on microstructure evolution and precipitation strengthening during tempering at region of 550–680 °C to elucidate the structure–property relationship in the steel. The effect of tempering on the development of a 700 MPa grade high strength hot rolled cost-effective bainitic steel was studied for infrastructure applications. Granular bainite with dispersed martenisit–austenite (M–A) constituents in the bainitic ferrite matrix was obtained after hot rolling and air cooling to room temperature. The decomposition of M–A constituents to cementite carbides and the precipitation of nano-sized NbC carbides in bainitic matrix on tempering were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nano-sized precipitates of NbC precipitated during tempering were in average diameter of ~4.1–6.1 nm. There were ~86–173 MPa increases in yield strength after tempering at region of 550–680 °C. It is noticeable that those nano-sized NbC precipitates provide an effective way to significantly increase the strength of the low carbon bainitic steel. High yield strength of 716 MPa with high ductility (uniform elongation of 9.3% and total elongation of 22.4%), low yield to tensile ratio of 0.9 and good low temperature toughness of 47 J (half thickness) at –40 °C was obtained after tempering at 680 °C for 30 min.

  15. Efficient field emission from coiled carbon nano/microfiber on copper substrate by dc-PECVD

    International Nuclear Information System (INIS)

    Crystalline coiled carbon nano/micro fibers in thin film form have been synthesized via direct current plasma enhanced chemical vapor deposition (PECVD) on copper substrates with acetylene as a carbon precursor at 10 mbar pressure and 750 deg. C substrate temperature. The as-prepared samples were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). XRD pattern as well as selected area electron diffraction (SAED) pattern showed that the samples were crystalline in nature. SEM and HRTEM studies showed that as synthesized coiled carbon fibers are having average diameter ∼100 nm and are several micrometers in length. The as-prepared samples showed moderately good electron field emission properties with a turn-on field as low as 1.96 V/μm for an inter-electrode distance 220 μm. The variation of field emission properties with inter-electrode distance has been studied in detail. The field emission properties of the coiled carbon fibrous thin films are compared with that of crystalline multiwalled carbon nanotubes and other carbon nanostructures.

  16. Invention of the organic substance nano wire; Yukibutsu nano waiya no sosei

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Katsuyoshi [Chiba University, Chiba (Japan). Faculty of Engineering

    1999-07-05

    Recently, the formation of the mesoscale structure of carbon nano-tube or tube of anorganic substance (MoS{sub 2} BN WS{sub 2}) attracts large attention. The application to fuel cells, catalyst support, probes of scanning microscope, electroconductive wires, etc. is expected. In the meantime, though in the organic substance, it is not high organizing structure like the superscription material, the mesoscale structure formation is being reported. Jerome et al. succeeded in the preparation of polypyrrole nano wire which reaches about 300{mu}m length as diameter several hundred nm using the electrochemical technique. (NEDO)

  17. Dynamic response of a carbon nanotube-based rotary nano device with different carbon-hydrogen bonding layout

    Science.gov (United States)

    Yin, Hang; Cai, Kun; Wan, Jing; Gao, Zhaoliang; Chen, Zhen

    2016-03-01

    In a nano rotational transmission system (RTS) which consists of a single walled carbon nanotube (SWCNT) as the motor and a coaxially arranged double walled carbon nanotube (DWCNT) as a bearing, the interaction between the motor and the rotor in bearing, which has great effects on the response of the RTS, is determined by their adjacent edges. Using molecular dynamics (MD) simulation, the interaction is analyzed when the adjacent edges have different carbon-hydrogen (Csbnd H) bonding layouts. In the computational models, the rotor in bearing and the motor with a specific input rotational speed are made from the same armchair SWCNT. Simulation results demonstrate that a perfect rotational transmission could happen when the motor and rotor have the same Csbnd H bonding layout on their adjacent ends. If only half or less of the carbon atoms on the adjacent ends are bonded with hydrogen atoms, the strong attraction between the lower speed (100 GHz) motor and rotor leads to a synchronous rotational transmission. If only the motor or the rotor has Csbnd H bonds on their adjacent ends, no rotational transmission happens due to weak interaction between the bonded hydrogen atoms on one end with the sp1 bonded carbon atoms on the other end.

  18. Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Haiqing L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.

  19. Nano-Reinforcement of Interfaces in Prepreg-Based Composites Using a Carbon Nanotubes Spraying Method

    KAUST Repository

    Almuhammadi, Khaled

    2012-11-01

    Multi-scale reinforcement of composite materials is a topic a great interest owing to the several advantages provided, e.g. increased stiffness, improved aging resistance, and fracture toughness. It is well known, that the fracture toughness of epoxy resins used as matrix materials for CFRP composites can be increased by the addition of nano-sized fillers such as Carbon nanotubes (CNTs). CNTs are particularly well suited for this purpose because of their nano-scale diameter and high aspect ratio which allow enhancing the contact area and adhesion to the epoxy matrix. On the other hand, CNTs can also be used to improve the interlaminar strength of composite, which is the resistance offered to delamination. Several fabrication techniques have been devised to this purpose, such as powder dispersion [51-53], spraying [54], roll coating [2] and electrospinning [55, 56]. The aim of this work is to extend the knowledge in this field. In particular, MWCNTs were dispersed throughout the interface of a carbon fiber composite laminate ([0o]16) through spraying and the resulting fracture toughness was investigated in detail. To this purpose, Double Cantilever Beam (DCB) specimens were fabricated by placing 0.5 wt.% CNTs at the interface of mid-plane plies and the fracture toughness was determined using the ASTM standard procedures. For comparison, baseline samples were prepared using neat prepregs. In order to corroborate the variation of fracture toughness to the modifications of interfacial damage mechanisms, Scanning Electron Microscopy (SEM) of the failed surfaces was also undertaken. The results of this work have shown that functionalized MWCNTs can enhance the interlaminar fracture toughness; indeed, compared to the neat case, an average increase around 17% was observed. The SEM analysis revealed that the improved fracture toughness was related to the ability of the Nano-reinforcement to spread the damage through crack bridging, i.e. CNTs pull-out and peeling.

  20. Effect of nano-scale characteristics of graphene on electrochemical performance of activated carbon supercapacitor electrodes

    Science.gov (United States)

    Jasni, M. R. M.; Deraman, M.; Suleman, M.; Hamdan, E.; Sazali, N. E. S.; Nor, N. S. M.; Shamsudin, S. A.

    2016-02-01

    Graphene with its typical nano-scale characteristic properties has been widely used as an additive in activated carbon electrodes in order to enhance the performance of the electrodes for their use in high performance supercapacitors. Activated carbon monoliths (ACMs) electrodes have been prepared by carbonization and activation of green monoliths (GMs) of pre-carbonized fibers of oil palm empty fruit bunches or self-adhesive carbon grains (SACGs) and SACGs added with 6 wt% of KOH-treated multi-layer graphene. ACMs electrodes have been assembled in symmetrical supercapacitor cells that employed aqueous KOH electrolyte (6 M). The cells have been tested with cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge discharge methods to investigate the effect of graphene addition on the specific capacitance (Csp), specific energy (E), specific power (P), equivalent series resistance (ESR) and response time (τo) of the supercapacitor cells. The results show that the addition of graphene in the GMs change the values of Csp, Emax, Pmax, ESR and τo from (61-96) F/g, 2 Wh/kg, 104 W/kg, 2.6 Ω and 38 s, to the respective values of (110-124) F/g, 3 Wh/kg, 156 W/kg, 3.4 Ω and 63 s. This study demonstrates that the graphene addition in the GMs has a significant effect on the electrochemical behavior of the electrodes.

  1. Production of templated carbon nano materials, carbon nanofibers and super capasitors

    OpenAIRE

    Sakintuna, Billur; Dumanlı, Ahu Gümrah; Dumanli, Ahu Gumrah; Nalbant, Aslı; Nalbant, Asli; Erden, Ayça; Erden, Ayca; Yürüm, Yuda; Yurum, Yuda

    2008-01-01

    i. Porous carbons are usually obtained via carbonization of precursors of natural or synthetic origin, followed by activation. To meet the requirements, a novel approach, the template carbonization method, has been proposed. Replication, the process of filling the external and / or internal pores of a solid with a different material, physically or chemically separating the resulting material from the template, is a technique that is widely used in microporosity and printing. Th...

  2. Preparation and mechanical properties of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites.

    Science.gov (United States)

    Geven, Mike A; Barbieri, Davide; Yuan, Huipin; de Bruijn, Joost D; Grijpma, Dirk W

    2015-01-01

    Composite materials of photo-crosslinked poly(trimethylene carbonate) and nanoscale hydroxyapatite were prepared and their mechanical characteristics for application as orbital floor implants were assessed. The composites were prepared by solvent casting poly(trimethylene carbonate) macromers with varying amounts of nano-hydroxyapatite and subsequent photo-crosslinking. The incorporation of the nano-hydroxyapatite into the composites was examined by thermogravimetric analysis, scanning electron microscopy and gel content measurements. The mechanical properties were investigated by tensile testing and trouser tearing experiments. Our results show that nano-hydroxyapatite particles can readily be incorporated into photo-crosslinked poly(trimethylene carbonate) networks. Compared to the networks without nano-hydroxyapatite, incorporation of 36.3 wt.% of the apatite resulted in an increase of the E modulus, yield strength and tensile strength from 2.2 MPa to 51 MPa, 0.5 to 1.4 N/mm2 and from 1.3 to 3.9 N/mm2, respectively. We found that composites containing 12.4 wt.% nano-hydroxyapatite had the highest values of strain at break, toughness and average tear propagation strength (376% , 777 N/mm2 and 3.1 N/mm2, respectively). PMID:25818155

  3. 75 FR 3896 - Certain Welded Carbon Steel Pipe and Tube from Turkey: Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2010-01-25

    ... International Trade Administration Certain Welded Carbon Steel Pipe and Tube from Turkey: Extension of Time... and Countervailing Duty Administrative Reviews and Request for Revocation in Part, 74 FR 30052 (June... initiation of the administrative review of the antidumping duty order on certain welded carbon steel pipe...

  4. 75 FR 63439 - Certain Welded Carbon Steel Standard Pipes and Tubes From India: Extension of the Final Results...

    Science.gov (United States)

    2010-10-15

    ... Results of Antidumping Duty Administrative Review, 75 FR 33578 (June 14, 2010). The review covers the... International Trade Administration Certain Welded Carbon Steel Standard Pipes and Tubes From India: Extension of... the administrative review of the antidumping duty order on certain welded carbon steel standard...

  5. Evaluation of Nutritional and Physical Properties of Watermelon Juice during the Thermal Processing by Using Alumina Nano-fluid in a Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Farinaz Saremnejad Namini

    2015-09-01

    Full Text Available Background and Objectives: Thermal processing is an effective method in preventing microbial spoilage but high heat transfer in a long time process that leads to quality loss and increased energy consumption. Also it is important to consider sensitive nature of food products during the thermal processing. Due to the nano-fluids' unique thermo–physical properties compared with the conventional fluids (steam and hot water, their use in various industries to enhance the efficiency of equipment and energy optimization has increased. Materials and Methods: The effects of alumina–water nano-fluids (0, 2, and 4% concentrations on some nutritional properties (lycopene and vitamin C content, and some physical properties (color, pH and TSS of watermelon juice treated by high temperature–short time (75, 80, and 85°C for 15, 30, and 45 seconds in a shell and tube heat exchanger were evaluated. Results: In compared with water, process time reduced by 24.88% and 51.63% for 2% and 4% nano-fluids, respectively. It had a significant effect on improving the properties of watermelon juice (P<0.05. Under the treatment conditions (75°C and 15s, with 0, 2, and 4% nano-fluids, 81.15, 84.81, and 91.28% of lycopene and 61.11, 63.70 and 67.04% of vitamin C were maintained, respectively. &DeltaE* values for the fruit juices processed with 0, 2 and 4% nano-fluids were 3.26, 2.21 and 1.14, respectively. Also pH and TSS changed in the range of 5.58–5.82 and 9.00–9.40%, respectively. Conclusions: The results showed that qualitative and nutritional properties of watermelon juices processed with nano-fluids in terms of lycopene and vitamin C retention, and color were, respectively, 9.89, 6.18 and 50.38% better than the samples processed with water.

  6. Highly surface functionalized carbon nano-onions for bright light bioimaging

    Science.gov (United States)

    Frasconi, Marco; Maffeis, Viviana; Bartelmess, Juergen; Echegoyen, Luis; Giordani, Silvia

    2015-12-01

    Carbon-based nanomaterials functionalized with fluorescent and water-soluble groups have emerged as platforms for biological imaging because of their low toxicity and ability to be internalized by cells. The development of imaging probes based on carbon nanomaterials for biomedical studies requires the understanding of their biological response as well as the efficient and safety exposition of the nanomaterial to the cell compartment where it is designed to operate. Here, we present a fluorescent probe based on surface functionalized carbon nano-onions (CNOs) for biological imaging. The modification of CNOs by chemical oxidation of the defects on the outer shell of these carbon nanoparticles results in an extensive surface functionalization with carboxyl groups. We have obtained fluorescently labelled CNOs by a reaction involving the amide bond formation between fluoresceinamine and the carboxylic acids groups on the surface of the CNOs. The functionalized CNOs display high emission properties and dispersability in water due to the presence of high surface coverage of carboxylic acid groups that translate in an efficient fluorescent probe for in vitro imaging of HeLa cells, without significant cytotoxicity. The resulting nanomaterial represents a promising platform for biological imaging applications due to the high dispersability in water, its efficient internalization by cancer cells and localization in specific cell compartments.

  7. The structure of nano-palladium deposited on carbon-based supports

    International Nuclear Information System (INIS)

    Nano-palladium catalysts, prepared using the same procedure with the same metal content (3 wt%) and two different supports, activated carbon (Pd/C) and activated carbon—multiwalled carbon nanotubes (Pd/C/CNT), are discussed. The simple technique of deposition reduction was applied in the preparation of these two types of Pd catalysts. TEM, XRD analysis, EXAFS signal analysis, and XANES were used for sample characterization. In both samples, transmission electron microscopy identified nanosized Pd particles with nearly spherical morphology but different sizes. The mean diameters of the particles on Pd/C and Pd/C/CNT were estimated to be 5.4 nm and 7.8 nm, respectively. The EXAFS signal analysis showed that Pd atoms on the particle surfaces were coordinated by 4 oxygens to form a PdO monolayer covering a metallic core. The XANES signal analysis indicated a smaller particle size for Pd/C (∅ 5 nm) than for Pd/C/CNT (∅ 10 nm), in good agreement with the TEM observations. - Graphical abstract: Visualization of metallic core (left), oxide monolayer (middle) and nanoparticle of diameter 5 nm (right). - Highlights: • Pd catalysts were prepared on two types of supports: carbon and carbon nanotubes. • BET, TEM, XRD characterization of prepared catalysts. • XAFS: Concentration of Pd in samples Pd/C and Pd/C/CNT. • EXAFS and XANES signal analysis of catalysts. • Visualisation of atoms arrangement at the Pd nanoparticle surface

  8. Suspended carbon nanotubes as electronical and nano-electro-mechanical hybrid systems in the quantum limit

    International Nuclear Information System (INIS)

    Ultra clean and freely suspended carbon nanotubes provide an ideal model system for electronical transport measurements, and for the investigation of the interplay with their mechanical vibration in the quantum limit. Within the scope of this thesis both excelling electronical and mechanical properties of carbon nanotubes clamped between metal contacts have been investigated. At cryogenic temperatures a quantum dot is formed on the suspended part of the nanotube, where ground and excited state spectroscopy could be performed. Here one has access even to the very first electron on the quantum dot, where the magnetic field dependence of the excited states directly provides the single particle energy spectrum. Curvature induced spin-orbit coupling and KK' valley mixing lift the carbon nanotube specific fourfold degeneracy and induce a level splitting giving rise to unconventional Kondo resonances in the intermediate coupling regime. Tracing those resonances in dependence on an external magnetic field reveals a hitherto unobserved many-body selection rule based on the discrete symmetries of the electronic carbon nanotube system. In addition, the transversal vibration mode of this doubly clamped nano-resonator is actuated and detected, and is used to probe the dependence of the mechanical vibration on the quantum dot charging state and on an external magnetic field. Due to the high mechanical quality the electromechanical coupling in different transport regimes could be analyzed in high precision.

  9. Measurement of low concentration and nano-quantity hydrogen sulfide in sera using unfunctionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Hydrogen sulfide (H2S) is produced in small amounts by certain cells in the mammalian body and has a number of biological functions. H2S gas naturally produced by the body is not simply a toxic gas; it could be a vascular dilator and play a physiological role in regulating cardiovascular functions. In order to know the effects of H2S, it is necessary to accurately know its concentrations in the body. Conventional measurement methods have their limitations concerning the small amount and low concentration of H2S in the body. A new paradigm of using carbon nanotubes in H2S measurement expresses its potential. However, the influence of proteins in the mammalian body must be studied in the measurement of H2S by carbon nanotubes. In this paper, we demonstrate a successful measurement of low concentration (20 µM) and nano-quantity (0.5 µg) H2S in the serum by using carbon nanotubes and further with the fluorescence of confocal laser scanning microscopy and the luminescence of Raman microscopy. Statistical analysis of the experimental data shows that the relationship between concentrations and intensities is linear, which thus makes the carbon nanotube sensor highly promising for the measurement of H2S in sera

  10. Water soluble carbon nano-onions from wood wool as growth promoters for gram plants

    Science.gov (United States)

    Sonkar, Sumit Kumar; Roy, Manas; Babar, Dipak Gorakh; Sarkar, Sabyasachi

    2012-11-01

    Water-soluble carbon nano-onions (wsCNOs) isolated from wood wool--a wood-based pyrolysis waste product of wood, can enhance the overall growth rate of gram (Cicer arietinum) plants. Treatment of plants with upto 30 μg mL-1 of wsCNOs for an initial 10 day period in laboratory conditions led to an increase in the overall growth of the plant biomass. In order to examine the growth stimulating effects of wsCNOs under natural conditions, 10 day-old plants treated with and without wsCNOs were transplanted into soil of standard carbon and nitrogen composition. We observed an enhanced growth rate of the wsCNOs pre-treated plants in soil, which finally led to an increased productivity of plants in terms of a larger number of grams. On analyzing the carbon, hydrogen, and nitrogen (CHN) content for the shoot and fruit sections of the plants treated with and without wsCNOs, only a minor difference in the composition was noticed. However, a slight increase in the percentage of carbon and hydrogen in shoots reflects the synthesis of more organic biomass in the case of treated plants. This work shows that wsCNOs are non-toxic to plant cells and can act as efficient growth stimulants which can be used as benign growth promoters.

  11. Co-localised Raman and force spectroscopy reveal the roles of hydrogen bonds and π-π interactions in defining the mechanical properties of diphenylalanine nano- and micro-tubes

    OpenAIRE

    Sinjab, Faris; Bondakov, Georgi; Notingher, Ioan

    2014-01-01

    An integrated atomic force and polarized Raman microscope were used to measure the elastic properties of individual diphenylalanine (FF) nano- and micro-tubes and to obtain quantitative information regarding the inter-molecular interactions that define their mechanical properties. For individual tubes, co-localised force spectroscopy and Raman spectroscopy measurements allowed the calculation of the Young’s and shear moduli (2565 GPa and 0.2860.05 GPa, respectively) and the contribution of hy...

  12. Modeling adsorption on fluoride and application of Box–Behnken design and response surface methodology for arsenic(V removal from aqueous solution using Nano-Scale Alumina on Multi Walled Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    H Zarei

    2016-01-01

    Full Text Available Objective and Background: Fluoride is an element widely found in the earth crust. Advantages and disadvantages of fluoride in the human body are depended on its concentration. Long-term consumption of drinking water contaminated with arsenic can cause adverse health effects such as skin lesions and cancer in humans. The aim of this study was to study efficiency of nano alumina on multi walled carbon nano tube  for removal As(V and fluoride from aqueous solution. Materials and Method: In this study, nano-scale crystalline alumina was synthesized on single walled carbon nanotube by sol-gel method for using as a sorbent for solid phase extraction of Fluorine ion and arsenic(V. Response surface methodology based on Box-Behnken was used to assess the effect of independent variables on the response function and prediction of the best response value. In this study, effect of different parameters, such as contact time (10 to 120 min, pH (3-9, adsorbent dosage (0.25-1.5 g/L and initial concentration of fluoride (2-8 mg/L on efficiency of process was investigated. The structure of nano-scale alumina on multi walled carbon nano tube was determined by XRD and SEM techniques. Moreover, Freundlich and Langmuir isotherm models were used to calculate equilibrium constant. Results: It was found that by increasing contact time and adsorbent dosage the rate of fluoride removal increased. However, by increasing pH and initial concentration the efficiency of fluoride removal decreased. High value for R2 (0.94 shows that removal of arsenic(V can be described by this model. The Freundlich isotherm was the best fitted graph for experimental data with R2 more than 0.997. Conclusion: In this study, it was observed that efficiency of arsenic(V and fluoride  removal was greatly increased by using nano-scale alumina on multi walled carbon nanotubes (MWCNTs.

  13. Thermodynamic aspects of production of composites by sintering powder metal materials modified with nano-sized carbon additives

    International Nuclear Information System (INIS)

    Based on the thermodynamic principles it is shown that nano-sized additives with high surface energy have a significant influence on the processes of surface and bulk diffusion in the powder system accelerating the sintering and the compaction of the powder composition. During heating of the metal powder composition of iron-based and nano-sized diamond-graphite particles, there occur the restoration of metal oxides due to their interaction with the carbon diamond-graphite additives and the dissolution of graphite layers in iron followed by diffusion of carbon atoms in the surface layers of metal powder particles. The particles of nano-sized diamond-graphite additives may be additional crystallization centers of molten matrix volumes ensuring the formation of a more dispersed and homogeneous structure.(authors)

  14. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over CeO2(X)-ZnO(1-X) nano-catalysts.

    Science.gov (United States)

    Kang, Ki Hyuk; Joe, Wangrae; Lee, Chang Hoon; Kim, Mieock; Kim, Dong Baek; Jang, Boknam; Song, In Kyu

    2013-12-01

    CeO2(X)-ZnO(1-X) (X = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0) nano-catalysts were prepared by a co-precipitation method with a variation of CeO2 content (X, mol%), and they were applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Successful formation of CeO2(X)-ZnO(1-X) nano-catalysts was well confirmed by XRD analysis. The amount of DMC produced over CeO2(X)-ZnO(1-X) catalysts exhibited a volcano-shaped curve with respect to CeO2 content. Acidity and basicity of CeO2(X)-ZnO(1-X) nano-catalysts were measured by NH3-TPD and CO2-TPD experiments, respectively, to elucidate the effect of acidity and basicity on the catalytic performance in the reaction. It was revealed that the catalytic performance of CeO2(X)-ZnO(1-X) nano-catalysts was closely related to the acidity and basicity of the catalysts. Amount of dimethyl carbonate increased with increasing both acidity and basicity of the catalysts. Among the catalysts tested, CeO2(0.7)-ZnO(0.3) with the largest acidity and basicity showed the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. PMID:24266202

  15. Nano-structured Ni(II)-curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose

    Energy Technology Data Exchange (ETDEWEB)

    Elahi, M. Yousef [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Mousavi, M.F. [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)], E-mail: mousavim@modares.ac.ir; Ghasemi, S. [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2008-12-30

    A nano-structured Ni(II)-curcumin (curcumin: 1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) film is electrodeposited on a glassy carbon electrode in alkaline solution. The morphology of polyNi(II)-curcumin (NC) was investigated by scanning electron microscopy (SEM). The SEM results show NC has a nano-globular structure in the range 20-50 nm. Using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, steady-state polarization measurements and electrochemical impedance spectroscopy (EIS) showed that the nano-structure NC film acts as an efficient material for the electrocatalytic oxidation of fructose. According to the voltammetric studies, the increase in the anodic peak current and subsequent decrease in the corresponding cathodic current, fructose was oxidized on the electrode surface via an electrocatalytic mechanism. The EIS results show that the charge-transfer resistance has as a function of fructose concentration, time interval and applied potential. The increase in the fructose concentration and time interval in fructose solution results in enhanced charge transfer resistance in Nyquist plots. The EIS results indicate that fructose electrooxidation at various potentials shows different impedance behaviors. At lower potentials, a semicircle is observed in the first quadrant of impedance plot. With further increase of the potential, a transition of the semicircle from the first to the second quadrant occurs. Also, the results obtained show that the rate of fructose electrooxidation depends on concentration of OH{sup -}. Electron transfer coefficient, diffusion coefficient and rate constant of the electrocatalytic oxidation reaction are obtained. The modified electrode was used as a sensor for determination of fructose with a good dynamic range and a low detection limit.

  16. Nano-structured Ni(II)-curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose

    International Nuclear Information System (INIS)

    A nano-structured Ni(II)-curcumin (curcumin: 1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) film is electrodeposited on a glassy carbon electrode in alkaline solution. The morphology of polyNi(II)-curcumin (NC) was investigated by scanning electron microscopy (SEM). The SEM results show NC has a nano-globular structure in the range 20-50 nm. Using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, steady-state polarization measurements and electrochemical impedance spectroscopy (EIS) showed that the nano-structure NC film acts as an efficient material for the electrocatalytic oxidation of fructose. According to the voltammetric studies, the increase in the anodic peak current and subsequent decrease in the corresponding cathodic current, fructose was oxidized on the electrode surface via an electrocatalytic mechanism. The EIS results show that the charge-transfer resistance has as a function of fructose concentration, time interval and applied potential. The increase in the fructose concentration and time interval in fructose solution results in enhanced charge transfer resistance in Nyquist plots. The EIS results indicate that fructose electrooxidation at various potentials shows different impedance behaviors. At lower potentials, a semicircle is observed in the first quadrant of impedance plot. With further increase of the potential, a transition of the semicircle from the first to the second quadrant occurs. Also, the results obtained show that the rate of fructose electrooxidation depends on concentration of OH-. Electron transfer coefficient, diffusion coefficient and rate constant of the electrocatalytic oxidation reaction are obtained. The modified electrode was used as a sensor for determination of fructose with a good dynamic range and a low detection limit

  17. Influence of base strength on the catalytic performance of nano-sized alkaline earth metal oxides supported on carbon nanofibers

    NARCIS (Netherlands)

    Frey, A.M.; Yang, J.; Feche, C.; Essayem, N.; Stellwagen, D.R.; Figueras, F.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Nano-sized (3 nm) alkaline earth metal oxides supported on carbon nanofibers were prepared by a facile impregnation and heat treatment method of the corresponding nitrates. These supported catalysts showed a significant improved activity for the aldol reaction and transesterification compared to the

  18. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    Science.gov (United States)

    Paddubskaya, A.; Valynets, N.; Kuzhir, P.; Batrakov, K.; Maksimenko, S.; Kotsilkova, R.; Velichkova, H.; Petrova, I.; Biró, I.; Kertész, K.; Márk, G. I.; Horváth, Z. E.; Biró, L. P.

