WorldWideScience

Sample records for carbon dioxide emission

  1. Carbon dioxide and methane emissions from estuaries

    OpenAIRE

    Abril, G.; Borges, Alberto

    2005-01-01

    Carbon dioxide and methane emissions from estuaries are reviewed in relationwith biogeochemical processes and carbon cycling. In estuaries, carbondioxide and methane emissions show a large spatial and temporalvariability, which results from a complex interaction of river carbon inputs,sedimentation and resuspension processes, microbial processes in watersand sediments, tidal exchanges with marshes and flats and gas exchangewith the atmosphere. The net mineralization of land-derived organic ca...

  2. Tourism Transport, Technology, and Carbon Dioxide Emissions

    NARCIS (Netherlands)

    Peeters, P.M.

    2010-01-01

    Technological development from horse-drawn carriages to the new Airbus A380 has led to a remarkable increase in both the capacity and speed of tourist travel. This development has an endogenous systemic cause and will continue to increase carbon dioxide emissions/energy consumption if left unchecked

  3. CIVIL AVIATION CARBON DIOXIDE EMISSIONS IN CHINA

    OpenAIRE

    Chen, Sainan

    2013-01-01

    With the social and economic development, the civil aviation industry of China is experiencing rapid growth. This growth will lead to more CO2 emissions. Carbon dioxide emissions and greenhouse effect are already serious problems especially in China, but also all over the world. Civil aviation has brought environmental pollution in the context of improving social activity and economic growth. Because of civil aviation, the rapid increase of the total amount of air pollutants are also in...

  4. Adverse effects of the automotive industry on carbon dioxide emissions

    Directory of Open Access Journals (Sweden)

    Mpho Bosupeng

    2016-05-01

    Full Text Available This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japan. In addition, significant relations were observed between output and carbon dioxide discharges in Spain, Canada, India and Japan. Changes in output had substantial impact on emissions in Germany, Canada and India. The results also show that the number of passenger cars influences the magnitude of emissions in multiple economies. In conclusion, the automotive industry has to be considered in policies that aim to reduce carbon dioxide emissions.

  5. Carbon dioxide emission from bamboo culms.

    Science.gov (United States)

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan. PMID:26802362

  6. Carbon dioxide emission during forest fires ignited by lightning

    OpenAIRE

    Pelc, Magdalena; Osuch, Radoslaw

    2009-01-01

    In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

  7. Balance and forecasts of french carbon dioxide emissions

    International Nuclear Information System (INIS)

    This paper strikes the balance of carbon dioxide emissions in France between 1986 and 1991 and gives forecasts till 2010. Since 1986, France has reduced its efforts for energy conservation and air pollution by carbon dioxide begins to growth again in connection with consumption growth in transport area, development of computer and simulation needs

  8. Estimated Carbon Dioxide Emissions in 2008: United States

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS

  9. Direct carbon dioxide emissions from civil aircraft

    Science.gov (United States)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  10. Economic Growth, Carbon Dioxide Emissions, Renewable Energy and Globalization

    OpenAIRE

    Nuno Carlos LEITÃO

    2014-01-01

    This article investigates the correlation between economic growth, carbon dioxide emissions, renewable energy and globalization for the period 1970-2010, using time series (OLS,GMM, unit root test, VEC model, and Granger causality) to Portuguese economy. OLS estimator and GMM model demonstrate that carbon dioxide emissions and renewable energy are positively correlated with economic growth. The econometric models also show that the overall index of globalization has a positive effect...

  11. Carbon dioxide emissions from biochar in soil

    DEFF Research Database (Denmark)

    Bruun, S; Clauson-Kaas, S; Bobul'ská, L;

    2014-01-01

    -sterilized soils. It emerged that carbonate may be concentrated or form during or after biochar production, resulting in significant carbonate contents. If CO2 released from carbonates in short-term experiments is misinterpreted as mineralization of biochar, the impact of this process may be significantly over...... evolution. Finally, we found that both production temperature and clay content affect biochar mineralization. As protective mechanisms hypothesized to prevent degradation of organic matter in soil usually implicate clay, we conclude that biochar is likely to be protected from mineralization during the early......The stability of biochar in soil is of importance if it is to be used for carbon sequestration and long-term improvement of soil properties. It is well known that a significant fraction of biochar is highly stable in soil, but carbon dioxide (CO2) is also released immediately after application...

  12. Industrial structural transformation and carbon dioxide emissions in China

    International Nuclear Information System (INIS)

    Using provincial panel data from the period 1995–2009 to analyze the relationship between the industrial structural transformation and carbon dioxide emissions in China, we find that the first-order lag of industrial structural adjustment effectively reduced the emissions; technical progress itself did not reduce the emissions, but indirectly led to decreasing emissions through the upgrading and optimization of industrial structure. Foreign direct investment and intervention by local governments reduced carbon dioxide emissions, but urbanization significantly increased the emissions. Thus, industrial structural adjustment is an important component of the development of a low-carbon economy. In the context of industrial structural transformation, an effective way to reduce a region’s carbon dioxide emissions is to promote the upgrading and optimization of industrial structure through technical progress. Tighter environmental access policies, selective utilization of foreign direct investment, and improvements in energy efficiency can help to reduce carbon dioxide emissions. - Highlights: ► Relationship between the transformation of industrial structure and CO2 emissions in China. ► Dynamic panel data model. ► Industrial structural adjustments can effectively reduce current CO2 emissions. ► Technical progress leads to decreasing CO2 emissions through upgrading of industrial structure

  13. Nuclear energy significantly reduces carbon dioxide emissions

    International Nuclear Information System (INIS)

    This article is devoted to nuclear energy, to its acceptability, compatibility and sustainability. Nuclear energy is non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy, radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously adjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  14. Convergence of carbon dioxide emissions in different sectors in China

    International Nuclear Information System (INIS)

    In this paper, we analyze differences in per capita carbon dioxide emissions from 1996 to 2010 in six sectors across 28 provinces in China and examine the σ-convergence, stochastic convergence and β-convergence of these emissions. We also investigate the factors that impact the convergence of per capita carbon dioxide emissions in each sector. The results show that per capita carbon dioxide emissions in all sectors converged across provinces from 1996 to 2010. Factors that impact the convergence of per capita carbon dioxide emissions in each sector vary: GDP (gross domestic product) per capita, industrialization process and population density impact convergence in the Industry sector, while GDP per capita and population density impact convergence in the Transportation, Storage, Postal, and Telecommunications Services sector. Aside from GDP per capita and population density, trade openness also impacts convergence in the Wholesale, Retail, Trade, and Catering Service sector. Population density is the only factor that impacts convergence in the Residential Consumption sector. - Highlights: • Analyze differences in CO2 emissions in six sectors among 28 provinces in China. • Examine the convergence of CO2 emissions in six sectors. • Investigate factors impact on convergence of CO2 emissions in each sector. • Factors impact on convergence of per capita CO2 emissions in each sector vary

  15. Assessing Carbon Dioxide Emissions from Energy Use at a University

    Science.gov (United States)

    Riddell, William; Bhatia, Krishan Kumar; Parisi, Matthew; Foote, Jessica; Imperatore, John, III

    2009-01-01

    Purpose: The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design/methodology/approach: First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with…

  16. Global carbon dioxide emissions from inland waters

    Science.gov (United States)

    Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Rob; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-01-01

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8   petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  17. Is there cross-country convergence in carbon dioxide emissions?

    International Nuclear Information System (INIS)

    This paper examines the spatial distribution of per capita carbon dioxide emissions in 87 countries during the period 1960-1999. In order to overcome the methodological limitations of conventional convergence analysis, I have used a non-parametric approach which allows us to study the dynamics of the entire cross-section distribution. The results show that cross-country disparities in per capita carbon dioxide emissions decreased throughout the study period. In fact, the probability mass concentrated around the average increased over time, which helps to explain the observed reduction in the polarisation of the distribution under consideration. In any event, the intradistribution mobility level is relatively low. I have also investigated how far spatial differences in per capita carbon dioxide emission levels can be explained by factors such as per capita income, the degree of trade openness or climatic conditions

  18. Carbon dioxide emission from brickfields around Bangladesh

    Directory of Open Access Journals (Sweden)

    M.A. Imran

    2014-12-01

    Full Text Available The study was undertaken at six divisions of Bangladesh to investigate the CO2 emission from brickfields. to explore the rate of carbon emission over the last 10 years, based on existing technology for brick production. The finding reveals that there were more than 45,000 Brick kilns in Bangladesh which together account for about 95% of operating kilns including Bull's Trench Kiln, Fixed Chimney Kiln, Zigzag Kiln and Hoffman Kiln. These kilns were the most carbon emitting source but it varies on fuel type, kiln type and also for location. It has been found that, maximum carbon emission area was Chittagong, which was 93.150 with percentage of last 10 years and 9.310 per cent per year. Whereas Sylhet was lower carbon emission area indicating percentage 17.172 of last 10 years and 4.218 percent per year. It has been found that total annual amount of CO2 emission for 4 types brick kilns from Dhaka, Chittagong, Rajshahi, Khulana, Sylhet and Barisal were 8.862 Mt yr-1, 10.048 Mt yr-1, 12.783 Mt yr-1, 15.250 Mt yr-1, in the year of 2002, 2005, 2007 and 2010 respectively. In Mymensingh district, the maximum CO2 emission and coal consumption was obtained in Chamak brick field, which was 1882 tons and 950 tons, respectively and minimum was obtained in Zhalak brick field, which was 1039.5 tons and 525.0 tons, respectively during the year of 2013. The percentage in last 10 years of CO2 emission was 72.784 and per cent per year 7.970, which is very alarming for us. The estimates obtained from surveys and on-site investigations indicate that these kilns consume an average of 240 tons of coal to produce 1 million bricks. This type of coal has a measured calorific value of 6,400 KJ, heating value of coal is 20.93 GJ t-1 and it produces 94.61 TJ t-1 and 56.1 TJ t-1 CO2 from coal and natural gas, respectively.

  19. Per Capita Carbon Dioxide Emissions: Convergence or Divergence?

    OpenAIRE

    Aldy, Joseph

    2005-01-01

    Understanding and considering the distribution of per capita carbon dioxide (CO2) emissions is important in designing international climate change proposals and incentives for participation. I evaluate historic international emissions distributions and forecast future distributions to assess whether per capita emissions have been converging or will converge. I find evidence of convergence among 23 member countries of the Organisation for Economic Co-operation and Development (OECD), whereas e...

  20. Using LMDI approach to analyze changes in carbon dioxide emissions of China’s logistics industry

    OpenAIRE

    Ying Dai; Jing Zhu; Han Song

    2015-01-01

    Purpose: China is confronting with tremendous pressure in carbon emission reduction. While logistics industry seriously relies on fossil fuel, and emits greenhouse gas, especially carbon dioxide. The aim of this article is to estimate the carbon dioxide emission in China’s logistics sector, and analyze the causes for the change of carbon dioxide emission, and identify the critical factors which mainly drive the change in carbon dioxide emissions of China’s logistics industry. Design/methodolo...

  1. Hydrological restoration of Indonesian peatlands to mitigate carbon dioxide emissions

    NARCIS (Netherlands)

    Wösten, H.; Jaenicke, J.; Budiman, A.; Siegert, F.

    2010-01-01

    Delta Session DS 9: The lowland deltas of Indonesia. Hydrological restoration of Indonesian peatlands to mitigate carbon dioxide emissions, Henk Wösten (2010). Presented at the international conference Deltas in Times of Climate Change, 29 September - 1 October, Rotterdam, the Netherlands.

  2. The travel-related carbon dioxide emissions of atmospheric researchers

    OpenAIRE

    A. Stohl

    2008-01-01

    Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emis...

  3. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    DEFF Research Database (Denmark)

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.;

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80......% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly...

  4. Carbon dioxide emissions from international air freight

    Science.gov (United States)

    Howitt, Oliver J. A.; Carruthers, Michael A.; Smith, Inga J.; Rodger, Craig J.

    2011-12-01

    Greenhouse gas emissions from international air transport were excluded from reduction targets under the Kyoto Protocol, partly because of difficulties with quantifying and apportioning such emissions. Although there has been a great deal of recent research into calculating emissions from aeroplane operations globally, publicly available emissions factors for air freight emissions are scarce. This paper presents a methodology to calculate the amount of fuel burnt and the resulting CO 2 emissions from New Zealand's internationally air freighted imports and exports in 2007. This methodology could be applied to other nations and/or regions. Using data on fuel uplift, air freight and air craft movements, and assumptions on mean passenger loadings and the mass of passengers and air freight, CO 2 emissions factors of 0.82 kg CO 2 per t-km and 0.69 kg CO 2 per t-km for short-haul and long-haul journeys, respectively, were calculated. The total amount of fuel consumed for the international air transport of New Zealand's imports and exports was calculated to be 0.21 Mt and 0.17 Mt respectively, with corresponding CO 2 emissions of 0.67 Mt and 0.53 Mt.

  5. EU Emission Trading: Starting with Carbon Dioxide

    DEFF Research Database (Denmark)

    Vesterdal, Morten; Svendsen, Gert Tinggaard

    2003-01-01

    The Commission of the European Union wants to start a limited emission trading scheme by 2005 within the Community to enable "learning-by-doing" prior to the Kyoto Protocol. This to accomplish the desired 8% target level for six different greenhouse gases. However, in the EU it is not clear wheth...

  6. World commitment to reduce carbon dioxide emissions

    International Nuclear Information System (INIS)

    A meeting of energy experts in Toronto, sponsored by the Canadian World Energy Council (CANWEC), to examine the implications of sustainable development for the energy industry, is reported. Canada, according to the World Resources Institute, ranks second only to the Arab oil producers as the world's worst energy hog. Although it contributes only 2% of total world greenhouse gases, its per capita emissions rank higher than even the United States, and this despite the fact that over 75% of its electrical energy is produced by hydro and nuclear power. Its intentions to stabilize CO2 emissions by 2000 have already been signalled. Although arguments on the supply side strategies of clean coal and nuclear power were presented at the CANWEC meeting, the accent was firmly on demand side management, through energy conservation and efficiency, to meet the challenge of global warming. (author)

  7. Carbon Dioxide Emissions: 17 Years and Still Talking

    International Nuclear Information System (INIS)

    This paper, written in French and in English, examines how the figures have changed from Kyoto base year 1990 up to 2007, before looking at certain countries' proposals for the future of their carbon dioxide emissions. Statistics are given concerning the emissions changes in various countries (or groups of countries) but also their developments in regards to the economy and energy use. Changes in CO2 emissions, changes in the gross domestic product of a country, its CO2 emissions per capita, its energy intensity (the ratio of energy use to the monetary value of GDP) and its carbon intensity of energy use as well as population change, are presented. The main countries considered are: United States, European Union, China, Japan, India, Brazil, South Africa and Russia

  8. Using LMDI approach to analyze changes in carbon dioxide emissions of China’s logistics industry

    Directory of Open Access Journals (Sweden)

    Ying Dai

    2015-05-01

    Full Text Available Purpose: China is confronting with tremendous pressure in carbon emission reduction. While logistics industry seriously relies on fossil fuel, and emits greenhouse gas, especially carbon dioxide. The aim of this article is to estimate the carbon dioxide emission in China’s logistics sector, and analyze the causes for the change of carbon dioxide emission, and identify the critical factors which mainly drive the change in carbon dioxide emissions of China’s logistics industry. Design/methodology/approach: The logarithmic mean Divisia index (LMDI method has often been used to analyze decomposition of energy consumption and carbon emission due to its theoretical foundation, adaptability, ease of use and result interpretation. So we use the LMDI method to analyze the changes in carbon dioxide emission in China’s logistics industry in this paper. Findings: By analyzing carbon dioxide emission of China’s logistics, the results show that the carbon dioxide emission of logistics in China has increased by 21.5 times, from 45.1 million tons to 1014.1 million tons in the research period. The highway transport is the main contributor to carbon dioxide emission in logistics industry. The energy intensity and carbon dioxide emission factors were contributing to the reduction of carbon dioxide emission in China’s logistics industry in overall study period. Originality/value: Although there are a lot of literature analyzed carbon dioxide emission in many industry sectors, for example manufacturing, iron and steel , pulp and paper, cement, glass industry, and so on. However, few scholars researched on carbon dioxide emission in logistics industry. This the first study is in the context of carbon dioxide emission of China’s logistics industry.

  9. Minimizing emission of carbon dioxide in the coconut processing

    International Nuclear Information System (INIS)

    About 90% of the world's coconut production is made into copra. There are 2-3 million smoke kilns which are used by the coconut farmers for making copra. It is estimated that these kilns emit carbon dioxide from 247 to 366 gram of carbon per kg of copra produced. From the world copra production of 10 M tons, the total carbon released in copra making range is 2-3 Tg(telegram=1012grams) or 2-3M tons of carbon per year. To minimize carbon dioxide emission in copra making, kilns with better combustion characteristics and heat utilization efficiencies must be used. One of the most promising alternative dryers is a direct-fired, natural draft dryer known as the Los Banos (Lozada) Dryer. Developed at the University of the Philippines Los Banos, the dryer consist of a simple burner, a heat distributor and a drying bin. The burner combust coconut shell, corn cob, and wood pieces with extremely high efficiency thus minimizing fuel consumption and dramatically reducing the release of airborne pollutants. The resulting copra is practically smoke free. Tests have shown that carbon dioxide emissions from the Los Banos (Lozada) Dryer are about half of that released by the traditional smoke kilns. Furthermore, the dryer emits lower concentrations of CO (50 ppm vs 2000-3000 ppm), of NOx(5 ppm vs 400 ppm), and SOx(5 ppm vs 400 ppm). When used widely, significant reductions in the emissions of greenhouse and acid rain gases from biomass combustion will be attained. (About 500 units of the Los Banos (Lozada) Dryer are now in use in the Philippines and Papua New Guinea). (Author)

  10. International mobility in carbon dioxide emissions

    International Nuclear Information System (INIS)

    In this paper, we analyse the evolution of international mobility in per capita CO2 emissions for the period 1971–2007. This concept reveals the distribution's degree of entrenchment which is fundamentally different from other distribution concepts. In particular, we use several different synthetic mobility measures in order to capture the various perceptions of mobility proposed in the literature. This approach can be seen as complementary to the dynamics of distribution approach. The empirical analysis yields the following main results. First, the evolution observed varies according to the mobility index used. Second, when broader mobility indices are used, the most recent years analysed (i.e. 2000–2007) and the 1970s appear to be the most dynamic periods. Third, their decomposition reveals the major role played by the non-high income countries group. Fourth, the calculation of fictitious indices associated with the three major decomposition components of general mobility indicates that exchange (i.e. changes in position) and dispersion (i.e. distribution effects) have typically been the most important mobility factors. Finally, there does not seem to be a clear, convincing relationship between mobility and the evolution of inequality, which to a certain extent underscores the need to carry out a differential analysis for mobility. The results obtained have some implications in terms of analysis and environmental policy. - Highlights: ► The evolution of international mobility in per capita CO2 emissions for the period 1971–2007 is analysed. ► Several different synthetic mobility measures are used for capturing the various perceptions of mobility. ► The mobility is high and, in a significant way, without impact on distribution. ► There does not seem to be a clear, convincing relationship between mobility and the evolution of inequality. ► The results obtained have some implications in terms of analysis and environmental policy

  11. Evaluating carbon dioxide emissions in international trade of China

    International Nuclear Information System (INIS)

    China is the world's largest emitter of carbon dioxide (CO2). As exports account for about one-third of China's GDP, the CO2 emissions are related to not only China's own consumption but also external demand. Using the input-output analysis (IOA), we analyze the embodied CO2 emissions of China's import and export. Our results show that about 3357 million tons CO2 emissions were embodied in the exports and the emissions avoided by imports (EAI) were 2333 million tons in 2005. The average contribution to embodied emission factors by electricity generation was over 35%. And that by cement production was about 20%. It implies that the production-based emissions of China are more than the consumption-based emissions, which is evidence that carbon leakage occurs under the current climate policies and international trade rules. In addition to the call for a new global framework to allocate emission responsibilities, China should make great efforts to improve its energy efficiency, carry out electricity pricing reforms and increase renewable energy. In particular, to use advanced technology in cement production will be helpful to China's CO2 abatement. (author)

  12. Options for lowering U.S. carbon dioxide emissions

    Science.gov (United States)

    Bierbaum, Rosina M.; Friedman, Robert M.; Levenson, Howard; Rapoport, Richard D.; Sundt, Nick

    1992-03-01

    The United States can decrease its emissions of carbon dioxide (CO2) to as much as 35 percent below 1987 levels within the next 25 years by adopting an aggressive package of policies crossing all sectors of the economy. Such emissions reductions will be difficult to achieve and may be costly, but no major technological breakthroughs are needed. In this paper, we identify a ``Tough'' package of energy conservation, energy supply, and forest managment practices to accomplish this level of emissions reductions. We also present a package of cost-effective, ``Moderate'' technical options, which if adopted, would hold CO2 emissions to about 15-percent increase over 1987 levels by 2015. In constrast, if the United State takes not new actions to curb energy use, CO2 emissions will likely rise 50 percent during that time. A variety of Federal policy initiatives will be required to achieve large reductions in U.S. CO2 emissions. Such policy actions will have to include both regulatory ``push'' and market ``pull'' mechanisms--including performance standards, tax incentive programs, carbon-emission or energy taxes, labeling and efficiency ratings, and research, development, and demostration activities.

  13. Life cycle study. Carbon dioxide emissions lower in electric heating than in oil heating

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, A.; Jaervinen, P.; Nikula, A.

    1996-11-01

    A primary objective of energy conservation is to cut carbon dioxide emissions. A comparative study on the various heating forms, based on the life cycle approach, showed that the carbon dioxide emissions resulting form heating are appreciably lower now that electric heating has become more common. The level of carbon dioxide emissions in Finland would have been millions of tonnes higher had oil heating been chosen instead of electric heating. (orig.)

  14. Research on urban road congestion pricing strategy considering carbon dioxide emissions

    OpenAIRE

    Yitian Wang; Zixuan Peng; Keming Wang; Xiaolin Song; Baozhen Yao; Tao Feng

    2015-01-01

    Congestion pricing strategy has been recognized as an effective countermeasure in the practical field of urban traffic congestion mitigation. In this paper, a bi-level programming model considering carbon dioxide emission is proposed to mitigate traffic congestion and reduce carbon dioxide emissions. The objective function of the upper level model is to minimize the sum of travel costs and the carbon dioxide emissions costs. The lower level is a multi-modal transportation network equilibrium ...

  15. Determinants of carbon dioxide emissions: Empirical evidence from 69 countries

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Susan Sunila [School of Accounting, Economics and Finance, Deakin University, 70 Elgar Road, Melbourne, Victoria (Australia)

    2011-01-15

    This study investigates the determinants of carbon dioxide emissions (CO{sub 2}) for a global panel consisting of 69 countries using a dynamic panel data model. To make the panel data analysis more homogenous, we also investigate the determinants of CO{sub 2} emissions for a number of sub-panels. These sub-panels are constructed based on the income level of countries. In this way, we end up with three income panels; namely, high income, middle income, and low income panels. The time component of our dataset is 1985-2005 inclusive. Our main findings are that trade openness, per capita GDP, and energy consumption, proxied by per capita electric power consumption and per capita total primary energy consumption, have positive effects on CO{sub 2} emissions. Urbanisation is found to have a negative impact on CO{sub 2} emissions in high income, middle income, and low income panels. For the global panel, only GDP per capita and per capita total primary energy consumption are found to be statistically significant determinants of CO{sub 2} emission, while urbanisation, trade openness, and per capita electric power consumption have negative effects on the CO{sub 2} emissions. (author)

  16. Carbon dioxide and methane emissions from the Yukon River system

    Science.gov (United States)

    Striegl, Rob; Dornblaser, Mark M.; McDonald, Cory P.; Rover, Jennifer R.; Stets, Edward G.

    2012-01-01

    Carbon dioxide (CO2) and methane (CH4) emissions are important, but poorly quantified, components of riverine carbon (C) budgets. This is largely because the data needed for gas flux calculations are sparse and are spatially and temporally variable. Additionally, the importance of C gas emissions relative to lateral C exports is not well known because gaseous and aqueous fluxes are not commonly measured on the same rivers. We couple measurements of aqueous CO2 and CH4 partial pressures (pCO2, pCH4) and flux across the water-air interface with gas transfer models to calculate subbasin distributions of gas flux density. We then combine those flux densities with remote and direct observations of stream and river water surface area and ice duration, to calculate C gas emissions from flowing waters throughout the Yukon River basin. CO2emissions were 7.68 Tg C yr−1 (95% CI: 5.84 −10.46), averaging 750 g C m−2 yr−1 normalized to water surface area, and 9.0 g C m−2 yr−1 normalized to river basin area. River CH4 emissions totaled 55 Gg C yr−1 or 0.7% of the total mass of C emitted as CO2 plus CH4 and ∼6.4% of their combined radiative forcing. When combined with lateral inorganic plus organic C exports to below head of tide, C gas emissions comprised 50% of total C exported by the Yukon River and its tributaries. River CO2 and CH4 derive from multiple sources, including groundwater, surface water runoff, carbonate equilibrium reactions, and benthic and water column microbial processing of organic C. The exact role of each of these processes is not yet quantified in the overall river C budget.

  17. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    DEFF Research Database (Denmark)

    Andres, R.J.; Boden, T.A.; Bréon, F.-M.;

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms...... which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossilfuel carbon dioxide emissions are known to within 10% uncertainty (95% confidence interval). Uncertainty on individual national total fossil-fuel carbon...... dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed...

  18. The travel-related carbon dioxide emissions of atmospheric researchers

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2008-04-01

    Full Text Available Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2. In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc. were calculated for the years 2005–2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.

  19. Production and emission of methane and carbon dioxide by ruminants

    International Nuclear Information System (INIS)

    Animal digestion is responsible for the production of both carbon dioxide and methane, while breathing produces only carbon dioxide. The author described the digestion mechanism of ruminants, explaining that they produce higher levels of methane and carbon dioxide than other animals. Fermentation stoichiometry of ruminants was also discussed along with the influence that diet has on methane production. It was noted that methane production can be decreased by increasing animal productivity, or by using ionophore antibiotics and long chain fatty acids. Test results from each of these methods have revealed side effects and none appears to be applicable for the time being. 10 refs., 1 tab., 1 fig

  20. Separation of carbon dioxide from flue emissions using Endex principles

    CERN Document Server

    Ball, R

    2009-01-01

    In an Endex reactor endothermic and exothermic reactions are directly thermally coupled and kinetically matched to achieve intrinsic thermal stability, efficient conversion, autothermal operation, and minimal heat losses. Applied to the problem of in-line carbon dioxide separation from flue gas, Endex principles hold out the promise of effecting a carbon dioxide capture technology of unprecedented economic viability. In this work we describe an Endex Calcium Looping reactor, in which heat released by chemisorption of carbon dioxide onto calcium oxide is used directly to drive the reverse reaction, yielding a pure stream of carbon dioxide for compression and geosequestration. In this initial study we model the proposed reactor as a continuous-flow dynamical system in the well-stirred limit, compute the steady states and analyse their stability properties over the operating parameter space, flag potential design and operational challenges, and suggest an optimum regime for effective operation.

  1. Global Biogenic Emission of Carbon Dioxide from Landfills

    Science.gov (United States)

    Lima, R.; Nolasco, D.; Meneses, W.; Salazar, J.; Hernández, P.; Pérez, N.

    2002-12-01

    Human-induced increases in the atmospheric concentrations of greenhouse gas components have been underway over the past century and are expected to drive climate change in the coming decades. Carbon dioxide was responsible for an estimated 55 % of the antropogenically driven radiactive forcing of the atmosphere in the 1980s and is predicted to have even greater importance over the next century (Houghton et al., 1990). A highly resolved understanding of the sources and sinks of atmospheric CO2, and how they are affected by climate and land use, is essential in the analysis of the global carbon cycle and how it may be impacted by human activities. Landfills are biochemical reactors that produce CH4 and CO2 emissions due to anaerobic digestion of solid urban wastes. Estimated global CH4 emission from landfills is about 44 millions tons per year and account for a 7.4 % of all CH4 sources (Whiticar, 1989). Observed CO2/CH4 molar ratios from landfill gases lie within the range of 0.7-1.0; therefore, an estimated global biogenic emission of CO2 from landfills could reach levels of 11.2-16 millions tons per year. Since biogas extraction systems are installed for extracting, purifying and burning the landfill gases, most of the biogenic gas emission to the atmosphere from landfills occurs through the surface environment in a diffuse and disperse form, also known as non-controlled biogenic emission. Several studies of non-controlled biogenic gas emission from landfills showed that CO2/CH4 weight ratios of surface landfill gases, which are directly injected into the atmosphere, are about 200-300 times higher than those observed in the landfill wells, which are usually collected and burned by gas extraction systems. This difference between surface and well landfill gases is mainly due to bacterial oxidation of the CH4 to CO2 inducing higher CO2/CH4 ratios for surface landfill gases than those well landfill gases. Taking into consideration this observation, the global biogenic

  2. Carbon dioxide emissions and nutrition on a drained pine mire - a case study

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.; Karsisto, M.; Kaunisto, S. [Finnish Forest Research Inst., Vantaa (Finland). Vantaa Research Centre

    1996-12-31

    Drainage of boreal peatlands intensify aerobic decomposition and carbon dioxide emission from the peat substrate and increase tree growth. CO{sub 2} emission rates depend on the ground water level and the soil temperature. Predicted rises in mean air temperatures due to anthropogenically induced climate change are expected to further increase carbon dioxide emission from drained boreal peatlands. The role of added nutrients is somewhat vague. The purpose of this presentation is to give some preliminary results on microbial biomass carbon and on carbon dioxide output/input relationship on a pine mire. (6 refs.)

  3. Coping with carbon: a near-term strategy to limit carbon dioxide emissions from power stations.

    Science.gov (United States)

    Breeze, Paul

    2008-11-13

    Burning coal to generate electricity is one of the key sources of atmospheric carbon dioxide emissions; so, targeting coal-fired power plants offers one of the easiest ways of reducing global carbon emissions. Given that the world's largest economies all rely heavily on coal for electricity production, eliminating coal combustion is not an option. Indeed, coal consumption is likely to increase over the next 20-30 years. However, the introduction of more efficient steam cycles will improve the emission performance of these plants over the short term. To achieve a reduction in carbon emissions from coal-fired plant, however, it will be necessary to develop and introduce carbon capture and sequestration technologies. Given adequate investment, these technologies should be capable of commercial development by ca 2020. PMID:18757277

  4. Carbon dioxide and methane emission dynamics in central London (UK)

    Science.gov (United States)

    Helfter, Carole; Nemitz, Eiko; Barlow, Janet F.; Wood, Curtis R.

    2013-04-01

    London, with a population of 8.2 million, is the largest city in Europe. It is heavily built-up (typically 8% vegetation cover within the central boroughs) and boasts some of the busiest arteries in Europe despite efforts to reduce traffic in the city centre with the introduction of a congestion charging scheme in 2007. We report on two substantial pollution monitoring efforts in the heart of London between October 2006 and present. Fluxes of carbon dioxide (CO2) and water (H2O) were measured continuously by eddy-covariance in central London from October 2006 until May 2008 from a 190 m telecommunication tower (BT tower; 51° 31' 17.4'' N 0° 8' 20.04'' W). The eddy-covariance system consisted of a Gill R3-50 ultrasonic anemometer operated at 20 Hz and a LI-COR 6262 infrared gas analyser. Air was sampled 0.3 m below the sensor head of the ultrasonic anemometer - which was itself mounted on a 3 m mast to the top of a 15 m lattice tower situated on the roof of the tower (instrument head at 190 m above street level) - and pulled down 45 m of 12.7 mm OD Teflon tubing. In addition, meteorological variables (temperature, relative humidity, pressure, precipitation, wind speed and direction) were also measured with a multi-sensor (Weather Transmitter WXT510, Vaisala). Eddy-covariance measurements at the BT tower location were reinstated in July 2011 and include methane (CH4), CO2 and H2O concentrations measured by a Picarro fast methane analyser (G2301-f). CO2 emissions were found to be mainly controlled by fossil fuel combustion (e.g. traffic, commercial and domestic heating). Diurnal averages of CO2 fluxes were found to be highly correlated to traffic. However changes in heating-related natural gas consumption and, to a lesser extent, photosynthetic activity in two large city centre green spaces (Hyde Park and Regent's Park) explained the seasonal variability. Annual estimates of net exchange of CO2 obtained by eddy-covariance agreed well with up-scaled data from the UK

  5. On the Potential Economic Costs of Cutting Carbon Dioxide Emissions in Portugal

    OpenAIRE

    Alfredo M. Pereira; Rui Manuel Marvão Pereira

    2008-01-01

    The objective of this paper is to estimate the impact of reducing carbon dioxide emissions from fossil fuel combustion activities on economic activity in Portugal. We find that energy consumption has a significant impact on macroeconomic activity. In fact, a one ton of oil equivalent permanent reduction in aggregate energy consumption reduces output in the long term by €6,340. More importantly, and since carbon dioxide emissions are linearly related to the amounts of fuel consumed, our result...

  6. Carbon dioxide emissions due to Swedish imports and consumption: estimates using different methods

    International Nuclear Information System (INIS)

    Global trade of products and services challenges the traditional way in which emissions of carbon dioxide are declared and accounted for. Instead of only considering territorial emissions there are now strong reasons to determine how the carbon dioxide emitted in the production of imports are partitioned around the world and how the total emissions change for a country's final consumption compared to final production. In this report results from four different methods of calculating the total carbon dioxide emissions from Sweden's overall consumption are presented. Total carbon dioxide emissions for Sweden's final consumption vary from 57 to 109 M tons during one year depending on the methodology. The four methods used for estimating these emissions give results of 57, 61, 68 and 109 Mton of carbon dioxide. Two methods are based on information concerning Sweden's imports and our national production of goods and services excluding production that is exported while two methods are based on final consumer expenditures. Three of the methods use mainly emission data from Sweden while one method depends entirely upon emission data from Sweden's trading partners. The last method also gives the highest emissions level, 109 Mton of carbon dioxide. The calculations performed here can be compared to the emissions reported by Sweden, 54 Mton of carbon dioxide per year. Our estimates give per capita emission levels of between 6,3 and 12 tons of carbon dioxide per year. The estimate of 12 tons per capita is a result of using emissions data from Sweden's trading partners. The total emissions as a result of Sweden's imports are 26 or 74 M tons of carbon dioxide depending on how they are calculated. The lower figure is based upon the imports of today but with emissions as if everything was produced as in Sweden. The higher level is based upon using existing but partly inadequate international emission statistics. These levels can be compared to the about 35 M tons of carbon dioxide

  7. SIMULATION OF CARBON DIOXIDE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    Science.gov (United States)

    Farming practices can have a large impact on the soil carbon cycle and the resulting net emission of greenhouse gases including carbon dioxide (CO**2), methane and nitrous oxide. Primary sources of CO**2 emission on dairy farms are soil, plant, and animal respiration with smaller contributions from ...

  8. Research on Urban Road Congestion Pricing Strategy Considering Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    Yitian Wang

    2015-08-01

    Full Text Available Congestion pricing strategy has been recognized as an effective countermeasure in the practical field of urban traffic congestion mitigation. In this paper, a bi-level programming model considering carbon dioxide emission is proposed to mitigate traffic congestion and reduce carbon dioxide emissions. The objective function of the upper level model is to minimize the sum of travel costs and the carbon dioxide emissions costs. The lower level is a multi-modal transportation network equilibrium model. To solve the model, the method of successive averages (MSA and the shuffled frog leaping algorithm (SFLA are introduced. The proposed method and algorithm are tested through the numerical example. The results show that the proposed congestion pricing strategy can mitigate traffic congestion and reduce carbon emissions effectively.

  9. Geographical Detector Model for Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Rina Wu

    2016-02-01

    Full Text Available Studying the influencing factors of carbon dioxide emissions is not only practically but also theoretically crucial for establishing regional carbon-reduction policies, developing low-carbon economy and solving the climate problems. Therefore, we used a geographical detector model which is consists of four parts, i.e., risk detector, factor detector, ecological detector and interaction detector to analyze the effect of these social economic factors, i.e., GDP, industrial structure, urbanization rate, economic growth rate, population and road density on the increase of energy consumption carbon dioxide emissions in industrial sector in Inner Mongolia northeast of China. Thus, combining with the result of four detectors, we found that GDP and population more influence than economic growth rate, industrial structure, urbanization rate and road density. The interactive effect of any two influencing factors enhances the increase of the carbon dioxide emissions. The findings of this research have significant policy implications for regions like Inner Mongolia.

  10. A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management.

    Science.gov (United States)

    Tseng, Shih-Chang; Hung, Shiu-Wan

    2014-01-15

    Incorporating sustainability into supply chain management has become a critical issue driven by pressures from governments, customers, and various stakeholder groups over the past decade. This study proposes a strategic decision-making model considering both the operational costs and social costs caused by the carbon dioxide emissions from operating such a supply chain network for sustainable supply chain management. This model was used to evaluate carbon dioxide emissions and operational costs under different scenarios in an apparel manufacturing supply chain network. The results showed that the higher the social cost rate of carbon dioxide emissions, the lower the amount of the emission of carbon dioxide. The results also suggested that a legislation that forces the enterprises to bear the social costs of carbon dioxide emissions resulting from their economic activities is an effective approach to reducing carbon dioxide emissions. PMID:24412595

  11. A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China

    International Nuclear Information System (INIS)

    This paper uses multivariate co-integration Granger causality tests to investigate the correlations between carbon dioxide emissions, energy consumption and economic growth in China. Some researchers have argued that the adoption of a reduction in carbon dioxide emissions and energy consumption as a long term policy goal will result in a closed-form relationship, to the detriment of the economy. Therefore, a perspective that can make allowances for the fact that the exclusive pursuit of economic growth will increase energy consumption and CO2 emissions is required; to the extent that such growth will have adverse effects with regard to global climate change. (author)

  12. Implementation of Emission Trading in Carbon Dioxide Sequestration Optimization Management

    Science.gov (United States)

    Zhang, X.; Duncan, I.

    2013-12-01

    As an effective mid- and long- term solution for large-scale mitigation of industrial CO2 emissions, CO2 capture and sequestration (CCS) has been paid more and more attention in the past decades. A general CCS management system has complex characteristics of multiple emission sources, multiple mitigation technologies, multiple sequestration sites, and multiple project periods. Trade-off exists among numerous environmental, economic, political, and technical factors, leading to varied system features. Sound decision alternatives are thus desired for provide decision supports for decision makers or managers for managing such a CCS system from capture to the final geologic storage phases. Carbon emission trading has been developed as a cost-effective tool for reducing the global greenhouse gas emissions. In this study, a carbon capture and sequestration optimization management model is proposed to address the above issues. The carbon emission trading is integrated into the model, and its impacts on the resulting management decisions are analyzed. A multi-source multi-period case study is provided to justify the applicability of the modeling approach, where uncertainties in modeling parameters are also dealt with.

  13. Stochastic carbon sinks for combating carbon dioxide emissions in the EU

    International Nuclear Information System (INIS)

    This paper carries out numerical calculations on the potential of carbon sinks in the EU Emissions Trading Scheme (ETS) and national commitments under conditions of stochastic carbon dioxide emissions from fossil fuels and carbon sequestration by forests. Chance constraint programming is used to analyze the role of stochastic carbon sinks for national and EU-wide compliance costs. The analytical results show that the inclusion of the carbon sink option can reduce costs for low enough marginal cost and risk discount, but also that costless carbon sinks as by-products from forestry are not part of a cost-effective solution under a high reliability concern. Cost savings are reduced due to risk discounting under a reliability concern, in particular when assigning Chebyshev's inequality as compared with a normal probability distribution. It is also shown that the supply of forest sinks on the market depends on the differences in marginal abatement cost between the trading and the non-trading sectors, and in risk discounting between achievements of the ETS cap and the national commitment. Relatively low marginal abatement cost in the non-trading sector and high risk discounting of national commitment achievements increase the supply of sinks in the market and, hence, reduces the equilibrium price. The empirical application illustrates the importance of risk discounting for the magnitude of cost savings obtained from introducing forest carbon sinks in the EU ETS and national commitments.

  14. The environmental convergence hypothesis: Carbon dioxide emissions according to the source of energy

    International Nuclear Information System (INIS)

    The aim of this paper is to investigate the environmental convergence hypothesis in carbon dioxide emissions for a large group of developed and developing countries from 1980 to 2009. The novel aspect of this work is that we distinguish among carbon dioxide emissions according to the source of energy (coal, natural gas and petroleum) instead of considering the aggregate measure of per capita carbon dioxide emissions, where notable interest is given to the regional dimension due to the application of new club convergence tests. This allows us to determine the convergence behaviour of emissions in a more precise way and to detect it according to the source of energy used, thereby helping to address the environmental targets. More specifically, the convergence hypothesis is examined with a pair-wise test and another one is used to test for the existence of club convergence. Our results from using the pair-wise test indicate that carbon dioxide emissions for each type of energy diverge. However, club convergence is found for a large group of countries, although some still display divergence. These findings point to the need to apply specific environmental policies to each club detected, since specific countries converge to different clubs. - Highlights: • The environmental convergence hypothesis is investigated across countries. • We perform a pair-wise test and a club convergence test. • Results from the first of these two tests suggest that carbon dioxide emissions are diverging. • However, we find that carbon dioxide emissions are converging within groups of countries. • Active environmental policies are required

  15. Carbon dioxide emissions embodied in international trade in Central Europe between 1995 and 2008

    Directory of Open Access Journals (Sweden)

    Vlčková Jana

    2015-12-01

    Full Text Available Climate change and environmental policies are widely discussed, but much less is known about emissions embodied in goods traded internationally, and the distinction between emission producers and consumers. The carbon dioxide emissions embodied in international trade in Central European countries are subject to examination in this paper. As a result of industrial restructuring and environmental legislation, air pollution has improved significantly in Central European countries since the 1989 transition. On the other hand, economic growth has been accompanied by a rise in consumerism. Despite the increasing role of exports, the Visegrad group countries have become net importers of carbon dioxide emissions between 1995 and 2008. This seems to be the ‘standard trajectory’ of a country’s transition toward a more developed and consumption-oriented economy. The global patterns of carbon dioxide emissions embodied in manufacturing exports are also mapped, using network analysis and constructing ‘product space’. The analysis confirms that industrial re-structuring played an important role in lowering the production of carbon dioxide emissions in the Visegrad countries.

  16. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  17. Geographical Detector Model for Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia, China

    OpenAIRE

    Rina Wu; Jiquan Zhang; Yuhai Bao; Feng Zhang

    2016-01-01

    Studying the influencing factors of carbon dioxide emissions is not only practically but also theoretically crucial for establishing regional carbon-reduction policies, developing low-carbon economy and solving the climate problems. Therefore, we used a geographical detector model which is consists of four parts, i.e., risk detector, factor detector, ecological detector and interaction detector to analyze the effect of these social economic factors, i.e., GDP, industrial structure, urbanizati...

  18. Carbon dioxide emission prediction using support vector machine

    Science.gov (United States)

    Saleh, Chairul; Rachman Dzakiyullah, Nur; Bayu Nugroho, Jonathan

    2016-02-01

    In this paper, the SVM model was proposed for predict expenditure of carbon (CO2) emission. The energy consumption such as electrical energy and burning coal is input variable that affect directly increasing of CO2 emissions were conducted to built the model. Our objective is to monitor the CO2 emission based on the electrical energy and burning coal used from the production process. The data electrical energy and burning coal used were obtained from Alcohol Industry in order to training and testing the models. It divided by cross-validation technique into 90% of training data and 10% of testing data. To find the optimal parameters of SVM model was used the trial and error approach on the experiment by adjusting C parameters and Epsilon. The result shows that the SVM model has an optimal parameter on C parameters 0.1 and 0 Epsilon. To measure the error of the model by using Root Mean Square Error (RMSE) with error value as 0.004. The smallest error of the model represents more accurately prediction. As a practice, this paper was contributing for an executive manager in making the effective decision for the business operation were monitoring expenditure of CO2 emission.

  19. Carbon dioxide emissions from Specchio di Venere, Pantelleria, Italy

    Science.gov (United States)

    Paz, Mariana P. Jácome; Inguaggiato, Salvatore; Taran, Yuri; Vita, Fabio; Pecoraino, Giovanella

    2016-04-01

    We have mapped the diffuse CO2 efflux from the Specchio di Venere Lake area using the accumulation chamber method. We calculated a CO2 emission of 43 ± 5 t day-1 for the area studied, accounting for both diffuse degassing from soil and bubbling through the lake. We also present data on the water composition of Specchio di Venere Lake, the Polla 3 spring, and Liuzza well. On the basis of water chemistry, two physical-chemical processes, evaporation and mineral precipitation of carbonate species, are invoked to explain the CO2 degassing for the lake area.

  20. The Effect of Corruption on Carbon Dioxide Emissions in the Mena Region

    Directory of Open Access Journals (Sweden)

    Hoda Hassaballa

    2015-06-01

    Full Text Available Corruption has always been accused of having adverse effects on growth. This is because it decreases productivity, leads to accumulation of additional costs and discourages investment. Recently, high concerns are raised about the impact of corruption on the environment.  Corruption plays a substantial role in increasing pollution emissions level. In spite of this, empirical investigation of such an issue is still incomplete. For that, this research work represents a step forward in understanding the relationship between corruption and the environment in general and in filling the gap present in the literature in analyzing this relationship in the Middle East and North Africa (MENA region in particular. Accordingly, this paper studies the corruption-environment relationship empirically through examining the effect of corruption on per-capita carbon dioxide emissions. A Fixed Effect Panel Data model is used to investigate the effects of corruption, per-capita income, trade openness and manufacturing on per-capita carbon dioxide emissions level in the MENA region over the period 1996-2013. The results indicate that corruption, per-capita income, trade openness and manufacturing value added are significant determinants of Carbon Dioxide Emissions. Policy implications to improve sustainability and governance are given. These include strong enforcement of law, spreading public awareness and increasing transparency. Keywords: Corruption, environment, MENA region, carbon dioxide emissions and panel data model.

  1. The Probability of Tax Charges for Industrial Emission of Carbon Dioxide

    International Nuclear Information System (INIS)

    Generally, although all industrial by product can be toxic and non-toxic pollutant that have potential hazard for human being and environmental. One of these pollutants is carbon dioxide that has potential contribution for greenhouse effect. Although carbon dioxide can be absorbed by plants at the forest but quantity of this emission more higher than quantity of forest area. For this reason rehabilitation of the forest and diversifications and energy saving can be used for decreasing of greenhouse effect. The synergy action such as economical instrumentation (specially microeconomics) can be implemented base on regulators, taxing and incentive and effluent charge by deeper assessment on environmental economics. By identification of quality and quantity fossil fuels that was burned in the industrial process so with stoichiometry calculation will be found quantity of carbon dioxide emission and the taxes can be estimated. (author)

  2. Carbon dioxide emissions, GDP, energy use, and population growth: a multivariate and causality analysis for Ghana, 1971-2013.