    2016-04-01

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8-15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  19. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    OpenAIRE

    Neus Jornet-Martínez; Pascual Serra-Mora; Yolanda Moliner-Martínez; Rosa Herráez-Hernández; Pilar Campíns-Falcó

    2015-01-01

    In the present work, the performance of carbon nanotubes (c-CNTs) functionalized polydimethylsiloxane (PDMS) based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME) coupled to Capillary LC (CapLC) has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs) and carboxylic-multi walled carbon nanotubes (c-MWNTs) have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS ex...

  20. A monodispersed nano-hexahedral LiFePO4 with improved power capability by carbon-coatings

    International Nuclear Information System (INIS)

    Highlights: •A monodispersed nano-LiFePO4 of regular angularity was synthesized via hydrothermal method. •The nano-sized hexahedral LiFePO4 was coated with different carbon sources. •The LiFePO4 coated with sucrose precursor exhibits the best power rate performance. •Li ion diffusion property is not considerably affected by the used carbon sources. -- Abstract: A monodispersed nano-sized hexahedral LiFePO4 of regular angularity was prepared through hydrothermal process. Different carbon precursors were employed to create carbon-coating layers onto the nano-particles to improve the electrochemical performances of the material. Structure and morphology of the LiFePO4 material without and with carbon-coating layer were studied using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. It confirms that carbon-coating plays an important role inhibiting the agglomeration of the nanoparticles. A uniform carbon-coating layer of higher graphitization degree was developed on the LiFePO4 particles with sucrose precursor. The electrode exhibits discharge capacities of 148.3 mA h g−1, 138.7 mA h g−1, 117.8 mA h g−1 at 0.1 C, 1 C and 10 C, respectively. Very close Li ion diffusion coefficient of around 8 × 10−14 cm2 s−1 for all the LiFePO4/C composites with different carbon sources implies that the improved power capability is mainly attributed to the small particle size and low contact resistance between the LiFePO4 nanoparticles

  1. Plasma post-processing of diamond-like carbon nano-coated long-period gratings

    Science.gov (United States)

    Śmietana, Mateusz; Krysiński, Adrian; Bock, Wojtek J.; Mikulic, Predrag

    2013-09-01

    This work presents an application of reactive ion etching (RIE) for effective tuning of spectral response and the refractive-index (RI) sensitivity of diamond-like carbon (DLC) nano-coated long-period gratings (LPGs). The technique allows for an efficient and well controlled etching of the DLC by means of O2 and CF4 plasma. The effect of DLC nanocoating etching on spectral properties of the LPGs is discussed. We correlated the decrease in DLC thickness with the shift of the LPG resonance wavelength. The thinning of the overlay effectively changes the distribution of the cladding modes and thus it also has an impact on the device's RI sensitivity. The advantage of this approach is a capability for post-processing of the nano-coated structures with a good precision (etching rate from 4.6 to 8.1 nm/min for O2 plasma), cleaning the samples and their re-coating according to requested needs.

  2. Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels

    International Nuclear Information System (INIS)

    We systematically investigate stress–strain behavior of ferrite and bainite with nano-sized vanadium carbides in low carbon steels; the ferrite samples were obtained through austenite/ferrite transformation accompanied with interphase precipitation and the bainite samples were via austenite/bainite transformation with subsequent aging. The stress–strain curves of both samples share several common features, i.e. high yield stress, relatively low work hardening and sufficient tensile elongation. Strengthening contributions from solute atoms, grain boundaries, dislocations and precipitates are calculated based on the structural parameters, and the calculation result is compared with the experimentally-obtained yield stress. The contributions from solute atoms and grain boundaries are simply additive, whereas those from dislocations and precipitates should be treated by taking the square root of the sum of the squares of two values. Nano-sized carbides may act as sites for dislocation multiplication in the early stage of deformation, while they may enhance dislocation annihilation in the later stage of deformation. Such enhanced dynamic recovery might be the reason for a relatively large elongation in both ferrite and bainite samples

  3. Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique

    International Nuclear Information System (INIS)

    This paper explores the nano-scratch technique for measuring the adhesion strength of a single osteoblast cell on a hydroxyapatite (HA) surface reinforced with carbon nanotubes (CNTs). This technique efficiently separates out the contribution of the environment (culture medium and substrate) from the measured adhesion force of the cell, which is a major limitation of the existing techniques. Nano-scratches were performed on plasma sprayed hydroxyapatite (HA) and HA-CNT coatings to quantify the adhesion of the osteoblast. The presence of CNTs in HA coating promotes an increase in the adhesion of osteoblasts. The adhesion force and energy of an osteoblast on a HA-CNT surface are 17 ± 2 μN/cell and 78 ± 14 pJ/cell respectively, as compared to 11 ± 2 μN/cell and 45 ± 10 pJ/cell on a HA surface after 1 day of incubation. The adhesion force and energy of the osteoblasts increase on both the surfaces with culture periods of up to 5 days. This increase is more pronounced for osteoblasts cultured on HA-CNT. Staining of actin filaments revealed a higher spreading and attachment of osteoblasts on a surface containing CNTs. The affinity of CNTs to conjugate with integrin and other proteins is responsible for the enhanced attachment of osteoblasts. Our results suggest that the addition of CNTs to surfaces used in medical applications may be beneficial when stronger adhesion of osteoblasts is desired.

  4. Nano-particles;Les nanoparticules

    Energy Technology Data Exchange (ETDEWEB)

    Chuto, G. [Institut Paoli-Calmettes, Service de medecine nucleaire, 13 - Marseille (France); Chaumet-Riffaud, P. [CHU de Bicetre, Service de medecine nucleaire, 94 - Le Kremlin Bicetre (France)

    2010-06-15

    Nano-particles (N.P.) are structures comprising from some hundred to some thousand atoms. Owing to their size (1 to 100 nanometers), the physical and chemical properties of these nano-objects differ from those of classical materials. They cover a wide development area, which includes medical research: they can be classified into two major groups, organic N.P. (liposomes, polymers N.P., carbon nano tubes, fullerenes) and inorganic N.P. (quantum dots, magnetic N.P., Raman probes). N.P. can be conceived to act as a drug delivery system (therapeutic), imaging probe (diagnostic) or both (theranostic). We report recent data from scientific literature and describe main N.P. within medical area, their state of development, and the limited knowledge of their toxicity in human being. (author)

  5. Preparation, characterization and electrochemical properties of a graphene-like carbon nano-fragment material

    International Nuclear Information System (INIS)

    Highlights: • The spent graphite material is utilized to prepare carbon nano-fragments (CNFs). • The preparation procedure is based on chemical oxidation and ultrasonic crushing. • The as-prepared graphene-like CNFs are systemically characterized. • The CNFs exhibit high electrocatalytic and electrochemical energy-storage properties. - Abstract: A graphene-like nanomaterial, carbon nano-fragments (CNFs), is obtained using the graphite anodes of spent lithium-ion batteries (LIBs) as carbon source, and its morphology, structure, functional groups, and reactivity are characterized to evaluate the properties and potential applications. The interlayer space increase, layer distortion, and remnant lithium of the waste lithium-intercalated graphite are utilized to prepare the oxidized CNFs (ox-CNFs) through a chemical oxidation and ultrasonic crushing process. These ox-CNFs exhibit a size distribution of 15 nm to 2 μm and excellent hydrophilicity, and disperse well in an aqueous suspension. Under the hydrothermal condition at 180 °C for 12 h, the ox-CNFs are converted into a suspension of reduced CNFs (re-CNFs), or a cylindrical aggregate when the concentration exceeds 2 mg·mL−1. The spectroscopic results demonstrate that there are abundant edges, defects, and functional groups existing on the CNFs, which affect their reactive, electronic, and electrochemical properties. Thereinto, the vacuum-dried ox-CNFs film can be converted from an insulator to a conductor after a chemical reduction by hydroiodic acid. And the re-CNFs modified glass carbon electrode (re-CNFs/GCE) exhibits enhanced electrocatalytic activity of about 8 times than the GCE to the oxidation reaction of dopamine. Furthermore, with the addition of the carboxylic ox-CNFs in aniline, the CNFs/polyaniline composite discharges a capacitance of 356.4 F·g−1 at 2 mV·s−1, an increase of 80.5% compared to the polyaniline. This preparation entails not only novel carbon nanomaterials but also an

  6. Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani

    International Nuclear Information System (INIS)

    Nano-sized calcium carbonate (nano-CC) was studied in terms of acting as a carrier for a pesticide. Nano-CC was prepared by reaction of calcium chloride and sodium carbonate by the reversed-phase microemulsion method and then loaded with the pesticide validamycin. The resulting material was characterized by X-ray diffraction analysis and scanning electron microscopy. The loading efficiency, sustained-release performance, germicidal efficacy, and stability also were investigated. The size of the loaded nano-CC can be adjusted to between 50 to 200 nm by varying the water/surfactant molar ratio from 30/1 to 10/1, and the loading efficiency can be increased to about 20% by increasing the size of the nano-CC. The material displayed better germicidal efficacy against Rhizoctonia solani compared to conventional technical validamycin after about 7 days, and the time of the release of validamycin was extended to 2 weeks. Given the loading efficiency, stability, sustained-release performance and good environmental compatibility of the material, the method for its preparation may be extended to other hydrophilic pesticide. (author)

  7. The nano-science of C60 molecule

    International Nuclear Information System (INIS)

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C60 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C60 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of this molecule on a variety of substrates. We review the field of nano-scale nucleation and growth of C60 molecules on some of the technologically important substrates. In addition to experimental results, the results of a set of highly accurate computational simulations are also reported

  8. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    OpenAIRE

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-01-01

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs ...

  9. The Study of Electrochemical Behavior of Dopamine at Nano-gold Modified Carbon Fiber Electrode

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrochemical behaviors (cyclic voltammetry, CV and different pulse voltammetry, DPV) of dopamine (DA) were studied in this paper. The result indicated that the oxidation of dopamine was controlled by diffusion and adsorption simultaneously at nano-gold (NG) modified carbon fiber electrode (CFE). This modified electrode can separate the peak potentials of dopamine and ascorbic acid (AA). The peak current of DA in DPV curve was found to be linearly proportional to the concentration of DA at range of 2.0×10-6~1.5×10-5mol/L and 1.0×10-5~5.0×10-4mol/L, respectively.

  10. Research on the field emission mechanism of nano-structured carbon film

    Institute of Scientific and Technical Information of China (English)

    Wang Yan-Yan; Li Ying-Ai; Xu Ji-Song; Gu Guang-Rui

    2012-01-01

    The field emission (FE) characteristics of nano-structured carbon films (NSCFs) are investigated.The saturation behaviour of the field emission current density found at high electric field E cannot be reasonably explained by the traditional Fowler-Nordheim (F-N) theory.A three-region E model and the curve-fitting method are utilized for discussing the FE characteristics of NSCFs.In the low,high,and middle E regions,the FE mechanism is reasonably explained by a modified F-N model,a corrected space-charge-limited-current (SCLC) model and the joint model of F-N and SCLC mechanism,respectively.Moreover,the measured FE data accord well with the results from our corrected theoretical model.

  11. Characterization of silicon and carbon dual ion-implanted metals with a nano-indentation

    International Nuclear Information System (INIS)

    The dual ion implantation of silicon and carbon into copper (99.9%), iron (99.9%), SKD11 steel and SUS304 austenitic stainless steels was carried out with a MeV energy ion accelerator. The cross-section of the implanted layer were observed with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The surface layers of the implanted substrates were investigated with X-ray photoelectron spectroscopy (XPS) and a transmission electron microscope (TEM). The hardness of the samples was tested with a nano-indentation. It was found with XPS Si (2p) spectra and TEM that a part of the Si ions and C ions formed an amorphous layer of SiC, carbide and metals by dual ion-implantation. The hardness of the dual ion-implanted steels were improved. The mechanism of hardness was suggested by cross-sectional TEM images. (author)

  12. Microfluidic and Capillary Tube Experimental Study of Forsterite Carbonation by CO2 Bearing Fluids

    Science.gov (United States)

    Yang, L.; Steefel, C. I.; Bechtel, H.

    2013-12-01

    The kinetic reactions of minerals and CO2 bearing fluids in the subsurface are critical to predict long term fate and stability of the injected CO2 in the subsurface. It is very challenging, however, to apply the baseline kinetic information obtained from conventional batch reactors directly and predict mineral carbonation reactions in subsurface porous media environments where minerals are in contact with reactive fluids within tiny pores of a few to hundreds microns in diameter characterized by very different solid/solution ratios and hydrodynamic flow conditions. In this study, kinetic experiments were conducted using high temperature and pressure microfluidic and micro-capillary tube reactors to investigate the coupled dissolution and secondary mineral precipitation associated with reaction between olivine (forsterite) and CO2 bearing fluids within a simulated micro-porous environment. Channels (pores) of 100 μm with sub-micron apertures were constructed on surfaces of forsterite discs and were reacted with solution saturated with CO2 at 80 bars and 95 C for more than three weeks. A highly incongruent dissolution was observed with magnesium preferentially leached out of forsterite surfaces relative to silica. However, no effects of surface passivation due to the apparent precipitation of amorphous silica at the higher temperature were observed, with magnesium dissolution rates reaching a steady state after one week of reaction. Solid phase analysis by RAMAN spectroscopy showed no detectable secondary carbonates in the primary 100μm diameter pore of the microfluidic reactor, although abundant hydromagnesite had precipitated on forsterite surfaces in the sub-micron diameter pores of the microfluidic reactor along its O-ring seals, indicating a diffusion control on rates in the local micro-environment. To further understand these processes, micro-capillary tube experiments with novel T-design were carried out using forsterite grains packed inside 200 μm I

  13. First Principal and QM/MM Study of Dopamine Adsorption on Single Wall Carbon Nano Tubes and Single Wall Boroan Nitride Nano Tubes

    Directory of Open Access Journals (Sweden)

    Mojgan Jalili

    2016-06-01

    Full Text Available In the brain, dopamine functions as a neurotransmitter a chemical released by neurons (nerve cells to send signals to other nerve cells. The brain includes several distinct dopamine pathways, one of which plays a major role in reward-motivated behavior. In this work we have calculated our systems based on the Dopamine binding with various diameters of SWBNNTs and SWCNTs. In this work, the electron density profile in the composition of the Dopamine binding to SWCNTs and SWBNNTs have been calculated.

  14. Production of nanoTiC–graphite composites using Ti-doped self-sintering carbon mesophase powder

    OpenAIRE

    Ramos Fernández, José Manuel; Martínez Escandell, Manuel; Rodríguez Reinoso, Francisco

    2013-01-01

    This work reports the synthesis of nanoTiC–graphite composites using mesophase pitch containing titanium as TiC or TiO2 nanoparticles. NanoTiC–graphite composites have been prepared using Ti-doped self-sintering mesophase powders as starting materials without using any binders or a metal carbide-carbon mixing stage. The effect of manufacture variables on the graphite compacts properties was studied. Graphites were characterised using XRD and Raman spectroscopy, SEM and TEM, as well as by thei...

  15. Mechanical properties and tribological behaviour of silicon carbide/carbon nano fibers nano composites; Propiedades mecanicas y tribologicas de materiales nanoestructurados de carburo de silicio/nanofibras de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Borrell, A.; Torrecillas, R.; Rocha, V. G.; Fernandez, A.; Bonache, V.; Salvador, M. D.

    2011-07-01

    The development of new ceramic/carbon nano structured materials is a very interesting option from the point of view of the automotive and aerospace industries. Its low density, high mechanical strength, high oxidation resistance and excellent friction behavior allows the use of these composites as functional materials. The aim of this study was to evaluate the influence of carbon nano fibers (CNFs) on the mechanical and tribological behavior of silicon carbide/CNFs nano composite obtained by spark plasma sintering technique. The tribological study was carried out in a ball-on-disk apparatus under dry sliding conditions (dry friction) and a fixed load of 15 N. The friction coefficient and wear rate were measured for each composite. Scanning electron microscope was used to analyze wear surface formed. The results show simultaneous improvement of wear behavior and mechanical properties of ceramic materials by incorporating of carbon nano fibers. (Author) 23 refs.

  16. Coating curly carbon nanotubes with monocrystalline Zn(BO2)2 and the mechanism of straightening the tubes

    Institute of Scientific and Technical Information of China (English)

    LIU; Jinzhang; YAN; Pengxun; YUE; Guanghui

    2006-01-01

    We overgrew single-crystalline Zn(BO2)2 coatings on carbon nanotubes (CNTs) for the first time. Scanning electron microscopy and transmission electron microscopy analyses revealed that the carbon nanotube-zinc borate composite rods are from tens to hundreds of nm in diameter. It is notable that the original curly tubes were straightened by the monocrystalline coatings. In addition, the crystal nucleation and growth on the surface of CNT were explained. We set a two-dimensional model, which is based on our experimental result, to qualitatively explain the mechanism of straightening the curly tubes by coating them with single-crystals.

  17. Dependence of in—tube doping on the radius and helicity of single—wall carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    LiuHong; DongJin-Ming; QianMei-Chun; WanXian-Gang

    2003-01-01

    Using the Lennard-Jones interaction potential between the impurity atom and carbon atom, we have studied the dependence of in-tube impurity doping on the radius of a single-wall carbon nanotube (SWNT), as well as its helicity. The obtained results show that the radius of the most stably doped SWNT is different for different kinds of impurity atoms. This is useful for producing the required doped SWNT.In addition, it is found that the helicity of tube has a strong effect on the potential energy of the atoms doped in the SWNT.

  18. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide

    Science.gov (United States)

    Montes-Hernandez, G.; Fernández-Martínez, A.; Charlet, L.; Tisserand, D.; Renard, F.

    2008-05-01

    The hydrothermal carbonation of calcium hydroxide (Ca(OH) 2) at high pressure of CO 2 (initial P=55 bar) and moderate to high temperature (30 and 90 °C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH) 2-CaCO 3 conversion), a significant production rate (48 kg/m 3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperature and the dissolved quantity of CO 2 have a significant effect on the average particle size, specific surface area, initial rate of precipitation, and on the morphology of calcium carbonate crystals. In contrast, these PT x conditions used herein have an insignificant effect on the carbonation efficiency of Ca(OH) 2. Finally, the results presented here demonstrate that nano-calcite crystals with high specific surface area ( SBET=6-10 m 2/g) can be produced, with a high potential for industrial applications such as adsorbents and/or filler in papermaking industry.

  19. Mechanistic aspects of electrodeposition of Ni–Co–SiC composite nano-coating on carbon steel

    International Nuclear Information System (INIS)

    The nucleation and early-stage growth mechanism and kinetics of electrodeposited Ni–Co–SiC composite coating on carbon steel was investigated by cyclic voltammetry, current–time transient measurements and atomic force microscopy characterization. The conventional Guglielmi's model for metal-inert particle co-deposition was modified to consider the effect of the bath electrolyte hydrodynamics on amount of nano-particles deposited in the coating. It is determined that the nucleation and early-stage growth of the coating depends on depositing overpotential. At low cathodic overpotentials, it is between an instantaneous and progressive mechanism; while at high overpotentials, it follows the instantaneous mechanism. Addition of SiC nano-particles in the bath electrolyte reduces the electrodepositing efficiency by inhibiting nucleation and growth of metallic coating. An empirical model is developed to estimate the amount of nano-particles contained in Ni–Co–SiC composite coating during pulse electrodeposition

  20. Impact of Carbon Nano-Onions on Hydra vulgaris as a Model Organism for Nanoecotoxicology

    Directory of Open Access Journals (Sweden)

    Valentina Marchesano

    2015-08-01

    Full Text Available The toxicological effects of pristine and chemically modified carbon nano-onions (CNOs on the development of the freshwater polyp Hydra vulgaris were investigated in order to elucidate the ecotoxicological effects of CNOs. Chemical modifications of the CNOs were accomplished by surface functionalization with benzoic acid, pyridine and pyridinium moieties. thermogravimetric analysis (TGA, Fourier transform infrared spectroscopy (FT-IR and Raman spectroscopy confirmed the covalent surface functionalization of CNOs. Hydra specimens were exposed to the carbon nanomaterials by prolonged incubation within their medium. Uptake was monitored by optical microscopy, and the toxicological effects of the CNOs on Hydra behavior, morphology, as well as the long-term effects on the development and reproductive capability were examined. The obtained data revealed the absence of adverse effects of CNOs (in the range 0.05–0.1 mg/L in vivo at the whole animal level. Together with previously performed in vitro toxicological analyses, our findings indicate the biosafety of CNOs and the feasibility of employing them as materials for biomedical applications.

  1. Surface analysis of zinc-porphyrin functionalized carbon nano-onions.

    Science.gov (United States)

    Spampinato, Valentina; Ceccone, Giacomo; Giordani, Silvia

    2015-01-01

    Multishell fullerenes, known as carbon nano-onions (CNOs), are an interesting class of carbon-based nanomaterials. They display several unique properties, such as a large surface area to volume ratio, a low density, and a graphitic multilayer morphology, which have made them appealing for several applications in many fields, including biology. Chemical functionalization of CNOs dramatically enhances their solubility and attenuates their inflammatory properties, thereby increasing their applicability especially in the fields of biology and medicine. CNOs functionalized with fluorescent probes can be used for cellular imaging. In this article, detailed surface characterization of CNOs functionalized with a zinc porphyrin (ZnTPP) as the fluorescent probe is presented. In particular, time-of-flight secondary ion mass spectrometry and x-ray photoelectron spectroscopy provide a detailed surface characterization of the organic functionalities introduced via "click chemistry" and clearly demonstrate the success of the CNOs functionalization process. XPS data reveal the presence of Zn and N, whilst ToF-SIMS is able to identify specific fragments related to the presence of the ZnTPP, such as the quasimolecular mass peak [C32N4H20Zn](+) and the molecular mass peak [C44N4H28Zn](+). Moreover, ions fragments deriving from the triazole ring formed by the click chemistry reaction have been identified by ToF-SIMS analysis, proving unambiguously the covalent binding of the fluorescent molecules to the CNOs surfaces. PMID:25708636

  2. Energy-resolved STM maps of finite carbon nanotubes and the role of surface-tube interactions

    Energy Technology Data Exchange (ETDEWEB)

    Menech, Mario de [Max-Planck-Institut fuer Physik Komplexer Systeme, Dresden (Germany); Theoretische Physik, Fachbereich 18, Universitaet Kassel (Germany); Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Kassel (Germany); Saalmann, Ulf [Max-Planck-Institut fuer Physik Komplexer Systeme, Dresden (Germany); Garcia, Martin E. [Theoretische Physik, Fachbereich 18, Universitaet Kassel (Germany); Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Kassel (Germany)

    2010-05-15

    The influence of the supporting surface on the standing wave electronic modes of finite metallic carbon nanotubes (CNTs) is discussed. The charge distribution of the states is visualized by simulating the energy resolved scanning tunneling spectroscopy (STS) maps. The Fourier transform of the spatial patterns exhibited by the STS maps allows to reconstruct the dispersion relation, whose definiteness is smeared out for increasing surface-tube interaction strengths. The scattering of the modes in the tube due to the interaction with the surface causes distortions of the simulated maps. For example, the reflection symmetry with respect to the mirror plane perpendicular to the tube axis appears to be broken for modes in the case of narrow tubes, when the interaction with the surface is strong enough. Breaking of the reflection symmetry: STS map for a (4,4) carbon nanotube of length 50a{sub 0} near the Fermi level placed at 2.5A (upper tube) and 3.0A (lower tube) away from an Au(111) surface. Red, green, and blue colored regions refer to large, intermediate and low values of the current, respectively. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. The Effect of Crystallinity of Carbon Source on Mechanically Activated Carbothermic Synthesis of Nano-Sized SiC Powders

    Science.gov (United States)

    Moshtaghioun, B. M.; Monshi, A.; Abbasi, M. H.; Karimzadeh, F.

    2013-02-01

    The relevance of the structure of carbon materials and milling on the carbothermic reduction of silica to produce nano-sized silicon carbide (SiC) was studied. Graphite (crystalline) and metallurgical coke (mainly amorphous) were chosen as carbon precursors that were mixed with amorphous pure nano-sized SiO2 and milled for different times. The SiC yield at 1450 °C for l h was influenced by the degree of milling. Extending the milling time increased SiC formation in both cases. Although some extensive milling converted both sources of carbon into amorphous phase, the amount of synthesized SiC from graphite was about 4.5-3 times higher than coke with increased extent of milling. Graphite is converted from stable crystalline state into the amorphous phase, so it absorbs more activation energy of milling and fresher active centers are created, while the already amorphous coke absorbs less energy and thus less fresh active centers are created. This energy difference acts as a driving force, resulting in higher yield of nano-sized SiC when graphite is used as carbon source.

  4. Fast electron effect on the spatial temporal distribution of radiation glow of helium nano second discharge through longitudinal tubes

    International Nuclear Information System (INIS)

    Spatial temporal characteristics of the radiation glow and ionic waves of potential gradient (IWPG) of a nanosecond discharge have been investigated through a glass discharge tube of 0.4 cm in diameter and 30 cm long, shielded by a aluminium screen of 2 cm diameter. The negative impulse voltages up to 20 kV and wave front pulse rise time of about 10 ns, are applied to the discharge tube. At gas pressure lower than 0.1 torr, an effective weakening of radiation has been observed near the cathode surface in comparison with the other parts of the discharge column. This can be explained by the mutual effect between the accelerated fast electrons in the front of IWPG, and the reflected electromagnetic waves from the cathode surface. (author). 11 refs., 3 figs

  5. Numerical investigation of forced convection of nano fluid flow in horizontal U-longitudinal finned tube heat exchanger

    Science.gov (United States)

    Qasim, S. M.; Sahar, A. F. A.; Firas, A. A.