    Science.gov (United States)

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-07-01

    In this study, the relationship between carbon dioxide emissions, GDP, energy use, and population growth in Ghana was investigated from 1971 to 2013 by comparing the vector error correction model (VECM) and the autoregressive distributed lag (ARDL). Prior to testing for Granger causality based on VECM, the study tested for unit roots, Johansen's multivariate co-integration and performed a variance decomposition analysis using Cholesky's technique. Evidence from the variance decomposition shows that 21 % of future shocks in carbon dioxide emissions are due to fluctuations in energy use, 8 % of future shocks are due to fluctuations in GDP, and 6 % of future shocks are due to fluctuations in population. There was evidence of bidirectional causality running from energy use to GDP and a unidirectional causality running from carbon dioxide emissions to energy use, carbon dioxide emissions to GDP, carbon dioxide emissions to population, and population to energy use. Evidence from the long-run elasticities shows that a 1 % increase in population in Ghana will increase carbon dioxide emissions by 1.72 %. There was evidence of short-run equilibrium relationship running from energy use to carbon dioxide emissions and GDP to carbon dioxide emissions. As a policy implication, the addition of renewable energy and clean energy technologies into Ghana's energy mix can help mitigate climate change and its impact in the future. PMID:27030236

  3. Tracking the emission of carbon dioxide by nation, sector and fuel type

    International Nuclear Information System (INIS)

    This paper describes a new methodology that can be used to estimate an efficient econometric model of global emissions of carbon dioxide (CO2) by nation, sector, and fuel type. Equations for fuel intensity are estimated for coal, oil, natural gas, electricity, and heat for each of six sectors: agricultural, industrial, commercial, transportation, residential, and other

  4. Analytical model of carbon dioxide emission with energy payback effect

    International Nuclear Information System (INIS)

    An analytical model is proposed to account for carbon emission behaviour during replacement of power source from fossil fuel to renewable energy in which sustainability of energy supply is stressed. Logistic function of time is assumed for producing renewable power sources. Analyses show that energy payback time (EPT) should be much shorter than the doubling time of manufacturing cycle to secure adequate available energy during, as well as after, the replacement. A nuclear plant, small hydropower plant, wind power plant and photovoltaic cell are taken as representative candidates and investigated as options to replace fossil power until toward the end of this century. Nuclear or small hydropower plants are promising candidates but the photovoltaic cell needs further development efforts to reduce EPT and avoid energy expense after the replacement. (author)

  5. Emissions to air in Sweden: carbon dioxide, methane, nitrous oxide, nitrogen oxides, carbon monoxide, volatile organic compounds and sulphur dioxide 1990-2000

    International Nuclear Information System (INIS)

    Greenhouse gases - Carbon dioxide from combustion and motor fuels, Methane and Laughing gas from agriculture Carbon dioxide (CO2) emissions in Sweden amounted to 56 million tonnes in 2000, which is minor decrease since 1990. Combustion of fossil fuels and the use of fuels in vehicles are the major sources of CO2 emissions. Methane is the second most important greenhouse gas, and it is emitted when bacteria degrade organic matter. In Sweden the main source is enteric fermentation from cattle. The emissions of methane were 324 000 tonnes 1990. In 2000 the emissions amounted to 280 000 tonnes, or a 14 per cent decrease. The third greenhouse gas, N2O is mostly emitted from agriculture. N2O emissions have fallen somewhat. Total emissions of sulphur dioxide (SO2) and nitrogen oxides (NOx, counted as NO2) in Sweden were 58,000 and 247,000 tonnes respectively in 2000. International air and maritime traffic is not included. The major source of SO2 emissions is combustion of fossil fuels. Road traffic is the major source of NOX emissions. Emissions of carbon monoxide (CO) and non-methane volatile organic compounds (NMVOCs) are also presented in this report. The main source of CO is road traffic, while NMVOCs come from household combustion and road traffic. Emission trends for fluoride carbon greenhouse gases HFCs, PFCs and SF6 are also presented. These gases mainly emit from refrigerators, freezing and air conditioning equipment (e.g. in cars and buildings) and from heat pumps

  6. Automobiles and global warming: Alternative fuels and other options for carbon dioxide emissions reduction

    International Nuclear Information System (INIS)

    Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective and immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed

  7. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    Science.gov (United States)

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. PMID:27005790

  8. Carbon dioxide emission implications if hydrofluorocarbons are regulated: a refrigeration case study.

    Science.gov (United States)

    Blowers, Paul; Lownsbury, James M

    2010-03-01

    The U.S. is strongly considering regulating hydrofluorocarbons (HFCs) due to their global climate change forcing effects. A drop-in replacement hydrofluoroether has been evaluated using a gate-to-grave life cycle assessment of greenhouse gas emissions for the trade-offs between direct and indirect carbon dioxide equivalent emissions compared to a current HFC and a historically used refrigerant. The results indicate current regulations being considered may increase global climate change. PMID:20050659

  9. Imaging for carbon translocation to a fruit of tomato with carbon-11-labeled carbon dioxide and positron emission tomography

    International Nuclear Information System (INIS)

    Carbon kinetics in the fruit is an agricultural issue on the growth and development of the fruit to be harvested. Particularly, photo-assimilate translocation and distribution are important topics for understanding the mechanism. In the present work, carbon-11 (11C) labeled photo-assimilate translocation into fruits of tomato has been imaged using carbon-11-labeled carbon dioxide and the positron emission tomography (PET). Dynamic PET data of gradual increasing of 11C activity and its distribution is acquired quantitatively in intact plant body. This indicates that the three dimensional photo-assimilate translocation into the fruits is imaged successfully and carbon kinetics is analyzed to understand the plant physiology and nutrition. (authors)

  10. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

    2009-06-29

    The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the lab’s total carbon footprint.

  11. Economic effects of using carbon taxes to reduce carbon dioxide emissions in major OECD countries. Final report

    International Nuclear Information System (INIS)

    A tax on fossil fuels designed to obtain a 20 percent reduction in emissions of carbon dioxide by the year 2020 would lower output among major OECD nations by 1 to 3 1/2 percent. The tax required to achieve a 20% reduction in emissions of carbon dioxide by 2020 ranged from $489.4 (Sweden) per metric ton of carbon to $2,427.9 (Japan) per ton of carbon. The tax required for the U.S. was $720.6 per ton. In the U.S., a tax per $100 per ton of carbon would equate to a tax of $70.68 per short ton of coal, $11.42 per barrel of oil, $1.66 per MCF of natural gas and 0.27 per gallon of gasoline. The study is part of a multi-phase effort to gauge the economic consequences of various measures being discussed by the international community to mitigate the possibility of global climate change by limiting emissions of carbon dioxide from fossil fuel use. The study assumed that the carbon tax program would be revenue neutral in that increased revenues from the carbon tax would be offset by reductions in personal income taxes

  12. The travel-related carbon dioxide emissions of atmospheric researchers

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2008-11-01

    Full Text Available Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of CO2. In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc. were calculated for the years 2005–2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.

  13. Carbon dioxide emissions and economic growth: Panel data evidence from developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Paresh Kumar, E-mail: paresh.narayan@deakin.edu.au; Narayan, Seema

    2010-01-15

    In this paper we test the Environment Kuznet's Curve (EKC) hypothesis for 43 developing countries. We suggest examining the EKC hypothesis based on the short- and long-run income elasticities; that is, if the long-run income elasticity is smaller than the short-run income elasticity then it is evident that a country has reduced carbon dioxide emissions as its income has increased. Our empirical analysis based on individual countries suggests that Jordan, Iraq, Kuwait, Yemen, Qatar, the UAE, Argentina, Mexico, Venezuela, Algeria, Kenya, Nigeria, Congo, Ghana, and South Africa-approximately 35 per cent of the sample-carbon dioxide emissions have fallen over the long run; that is, as these economies have grown emissions have fallen since the long-run income elasticity is smaller than the short-run elasticity. We also examine the EKC hypothesis for panels of countries constructed on the basis of regional location using the panel cointegration and the panel long-run estimation techniques. We find that only for the Middle Eastern and South Asian panels, the income elasticity in the long run is smaller than the short run, implying that carbon dioxide emission has fallen with a rise in income.

  14. Carbon dioxide emissions and economic growth. Panel data evidence from developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Paresh Kumar; Narayan, Seema [School of Accounting, Economics and Finance, Faculty of Business and Law, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125 (Australia); School of Economics, Finance, and Marketing, Royal Melbourne Institute of Technology, Melbourne (Australia)

    2010-01-15

    In this paper we test the Environment Kuznet's Curve (EKC) hypothesis for 43 developing countries. We suggest examining the EKC hypothesis based on the short- and long-run income elasticities; that is, if the long-run income elasticity is smaller than the short-run income elasticity then it is evident that a country has reduced carbon dioxide emissions as its income has increased. Our empirical analysis based on individual countries suggests that Jordan, Iraq, Kuwait, Yemen, Qatar, the UAE, Argentina, Mexico, Venezuela, Algeria, Kenya, Nigeria, Congo, Ghana, and South Africa - approximately 35 per cent of the sample - carbon dioxide emissions have fallen over the long run; that is, as these economies have grown emissions have fallen since the long-run income elasticity is smaller than the short-run elasticity. We also examine the EKC hypothesis for panels of countries constructed on the basis of regional location using the panel cointegration and the panel long-run estimation techniques. We find that only for the Middle Eastern and South Asian panels, the income elasticity in the long run is smaller than the short run, implying that carbon dioxide emission has fallen with a rise in income. (author)

  15. Carbon dioxide emissions and economic growth. Panel data evidence from developing countries

    International Nuclear Information System (INIS)

    In this paper we test the Environment Kuznet's Curve (EKC) hypothesis for 43 developing countries. We suggest examining the EKC hypothesis based on the short- and long-run income elasticities; that is, if the long-run income elasticity is smaller than the short-run income elasticity then it is evident that a country has reduced carbon dioxide emissions as its income has increased. Our empirical analysis based on individual countries suggests that Jordan, Iraq, Kuwait, Yemen, Qatar, the UAE, Argentina, Mexico, Venezuela, Algeria, Kenya, Nigeria, Congo, Ghana, and South Africa - approximately 35 per cent of the sample - carbon dioxide emissions have fallen over the long run; that is, as these economies have grown emissions have fallen since the long-run income elasticity is smaller than the short-run elasticity. We also examine the EKC hypothesis for panels of countries constructed on the basis of regional location using the panel cointegration and the panel long-run estimation techniques. We find that only for the Middle Eastern and South Asian panels, the income elasticity in the long run is smaller than the short run, implying that carbon dioxide emission has fallen with a rise in income. (author)

  16. Carbon dioxide emissions and economic growth: Panel data evidence from developing countries

    International Nuclear Information System (INIS)

    In this paper we test the Environment Kuznet's Curve (EKC) hypothesis for 43 developing countries. We suggest examining the EKC hypothesis based on the short- and long-run income elasticities; that is, if the long-run income elasticity is smaller than the short-run income elasticity then it is evident that a country has reduced carbon dioxide emissions as its income has increased. Our empirical analysis based on individual countries suggests that Jordan, Iraq, Kuwait, Yemen, Qatar, the UAE, Argentina, Mexico, Venezuela, Algeria, Kenya, Nigeria, Congo, Ghana, and South Africa-approximately 35 per cent of the sample-carbon dioxide emissions have fallen over the long run; that is, as these economies have grown emissions have fallen since the long-run income elasticity is smaller than the short-run elasticity. We also examine the EKC hypothesis for panels of countries constructed on the basis of regional location using the panel cointegration and the panel long-run estimation techniques. We find that only for the Middle Eastern and South Asian panels, the income elasticity in the long run is smaller than the short run, implying that carbon dioxide emission has fallen with a rise in income.

  17. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    International Nuclear Information System (INIS)

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants

  18. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    Science.gov (United States)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  19. Carbon dioxide emission savings potential of household water use reduction in the UK.

    OpenAIRE

    GRAY, NICHOLAS FREDERICK

    2009-01-01

    PUBLISHED The relationship between household water use and energy consumption was examined to establish whether the conservation of water within a domestic environment offers significant potential for saving energy, thereby reducing household carbon dioxide emissions. Average UK water usage is 55,121 L ca-1yr-1. The supply of this volume of water and its subsequent treatment by the water companies is equivalent to just 38.6 kg CO2 ca-1 yr-1, although this is not currently inclu...

  20. Carbon dioxide emissions and governance: A nonparametric analysis for the G-20

    OpenAIRE

    Halkos, George; Tzeremes, Nickolaos

    2012-01-01

    This paper applies nonparametric estimators to examine countries’ carbon dioxide (CO2) emissions and governance relationship. By using data for the time period 1996-2010 of the twenty largest economies (Group of twenty, G-20) the dynamics of the considered relationship are analyzed. Six governance measures are included in our analysis (Voice and Accountability, Political Stability and Absence of Violence, Government Effectiveness, Regulatory Quality, Rule of Law and Control of Corruption) as ...

  1. Electric cars : The climate impact of electric cars, focusing on carbon dioxide equivalent emissions

    OpenAIRE

    Ly, Sandra; Sundin, Helena; Thell, Linda

    2012-01-01

    This bachelor thesis examines and models the emissions of carbon dioxide equivalents of the composition of automobiles in Sweden 2012. The report will be based on three scenarios of electricity valuation principles, which are a snapshot perspective, a retrospective perspective and a future perspective. The snapshot perspective includes high and low values for electricity on the margin, the retrospective perspective includes Nordic and European electricity mix and the future perspective includ...

  2. Technical efficiency of automobiles: A nonparametric approach incorporating carbon dioxide emissions

    OpenAIRE

    Hampf, Benjamin; Krüger, Jens

    2010-01-01

    We conduct an empirical analysis of the technical efficiency of cars sold in Germany in 2010. The analysis is performed using traditional data envelopment analysis (DEA) as well as directional distance functions (DDF). The approach of DDF allows incorporating the reduction of carbon dioxide emissions as an environmental goal in the efficiency analysis. A frontier separation approach is used to gain deeper insight for different car classes and regions of origin. Natural gas driven cars and spo...

  3. Green consumption energy use and carbon dioxide emission

    Energy Technology Data Exchange (ETDEWEB)

    Alfredsson, Eva

    2002-07-01

    The aim of this thesis is to explore the quantitative potential to reduce energy requirements and CO{sub 2} emissions through changed patterns of consumption, given unchanged levels of consumption expenditure. The thesis question is analysed using a systems analysis approach which in this case means that life cycle assessment data on energy requirements and CO{sub 2} emissions related to household consumption are combined with a financial and behavioural analysis to make sure that the budget constraint is kept and that both the first and second order effects of adopting a green consumption pattern are analysed. The budget constraints are kept using a general linear model. By using marginal propensities to spend to direct the reallocation of saved or deficit money calculated utility is maintained as far as possible. Further, investigations explore the impact of individual household demographic characteristics and geographic context on household consumption patterns, energy requirements and CO{sub 2} emissions. The key result of this thesis is that changed household behaviour, choosing 'green' products and energy efficient technology will not make a big difference. What can be achieved in the short time perspective by adopting an almost completely green consumption pattern and energy efficient technology is a reduction of energy requirements by around 8% and CO{sub 2} emissions by around 13%. With a longer time perspective and further technological change that provides additional possibilities to move consumption patterns in a greener direction, the effect on energy requirements and CO{sub 2} emissions is still fairly small. By 2020, the potential to reduce energy requirements is around 13% and CO{sub 2} emissions around 25%. In the most extreme scenario (2050), the scope for reducing energy requirements is 17% and for CO{sub 2} emissions 30%. All these reductions will be outpaced by growth in income almost as soon as they are implemented. Of policy

  4. Methane and carbon dioxide emissions from closed landfill in Taiwan.

    Science.gov (United States)

    Chen, I-Chu; Hegde, Ullas; Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2008-02-01

    The atmospheric concentrations and emission rates of CH(4) and CO(2) were studied at three sites of the Fu-Der-Kan closed landfill and after as the multi-use recreational park in northern Taiwan. Atmospheric CH(4) and CO(2) concentrations of closed landfill were 1.7-4.6 and 324-409ppm, respectively. CH(4) and CO(2) emission rates ranged from 8.8 to 163mg m(-2)h(-1) and from 495 to 1531mg m(-2)h(-1), respectively. Diurnal variation was noted with higher values at night than those in daytime. After creation of the park, atmospheric CH(4) and CO(2) concentrations were 1.8-3.1 and 332-441ppm, respectively. CH(4) and CO(2) emission rates ranged from -1.1 to 2.3mg m(-2)h(-1) and from -135 to 301mg m(-2)h(-1), respectively. There were no notable diurnal variations in either atmospheric concentrations or emission rates. PMID:17905410

  5. Emissions to air in Sweden: sulphur dioxide, nitrogen oxides, carbon dioxide, methane, nitrous oxide, carbon monoxide and volatile organic compounds, 1999

    International Nuclear Information System (INIS)

    The method for calculating emissions to air has been revised, which has led to adjustments. Because of this, emissions in 1999 cannot yet be compared with previous years. Emissions in 1990 - 1998 are being recalculated now using the new method and are expected to be ready during 2001. Emissions to air of carbon dioxide (CO2) in Sweden was 56.58 million tonnes in 1999, not including emissions from biofuels and international bunkers. The major sources of CO2 emissions are the combustion of fossil fuels and the use of fuels for mobile sources. Total emissions to air of sulphur dioxide (SO2) and nitrogen oxides (NOx, counted as NO2) in Sweden was 66 000 and 263 000 tonnes respectively in 1999. International bunkers are not included. The major source of SO2 emissions is combustion of fossil fuels. Road traffic is the major source of NOx emissions. Emissions to air of methane (CH4), nitrous oxide (N2O), carbon monoxide (CO) and volatile organic compounds (NMVOC) in 1999 were 253 000, 26 000, 924 000 and 430 000 tonnes respectively, not including international bunkers. Agriculture is the major source of CH4 and N2O emissions. CO mainly derives from road traffic and NMVOC mainly derives from household combustion and road traffic

  6. The influence of travel decisions on the carbon dioxide emissions of transport

    International Nuclear Information System (INIS)

    During the recent years the reduction of the energy consumption and carbon dioxide emissions of transport have been essential objectives in transport policy. At the moment, technical means to reduce carbon dioxide emissions have been emphasized and the research has focused on the technical innovations. However, there are also substantial possibilities to reduce energy consumption by influencing the individual travel decisions and behaviour. This study is focused on the individual travel behaviour and how it can be influenced. Travel behaviour is studied by dividing the individual travel decisions into separate categories and assessing the possibilities of influence within each category. The study concentrates on daily travel choices, because the daily mobility is the most important factor in the total emissions. The travel decisions have divided into trip production, destination choice, mode choice, choice of the starting point of the trip, route choice and the choice of the driving style and car use habits. The trip production and mode choice are the most significant decisions, when energy consumption and carbon dioxide emissions are concerned. For example, the amount of shopping trip and leisure trip mileage can be reduced by approximately 10 % by extending the trip chains. This reduction would decrease the carbon dioxide emissions of passenger car traffic by 6 %. Extending of the trip chains demands to some extent more detailed planning of the daily mobility, but does not limit the travel need. The attitudes towards mobility, car use habits and the travel behaviour were studied in an influence assessment study of 42 respondents from Helsinki Region and Tampere Region. The influence assessment study consisted of attitude survey and travel diary survey. After the first inquiries the respondents received information about motoring, car use habits, public transport, environment, walking and cycling. In addition, the respondents were offered a possibility to

  7. Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach.

    Science.gov (United States)

    Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid

    2015-12-01

    This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions. PMID:26282441

  8. Performance assessment of carbonation process integrated with coal fired power plant to reduce CO2 (carbon dioxide) emissions

    International Nuclear Information System (INIS)

    This paper presents a novel approach to recover energy from mineral carbonation process, one of the CCS (carbon capture and storage) technologies, to reduce its additional energy demand and reports the feasibility of integrating a carbonation process with an existing power plant for reducing CO2 (carbon dioxide) emission. A thermodynamic mass and energy flow model of the carbonation process is developed using Matlab/Simulink software for a range of carbonation temperatures using two naturally available feedstocks, namely serpentine and olivine. The CO2 emissions are reduced if a carbonation system is implemented in the power plant, though the power generation efficiency and net power output are reduced too due to the large amount of extra energy required for the grinding of feedstock and the compression of CO2. The existing power plant efficiency was found to be 36.1%. If a carbonation system is incorporated, the plant efficiency reduces to 22% and 24% using serpentine and olivine feedstocks respectively. However, a significant amount of heat energy can be recovered from exothermic reaction of carbonation and carbonated products. The power plant efficiency can be increased to 35% and 34% again, respectively, when energy from carbonation reaction and carbonated products can be recovered appropriately. - Highlights: • Mineral carbonation technology is one of the carbon capture and storage technologies. • Exothermic heat energy can be recovered from mineral carbonation process. • Mineral carbonation process is energy self-sufficient. • Thermodynamic mass and energy balance model is developed for mineral carbonation

  9. Carbon dioxide and methane emissions from calcareous-marly rock under stress: experimental tests results

    Directory of Open Access Journals (Sweden)

    P. Plescia

    2005-06-01

    Full Text Available The identified emissions of abiogenic carbon dioxide, carbon monoxide and methane are generally attributed to volcanic activity or to geochemical processes associated with thermometamorphic effects. In this paper we show another possible abiogenic source of emission, induced by mechanical, and not thermal, stresses. We investigated the mechanochemical production of carbon dioxide and methane when friction is applied to marly-type rock and studied the mechanisms determining the strong CO2 and CH4 emissions observed. A ring mill was used to apply friction and oriented pressure upon a synthetic calcite-clay mixture of varying proportions. We found that the CO2 and CH4 release versus the grinding action has a non-linear trend reflecting the behaviour of decreasing crystallinity, which indicates a close link between crystallinity and gas production. For the CO2 emission, we propose a release mechanism connected with the friction-induced fractures and the increase in structural disorders induced by creep in the lattice. The CH4 emission could be explained by a Sabatier reaction in which CO2 and hydrogen are involved to form CH4 and water.

  10. Policy Considerations for Using Forests to Mitigate Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    Sandra Brown

    2001-01-01

    Full Text Available A recent article in Nature, “Soil Fertility Limits Carbon Sequestration by Forest Ecosystems in a CO2-Enriched Atmosphere” by Oren and colleagues[1], has been widely reported on, and often misinterpreted, by the press. The article dampens enthusiasm for accelerated forest growth due to CO2 fertilization and puts in question the fringe theory that the world’s forests can provide an automatic mitigation feedback. We agree that these results increase our understanding of the global carbon cycle. At the same time, their relevance in the context of the international climate change negotiations is much more complicated than portrayed by newspapers such as the New York Times (“Role of Trees in Curbing Greenhouse Gases is Challenged”, May 24, 2001 and the Christian Science Monitor (“Trees No Savior for Global Warming”, May 25, 2001.

  11. Decadal emission estimates of carbon dioxide, sulfur dioxide, and nitric oxide emissions from coal burning in electric power generation plants in India.

    Science.gov (United States)

    Mittal, Moti L; Sharma, Chhemendra; Singh, Richa

    2014-10-01

    This study aims to estimate the emissions of carbon dioxide (CO₂), sulfur dioxide (SO₂), and nitric oxide (NO) for coal combustion in thermal power plants in India using plant-specific emission factors during the period of 2001/02 to 2009/10. The mass emission factors have been theoretically calculated using the basic principles of combustion under representative prevailing operating conditions in the plants and fuel composition. The results show that from 2001/02 to 2009/10 period, total CO₂ emissions have increased from 324 to 499 Mt/year; SO₂ emissions have increased from 2,519 to 3,840 kt/year; and NO emissions have increased from 948 to 1,539 kt/year from the Indian coal-fired power plants. National average emissions per unit of electricity from the power plants do not show a noticeable improvement during this period. Emission efficiencies for new plants that use improved technology are found to be better than those of old plants. As per these estimates, the national average of CO₂ emissions per unit of electricity varies between 0.91 and 0.95 kg/kWh while SO₂ and NO emissions vary in the range of 6.9 to 7.3 and 2.8 to 2.9 g/kWh, respectively. Yamunagar plant in Haryana state showed the highest emission efficiencies with CO₂ emissions as 0.58 kg/kWh, SO₂ emissions as 3.87 g/kWh, and NO emissions as 1.78 g/kWh, while the Faridabad plant has the lowest emission efficiencies with CO₂ emissions as 1.5 kg/kWh, SO₂ emissions as 10.56 g/kWh, and NO emissions as 4.85 g/kWh. Emission values at other plants vary between the values of these two plants. PMID:25004854

  12. Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach

    International Nuclear Information System (INIS)

    Energy saving and carbon dioxide emission reduction in China is attracting increasing attention worldwide. At present, China is in the phase of rapid urbanization and industrialization, which is characterized by rapid growth of energy consumption. China's transport sector is highly energy-consuming and pollution-intensive. Between 1980 and 2012, the carbon dioxide emissions in China's transport sector increased approximately 9.7 times, with an average annual growth rate of 7.4%. Identifying the driving forces of the increase in carbon dioxide emissions in the transport sector is vital to developing effective environmental policies. This study uses Vector Autoregressive model to analyze the influencing factors of the changes in carbon dioxide emissions in the sector. The results show that energy efficiency plays a dominant role in reducing carbon dioxide emissions. Private vehicles have more impact on emission reduction than cargo turnover due to the surge in private car population and its low energy efficiency. Urbanization also has significant effect on carbon dioxide emissions because of large-scale population movements and the transformation of the industrial structure. These findings are important for the relevant authorities in China in developing appropriate energy policy and planning for the transport sector. - Highlights: • The driving forces of CO2 emissions in China's transport sector were investigated. • Energy efficiency plays a dominant role in reducing carbon dioxide emissions. • Urbanization has significant effect on CO2 emissions due to large-scale migration. • The role of private cars in reducing emissions is more important than cargo turnover

  13. Prediction on carbon dioxide emissions based on fuzzy rules

    Science.gov (United States)

    Pauzi, Herrini; Abdullah, Lazim

    2014-06-01

    There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.

  14. Carbon dioxide emission standards for U.S. power plants. An efficiency analysis perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hampf, Benjamin [Technische Univ. Darmstadt (Germany). Fachbereich Rechts- und Wirtschaftswissenschaften; Roedseth, Kenneth Loevold [Institute of Transport Economics, Oslo (Norway). Dept. of Economics and Logistics

    2013-07-01

    On June 25, 2013, President Obama announced his plan to introduce carbon dioxide emission standards for electricity generation. This paper proposes an efficiency analysis approach that addresses which mission rates (and standards) would be feasible if the existing generating units adopt best practices. A new efficiency measure is introduced and further decomposed to identify different sources' contributions to emission rate improvements. Estimating two Data Envelopment Analysis (DEA) models - the well-known joint production model and the new materials balance model - on a dataset consisting of 160 bituminous-fired generating units, we find that the average generating unit's electricity-to-carbon dioxide ratio is 15.3 percent below the corresponding best-practice ratio. Further examinations reveal that this discrepancy can largely be attributed to non-discretionary factors and not to managerial inefficiency. Moreover, even if the best practice ratios could be implemented, the generating units would not be able to comply with the EPA's recently proposed carbon dioxide standard.

  15. Carbon dioxide emission standards for U.S. power plants. An efficiency analysis perspective

    International Nuclear Information System (INIS)

    On June 25, 2013, President Obama announced his plan to introduce carbon dioxide emission standards for electricity generation. This paper proposes an efficiency analysis approach that addresses which mission rates (and standards) would be feasible if the existing generating units adopt best practices. A new efficiency measure is introduced and further decomposed to identify different sources' contributions to emission rate improvements. Estimating two Data Envelopment Analysis (DEA) models - the well-known joint production model and the new materials balance model - on a dataset consisting of 160 bituminous-fired generating units, we find that the average generating unit's electricity-to-carbon dioxide ratio is 15.3 percent below the corresponding best-practice ratio. Further examinations reveal that this discrepancy can largely be attributed to non-discretionary factors and not to managerial inefficiency. Moreover, even if the best practice ratios could be implemented, the generating units would not be able to comply with the EPA's recently proposed carbon dioxide standard.

  16. A modelling on estimation of the carbon dioxide emission from vehicles using logistic equation

    Science.gov (United States)

    Chandra, E. W.; Andry, A.; Afra, F.; Sumarti, N.

    2016-04-01

    In this paper, the logistic differential equation is used in developing a model on carbon dioxide traces which potentially releases from a particular area. The improvement to a higher scale or scope is straightforward by considering the larger observed data or larger number of the potential CO2 sources. Let G(t) the total amount of the carbon dioxide emission from motorcycles and cars used by the resident of the area. G (t )=P (t )(r1(t )η (t )+r2(t )ξ (t )) where P(t) is the number of the resident of the observed area (population of Bandung Institute of Technology) at year t, r1(t) and r2(t) are the portion of the population who use motorcycles and cars respectively, η(t) and ξ(t) are the approximated total emission of the carbon dioxide from the related vehicles respectively. The number of resident is modeled by the logistic equation so the future number can be estimated. The model is implemented in a campus of Institut Teknologi Bandung (ITB) at Ganesha street, Indonesia. The results show that the amount of CO2 produced from the transport in Ganesha campus will reach the carrying capacity of the campus in the next 3 years, which will be at around 2.1 billion kilotons of CO2. Therefore, the need of reducing the usage of motorcycles and cars is inevitable in the near future.

  17. Partitioning Carbon Dioxide Emission and Assessing Dissolved Organic Carbon Leaching of a Drained Peatland Cultivated with Pineapple at Saratok, Malaysia

    Directory of Open Access Journals (Sweden)

    Liza Nuriati Lim Kim Choo

    2014-01-01

    Full Text Available Pineapples (Ananas comosus (L. Merr. cultivation on drained peats could affect the release of carbon dioxide (CO2 into the atmosphere and also the leaching of dissolved organic carbon (DOC. Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr than under bare peat treated with chloroform (205 t CO2 ha/yr, and they were the lowest (179.6 t CO2 ha/yr under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture.

  18. Trend of carbon dioxide emissions from fossil fuels and cement production in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nganga, J.K. [University of Nairobi, Nairobi (Kenya). Dept. Meteorology

    2000-07-01

    The data on annual consumption of fossil fuels and cement production in Kenya was used to carry out an inventory of carbon dioxide emissions from 1966 to 1993 using emission guidelines proposed by the Organisation of Economic Co-operation and Development. The results show an increasing trend of emissions from the two sources in association with increasing fossil fuel consumption and cement production in the country. Transport sector takes the largest share of fossil fuel consumption making the increasing vehicle population in the country a significant influencing factor in the observed trend. The demand for motor fuel in turn seems to be influenced by the economic performance and is indicated by periods of decline in the consumption of fossil fuels and resultant emissions. If the trend continues there will be an increase of about 46% by the next 20 years. However, Kenya's contribution of carbon dioxide emissions into the global atmosphere through these two sources is small and is consistent with treads observed in other developing parts of the world.

  19. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  20. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  1. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  2. Deposition of carbon dioxide

    International Nuclear Information System (INIS)

    In Norway, there is currently a debate about whether or not to build gas power stations. To meet the possibility of reduced emission quotas for carbon dioxide in the future, current interest focuses on the incorporation of large-scale separation and deposition of carbon dioxide when such plants are planned. A group of experts concludes that this technology will become self-financing by means of environmental taxes. From the environmental point of view, taxes upon production are to be preferred over taxes on consumption

  3. Decomposing the Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia Based on the LMDI Method

    Directory of Open Access Journals (Sweden)

    Rina Wu

    2016-07-01

    Full Text Available Understanding of the influencing factors of industrial sector carbon dioxide emissions is essential to reduce natural and anthropogenic greenhouse gas emissions. In this paper, we applied the Logarithmic Mean Divisia Index (LMDI decomposition method based on the extended Kaya identity to analyze the changes in industrial carbon dioxide emissions resulting from 39 industrial sectors in Inner Mongolia northeast of China over the period 2003–2012. The factors were divided into five types of effects i.e., industrial growth effect, industrial structure effect, energy effect, energy intensity effect, population effect and comparative analysis of differential influences of various factors on industrial sector. Our results clearly show that (1 Industrial sector carbon dioxide emissions have increased from 134.00 million ton in 2003 to 513.46 million ton in 2012, with an annual average growth rate of 16.097%. The industrial carbon dioxide emissions intensity has decreased from 0.99 million ton/billion yuan to 0.28 million ton/billion yuan. Also, the energy structure has been dominated by coal; (2 Production and supply of electric power, steam and hot water, coal mining and dressing, smelting and pressing of ferrous metals, petroleum processing, coking and nuclear fuel processing, and raw chemical materials and chemical products account for 89.74% of total increased industrial carbon dioxide emissions; (3 The industrial growth effect and population effect are found to be a critical driving force for increasing industrial sector carbon dioxide emissions over the research period. The energy intensity effect is the crucial drivers of the decrease of carbon dioxide emissions. However, the energy structure effect and industrial structure effect have considerably varied over the study years without displaying any clear trend.

  4. Short and Long Term Impacts of Forest Bioenergy Production on Atmospheric Carbon Dioxide Emissions

    Science.gov (United States)

    Hudiburg, T.; Law, B. E.; Luyssaert, S.; Thornton, P. E.

    2011-12-01

    Temperate forest annual net uptake of CO2 from the atmosphere is equivalent to ~16% of the annual fossil fuel emissions in the United States. Mitigation strategies to reduce emissions of carbon dioxide have lead to investigation of alternative sources of energy including forest biomass. The prospect of forest derived bioenergy has led to implementation of new forest management strategies based on the assumption that they will reduce total CO2 emissions to the atmosphere by simultaneously reducing the risk of wildfire and substituting for fossil fuels. The benefit of managing forests for bioenergy substitution of fossil fuels versus potential carbon sequestration by reducing harvest needs to be evaluated. This study uses a combination of Federal Forest Inventory data (FIA), remote sensing, and a coupled carbon-nitrogen ecosystem process model (CLM4-CN) to predict net atmospheric CO2 emissions from forest thinning for bioenergy production in Oregon under varying future management and climate scenarios. We use life-cycle assessment (LCA) incorporating both the forest and forest product sinks and sources of carbon dioxide. Future modeled results are compared with a reduced harvest scenario to determine the potential for increased carbon sequestration in forest biomass. We find that Oregon forests are a current strong sink of 7.5 ± 1.7 Tg C yr-1 or 61 g C m-2 yr-1. (NBP; NEP minus removals from fire and harvest). In the short term, we find that carbon dynamics following harvests for fire prevention and large-scale bioenergy production lead to 2-15% higher emissions over the next 20 years compared to current management, assuming 100% effectiveness of fire prevention. Given the current sink strength, analysis of the forest sector in Oregon demonstrates that increasing harvest levels by all practices above current business-as-usual levels increases CO2 emissions to the atmosphere as long as the region's sink persists. In the long-term, we find that projected changes in

  5. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinzhuo; Ou-Yang, Wei, E-mail: ouyangwei@phy.ecnu.edu.cn; Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Xu, Peng; Wang, Miao [Department of Physics, Zhejiang University, 38 ZheDa Road, Hangzhou 310027 (China); Li, Jun [Department of Electronic Science and Technology, Tongji University, 4800 Caoan Road, Shanghai 201804 (China)

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  6. Maximum warming occurs about one decade after a carbon dioxide emission

    International Nuclear Information System (INIS)

    It is known that carbon dioxide emissions cause the Earth to warm, but no previous study has focused on examining how long it takes to reach maximum warming following a particular CO2 emission. Using conjoined results of carbon-cycle and physical-climate model intercomparison projects (Taylor et al 2012, Joos et al 2013), we find the median time between an emission and maximum warming is 10.1 years, with a 90% probability range of 6.6–30.7 years. We evaluate uncertainties in timing and amount of warming, partitioning them into three contributing factors: carbon cycle, climate sensitivity and ocean thermal inertia. If uncertainty in any one factor is reduced to zero without reducing uncertainty in the other factors, the majority of overall uncertainty remains. Thus, narrowing uncertainty in century-scale warming depends on narrowing uncertainty in all contributing factors. Our results indicate that benefit from avoided climate damage from avoided CO2 emissions will be manifested within the lifetimes of people who acted to avoid that emission. While such avoidance could be expected to benefit future generations, there is potential for emissions avoidance to provide substantial benefit to current generations. (letter)

  7. An innovative indicator of carbon dioxide emissions for developing countries: A study of Taiwan

    International Nuclear Information System (INIS)

    Ever since the Kyoto Protocol entered into force, the issues of climate change and greenhouse gas (GHG) emissions have drawn more and more attention globally. However, the major concern of the Kyoto Protocol to reduce the overall GHG emissions might be inaccessible for most developing countries, which rely heavily on the energy-intensive industries for exports and economic growth. In this study, an innovative indicator of net carbon dioxide (CO2) emissions, which excludes the emissions corresponding to the exports, is proposed to explicitly reveal domestic situations of developing countries. By introducing the indicator of net CO2 emissions to top five energy-intensive industries in Taiwan, the analysis indicates that the increase in CO2 emissions from 1999 to 2004 is mostly contributed by the expanded exports rather than the domestic demand. The distinct growth patterns of the apparent and net CO2 emissions also imply the transformation of the industrial sector. It is expected that, for developing countries, the concept of net emissions may not only serve as a proper interim target during the process of international negotiations over GHG reductions but also highlights the prominence of addressing the emissions from the industrial sector as the top priority.

  8. An innovative indicator of carbon dioxide emissions for developing countries. A study of Taiwan

    International Nuclear Information System (INIS)

    Ever since the Kyoto Protocol entered into force, the issues of climate change and greenhouse gas (GHG) emissions have drawn more and more attention globally. However, the major concern of the Kyoto Protocol to reduce the overall GHG emissions might be inaccessible for most developing countries, which rely heavily on the energy-intensive industries for exports and economic growth. In this study, an innovative indicator of net carbon dioxide (CO2) emissions, which excludes the emissions corresponding to the exports, is proposed to explicitly reveal domestic situations of developing countries. By introducing the indicator of net CO2 emissions to top five energy-intensive industries in Taiwan, the analysis indicates that the increase in CO2 emissions from 1999 to 2004 is mostly contributed by the expanded exports rather than the domestic demand. The distinct growth patterns of the apparent and net CO2 emissions also imply the transformation of the industrial sector. It is expected that, for developing countries, the concept of net emissions may not only serve as a proper interim target during the process of international negotiations over GHG reductions but also highlights the prominence of addressing the emissions from the industrial sector as the top priority. (author)

  9. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    Science.gov (United States)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  10. Analysis and Optimization of Carbon Dioxide Emission Mitigation Options in the Cement Industry

    Directory of Open Access Journals (Sweden)

    Mohammed B. Shammakh

    2008-01-01

    Full Text Available The cement industry is responsible for approximately 5% of global anthropogenic carbon dioxide emissions emitting nearly 900 kg of CO2 for every 1000 kg of cement produced. Effective control strategies to mitigate these emissions are discussed and a mathematical programming model able to suggest the best cost effective strategy is outlined. Control costs consisting of operating and investment costs along with the efficiency of control options are taken into account in the model. A representative case study from the cement industry was considered in order to illustrate the use of the model in giving optimal control strategies. Efficiency improvement measures were found to be effective options for reduction targets up to 10 %. The model suggested that fuel switching and carbon capture must be considered at reduction targets higher than 10%. The cost of cement production was shown to increase dramatically with an increase in reduction target.

  11. Energy consumption-economic growth relationship and carbon dioxide emissions in China

    International Nuclear Information System (INIS)

    This paper applies the panel unit root, heterogeneous panel cointegration and panel-based dynamic OLS to re-investigate the co-movement and relationship between energy consumption and economic growth for 30 provinces in mainland China from 1985 to 2007. The empirical results show that there is a positive long-run cointegrated relationship between real GDP per capita and energy consumption variables. Furthermore, we investigate two cross-regional groups, namely the east China and west China groups, and get more important results and implications. In the long-term, a 1% increase in real GDP per capita increases the consumption of energy by approximately 0.48-0.50% and accordingly increases the carbon dioxide emissions by about 0.41-0.43% in China. The economic growth in east China is energy-dependent to a great extent, and the income elasticity of energy consumption in east China is over 2 times that of the west China. At present, China is subject to tremendous pressures for mitigating climate change issues. It is possible that the GDP per capita elasticity of carbon dioxide emissions would be controlled in a range from 0.2 to 0.3 by the great effort. - Research Highlights: → The long-run cointegrated relationship between real GDP per capita and energy consumption in China is examined. → GDP per capita elasticity of carbon dioxide emissions is estimated. → Economic growth in east China is energy-dependent to a great extent, and relies on the consumption of the energy more than the west China.

  12. Sharing responsibility for carbon dioxide emissions: A perspective on border tax adjustments

    International Nuclear Information System (INIS)

    Concerns about the equity and efficiency of current allocation principles related to responsibility for carbon dioxide (CO2) emissions have been presented in the recent literature. The objective of this paper is to design a calculation framework for shared responsibility from the perspective of border tax adjustments. The advantage of this framework is that it makes the shared responsibility principle and border carbon taxation complementary to each other; these are important policies for reducing global CO2 emissions, but they are individually supported by developing and developed countries. As an illustration, the proposed framework is applied to data from China in 2007. The empirical results show that for the Chinese economy as a whole, changing from the production-based criterion to the shared responsibility approach would lead to an 11% decrease in its responsibility for CO2 emissions. Moreover, the differences observed between the production-based criterion and the shared responsibility approach are considerable in several sectors; for example, changing from the production-based criterion to the shared principle would lead to a 60% decrease in the responsibility of the textile sector. - Highlights: • This paper designs a shared responsibility calculation framework for CO2 emissions. • This paper suggests that the carbon tariff rate serve as a basis for calculating shared responsibility. • The proposed framework is applied to data from China in 2007. • Shared responsibility principle will significantly decrease China's responsibility for CO2 emissions

  13. 2002 Monthly Carbon Dioxide Emissions from Mexico at a 10x10k Spatial Resolution

    Science.gov (United States)

    Mendoza, D. L.; Gurney, K. R.; Geethakumar, S.; Zhou, Y.; Sahni, N.

    2009-12-01

    The contribution of fossil fuel CO2 emissions to the total measured amount of CO2 in the Earth’s atmosphere remains an important component of carbon cycle science, particularly as efforts to understand the net exchange of carbon at the surface move to smaller scales. In order to reduce the uncertainty of this flux, researchers led by Purdue University have built a high-resolution fossil fuel CO2 flux inventory for the United States, called “Vulcan”. The Vulcan inventory quantifies emissions for the United States at 10km resolution every hour for the year 2002 and can be seen as a key component of a national assessment and verification system for greenhouse gas emissions and emissions mitigation. As part of the North American Carbon Project, the 2002 carbon dioxide emissions from Mexico are presented at the monthly temporal and municipality spatial scale. Mexico is of particular importance because of the scientific integration under the North American Carbon Program. Furthermore, Mexico has seen a notable growth in its population as well as migration toward urban centers and increasing energy requirements due in part to industrial intensification. The native resolution of the emissions is geolocated (lat/lon) for point sources, such as power plants, airports, and large industry. The emissions are estimated at the municipality level for residential and commercial sources, and allocated to roads for the mobile transport sector. Data sources include the National Emissions Inventory (NEI), Commission for Environmental Cooperation (CEC), and Carbon Monitoring for Action (CARMA). CO2 emissions are calculated from the 1999 NEI data by converting CO emissions using sector and process-dependent emission factors, and is scaled up to 2002 using statistics obtained from the Carbon Dioxide Information Analysis Center CDIAC. CEC and CARMA data, which encompass power plant emissions, are already in units of CO2. Emissions are regridded to 10x10k and 0.1x0.1 deg grids to

  14. The competitiveness of nuclear power and its impact on reduction of carbon dioxide emissions

    International Nuclear Information System (INIS)

    The study focuses on the competitiveness of nuclear power and its impact on reduction of carbon dioxide emissions in Finland. The approaching base-load power decision gave the basis to the work. Nuclear power has been for many years the biggest form of electricity generation in Finland. Over the last decade, Finland's four existing nuclear power units have recorded an average annual capacity factor of 91.2 %, the highest of any country in the world. Nuclear power has considerable significance for the whole nation as an economical form of electricity production and as a reducer of carbon dioxide emissions. In Finland the possible alternatives for the new base-load power generation are nuclear power plant, coal-fired condensing power plant, combined cycle gas turbine plant, peatfired condensing power plant. Of the four alternatives under consideration, the nuclear option is the only one, which does not generate any carbon dioxide emissions to the atmosphere. A new 1250 MW nuclear unit with 10 TWh annual production would save 8,3 million metric tons carbon dioxide emissions annually, if the reference is the coalfired condensing power plant. A financial analysis of the potential electricity production alternatives has been carried out. The calculations have been made using the annuity method with a real interest of 4,5 % per annum and fixed price levels as of February 2000. With the annual full load utilisation time of 8000 hours the nuclear electricity would cost 128 mk/MWh, the coal based electricity 143 mk/MWh and the gas based electricity 155 mk/MWh. In order to study the impact of changes in the input data, a sensitivity analysis has been made as well. It reveals that the advantage of the nuclear alternative is quite clear. E.g. the nuclear electricity cost is rather insensitive to the changes of the uranium price. For natural gas alternative the rising trend of gas price causes the greatest risk. Furthermore, the availability of natural gas in Finland for a new

  15. Human development and carbon dioxide emissions: The current picture and the long-term prospects

    International Nuclear Information System (INIS)

    The scale of human activity has grown to the point that gaseous emissions produced by four areas of human endeavor (energy, agriculture, land use, and chemical manufacture) are changing the stock of gases in the atmosphere. That change, in turn, affects the global temperature and climate. Such gases are called greenhouse, or radiatively important, gases (RIGs). The nature and timing of future climate change depend on three things: the rate of emission of RIGs into the atmosphere, the capacity of removal mechanisms, and the interaction between atmospheric composition and the climate. Herein, the first of these is examined: the rate of emission of RIGs and its determinants. The broad diversity of RIGs is briefly reviewed, but particular emphasis is on the relationship between energy use and the release of carbon dioxide from fossil fuels

  16. Definition of a Thermodynamic Parameter to Calculate Carbon Dioxide Emissions in a Catalytic Reforming Process

    Directory of Open Access Journals (Sweden)

    Marie-Noëlle Pons

    2008-06-01

    Full Text Available In the context of global warming, reduction of carbon dioxide emissions in oil and gas processes is an environmental and financial issue for process design and comparison. Environmental impact of a system can be determined by life cycle assessment (LCA. However this method presents limitations. Exergy is a thermodynamic function often chosen to complete LCA as it enables quantifying energetic efficiency of a process and takes into account the relation between the considered process and its environment. The aim of this work is to build a correlation between CO2 emissions and a thermodynamic quantity which depends on exergy. For the process under consideration, this correlation has the following asset: it enables CO2 emissions calculation without performing an LCA, when operating conditions are modified. The process studied here is naphtha catalytic reforming.