    2015-11-01

    A numerical study has been carried out to investigate the heat transfer by laminar forced convection of nanofluid taking Titania (TiO2) and Alumina (Al2O3) as nanoparticles and the water as based fluid in a three dimensional plain and U-longitudinal finned tube heat exchanger. A Solid WORKS PREMIUM 2012 is used to draw the geometries of plain tube heat exchanger or U-longitudinal copper finned tube heat exchanger. Four U-longitudinal copper fins have 100 cm long, 3.8cm height and 1mm thickness are attached to a straight copper tube of 100 cm length, 2.2 cm inner diameter and 2.39 cm outer diameter. The governing equations which used as continuity, momentum and energy equations under assumptions are utilized to predict the flow field, temperature distribution, and heat transfer of the heat exchanger. The finite volume approach is used to obtain all the computational results using commercial ANSYS Fluent copy package 14.0 with assist of solid works and Gambit software program. The effect of various parameters on the performance of heat exchanger are investigated numerically such as Reynolds' number (ranging from 270 to 1900), volume consternation of nanoparticles (0.2%, 0.4%, 0.6%, 0.8%), type of nanoparticles, and mass flow rate of nanofluid in the hot region of heat exchanger. For 0.8% consternation of nanoparticles, heat transfer has significant enhancement in both nanofluids. It can be found about 7.3% for TiO2 and about 7.5% for Al2O3 compared with the water only as a working fluid.

  6. INTENSIFICATION OF HEAT TRANSFER AND FLOW IN HEAT EXCHANGER WITH SHELL AND HELICALLY COILED TUBE BY USING NANO FLUIDS

    OpenAIRE

    Dr. Khalid Faisal Sultan

    2015-01-01

    This article presents an experimental study on enhancement of heat transfer and pressure drop of nanofluids flow. In this study the method using to enhancement of heat transfer and pressure drop, by used the helically coiled tube heat exchange and the nanofluids instead of the base fluid (oil). The concentrations of nanofluid used are ranging from (5 – 30 wt%). The shell of the heat exchanger is constant wall temperature (CWT) . Two types of nanoparticles used in this paper silver...

  7. Effects of functional group modification on the thermal properties of nano-carbon clusters

    International Nuclear Information System (INIS)

    In this paper, the thermal properties including thermal stability, thermal decomposition activation energy and the thermal enthalpy of nano-carbon clusters (NCCs, including fullerene[60](C60, with a diameter of 0.71 nm), multi-walled carbon nanotubes(MWCNTs, with a diameter of 10–30 nm and a length of 1–2 µm), single-walled carbon nanotubes (SWCNTs, with a diameter of ∼2 nm and a length of 5–15 µm), ligands of NCC-based terpyridine (NCC-tpy), and NCC-based ruthenium complexes (NCC-tpyRuCl3) were systematically studied by method of simultaneous thermogravimetric and differential thermal analysis. The results show that the modification of NCCs with terpyridine leads to a decrease in the thermal stability and in the thermal decomposition activation energy (the thermal decomposition activation energy decreased from 174.4 for C60, 144.9 for MWCNTs and 161.2 kJ/mol for SWCNTs to 166.2 for C60-tpy, 119.7 for MWCNT-tpy and 85.0 kJ/mol for SWCNT-tpy). But the modification of NCCs with terpyridine results in an increase in the enthalpy change of NCC thermal decomposition reaction. The introduction of the metal ions through complexation further decreases the thermal stability and the thermal decomposition activation energy of NCC-tpyRuCl3 due to the catalytic oxidation of Ru(III) ions (the activation energy decreases to 124.1 for C60-tpyRuCl3, 106.4 for MWCNT-tpyRuCl3 and 41.2 kJ/mol for SWCNT-tpyRuCl3). The introduction of the metal ions also leads to a decrease in the enthalpy change of the thermal decomposition reaction

  8. The nano-science of C sub 6 0 molecule

    CERN Document Server

    Rafii-Tabar, H

    2002-01-01

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C sub 6 0 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C sub 6 0 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of thi...

  9. 76 FR 78612 - Certain Welded Carbon Steel Standard Pipes and Tubes From India: Rescission of Antidumping Duty...

    Science.gov (United States)

    2011-12-19

    ... Administrative Reviews and Request for Revocation in Part, 76 FR 37781 (June 28, 2011) (Notice of Initiation...'' with a lowercase ``s'' instead of an uppercase ``s.'' See Notice of Initiation, 76 FR at 37783... International Trade Administration Certain Welded Carbon Steel Standard Pipes and Tubes From India:...

  10. 75 FR 73033 - Circular Welded Carbon Steel Pipes and Tubes from Thailand: Amended Final Results of Antidumping...

    Science.gov (United States)

    2010-11-29

    ... Thailand: Final Results of Antidumping Duty Administrative Review, 75 FR 64696 (October 20, 2010). The... clarification, see Antidumping and Countervailing Duty Proceedings: Assessment of Antidumping Duties, 68 FR... Carbon Steel Pipes and Tubes From Thailand: Final Determination of Sales at Less Than Fair Value, 51...

  11. 75 FR 28557 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Extension of Time Limit for Final...

    Science.gov (United States)

    2010-05-21

    ... Duty Administrative Review, 75 FR 18788 (April 13, 2010) (Preliminary Results). This administrative... Determination Deadlines Pursuant to the Tariff Act of 1930, As Amended, 70 FR 24533 (May 10, 2005). Accordingly... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Thailand: Extension of...

  12. 78 FR 64916 - Circular Welded Carbon Steel Pipes and Tubes From Turkey: Final Results of Countervailing Duty...

    Science.gov (United States)

    2013-10-30

    ... Review; Calendar Year 2011, 78 FR 21107 (April 9, 2013) (Preliminary Results). \\2\\ See Decision... parties. \\3\\ See Countervailing Duty Order: Certain Welded Carbon Steel Pipe and Tube Products From Turkey, 51 FR 7984 (March 7, 1986). \\4\\ See Preliminary Results. \\5\\ Petitioners in this review are...

  13. 77 FR 61738 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Final Results of Antidumping Duty...

    Science.gov (United States)

    2012-10-11

    ... Antidumping Duty Order: Circular Welded Carbon Steel Pipes and Tubes From Thailand, 51 FR 8341 (January 27... FR 20782 (April 6, 2012). DATES: Effective Date: October 11, 2012. FOR FURTHER INFORMATION CONTACT... Proceedings: Assessment of Antidumping Duties, 68 FR 23954 (May 6, 2003). Cash Deposit Requirements...

  14. 75 FR 1335 - Circular Welded Carbon Steel Pipes and Tubes from Taiwan; Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2010-01-11

    ... Administrative Reviews and Requests for Revocation in Part, 74 FR 30052 (June 24, 2009). The current deadline for... Deadlines Pursuant to the Tariff Act of 1930, As Amended, 70 FR 24533 (May 10, 2005). We intend to issue the... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes from Taiwan; Extension of...

  15. 75 FR 62366 - Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-10-08

    ... Welded Carbon Steel ] Pipes and Tubes From Taiwan, 75 FR 32911 (June 10, 2010) (Preliminary Results...) of the Act. See Preliminary Results, 75 FR at 32913. Those results apply to these final results... accordance with section 773(a)(4) of the Act. See Preliminary Results, 75 FR 32913. Analysis of...

  16. 76 FR 3612 - Circular Welded Carbon Steel Pipes and Tubes From Taiwan; Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2011-01-20

    ... Antidumping and Countervailing Duty Administrative Reviews and Requests for Revocation in Part, 75 FR 37759... Taiwan: Notice of Partial Rescission of Antidumping Duty Administrative Review, 75 FR 70723 (November 18... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Taiwan; Extension of...

  17. Graphene reinforced alumina nano-composites

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Tatarko, Peter; Grasso, S.; Khaliq, J.; Dlouhý, Ivo; Reece, M.J.

    2013-01-01

    Roč. 64, NOV (2013), s. 359-369. ISSN 0008-6223 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : fracture toughness determination * ceramic-matrix composites * carbon nano tubes Subject RIV: JI - Composite Material s Impact factor: 6.160, year: 2013

  18. Carbon-based catalysts:Opening new scenario to develop next-generation nano-engineered catalytic materials

    Institute of Scientific and Technical Information of China (English)

    Claudio Ampelli; Siglinda Perathoner; Gabriele Centi

    2014-01-01

    This essay analyses some of the recent development in nanocarbons (carbon materials having a defined and controlled nano-scale dimension and functional properties which strongly depend on their nano-scale features and architecture), with reference to their use as advanced catalytic materials. It is remarked how their features open new possibilities for catalysis and that they represent a new class of catalytic materials. Although carbon is used from long time in catalysis as support and electrocatalytic applications, nanocarbons offer unconventional ways for their utilization and to address some of the new challenges deriving from moving to a more sustainable future. This essay comments how nanocarbons are a key element to develop next-generation catalytic materials, but remarking that this goal requires overcoming some of the actual limits in current research. Some aspects are discussed to give a glimpse on new directions and needs for R&D to progress in this direction.

  19. Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study

    Science.gov (United States)

    Papathanassiou, Anthony N.; Mykhailiv, Olena; Echegoyen, Luis; Sakellis, Ilias; Plonska-Brzezinska, Marta E.

    2016-07-01

    The complex electric modulus and the ac conductivity of carbon nano-onion/polyaniline composites were studied from 1 mHz to 1 MHz at isothermal conditions ranging from 15 K to room temperature. The temperature dependence of the electric modulus and the dc conductivity analyses indicate a couple of hopping mechanisms. The distinction between thermally activated processes and the determination of cross-over temperature were achieved by exploring the temperature dependence of the fractional exponent of the dispersive ac conductivity and the bifurcation of the scaled ac conductivity isotherms. The results are analyzed by combining the granular metal model (inter-grain charge tunneling of extended electron states located within mesoscopic highly conducting polyaniline grains) and a 3D Mott variable range hopping model (phonon assisted tunneling within the carbon nano-onions and clusters).

  20. Role of the Initial Formation of the Iron Nano-Particles in the Multi-Walled Carbon Nanotubes Growth Process

    Institute of Scientific and Technical Information of China (English)

    Leszek Stobinski; Hong-Ming Lin

    2004-01-01

    Careful preparation of the iron nano-particle catalyst for carbon nanotubes (CNTs) fabrication has crucial importance for initial growth of multi-wall carbon-nanotubes (MWCNTs). Thin iron layer was thermally deposited in a high vacuum onto the surface of the SiO2/Si wafer at about 300 K. The sample was heated up to 700℃ in a hydrogen atmosphere, and then the sample was heated once again at750℃ in ethylene atmosphere. After hydrogen treatment continuous Fe layer was changed into many well separated Fe nano-peaks. AFM, SEM and HR-TEM studies of deposited MWCNTs allow us to propose a growth mechanism for long, straight MWCNTs.

  1. Synthesis of Dimethyl Carbonate from Ethylene Carbonate and Methanol Over Nano-Catalysts Supported on CeO2-MgO.

    Science.gov (United States)

    Jun, Jin Oh; Lee, Joongwon; Kang, Ki Hyuk; Song, In Kyu

    2015-10-01

    A series of CeO2(X)-MgO(1-X) (X = 0, 0.25, 0.5, 0.75, and 1.0) nano-catalysts were prepared by a co-precipitation method for use in the synthesis of dimethyl carbonate from ethylene carbonate and methanol. Among the CeO2(X)-MgO(1-X) catalysts, CeO2(0.25)-MgO(0.75) nano-catalyst showed the best catalytic performance. Alkali and alkaline earth metal oxides (MO = Li2O, K2O, Cs2O, SrO, and BaO) were then supported on CeO2(0.25)-MgO(0.75) by an incipient wetness impregnation method with an aim of improving the catalytic performance of CeO2(0.25)-MgO(0.75). Basicity of the catalysts was determined by CO2-TPD experiments in order to elucidate the effect of basicity on the catalytic performance. The correlation between catalytic performance and basicity showed that basicity played an important role in the reaction. Yield for dimethyl carbonate increased with increasing basicity of the catalysts. Among the catalysts tested, Li2O/CeO2(0.25)-MgO(0.75) nano-catalyst with the largest basicity showed the best catalytic performance in the synthesis of dimethyl carbonate. PMID:26726512

  2. Correlation of sp3 and sp2 fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films

    International Nuclear Information System (INIS)

    In the present work the correlation of electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon (Ar-DLC) thin films with sp3 and sp2 fractions of carbon have been explored. These Ar-DLC thin films have been deposited, under varying C2H2 gas pressures from 25 to 75 mTorr, by radio frequency-plasma enhanced chemical vapor deposition technique. X-ray photoelectron spectroscopy studies are performed to estimate the sp3 and sp2 fractions of carbon by deconvoluting C 1s core level spectra. Various electrical, optical and nano-mechanical parameters such as conductivity, I-V characteristics, optical band gap, stress, hardness, elastic modulus, plastic resistance parameter, elastic recovery and plastic deformation energy have been estimated and then correlated with calculated sp3 and sp2 fractions of carbon and sp3/sp2 ratios. Observed tremendous electrical, optical and nano-mechanical properties in Ar-DLC films deposited under high base pressure conditions made it a cost effective material for not only hard and protective coating applications but also for electronic and optoelectronic applications.

  3. Equilibrium and Thermodynamics Studies on the Removal of Iron (III) Onto Activated Pistia Stratiotes Leaves Nano Carbon

    OpenAIRE

    S. Arivoli; V Marimuthu; T Rose Judith

    2013-01-01

    The present study is on adsorption of Fe(III) ions by Activated Pistia Stratiotes Leaves Nano Carbon. It uses batch adsorption techniques. The influence of contact time, initial concentration, dosage of adsorbent and effect of solution pH were investigated. The isotherm studies of RL values showed that the adsorption process was favorable. Thermodynamic parameter s such as ∆H0, ∆S0 and ∆G0 were evaluated. The data indicate that, the adsorption was spo...

  4. INTENSIFICATION OF HEAT TRANSFER AND FLOW IN HEAT EXCHANGER WITH SHELL AND HELICALLY COILED TUBE BY USING NANO FLUIDS

    Directory of Open Access Journals (Sweden)

    Dr. Khalid Faisal Sultan

    2015-01-01

    Full Text Available This article presents an experimental study on enhancement of heat transfer and pressure drop of nanofluids flow. In this study the method using to enhancement of heat transfer and pressure drop, by used the helically coiled tube heat exchange and the nanofluids instead of the base fluid (oil. The concentrations of nanofluid used are ranging from (5 – 30 wt%. The shell of the heat exchanger is constant wall temperature (CWT . Two types of nanoparticles used in this paper silver (Ag (30nm and Titanium Oxide (TiO2 (50nm as well as the base fluid (oil. The effect of different parameters such as flow Reynolds number, nanofluid temperature, concentration and type of nanoparticle on heat transfer coefficient and pressure drop of the flow are studied at constant wall temperature. The obtained results show an increase in heat transfer coefficient of 45.35% for Ag + oil and 32.29% for TiO2 + oil at concentration of 30 wt % compared with base fluid (oil. The heat transfer coefficient and pressure drop is increased by using nanofluids (Ag, TiO2 – oil instead of the base fluid (oil. In addition the results indicated that by using heat exchanger with shell and helically coiled tube, the heat transfer performance is improved as well as the pressure drop enhancement due to the curvature of the tube. Furthermore, a maximum increase of 34.15% (Ag + Oil and 27.23% (TiO2+ Oil in Nusselt number ratio for a range of Reynolds numbers between 20 and 200. This paper decided that the nanofluid behaviors are close to typical Newtonian fluids through the relationship between viscosity and shear rate. Moreover to performance index are used to present the corresponding flow and heat transfer technique. The type and size nanoparticles play an important role in enhancement of heat transfer rate

  5. Nano-sized Fe{sub 3}O{sub 4}/carbon as anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jie [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Hailei, E-mail: hlzhao@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Lab of New Energy Materials and Technologies, Beijing 100083 (China); Zeng, Zhipeng; Lv, Pengpeng; Li, Zhaolin; Zhang, Tianhou; Yang, Tianrang [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2014-12-15

    Nano-sized Fe{sub 3}O{sub 4}/carbon material is prepared via a simple citric-nitrate combustion method combining with a hydrothermal carbon coating technique. The synthesized Fe{sub 3}O{sub 4}/carbon composite shows a high reversible specific capacity (ca. 850 mAh g{sup −1} at 100 mA g{sup −1}; ca. 600 mAh g{sup −1} at 500 mA g{sup −1}), good rate-capability as well as superior cycling stability as anode for lithium-ion batteries. The ameliorated electrochemical performance of Fe{sub 3}O{sub 4}/carbon electrode is associated to the nano-sized particle feature and the continuous carbon coating layer. The former provides short lithium-ion/electron diffusion distance, while the latter enables the fast electron transport pathways. Besides, the carbon layer can act as a protective component to prevent the active particle Fe{sub 3}O{sub 4} from aggregation and pulverization during the charge/discharge processes. - Highlights: • Nano-sized Fe{sub 3}O{sub 4}/C was prepared by a simple citric-nitrate combustion process. • Fe{sub 3}O{sub 4}/C particles show core–shell structure. • Fe{sub 3}O{sub 4}/C powder displays high specific capacity and good cycling stability. • Fe{sub 3}O{sub 4}/C composite exhibits a superior rate-capability.

  6. Preparation of CdS NCs decorated TiO2 nano-tubes arrays photoelectrode and its enhanced photoelectrocatalytic performance and mechanism

    International Nuclear Information System (INIS)

    CdS nano-crystallites decorated TiO2 nano-tubes arrays (CdS NCs/TiO2 NTAs) photoelectrodes were prepared through anodization, followed by electrodeposition strategy. Subsequently, structures of the resulting CdS NCs/TiO2 NTAs samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). In addition, the light absorption capacities and photoelectrochemical (PECH) properties were investigated through UV–visible diffuse reflectance spectrum (DRS), photocurrent response (PCR) and open-circuit photovoltage (OCP). Furthermore, photodecomposition performances were evaluated by the yield of ·OH radicals and photoelectrocatalytic (PEC) degradation of rhodamine B (RhB) under Xenon light irradiation. Moreover, the enhanced PC mechanism was proposed and confirmed through photoluminescence (PL) spectra and contribution of different reactive species. Results showed that hexagonal CdS NCs with uniform spherical sizes of 20 nm were successfully deposited onto the surface of highly ordered TiO2 NTAs, which could not only red-shift the light absorption to visible region between 400 and 700 nm, but also significantly enhance the generation of ·OH radicals. Furthermore, CdS NCs/TiO2 NTAs photoelectrodes possessed higher transient photogenerated current of 9.62 mA cm−2 and open-circuit photovoltage of −0.253 V cm−2 than that of bare TiO2 NTAs. Moreover, when external potential (−2 V) was applied, CdS NCs/TiO2 TNTAs samples performed higher PEC efficiency of 91.6%, which could be attributed to the intense light harvesting in visible region and high mobility and separation efficiency of photogenerated charge carriers

  7. Co-localised Raman and force spectroscopy reveal the roles of hydrogen bonds and π-π interactions in defining the mechanical properties of diphenylalanine nano- and micro-tubes

    Science.gov (United States)

    Sinjab, Faris; Bondakov, Georgi; Notingher, Ioan

    2014-06-01

    An integrated atomic force and polarized Raman microscope were used to measure the elastic properties of individual diphenylalanine (FF) nano- and micro-tubes and to obtain quantitative information regarding the inter-molecular interactions that define their mechanical properties. For individual tubes, co-localised force spectroscopy and Raman spectroscopy measurements allowed the calculation of the Young's and shear moduli (25 ± 5 GPa and 0.28 ± 0.05 GPa, respectively) and the contribution of hydrogen bonding network to the Young's modulus (˜17.6 GPa). The π-π interactions between the phenyl rings, dominated by T-type arrangements, were estimated based on previously published X-ray data to only 0.20 GPa. These results provide experimental evidence obtained from individual FF tubes that the network of H-bonds dominates the elastic properties of the FF tubes.

  8. Co-localised Raman and force spectroscopy reveal the roles of hydrogen bonds and π-π interactions in defining the mechanical properties of diphenylalanine nano- and micro-tubes

    International Nuclear Information System (INIS)

    An integrated atomic force and polarized Raman microscope were used to measure the elastic properties of individual diphenylalanine (FF) nano- and micro-tubes and to obtain quantitative information regarding the inter-molecular interactions that define their mechanical properties. For individual tubes, co-localised force spectroscopy and Raman spectroscopy measurements allowed the calculation of the Young's and shear moduli (25 ± 5 GPa and 0.28 ± 0.05 GPa, respectively) and the contribution of hydrogen bonding network to the Young's modulus (∼17.6 GPa). The π-π interactions between the phenyl rings, dominated by T-type arrangements, were estimated based on previously published X-ray data to only 0.20 GPa. These results provide experimental evidence obtained from individual FF tubes that the network of H-bonds dominates the elastic properties of the FF tubes.

  9. Corrosion behavior of modified nano carbon black/epoxy coating in accelerated conditions

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • By using SDS as a surfactant, nano particles of CB were uniformly dispersed. • CB nanoparticle in the epoxy coating improved the corrosion resistance of the coating. • By addition of CB nanoparticles to the epoxy diffusion ions and water became limited. • The dominance of barrier mechanism was proved by calculation of the diffusion coefficients. - Abstract: The electrochemical behavior and anticorrosion properties of modified carbon black (CB) nanoparticles in epoxy coatings were investigated in accelerated conditions. Nanoparticles of CB were modified by sodium dodecyl sulfate (SDS) as surfactant. Dispersion of nanoparticles into epoxy was confirmed by Transmission Electron Microscopy (TEM). The accelerated condition was prepared at 65 °C. CB nanoparticles improved corrosion resistance of the epoxy coating. The optimum concentration of CB in the epoxy coating was 0.75 wt%. Results showed that the CB hinder the corrosion due to its barrier properties. CB can decrease the diffusion coefficient of water in the coating with filling the micropores

  10. Corrosion behavior of modified nano carbon black/epoxy coating in accelerated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira, E-mail: shariatpanahih@ripi.ir; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-03-15

    Graphical abstract: - Highlights: • By using SDS as a surfactant, nano particles of CB were uniformly dispersed. • CB nanoparticle in the epoxy coating improved the corrosion resistance of the coating. • By addition of CB nanoparticles to the epoxy diffusion ions and water became limited. • The dominance of barrier mechanism was proved by calculation of the diffusion coefficients. - Abstract: The electrochemical behavior and anticorrosion properties of modified carbon black (CB) nanoparticles in epoxy coatings were investigated in accelerated conditions. Nanoparticles of CB were modified by sodium dodecyl sulfate (SDS) as surfactant. Dispersion of nanoparticles into epoxy was confirmed by Transmission Electron Microscopy (TEM). The accelerated condition was prepared at 65 °C. CB nanoparticles improved corrosion resistance of the epoxy coating. The optimum concentration of CB in the epoxy coating was 0.75 wt%. Results showed that the CB hinder the corrosion due to its barrier properties. CB can decrease the diffusion coefficient of water in the coating with filling the micropores.

  11. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES Membrane

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-09-01

    Full Text Available A nano porous polyethersulfone (PES membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems.

  12. Antiviral Activity of Nano Carbon Fullerene Lipidosome against Influenza Virus/In Vitro

    Institute of Scientific and Technical Information of China (English)

    Hong JI; Zhanqiu YANG; Wenling JIANG; Chun GENG; Ming GONG; Hong XIAO; Zhijie WANG; Li CHENG

    2008-01-01

    The activity of nano carbon fullerene lipidosome (NCFL) against influenza virus HINI in vitro was studied by observing the cytotoxicities and its activity rendered by different intensities of lighting with various periods of time. Rimantadine hydrochloride was used as the positive control drug. By using microcultural technique, the morphological changes of cells were observed and by using the gentian violet staining, antiviral activity of the NCFL against influenza virus was assayed. The results showed that: (1) The maximal concentration of the NCFL was 7μg/mL and the 50% toxic concentration (TC50) was 13.54μg/mL respectively; (2) NCFL had a significant activity of directly killing the influenza virus, while the activities in antiadsorption and antireplication were not obvious; (3) There was a dose-activity relationship between the dosages of NCFL and the direct killing effect against the influenza virus, and the periods of lighting-time could influence the activity partly. It was concluded that NCFL had a significant activity of directly killing the influenza virus.

  13. Optical characterization of nano-sized organic carbon particles emitted from a small gasoline engine

    Institute of Scientific and Technical Information of China (English)

    Bireswar Paul; Amitava Datta; Aparna Datta; Abhijit Saha

    2013-01-01

    The nano-sized organic carbon (NOC) particles emitted from a small gasoline engine were characterized using various ex situ optical techniques to assess their hazardous impact.The exhaust gas was sampled iso-kinetically by a quartz probe and passed through de-ionized water to gather the hydrophilic carbonaceous particulates as hydrosol.The hydrodynamic diameter of the particles ranged between 1.7 and 3.6 nm at no load,with a mean diameter of 2.4 nm.The particle size in the engine exhaust was found to increase at higher loads,which is attributed to coagulation of the particles.The chemical structure of the particles was analyzed using UV-vis and infra-red spectroscopy.Both the band gap energy and oscillator strength data evaluated from the UV-vis absorbance showed that the NOC particles contained polyaromatic hydrocarbon structures with three to five aromatic rings.Infra-red spectroscopy analysis further confirmed the presence of aliphatic and carbonyl functionalities in the aromatic structures of the particles.The fine size of the particles,their high number concentration for the type of the engine under study and their structural features,make the particles extremely hazardous for environment and health.

  14. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    Science.gov (United States)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-05-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  15. Effective Degradation of Aqueous Tetracycline Using a Nano-TiO2/Carbon Electrocatalytic Membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available In this work, an electrocatalytic membrane was prepared to degrade aqueous tetracycline (TC using a carbon membrane coated with nano-TiO2 via a sol-gel process. SEM, XRD, EDS, and XPS were used to characterize the composition and structure of the electrocatalytic membrane. The effect of operating conditions on the removal rate of tetracycline was investigated systematically. The results show that the chemical oxygen demand (COD removal rate increased with increasing residence time while it decreased with increasing the initial concentration of tetracycline. Moreover, pH had little effect on the removal of tetracycline, and the electrocatalytic membrane could effectively remove tetracycline with initial concentration of 50 mg·L−1 (pH, 3.8–9.6. The 100% tetracycline and 87.8% COD removal rate could be achieved under the following operating conditions: tetracycline concentration of 50 mg·L−1, current density of 1 mA·cm−2, temperature of 25 °C, and residence time of 4.4 min. This study provides a new and feasible method for removing antibiotics in water with the synergistic effect of electrocatalytic oxidation and membrane separation. It is evident that there will be a broad market for the application of electrocatalytic membrane in the field of antibiotic wastewater treatment.

  16. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    Science.gov (United States)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-01-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507

  17. Preparation, characterization and properties of nano-hydroxyapatite/polypropylene carbonate biocomposite.

    Science.gov (United States)

    Liao, Jianguo; Li, Yanqun; Zou, Qin; Duan, Xingze; Yang, Zhengpeng; Xie, Yufen; Liu, Haohuai

    2016-06-01

    The combination of nano-hydroxyapatite (n-HA) and polypropylene carbonate (PPC) was used to make a composite materials by a coprecipitation method. The physical and chemical properties of the composite were tested. Scanning electron microscope (SEM) observation indicated that the biomimetic n-HA crystals were uniformly distributed in the polymer matrix. As the n-HA content increased in the composite, the fracture mechanism of the composites changes from gliding fracture to gliding and brittle fracture. Furthermore, the chemical interaction between inorganic n-HA and polypropylene carbonate was also investigated and discussed in detail. The hydrogen bonds might be formed between -OH/CO3(2-) of n-HA crystal and the ester group (-COO-) of PPC. The tensile strength of n-HA/PPC (40/60) was similar to that of the cancellous bone, and reached ca 58MPa. The osteoblasts were cultured for up to 7days, and then the adhesion and proliferation of osteoblasts were measured by Methyl thiazolyl tetrazolium (MTT) colorimetry assay and SEM. The cells proliferated, grew normally in fusiform shape and well attached. The in vitro test confirmed that the n-HA/PPC composites were biocompatible and showed undetectable negative effect on osteoblasts. In vivo implantation of the composite in New Zealand white rabbits was performed. It can stimulate the growth of a new bone, and at the same time the material begins to degrade. These results suggested that the composite may be suitable for the reparation or replacement of bone defects and possessed the potential for clinical applications. PMID:27040221

  18. Characterization of carbon nano-onions for heavy metal ion remediation

    International Nuclear Information System (INIS)

    Carbonaceous nanomaterials, such as fullerene C60, carbon nanotubes, and their functionalized derivatives have been demonstrated to possess high sorption capacity for organic and heavy metal contaminants, indicating a potential for remediation application. The actual application of these nanomaterials, however, is often hindered by the high cost of materials and the limited understanding of their mobility in porous media. In this work, carbon nano-onions (CNOs), a relatively new addition to the carbonaceous nanomaterials, were synthesized in a cost-effective way using a laser-assisted combustion synthesis process, and carefully characterized for their potential remediation application. Surface oxidized CNOs possessed 10 times higher sorption capacity than C60 for heavy metal ion contaminants including Pb2+, Cu2+, Cd2+, Ni2+, and Zn2+. CNOs aqueous suspension can be very stable in NaCl solution at ionic strength up to 30 mM and CaCl2 solution at ionic strength up to 4 mM CaCl2 when pH ranged from 5 to 9, which are consistent with environmentally relevant conditions. Interactions of CNOs with iron oxide and silica surfaces under favorable condition were found to be electrostatic in origin. Mobility of CNOs in quartz sands was controlled by electrolyte type and concentration. Approximately 4.4, 25.1, and 92.5 % of injected CNO mass were retained in the sand column in ultrapure water, 1 mM NaCl, and 1 mM CaCl2 solutions, respectively.

  19. Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes

    International Nuclear Information System (INIS)

    A novel and sensitive electrochemical DNA biosensor based on nanoparticles ZrO2 and multi-walled carbon nanotubes (MWNTs) for DNA immobilization and enhanced hybridization detection is described. The MWNTs/nano ZrO2/chitosan-modified glassy carbon electrode (GCE) was fabricated and oligonucleotides were immobilized to the GCE. The hybridization reaction on the electrode was monitored by differential pulse voltammetry (DPV) analysis using electroactive daunomycin as an indicator. Compared with previous DNA sensors with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotube-based assay with its large surface area and good charge-transport characteristics increased DNA attachment quantity and complementary DNA detection sensitivity. The response signal increases linearly with the increase of the logarithm of the target DNA concentration in the range of 1.49 x 10-10 to 9.32 x 10-8 mol L-1 with the detection limit of 7.5 x 10-11 mol L-1 (S/N = 3). The linear regression equation is I = 32.62 + 3.037 log C DNA (mol L-1) with a correlation coefficient value of 0.9842. This is the first application of carbon nanotubes combined with nano ZrO2 to the fabrication of an electrochemical DNA biosensor with a favorable performance for the rapid detection of specific hybridization

  20. Amperometric detection of carbohydrates based on the glassy carbon electrode modified with gold nano-flake layer

    Directory of Open Access Journals (Sweden)

    Huy Du Nguyen

    2015-09-01

    Full Text Available An electro-deposition approach was established to incorporate the gold nano-flakes onto the glassy carbon electrode in electrochemical cells (nano-Au/GC/ECCs. Using pulsed amperometric detection (PAD without any gold oxidation for cleaning (non-oxidative PAD, the nano-Au/GC/ECCs were able to maintain their activity for oxidizing of carbohydrates in a normal alkaline medium. The reproducibility of peak area was about 2 relative standard deviation (RSD,% for 6 consecutive injections. A dynamic range of carbohydrates was obtained over a concentration range of 5–80 mg L−1 and the limits of detection (LOD were of 2 mg L−1 for fructose and lactose and 1 mg L−1 for glucose and galactose. Moreover, the nano-Au/GC/ECC using the non-oxidative PAD was able to combine with the internal standard method for determination of lactose in fresh cow milk sample.

  1. Effects of functional group modification on the thermal properties of nano-carbon clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhenyi, E-mail: zywu@xmu.edu.cn [Xiamen University, Department of Chemistry and College of Chemistry and Chemical Engineering (China); Cai, Xueying [Xiamen University, Xiamen Zhongshan Hospital (China); Yang, Zhiquan [South China University of Technology, School of Environment and Energy, Guangzhou Higher Education Mega Centre (China)

    2015-08-15

    In this paper, the thermal properties including thermal stability, thermal decomposition activation energy and the thermal enthalpy of nano-carbon clusters (NCCs, including fullerene[60](C{sub 60}, with a diameter of 0.71 nm), multi-walled carbon nanotubes(MWCNTs, with a diameter of 10–30 nm and a length of 1–2 µm), single-walled carbon nanotubes (SWCNTs, with a diameter of ∼2 nm and a length of 5–15 µm), ligands of NCC-based terpyridine (NCC-tpy), and NCC-based ruthenium complexes (NCC-tpyRuCl{sub 3}) were systematically studied by method of simultaneous thermogravimetric and differential thermal analysis. The results show that the modification of NCCs with terpyridine leads to a decrease in the thermal stability and in the thermal decomposition activation energy (the thermal decomposition activation energy decreased from 174.4 for C{sub 60}, 144.9 for MWCNTs and 161.2 kJ/mol for SWCNTs to 166.2 for C{sub 60}-tpy, 119.7 for MWCNT-tpy and 85.0 kJ/mol for SWCNT-tpy). But the modification of NCCs with terpyridine results in an increase in the enthalpy change of NCC thermal decomposition reaction. The introduction of the metal ions through complexation further decreases the thermal stability and the thermal decomposition activation energy of NCC-tpyRuCl{sub 3} due to the catalytic oxidation of Ru(III) ions (the activation energy decreases to 124.1 for C{sub 60}-tpyRuCl{sub 3}, 106.4 for MWCNT-tpyRuCl{sub 3} and 41.2 kJ/mol for SWCNT-tpyRuCl{sub 3}). The introduction of the metal ions also leads to a decrease in the enthalpy change of the thermal decomposition reaction.

  2. NiO/CeO2-ZnO nano-catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide.

    Science.gov (United States)

    Kang, Ki Hyuk; Lee, Chang Hoon; Kim, Dong Baek; Jang, Boknam; Song, In Kyu

    2014-11-01

    XNiO/CeO2(0.7)-ZnO(0.3) (X = 0, 1, 5, 10, and 15) nano-catalysts were prepared by a wet impregnation method with a variation of NiO content (X, wt%). The prepared catalysts were then applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Successful formation of XNiO/CeO2(0.7)-ZnO(0.3) nano-catalysts was confirmed by XRD and ICP-AES analyses. Acidity and basicity of XNiO/CeO2-ZnO were measured by NH3-TPD (temperature-programmed desorption) and CO2-TPD experiments, respectively, with an aim of elucidating the effect of acidity and basicity of the catalysts on the catalytic performance in the reaction. It was revealed that the catalytic activity of XNiO/CeO2(0.7)-ZnO(0.3) was closely related to both acidity and basicity of the catalysts. The amount of dimethyl carbonate produced over XNiO/CeO2(0.7)-ZnO(0.3) increased with increasing acidity and basicity of the catalysts. Thus, both acidity and basicity of the catalysts played important roles in determining the catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. PMID:25958586

  3. Corrosion behavior of oil tube steel in simulant solution with hydrogen sulfide and carbon dioxide

    International Nuclear Information System (INIS)

    Electrochemical measurement techniques, X-ray diffraction and scanning electron microscopy were applied to investigate the corrosion behavior of N80 tube steel in simulant static solution with carbon dioxide (CO2) and hydrogen sulfide (H2S) at a temperature of 100 deg. C. Sweet corrosion occurred when a very small partial pressure of H2S was added. At this condition, uniform corrosion was found. The added H2S only accelerated the general corrosion rate. Sour corrosion was primary as the partial pressure of H2S increased to 0.010 MPa. The general corrosion rate decreased quickly, but severe pitting was found. The corrosion scale, mainly composed of coarse grains of mackinawite (FeS1-x), was loose and brittle. In sour corrosion, general corrosion rate decreased slowly and pitting became slight with increasing partial pressure of H2S because the primary corrosion product, fine grains of pyrrhotite (FeS1+x), made the scale more compact and continuous

  4. A study on hydrogen storage through adsorption in nano-structured carbons; Etude du stockage d'hydrogene par adsorption dans des carbones nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Langohr, D

    2004-10-15

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  5. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    International Nuclear Information System (INIS)

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g−1 at the scan rate of 5 mV s−1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices. (paper)

  6. Low temperature synthesis of diamond-based nano-carbon composite materials with high electron field emission properties

    International Nuclear Information System (INIS)

    A diamond-based nano-carbon composite (d/NCC) material, which contains needle-like diamond grains encased with the nano-graphite layers, was synthesized at low substrate temperature via a bias enhanced growth process using CH4/N2 plasma. Such a unique granular structure renders the d/NCC material very conductive (σ = 714.8 S/cm), along with superior electron field emission (EFE) properties (E0 = 4.06 V/μm and Je = 3.18 mA/cm2) and long lifetime (τ = 842 min at 2.41 mA/cm2). Moreover, the electrical conductivity and EFE behavior of d/NCC material can be tuned in a wide range that is especially useful for different kind of applications

  7. Low temperature synthesis of diamond-based nano-carbon composite materials with high electron field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, A.; Huang, B. R. [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Yeh, C. J.; Leou, K. C. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Lin, I. N., E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2015-06-08

    A diamond-based nano-carbon composite (d/NCC) material, which contains needle-like diamond grains encased with the nano-graphite layers, was synthesized at low substrate temperature via a bias enhanced growth process using CH{sub 4}/N{sub 2} plasma. Such a unique granular structure renders the d/NCC material very conductive (σ = 714.8 S/cm), along with superior electron field emission (EFE) properties (E{sub 0} = 4.06 V/μm and J{sub e} = 3.18 mA/cm{sup 2}) and long lifetime (τ = 842 min at 2.41 mA/cm{sup 2}). Moreover, the electrical conductivity and EFE behavior of d/NCC material can be tuned in a wide range that is especially useful for different kind of applications.

  8. Synthesis of Carbon nano structures by plasma discharge; Sintesis de nanoestructuras de carbono por descarga de plasmaa

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez L, M.L

    2007-07-01

    Due to the great quantity of applications of the carbon nano structures (NEC) in diverse areas like: synthesis of super-resistant materials, hydrogen storage, nano sensors generation and nano catalysts, it has seen the necessity to generate new processes of synthesis of this materials as well as to already improve those existent. The present work has as objective to optimize the NEC synthesis process by means of the electric arc method which uses alternating current to high frequencies (HF), obtaining relatively clean products; that is to say, it hardly presents amorphous material neither sludges. They stand out the obtaining of carbon nano fibers (NFC) by means of a luminescent-arch discharge, in a gas mixture of He-CH{sub 4} with 34% at. Ni/10.32% at.Y like catalyst; at a frequency of 42 kHz and low power (300 W). This method benefits the amass of the particles in both electrodes due to the high frequencies. The time of duration of the process oscillates between 5 and 20 minutes. The obtained product was characterized by scanning electron microscopy (MEB), transmission electron microscopy (MET) to determine the NEC type obtained and by X-ray diffraction analysis and Raman spectroscopy for determining the purity of the samples. The NFC is relatively free of amorphous coal. The surface and structural analysis indicates that the fibers have a half diameter of 80 nm. It is also made, a study by optical emission spectroscopy of plasma using the Swan band for determining the temperature. (Author)

  9. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons.

    Science.gov (United States)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10(-6) Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system. PMID:23376878

  10. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    International Nuclear Information System (INIS)

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10−6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system. (paper)

  11. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    Science.gov (United States)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  12. Synthesis of Polyaniline (PANI) in Nano-Reaction Field of Cellulose Nanofiber (CNF), and Carbonization

    OpenAIRE

    Yuki Kaitsuka; Noriko Hayashi; Tomoko Shimokawa; Eiji Togawa; Hiromasa Goto

    2016-01-01

    Polymerization of aniline in the presence of cellulose nano-fiber (CNF) is carried out. We used dried CNF, CNF suspension, and CNF treated by enzyme and ultra-sonification to obtain polyaniline (PANI)/CNF as a synthetic polymer/natural nano-polymer composite. The polymerization proceeds on the surface of CNF as a nano-reaction field. Resultant composites show extended effective π-conjugation length because CNF as a reaction field in molecular level produced polymer with expanded coil structur...

  13. Electrical transport in small bundles of single-walled carbon nanotubes: intertube interaction and effects of tube deformation

    OpenAIRE

    Kim, Taekyung; Kim, Gunn; Choi, Woon Ih; Kwon, Young-Kyun; Zuo, Jian-Min

    2010-01-01

    We report a combined electronic transport and structural characterization study of small carbon nanotube bundles in field-effect transistors (FET). The atomic structures of the bundles are determined by electron diffraction using an observation window built in the FET. The single-walled nanotube bundles exhibit electrical transport characteristics sensitively dependent on the structure of individual tubes, their arrangements in the bundle, deformation due to intertube interaction, and the ori...

  14. Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes

    International Nuclear Information System (INIS)

    A novel multi-step design of spherical nano-SnSb/MCMB/carbon core–shell composite for high stability and long life lithium battery electrodes has been introduced. The core–shell composite was successfully synthesized via co-precipitation and subsequent pyrolysis. The resultant composite sphere consisted of nanosized SnSb alloy and mesophase carbon microbeads (MCMB, 10 μm) embedded in a carbon matrix pyrolyzed from glucose and petroleum pitch, in which the MCMB was treated to be the inner core to offer mechanical support and efficient electron conducting pathway. The composite material exhibited a unique stability with a retention discharge capacity rate of 83.52% with reversible capacity of 422.5 mAh g−1 after 100 cycles and a high initial coulombic efficiency of 83.53%. The enhanced electrochemical performance is attributed to the structural stability of the composite sphere during the charging–discharging process

  15. Preparation of ZrC nano-particles reinforced amorphous carbon composite coating by atmospheric pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    To eliminate cracks caused by thermal expansion mismatch between ZrC coating and carbon-carbon composites, a kind of ZrC/C composite coating was designed as an interlayer. The atmospheric pressure chemical vapor deposition was used as a method to achieve co-deposition of ZrC and C from ZrCl4-C3H6-H2-Ar source. Zirconium tetrachloride (ZrCl4) powder carrier was especially made to control accurately the flow rate. The microstructure of ZrC/C composite coating was studied using analytical techniques. ZrC/C coating shows same morphology as pyrolytic carbon. Transmission electron microscopy (TEM) shows ZrC grains with size of 10-50 nm embed in turbostratic carbon. The formation mechanism is that the growth of ZrC crystals was inhibited by surrounding pyrolytic carbon and kept as nano-particles. Fracture morphologies imply good combination between coating and substrate. The ZrC crystals have stoichiometric proportion near 1, with good crystalline but no clear preferred orientation while pyrolytic carbon is amorphous. The heating-up oxidation of ZrC/C coating shows 11.58 wt.% loss. It can be calculated that the coating consists of 74.04 wt.% ZrC and 25.96 wt.% pyrolytic carbon. The average density of the composite coating is 5.892 g/cm3 by Archimedes' principle.

  16. High Performance Nanocatalysts Supported on Micro/Nano Carbon Structures Using Ethanol Immersion Pretreatment for Micro DMFCs

    International Nuclear Information System (INIS)

    In this paper, highly dense platinum (Pt) nanocatalysts were successfully deposited on the hydrophilically-treated nano/micro carbon supports with an ethanol (EtOH) immersion pretreatment and an acidic treatment for the performance improvement of methanol oxidation reaction (MOR). In order to thoroughly immerse the three-dimensional, interwoven structures of the carbon cloth fibers with a 6 M sulfuric acid surface modification, which increasing more oxygen-containing functional groups on the surfaces of the carbon supports, the EtOH immersion pretreatment of the carbon supports was utilized prior to the sulfuric acid treatment. Subsequently, Pt catalysts were reduced on the modified carbon supports by a homemade open-loop reduction system (OLRS) [1] For comparisons, carbon cloth (CC) and carbon nanotube on CC (CNT/CC) supports were employed with and without EtOH immersion pretreatments before Pt catalyst reduction. In the cyclic voltammetry (CV) curves, the electrosorption charges of hydrogen ion (QH) and the peak current density (IP) of the fabricated Pt/CC and Pt/CNT/CC electrodes with the EtOH immersion pretreatments can efficiently be enhanced due to more active Pt sites for electrocatalytic reactions

  17. Deposition of hard and adherent diamond-like carbon films inside steel tubes using a pulsed-DC discharge.

    Science.gov (United States)

    Trava-Airoldi, Vladimir Jesus; Capote, Gil; Bonetti, Luís Francisco; Fernandes, Jesum; Blando, Eduardo; Hübler, Roberto; Radi, Polyana Alves; Santos, Lúcia Vieira; Corat, Evaldo José

    2009-06-01

    A new, low cost, pulsed-DC plasma-enhanced chemical vapor deposition system that uses a bipolar, pulsed power supply was designed and tested to evaluate its capacity to produce quality diamond-like carbon films on the inner surface of steel tubes. The main focus of the study was to attain films with low friction coefficients, low total stress, a high degree of hardness, and very good adherence to the inner surface of long metallic tubes at a reasonable growth rate. In order to enhance the diamond-like carbon coating adhesion to metallic surfaces, four steps were used: (1) argon ion sputtering; (2) plasma nitriding; (3) a thin amorphous silicon interlayer deposition, using silane as the precursor gas; and (4) diamond-like carbon film deposition using methane atmosphere. This paper presents various test results as functions of the methane gas pressure and of the coaxial metal anode diameter, where the pulsed-DC voltage constant is kept constant. The influence of the coaxial metal anode diameter and of the methane gas pressure is also demonstrated. The results obtained showed the possibilities of using these DLC coatings for reduced friction and to harden inner surface of the steel tubes. PMID:19504937

  18. Pentosan-derived water-soluble carbon nano dots with substantial fluorescence: Properties and application as a photosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Li, Wei; Wu, Yanjiao; Huang, Zhanhua; Liu, Shouxin, E-mail: liushouxin@126.com

    2014-10-01

    Graphical abstract: Water-soluble carbon nano dots (CNDs) with high fluorescence are synthesized from liquid by-products of hydrothermal carbonization of pentosan, the by-products of pulp refining. CNDs can be effectively used as photo sensitizer in the CNDs/TiO{sub 2} system for methyl blue (MB) degradation under visible light irradiation, spectral response range of CNDs/TiO{sub 2} system can be widen from only UV region to part visible-light region (400–550 nm). - Highlights: • Water-soluble CNDs with abundant oxygen-containing groups can be obtained from the liquid by-products of hydrothermal carbonization of pentosan. • CNDs show excellent photoluminescence, pH sensitivity as well high stability. • CNDs/TiO{sub 2} system can be used as visible-light catalysts for the degradation of MB effectively. - Abstract: The hydrothermal carbonization of monosaccharides and polysaccharides is widely used in the production of carbonaceous material with a desired structure. However, the liquid products are regarded as waste and discarded. Here, we report a facile approach for the synthesis of water-soluble carbon nano dots (CNDs) with substantial fluorescence from the liquid by-products of the hydrothermal carbonization of pentosan, thus the by-products of pulp refining. The synthesized CNDs are monodispersed spheres with abundant oxygen-containing groups and they have an average size of 30 nm. Quantum yield measurements revealed CNDs with substantial green photoluminescence (PL) without passivation. Additionally, excitation was independent, pH-sensitive and stable. The use of CNDs as a photosensitizer in the CNDs/TiO{sub 2} system for methylene blue (MB) degradation under visible light irradiation is attractive. The spectral response range of the CNDs/TiO{sub 2} system can be widened from the UV region to a part of the visible light region (400–550 nm)

  19. On the Mechanical Modeling, Visco-Elasticity and Application of Aerographite, a 3D Carbon Nano-Material

    OpenAIRE

    Schuchardt, Arnim

    2015-01-01

    A three dimensional carbon network material of seamless interconnected and hollow tubes, featuring a graphitic structure and an extremely low density has been designed and fabricated in cm3 volumes. The synthesis of this foam like material, named Aerographite, is based on highly-porous three dimensional networks from zinc oxide (ZnO) which are utilized as sacrifcial templates in a chemical vapor deposition (CVD) process. Such type of ZnO templates are produced by the flame transport synthesis...

  20. Construction of N, S codoped TiO2 NCs decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism

    International Nuclear Information System (INIS)

    Highlights: • N-S-TiO2/TiO2 nanotube electrodes were prepared combined anodization and ultrasonic. • The photoelectrocatalytic properties of photoanodes were investigated in detail. • The enhanced visible light photocatalytic mechanism was proposed. -- Abstract: In the present work, N, S codoped TiO2 nano-crystallites (NCs) decorated TiO2 nano-tube arrays (N-S-TiO2 NCs/TNTAs) photoelectrodes have been successfully constructed through anodization method, followed by evaporation induced self-assembly (EISA) strategy. The structures of N-S-TiO2 NCs/TNTAs samples were characterized by scanning electrons microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron microscopy (XPS). Results indicated that TNTAs was partly covered by N, S codoped TiO2 NCs. Meanwhile, N elements coexisted in the forms of substitutional N (Ti–N and N–Ti–O) and interstitial N (Ti–O–N) in TiO2, while S elements were also incorporated into the lattice of TiO2 through substituting titanium atom and coexisted in the cationic forms of S6+ and S4+. In addition, optical and photoelectrochemical (PECH) properties of the as-prepared N-S-TiO2 NCs/TNTAs samples were investigated through UV–vis light diffuse reflection spectroscopy (DRS), transient open circuit potential (OCP), photocurrent response (PCR) and electro-chemical impedance spectroscopy (EIS). Furthermore, photodecomposition performances were evaluated by the yield of ·OH radicals and photocatalytic (PC) degradation of methyl blue (MB) under Xenon lamp irradiation. All results showed that N-S-TiO2 NCs/TNTAs photoelectrode exhibited intense visible light absorption ranging from 400 to 700 nm, high transient photoinduced current of 0.115 mA cm−2, open circuit photovoltage of −0.312 mV cm−2, generation of hydroxyl radicals and PC efficiency of 59.7% for the degradation of MB. The enhanced PC performance could mainly be attributed to the decoration of N, S codoped TiO2 NCs, which could not only enhance the light

  1. ICC resistance of thin-walled tubes of super low carbon steel Kh17N14M3, alloyed with nitrogen

    International Nuclear Information System (INIS)

    The tendency to intercrystallite corrosion (ICC) in the range of 400-750 deg CV and 1-1000 h of thin-walled (0.3 mm) tubes of steel Kh17N14M3 was studied. Electrochemical investigations confirmed high ICC resistance of the tubes from particularly low-carbon experimental steels

  2. Field Emission Properties of Ball-Like Nano-Carbon Thin Films Deposited on Mo Films with Accidented Topography

    International Nuclear Information System (INIS)

    Ball-like nano-carhon thin films (BNCTs) are grown on Mo layers by microwave plasma chemical vapour deposition (MPCVD) system. The Mo layers are deposited on ceramic substrates by electron beam deposition method and are pretreated by ultrasonically scratching. The optimization effects of ultrasonically scratching pretreat-ment on the surface micro-structures of carbon films are studied. It is found from field-emission scanning electron microscope (FE-SEM) images and Raman spectra that the surface structures of the carbon films deposited on Mo pretreated are improved, which are composed of highly uniform nano-structured carbon balls with considerable disorder structures. Field emission (FE) measurements are carried out using a diode structure. The experimental results indicate that the BNCTs exhibit good FE properties, which have the turn on field of 1.56 V/μm, and the current density of 1.0mA/cm2 at electric field of 4.0 V/μm, the uniformly distributed emission site density from a broad well-proportioned emission area of 4 cm2 are also obtained. Linearity is observed in Fowler–Nordheim (F–N) plots in higher Geld region, and the possible emission mechanism of BNCTs is discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Fabrication of Pt deposited on carbon nanotubes and performance of its polymer electrolyte membrane fuel cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method of depositing nano-sized Pt particles on the surface of the carbon nano-tubes was introduced, and the performance of Pt/carbon nanotube compound on polymer electrolyte membrane fuel cells was measured. The experimental results show that the fine platinum particles (about 3 nm) were well dispersed on carbon nanotubes, which demonstrates the excellent catalytic properties of the Pt/CNTs compound in polymer electrolyte membrane fuel cells.