  17. Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process

    International Nuclear Information System (INIS)

    This paper investigates the impact of food production processes on the environment in terms of energy and exergy utilization and carbon dioxide emission. There are three different energy utilization mechanisms in food production: Utilization of solar energy by plants to produce agricultural goods; feed consumption by herbivores to produce meat and milk; fossil fuel consumption by industrial processes to perform mixing, cooling, heating, etc. Production of strawberry-flavored yogurt, which involves these three mechanisms, is investigated here thermodynamically. Analysis starts with the cultivation of the ingredients and ends with the transfer of the final product to the market. The results show that 53% of the total exergy loss occurs during the milk production and 80% of the total work input is consumed during the plain yogurt making. The cumulative degree of perfection is 3.6% for the strawberry-flavored yogurt. This value can rise up to 4.6%, if renewable energy resources like hydropower and algal biodiesel are employed instead of fossil fuels. This paper points the direction for the development of new technology in food processing to decrease waste of energy and carbon dioxide accumulation in the atmosphere. -- Highlights: ► Energy and exergy utilization and carbon dioxide emission during strawberry-flavored yogurt production. ► Cumulative degree of perfection of strawberry-flavored yogurt is 3.6%. ► 53% of the total exergy loss occurs during the milk production. ► 80% of the total work input is consumed during the plain yogurt making.

  18. Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry

    International Nuclear Information System (INIS)

    We adopted the refined Laspeyres index approach to explore the impacts of industry scale, energy mix, energy intensity and utility mix on the total carbon dioxide emissions from the Chinese nonferrous metals industry for the period 1996–2008. In addition, we calculated the trend of decoupling effects in nonferrous metals industry in China by presenting a theoretical framework for decoupling. As the results suggest, Chinese nonferrous metals industry has gone through four decoupling stages: strong negative decoupling stage (1996–1998), weak decoupling stage (1999–2000), expensive negative decoupling stage (2001–2003) and weak decoupling stage (2004–2008). We have analyzed the reasons for each phase. Generally speaking, the rapid growth of the industry is the most important factor responsible for the increase of CO2 emissions, and the change in energy mix was mainly due to the increased proportion of electric energy consumption that has contributed to the increase of CO2 emissions. Reduction of energy intensity has contributed significantly to emissions decrease, and the utility mix effect has also contributed to the emission decrease to some extent. - Highlights: ► We calculate the decoupling effects of CO2 from Chinese nonferrous metals industry. ► Results demonstrate that the industry has gone through four decoupling stages. ► The output effect is most important for the increase of CO2 emissions. ► Reduction of energy intensity has contributed significantly to emissions decrease.

  19. Trends in road freight transportation carbon dioxide emissions and policies in China

    International Nuclear Information System (INIS)

    We adopted the simple average Divisia index approach to explore the impacts of factors on the carbon dioxide (CO2) emissions from road freight transportation in China from 1985 to 2007. CO2 emissions were investigated using the following as influencing factors: the emission coefficient, vehicle fuel intensity, working vehicle stock per freight transport operator, market concentration level, freight transportation distance, market share of road freight transportation, ton-kilometer per value added of industry, industrialization level and economic growth. Building on the results, we suggest that economic growth is the most important factor in increasing CO2 emissions, whereas the ton-kilometer per value added of industry and the market concentration level contribute significantly to decreasing CO2 emissions. We also discussed some recent important policies concerning factors contained in the decomposition model. - Highlights: ► We estimated road freight fuel consumption and CO2 emissions in China. ► Factors implying features of road freight were considered in decomposition model. ► Some policies were discussed to affect CO2 emissions from road freight

  20. Carbon dioxide emissions from agricultural soils amended with livestock-derived organic materials

    Science.gov (United States)

    Pezzolla, D.; Said-Pullicino, D.; Gigliotti, G.

    2009-04-01

    Carbon dioxide gas xchange between terrestrial ecosystems and the atmosphere, as well as the carbon sink strength of various arable land ecosystems, is of primary interest for global change research. Measures for increasing soil C inputs include the preferential use of livestock-derived organic materials (e.g. animal manure and slurries, digestate from biogas production plants and compost). The application of such materials to agricultural soils returns essential nutrients for plant growth and organic matter to maintain long-term fertility. Whether or not such practices ultimately result in sustained C sequestration at the ecosystem level will depend on their mineralization rates. This work presents preliminary results from a laboratory incubation trial to evaluate carbon dioxide fluxes from two agricultural soils (a calcareous silt loam and a silty clay loam) amended with agricultural doses of (i) pig slurry (PSL), (ii) the digestate from the anaerobic fermentation of pig slurries (AAS) and (ii) a compost from the aerobic stabilisation of the digestate (LDC). These subsequent steps of slurry stabilisation resulted in a decrease in the content of labile organic matter which was reflected in a reduction in maximum carbon dioxide emission rates from amended soils. Measurements have shown that peak emissions from soils occur immediately after application of these organic materials (within 5 days) and decrease in the order PSL > AAS > LDC. Moreover, mean cumulative emissions over the first 40 days showed that a higher percentage (about 44%) of the C added with PSL was mineralised respect to C added with AAS (39%) and LDC (25%). Although it was hypothesised that apart from the quantity and stability of the added organic materials, even soil characteristics could influence C mineralisation rates, no significant differences were observed between emission fluxes for similarly treated soils. Mean cumulative emission fluxes after 40 days from treatment were of 114, 103 and

  1. Capture and mineralization of carbon dioxide from coal combustion flue gas emissions

    Science.gov (United States)

    Attili, Viswatej

    (Proprietary information: PCT/US/2006/49411 and WO/2007/ 081561A) Enormous amounts of carbon dioxide (CO2) released by human activity (anthropogenic), may lead to climate changes that could spread diseases, ruin crops, cause intense droughts and floods, and dramatically raise the sea levels, thereby submerging the low lying coastal regions. The objective of this study was to test whether CO2 and sulfur dioxide (SO2) from flue gases can be directly captured and converted into carbonate and sulfate minerals respectively through the mineralization process of alkaline solid wastes. A flow-through carbonation process was designed to react flue gases directly with alkaline fly ash, under coal combustion power plant conditions. For the first time, CO2 levels in the flue gas were reduced from 13.6% to 9.7% after the reaction with alkaline fly ash in a reaction time of less than 1 minute. Using a combination of Orion RTM plus multi-gas detector, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) techniques, flue gas CO2 mineralization on fly ash particles was detected. This method can simultaneously help in separate, capture, and mineralize anthropogenic CO2 and SO2. Moreover, this process may be environmentally safe and a stable storage for anthropogenic CO2. Capturing anthropogenic CO2 using this mineralization process is an initial step towards developing more efficient methods of reducing industrial point source CO2 emissions into the atmosphere.

  2. Driving factors of carbon dioxide emissions in China: an empirical study using 2006-2010 provincial data

    Science.gov (United States)

    Liu, Yu; Chen, Zhan-Ming; Xiao, Hongwei; Yang, Wei; Liu, Danhe; Chen, Bin

    2016-04-01

    The rapid urbanization of China has increased pressure on its environmental and ecological well being. In this study, the temporal and spatial profiles of China's carbon dioxide emissions are analyzed by taking heterogeneities into account based on an integration of the extended stochastic impacts using a geographically and temporally weighted regression model on population, affluence, and technology. Population size, urbanization rate, GDP per capita, energy intensity, industrial structure, energy consumption pattern, energy prices, and economy openness are identified as the key driving factors of regional carbon dioxide emissions and examined through the empirical data for 30 provinces during 2006-2010. The results show the driving factors and their spillover effects have distinct spatial and temporal heterogeneities. Most of the estimated time and space coefficients are consistent with expectation. According to the results of this study, the heterogeneous spatial and temporal effects should be taken into account when designing policies to achieve the goals of carbon dioxide emissions reduction in different regions.

  3. Carbon dioxide emission reduction scenarios in Mexico for year 2005. Industrial cogeneration and efficient lighting

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum, C.; Jauregui, I.; Rodriguez, V. [Instituto de Ingenieria, Coyoacan, Mexico D.F. (Mexico)

    1998-09-01

    An analysis of the impacts on Mexican energy demand and associated carbon dioxide (CO2) emissions in the year 2005 due to efficient lighting in the commercial and residential sectors and cogeneration in the industrial sector is presented. Estimation of CO2 abatement costs and an incremental cost curve for CO2 mitigation options are considered. These technologies are cost effective opportunities, and together are projected to reduce CO2 emissions in 2005 by nearly 13%. Implementation of efficient lighting is already part of the demand side management (DSM) programs of the Mexican state-owned utility. However, there are important barriers that may hinder the implementation of large scale cogeneration plants. 26 refs.

  4. Carbon dioxide sequestration by mineral carbonation

    OpenAIRE

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonate...

  5. Convergence of per capita carbon dioxide emissions in the EU: Legend or reality?

    International Nuclear Information System (INIS)

    Designing appropriate environmental and energy policies, in order to meet the Kyoto protocol's carbon dioxide (CO2) reduction targets in the European Union (EU), requires a detailed examination and thorough understanding of CO2 emission trends across the EU member states. This paper investigates whether CO2 emissions have converged across 22 European countries over the 1971 to 2006 period. The Bayesian shrinkage estimation method is employed to do this work and the results reveal the following: first, the hypothesis of absolute convergence in per capita CO2 emissions is supported and a slight upward convergence is observed; second, the fact that countries differ considerably in both their speed of convergence and volatility in emissions makes it possible to identify different groups of countries; third, the results with respect to convergence do not vary much once the share of industry in GDP is accounted for in a conditional convergence analysis. However, a decreasing share of industry in GDP seems to contribute to a decline in per capita emissions. These findings may carry important implications for both national and EU environmental policies.

  6. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions

    Science.gov (United States)

    Matter, Juerg M.; Stute, Martin; Snæbjörnsdottir, Sandra Ó.; Oelkers, Eric H.; Gislason, Sigurdur R.; Aradottir, Edda S.; Sigfusson, Bergur; Gunnarsson, Ingvi; Sigurdardottir, Holmfridur; Gunnlaugsson, Einar; Axelsson, Gudni; Alfredsson, Helgi A.; Wolff-Boenisch, Domenik; Mesfin, Kiflom; Taya, Diana Fernandez de la Reguera; Hall, Jennifer; Dideriksen, Knud; Broecker, Wallace S.

    2016-06-01

    Carbon capture and storage (CCS) provides a solution toward decarbonization of the global economy. The success of this solution depends on the ability to safely and permanently store CO2. This study demonstrates for the first time the permanent disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks. We find that over 95% of the CO2 injected into the CarbFix site in Iceland was mineralized to carbonate minerals in less than 2 years. This result contrasts with the common view that the immobilization of CO2 as carbonate minerals within geologic reservoirs takes several hundreds to thousands of years. Our results, therefore, demonstrate that the safe long-term storage of anthropogenic CO2 emissions through mineralization can be far faster than previously postulated.

  7. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions.

    Science.gov (United States)

    Matter, Juerg M; Stute, Martin; Snæbjörnsdottir, Sandra Ó; Oelkers, Eric H; Gislason, Sigurdur R; Aradottir, Edda S; Sigfusson, Bergur; Gunnarsson, Ingvi; Sigurdardottir, Holmfridur; Gunnlaugsson, Einar; Axelsson, Gudni; Alfredsson, Helgi A; Wolff-Boenisch, Domenik; Mesfin, Kiflom; Taya, Diana Fernandez de la Reguera; Hall, Jennifer; Dideriksen, Knud; Broecker, Wallace S

    2016-06-10

    Carbon capture and storage (CCS) provides a solution toward decarbonization of the global economy. The success of this solution depends on the ability to safely and permanently store CO2 This study demonstrates for the first time the permanent disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks. We find that over 95% of the CO2 injected into the CarbFix site in Iceland was mineralized to carbonate minerals in less than 2 years. This result contrasts with the common view that the immobilization of CO2 as carbonate minerals within geologic reservoirs takes several hundreds to thousands of years. Our results, therefore, demonstrate that the safe long-term storage of anthropogenic CO2 emissions through mineralization can be far faster than previously postulated. PMID:27284192

  8. Contributions of Vehicular Traffic to Carbon Dioxide Emissions in Kaduna and Abuja, Northern Nigeria

    Directory of Open Access Journals (Sweden)

    Peter Ndoke NDOKE

    2006-07-01

    Full Text Available The quantity of carbon dioxide (CO2 contributed by automobile emissions to the environment was determined at some areas in Kaduna and Abuja in Northern Nigeria. Five census stations were selected in each of the two towns. In Kaduna, Jabi road in Ungwan Rimi, Kawo Motor park, Stadium round-about, Sabo and Kasuwa (Kaduna Main Market, were selected, while Asokoro (behind ECOWAS, Area One junction, A.Y.A. junction, Wuse market bus-stop, and Mabushi round-about were selected for Abuja. A gas sampling pump and tubes that could detect carbon dioxide were used to detect the quantity of CO2 in the environment at a certain time. The results obtained show a variation in the amount of CO2 in the environment. Areas with relatively heavy congestion show a high concentration of CO2, while areas with minimal traffic show a lower concentration of CO2. Sabo in Kaduna has an average concentration of 1840 ppm being the highest, while Asokoro (behind ECOWAS, Abuja has the least average concentration of 1160 ppm. Review of literature showed that increasing CO2 levels have adverse effects such as the Greenhouse Effect, which may lead to Global Warming, as well as a number of other climatic events. These concentrations are still not high enough to cause any serious health effects but they provide a baseline study for Policy makers and Town planners.

  9. In-situ monitoring of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre sensor

    Science.gov (United States)

    Lewis, Elfed; Clifford, John; Fitzpatrick, Colin; Dooly, Gerard; Zhao, Weizhong; Sun, Tong; Grattan, Ken; Lucas, James; Degner, Martin; Ewald, Hartmut; Lochmann, Steffan; Bramann, Gero; Merlone-Borla, Edoardo; Gili, Flavio

    2011-05-01

    A robust optical fibre based CO2 exhaust gas sensor operating in the mid infrared spectral range is described. It is capable of detecting on board carbon dioxide (CO2) emissions from both diesel and petrol engines. The optical fibre sensor is not cross sensitive to other gaseous species in the exhaust such as water vapour (H2O), carbon monoxide (CO), oxides of nitrogen (NOx) or oxides of sulphur (SOx).The response of the sensor to carbon dioxide present in the exhaust of Fiat Croma diesel engine are presented.

  10. Evaluating the effectiveness of carbon tax for total emission control of carbon dioxide. Systems analysis of a dynamic environmental-economic model

    International Nuclear Information System (INIS)

    This paper deals with how to evaluate the effectiveness of carbon tax (environmental tax) for regulating the carbon dioxide emissions. For this purpose we mainly deal with a primal problem and its dual problem of dynamic linear programming model. The primal problem is formulated by using Leontief type input-output model and the basic idea of commodity stocks. It represents the balance of materials. The dual problem is obtained and interpreted as cash balance. It is clarified in this paper whether the carbon tax is effective to decrease the total amount of carbon dioxide emissions. (author)

  11. Future of energy efficiency and carbon dioxide emissions of Finnish road freight transport

    Energy Technology Data Exchange (ETDEWEB)

    Liimatainen, H.

    2013-05-15

    The targets to reduce the carbon dioxide emissions to mitigate climate change are as much applicable to the road freight transport sector as they are to all other sectors of society. The aim of this research is to support the initiatives of the Finnish government for improving the energy efficiency and reducing the CO{sub 2} emissions of road freight transport. This is done by forecasting the future development and giving the policy makers guidance on effective measures for promoting road freight energy efficiency and CO{sub 2} reduction. In the study a new method was introduced for connecting the fuel consumption data and goods transport data gathered from the official Finnish road statistics. This method enabled a detailed analysis of the interrelations between the economy, road freight transport, energy consumption and emissions. This analysis was conducted for the years 1995-2010 and the results were used as background information in the Delphi panel of experts. The experts estimated the development of the Finnish road freight sector to the year 2030. Furthermore, a web-based survey was conducted among Finnish road freight hauliers and shippers in order to explore the attitudes and measures related to the energy efficiency. Expert panel workshops were also organised to identify obstacles for the development of the energy efficiency of road freight transport as well as a wide selection of measures to overcome them. The results indicate that the economic development of different branches has a great effect on the energy efficiency and carbon dioxide emissions of road freight transport. Reaching the carbon emission target for the year 2030 is possible in the light of the scenarios which were formed based on expert forecasts. However, the target can be achieved with very different development paths, e.g. the structure of the national economy and the volume of transport seem to vary widely in the different scenarios. In the proposed recommendations on the measures

  12. Limitation of carbon dioxide emissions. Socio-economic effects and the importance of international coordination

    International Nuclear Information System (INIS)

    Using the MARKAL-model, the costs for reducing the carbon dioxide emissions in Sweden have been calculated up to year 2016. Several parameters have been varied, e.g. energy demand and emission taxes. The calculations cover power production, space heating, energy production and use in industry, other electricity use, and road traffic. Two results are: in case of the lower energy demand alternative, a cost increase of 80 GSEK (about 10 GUSD) for the period 1990-2016 is deduced, if a 20 per cent CO2 emission reduction is postulated. For the higher energy demand alternative, a cost increase of 85 GSEK is deduced if the CO2-emission is to be kept at the 1990 level. The most important factor in the calculations is the need to replace nuclear power, which is supposed to be phased out by year 2010. A separate appendix presents the corresponding calculations for the case where nuclear power is not phased out. In this case, total savings in the order of 70-100 GSEK may be achieved, if nuclear power can be operated with the same costs as today. (40 figs., 11 tabs.)

  13. Carbon taxes, consumer demand and carbon dioxide emission: a simulation analysis for the UK

    International Nuclear Information System (INIS)

    This paper examines a policy instrument that has been proposed as a means of reducing 'greenhouse gases', the introduction of a carbon tax on fossil fuels. It investigates the implication of a carbon tax for consumer prices using an input-output framework. Thus the effect of a tax on use of fossil fuels is allowed to affect consumer prices. These are then used in a micro-simulation program that features estimates of a system of demand equations obtained using 116,000 observations from the Family Expenditure System. This predicts the behavioural reaction of each household to the tax changes and the consequent effect on CO2 emission, government revenue and any distributional effects. We illustrate the impact of a variety of carbon taxes, changes to indirect tax rates and lump-sum compensatory payments. (author)

  14. Application of Mean Rate-of-Change Index to the Decomposition of Carbon Dioxide Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyun Sik; Rhee, Hae Chun [Sungkyunkwan University, Seoul (Korea)

    2000-08-01

    This paper introduces a new method to estimate and decompose sources of carbon dioxide emissions using an input-output model with decomposition method free of residual usually associated with this kind of analysis. This method is different from others, using what we call 'mean rate-of-change index(MR CI)' for weights of the decomposed terms. Ang et al.(1998) asserted that logarithmic mean divisia index (LMDI) is superior to Laspeyres index(LI) or simple average divisia index(SADI) since it reduces residual to zero. We claim that our method is an improvement over the other methods because it enables residual free decomposition even when data contain negative values, the case which LMDI cannot handle. We demonstrate by way of showing some examples that our method is superior to LI, SADI(Proops, 1993 and Chung, 1998) or LMDI(Ang et al., 1998). (author). 6 refs., 3 figs., 8 tabs.

  15. Economic innovation and efficiency gains as the driving force for accelerating carbon dioxide emissions

    Science.gov (United States)

    Garrett, T. J.

    2012-12-01

    It is normally assumed that gains in energy efficiency are one of the best routes that society has available to it for stabilizing future carbon dioxide emissions. For a given degree of economic productivity less energy is consumed and a smaller quantity of fossil fuels is required. While certainly this observation is true in the instant, it ignores feedbacks in the economic system such that efficiency gains ultimately lead to greater energy consumption: taken as a global whole, they permit civilization to accelerate its expansion into the energy reserves that sustain it. Here this argument is formalized from a general thermodynamic perspective. The core result is that there exists a fixed, time-independent link between a very general representation of global inflation-adjusted economic wealth (units currency) and civilization's total capacity to consume power (units energy per time). Based on 40 years of available statistics covering more than a tripling of global GDP and a doubling of wealth, this constant has a value of 7.1 +/- 0.01 Watts per one thousand 2005 US dollars. Essentially, wealth is power. Civilization grows by dissipating power in order to sustain all its current activities and to incorporate more raw material into its existing structure. Growth of its structure is related to economic production, so more energy efficient economic production facilitates growth. Growth is into the reserves that sustain civilization, in which case there is a positive feedback in the economic system whereby energy efficiency gains ultimately "backfire" if their intended purpose is to reduce energy consumption and carbon dioxide emissions. The analogy that can be made is to a growing child: a healthy child who efficiently incorporates food into her structure grows quickly and is able to consume more in following years. Economically, an argument is made that, for a range of reasons, there are good reasons to refer to efficiency gains as economic "innovation", both for

  16. Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes

    International Nuclear Information System (INIS)

    Energy utilization and carbon dioxide emission during the production of fresh, peeled, diced, and juiced tomatoes are calculated. The energy utilization for production of raw and packaging materials, transportation, and waste management are also considered. The energy utilization to produce one-ton retail packaged fresh tomatoes is calculated to be 2412.8 MJ, whereas when the tomatoes are converted into paste, the energy utilization increases almost twofold; processing the same amount into the peeled or diced-tomatoes increases the energy utilization seven times. In case of juice production, the increase is five times. The carbon dioxide emission is determined by the source of energy used and is 189.4 kg/t of fresh tomatoes in the case of retail packaging, and did not change considerably when made into paste. The carbon dioxide emission increased twofold with peeled or diced-tomatoes, and increased threefold when juiced. Chemical fertilizers and transportation made the highest contribution to energy utilization and CO2 emission. The difference in energy utilization is determined mainly by water to dry solids ratio of the food and increases with the water content of the final product. Environmentally conscious consumers may prefer eating fresh tomatoes or alternatively tomato paste, to minimize carbon dioxide emission. -- Highlights: → Energy utilization for producing one-ton retail packaged fresh tomatoes was 2412.8 MJ → Energy utilization was 2 folds with paste, 7 times with peeled or diced-tomatoes, 5 times with juice. → Energy utilization increases with water content of the final product. → Transportation, packaging, evaporation and chemicals are the major energy consumers. → Carbon dioxide emission is determined by the source of energy.

  17. Strategies for reducing the emission of carbon dioxide. A study of some Annex 1 countries; Strategier foer att minska koldioxidutslaeppen. En studie av naagra Annex 1 laender

    Energy Technology Data Exchange (ETDEWEB)

    Stenkvist, M.; Olofsdotter, A.

    2000-07-01

    This report gives an overview of the development of carbon dioxide emissions and the energy systems in a number of countries. The analysis also includes the strategies chosen by the countries to reduce the emissions.

  18. Quantifying Fossil Fuel Carbon Dioxide Emissions from Space: Fossil Fuel Data Assimilation System and Global Urban Emissions

    Science.gov (United States)

    Gurney, K. R.; Song, Y.; Asefi-Najafabady, S.; Rayner, P. J.