  4. Comparison of Toxicity and Deposition of Nano-Sized Carbon Black Aerosol Prepared With or Without Dispersing Sonication

    Science.gov (United States)

    Kang, Mingu; Han, Jeong-Hee

    2013-01-01

    Nanotoxicological research has shown toxicity of nanomaterials to be inversely related to particle size. However, the contribution of agglomeration to the toxicity of nanomaterials has not been sufficiently studied, although it is known that agglomeration is associated with increased nanomaterial size. In this study, we prepared aerosols of nano-sized carbon black by 2 different ways to verify the effects of agglomeration on the toxicity and deposition of nano-sized carbon black. The 2 methods of preparation included the carbon black dispersion method that facilitated clustering without sonication and the carbon black dispersion method involving sonication to achieve scattering and deagglomeration. Male Sprague-Dawley rats were exposed to carbon black aerosols 6 hr a day for 3 days or for 2 weeks. The median mass aerodynamic diameter of carbon black aerosols averaged 2.08 μm (for aerosol prepared without sonication; group N) and 1.79 μm (for aerosol prepared without sonication; group S). The average concentration of carbon black during the exposure period for group N and group S was 13.08 ± 3.18 mg/m3 and 13.67 ± 3.54 mg/ m3, respectively, in the 3-day experiment. The average concentration during the 2-week experiment was 9.83 ± 3.42 mg/m3 and 9.08 ± 4.49 mg/m3 for group N and group S, respectively. The amount of carbon black deposition in the lungs was significantly higher in group S than in group N in both 3-day and 2-week experiments. The number of total cells, macrophages and polymorphonuclear leukocytes in the bronchoalveolar lavage (BAL) fluid, and the number of total white blood cells and neutrophils in the blood in the 2- week experiment were significantly higher in group S than in normal control. However, differences were not found in the inflammatory cytokine levels (IL-1β, TNF-α, IL-6, etc.) and protein indicators of cell damage (albumin and lactate dehydrogenase) in the BAL fluid of both group N and group S as compared to the normal control. In

  5. Photo-nano immunotherapy for metastatic breast cancer using synergistic single-walled carbon nanotubes and glycated chitosan

    Science.gov (United States)

    Zhou, Feifan; Hasanjee, Aamr; Doughty, Austin; West, Connor; Liu, Hong; Chen, Wei R.

    2015-03-01

    In our previous work, we constructed a multifunctional nano system, using single-walled carbon nanotube (SWNT) and glycated chitosan (GC), which can synergize photothermal and immunological effects. To further confirm the therapy efficacy, with a metastatic mouse mammary tumor model (4T1), we investigate the therapy effects and immune response induced by SWNT-GC, under laser irradiation. Laser+SWNT-GC treatment not only suppressed the prime tumor, but also induced antitumor immune response. It could be developed into a promising treatment modality for the metastatic breast cancer.

  6. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    OpenAIRE

    Yanping Yuan; Jimin Chen

    2016-01-01

    In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on s...

  7. Comparative surface and nano-tribological characteristics of nanocomposite diamond-like carbon thin films doped by silver

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han-Shen; Endrino, Jose L.; Anders, Andre

    2008-07-10

    In this study we have deposited silver-containing hydrogenated and hydrogen-free diamond-like carbon (DLC) nanocomposite thin films by plasma immersion ion implantation-deposition methods. The surface and nano-tribological characteristics were studied by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and nano-scratching experiments. The silver doping was found to have no measurable effect on sp2-sp3 hybridization of the hydrogenated DLC matrix and only a slight effect on the hydrogen-free DLC matrix. The surface topography was analyzed by surface imaging. High- and low-order roughness determined by AFM characterization was correlated to the DLC growth mechanism and revealed the smoothing effect of silver. The nano-tribological characteristics were explained in terms of friction mechanisms and mechanical properties in correlation to the surface characteristics. It was discovered that the adhesion friction was the dominant friction mechanism; the adhesion force between the scratching tip and DLC surface was decreased by hydrogenation and increased by silver doping.

  8. Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation

    Science.gov (United States)

    Baac, Hyoung Won; Ok, Jong G.; Lee, Taehwa; Jay Guo, L.

    2015-08-01

    We demonstrate nano-structural characteristics of carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite films that can be used as highly efficient and robust ultrasound transmitters for diagnostic and therapeutic applications. An inherent architecture of the nano-composite provides unique thermal, optical, and mechanical properties that are accommodated not just for efficient energy conversion but also for extraordinary robustness against pulsed laser ablation. First, we explain a thermoacoustic transfer mechanism within the nano-composite. CNT morphologies are examined to determine a suitable arrangement for heat transfer to the surrounding PDMS. Next, we introduce an approach to enhance optical extinction of the composite films, which uses shadowed deposition of a thin Au layer through an as-grown CNT network. Finally, the transmitter robustness is quantified in terms of laser-induced damage threshold. This reveals that the CNT-PDMS films can withstand an order-of-magnitude higher optical fluence (and extinction) than a Cr film used as a reference. Such robustness is crucial to increase the maximum-available optical energy for optoacoustic excitation and pressure generation. All of these structure-originated characteristics manifest the CNT-PDMS composite films as excellent optoacoustic transmitters for high-amplitude and high-frequency ultrasound generation.

  9. Thermal Evaporation Synthesis and Properties of ZnO Nano/Microstructures Using Carbon Group Elements as the Reducing Agents

    Directory of Open Access Journals (Sweden)

    Du XB

    2010-01-01

    Full Text Available Abstract ZnO nano/microstructures have been formed by thermal evaporation method using ZnO powders mixed with carbon group elements (C, Si, Ge, Sn, or Pb as the reducing agent. For cases of mixed precursors of ZnO/C, ZnO/Si, and ZnO/Ge, the pure ZnO nano/microstructures are realized, while for ZnO/Sn (ZnO/Pb systems, the phase of Pb2O3(Zn2SnO4 generally are represented in the ZnO products. The appearance of Pb2O3(Zn2SnO4 is attributed to the lower melting point and higher vapor pressure of Sn (Pb in the heating and evaporation processes. The morphologies and sizes of the products are controlled by adjusting the growth regions and/or introducing gaseous argon. Room temperature (RT photoluminescence spectra indicate that the intensity (peak position of the ultraviolet emission is increased (redshift due to the existence of Zn2SnO4 phase in the ZnO products. The Pb2O3(Zn2SnO4 phase in ZnO nano/microstructures plays a important role in enhancing the saturation magnetizations of RT ferromagnetism with respect to the case of pure ZnO products fabricated by the precursor of mixed ZnO and graphite.

  10. Growth of Carbon Nanotubes over Ni Nano-particles Prepared in Situ by Reduction of La2NiO4 Oxides

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel catalyst precursor, La2NiO4, was investigated to synthesize carbon nanotubes, obtained from catalytic disproportionation of CO. The morphology of carbon nanotubes has been examined by TEM (transmission electron micrograph) and SEM (scaning electron micrograph). It was observed that the Ni nano-particle size formed at different reducing temperatures was a key factor to the yield and diameter of carbon nanotubes.

  11. Surface and electrochemical characterization of nano zinc ferrite coating on carbon steel

    International Nuclear Information System (INIS)

    The structural materials in nuclear power reactors are mainly iron and nickel based alloys. Operation of these nuclear reactors at high temperatures and high pressures for a longer duration leads to the formation of various oxides due to the corrosion of the structural materials and the nature of these oxides depend on the chemical environment prevailed. Since the corrosion process is electrochemical in nature, the interface formed between the alloys and oxides play a crucial role in deciding the overall corrosion resistance of the structural materials. Therefore, modifying these oxides to nano size would improve the adherence and protectiveness of the interfacial film. In this context, the chemical synthesis of zinc ferrite (ZnFe2O4) was carried out by precipitation method using zinc sulphate and iron ammonium sulphate. The synthesized ferrite powder was confirmed by Raman Spectroscopy. X-Ray Diffraction studies showed that the intensity and the ‘d’ values of the observed diffraction peaks perfectly match with the single-crystalline cubic spinel form of zinc ferrite having lattice constant a=8.436 Å. The 10 mm diameter ferrite targets were prepared using synthesized ZnFe2O4 powder by sintering at 1000°C for 24 hours. Thin film of ZnFe2O4 was deposited on Carbon Steel specimens using pulsed laser deposition technique. Characterization of this deposited ferrite was carried out by Raman spectroscopy, X-Ray Diffraction, X-ray Photoelectron Spectroscopy and Secondary Electron Microscopy. Raman data of coated ZnFe2O4 matched with the standard ZnFe2O4 oxide. X-ray diffraction pattern indicated that the sample was in single phase with an average grain size 30 nm. XPS data indicated the formation of ZnFe2O4. Scanning electron microscopy technique was used to analyze the surface film morphology. The mechanism of corrosion resistance/improvement in the deposited layer was studied by electrochemical techniques and the results are presented in detail in this paper

  12. A density functional reactivity theory (DFRT) based approach to understand the effect of symmetry of fullerenes on the kinetic, thermodynamic and structural aspects of carbon NanoBuds

    Science.gov (United States)

    Sarmah, Amrit; Roy, Ram Kinkar

    2016-06-01

    In the present study, we have rationalized the effect of variation in the symmetry of relatively smaller fullerene (C32) on the mode of its interaction with semi-conducting Single-Walled Carbon Nanotubes (SWCNTs) in the process of formation of stable hybrid carbon NanoBuds. Thermodynamic and kinetic parameters, along with the charge transfer values associated with the interaction between fullerene and SWCNTs, have been evaluated using an un-conventional and computationally cost-effective method based on density functional reactivity theory (DFRT). In addition to this, conventional DFT based studies are also performed to substantiate the growth of NanoBud structures formed by the interaction between fullerene and SWCNTs. The findings of the present study suggest that the kinetic, thermodynamic and structural aspects of hybrid carbon NanoBuds are significantly influenced by both the symmetry of C32 fullerene and its site of covalent attachment to the SWCNT.

  13. Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Tao Yang; Da Ming Huang; Kui Jiao

    2008-01-01

    A novel electrochemical DNA biosensor based on zinc oxide (ZnO) nanoparticles and multi-walled carbon nanotubes (MWNTs)for DNA immobilization and enhanced hybridization detection is presented. The MWNTs/nano ZnO/chitosan composite filmmodified glassy carbon electrode (MWNTs/ZnO/CHIT/GCE) was fabricated and DNA probes were immobilized on the electrodesurface. The hybridization events were monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as anindicator. The sensor can effectively discriminate different DNA sequences related to PAT gene in the.transgenic corn, with adetection limit of 2.8×10-12 mol/L of target sequence.2008 Kui Jiao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  14. 78 FR 21107 - Circular Welded Carbon Steel Pipes and Tubes from Turkey: Preliminary Results of Countervailing...

    Science.gov (United States)

    2013-04-09

    ... Steel Pipes and Tubes from Turkey (Preliminary Decision Memorandum) from Edward C. Yang, Senior Director... 5084: Allocation of Free Land and Purchase of Land for less than Adequate Remuneration (LTAR) F....

  15. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds.

    Science.gov (United States)

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Xiao, Tao; Shuai, Cijun

    2016-01-01

    A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite-polyetheretherketone (HAP-PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP-PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP-PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering. PMID:27555770

  16. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bei, H., E-mail: beih@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-10-25

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. The effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. The materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (∼70% at 77 K and ∼40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys. - Highlights: • Interstitial atom C was successfully added into FeNiCoCrMn high entropy alloys. • The strain hardening rate and strength are enhanced in the C-containing alloy. • The increased strain-hardening and strength are caused by the nano-twinning.

  17. Investigation of Pt, Ti, TiN, and nano-porous carbon electrodes for implantable cardioverter-defibrillator applications

    Energy Technology Data Exchange (ETDEWEB)

    Norlin, A.; Pan, J.; Leygraf, C

    2004-09-15

    The electrochemical behavior and stability of Pt, Ti, TiN, and nano-porous carbon for implantable cardioverter-defibrillator (ICD) electrode application were investigated in a phosphate buffered saline solution. The electrochemical interfacial properties were examined by electrochemical impedance spectroscopy, and the potential and current response during ICD shock pulses were recorded by a digital oscilloscope. Changes in surface composition and structure were investigated using X-ray photoelectron spectroscopy and environmental scanning electron microscopy. When exposed to anodic 700 V shock pulses with duration of 10 ms, only Pt was stable, nano-porous carbon electrode was slightly attacked, whereas Ti and TiN electrodes suffered severe degradation. Upon cathodic shock pulsing, all the materials were stable, but Ti and TiN electrodes with a smooth surface showed evidence of hydrogen adsorption. Porous and rough electrodes produced less gas evolution compared to a smooth surfaces, due to a higher amount of charge transferred through non-Faradaic processes. The reason for this could be higher interfacial capacity due to the large surface area.

  18. Equilibrium and Thermodynamics Studies on the Removal of Iron (III Onto Activated Pistia Stratiotes Leaves Nano Carbon

    Directory of Open Access Journals (Sweden)

    S Arivoli

    2013-03-01

    Full Text Available The present study is on adsorption of Fe(III ions by Activated Pistia Stratiotes Leaves Nano Carbon. It uses batch adsorption techniques. The influence of contact time, initial concentration, dosage of adsorbent and effect of solution pH were investigated. The isotherm studies of RL values showed that the adsorption process was favorable. Thermodynamic parameter s such as ∆H0, ∆S0 and ∆G0 were evaluated. The data indicate that, the adsorption was spontaneous and is an endothermic nature. Adsorption kinetics was tested with pseudo-second –order, Elovich model and intra –particle diffusion models. Kinetic studies indicate an adsorption pseudo–second –order reaction.This study shows that intra –particles played a major role in the adsorption of Fe(III ions mechanism. TheActivated Pistia Stratiotes Leaves Nano Carbon h as high adsorption capacity and ads orption rate for the removal of Fe ( III ions from aqueous solution.

  19. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite–polyetheretherketone scaffolds

    Science.gov (United States)

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Xiao, Tao; Shuai, Cijun

    2016-01-01

    A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite–polyetheretherketone (HAP–PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP–PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP–PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering. PMID:27555770

  20. Field emission from multi-walled carbon nanotubes and its application to electron tubes

    Science.gov (United States)

    Saito, Y.; Hamaguchi, K.; Uemura, S.; Uchida, K.; Tasaka, Y.; Ikazaki, F.; Yumura, M.; Kasuya, A.; Nishina, Y.

    Field emission from closed and open-ended multi-walled nanotubes (MWNTs) was studied by field-emission microscopy. As an application of nanotube field emitters, we manufactured lighting elements with the structure of a triode-type vacuum tube by replacing the conventional thermionic cathodes with the MWNT field emitters. Stable electron emission, adequate luminance and long life of the tubes have been demonstrated.

  1. In situ construction of carbon nano-interconnects between the LiFePO4 grains using ultra low-cost asphalt

    International Nuclear Information System (INIS)

    LiFePO4/C composite cathode materials with carbon nano-interconnect structures were synthesized by one-step solid state reaction using low-cost asphalt as both carbon source and reducing agent. Based on the thermogravimetry, differential scanning calorimetry, transmission electron microscopy and high-resolution transmission electron microscopy, a growth model was proposed to illustrate the formation of the carbon nano-interconnect between the LiFePO4 grains. The LiFePO4/C composite shows enhanced discharge capacity (150 mAh g-1) with excellent capacity retention compared with the bare LiFePO4 (41 mAh g-1) due to the electronically conductive nanoscale networking provided by the asphalt-based carbon. The results prove that the asphalt is a perfect carbon source and reduction agent for cost-effective production of high performance LiFePO4/C composite.

  2. Synthesis of Nano sized Zinc-Doped Cobalt Oxyhydroxide Parties by a Dropping Method and Their Carbon Monoxide Gas Sensing Properties

    International Nuclear Information System (INIS)

    Two nano structures of cobalt oxyhydroxide (CoOOH) and Zinc-(Zn-) doped CoOOH (1–4% Zn) are prepared from Co(NO3)2 solution via microtitration with NaOH and oxidation in air. The X-ray diffraction (XRD) analysis results show that a pure state of nano-CoOOH can be obtained at an alkalinity (OH−/Co+) of 5 with 40°C heat treatment after 6 h. The Zn ions preferentially substitute Co ions in the CoOOH structure, resulting in a decrease of its crystallinity. The disc-like CoOOH nano structure exhibits good sensitivity to carbon monoxide (CO) in a temperature range of 40–110°C with maximum sensitivity to CO at around 70–80°C. When CoOOH nano structure is doped with 1% Zn, its sensitivity and selectivity for CO gas are improved at 70–80°C; further Zn doping to 2% degraded the CO sensing properties of nano-CoOOH. The results of a cross-sensitivity investigation of the sensor to various gases coexisting at early stages of a fire show that the sensitivity of Zn-doped nano-CoOOH is the highest toward CO. Zn-doped nano-CoOOH film exhibits a high sensitivity to CO at room temperature, making it a promising sensor for early-stage fire detection.

  3. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb{sup 2+} from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, M. Shanika [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Silva, Rohini M. de, E-mail: rohini@chem.cmb.ac.lk [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Silva, K.M. Nalin de [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama (Sri Lanka)

    2015-10-01

    Highlights: • Synthesis of neat nano Hydroxyapatite using wet chemical precipitation methods. • This resulted rod like nanocrystals with a diameter around 50–80 nm. • Impregnation of of nano HAp onto the granular activated carbon (GAC) was achieved. • Materials were characterized using FT-IR, PXRD, and SEM. • Adsorption studies were conducted for Pb{sup 2+} ions. • The adsorption data were evaluated according to isotherm models. - Abstract: Synthesis of neat nano hydroxyapatite (HAp) was carried out using wet chemical precipitation methods at low temperature and this resulted rod like HAp nanocrystals with a diameter around 50–80 nm and length of about 250 nm. Impregnation of nano HAp onto the granular activated carbon (GAC) to prepare hydroxyapatite granular activated carbon nanocomposite (C-HAp) was carried out using in situ synthesis of nano HAp in the presence of GAC. The samples of neat nano HAp and C-HAp composite were characterized using Fourier-Transformed Infrared Spectroscopy (FT-IR), powder X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Detailed adsorption studies of neat nano HAp, C-HAp and neat GAC were conducted for Pb{sup 2+} ions at room temperature at different pH levels. The adsorption data for Pb{sup 2+} ions was evaluated according to both Langmuir and Freundlich adsorption isotherm models for both neat nano HAp and C-HAp separately at ambient temperature, 298 K. The equilibrium adsorption data were fitted well with Langmuir adsorption isotherm for neat nano HAp with an adsorption capacity in the range of 138–83 mg g{sup −1}. For C-HAp nanocomposite the adsorption data were well fitted with Freundlich model and the calculated adsorption capacity was in the range of 9–14 mg g{sup −1}. Leaching of Ca{sup 2+} ions by neat nano HAp and C-HAp were also analyzed as a function of pH. It was found that the leaching of Ca{sup 2+} was high in neat HAp than C-HAp. The leaching of Ca{sup 2+} by neat HAp and C

  4. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: • Synthesis of neat nano Hydroxyapatite using wet chemical precipitation methods. • This resulted rod like nanocrystals with a diameter around 50–80 nm. • Impregnation of of nano HAp onto the granular activated carbon (GAC) was achieved. • Materials were characterized using FT-IR, PXRD, and SEM. • Adsorption studies were conducted for Pb2+ ions. • The adsorption data were evaluated according to isotherm models. - Abstract: Synthesis of neat nano hydroxyapatite (HAp) was carried out using wet chemical precipitation methods at low temperature and this resulted rod like HAp nanocrystals with a diameter around 50–80 nm and length of about 250 nm. Impregnation of nano HAp onto the granular activated carbon (GAC) to prepare hydroxyapatite granular activated carbon nanocomposite (C-HAp) was carried out using in situ synthesis of nano HAp in the presence of GAC. The samples of neat nano HAp and C-HAp composite were characterized using Fourier-Transformed Infrared Spectroscopy (FT-IR), powder X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Detailed adsorption studies of neat nano HAp, C-HAp and neat GAC were conducted for Pb2+ ions at room temperature at different pH levels. The adsorption data for Pb2+ ions was evaluated according to both Langmuir and Freundlich adsorption isotherm models for both neat nano HAp and C-HAp separately at ambient temperature, 298 K. The equilibrium adsorption data were fitted well with Langmuir adsorption isotherm for neat nano HAp with an adsorption capacity in the range of 138–83 mg g−1. For C-HAp nanocomposite the adsorption data were well fitted with Freundlich model and the calculated adsorption capacity was in the range of 9–14 mg g−1. Leaching of Ca2+ ions by neat nano HAp and C-HAp were also analyzed as a function of pH. It was found that the leaching of Ca2+ was high in neat HAp than C-HAp. The leaching of Ca2+ by neat HAp and C-HAp during adsorption of Pb2+ ions were also

  5. Optimization of super-capacitors and hydrogen storage performance using carbons with a controlled nano-structure

    Energy Technology Data Exchange (ETDEWEB)

    Frackowiak, E.; Jurewicz, K.; Friebe, M. [Poznan University of Technology, ICTE, ul. Piotrowo 3 (Poland); Friebe, M.; Beguin, F. [Institut de Chimie des Surfaces et Interfaces (ICSI), CNRS, 68 - Mulhouse (France); Vix-Guterl, C. [Centre de Recherche sur la Matiere Divisee (CRMD), CNRS-Universite, 45 - Orleans (France)

    2004-07-01

    It is well accepted that the performance of carbons in super-capacitor electrodes or for hydrogen storage is highly controlled by their porous texture. There is an important ongoing research effort to optimize carbons for these applications, especially attempting to correlate the storage capacity with pore size [1-2]. Unfortunately, with activated carbons, it is impossible to match correctly the pores dimensions, and these materials are often characterized by a broad pore size distribution. nano-structured carbons prepared by a template technique using silica hosts such as MCM-48 and SBA-15 allow such drawbacks to be largely circumvented. The first step of the process is the infiltration of the carbon precursor (sucrose, pitch) in the pores of the host, followed by pyrolysis under neutral atmosphere. An alternative route is the chemical vapor decomposition of propylene. In a second step, the silica matrix is dissolved in HF in order to recover the nano-structured carbon. The carbons are characterized by an interconnected network of micropores and well-tailored meso-pores, the latter being the former walls of the silica host. In the case of the carbons prepared by impregnation with an aqueous sucrose solution, a well-developed ultra-micro-porosity is detected due to auto-activation by gas evolution during the carbonization process. The electrochemical characteristics of the various carbons have been correlated with their structural/micro-textural parameters, checking two applications, e.g. super-capacitor electrodes and electrochemical hydrogen storage. Two-electrode super-capacitors have been built both in aqueous (1 mol.L{sup -1} H{sub 2}SO{sub 4} or 6 mol.L{sup -1} KOH) and organic (1 mol.L{sup -1} TEABF{sub 4} in acetonitrile) solutions. In both media, we have found a perfect linear relationship between capacitance and the ultra-micro-pores ({<=} 0.7 nm) volume measured by CO{sub 2} adsorption. Taking into account the respective size of ultra-micro-pores and

  6. Synthesis of nano-particle and highly porous conducting perovskites from simple in situ sol–gel derived carbon templating process

    Indian Academy of Sciences (India)

    Wei Zhou; Ran Ran; Zongping Shao; Wanqin Jin; Nanping Xu

    2010-08-01

    Nano-sized La0.6Sr0.4Co0.2Fe0.8O$_{3–\\delta}$ (LSCF) and La0.8Sr0.2MnO$_{3–\\delta}$ (LSM) oxides were synthesized by a simple in situ sol–gel derived carbon templating process. Nano-sized LSCF–carbon and LSM–carbon composites were first obtained with a grain size of 20–30 nm. Further calcination of the obtained composites under air resulted in the nano-sized pure-phase perovskites with crystalline size of as small as 14 nm. Such a decrease in crystalline size of perovskite via the indirect calcination process was ascribed to the suppressing effect of carbon in the grain growth of perovskite. Furthermore, when the in situ created carbon was applied as a template for pore forming, a highly porous perovskite sintering body packing from the nano-sized perovskite oxide was obtained.

  7. Nano Ru Impregnated Ni-YSZ Anode as Carbon Resistance Layer for Direct Ethanol Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    SUN Liangliang; ZHENG Tao; HU Zhimin; LUO Linghong; WU Yefan; XU Xu; CHENG Liang; SHI Jijun

    2015-01-01

    Carbon formation on conventional Ni and Y2O3stabilized zirconia (Ni/YSZ) anodes is a major problem for direct ethanol solid oxide fuel cells (DE-SOFC). A nanostructure Ru layer was grown in Ni/YSZ anodes through wet impregnation method with RuCl3solvent at pH=4. Anode-supported Ni-YSZ/YSZ/(La0.8Sr0.2)0.98MnO3±δ(LSM) and Ru-Ni-YSZ/YSZ/LSM fuel cells were compared in terms of the performance and carbon formation with ethanol fuel. X-ray diffraction, scanning electron microscopy,energy disperse spectroscopy and electrochemical workstation were used to study the morphology and fuel cell performance. The results indicate that a nano structured and pearl like Ru layer was well dispersed on the surface of Ni-YSZ materials. The single cell with Ru-impregnated Ni/YSZ showed a maximum power density of 369 mW/cmat 750°C, which was higher than Ni-YSZ/YSZ/LSM. Specifically, no carbon was formed in the anode after 1000 min operation. Fuel cell performance and carbon resistance were enhanced with the addition of the Ru layer.

  8. Nano peel-off fabrication pattern with polymer overcoat layer on glassy carbon electrodes for Pt electrodeposition

    International Nuclear Information System (INIS)

    This article describes a new technique for fabricating an electrocatalyst model in which the particle size and interparticle distance are controlled independently. We designed a uniform insulating polymer layer as a mask on an electroconductive glassy carbon substrate and then peeled off a part of the layer in nano-sized dots by scratching the overcoat layer using an atomic force microscope (AFM) cantilever. Pt particles electrodeposited only on the peeled off area of the glassy carbon. To peel-off a small area on the glassy carbon, a 29 ± 2 nm thick insulating polymer overcoat layer and a cantilever operating area of 10 nm x 10 nm were used, and the smallest peel-off area obtained was 30 nm x 30 nm. Thereafter, we performed the peel-off procedure on the polymer overcoat layer of the glassy carbon substrate having a cantilever operating area of 80 nm x 80 nm. Pt deposition of 100-150 nm in diameter was successfully achieved by adjusting the interparticle distance.

  9. Electronic Transport Parameter of Carbon Nanotube Metal-Semiconductor On-Tube Heterojunction

    OpenAIRE

    Sukirno; Satria Zulkarnaen Bisri; Irmelia

    2009-01-01

    Carbon Nanotubes research is one of the top five hot research topics in physics since 2006 because of its unique properties and functionalities, which leads to wide-range applications. One of the most interesting potential applications is in term of nanoelectronic device. It has been modeled carbon nanotubes heterojunction, which was built from two different carbon nanotubes, that one is metallic and the other one is semiconducting. There are two different carbon nanotubes metal-semiconductor...

  10. Solar production of catalytic filamentous carbon by thermal decomposition of hydrocarbons and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, V.A.; Kuvshinov, G.G.; Mogilnykh, Yu.I. [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Reller, A. [University of Hamburg (Germany); Steinfeld, A.; Weidenkaff, A.; Meier, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Concentrated solar radiation was used as the clean source of process heat for the production of Catalytic Filamentous Carbon (CFC) by thermal decomposition of gaseous hydrocarbons and by CO disproportionation in the presence of small metal catalyst particles. Depending on the catalyst, two different types of CFC, namely nano tubes and nano fibers, were obtained in solar experiments at the PSI solar furnace. (author) 2 figs., 1 tab., 7 refs.

  11. Ultrasonic preparation of nano-nickel/activated carbon composite using spent electroless nickel plating bath and application in degradation of 2,6-dichlorophenol.

    Science.gov (United States)

    Su, Jingyu; Jin, Guanping; Li, Changyong; Zhu, Xiaohui; Dou, Yan; Li, Yong; Wang, Xin; Wang, Kunwei; Gu, Qianqian

    2014-11-01

    Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine-formaldehyde-tetraoxalyl-ethylenediamine chelating resins were grafted on activated carbon (MFT/AC). PdCl2 sol was adsorbed on MFT/AC, which was then immersed in spent electroless nickel plating bath; then nano-nickel could be reduced by ascorbic acid to form a nano-nickel coating on the activated carbon composite (Ni/AC) in situ. The materials present were carefully examined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemistry techniques. The resins were well distributed on the inside and outside surfaces of activated carbon with a size of 120 ± 30 nm in MFT/AC, and a great deal of nano-nickel particles were evenly deposited with a size of 3.8 ± 1.1 nm in Ni/MFT. Moreover, Ni/AC was successfully used as a catalyst for ultrasonic degradation of 2,6-dichlorophenol. PMID:25458692

  12. The effect of crystallization pressure on macromolecular structure, phase evolution, and fracture resistance of nano-calcium carbonate-reinforced high density polyethylene

    International Nuclear Information System (INIS)

    We describe here phase evolution and structural changes that are induced when high density polyethylene (HDPE) containing dispersion of nano-calcium carbonate is isothermally crystallized in the pressure range of 0.1-100 MPa. To delineate and separate the effects of applied crystallization pressure from nanoparticle effects, a relative comparison is made between neat HDPE and HDPE containing nano-calcium carbonate under similar experimental conditions. X-ray diffraction studies point toward the evolution of monoclinic phase at high crystallization pressure together with the commonly observed orthorhombic phase of HDPE. Furthermore, the nucleation of monoclinic phase is promoted by nanoparticles even at low crystallization pressure. The equilibrium melting point is insignificantly influenced on the addition of nanoparticle, such that the crystallization pressure has no obvious effect. The strong thermodynamic interaction between nano-calcium carbonate and HDPE is supported by the shift in glass transition temperature and changes in the modification of absorption bands of HDPE in Fourier transform infrared (FTIR) spectrum. Furthermore, the reinforcement of HDPE with nano-calcium carbonate increases impact strength and alters the micromechanism from crazing-tearing in polyethylene to fibrillated fracture in polymer nanocomposite, such that the fibrillation increases with crystallization pressure.

  13. Experimental and Modeling Study of the Turning Process of PA 6/Nano Calcium Carbonate Composite

    OpenAIRE

    Mehdi Haghi; Reza Farshbaf Zinati; Mohammad Reza Razfar

    2013-01-01

    Nowadays, polymeric nanocomposites have emerged as a new material class with rapidly growing use in industrial products because of good mechanical, thermal, and physical properties. Recently, the requirement of the direct machining of these materials has increased due to the production of the most of them by extrusion method in simple cross section and the increased demand for personalized products. In this work, the effect of turning parameters (cutting speed and feed) and nano calcium carbo...

  14. Co-localised Raman and force spectroscopy reveal the roles of hydrogen bonds and π-π interactions in defining the mechanical properties of diphenylalanine nano- and micro-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Sinjab, Faris; Bondakov, Georgi; Notingher, Ioan, E-mail: ioan.notingher@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom)

    2014-06-23

    An integrated atomic force and polarized Raman microscope were used to measure the elastic properties of individual diphenylalanine (FF) nano- and micro-tubes and to obtain quantitative information regarding the inter-molecular interactions that define their mechanical properties. For individual tubes, co-localised force spectroscopy and Raman spectroscopy measurements allowed the calculation of the Young's and shear moduli (25 ± 5 GPa and 0.28 ± 0.05 GPa, respectively) and the contribution of hydrogen bonding network to the Young's modulus (∼17.6 GPa). The π-π interactions between the phenyl rings, dominated by T-type arrangements, were estimated based on previously published X-ray data to only 0.20 GPa. These results provide experimental evidence obtained from individual FF tubes that the network of H-bonds dominates the elastic properties of the FF tubes.

  15. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, Tamara, E-mail: t.s.galloway@exeter.ac.u [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Lewis, Ceri [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Dolciotti, Ida [Universita Politecnica delle Marche, Institute of Biology and Genetics, Via Ranieri, Monte Dago, 60121 Ancona (Italy); Johnston, Blair D. [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Moger, Julian [School of Physics, Stocker Road, University of Exeter, Devon EX4 4QL (United Kingdom); Regoli, Francesco [Universita Politecnica delle Marche, Institute of Biology and Genetics, Via Ranieri, Monte Dago, 60121 Ancona (Italy)

    2010-05-15

    The ecotoxicology of manufactured nanoparticles (MNPs) in estuarine environments is not well understood. Here we explore the hypothesis that nanoTiO{sub 2} and single walled nanotubes (SWNT) cause sublethal impacts to the infaunal species Arenicola marina (lugworm) exposed through natural sediments. Using a 10 day OECD/ASTM 1990 acute toxicity test, no significant effects were seen for SWNT up to 0.03 g/kg and no uptake of SWNTs into tissues was observed. A significant decrease in casting rate (P = 0.018), increase in cellular damage (P = 0.04) and DNA damage in coelomocytes (P = 0.008) was measured for nanoTiO{sub 2}, with a preliminary LOEC of 1 g/kg. Coherent anti-stokes Raman scattering microscopy (CARS) located aggregates of TiO{sub 2} of >200 nm within the lumen of the gut and adhered to the outer epithelium of the worms, although no visible uptake of particles into tissues was detected. - This study explores the hypothesis that nano-TiO{sub 2} and single walled nanotubes (SWNT) can cause sublethal impacts to Arenicola marina exposed through natural sediments.

  16. Electrochemical properties of estradiol at glassy carbon electrode modified with nano-Al2O3 film

    International Nuclear Information System (INIS)

    Nano-Al2O3 is dispersed onto the surface of the glassy carbon electrode (GCE). This nanostructured film modified GCE exhibits a great enhancement to the oxidation of estradiol (E2), especially when adequate concentration of cationic surfactant such as cetyltrimethylammonium bromide (CTAB) is added into the sample solution. Due to the nanoparticle's unique properties and its inclination to selectively combine with some groups of bimolecules, as well as synergistic adsorption of E2 and CTAB on the electrode surface, E2 gives a more sensitive voltammetric response compared with bare GCE performed in the absence of CTAB. The lowest detectable concentration (3σ) of E2 is estimated to be 8x10-8 mol l-1 (accumulation for 2 min). The linear relationship between peak current and concentration of E2 holds in the range 4x10-7-4x10-5 mol l-1 (R=0.9932). The electrochemical properties of E2 on this modified electrode are investigated by linear scan voltammetry and cyclic voltammetry. Scanning electron microscope (SEM) and BET are employed to characterize the surface of the electrode modified with nano-Al2O3 film

  17. Enhancement of mechanical properties of carbon fabric/epoxy composites using micro/nano-sized bamboo fibrils

    International Nuclear Information System (INIS)

    Highlights: ► Micro/nano-sized bamboo fibrils (MBFs) were fabricated from raw bamboo. ► The fracture toughness of epoxy resin significant increased by 84.6%. ► The fatigue life of the CF/EP composites dramatically increased 12–25 times. ► MBF delayed the onset of matrix crack. ► MBF reduced the crack growth in the CF/EP composites. - Abstract: Micro/nano-sized bamboo fibrils (MBFs) were fabricated from raw bamboo using the alkaline treatment technique and the mechanical extraction method (micro-grinding). The fracture toughness of epoxy resin significantly increased by 84.6% from 0.639 MPa m1/2 to 1.18 MPa m1/2 due to 0.8 wt.% MBF inclusion into the resin in comparison with the epoxy resin without MBF. Both mode-I interlaminar fracture toughness of carbon fabric/epoxy (CF/EP) composites at crack initiation and propagation also improved by 35.3% and 47.3%, respectively when 0.8 wt.% MBF was dispersed in the epoxy matrix. The fatigue life of modified composites at all of MBF content up to 0.8 wt.% dramatically increased 12–25 times longer than those of unmodified composites at high cycle fatigue while the tensile strength slightly increased. Scanning electron microscopy (SEM) observations revealed that MBF delayed the onset of matrix crack, and reduced the crack growth in the CF/EP composites

  18. Observation of strong nano-effect via tuning distributed architecture of graphene oxide in poly(propylene carbonate)

    International Nuclear Information System (INIS)

    For optimum reinforcement in polymer nanocomposite, a critical challenge is to realize the full ‘nano-effect’ of nanofillers at a high content, which is largely hindered by the strong tendency to aggregation of nanofillers. Here, by using a solvent-exchange and solution casting approach, we could incorporate a high-content graphene oxide (GO) into a soft biodegradable CO2-based poly(propylene carbonate) (PPC) up to 20 wt% with excellent dispersion. Based on this, the distributed architecture of GO could be tuned from a ‘GO dotted dispersion’ and ‘GO network’ to strong ‘GO co-continuous structure’ with increasing GO content. As a result, a very strong ‘nano-effect’ of GO in the PPC matrix was observed: (1) the glass transition temperature of PPC was improved from 25 to 45 ° C for slightly confined molecular chains, and even to 100 ° C for highly confined ones; (2) the modified PPC showed drastically enhanced high-temperature mechanical properties, comparable to those of traditional polymers such as polypropylene (PP) and biopolymer poly(lactic acid) (PLA); and (3) such modified PPC exhibited an exciting solvent resistance compared to neat PPC. Our work provides an example to improve the high-temperature properties of a polymer via formation of filler co-continuous structure. (paper)

  19. Nano mechanical properties of carbon films modified by ion radiation; Propriedades nanomecanicas de filmes de carbono modificados por irradiacao ionica

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, C.E.; Serbena, F.C. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Fisica; Lepienski, C.M.; Odo, G.Y. [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Fisica; Zawislak, F.C.; Lopes, J.M.J.; Baptista, D.L.; Garcia, I.T.S. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica

    2000-07-01

    In present work it is measured hardness, Young modulus and friction coefficient values for different types of carbon films. These films were submitted to different ion bombardment conditions (energy and fluencies). The mechanical behavior was obtained by nano indentation technique and analyzed by the Oliver/Pharr method. For friction coefficient determination the nano scratch procedure is used. Pristine C{sub 60} films (fullerenes) has a hardness of 0.33 GPa. After irradiation with different ions (He, N and Bi), the hardness raise to about 14 GPa and the Young modulus change from 20 to about 200 GPa. For photoresist film AZ-1350J irradiation with Ar and He change the hardness from 0.4 to about 14 GPa and the Young modulus raise from 4 to 80 GPa. In a-C-H the hardness change from 3.5 to 11 GPa when submitted to N irradiation. In PPA films the hardness value raise from 0.5 to 11 GPa after irradiation with Ar. These mechanical and tribological results were analyzed in terms of deposited energy by the ion irradiation and compared with those presented in the literature. (author)

  20. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

    OpenAIRE

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García; García, Marta Elena Díaz

    2016-01-01

    Carbonization of tomatoes at 240 °C using 30% (w/v) NaOH as catalyst produced carbon onions (C-onions), while solely carbon dots (C-dots) were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum), under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV–vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanom...

  1. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes.

    Science.gov (United States)

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-12-01

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations. PMID:26676996

  2. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    Science.gov (United States)

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-12-01

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations.

  3. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    KAUST Repository

    Ventura, Isaac Aguilar

    2015-12-16

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations.

  4. The thermal conductivity of embedded nano-aluminum nitride-doped multi-walled carbon nanotubes in epoxy composites containing micro-aluminum nitride particles

    International Nuclear Information System (INIS)

    Amino-functionalized nano-aluminum nitride (nano-AlN) particles were doped onto the surfaces of chlorinated multi-walled carbon nanotubes (MWCNTs) to act as fillers in thermally conducting composites. These synthesized materials were embedded in epoxy resin. Then, the untreated micro-aluminum nitride (micro-AlN) particles were added to this resin, whereby the composites filled with nano-AlN-doped MWCNTs (0, 0.5, 1, 1.5, 2 wt%) and micro-AlN (25.2, 44.1, 57.4 vol%) were fabricated. As a result, the thermal diffusivity and conductivity of all composites continuously improved with increasing nano-AlN-doped MWCNT content and micro-AlN filler loading. The thermal conductivity reached its maximum, which was 31.27 times that of the epoxy alone, when 2 wt% nano-AlN-doped MWCNTs and 57.4 vol% micro-AlN were added to the epoxy resin. This result is due to the high aspect ratio of the MWCNTs and the surface polarity of the doped nano-AlN and micro-AlN particles, resulting in the improved thermal properties of the epoxy composite. (paper)

  5. The thermal conductivity of embedded nano-aluminum nitride-doped multi-walled carbon nanotubes in epoxy composites containing micro-aluminum nitride particles

    Science.gov (United States)

    Choi, Seran; Im, Hyungu; Kim, Jooheon

    2012-02-01

    Amino-functionalized nano-aluminum nitride (nano-AlN) particles were doped onto the surfaces of chlorinated multi-walled carbon nanotubes (MWCNTs) to act as fillers in thermally conducting composites. These synthesized materials were embedded in epoxy resin. Then, the untreated micro-aluminum nitride (micro-AlN) particles were added to this resin, whereby the composites filled with nano-AlN-doped MWCNTs (0, 0.5, 1, 1.5, 2 wt%) and micro-AlN (25.2, 44.1, 57.4 vol%) were fabricated. As a result, the thermal diffusivity and conductivity of all composites continuously improved with increasing nano-AlN-doped MWCNT content and micro-AlN filler loading. The thermal conductivity reached its maximum, which was 31.27 times that of the epoxy alone, when 2 wt% nano-AlN-doped MWCNTs and 57.4 vol% micro-AlN were added to the epoxy resin. This result is due to the high aspect ratio of the MWCNTs and the surface polarity of the doped nano-AlN and micro-AlN particles, resulting in the improved thermal properties of the epoxy composite.

  6. Spontaneous Migration of Polyethylene Molecule Sheathed inside Single-Walled Carbon Nanotube for Nano-Heat Pipe.

    Science.gov (United States)

    Liao, Quanwen; Liu, Zhichun; Yang, Nuo; Liu, Wei

    2016-01-01

    Development of nanoscale thermal exchanging devices is critical to thermal management in nanoscale. The spontaneous migration of polyethylene molecule sheathed inside single-walled carbon nanotube (SWCNT) are observed. And the multi-factor analysis of spontaneous migration about temperature, mass and potential barrier shows new features about motion mechanisms, and enriches the existing mass transport theory greatly. Here, based on this finding, we report a nano-heat pipe (NHP) composing of a SWCNT and a polyethylene molecule. Using molecular dynamics simulations, the heat exchanging coefficient can reach 450 WK(-1) cm(-2) at 500 K by NHP arrays with a quantity density of 7 × 10(13) cm(-2). This study will benefit the designs of NHP and other nanoscale mass transport devices. PMID:27211247

  7. Hydrogen Storage in Iron/Carbon Nano powder Composite Materials: Effect of Varying Spiked Iron Content on Hydrogen Adsorption

    International Nuclear Information System (INIS)

    This study investigates the effects of varying the spiked iron content of iron/carbon nano powder (Fe/CNP) composite materials on hydrogen storage capacity. Among four such samples, a maximum hydrogen uptake of approximately 0.48 wt % was obtained with 14 wt % of spiked iron under 37 atm and 300 K. This higher hydrogen uptake capacity was believed to be closely related to the physisorption mechanism rather than chemisorption. In this case, the formation of maghemite catalyzed the attraction of hydrogen molecules and the CNP skeleton was the principal absorbent material for hydrogen storage. However, as the iron content exceeded 14 wt %, the formation of larger and poorly dispersed maghemite grains reduced the available surface areas of CNP for the storage of hydrogen molecules, leading to decreased uptake. Our study shows that hydrogen uptake capacities can be improved by appropriately adjusting the surface polarities of the CNP with well dispersed iron oxides crystals.

  8. Spontaneous Migration of Polyethylene Molecule Sheathed inside Single-Walled Carbon Nanotube for Nano-Heat Pipe

    Science.gov (United States)

    Liao, Quanwen; Liu, Zhichun; Yang, Nuo; Liu, Wei

    2016-01-01

    Development of nanoscale thermal exchanging devices is critical to thermal management in nanoscale. The spontaneous migration of polyethylene molecule sheathed inside single-walled carbon nanotube (SWCNT) are observed. And the multi-factor analysis of spontaneous migration about temperature, mass and potential barrier shows new features about motion mechanisms, and enriches the existing mass transport theory greatly. Here, based on this finding, we report a nano-heat pipe (NHP) composing of a SWCNT and a polyethylene molecule. Using molecular dynamics simulations, the heat exchanging coefficient can reach 450 WK−1 cm−2 at 500 K by NHP arrays with a quantity density of 7 × 1013 cm−2. This study will benefit the designs of NHP and other nanoscale mass transport devices. PMID:27211247

  9. THE EFFECTS OF CARBON NANO-COATING ON Li(Ni0.8Co0.15Al0.05)O2 CATHODE MATERIAL USING ORGANIC CARBON FOR Li-ION BATTERY

    OpenAIRE

    JEONG-HUN JU; YOUNG-MIN CHUNG; YU-RIM BAK; MOON-JIN HWANG; KWANG-SUN RYU

    2010-01-01

    Carbon nano-coated LiNi0.8Co0.15Al0.05O2/C (LNCAO/C) cathode-active materials were prepared by a sol–gel method and investigated as the cathode material for lithium ion batteries. Electrochemical properties including the galvanostatic charge–discharge ability and cyclic voltammogram behavior were measured. Cyclic voltammetry (2.7–4.8 V) showed that the carbon nano-coating improved the "formation" of the LNCAO electrode, which was related to the increased electronic conductivity between the pr...

  10. Dye-Sensitized Carbon Nano-Yarn Based Photovoltaic Cells with Enhanced Electron-Hole Separation and Barrier Characteristics

    Science.gov (United States)

    Moore, H. Justin; Leal, Miguel; Grissom, Glenn; Trad, Tarek; Islam, Nazmul; Touhami, Ahmed; Uddin, M. Jasim

    Over the last 30 years dye-sensitized solar cells have received considerable interest as an alternative energy source due to their low-cost, environmental sustainability, flexibility, and an abundant number of other practical applications. Flexible carbon nanotube-yarn based photo voltaic cells have shown considerable advantages over metal wire based solar cells or non-flexible substrates like indium-doped tin oxide glass. Carbon nanotubes are superior for photo voltaic cells due to their lower electrical resistance, excellent electrocatalytic activity, and high mechanical integrity. Here, we introduce the use of poly(3-hexylthiophene-2,5-diyl), [6.6] diphenyl C62 bis(butyric acid methyl ester), cadmium sulfide-cadmium selenide quantum dots, and ruthenium-based dye N719 to locally increase electron generation, decrease electron-hole pair recombination, as well as enhancing barrier characteristics. Our prototype 3-dimensional carbon nano-yarn based photovoltaic cells show an enhancement in photon to energy conversion efficiency (>6.5%). This along with prolonged environmental stability makes for a very promising solar cell. NIH, NSF, Welch Foundation.

  11. Single-walled carbon nanotube and graphene: Nano-delivery of Gambogic acid increases its cytotoxicty in various cancer cells

    Science.gov (United States)

    Saeed, Lamya M.

    Nanomedicine is a new branch of medicine that has been developed due to the critical need to treat challenging diseases, especially cancer since it remains a significant cause of morbidity and mortality worldwide and the second most common cause of death after heart disease in the USA. One of the most important health care applications of nanomedicine concerns the development of drug delivery systems. Graphene (Gn), an atom-thick carbon monolayer of sp2- bonded carbon atoms arranged in a two dimensional (2D) honeycomb crystal lattice, and single-walled carbon nanotubes (SWCNTs) (1D, tubular) are among the most promising nanomaterials with the capability of delivering drugs or small therapeutic molecules to cancerous cells. For example, they have been used as vehicles for the anti-cancer, low-toxicity drug Gambogic acid (GA). Here, the cytotoxicity of GA in breast (MCF-7), pancreatic (PANC-1), cervical (HELA), ovarian (NCI/ADR), and prostate (PC3) cancer cells was assessed to determine what effect nanodelivery by either Gn or SWCNTs had on the efficacy of this promising drug. The nanomaterials showed no toxicity at the concentrations used. The inhibition of cell proliferation and apoptosis of the cells was due to the effects of GA which was significantly enhanced by nanodelivery. Such delivery of GA by either Gn or SWCNTs represents a first step toward assessing their effectiveness in more complex, targeted nano-delivery in vivo settings and signals their potential application in the treatment of cancer.

  12. Nano technology

    International Nuclear Information System (INIS)

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  13. Performance of textured carbon on copper electrode multistage depressed collectors with medium-power traveling wave tubes

    Science.gov (United States)

    Ramins, Peter; Curren, Arthur N.

    1986-01-01

    Performance of multistage depressed collectors (MDCs) using textured carbon on copper substrate electrode surfaces was evaluated in conjunction with medium-power traveling wave tubes (TWTs). The MDC and TWT overall efficiencies for these electrodes were measured and compared with those obtained with the same TWT and a copper electrode MDC of identical design. Long-term stability of the carbon-coated copper electrode surfaces was investigated by periodic evaluation of TWT-MDC performance over an extended period of continuous wave (CW) operation. Application of textured carbon coating on copper MDC electrode surfaces produced a 13% improvement in both MDC and TWT overall efficiencies for the TWT-MDC tests. During 1600 hr of CW operation with a medium power TWT, no significant changes in MDC performance were noted. This indicated good stability of the textured carbon electrode surfaces. This stability was confirmed by scanning electron microscope examinations of the electrode surfaces before assembly of the MDC and after completion of the test program.

  14. Integrated Three-Dimensional Carbon Paper/Carbon Tubes/Cobalt-Sulfide Sheets as an Efficient Electrode for Overall Water Splitting.

    Science.gov (United States)

    Wang, Jun; Zhong, Hai-xia; Wang, Zhong-li; Meng, Fan-lu; Zhang, Xin-bo

    2016-02-23

    The development of an efficient catalytic electrode toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of great significance for overall water splitting associated with the conversion and storage of clean and renewable energy. In this study, carbon paper/carbon tubes/cobalt-sulfide is introduced as an integrated three-dimensional (3D) array electrode for cost-effective and energy-efficient HER and OER in alkaline medium. Impressively, this electrode displays superior performance compared to non-noble metal catalysts reported previously, benefiting from the unique 3D array architecture with increased exposure and accessibility of active sites, improved vectorial electron transport capability, and enhanced release of gaseous products. Such an integrated and versatile electrode makes the overall water splitting proceed in a more direct and smooth manner, reducing the production cost of practical technological devices. PMID:26783885

  15. Electronic Transport Parameter of Carbon Nanotube Metal-Semiconductor On-Tube Heterojunction

    Directory of Open Access Journals (Sweden)

    Sukirno

    2009-03-01

    Full Text Available Carbon Nanotubes research is one of the top five hot research topics in physics since 2006 because of its unique properties and functionalities, which leads to wide-range applications. One of the most interesting potential applications is in term of nanoelectronic device. It has been modeled carbon nanotubes heterojunction, which was built from two different carbon nanotubes, that one is metallic and the other one is semiconducting. There are two different carbon nanotubes metal-semiconductor heterojunction. The first one is built from CNT(10,10 as metallic carbon nanotube and CNT (17,0 as semiconductor carbon nanotube. The other one is built from CNT (5,5 as metallic carbon nanotube and CNT (8,0. All of the semiconducting carbon nanotubes are assumed to be a pyridine-like N-doped. Those two heterojunctions are different in term of their structural shape and diameter. It has been calculated their charge distribution and potential profile, which would be useful for the simulation of their electronic transport properties. The calculations are performed by using self-consistent method to solve Non-Homogeneous Poisson’s Equation with aid of Universal Density of States calculation method for Carbon Nanotubes. The calculations are done by varying the doping fraction of the semiconductor carbon nanotubes The electron tunneling transmission coefficient, for low energy region, also has been calculated by using Wentzel-Kramer-Brillouin (WKB approximation. From the calculation results, it is obtained that the charge distribution as well as the potential profile of this device is doping fraction dependent. It is also inferred that the WKB method is fail to be used to calculate whole of the electron tunneling coefficient in this system. It is expected that further calculation for electron tunneling coefficient in higher energy region as well as current-voltage characteristic of this system will become an interesting issue for this carbon nanotube based

  16. Optimization of Carbon Nanotubes for Nitrogen Gas Adsorption

    Directory of Open Access Journals (Sweden)

    Fereydoun Ashrafi

    2010-09-01

    Full Text Available Carbon nano-tubes are one of the most significant achievements of nano-technology with important applications in the design of electronic nano-devices. The study of their properties is therefore important. Here the density functional theory (DFT of electron and the Hartree-Fock (HF method are utilized to study the adsorption of nitrogen molecules on the surface of (4, 4 and (5, 0 carbon nano-tubes. The electronic structure, single point and dipole moment of both nitrogen and carbon nuclei are thoroughly studied. The computational results, which includes, indicate that rich adsorption patterns may result from the interaction of nitrogen with the carbon nano tubes sometimes C-N bounds are formed via breaking C-C bounds and sometimes a carbon atom in the nano-tube is replaced with a nitrogen atom. Sometimes nitrogen atoms are attracted to a C-C bound. In summary, the optimized adsorption rates are calculated. Gaussian 98 software has been used to carry out quantum chemistry calculations. Keywords: Density functional theory, Hartree-Fock, carbon nano tube, Gaussian 98 software. Carbon nanotubes (CNTs are one of the most significant achievements of nano-technology because of his important applications in the design of electronic nano-devices. The study of their properties is therefore important. In this investigation the Density Functional Theory (DFT of electron and the Hartree-Fock (HF method are utilized to study the adsorption of nitrogen molecules on the surface of (4, 4 and (5, 0 carbon nanotubes. The electronic structure, single point and dipole moment of both nitrogen and carbon nuclei are thoroughly studied. The computational results, which includes, indicate that rich adsorption patterns m ay result from the interaction of nitrogen with the carbon nanotubes. Sometimes C-N bounds are formed via breaking C-C bounds and sometimes a carbon atom in the nanotube is replaced by a nitrogen atom. Sometimes nitrogen atoms are attracted to a C-C bound

  17. Infrared micro- and nano-spectroscopy of carbon-based materials

    Science.gov (United States)

    Khatib, Omar

    the field of near-field infrared nano-optics involving characterizing biological substances in aqueous media. We utilize a novel graphene-based liquid cell to trap biomolecules surrounded by water. We perform IR nano-imaging and nano-spectroscopy measurements on tobacco mosaic virus (TMV) aggregates in a graphene liquid cell. This work set the stage for a new class of nano-scale experiments on molecular and biological systems.