    2015-12-01

    The Fossil Fuel Data Assimilation System (FFDAS) quantifies fossil fuel carbon dioxide (CO2) emissions for the planet at a scale of 10 km hourly for the time period 1997-2012. FFDAS is based on the Kaya identity constrained by multiple ground and space-based observations. Among these are the DMSP nightlights, Landscan population, and the Ventus power plant database. We have recently downscaled the FFDAS version 2.0 to 1 km x 1 km resolution using nighlights. The finer spatial resolution allows for the examination of urban emissions across the planet. We take two approaches to examination of urban FFCO2 emissions. The first, utilizes named administrative boundaries combined with manual GIS identification (supported by LandSat and ISA) to identify the top emitting urban areas of the planet. We also utilize an urban land mask, without governmental boundary identification, to analyze all urban area by country across the planet. We perform multiple regression to identify key drivers and patterns. The results demonstrate the change in urban emissions during the last decade and assess the question of whether urban areas exhibit scaling properties vis a vis FFCO2 emissions.

  19. Methane and carbon dioxide emissions from constructed wetlands receiving anaerobically pretreated sewage.

    Science.gov (United States)

    de la Varga, D; Ruiz, I; Álvarez, J A; Soto, M

    2015-12-15

    The aim of this research was to determine methane and carbon dioxide emissions from a hybrid constructed wetland (CW) treating anaerobically pre-treated sewage. The CW was constituted of two horizontal flow (free water surface followed by a subsurface) units. A long-term study was carried out as both CW units were monitored for three campaigns in Period 1 (0.9-1.5years after start-up), and four campaigns in Period 2 (4.5-5.8years after start-up). The closed chamber method with collecting surfaces of 1810cm(2) was used. For this system, variability due to position in the transverse section of CW, plant presence or absence and recommended sampling period was determined. Overall methane emissions ranged from 96 to 966mgCH4m(-2) d(-1), depending on several factors as the operation time, the season of the year and the position in the system. Methane emissions increased from 267±188mgCH4m(-2)d(-1) during the second year of operation to 543±161mgCH4m(-2)d(-1) in the sixth year of operation. Methane emissions were related to the age of the CW and the season of the year, being high in spring and becoming lower from spring to winter. Total CO2 emissions ranged mostly from 3500 to 5800mgCO2m(-2)d(-1) during the sixth year of operation, while nitrous oxide emissions were below the detection limit of the method. PMID:26342902

  20. The relationship between carbon dioxide emission and economic growth: Hierarchical structure methods

    Science.gov (United States)

    Deviren, Seyma Akkaya; Deviren, Bayram

    2016-06-01

    Carbon dioxide (CO2) emission has an essential role in the current debate on sustainable development and environmental protection. CO2 emission is also directly linked with use of energy which plays a focal role both for production and consumption in the world economy. Therefore the relationship between the CO2 emission and economic growth has a significant implication for the environmental and economical policies. In this study, within the scope of sociophysics, the topology, taxonomy and relationships among the 33 countries, which have almost the high CO2 emission and economic growth values, are investigated by using the hierarchical structure methods, such as the minimal spanning tree (MST) and hierarchical tree (HT), over the period of 1970-2010. The average linkage cluster analysis (ALCA) is also used to examine the cluster structure more clearly in HTs. According to their proximity, economic ties and economic growth, different clusters of countries are identified from the structural topologies of these trees. We have found that the high income & OECD countries are closely connected to each other and are isolated from the upper middle and lower middle income countries from the MSTs, which are obtained both for the CO2 emission and economic growth. Moreover, the high income & OECD clusters are homogeneous with respect to the economic activities and economic ties of the countries. It is also mentioned that the Group of Seven (G7) countries (CAN, ENG, FRA, GER, ITA, JPN, USA) are connected to each other and these countries are located at the center of the MST for the results of CO2 emission. The same analysis may also successfully apply to the other environmental sources and different countries.

  1. Energy analysis and carbon dioxide emission of Tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Energy gain and carbon dioxide (CO2) emission of tokamak fusion power reactors are evaluated in this study compared with other reactor types, structural materials, and other Japanese energy sources currently in use. The reactors treated in this study are (1) a conventional physics performance international thermonuclear experimental reactor (ITER), like a reactor based upon the ITER engineering design activity (ITER-EDA), (2) a RS (reversed shear) reactor using the reversed shear safety-factor/plasma current profile, and (3) a ST (spherical torus) reactor based upon the final version of the advanced reactor innovative engineering study ST (ARIES-ST). The input energy and CO2 emission from these reactors are calculated by multiplying the weight or cost of the fusion reactor components by the energy intensity and/or with the CO2 intensity data, which are updated as often as possible. The ITER cost estimation is estimated based on the component unit costs. The following results were obtained: (1) The RS and the ST reactor can double the energy gain and reduce CO2 emission by one-half compared with the ITER-like reactor. (2) Silicon carbide (SiC) used as the structural material of inner vessel components is best for energy gain and CO2 emission reduction. (3) The ITER-like reactor is slightly superior to a photovoltaic (PV) with regard to CO2 emission. (4) The energy gain and CO2 emission intensity of the RS reactor and the ST reactor are as excellent as those of a fission reactor and a hydro-powered generator. These results indicate that a tokamak fusion power reactor can be one of the most effective power-generating technologies both in high-energy payback gains and reduction of CO2

  2. Competitiveness and Carbon Dioxide Emissions of Potential Electricity Generating Options in Croatia

    International Nuclear Information System (INIS)

    As part of analysis of options needed to generate additional 6-8 TWh of electrical energy for Croatian consumers by the end of next decade, a comparison between natural gas combined cycle plants jointly with wind electricity generator and nuclear power plants has been performed. The choice is a real challenge, but it is logical that the criteria for optimal option are maximal net cash flow and minimal carbon dioxide emission. Since the comparison has to include analysis of discounted net cash flow during plants operating period (including total life time period and period of most insensitive capital return) and since foreseen potential long term fuel cost variations (gas, uranium concentrate and uranium enrichment) contain substantial uncertainties, the best method is to calculate discounted net cash flow with probabilistic method. Prognosis for long term nuclear fuel cycle and gas costs is included in the analyses. Results, obtained in form of probabilistic distributions, showed that selection of option with nuclear plant would doubtlessly result in higher net cash flow for the investor, and of course, in lower CO2 emissions. Effect of plant selection to net cash flow and CO2 emissions is additionally analyzed by comparing systems containing wind and gas plants versus system with gas plants only. The difference is less pronounced in case when wind generators have low capacity factors (similar to experienced for wind plants already operating on Adriatic coast). (author)

  3. Multiple regression analysis in modelling of carbon dioxide emissions by energy consumption use in Malaysia

    Science.gov (United States)

    Keat, Sim Chong; Chun, Beh Boon; San, Lim Hwee; Jafri, Mohd Zubir Mat

    2015-04-01

    Climate change due to carbon dioxide (CO2) emissions is one of the most complex challenges threatening our planet. This issue considered as a great and international concern that primary attributed from different fossil fuels. In this paper, regression model is used for analyzing the causal relationship among CO2 emissions based on the energy consumption in Malaysia using time series data for the period of 1980-2010. The equations were developed using regression model based on the eight major sources that contribute to the CO2 emissions such as non energy, Liquefied Petroleum Gas (LPG), diesel, kerosene, refinery gas, Aviation Turbine Fuel (ATF) and Aviation Gasoline (AV Gas), fuel oil and motor petrol. The related data partly used for predict the regression model (1980-2000) and partly used for validate the regression model (2001-2010). The results of the prediction model with the measured data showed a high correlation coefficient (R2=0.9544), indicating the model's accuracy and efficiency. These results are accurate and can be used in early warning of the population to comply with air quality standards.

  4. Instruments for the reduction of carbon dioxide emissions: an empirical analysis for Austria

    International Nuclear Information System (INIS)

    Carbon dioxide (CO2) is the most important greenhouse gas and contributes about 50 per cent to the additional greenhouse effect. To avoid significant consequences, appropriate measures have to be set within a short period of time. Austria tries to reach a reduction of 20 per cent. The most important technologies are: efficient use of energy, substitution within fossil energy carries and use of renewable energy carries. In the present work, positive energy political instruments (i.e. subsidies, information, motivation and energy consulting) are discussed in detail. There is a restriction to the sectors industry and trade. Firstly, the Austrian CO2 balance is set up the CO2 total emission factors are calculated. Then, the reduction of CO2 emissions is considered from the point of economy. Secondly, an empirical inquiry is carried out. This shows that the above mentioned energy political instruments have a significant influence on energy conserving measures. Later on, the obstacles are grouped into four categories: lack of information, organizational, technical and economical obstacles. Subsequently, there are generated measured to overcome these obstacles. At least, there are presented two companies, which have already made innovative energy conserving projects. Altogether, there could be shown that the aimed reduction of CO2 emissions is technologically and economically possible

  5. Conceptual design of syngas production systems with almost net-zero carbon dioxide emissions

    International Nuclear Information System (INIS)

    This work describes three different configurations of syngas production processes using a combination of SMR (steam methane reforming) and DRM (dry reforming of methane). The ideal SMR + DRM process ensures the maximum product yield, the heat-integrated SMR + DRM process fulfills the maximum heat recovery, and the stand-alone SMR + DRM process effectively suppress net CO2 (carbon dioxide) emissions. Through specific optimization algorithms, the syngas production systems subject to almost net-zero CO2 emissions are successfully verified by simulations in Aspen Plus environment. - Highlights: • A new syngas production process is composed of SMR (steam methane reforming) and DMR (dry reforming of methane). • The ideal SMR + DRM process can reduce greenhouse gas emissions and increase syngas yield. • The heat-integrated SMR + DRM process can effectively reduce energy consumption. • The stand-alone SMR + DRM process can completely remove external energy supply. • Through design, optimization, and simulation, the proposed system configurations are successfully verified

  6. The future of energy efficiency and carbon dioxide emissions of road freight transport; Tiekuljetusalan energiatehokkuuden ja hiilidioksidipaeaestoejen tulevaisuus

    Energy Technology Data Exchange (ETDEWEB)

    Liimatainen, H.; Poellaenen, M.; Kallionpaeae, E.; Nykaenen, L. [Tampere University of Technology (Finland); Stenholm, P.; Tapio, P. [Univ. of Turku (Finland); McKinnon, A. [Heriot-Watt Univ, Edinburgh (United Kingdom)

    2012-01-15

    The targets to reduce the carbon dioxide emissions to mitigate the climate change are directed to the road freight transport sector similarly to all other sectors of the society. The objectives of the Future of energy efficiency and carbon dioxide emissions of road freight transport -project were (1) to estimate whether the energy efficiency and carbon dioxide emission targets set for the sector can be reached and (2) to give recommendations on the measures which can be used to promote reaching of the targets. In the study a new method was introduced for connecting the data comprising fuel consumption and Goods transport data gathered by the official road statistics. This method enabled a detailed analysis of the interrelations between the economy, road freight transport, energy consumption and emissions. This analysis was conducted for the years 1995-2010 and the results were used as background information in the experts' panel. The experts estimated the development of the Finnish road freight sector to the year 2030. Furthermore, a web-based survey was conducted among Finnish road freight companies in order to explore the attitudes and measures related to the energy efficiency. The results indicate that the economic development of different branches has a great effect on the energy efficiency and carbon dioxide emissions of road freight transport. Reaching the carbon emission target for the year 2030 is possible in the light of the scenarios which were given by the experts. However, the target can be achieved with very different development paths, e.g. the structure of the national economy and the volume of transport seem to vary widely in the different scenarios. In the workshops organised in the study the participant identified various obstacles for the development of the energy efficiency of road freight transport as well as a wide selection of measures to overcome them. In the proposed implications the cooperation and division of responsibilities between

  7. The carbon dioxide cycle

    Science.gov (United States)

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  8. Analyzing carbon dioxide and methane emissions in California using airborne measurements and model simulations

    Science.gov (United States)

    Johnson, M. S.; Yates, E. L.; Iraci, L. T.; Jeong, S.; Fischer, M. L.

    2013-12-01

    Greenhouse gas (GHG) concentrations have increased over the past decades and are linked to global temperature increases and climate change. These changes in climate have been suggested to have varying effects, and uncertain consequences, on agriculture, water supply, weather, sea-level rise, the economy, and energy. To counteract the trend of increasing atmospheric concentrations of GHGs, the state of California has passed the California Global Warming Act of 2006 (AB-32). This requires that by the year 2020, GHG (e.g., carbon dioxide (CO2) and methane (CH4)) emissions will be reduced to 1990 levels. To quantify GHG fluxes, emission inventories are routinely compiled for the State of California (e.g., CH4 emissions from the California Greenhouse Gas Emissions Measurement (CALGEM) Project). The major sources of CO2 and CH4 in the state of California are: transportation, electricity production, oil and gas extraction, cement plants, agriculture, landfills/waste, livestock, and wetlands. However, uncertainties remain in these emission inventories because many factors contributing to these processes are poorly quantified. To alleviate these uncertainties, a synergistic approach of applying air-borne measurements and chemical transport modeling (CTM) efforts to provide a method of quantifying local and regional GHG emissions will be performed during this study. Additionally, in order to further understand the temporal and spatial distributions of GHG fluxes in California and the impact these species have on regional climate, CTM simulations of daily variations and seasonality of total column CO2 and CH4 will be analyzed. To assess the magnitude and spatial variation of GHG emissions and to identify local 'hot spots', airborne measurements of CH4 and CO2 were made by the Alpha Jet Atmospheric eXperiment (AJAX) over the San Francisco Bay Area (SFBA) and San Joaquin Valley (SJV) in January and February 2013 during the Discover-AQ-CA study. High mixing ratios of GHGs were

  9. Carbon dioxide sequestration by mineral carbonation. Feasibility of enhanced natural weathering as a CO2 emission reduction technology

    International Nuclear Information System (INIS)

    A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonates. Potential advantages of mineral CO2 sequestration compared to, e.g., geological CO2 storage include (1) the permanent and inherently safe sequestration of CO2, due to the thermodynamic stability of the carbonate product formed and (2) the vast potential sequestration capacity, because of the widespread and abundant occurrence of suitable feedstock. In addition, carbonation is an exothermic process, which potentially limits the overall energy consumption and costs of CO2 emission reduction. However, weathering processes are slow, with timescales at natural conditions of thousands to millions of years. For industrial implementation, a reduction of the reaction time to the order of minutes has to be achieved by developing alternative process routes. The aim of this thesis is an investigation of the technical, energetic, and economic feasibility of CO2 sequestration by mineral carbonation. In Chapter 1 the literature published on CO2 sequestration by mineral carbonation is reviewed. Among the potentially suitable mineral feedstock for mineral CO2 sequestration, Ca-silicates, more particularly wollastonite (CaSiO3), a mineral ore, and steel slag, an industrial alkaline solid residue, are selected for further research. Alkaline Ca-rich residues seem particularly promising, since these materials are inexpensive and available near large industrial point sources of CO2. In addition, residues tend to react relatively rapidly with CO2 due to their (geo)chemical instability. Various process routes have been proposed for mineral carbonation, which often include a pre-treatment of the solid feedstock (e.g., size reduction and

  10. Reducing Carbon Dioxide Emissions from Electricity Sector Using Smart Electric Grid Applications

    Directory of Open Access Journals (Sweden)

    Lamiaa Abdallah

    2013-01-01

    Full Text Available Approximately 40% of global CO2 emissions are emitted from electricity generation through the combustion of fossil fuels to generate heat needed to power steam turbines. Burning these fuels results in the production of carbon dioxide (CO2—the primary heat-trapping, “greenhouse gas” responsible for global warming. Applying smart electric grid technologies can potentially reduce CO2 emissions. Electric grid comprises three major sectors: generation, transmission and distribution grid, and consumption. Smart generation includes the use of renewable energy sources (wind, solar, or hydropower. Smart transmission and distribution relies on optimizing the existing assets of overhead transmission lines, underground cables, transformers, and substations such that minimum generating capacities are required in the future. Smart consumption will depend on the use of more efficient equipment like energy-saving lighting lamps, enabling smart homes and hybrid plug-in electric vehicles technologies. A special interest is given to the Egyptian case study. Main opportunities for Egypt include generating electricity from wind and solar energy sources and its geographical location that makes it a perfect center for interconnecting electrical systems from the Nile basin, North Africa, Gulf, and Europe. Challenges include shortage of investments, absence of political will, aging of transmission and distribution infrastructure, and lack of consumer awareness for power utilization.

  11. Ozone effects on Sphagnum mosses, carbon dioxide exchange and methane emission in boreal peatland microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, Riikka; Holopainen, Toini [Department of Ecology and Environmental Science, University of Kuopio, P.O. Box 1627, 70211 Kuopio (Finland); Martikainen, Pertti J. [Department of Environmental Sciences, Bioteknia 2, University of Kuopio, P.O. Box 1627, 70211 Kuopio (Finland); Silvola, Jouko [Department of Biology, University of Joensuu, P.O. Box 111, 80101 Joensuu (Finland)

    2002-04-22

    Microcosms of a boreal peatland originating from an oligotrophic fen in Eastern Finland were fumigated under four ozone concentrations (0, 50, 100 and 150 ppb O{sub 3}) in laboratory growth chambers during two separate experiments (autumn and summer) for 4 and 6 weeks, respectively. Ozone effects on Sphagnum mosses and the fluxes of carbon dioxide and methane were evaluated. In both experiments, the three Sphagnum species studied showed only a few significant responses to ozone. In the autumn experiment, membrane permeability of S. angustifolium, measured as conductivity and magnesium leakage, was significantly higher under ozone fumigation (P=0.005 and <0.001, respectively), and there was a distinct dose-dependence. S. magellanicum showed no clear responses, either for membrane leakage or pigment content. There were no substantial ozone responses in the gross photosynthesis or net CO{sub 2} exchange during the 6-week-long summer experiment, but dark ecosystem respiration was transiently increased by ozone concentration of 100 ppb after 14 days of exposure (P<0.05). Fumigation with 100 ppb of ozone, however, more than doubled (P<0.05) methane emission from the peatland monoliths. Our results suggest that increasing tropospheric ozone concentration may cause substantial changes in the carbon gas cycling of boreal peatlands, even though these changes are not closely associated with the changes in Sphagnum vegetation.

  12. Ozone effects on Sphagnum mosses, carbon dioxide exchange and methane emission in boreal peatland microcosms

    International Nuclear Information System (INIS)

    Microcosms of a boreal peatland originating from an oligotrophic fen in Eastern Finland were fumigated under four ozone concentrations (0, 50, 100 and 150 ppb O3) in laboratory growth chambers during two separate experiments (autumn and summer) for 4 and 6 weeks, respectively. Ozone effects on Sphagnum mosses and the fluxes of carbon dioxide and methane were evaluated. In both experiments, the three Sphagnum species studied showed only a few significant responses to ozone. In the autumn experiment, membrane permeability of S. angustifolium, measured as conductivity and magnesium leakage, was significantly higher under ozone fumigation (P=0.005 and 2 exchange during the 6-week-long summer experiment, but dark ecosystem respiration was transiently increased by ozone concentration of 100 ppb after 14 days of exposure (P<0.05). Fumigation with 100 ppb of ozone, however, more than doubled (P<0.05) methane emission from the peatland monoliths. Our results suggest that increasing tropospheric ozone concentration may cause substantial changes in the carbon gas cycling of boreal peatlands, even though these changes are not closely associated with the changes in Sphagnum vegetation

  13. Evaluation of Refrigerating and Air Conditioning Devices in Energy Cascade Systems under the Restriction of Carbon Dioxide Emissions

    Science.gov (United States)

    Shimazaki, Yoichi; Akisawa, Atsushi; Kashiwagi, Takao

    It is necessary to introduce energy cascade systems into the industrial sector in Japan to reduce carbon dioxide emissions. The aim of this study is to evaluate the refrigerating and air conditioning devices in cases of introducing both energy cascade systems and thermal recycling systems in industries located around urban areas. The authors have developed an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Limitation of carbon dioxide emissions results in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature one is shifted to refrigeration. It was found that increasing the amount of garbage combustor waste heat can reduce electric power for the turbo refrigerator by promoting waste heat driven ammonia absorption refrigerator.

  14. Estimating carbon dioxide emission factors for the California electric power sector

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

    2002-08-01

    The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a

  15. Spatial and temporal disaggregation of transport-related carbon dioxide emissions in Bogota - Colombia

    Science.gov (United States)

    Hernandez-Gonzalez, L. A.; Jimenez Pizarro, R.; Néstor Y. Rojas, N. Y.

    2011-12-01

    As a result of rapid urbanization during the last 60 years, 75% of the Colombian population now lives in cities. Urban areas are net sources of greenhouse gases (GHG) and contribute significantly to national GHG emission inventories. The development of scientifically-sound GHG mitigation strategies require accurate GHG source and sink estimations. Disaggregated inventories are effective mitigation decision-making tools. The disaggregation process renders detailed information on the distribution of emissions by transport mode, and the resulting a priori emissions map allows for optimal definition of sites for GHG flux monitoring, either by eddy covariance or inverse modeling techniques. Fossil fuel use in transportation is a major source of carbon dioxide (CO2) in Bogota. We present estimates of CO2 emissions from road traffic in Bogota using the Intergovernmental Panel on Climate Change (IPCC) reference method, and a spatial and temporal disaggregation method. Aggregated CO2 emissions from mobile sources were estimated from monthly and annual fossil fuel (gasoline, diesel and compressed natural gas - CNG) consumption statistics, and estimations of bio-ethanol and bio-diesel use. Although bio-fuel CO2 emissions are considered balanced over annual (or multi-annual) agricultural cycles, we included them since CO2 generated by their combustion would be measurable by a net flux monitoring system. For the disaggregation methodology, we used information on Bogota's road network classification, mean travel speed and trip length for each vehicle category and road type. The CO2 emission factors were taken from recent in-road measurements for gasoline- and CNG-powered vehicles and also estimated from COPERT IV. We estimated emission factors for diesel from surveys on average trip length and fuel consumption. Using IPCC's reference method, we estimate Bogota's total transport-related CO2 emissions for 2008 (reference year) at 4.8 Tg CO2. The disaggregation method estimation is

  16. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis of liquid fuels from coal to minimize carbon dioxide emissions

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman [University of Kentucky, Lexington, KY (United States). Consortium for Fossil Fuel Science and Department of Chemical & Materials Engineering

    2011-08-15

    Synthesis gas (syngas) produced from coal typically has hydrogen to carbon monoxide ratios in the range of approximately 0.7-1.1, depending on the gasification method. In order to produce liquid fuels from this syngas by Fischer-Tropsch synthesis (FTS), these ratios must be raised to 2.0 or higher. If this is accomplished by the water-gas shift reaction, the traditional method, large emissions of carbon dioxide are produced. In this paper, it is shown that catalytic dehydrogenation (CDH) of the gaseous C1-C4 products of FT synthesis and recycling of the resulting hydrogen to the syngas feed-stream can increase the H{sub 2}/CO ratio to the desired values with little or no production of carbon dioxide. All carbon from the CDH reaction is in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWCNT). The amounts of hydrogen and MWCNT produced, carbon dioxide emissions avoided, and water saved are calculated for a 50,000 bbl/day FTS-CDH plant and it is demonstrated that the energy balance for the process is favorable. Methods of utilizing the large quantity of MWCNT produced are discussed. 50 refs., 6 figs., 3 tabs.