  18. Development of capacities in cathode olivine/carbon nano-composite materials

    Czech Academy of Sciences Publication Activity Database

    Bouša, Milan; Frank, Otakar; Kavan, Ladislav

    Praha : Ústav fyzikální chemie J. Heyrovského AV ČR, v.v.i, 2011 - (Mansfeldová, V.; Tarábková, H.). s. 49-49 ISBN 978-80-87351-17-8. [Heyrovský Discussion. Nanostructures on Electrodes /44./. 26.06.2011-30.06.2011, Třešť] Institutional research plan: CEZ:AV0Z40400503 Keywords : nano-composite materials * lithium-ion batteries Subject RIV: CG - Electrochemistry

  19. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

    Science.gov (United States)

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García

    2016-01-01

    Summary Carbonization of tomatoes at 240 °C using 30% (w/v) NaOH as catalyst produced carbon onions (C-onions), while solely carbon dots (C-dots) were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum), under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV–vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined. PMID:27335764

  20. Chirality in MoS{sub 2} nano tubes studied by molecular dynamics simulation and images of high resolution microscopy; Quiralidad en nanotubos de MoS{sub 2} estudiada por simulacion dinamica molecular e imagenes de microscopia de alta resolucion

    Energy Technology Data Exchange (ETDEWEB)

    Perez A, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The nano tubes is a new material intensely studied from 1991 due to their characteristics that are the result of their nano metric size and of the associated quantum effects. Great part of these investigations have been focused to the characterization, modelling and computerized simulation, in order to studying its properties and possible behavior without necessity of the real manipulation of the material. The obtention of the structural properties in the different forms of particles of nano metric dimensions observed in the Transmission Electron Microscope is of great aid to study them mesoscopic characteristic of the material. (Author)

  1. Stability of carbon nanotubes under electron irradiation: Role of tube diameter and chirality

    OpenAIRE

    Krasheninnikov, A. V.; Banhart, F.; Li, J. X.; Foster, Adam S.; Nieminen, Risto M.

    2005-01-01

    As recent experiments demonstrate, the inner shells of multiwalled carbon nanotubes are more sensitive to electron irradiation than the outer shells. To understand the origin of such counterintuitive behavior, we employ a density-functional-theory based tight-binding method and calculate the displacement threshold energies for carbon atoms in single-walled nanotubes with different diameters and chiralities. We show that the displacement energy and the defect production rate strongly depend on...

  2. Synthesis of linked carbon monolayers: Films, balloons, tubes, and pleated sheets

    OpenAIRE

    Schultz, Mitchell J.; Zhang, Xiaoyu; Unarunotai, Sakulsuk; Khang, Dahl-Young; Cao, Qing; Wang, Congjun; Lei, Changhui; MacLaren, Scott; Soares, Julio A. N. T.; Petrov, Ivan; Moore, Jeffrey S.; Rogers, John A.

    2008-01-01

    Because of their potential for use in advanced electronic, nanomechanical, and other applications, large two-dimensional, carbon-rich networks have become an important target to the scientific community. Current methods for the synthesis of these materials have many limitations including lack of molecular-level control and poor diversity. Here, we present a method for the synthesis of two-dimensional carbon nanomaterials synthesized by Mo- and Cu-catalyzed cross-linking of alkyne-containing s...

  3. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Neus Jornet-Martínez

    2015-08-01

    Full Text Available In the present work, the performance of carbon nanotubes (c-CNTs functionalized polydimethylsiloxane (PDMS based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME coupled to Capillary LC (CapLC has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs and carboxylic-multi walled carbon nanotubes (c-MWNTs have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS extractive phase has also been evaluated. The extraction capability of the capillary columns has been tested for different organic pollutants, nitrogen heterocyclic compounds and polycyclic aromatic compounds (PAHs. The results indicated that the use of the c-CNTs-PDMS capillary columns improve pyriproxyfen and mainly PAH extraction. Triazines were better extracted by unmodified TRB-35 and modified c-CNTs-PDMSTRB-5. The results showed that the extraction capability of the c-CNT capillary columns depends not only on the polarity of the analytes (as it occurs with PDMS columns but also on the interactions that the analytes can establish with the immobilized c-CNTs on the PDMS columns. The extraction efficiency has been evaluated on the basis of the preconcentration rate that can be achieved, and, in this sense, the best c-CNTs-PDMS capillary column for each group of compounds can be proposed.

  4. Nano-Structured Carbide-Derived Carbon Films and Their Tribology

    Institute of Scientific and Technical Information of China (English)

    Michael McNallan; Daniel Ersoy; Ranyi Zhu; Allen Lee; Christopher White; Sascha Welz; Yury Gogotsi; Ali Erdemir; Andriy Kovalchenko

    2005-01-01

    Carbide-derived carbon (CDC) is a form of carbon produced by reacting metal carbides, such as SiC or TiC, with halogens at temperatures high enough to produce fast kinetics, but too low to permit the rearrangement of the carbon atoms into an equilibrium graphitic structure. The structure of CDC is derivative of the original carbide structure and contains nanoscale porosity and both sp2 and sp3 bonded carbon in a variety of nanoscale structures. CDC can be produced as a thin film on hard carbides to improve their tribological performance. CDC coatings are distinguished by their low friction coefficients and high wear resistance in many important industrial environments and by their resistance to spallation and delamination. The tribology of CDC coatings on SiC surfaces is described in detail.

  5. Low Carbon Low Alloy Submicro-Steel with Nano-Precipitates

    Institute of Scientific and Technical Information of China (English)

    SongHongwei; ShiBi; ZhangJunbao; WangXiufang

    2005-01-01

    A submicro-steel sheet was successfully fabricated by severe warm-wiling at 773 K through a single pass. The microstructure was characterized first and the thermal stability of the submicro-steel was investigated by annealing the steel at different temperatures.Results indicate that grains are nearly equiaxial with an average diameter of 300 nm for grains near to the surface and 600 nm for grains at the center of the sheet and the submicro-steel can be subjected to annealing at 773 K without obvious grain growth. The formation of the submicro-structure can be related to a severe plastic deformation-induced grain refinement mechanism. The unusually high thermal stability can be attributed to the pinning effect of numerous uniformly-distributed nano-precipitates in the steel. The average diameter of the larger precipitates is about 30 nm and the smaller less than 10 inn.

  6. Doping effect of nano-Ho{sub 2}O{sub 3} and naphthalene in MgB{sub 2} superconductor prepared by powder-in-sealed-tube method

    Energy Technology Data Exchange (ETDEWEB)

    Hansdah, J. S.; Sarun, P. M., E-mail: sarun.res@gmail.com [Functional Ceramics Laboratory, Department of Applied Physics, Indian School of Mines, Dhanbad – 826004 (India)

    2015-03-21

    The effect on crystal structure, critical temperature (T{sub C}), and critical current density (J{sub C}) of bulk MgB{sub 2} doped with nano-Ho{sub 2}O{sub 3} and naphthalene was studied. Among all the samples studied, the sample doped with 2.5 wt. % nano-Ho{sub 2}O{sub 3} have shown the best field dependent critical current density [J{sub C}(H)], i.e., 0.77 × 10{sup 5 }A/cm{sup 2} at 2 T and 10 K. While naphthalene doped MgB{sub 2} sample has shown the least J{sub C}(H) characteristics. The improved J{sub C}(H) characteristics in the nano-Ho{sub 2}O{sub 3} doped MgB{sub 2} samples are attributed to improved flux pinning properties due to the formation of HoB{sub 4} and in naphthalene doped MgB{sub 2} samples. The slight lower T{sub C} value (37.01 K) in naphthalene doped samples is attributed to the occurrence of lattice defect by the substitution of carbon at boron site of MgB{sub 2} superconductor. Lower ΔT{sub C} value implies the lesser anisotropy in all the synthesized samples. The flux pinning force density (F{sub P}/F{sub Pmax}) curves are theoretically analyzed using Dew-Hughes model. The result revealed that point pinning is the dominant pinning mechanism for nano-Ho{sub 2}O{sub 3} doped MgB{sub 2} samples, while, surface and grain boundary pinning become dominant with increasing naphthalene addition in nano-Ho{sub 2}O{sub 3} doped MgB{sub 2} samples.

  7. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    EijiIwamura; MasanoriYamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process, graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  8. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    Eiji Iwamura; Masanori Yamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process,graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  9. Ni(II) decorated nano silicoaluminophosphate molecular sieves-modified carbon paste electrode as an electrocatalyst for electrooxidation of methanol

    Indian Academy of Sciences (India)

    SEYED KARIM HASSANINEJAD-DARZI; MOSTAFA RAHIMNEJAD; SEYEDEH ELHAM MOKHTARI

    2016-06-01

    In this work, we reported amethod for the synthesis of nanosized silicoaluminophosphate (SAPO) molecular sieves that are important members of zeolites family. The synthesized SAPO was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) as well as infrared (IR) techniques. Then, the modified carbon paste electrode was prepared by nano SAPO molecular sieves and nickel (II) ion incorporated at this electrode. The electrochemical behaviour of the modified electrode (Ni-SAPO/CPE) towards the oxidation of methanol was investigated by cyclic voltammetry and hronoamperometry methods. It has been found that the oxidation current is extremely increased by using Ni-SAPO/CPE compared to the unmodified Ni-CPE, it seems that Ni$^{2+}$ inclusion into nano SAPO channels provides the active sites for catalysis of methanol oxidation. The effect of some parameters such as scan rate of potential, concentration of methanol, amount of SAPO was investigated on the oxidation of methanol at the surface of modified electrode. The values of electron transfer coefficient, charge-transfer rate constant and electrode surface coverage for the Ni(II)/Ni(III) couple in the surface of Ni-SAPO/CPE were found to be 0.555, 0.022 s$^{−1}$ and 5.995 $\\times$ 10$^{−6}$ mol cm$^{−2}$, respectively. Also, the diffusion coefficient and the mean value of catalytic rate constant for methanol and redox sites of modified electrode were obtained to be $1.16\\times 10^{−5}$ cm$^2$ s$^{−1}$ and $4.62\\times 10^4$ cm$^3$ mol$^{−1} s$^{−1}$, respectively. The good catalytic activity, high sensitivity, good selectivity and stability and easy in preparation rendered the Ni-SAPO/CPE to be a capable electrode for electrocatalytic oxidation of methanol.

  10. Amorphous Silica- and Carbon- rich nano-templated surfaces as model interstellar dust surfaces for laboratory astrochemistry

    Science.gov (United States)

    Pascual, Natalia; Dawes, Anita; González-Posada, Fernando; Thompson, Neil; Chakarov, Dinko; Mason, Nigel J.; Fraser, Helen Jane

    2015-08-01

    Experimental studies on surface astrochemistry are vital to our understanding of chemical evolution in the interstellar medium (ISM). Laboratory surface-astrochemists have recently begun to study chemical reactions on interstellar dust-grain mimics, ranging from graphite, HOPG and graphene (representative of PAHs or large C-grains in the ISM) to amorphous olivine (representative of silicate dust) and ablated meteoritic samples (representative of interplanetary dust). These pioneering experiments show that the nature of the surface fundamentally affects processes at the substrate surface, substrate-ice interface, and ice over-layer. What these experiments are still lacking is the ability to account for effects arising from the discrete nano-scale of ISM grains, which might include changes to electronic structure, optical properties and surface-kinetics in comparison to bulk materials. The question arises: to what extent are the chemical and optical properties of interstellar ices affected by the size, morphology and material of the underlying ISM dust?We have designed, fabricated and characterised a set of nano-structured surfaces, where nanoparticles, representative of ISM grains, are adhered to an underlying support substrate. Here we will show the nanoparticles that have been manufactured from fused-silica (FS), glassy carbon (GC) and amorphous-C (aC). Our optical characterisation data shows that the nanostructured surfaces have different absorption cross-sections and significant scattering in comparison to the support substrates, which has implications for the energetic processing of icy ISM dust. We have been able to study how water-ice growth differs on the nanoparticles in comparison to the “flat” substrates, indicating increased ice amorphicity when nanoparticles are present, and on C-rich surfaces, compared to Si-rich particles. These data will be discussed in the context of interstellar water-ice features.

  11. Controllable preparation of a nano-hydroxyapatite coating on carbon fibers by electrochemical deposition and chemical treatment.

    Science.gov (United States)

    Wang, Xudong; Zhao, Xueni; Wang, Wanying; Zhang, Jing; Zhang, Li; He, Fuzhen; Yang, Jianjun

    2016-06-01

    A nano-hydroxyapatite (HA) coating with appropriate thickness and morphology similar to that of human bone tissue was directly prepared onto the surfaces of carbon fibers (CFs). A mixed solution of nitric acid, hydrochloric acid, sulfuric acid, and hydrogen peroxide (NHSH) was used in the preparation process. The coating was fabricated by combining NHSH treatment and electrochemical deposition (ECD). NHSH treatment is easy to operate, produces rapid reaction, and highly effective. This method was first used to induce the nucleation and growth of HA crystals on the CF surfaces. Numerous O-containing functional groups, such as hydroxyl (-OH) and carboxyl (-COOH) groups, were grafted onto the CF surfaces by NHSH treatment (NHSH-CFs); as such, the amounts of these groups on the functionalized CFs increased by nearly 8- and 12-fold, respectively, compared with those on untreated CFs. After treatment, the NHSH-CFs not only acquired larger specific surface areas but retained surfaces free from serious corrosion or breakage. Hence, NHSH-CFs are ideal depositional substrates of HA coating during ECD. ECD was successfully used to prepare a nano-rod-like HA coating on the NHSH-CF surfaces. The elemental composition, structure, and morphology of the HA coating were effectively controlled by adjusting various technological parameters, such as the current density, deposition time, and temperature. The average central diameter of HA crystals and the coating density increased with increasing deposition time. The average central diameter of most HA crystals on the NHSH-CFs varied from approximately 60nm to 210nm as the deposition time increased from 60min to 180min. Further studies on a possible deposition mechanism revealed that numerous O-containing functional groups on the NHSH-CF surfaces could associate with electrolyte ions (Ca(2+)) to form special chemical bonds. These bonds can induce HA coating deposition and improve the interfacial bonding strength between the HA coating

  12. Facile synthesis and high anode performance of carbon fiber-interwoven amorphous nano-SiOx/graphene for rechargeable lithium batteries.

    Science.gov (United States)

    Nguyen, Dan Thien; Nguyen, Cao Cuong; Kim, Jong-Seon; Kim, Je Young; Song, Seung-Wan

    2013-11-13

    We present the first report on carbon fiber-interwoven amorphous nano-SiOx/graphene prepared by a simple and facile room temperature synthesis of amorphous SiOx nanoparticles using silica, followed by their homogeneous dispersion with graphene nanosheets and carbon fibers in room temperature aqueous solution. Transmission and scanning electron microscopic imaging reveal that amorphous SiOx primary nanoparticles are 20-30 nm in diameter and carbon fibers are interwoven throughout the secondary particles of 200-300 nm, connecting SiOx nanoparticles and graphene nanosheets. Carbon fiber-interwoven nano-SiO0.37/graphene electrode exhibits impressive cycling performance and rate-capability up to 5C when evaluated as a rechargeable lithium battery anode, delivering discharge capacities of 1579-1263 mAhg(-1) at the C/5 rate with capacity retention of 80% and Coulombic efficiencies of 99% over 50 cycles, and nearly sustained microstructure. The cycling performance is attributed to synergetic effects of amorphous nano-SiOx, strain-tolerant robust microstructure with maintained particle connectivity and enhanced electrical conductivity. PMID:24111701

  13. An investigation into carbon nanostructured materials as catalyst support in proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Veltzé, Sune

    Polymer electrolyte fuel cells (PEFCs) are among the key research areas concerning clean cost-effective energy. Carbon nano fibres (CNF), single walled carbon nano tubes (SWCNT), multi walled carbon nano tubes (MWCNT) and other related materials are among the possible successors to standard carbon...... than carbon blacks. Even then the possible durability of the platinum containing catalyst is a major concern for fuel cell degradation during operation. In order to evaluate platinum containing electrocatalysts for proton exchange membrane fuel cells (PEMFC), the rotating disc electrode (RDE) and...... rotating ring disc electrode (RRDE) thin-film application method is an easy and direct method to evaluate the kinetics of the catalyst for specific reactions.This is due to the RDE and RRDE very well described hydrodynamics, and hence has very well defined flow properties of the electrolyte. By using the...

  14. A novel nano-nonwoven fabric with three-dimensionally dispersed nanofibers: entrapment of carbon nanofibers within nonwovens using the wet-lay process

    Science.gov (United States)

    Karwa, Amogh N.; Barron, Troy J.; Davis, Virginia A.; Tatarchuk, Bruce J.

    2012-05-01

    This study demonstrates, for the first time, the manufacturing of novel nano-nonwovens that are comprised of three-dimensionally distributed carbon nanofibers within the matrices of traditional wet-laid nonwovens. The preparation of these nano-nonwovens involves dispersing and flocking carbon nanofibers, and optimizing colloidal chemistry during wet-lay formation. The distribution of nanofibers within the nano-nonwoven was verified using polydispersed aerosol filtration testing, air permeability, low surface tension liquid capillary porometry, SEM and cyclic voltammetry. All these characterization techniques indicated that nanofiber flocks did not behave as large solid clumps, but retained the ‘nanoporous’ structure expected from nanofibers. These nano-nonwovens showed significant enhancements in aerosol filtration performance. The reduction-oxidation reactions of the functional groups on nanofibers and the linear variation of electric double-layer capacitance with nanofiber loading were measured using cyclic voltammetry. More than 65 m2 (700 ft2) of the composite were made during the demonstration of process scalability using a Fourdrinier-type continuous pilot papermaking machine. The scalability of the process with the control over pore size distribution makes these composites very promising for filtration and other nonwoven applications.

  15. A novel nano-nonwoven fabric with three-dimensionally dispersed nanofibers: entrapment of carbon nanofibers within nonwovens using the wet-lay process

    International Nuclear Information System (INIS)

    This study demonstrates, for the first time, the manufacturing of novel nano-nonwovens that are comprised of three-dimensionally distributed carbon nanofibers within the matrices of traditional wet-laid nonwovens. The preparation of these nano-nonwovens involves dispersing and flocking carbon nanofibers, and optimizing colloidal chemistry during wet-lay formation. The distribution of nanofibers within the nano-nonwoven was verified using polydispersed aerosol filtration testing, air permeability, low surface tension liquid capillary porometry, SEM and cyclic voltammetry. All these characterization techniques indicated that nanofiber flocks did not behave as large solid clumps, but retained the ‘nanoporous’ structure expected from nanofibers. These nano-nonwovens showed significant enhancements in aerosol filtration performance. The reduction–oxidation reactions of the functional groups on nanofibers and the linear variation of electric double-layer capacitance with nanofiber loading were measured using cyclic voltammetry. More than 65 m2 (700 ft2) of the composite were made during the demonstration of process scalability using a Fourdrinier-type continuous pilot papermaking machine. The scalability of the process with the control over pore size distribution makes these composites very promising for filtration and other nonwoven applications. (paper)

  16. Monodisperse carbon nanopearls in a foam-like arrangement: a new carbon nano-compound for cold cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, A.; Binh, Vu Thien; Semet, V.; Guillot, D.; Fillit, R.Y.; Brookes, M.D.; Nguyen, T.P

    2004-10-01

    This paper reports the low cost, high yield chemical vapor deposition synthesis of a potentially novel carbon nanomaterial using nickel nanocluster-catalysed dissociation of acetylene at 700 deg. C. The resulting 'carbon nanopearls' are 150 nm in diameter with {approx}85% monodispersity, with a solid structure composed of both amorphous and nanocrystalline ({approx}2 nm repeat unit) regions. The nanopearls form 3D space-filling 'strings' which give rise to a macroscopic foam-like appearance. The nanopearls have been characterized using scanning electron microscopy, high resolution transmission electron microscopy, X-ray microdiffraction, Raman spectroscopy and energy dispersive X-rays. A mechanism for the formation of the nanopearls is proposed based on concentric layers of {approx}4x4 nm graphitic flakes. The small radius of curvature of each nanopearl and the corrugation at the atomic scale of the surface resulting from the unclosed graphitic flakes result in excellent field emission properties. It has been demonstrated that a film of conditioned carbon nanopearls exhibits Fowler-Nordheim field emission behavior, with currents of up to 50 {mu}A readily obtainable under continuous emission in moderate vacuum. It is proposed that such emitters would provide significantly higher yield, uniform emission characteristics than non-oriented films of carbon nanotubes due to the reproducibly high density of nanopearl emitter sites.

  17. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles

    Science.gov (United States)

    Yilmazoglu, O.; Yadav, S.; Cicek, D.; Schneider, J. J.

    2016-09-01

    A design for a unique artificial-hair-cell-type sensor (AHCTS) based entirely on 3D-structured, vertically aligned carbon nanotube (CNT) bundles is introduced. Standard microfabrication techniques were used for the straightforward micro-nano integration of vertically aligned carbon nanotube arrays composed of low-layer multi-walled CNTs (two to six layers). The mechanical properties of the carbon nanotube bundles were intensively characterized with regard to various substrates and CNT morphology, e.g. bundle height. The CNT bundles display excellent flexibility and mechanical stability for lateral bending, showing high tear resistance. The integrated 3D CNT sensor can detect three-dimensional forces using the deflection or compression of a central CNT bundle which changes the contact resistance to the shorter neighboring bundles. The complete sensor system can be fabricated using a single chemical vapor deposition (CVD) process step. Moreover, sophisticated external contacts to the surroundings are not necessary for signal detection. No additional sensors or external bias for signal detection are required. This simplifies the miniaturization and the integration of these nanostructures for future microsystem set-ups. The new nanostructured sensor system exhibits an average sensitivity of 2100 ppm in the linear regime with the relative resistance change per micron (ppm μm‑1) of the individual CNT bundle tip deflection. Furthermore, experiments have shown highly sensitive piezoresistive behavior with an electrical resistance decrease of up to ∼11% at 50 μm mechanical deflection. The detection sensitivity is as low as 1 μm of deflection, and thus highly comparable with the tactile hair sensors of insects, having typical thresholds on the order of 30–50 μm. The AHCTS can easily be adapted and applied as a flow, tactile or acceleration sensor as well as a vibration sensor. Potential applications of the latter might come up in artificial cochlear systems. In

  18. NanoScience in Biomedicine

    CERN Document Server

    Shi, Donglu; Schulz, Mark; Ren, Zhifeng; Wang, Zhong Lin; Kang, Kyung; Wen, Xuejun; Wang, Michael; Hu, Michael Z; Peng, Lianmao

    2009-01-01

    "NanoScience in Biomedicine" provides up-to-date information in the frontier fields of nano biomedicine focusing on basic concepts and recent developments in many topical areas including particular nanomaterials synthesis, field emission of carbon nanotubes, flexible dye-sensitized nano-porous films, magnetic nanofluids, and intrinsically electro conducting nanoparticles. Novel methods of synthesizing nanoscale biomaterials and their applications in biomedicine are also included such as nano-sized materials for drug delivery, bioactive molecules for regenerative medicine, nanoscale m

  19. Computer aided-molecular design of high performance nano-carbon materials: Na+ on graphenes

    International Nuclear Information System (INIS)

    The electronic states of sodium ion (Na+) trapped on the model surfaces of amorphous carbon have been investigated by means of hybrid density functional theory (DFT) calculations to elucidate the nature of interaction between Na+/Na and the amorphous carbon surfaces. Also, direct molecular orbital-molecular dynamics (MO-MD) calculation [Tachikawa and Shimizu, J. Phys. Chem. B, 110 (2006) 20445] was applied to diffusion processes of the Na+ ion on the model surface of amorphous carbon. Seven models of graphene sheets (n = 7, 14, 19, 29, 37, 44 and 52, where n means numbers of rings in each carbon cluster) were considered in the present study. The B3LYP/LANL2MB calculations showed that the sodium ion is located at 2.24-2.26 A from the graphene surfaces. The direct MO-MD calculations showed that the Na+ ion diffuses freely on the surface above 300 K. At higher temperature (1100 K), the Na+ ion moved from the center to edge region of the model surface. The nature of the interaction between Na+ and the amorphous carbon surfaces was discussed on the basis of theoretical results

  20. Numerical Study on the Heat Transfer of Carbon Dioxide in Horizontal Straight Tubes under Supercritical Pressure.

    Science.gov (United States)

    Yang, Mei

    2016-01-01

    Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k-ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared. PMID:27458729

  1. Nano-Carbon-Based Systems for the Delivery of Bioactive Agents:. Pros and Cons

    Science.gov (United States)

    Nayak, Tapas R.; Pastorin, Giorgia

    2013-09-01

    Nanotechnology has become a distinctive field of research, aimed to modernize the way scientists have addressed urgent needs and sophisticated problems, towards the achievement of unprecedented discoveries. Amidst the myriad of materials extensively used in the modern society, carbon-based systems seem to embody a significant role especially where endurance and strength are required: carbon nanoparticles, nanotubes, graphite, diamonds and fullerenes et al. In addition to the above advantages, this review also emphasizes some concerns on the carbonnanosystems and which are mainly attributable to the lack of an exhaustive characterization and to the potential hazardous effects deriving from their potential accumulation in the environment and inside the body.