  17. Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing

    International Nuclear Information System (INIS)

    Growing global concern regarding climate change motivates technological studies to minimize environmental impacts. In this context, solar water heating (SWH) systems are notably prominent in Brazil, primarily because of the abundance of solar energy in the country. However, SWH designs have not always been perfectly developed. In most projects, the installation option of the solar system only considers the electric power economy aspects and not the particular characteristics of each climatic zone. Thus, the primary objective of this paper is to assess the potential of carbon dioxide reduction with the use of SWH in comparison with electric showers in social housing in several Brazilian climatic zones. The Brazilian government authorities have created public policies to encourage the use of these technologies primarily among the low-income population. The results of this paper indicate that hot climactic regions demonstrate a low reduction of CO2 emissions with SWH installations. Thus, solar radiation is not useful for water heating in those regions, but it does lead to a large fraction of household cooling loads, implying a demand for electrical energy for air conditioning or requiring the adoption of passive techniques to maintain indoor temperatures below threshold values. -- Graphical abstract: Display Omitted -- Highlights: •Brazil has created public policies to increase the use of solar water heating in social housing. •We have evaluated the potential for reduction of CO2 emissions installing solar water heating. •We have found that the coldest regions have the greatest potential for reducing emissions. •Passive technologies for thermal comfort in hot climate households are more useful than solar water heating systems

  18. Carbon Dioxide Fountain

    Science.gov (United States)

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  19. Impact of future nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer

    International Nuclear Information System (INIS)

    The atmospheric levels of human-produced chlorocarbons and bromocarbons are projected to make only small contributions to ozone depletion by 2100. Increases in carbon dioxide (CO2) and nitrous oxide (N2O) will become increasingly important in determining the future of the ozone layer. N2O increases lead to increased production of nitrogen oxides (NOx), contributing to ozone depletion. CO2 increases cool the stratosphere and affect ozone levels in several ways. Cooling decreases the rate of many photochemical reactions, thus slowing ozone loss rates. Cooling also increases the chemical destruction of nitrogen oxides, thereby moderating the effect of increased N2O on ozone depletion. The stratospheric ozone level projected for the end of this century therefore depends on future emissions of both CO2 and N2O. We use a two-dimensional chemical transport model to explore a wide range of values for the boundary conditions for CO2 and N2O, and find that all of the current scenarios for growth of greenhouse gases project the global average ozone to be larger in 2100 than in 1960. (letter)

  20. Particulate and carbon dioxide emissions from diesel fires : the mobile 1997 experiments

    International Nuclear Information System (INIS)

    Various aspects of in-situ burning of diesel oil were studied in a series of 12 mesoscale burns. One of the objectives of the study was to assess five fire-resistant booms and to determine the level of emissions from in-situ burning which has become a common practice for cleanup in oil spills on water. Real-time air monitoring was conducted with MIE RAM and DataRAM Portable real-time aerosol monitors which were set up around the burn to sample and analyse for polycyclic aromatic hydrocarbons. Particulates were found to be at greater than recommended exposure levels but only up to 50 metres downwind at ground level. The downwind distribution of soot could be characterized by simple mathematical functions. Comparisons were also made between real-time monitors and approved fixed devices. Combustion gases, such as carbon dioxide, did not reach exposure level maximums. These gases were emitted over a wide area around the fire and were not directly associated with the plume trajectory. It was suggested that in-situ burning is an acceptable tradeoff when weighed against the environmental risks and cleanup costs of shoreline contamination. 5 refs., 19 tabs., 5 figs

  1. Modeling the Multicommodity Multimodal Routing Problem with Schedule-Based Services and Carbon Dioxide Emission Costs

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2015-01-01

    Full Text Available We explore a freight routing problem wherein the aim is to assign optimal routes to move commodities through a multimodal transportation network. This problem belongs to the operational level of service network planning. The following formulation characteristics will be comprehensively considered: (1 multicommodity flow routing; (2 a capacitated multimodal transportation network with schedule-based rail services and time-flexible road services; (3 carbon dioxide emissions consideration; and (4 a generalized costs optimum oriented to customer demands. The specific planning of freight routing is thus defined as a capacitated time-sensitive multicommodity multimodal generalized shortest path problem. To solve this problem systematically, we first establish a node-arc-based mixed integer nonlinear programming model that combines the above formulation characteristics in a comprehensive manner. Then, we develop a linearization method to transform the proposed model into a linear one. Finally, a computational experiment from the Chinese inland container export business is presented to demonstrate the feasibility of the model and linearization method. The computational results indicate that implementing the proposed model and linearization method in the mathematical programming software Lingo can effectively solve the large-scale practical multicommodity multimodal transportation routing problem.

  2. Role of C3 plant species on carbon dioxide and methane emissions in Mediterranean constructed wetland

    Directory of Open Access Journals (Sweden)

    Carmelo Maucieri

    2014-08-01

    Full Text Available C3 plant species are widely used to vegetate constructed wetlands (CW, but so far no information is available on their effect on CW CO2(eq balance in the Mediterranean climate. The aim of this research was to study carbon dioxide (CO2 and methane (CH4 emissions and CO2(eq budgets of CW horizontal sub-surface flow pilot-plant beds vegetated with Arundo donax L. and Phragmites australis (Cav. Trin. ex Steud. compared with an unvegetated bed in Sicily. The highest total plant biomass production was measured in the bed vegetated with A. donax (17.0 kg m–2, whereas P. australis produced 7.6 kg m–2. CO2 and CH4 emissions and showed significant correlation with average air temperature and solar radiation for each bed. The CO2 emission values ranged from 0.8±0.1 g m–2 d–1, for the unvegetated bed in April, to 24.9±0.6 g m–2 d–1 for the bed with P. australis in August. The average CO2 emissions of the whole monitored period were 15.5±7.2, 15.1±7.1 and 3.6±2.4 g m–2 d–1 for A. donax, P. australis and unvegetated beds respectively. The CH4 fluxes differed significantly over the monitored seasons, with the highest median value being measured during spring (0.963 g m–2 d–1. No statistical differences were found for CH4 flux among the studied beds. Cumulative estimated CH4 emissions during the study period (from April to December were 159.5, 134.1 and 114.7 g m–2 for A. donax, P. australis and unvegetated beds respectively. CO2(eq balance showed that the two vegetated beds act as CO2(eq sinks, while the unvegetated bed, as expected, acts as a CO2(eq source. Considering only the above-ground plant biomass in the CO2(eq budgets, P. australis and A. donax determined uptakes of 1.30 and 8.35 kg CO2(eq m–2 respectively.

  3. Modeling carbon dioxide emissions reductions for three commercial reference buildings in Salt Lake City

    Science.gov (United States)

    Lucich, Stephen M.

    In the United States, the buildings sector is responsible for approximately 40% of the national carbon dioxide (CO2) emissions. CO2 is created during the generation of heat and electricity, and has been linked to climate change, acid rain, a variety of health threats, surface water depletion, and the destruction of natural habitats. Building energy modeling is a powerful educational tool that building owners, architects, engineers, city planners, and policy makers can use to make informed decisions. The aim of this thesis is to simulate the reduction in CO2 emissions that may be achieved for three commercial buildings located in Salt Lake City, UT. The following two questions were used to guide this process: 1. How much can a building's annual CO2 emissions be reduced through a specific energy efficiency upgrade or policy? 2. How much can a building's annual CO2 emissions be reduced through the addition of a photovoltaic (PV) array? How large should the array be? Building energy simulations were performed with the Department of Energy's EnergyPlus software, commercial reference building models, and TMY3 weather data. The chosen models were a medium office building, a primary school, and a supermarket. Baseline energy consumption data were simulated for each model in order to identify changes that would have a meaningful impact. Modifications to the buildings construction and operation were considered before a PV array was incorporated. These modifications include (1) an improved building envelope, (2) reduced lighting intensity, and (3) modified HVAC temperature set points. The PV array sizing was optimized using a demand matching approach based on the method of least squares. The arrays tilt angle was optimized using the golden section search algorithm. Combined, energy efficiency upgrades and the PV array reduced building CO2 emissions by 58.6, 54.0, and 52.2% for the medium office, primary school, and supermarket, respectively. However, for these models, it was

  4. Integration of microalgae into biotechnologie for mitigation of carbon dioxide emissions

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Straka, F.; Lívanský, Karel

    Delhi : Verlag, 2006, s. 250-251. [International Conference on Applied Phycology Algae in Biotechnology and Environment. Delhi (IN), 14.02.2006-15.02.2006] Institutional research plan: CEZ:AV0Z50200510 Keywords : microalgae * carbon dioxide Subject RIV: EE - Microbiology, Virology

  5. Contribution of Ebullition to Methane and Carbon Dioxide Emission from Water between Plant Rows in a Tropical Rice Paddy Field

    OpenAIRE

    Komiya, Shujiro; Noborio, Kosuke; Katano, Kentaro; Pakoktom, Tiwa; Siangliw, Meechai; Toojinda, Theerayut

    2015-01-01

    Although bubble ebullition through water in rice paddy fields dominates direct methane (CH4) emissions from paddy soil to the atmosphere in tropical regions, the temporal changes and regulating factors of this ebullition are poorly understood. Bubbles in a submerged paddy soil also contain high concentrations of carbon dioxide (CO2), implying that CO2 ebullition may occur in addition to CH4 ebullition. We investigated the dynamics of CH4 and CO2 ebullition in tropical rice paddy fields using ...

  6. The POETICs of industrial carbon dioxide emissions in Japan: an urban and institutional extension of the IPAT identity

    OpenAIRE

    Scholz Stephan

    2006-01-01

    Abstract Background This study applies the POETICs framework (population, organization, environment, technology, institutions and culture) to an analysis of industrial carbon dioxide emissions in Japanese cities. The inclusion of institutional variables in the form of International Council for Local Environmental Initiatives membership, ISO 14001 implementation, and non-profit sector activity addresses the ecological limitations of the often used IPAT (impact = population × affluence × techno...

  7. THE ANALYSIS OF FUEL CONSUMPTION STRUCTURE AND CARBON DIOXIDE EMISSIONS BY VIEW OF ENERGY SECURITY IN ENERGETICS OF THE REPUBLIC OF MOLDOVA

    Directory of Open Access Journals (Sweden)

    Bicova E.V.

    2008-04-01

    Full Text Available In the paper the analysis of fuel consumption block indicators dynamics of energy security indicators system is presented. Calculations results of carbon dioxide emissions in energy security indicators system ecological block are presented as well.

  8. Nongovernmental valorization of carbon dioxide

    International Nuclear Information System (INIS)

    Carbon dioxide (CO2) is considered the largest contributor to the greenhouse gas effect. Most attempts to manage the flow of CO2 or carbon into our environment involve reducing net emissions or sequestering the gas into long-lived sinks. Using CO2 as a chemical feedstock has a long history, but using it on scales that might impact the net emissions of CO2 into the atmosphere has not generally been considered seriously. There is also a growing interest in employing our natural biomes of carbon such as trees, vegetation, and soils as storage media. Some amelioration of the net carbon emissions into the atmosphere could be achieved by concomitant large withdrawals of carbon. This report surveys the potential and limitations in employing carbon as a resource for organic chemicals, fuels, inorganic materials, and in using the biome to manage carbon. The outlook for each of these opportunities is also described

  9. Is Fuel-Switching a No-Regrets Environmental Policy? VAR Evidence on Carbon Dioxide Emissions, Energy Consumption and Economic Performance in Portugal

    OpenAIRE

    Pereira, Alfredo Marvão; Pereira, Rui Manuel Marvão

    2008-01-01

    The objective of this paper is to estimate the impact of carbon dioxide emissions from fossil fuel combustion activities on economic activity in Portugal in order to evaluate the economic costs of policies designed to reduce carbon dioxide emissions. We find that energy consumption has a significant impact on macroeconomic activity. In fact, a one ton of oil equivalent permanent reduction in aggregate energy consumption reduces output by €6,340 over the long term, an aggregate impact which hi...

  10. Emission of carbon dioxide from diesel engines with emphasis on emissions in Republic of Macedonia

    International Nuclear Information System (INIS)

    This paper presents a research work done on the arising of the air pollutants, which are a result of the combustion of fuel in diesel engines. In addition, there is a data given the increase of the consumption of diesel fuel within several consecutive years. Also there is a graphical representation of the increase of the imported used vehicles in the country, after the reduction of the customs price and excise, and then two scenarios for air pollution from these vehicles are given. In the first scenario, CO2 emissions are calculated under the current allocation of imported new and used vehicles, while in the second scenario the CO2 emissions from the imported vehicles are calculated, but this time 2009 was taken as the basis of the ratio of imported new and imported used vehicles, when importation of vehicles was done by the old prices of customs and excise. (Author)

  11. Macroeconomic effects of carbon dioxide emission reduction: a computable general equilibrium analysis for Malaysia

    OpenAIRE

    Al-Amin, Abul Quasem; Abdul Hamid, Jaafar; Chamhuri, Siwar

    2008-01-01

    This study analyzes the macroeconomic effects of limiting carbon emissions using computable general equilibrium (CGE) model in the Malaysian economy. Doing so, we developed an environmental computable general equilibrium model and investigate carbon tax policy responses in the economy applying exogenously different degrees of carbon tax into the model. Three simulations were carried out using a Malaysian Social Accounting Matrix. The carbon tax policy illustrates that a 1.21% reduction of car...

  12. Global Warming: Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption Using Neural Network and Hybrid Cuckoo Search Algorithm

    OpenAIRE

    Haruna Chiroma; Sameem Abdul-kareem; Abdullah Khan; Nazri Mohd. Nawi; Abdulsalam Ya'u Gital; Liyana Shuib; Abubakar, Adamu I.; Muhammad Zubair Rahman; Tutut Herawan

    2015-01-01

    Background Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emi...

  13. Analysis of energy consumption and carbon dioxide emissions in ceramic tile manufacture; Analisis de consumos energeticos y emisiones de dioxido de carbono en la fabricacion de baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, E.; Mezquita, A.; Granel, R.; Vaquer, E.; Escrig, A.; Miralles, A.; Zaera, V.

    2010-07-01

    The ceramic tile manufacturing process is energy intensive since it contains several stages in which the product is subject to thermal treatment. The thermal energy used in the process is usually obtained by combustion of natural gas, which is a fossil fuel whose oxidation produces emissions of carbon dioxide, a greenhouse gas. Energy costs account for 15% of the average direct manufacturing costs, and are strongly influenced by the price of natural gas, which has increased significantly in the last few years. Carbon dioxide emissions are internationally monitored and controlled in the frame of the Kyoto Protocol. Applicable Spanish law is based on the European Directive on emissions trading, and the assignment of emissions rights is based on historical values in the sectors involved. Legislation is scheduled to change in 2013, and the resulting changes will directly affect the Spanish ceramic tile manufacturing industry, since many facilities will become part of the emissions trading system. The purpose of this study is to determine current thermal energy consumption and carbon dioxide emissions in the ceramic tile manufacturing process. A comprehensive sectoral study has been carried out for this purpose on several levels: the first analyses energy consumption and carbon dioxide emissions in the entire industry; the second determines energy consumption and carbon dioxide emissions in industrial facilities over a long period of time (several months); while the third level breaks down these values, determining energy consumption and emissions in terms of the product made and the manufacturing stage. (Author) 8 refs.

  14. The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems

    Energy Technology Data Exchange (ETDEWEB)

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1994-06-01

    Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

  15. The POETICs of industrial carbon dioxide emissions in Japan: an urban and institutional extension of the IPAT identity

    Directory of Open Access Journals (Sweden)

    Scholz Stephan

    2006-09-01

    Full Text Available Abstract Background This study applies the POETICs framework (population, organization, environment, technology, institutions and culture to an analysis of industrial carbon dioxide emissions in Japanese cities. The inclusion of institutional variables in the form of International Council for Local Environmental Initiatives membership, ISO 14001 implementation, and non-profit sector activity addresses the ecological limitations of the often used IPAT (impact = population × affluence × technology approach. Results Results suggest the weak existence of an environmental Kuznets curve, in which the wealthiest cities are reducing their emissions through increased efficiency. Significant institutional impacts are also found to hold in the predicted directions. Specifically, panel and cross-sectional regressions indicate that membership in the International Council for Local Environmental Initiatives and non-profit organizational presence have negative effects on industrial carbon dioxide emissions. Conclusion The presence of institutional drivers at the city level provides empirical support for the POETICs rubric, which recasts the ecological framing of the IPAT identity in a more sociological mold. The results also indicate that Japanese civil society has a role to play in carbon mitigation. More refined studies need to take into consideration an expanded set of methods, drivers, and carbon budgets, as applied to a broader range of cases outside of Japan, to more accurately assess how civil society can bridge the issue of scale that separates local level policy concerns from global level climate dynamics.

  16. Social Roots of Global Environmental Change: A World-Systems Analysis of Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    J. Timmons Roberts

    2015-08-01

    Full Text Available Carbon dioxide is understood to be the most important greenhouse gas believed to be altering the global climate. This article applies world-system theory to environmental damage. An analysis of 154 countries examines the contribution of both position in the world economy and internal class and political forces in determining a nation's CO, intensity. CO, intensity is defined here as the amount of carbon dioxide released per unit of economic output. An inverted U distribution of CO, intensity across the range of countries in the global stratification system is identified and discussed. Ordinary Least Squares regression suggests that the least efficient consumers of fossil fuels are some countries within the semi-periphery and upper periphery, spe-cifically those nations which are high exporters, those highly in debt, nations with higher military spending, and those with a repressive social structure.

  17. Experimental studies and physically substantiated model of carbon dioxide emission from the exposed cultural layer of Velikii Novgorod

    Science.gov (United States)

    Smagin, A. V.; Dolgikh, A. V.; Karelin, D. V.

    2016-04-01

    The results of quantitative assessment and modeling of carbon dioxide emission from urban pedolithosediments (cultural layer) in the central part of Velikii Novgorod are discussed. At the first stages after the exposure of the cultural layer to the surface in archaeological excavations, very high CO2 emission values reaching 10-15 g C/(m2 h) have been determined. These values exceed the normal equilibrium emission from the soil surface by two orders of magnitude. However, they should not be interpreted as indications of the high biological activity of the buried urban sediments. A model based on physical processes shows that the measured emission values can be reliably explained by degassing of the soil water and desorption of gases from the urban sediments. This model suggests the diffusion mechanism of the transfer of carbon dioxide from the cultural layer into the atmosphere; in addition, it includes the equations to describe nonequilibrium interphase interactions (sorption-desorption and dissolution-degassing of CO2) with the first-order kinetics. With the use of statistically reliable data on physical parameters—the effective diffusion coefficient as dependent on the aeration porosity, the effective solubility, the Henry constant for the CO2 sorption, and the kinetic constants of the CO2 desorption and degassing of the soil solution—this model reproduces the experimental data on the dynamics of CO2 emission from the surface of the exposed cultural layer obtained by the static chamber method.

  18. Decomposition analysis of energy-related carbon dioxide emissions in the iron and steel industry in China

    Institute of Scientific and Technical Information of China (English)

    Wenqiang SUN; Jiuju CAI, Hai YU, Lei DAI

    2012-01-01

    This work aims to identify the main factors influencing the energy-related carbon dioxide (CO2) emissions from the iron and steel industry in China during the period of 1995-2007. The logarithmic mean divisia index (LMDI) technique was applied with period-wise analysis and time-series analysis. Changes in energy- related CO2 emissions were decomposed into four factors: emission factor effect, energy structure effect, energy consumption effect, and the steel production effect. The results show that steel production is the major factor responsible for the rise in CO2 emissions during the sampling period; on the other hand the energy consump- tion is the largest contributor to the decrease in C02 emissions. To a lesser extent, the emission factor and energy structure effects have both negative and positive contributions to C02 emissions, respectively. Policy implications are provided regarding the reduction of C02 emissions from the iron and steel industry in China, such as controlling the overgrowth of steel production, improving energy-saving technologies, and introducing low-carbon energy sources into the iron and steel industry.

  19. Carbon dioxide disposal in solid form

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, K.S.; Butt, D.P.; Sharp, D.H. [Los Alamos National Lab., NM (United States); Wendt, C.H. [Auxon Corp., (United States)

    1995-12-31

    Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

  20. The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change

    International Nuclear Information System (INIS)

    Artificial removal of CO2 from the atmosphere (also referred to as negative emissions) has been proposed as a means to restore the climate system to a desirable state, should the impacts of climate change become ‘dangerous’. Here we explore whether negative emissions are indeed effective in reversing climate change on human timescales, given the potentially counteracting effect of natural carbon sinks and the inertia of the climate system. We designed a range of CO2 emission scenarios, which follow a gradual transition to a zero-carbon energy system and entail implementation of various amounts of net-negative emissions at technologically plausible rates. These scenarios are used to force an Earth System Model of intermediate complexity. Results suggest that while it is possible to revert to a desired level of warming (e.g. 2 °C above pre-industrial) after different levels of overshoot, thermosteric sea level rise is not reversible for at least several centuries, even under assumption of large amounts of negative CO2 emissions. During the net-negative emission phase, artificial CO2 removal is opposed by CO2 outgassing from natural carbon sinks, with the efficiency of CO2 removal—here defined as the drop in atmospheric CO2 per unit negative emission—decreasing with the total amount of negative emissions. (letter)

  1. Carbon dioxide recycling

    Science.gov (United States)

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  2. Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    A. Hooijer

    2012-02-01

    different forms of agricultural land management. It is the first to purposefully quantify heterotrophic CO2 emissions resulting from tropical peat decomposition by separating these from autotrophic emissions. It also provides the most scientifically- and statistically-rigorous study to date of CO2 emissions resulting from anthropogenic modification of this globally significant carbon rich ecosystem. Our findings indicate that past studies have underestimated emissions from peatland plantations, with important implications for the scale of greenhouse gas emissions arising from land use change, particularly in the light of current, rapid agricultural conversion of peatlands in the Southeast Asian region.

  3. 我国人口-经济-二氧化碳排放的关联研究%Causal Relationships among Population and Carbon Dioxide Emissions

    Institute of Scientific and Technical Information of China (English)

    肖周燕

    2012-01-01

    通过全国1995~2008年各省区二氧化碳排放和人口发展状况对比发现,人口与二氧化碳排放之间并不呈现简单的正相关关系。本文引入经济系统对人口与二氧化碳排放之间的关系进行关联分析。研究发现,在短时期内,人口增长对二氧化碳排放的影响不可忽视,但从长远来看,经济增长对二氧化碳排放影响更为重要。值得注意的是,虽然人口和经济增长是二氧化碳排放变化的原因,但当滞后期延长,人口和经济系统之间将互为因果,使得人口和二氧化碳排放的关系将更为复杂。%The carbon dioxide emissions of the provinces would be calculated from 1995 to 2008.And we compare the provinces' carbon dioxide emissions and population development.We found that the relationship between population and carbon dioxide emissions are not a simple correlation.In order to probe the relation,we introduce the economic variable into the research,take advantage the co-integration analysis and Granger causality test.The paper found that the population and economic growth is the main reason of carbon dioxide emission change.In short run the population growth would impact the carbon dioxide emissions,and increase in carbon dioxide emissions cannot be simply attributed to overpopulation,economic growth impact on carbon dioxide emissions more strongly.

  4. Global Warming: Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption Using Neural Network and Hybrid Cuckoo Search Algorithm.

    Directory of Open Access Journals (Sweden)

    Haruna Chiroma

    Full Text Available Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2 from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC CO2 emissions from petroleum consumption have motivated this research.The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods.An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks--hence, reducing global warming. The policy implications are discussed in the paper.

  5. Network Level Carbon Dioxide Emissions From On-road Sources in the Portland OR, (USA) Metropolitan Area

    Science.gov (United States)

    Powell, J.; Butenhoff, C. L.; Rice, A. L.