  2. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers

    KAUST Repository

    Li, Tao

    2013-01-01

    Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix composite membrane made of commercially available poly (amide-b-ethylene oxide) (Pebax®1657, Arkema) mixed with the nano-sized zeolitic imidazole framework ZIF-7. This hybrid material has been successfully deposited as a thin layer (less than 1μm) on a porous polyacrylonitrile (PAN) support. An intermediate gutter layer of PTMSP was applied to serve as a flat and smooth surface for coating to avoid polymer penetration into the porous support. Key features of this work are the preparation and use of ultra-small ZIF-7 nano-particles (around 30-35nm) and the membrane processability of Pebax®1657. SEM pictures show that excellent adhesion and almost ideal morphology between the two phases has been obtained simply by mixing the as-synthesized ZIF-7 suspension into the Pebax®1657 dope, and no voids or clusters can be observed. The performance of the composite membrane is characterized by single gas permeation measurement of CO2, N2 and CH4. Both, permeability (PCO2 up to 145barrer) and gas selectivity (CO2/N2 up to 97 and CO2/CH4 up to 30) can be increased at low ZIF- loading. The CO2/CH4 selectivity can be further increased to 44 with the filler loading of 34wt%, but the permeability is reduced compared to the pure Pebax®1657 membrane. Polymer chain rigidification at high filler loading is supposed to be a reason for the reduced permeability. The composite membranes prepared in this work show better performance in terms of permeance and selectivity when compared with asymmetric mixed matrix membranes described in the recent literature. Overall, the ZIF 7/Pebax mixed matrix membranes show a high performance for CO2 separation from methane and other gas streams. They are easy to

  3. Neutron Scattering Studies of Liquid on or Confined in Nano- and Mesoporous Carbons, Including Carbide-Derived Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Wesolowski, David J [ORNL

    2014-07-01

    This project involved the synthesis of microporous graphitic-carbon powders with subnanometer average pore size, and very narrow pore size distributions, and the use of these materials in experimental studies of pore-fluid structure and dynamics. Samples of carbide-derived carbon powder, synthesized by extraction of the metal cations from TiC by a high temperature chlorination process, followed by high temperature vacuum annealing, were prepared by Ranjan Dash and his associates at CRADA partner Y-Carbon, Inc. The resulting material had average pore sizes ranging from 5 to 8 . These powders were used in two experiments conducted by researchers involved in the Energy Frontier Research Center Directed by David J. Wesolowski at ORNL, the Fluid Interface Reactions, Structures and Transport (FIRST) Center. FIRST-funded researchers at Drexel University collaborated with scientists at the Paul Scherrer Institute, Switzerland, to measure the expansion and contraction of the microporous carbon particles during charging and discharging of supercapactor electrodes composed of these particles (Hantell et al., 2011, Electrochemistry Communications, v. 13, pp. 1221-1224.) in an electrolyte composed of tetraethylammonium tetrafluoroborate dissolved in acetonitrile. In the second experiment, researchers at Oak Ridge National Laboratory and Drexel University conducted quasielastic neutron scattering studies of the diffusional dynamics of water imbibed into the micropores of the same material (Chathoth et al., 2011, EuroPhysics Journal, v. 95, pp. 56001/1-6). These studies helped to establish the role of pores approaching the size of the solvent and dissolved ions in altering diffusional dynamics, ion transport and physical response of conducting substrates to ion desolvation and entry into subnamometer pores.

  4. Enhanced cathode performance of nano-sized lithium iron phosphate composite using polytetrafluoroethylene as carbon precursor

    Science.gov (United States)

    Avci, Ercan

    2014-12-01

    Herein we report a facile and efficient solid state synthesis of carbon coated lithium iron phosphate (LiFePO4/C) cathode material achieved through the pyrolysis of polytetrafluoroethylene (PTFE). The current investigation is comparatively analyzed with the results of the composites of LiFePO4/C (LFP/C) synthesized using polystyrene-block-polybutadiene (PS-b-PBD), polyethyhylene (PE) and sucrose as carbon precursors. The optimized LFP/CPTFE composite is synthesized at 700 °C using 10 wt.% PTFE. The composite exhibits remarkable improvement in capacity, cyclability and rate capability compared to those of LFP/C synthesized using (PS-b-PBD), PE and sucrose. The specific discharge capacities as high as 166 mA h g-1 (theoretical capacity: 170 mA h g-1) at 0.2 C and 114 mA h g-1 at 10 C rates were achieved with LFP/CPTFE. In addition, the composite exhibits a long-term cycling stability with the capacity loss of only 11.4% after 1000 cycles. PTFE shifts the size distribution of the composite to nanometer scale (approximately 120 nm), however the addition of sucrose and other polymers do not have such an effect. According to TEM and XPS analysis, LFP/CPTFE particles are mostly coated with a few nanometers thick carbon layer forming a core-shell structure. Residual carbon does not contain fluorine.

  5. Using the inside of SWCNT's as a nano clean room reactor

    International Nuclear Information System (INIS)

    Recently, several research groups throughout the world started to use the inside of single-wall carbon nanotubes (SWCNT's) as a reaction chamber on the nano-scale. It began with the filling of SWCNTs with fullerenes, thus producing so-called peapods. By annealing these peapods to high temperatures (∼ 1200 oC) it is possible to transform the enclosed fullerenes into inner tubes. Raman spectroscopy revealed that the radial breathing modes of the inner tubes can be very narrow with intrinsic linewidths down to 0.4 cm-1. This small widths indicate long phonon lifetimes and hence very defect free inner tubes. Due to the interaction with the outer tubes the inner tube RBMs show a characteristic splitting. Considering the mean outer tube diameter of about 1.4 nm and the van der Waals spacing between inner and outer tubes, the inner tubes have rather small diameters around 0.7 nm. Thus, due to the inverse relation between RBM frequency and diameter, the spectral distance between the RBMs of different inner tube types is (with few exceptions) much larger than between different outer tube RBMs. This opens the possibility to study the properties of individual SWCNTs in a bulk sample. Additionally, by using fullerenes with different 13C enrichment levels it is possible to produce inner tubes with different 13C levels. This allows the isotope engineering of SWCNTs. (author)

  6. Détection photothermique et spectroscopie d'absoption de nano-objets individuels: nanoparticules métalliques, nanocristaux semiconducteurs, et nanotubes de carbone.

    OpenAIRE

    Berciaud, Stéphane

    2006-01-01

    During this project, we have developed a new far field optical imaging technique,called Photothermal Heterodyne Imaging, which allows for highly sensitive, "background-free"detection of a large variety of individual absorbing nano-objects (metallic nanoparticles with diameterdown to 1.4 nm, semiconductor nanocrystals, carbon nanotubes,. . .) . The photothermalsignal was characterized experimentally on individual gold nanoparticles. Our measurements arein excellent agreement with analytical ca...

  7. Extreme value statistical analysis for wall thickness of elbow part of carbon steel tube

    International Nuclear Information System (INIS)

    Relating to the resent accident occurred in Mihama Nuclear Power Plant, the estimation method of the minimum value of the wall thickness of carbon steel pipes is concerned, because the minimum wall thickness value is required to decide the exact replacement time of the pipe. Currently in the nuclear power plants, the wall thickness is measured by the ultra-sonic method and the minimum value of the wall thickness decided from the smallest value among 8 values which are obtained at 8 points set around the circumference of the pipes. The minimum value thus determined, however, is not true minimum value and the exact minimum value could be determined by the Extreme Value Statistical Analysis applying for 8 measurement values. This study aims to analyze the field data on the elbow part of carbon steel pipes in order to demonstrate the usefulness of the Extreme Value Statistical Analysis. (author)

  8. Carbon Nanotube Bundle Array Cold Cathodes for THz Vacuum Tube Sources

    Science.gov (United States)

    Manohara, Harish M.; Toda, Risaku; Lin, Robert H.; Liao, Anna; Bronikowski, Michael J.; Siegel, Peter H.

    2009-12-01

    We present high performance cold cathodes composed of arrays of carbon nanotube bundles that routinely produce > 15 A/cm2 at applied fields of 5 to 8 V/µm without any beam focusing. They have exhibited robust operation in poor vacuums of 10-6 to 10-4 Torr- a typically achievable range inside hermetically sealed microcavities. A new double-SOI process was developed to monolithically integrate a gate and additional beam tailoring electrodes. The ability to design the electrodes for specific requirements makes carbon nanotube field emission sources extremely flexible. The lifetime of these cathodes is found to be affected by two effects: a gradual decay of emission due to anode sputtering, and catastrophic failure because of dislodging of CNT bundles at high fields ( > 10 V/µm).

  9. Optimization, Yield Studies and Morphology of WO3Nano-Wires Synthesized by Laser Pyrolysis in C2H2and O2Ambients—Validation of a New Growth Mechanism

    Directory of Open Access Journals (Sweden)

    Sideras-Haddad E

    2008-01-01

    Full Text Available Abstract Laser pyrolysis has been used to synthesize WO3nanostructures. Spherical nano-particles were obtained when acetylene was used to carry the precursor droplet, whereas thin films were obtained at high flow-rates of oxygen carrier gas. In both environments WO3nano-wires appear only after thermal annealing of the as-deposited powders and films. Samples produced under oxygen carrier gas in the laser pyrolysis system gave a higher yield of WO3nano-wires after annealing than the samples which were run under acetylene carrier gas. Alongside the targeted nano-wires, the acetylene-ran samples showed trace amounts of multi-walled carbon nano-tubes; such carbon nano-tubes are not seen in the oxygen-processed WO3nano-wires. The solid–vapour–solid (SVS mechanism [B. Mwakikunga et al., J. Nanosci. Nanotechnol., 2008] was found to be the possible mechanism that explains the manner of growth of the nano-wires. This model, based on the theory from basic statistical mechanics has herein been validated by length-diameter data for the produced WO3nano-wires.

  10. Nano-science and nano-technology is the basis of a new era industry

    International Nuclear Information System (INIS)

    Full text: After discovering fullerenes in 1985 and nanotubes later in 1991 one could speculate about the new allotrope state of carbon-frame structure consisted allometry from carbon atoms. Before just two allotrope structures were known - diamond and graphite; but the third form is a huge (sometimes enormous) molecules that has a unique physical and chemical properties. For instance, it is one hundred times crash-proved than steel, but weights just one sixth of the one. Though nanotubes properties are similar to the conductor's, but if nano-tube has a structure defect (one carbon six angle would be replaced by pentagons) we can produce a semiconductor belt. If to locate inside nanotubes the whole chain from fullerenes with already inserted in them by atoms of gadolinium, we receive a semiconductor. We offer a new and cheap method of obtaining of nano-tubes at an etching of catalytic agents. The essence of carbides in the mechanism of derivation of carbonaceous deposition on dispersible particles of metals is described by common scheme. According to this mechanism at interaction of hydrocarbons with oxides there is restoring metals, which again interacting with hydrocarbons, will generate acetylide(carbides). The decay last again is carried on to derivation by ferrous and free carbonium, on the basis of which the carbonaceous deposition of various frame can be shaped, including the nanotubes

  11. Evaluation of Nutritional and Physical Properties of Watermelon Juice during the Thermal Processing by Using Alumina Nano-fluid in a Shell and Tube Heat Exchanger

    OpenAIRE

    Farinaz Saremnejad Namini; Mehdi Jafari; Mohammad Ziaiifar; Morad Rashidi

    2015-01-01

    Background and Objectives: Thermal processing is an effective method in preventing microbial spoilage but high heat transfer in a long time process that leads to quality loss and increased energy consumption. Also it is important to consider sensitive nature of food products during the thermal processing. Due to the nano-fluids' unique thermo–physical properties compared with the conventional fluids (steam and hot water), their use in various industries to enhance the efficiency of equipment ...

  12. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies

    International Nuclear Information System (INIS)

    Highlights: ► The ring tensile test method was optimized and successfully used. ► The cladding tubes fabricated by PM HIP and traditional technologies were tested. ► Improvement of the cladding tubes properties fabricated by PM HIP was found. ► Correlation of the homogeneity of carbon, boron with the properties was revealed. -- Abstract: The ring tensile test method was optimized and successfully used to obtain precise data for specimens of the cladding tubes of AISI type 316 austenitic stainless steels and ferritic–martensitic stainless steel. The positive modifications in the tensile properties of the stainless steel cladding tubes fabricated by powder metallurgy and hot isostatic pressing of melt atomized powders (PM HIP) when compared with the cladding tubes produced by traditional technology were found. Presently, PM HIP is also used in the fabrication of oxide dispersion strengthened (ODS) ferritic–martensitic steels. The high degree of homogeneity of the distribution of carbon and boron as well the high dispersivity of the phase-structure elements in the specimens manufactured via PM HIP were determined by direct autoradiography methods. These results correlate well with the increase of the tensile properties of the specimens produced by PM HIP technology

  13. Novel MoO2/carbon hierarchical nano/microcomposites: synthesis, characterization, solid state transformations and thiophene HDS activity.

    Science.gov (United States)

    Avendaño, Carlos; Briceño, Alexander; Méndez, Franklin J; Brito, Joaquín L; González, Gema; Cañizales, Edgar; Atencio, Reinaldo; Dieudonné, Philippe

    2013-02-28

    Novel MoO(2)/C nano/microcomposites were prepared via a bottom-up approach by hydrothermal carbonization of a solution of glucose as a carbon precursor in the presence of polyoxometalates (POMs: phosphomolybdic acid [H(3)PMo(12)O(40)] and ammonium heptamolybdate tetrahydrate [(NH(4))(6)Mo(7)O(24)]·4H(2)O). The structural characterization by FT-IR, XRPD, SEM and TEM analyses revealed the controlled formation of hierarchical MoO(2)/C composites with different morphologies: strawberry-like, based on carbon microspheres decorated with MoO(2) nanoparticles; MoO(2)/C core-shell composites; and irregular aggregates in combination with ring-like microstructures bearing amorphous Mo species. These composites can be fine-tuned by varying reaction time, glucose/POM ratio and type of POM precursor. Subsequent transformations in the solid state through calcinations of MoO(2)/C core-shell composites in air lead to hollow nanostructured molybdenum trioxide microspheres together with nanorods and plate microcrystals or cauliflower-like composites (MoO(2)/C). In addition, the MoO(2)/C composite undergoes a morphology evolution to urchin-like composites when it is calcined under nitrogen atmosphere (MoO(2)/C-N(2)). The MoO(2)/C strawberry-like and MoO(2)/C-N(2) composites were transformed into Mo carbide and nitride supported on carbon microspheres (Mo(2)C/C, MoN/C, and MoN/C-N(2)). These phases were tested as precursors in thiophene hydrodesulphurization (HDS) at 400 °C, observing the following trend in relation to the thiophene steady-state conversion: MoN/C-N(2) > MoN/C > Mo(2)C/C > MoO(2)/C-N(2) > MoO(2)/C. According to these conversion values, a direct correlation was observed between higher HDS activity and decreasing crystal size as estimated from the Scherrer equation. These results suggest that such composites represent interesting and promising precursors for HDS catalysts, where the activity and stability can be modified either by chemical or structural changes of the

  14. Elaboration, organisation and optical properties of carbon nano-particles as interstellar dust models

    International Nuclear Information System (INIS)

    Astrophysical and space observations from ultraviolet to infrared (IR) wavelengths provide the only signatures of carbon cosmic dust which is formed in the vicinity of old stars by molecular species condensation around 1000 K. Despite numerous models developed, a fundamental question concerns the exact nature of these grains in space. Their sampling being impossible, a better knowledge of these objects requires earth analogues obtained in conditions as close as possible of those met in space. Implying synthesis mechanism similar to those postulated for carbon cosmic dust, infrared laser pyrolysis (IRLP) appears as a versatile method in order to produce a wide variety of nanoparticles able to reproduce the main signatures characteristics of the interstellar carbon dust. We checked that the synthesised particles by this method showed strong analogies with carbon dust from the point of view of their infrared spectroscopy. The majority of the bands observed by the astrophysicists are present in spectra. Nevertheless defects exist and can be connected to the too small size of the poly-aromatic units present in such deposits. In order to confirm this size effect and to refine the spectroscopic agreement, we chose two different way by acting either directly on the synthesis by modifying the most relevant experimental parameters (temperature of flame, residence time of the reagent in the reactional zone) or indirectly by the means of post-processing (annealing, irradiation). In order to follow the optical, structural and micro-textural evolutions, the deposits thus formed or treated were characterised by infrared spectroscopy, Transmission electron Microscopy (TeM) and by image analysis of the TeM patterns in order to correlate, their organisation multi-scales and in particular the diameter of the aromatic units, with their aptitude to reproduce the spectral characteristics of interstellar carbonaceous dust. (author)

  15. Design, fabrication and properties of novel architectures made from carbon nanotubes and nano-porous materials

    Science.gov (United States)

    Kaur, Sumanjeet

    Nanomaterials like carbon nanotubes (CNT) have numerous potential applications due to their unique electrical, thermal and mechanical properties. Building macroscopic architectures using these nanocomponents requires new approaches for organization or assembly of these components. This can be achieved by using various techniques like capillary-induced compaction, template-assisted growth and other synthesis techniques. The vertically aligned multiwalled carbon nanotube arrays were grown using chemical vapor deposition (CVD). Evaporation of liquid from such vertically aligned nanotube arrays induces the assembly of nanotubes into cellular patterns. The role of substrate and orientation of the carbon nanotube array was investigated and analyzed to gain more control over the pattern formation that could help in designing new structures. Electrical measurements on the CNT patterns before and after capillary-induced compaction revealed that compaction results in four-fold increase in electrical conductivity, making them a potential candidate for vertical interconnects. A new method to fabricate a syringe with nanopores by using anodization technique was demonstrated. Experimental parameters were investigated to control the dimension and morphology of the nanopores in the syringe. Capillary force was used to infiltrate and replicate the complete 3D architecture into polymers. The usefulness of syringe as a biological sampler (DNA-RNA separation) was demonstrated. Layered structure of exfoliated mica was used as a substrate for growth of CNTs. This resulted in novel layered hybrid architecture of mica and carbon nanotube arrays. Mechanical properties of such architectures were investigated. Such architectures could be very useful as foams. These simple techniques can be used to assemble nanoscale components into well-defined macroscopic architectures and thus broaden the range of applications where their unique properties can be put into use.

  16. Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite.

    Science.gov (United States)

    Deng, Yi; Zhou, Ping; Liu, Xiaochen; Wang, Lixin; Xiong, Xiaoling; Tang, Zhihui; Wei, Jie; Wei, Shicheng

    2015-12-01

    As FDA-approved implantable material, polyetheretherketone (PEEK) is becoming a prime candidate to replace traditional surgical metallic implants made of titanium (Ti) and its alloys, since it has a lower elastic modulus than Ti. The bioinertness and defective osteointegration of PEEK, however, limit its clinical adoption as load-bearing dental/orthopedic material. The present work aimed at developing a PEEK bioactive ternary composite, polyetheretherketone/nano-hydroxyapatite/carbon fiber (PEEK/n-HA/CF), and evaluating it as a potential bone-repairing material by assessment of growth and differentiation of osteoblast-like MG63 cells and by estimation of osteointegration in vivo. Our results indicated that the adhesion, proliferation and osteogenic differentiation of cells, as well as the mechanical properties were greatly promoted for the PEEK/n-HA/CF biocomposite compared with pure PEEK matrix. More importantly, the ternary composite implant boosted in vivo bioactivity and osseointegration in canine tooth defect model. Thus, the PEEK/n-HA/CF ternary biocomposite with enhanced mechanics and biological performances hold great potential as bioactive implant material in dental and orthopedic applications. PMID:26363268

  17. Influence of Ingredients of Carbon Black Nano-Particle Suspension of Ammonia Solution on Viscosity of Nanofluid

    Institute of Scientific and Technical Information of China (English)

    CHENG Bo; DU Kai; ZHANG Xiao-song; YANG Liu

    2009-01-01

    A series of experiments were performed on the viscosity of a nanofluid,produced by mixing car-bon black and mulsifier OP-10 using ammonia-water with the ultrasonic dispersion.The results show that,when adding surfactant separately in low mass concentrations,at first the viscosity of solution decreases sharply compared with that of ammonia-water.then increases with increasing the concentration of OP-IO.In a certain concentration of surfactant,the viscosity of nanofluids increases with increasing the concentration of nanoparti·des.Based on Einstein model and Langrnuir absorption theory,a new model啪s summed up for nanoflukls.Compared with test values,the calcuhted values on the new model have verified that the model is suitable to predict the viscosity of rmnofluids.beoll.k.the maximum relative error is less than 5%.Nano-particles absorp-tion in the nanofluids is not only single-molecule layer adsorption,but aLso multi-layer molecular adsorption and other complicated adsorption.So the new model,ordy based on single-molecule layer adsorption theory of Lang-muir.is not fully in line with the real circumstances.

  18. A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Weigang Wen

    2010-01-01

    Full Text Available A disposable organophosphorus pesticides (OPs enzyme biosensor based on magnetic composite nanoparticle-modified screen printed carbon electrodes (SPCE has been developed. Firstly, an acetylcholinesterase (AChE-coated Fe3O4/Au (GMP magnetic nanoparticulate (GMP-AChE was synthesized. Then, GMP-AChE was absorbed on the surface of a SPCE modified by carbon nanotubes (CNTs/nano-ZrO2/prussian blue (PB/Nafion (Nf composite membrane by an external magnetic field. Thus, the biosensor (SPCE|CNTs/ZrO2/PB/Nf|GMP-AChE for OPs was fabricated. The surface of the biosensor was characterized by scanning electron micrography (SEM and X-ray fluorescence spectrometery (XRFS and its electrochemical properties were studied by cyclic voltammetry (CV and differential pulse voltammetry (DPV. The degree of inhibition (A% of the AChE by OPs was determined by measuring the reduction current of the PB generated by the AChE-catalyzed hydrolysis of acetylthiocholine (ATCh. In pH = 7.5 KNO3 solution, the A was related linearly to the concentration of dimethoate in the range from 1.0 × 10-3–10 ng•mL-1 with a detection limit of 5.6 × 10-4 ng•mL-1. The recovery rates in Chinese cabbage exhibited a range of 88%–105%. The results were consistent with the standard gas chromatography (GC method. Compared with other enzyme biosensors the proposed biosensor exhibited high sensitivity, good selectivity with disposable, low consumption of sample. In particular its surface can be easily renewed by removal of the magnet. The convenient, fast and sensitive voltammetric measurement opens new opportunities for OPs analysis.

  19. Characteristics of Transmission-type Microfocus X-ray Tube based-on Carbon Nanotube Field Emitter

    International Nuclear Information System (INIS)

    A high resolution microfocus x-ray source is widely applied to noninvasive detection for industrial demands, material science and engineering, and to diagnostic study of microbiology and micro-tomography. Carbon nanotube (CNT) is regarded as an excellent electron emitter, which outperforms conventional electron sources in point of brightness. It has been suggested that CNT is used as an electron source of a high resolution x-ray tube according to their low threshold field with atomically sharp geometry, chemically robust structure, and electric conductivity. Several researchers have reported miniaturized x-ray tube based on diode structure and micro x-ray radiography and computed tomography systems using triode types with precise emission control and electrostatic focusing. Especially, a microfocus x-ray source of 30 μm resolution has been demonstrated recently using an elliptical CNT cathode and asymmetrical Eingel lens. However, to increase the spatial resolution of x-ray source, a smaller CNT emitter is desired. Electron focusing optics must be corrected to reduce aberrations. A thin wire tip end can provide a micro-area of CNT substrate, and a magnetic lens and transmission x-ray target are proper to reduce the lens aberration and a focal length. Until now, CNT based microfocus x-ray source with less than 10 um resolution has not been shown. Here we report a microfocus x-ray source with 4.7 μm x-ray focal spot consisted of a conical CNT tip, a single solenoid lens, and a transmission type x-ray target. A magnified x-ray image larger than 230 times was resolved with advantage of microfocused focal spot and transmission x-ray target

  20. Three-dimensional MEMS devices with functionalized carbon nanotubes

    Science.gov (United States)

    Varadan, Vijay K.; Xie, Jining; Ji, Taeksoo

    2001-11-01

    Carbon Nano Tubes (CNT) with their unique structure, have already proven to be valuable in their application as tips for scanning probe microscopy, field emission devices, nanoelectronics, H2- storage, electromagnetic absorbers, ESD, EMI films and coatings and structural composites. For many of these applications, highly purified and functionalized CNT which are compatible with many host polymers are needed. A novel microwave CVD processing technique to meet these requirements has been developed at Penn State Center for the Engineering and Acoustic Materials and Devices (CEEAMD). This method enables the production of highly purified carbon nano tubes with variable size (from 5-40 nm) at lost cost (per gram) and high yield. Whereas, carbon nano tubes synthesized using the laser ablation or arc discharge evaporation method always include impurity due to catalyst or catalyst support. The Penn State research is based on the use of zeolites over other metal/metal oxides in the microwave field for a high production and uniformity of the product. An extended conventional purification method has been employed to purify our products in order to remove left over impurity. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite are presented.