    2014-12-01

    To mitigate climate change, governments at multiple levels are developing policies to decrease anthropogenic carbon dioxide (CO2) emissions. The City of Portland (Oregon) and Multnomah County have adopted a Climate Action Plan with a stated goal of reducing emissions to 80% below 1990 levels by 2050. The transportation sector alone accounts for about 40% of total emissions in the Portland metropolitan area. Here we show a new street-level model of on-road mobile CO2 emissions for the Portland, OR metropolitan region. The model uses hourly traffic counter recordings made by the Portland Bureau of Transportation at 9,352 sites over 21 years (1986-2006), augmented with freeway loop detector data from the Portland Regional Transportation Archive Listing (PORTAL) transportation data archive. We constructed a land use regression model to fill in traffic network gaps with traffic counts as the dependent variable using GIS data such as road class (32 categories) and population density. The Environmental Protection Agency (EPA) MOtor Vehicle Emission Simulator (MOVES) model was used to estimate transportation CO2 emissions. The street-level emissions can be aggregated and gridded and used as input to atmospheric transport models for comparison with atmospheric measurements. This model also provides an independent assessment of top-down inventories that determine emissions from fuel sales, while being an important component of our ongoing effort to assess the effectiveness of emission mitigation strategies at the urban scale.

  6. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels

    DEFF Research Database (Denmark)

    Shaffer, G.; Olsen, S.M.; Pedersen, Jens Olaf Pepke

    2009-01-01

    Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion and...... solubility from surface-layer warming accounts for most of the enhanced oxygen depletion in the upper 500 m of the ocean. Possible weakening of ocean overturning and convection lead to further oxygen depletion, also in the deep ocean. We conclude that substantial reductions in fossil-fuel use over the next...

  7. Carbon dioxide and climate

    International Nuclear Information System (INIS)

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  8. Carbon dioxide reducing processes; Koldioxidreducerande processer

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Fredrik

    1999-12-01

    This thesis discusses different technologies to reduce or eliminate the carbon dioxide emissions, when a fossil fuel is used for energy production. Emission reduction can be accomplished by separating the carbon dioxide for storage or reuse. There are three different ways of doing the separation. The carbon dioxide can be separated before the combustion, the process can be designed so that the carbon dioxide can be separated without any energy consumption and costly systems or the carbon dioxide can be separated from the flue gas stream. Two different concepts of separating the carbon dioxide from a combined cycle are compared, from the performance and the economical point of view, with a standard natural gas fired combined cycle where no attempts are made to reduce the carbon dioxide emissions. One concept is to use absorption technologies to separate the carbon dioxide from the flue gas stream. The other concept is based on a semi-closed gas turbine cycle using carbon dioxide as working fluid and combustion with pure oxygen, generated in an air-separating unit. The calculations show that the efficiency (power) drop is smaller for the first concept than for the second, 8.7 % points compared to 13.7 % points, when power is produced. When both heat and power are produced, the relation concerning the efficiency (power) remains. Regarding the overall efficiency (heat and power) the opposite relation is present. A possible carbon dioxide tax must exceed 0.21 SEK/kg CO{sub 2} for it to be profitable to separate carbon dioxide with any of these technologies.

  9. Evaluation of carbon dioxide emission control strategies in New York State

    International Nuclear Information System (INIS)

    A MARKAL model was developed for the State of New York. It represents the state's energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO2 emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO2 emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country

  10. Evaluation of carbon dioxide emission control strategies in New York State. Final report, 1990--1991

    Energy Technology Data Exchange (ETDEWEB)

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  11. Evaluation of carbon dioxide emission control strategies in New York State

    Energy Technology Data Exchange (ETDEWEB)

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state's energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  12. World-Economy Centrality and Carbon Dioxide Emissions: A New Look at the Position in the Capitalist World-System and Environmental Pollution

    Directory of Open Access Journals (Sweden)

    Paul Prew

    2015-08-01

    Full Text Available With the ever-growing concern of climate change, much attention has been paid to the factors driving carbon dioxide emissions. Previous research in the World-Systems perspective has identified a relationship between carbon dioxide emissions and position in the world-economy. This study intends to build on the previous research by developing a new, more parsimonious indicator of World-System position based on Immanuel Wallerstein’s theoretical concepts of incorporation and core-periphery processes. The new World-System indicator is derived from the centrality measure in network analysis based on import data from the International Monetary Fund’s Direction of Trade Statistics. Based on the theoretical concepts of core-periphery processes, carbon dioxide emissions are predicted to rise based on the predominance of energy-intensive, high-technology, core processes within the nation. The results tend to demonstrate a strong relationship between carbon dioxide emissions and position in the world-economy, and the new World-System position indicator is more strongly related with carbon dioxide emissions than Gross Domestic Product per capita.

  13. Determination of Each Province's Carbon Dioxide Reduction Target Based on Embodied Carbon Dioxide Emissions%基于隐含碳排放的碳减排目标研究

    Institute of Scientific and Technical Information of China (English)

    张增凯; 郭菊娥; 安尼瓦尔·阿木提

    2011-01-01

    中国政府以2005年为基年提出了碳减排指标,确定各省碳减排基数对于明确各省碳减排责任具有重要意义.本文结合“十一五”期间节能指标分解过程中存在的问题,分析了省际贸易中隐含的碳排放对于确定各省碳减排基数的影响,并分别基于生产者负责原则和消费者负责原则计算了“十二五”期间各省碳减排基数.计算结果表明:①将工业部门拆分为23个部门能够更加充分反映省际贸易结构差异对于隐含碳排放计算的影响;②省际贸易中隐含碳排放不仅在各省间有较大差异而且呈现出从中西部地区调往东部地区的整体转移方向;③不同原则下各省碳减排基数计算结果存在较大差异,消费者负责原则更加真实地反映了各地区实际减排责任,避免了部分省份通过省际调进代替本省生产的方式实现碳减排目标.%Measuring each province's carbon dioxide emissions is of great significance for the carbon reduction target, announced by Chinese Central Government, with 2005 as the base year. This paper firstly analyzes the existing problems of the energy conservation during the Eleventh Five Year Plan period and then studies the influence of embodied carbon dioxide emissions on the calculation of each province' s carbon emissions basis. Finally, each province' s carbon dioxide emissions of the base year are calculated based on two principles: the producer responsibility principle and the consumer responsibility principle. Several crucial conclusions are drawn as follows. First, dividing the industrial sector into 23 sectors adequately reflects the influence of the structural difference in inter-provincial trade on the calculation of the embodied carbon dioxide emissions. Second, the provincial differences of embodied carbon dioxide emissions are obvious. The transfer direction of embodied carbon dioxide emissions is from the central and western regions to the eastern

  14. Application of the Denitrification-Decomposition Model to Predict Carbon Dioxide Emissions under Alternative Straw Retention Methods

    Directory of Open Access Journals (Sweden)

    Can Chen

    2013-01-01

    Full Text Available Straw retention has been shown to reduce carbon dioxide (CO2 emission from agricultural soils. But it remains a big challenge for models to effectively predict CO2 emission fluxes under different straw retention methods. We used maize season data in the Griffith region, Australia, to test whether the denitrification-decomposition (DNDC model could simulate annual CO2 emission. We also identified driving factors of CO2 emission by correlation analysis and path analysis. We show that the DNDC model was able to simulate CO2 emission under alternative straw retention scenarios. The correlation coefficients between simulated and observed daily values for treatments of straw burn and straw incorporation were 0.74 and 0.82, respectively, in the straw retention period and 0.72 and 0.83, respectively, in the crop growth period. The results also show that simulated values of annual CO2 emission for straw burn and straw incorporation were 3.45 t C ha−1 y−1 and 2.13 t C ha−1 y−1, respectively. In addition the DNDC model was found to be more suitable in simulating CO2 mission fluxes under straw incorporation. Finally the standard multiple regression describing the relationship between CO2 emissions and factors found that soil mean temperature (SMT, daily mean temperature (Tmean, and water-filled pore space (WFPS were significant.

  15. A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics

    International Nuclear Information System (INIS)

    The paper examined the case study of the Saudi electricity sector and provided projections for energy use and respective carbon dioxide (CO2) emissions for the period 2010–2025 with and without cleaner energy technologies. Based on two sets of 20 life cycle assessment studies for carbon capture and storage and solar photovoltaic technologies, CO2 emission reduction rates were used for projecting future CO2 emissions. Results showed enormous savings in CO2 emissions, for the most likely case, year 2025 reported savings that range from 136 up to 235 MtCO2. Including low growth and high growth cases, these savings could range from 115 up to 468 MtCO2 presenting such an unrivalled opportunity for Saudi Arabia. These projections were developed as a way of translating the inherent advantages that cleaner energy technologies could provide for CO2 emissions savings. It is hoped that the results of this paper would inform energy policymaking in Saudi Arabia. - Highlights: • Electricity use in Saudi Arabia is predicted in the period 2010–2025. • Use of photovoltaic plants and carbon capture and storage are considered. • Life cycle assessment of the options is conducted. • Carbon emissions with and without the renewable energy are estimated. • The projections showcase the CO2 emissions savings

  16. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    Directory of Open Access Journals (Sweden)

    A. Sepulveda-Jauregui

    2014-09-01

    Full Text Available Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4 and carbon dioxide (CO2 emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lake CH4 emissions was two times higher than that of CO2. Ebullition and Diffusion were the dominant modes of CH4 and CO2 emissions respectively. IBS, ~ 10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.

  17. Carbon dioxide laser guidelines

    Directory of Open Access Journals (Sweden)

    Krupa Shankar D

    2009-01-01

    Full Text Available The carbon dioxide (CO 2 laser is a versatile tool that has applications in ablative lasing and caters to the needs of routine dermatological practice as well as the aesthetic, cosmetic and rejuvenation segments. This article details the basics of the laser physics as applicable to the CO 2 laser and offers guidelines for use in many of the above indications.

  18. Thermodynamic analysis of gas – steam combined cycle with carbon dioxide (CO2 emissions saving

    Directory of Open Access Journals (Sweden)

    Alka Gupta, Om Prakash, S.K. Shukla

    2011-03-01

    Full Text Available In this paper, cogeneration or combined heat and power (CHP cycle has been analyzed in order to improve the efficiency of the gas – steam combined cycle and utilization of waste heat. The efficiency of the combined cycle is improved by decreasing the compressor inlet temperature (CIT and increasing the turbine inlet temperature (TIT. It is observed that the cycle offers the advantage of making efficient use of the energy available in the fuel and in turn, eliminate some portion of pollution associated with the power generation. The study also reveals that if this cycle is being employed for cogeneration, there is a significant saving (11.60% in the amount of Carbon dioxide (CO2 emitted by the coal-fired thermal power plants.

  19. A two-stage inexact-stochastic programming model for planning carbon dioxide emission trading under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.T.; Li, Y.F. [Energy and Environmental Research Center, North China Electric Power University, Beijing 102206 (China); Li, Y.P. [Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Huang, G.H. [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan (Canada); Chen, X. [Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China)

    2010-03-15

    In this study, a two-stage inexact-stochastic programming (TISP) method is developed for planning carbon dioxide (CO{sub 2}) emission trading under uncertainty. The developed TISP incorporates techniques of interval-parameter programming (IPP) and two-stage stochastic programming (TSP) within a general optimization framework. The TISP can not only tackle uncertainties expressed as probabilistic distributions and discrete intervals, but also provide an effective linkage between the pre-regulated greenhouse gas (GHG) management policies and the associated economic implications. The developed method is applied to a case study of energy systems and CO{sub 2} emission trading planning under uncertainty. The results indicate that reasonable solutions have been generated. They can be used for generating decision alternatives and thus help decision makers identify desired GHG abatement policies under various economic and system-reliability constraints. (author)

  20. Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea

    International Nuclear Information System (INIS)

    We adopted the Divisia index approach to explore the impacts of five factors on the total carbon dioxide emissions from highway vehicles in Germany, Japan, South Korea and Taiwan during 1990-2002. CO2 emission was decomposed into emission coefficient, vehicle fuel intensity, vehicle ownership, population intensity and economic growth. In addition, the decoupling effects among economic growth, transport energy demand and CO2 emission were analyzed to better understand the fuel performance and CO2 mitigation strategies for each country. From our results, we suggest that the rapid growths of economy and vehicle ownership were the most important factors for the increased CO2 emissions, whereas population intensity contributed significantly to emission decrease. Energy conservation performance and CO2 mitigation in each country are strongly correlated with environmental pressure and economic driving force, except for Germany in 1993 and Taiwan during 1992-1996. To decouple the economic growth and environmental pressure, proponents of sustainable transport policy in Taiwan should focus on improving the operation and energy use of its highway transportation system by implementing an intelligent transportation system (ITS) with demand management, constructing an integrated feeder system, and encouraging the use of green transport modes

  1. Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea

    International Nuclear Information System (INIS)

    We adopted the Divisia index approach to explore the impacts of five factors on the total carbon dioxide emissions from highway vehicles in Germany, Japan, South Korea and Taiwan during 1990-2002. CO2 emission was decomposed into emission coefficient, vehicle fuel intensity, vehicle ownership, population intensity and economic growth. In addition, the decoupling effects among economic growth, transport energy demand and CO2 emission were analyzed to better understand the fuel performance and CO2 mitigation strategies for each country. From our results, we suggest that the rapid growths of economy and vehicle ownership were the most important factors for the increased CO2 emissions, whereas population intensity contributed significantly to emission decrease. Energy conservation performance and CO2 mitigation in each country are strongly correlated with environmental pressure and economic driving force, except for Germany in 1993 and Taiwan during 1992-1996. To decouple the economic growth and environmental pressure, proponents of sustainable transport policy in Taiwan should focus on improving the operation and energy use of its highway transportation system by implementing an intelligent transportation system (ITS) with demand management, constructing an integrated feeder system, and encouraging the use of green transport modes. (author)

  2. Ways to fight against climate change - Renewable energy promotion and carbon dioxide emissions trading vs. nuclear power

    International Nuclear Information System (INIS)

    The international treaty on climate change - the Kyoto Protocol - came into effect on February 16 2005. Under the Kyoto Protocol, the EU countries must reduce their CO2 emissions to 8 percent below 1990 levels by 2010 and the United States target is 7 percent below 1990 emissions. A comparison between the greenhouse gas emissions per capita registered in 1995 in the main industrialized countries of the world is shown. Unfortunately, the most important producer of greenhouse gas emissions. We can say that the challenge for energy supply over the next 50 years is how to meet the rapidly growing demand for energy services from a growing population while limiting the greenhouse gas emissions. In this context the following ways to fight against climate change by limiting the greenhouse gas emissions can be highlighted: - Carbon emissions trading (along with JI-CDM mechanisms of Kyoto Protocol); - Promotion of renewable resources; - Return to nuclear power promotion. The paper addresses the following issues: Carbon emissions trading - A new weapon against global warming; Promotion of renewable resources; Nuclear energy is not only an option, but a real need; Nuclear power - Pro and contra; Romanian status. In conclusion one underlines that the main tools in fighting the climate change by limiting the greenhouse gas emissions are: carbon dioxide emissions trading (along with JI-CDM mechanisms of Kyoto Protocol), the promotion of renewable resources and continuing to develop nuclear power. The nuclear power is and will remain in our opinion the main alternative in fighting climate changes in the coming years. It provides large scale electricity supply at lowest costs, copes with the global warming and last but not least, avoids tensions on oil and natural gas markets. Romania benefits from significant hydro generation installed capacities, free of greenhouse gas emissions and has made important steps towards the three directions mentioned above to be in line with the

  3. Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?

    CERN Document Server

    Garrett, Timothy J

    2008-01-01

    Global Climate Models (GCMs) provide forecasts of future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions models as input, each based on the evolution of four emissions "drivers": population p, standard of living g, energy productivity (or efficiency) f and energy carbonization c. The range of scenarios considered is extremely broad, however, and this is a primary source of forecast uncertainty. Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production - or p times g - through a time-independent factor of 9.7 +/- 0.3 milliwatts per inflation-adjuste...

  4. Grey relation performance correlations among economics, energy use and carbon dioxide emission in Taiwan

    International Nuclear Information System (INIS)

    This study explores the inter-relationships among economy, energy and CO2 emissions of 37 industrial sectors in Taiwan in order to provide insight regarding sustainable development policy making. Grey relation analysis was used to analyse the productivity, aggregate energy consumption, and the use of fuel mix (electricity, coal, oil and gas) in relation to CO2 emission changes. An innovative evaluative index system was devised to explore grey relation grades among economics, energy and environmental quality. Results indicate that a rapid increase in electricity generation during the past 10 years is the main reason for CO2 emission increase in Taiwan. The largest CO2 emitting sectors include iron and steel, transportation, petrochemical materials, commerce and other services. Therefore, it is important to reduce the energy intensity of these sectors by energy conservation, efficiency improvement and adjustment of industrial structure towards high value-added products and services. Economic growth for all industries has a more significant influence, than does total energy consumption, on CO2 emission increase in Taiwan. It is also important to decouple the energy consumption and production to reduce the impacts of CO2 on economic growth. Furthermore, most of the sectors examined had increased CO2 emissions, except for machinery and road transportation. For high energy intensive and CO2 intensive industries, governmental policies for CO2 mitigation should be directed towards low carbon fuels as well as towards enhancement of the demand side management mechanism, without loss of the nation's competitiveness

  5. The effect of regional groundwater on carbon dioxide and methane emissions from a lowland rainforest stream in Costa Rica

    Science.gov (United States)

    Oviedo-Vargas, Diana; Genereux, David P.; Dierick, Diego; Oberbauer, Steven F.

    2015-12-01

    In the tropical rainforest at La Selva Biological Station in Costa Rica, regional bedrock groundwater high in dissolved carbon discharges into some streams and wetlands, with the potential for multiple cascading effects on ecosystem carbon pools and fluxes. We investigated carbon dioxide (CO2) and methane (CH4) degassing from two streams at La Selva: the Arboleda, where approximately one third of the streamflow is from regional groundwater, and the Taconazo, fed exclusively by local groundwater recharged within the catchment. The regional groundwater inflow to the Arboleda had no measurable effect on stream gas exchange velocity, dissolved CH4 concentration, or CH4 emissions but significantly increased stream CO2 concentration and degassing. CO2 evasion from the reach of the Arboleda receiving regional groundwater (lower Arboleda) averaged 5.5 mol C m-2 d-1, ~7.5 times higher than the average (0.7 mol C m-2 d-1) from the stream reaches with no regional groundwater inflow (the Taconazo and upper Arboleda). Carbon emissions from both streams were dominated by CO2; CH4 accounted for only 0.06-1.70% of the total (average of both streams: 5 × 10-3 mol C m-2 d-1). Annual stream degassing fluxes normalized by watershed area were 48 and 299 g C m-2 for the Taconazo and Arboleda, respectively. CO2 degassing from the Arboleda is a significant carbon flux, similar in magnitude to the average net ecosystem exchange estimated by eddy covariance. Examining the effects of catchment connections to underlying hydrogeological systems can help avoid overestimation of ecosystem respiration and advance our understanding of carbon source/sink status and overall terrestrial ecosystem carbon budgets.

  6. Carbon dioxide emissions, economic growth, industrial structure, and technical efficiency: Empirical evidence from Ghana, Senegal, and Morocco on the causal dynamics

    International Nuclear Information System (INIS)

    This paper investigated the short-run causal relationships and the long-run equilibrium relationships among carbon dioxide emissions, economic growth, technical efficiency, and industrial structure for three African countries. Using Bounds cointegration approach the result showed evidence of multiple long-run equilibrium relationships for Ghana and Senegal but a one-way long-run equilibrium relationship for Morocco. The result from the Toda and Yomamoto granger causality test showed a mix of bidirectional, unidirectional, and neutral relationships for all countries. Whilst in Senegal carbon dioxide emission was not found to be a limiting factor to economic growth; it was found to act as a limiting factor to economic growth in Morocco and Ghana. Lastly, the result from the variance decomposition analysis revealed that economic growth contributes largely to changes in future carbon dioxide emissions in Senegal and Morocco whilst in Ghana technical efficiency contributes largely to changes in future variations in carbon dioxide emissions. These results have important policy implications for these countries' energy efficiency systems. -- Highlights: ► A set of bidirectional and unidirectional causality relationships was found. ► CO2 acts as a limiting factor to growth in Ghana and Morocco but not in Senegal. ► Economic growth contributes largely to CO2 emissions in Senegal and Morocco. ► Technical efficiency contributes largely to CO2 emissions in Ghana.

  7. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.;

    2008-01-01

    This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o......C) has often been used. The article shows that the carbon dioxide production per hpu increases with increasing respiration quotient. As the respiration quotient increases with body mass for growing animals, the carbon dioxide production per heat production unit also increases with increased body mass...

  8. Carbon dioxide dangers demonstration model

    Science.gov (United States)

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  9. An inexact robust optimization method for supporting carbon dioxide emissions management in regional electric-power systems

    International Nuclear Information System (INIS)

    In this study, an inexact robust optimization method (IROM) is developed for supporting carbon dioxide (CO2) emission management in a regional-scale energy system, through incorporating interval-parameter programming (IPP) within a robust optimization (RO) framework. In the modeling formulation, penalties are exercised with the recourse against any infeasibility, and robustness measures are introduced to examine the variability of the second-stage costs that are above the expected levels. The IROM is suitable for risk-aversive planners under high-variability conditions. The IROM is applied to a case of energy systems and CO2 emission planning under uncertainty. The results obtained can generate desired decision alternatives that are able to not only enhance electricity-supply safety with a low system-failure risk level but also mitigate CO2 emissions. They can be used for generating decision alternatives and minimizing the system cost of energy system while meeting the CO2-emission permit requirement. - Highlights: • The proposed method is supported CO2 management in regional-scale energy systems. • The method will enhance energy-supply safety with a low system-failure risk level. • Trading scheme was encouraged to mitigate CO2 emissions with different requirements. • Trading scheme can be effective for mitigating CO2 with a minimum system cost

  10. Large-scale carbon capture and storage for coal-fired power: Effect on global carbon dioxide emissions

    OpenAIRE

    Torvanger, Asbjørn

    2007-01-01

    The scenarios in this report show that large-scale deployment of carbon capture and storage technologies for new coal-fired power plants from year 2015 may reduce global CO2 emissions by 8-18% by 2030 and 22-25% by 2100. These estimates are sensitive to the Business-as-Usual scenarios chosen, both for total CO2 emissions and for power production based on coal.

  11. Air plasma gasification of RDF as a prospective method for reduction of carbon dioxide emission

    Science.gov (United States)

    Bratsev, A. N.; Kumkova, I. I.; Kuznetsov, V. A.; Popov, V. E.; Shtengel', S. V.; Ufimtsev, A. A.

    2011-03-01

    Waste disposal dumps are one of sources of carbonic gas penetration in the atmosphere. The waste is treated into RDF (refuse-derived fuel) and used in boilers for electric power or heat generation for decrease in carbonic gas emissions in the atmosphere. In industry power stations on the basis of the combined cycle have the highest efficiency of burning. The paper deals with the application of an air-plasma gasifier using the down draft scheme of RDF transformation into synthesis gas, which afterwards can be used in the combined cycle. Results of calculations of the process characteristics for various RDF compositions are presented. The advantage of the plasma method in comparison with autothermal one is shown. Experimental data are shown.

  12. Air plasma gasification of RDF as a prospective method for reduction of carbon dioxide emission

    International Nuclear Information System (INIS)

    Waste disposal dumps are one of sources of carbonic gas penetration in the atmosphere. The waste is treated into RDF (refuse-derived fuel) and used in boilers for electric power or heat generation for decrease in carbonic gas emissions in the atmosphere. In industry power stations on the basis of the combined cycle have the highest efficiency of burning. The paper deals with the application of an air-plasma gasifier using the down draft scheme of RDF transformation into synthesis gas, which afterwards can be used in the combined cycle. Results of calculations of the process characteristics for various RDF compositions are presented. The advantage of the plasma method in comparison with autothermal one is shown. Experimental data are shown.

  13. Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues

    OpenAIRE

    Hossain, M. B.; Puteh, A. B.

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poul...

  14. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    OpenAIRE

    Mohammad Songolzadeh; Mansooreh Soleimani; Maryam Takht Ravanchi; Reza Songolzadeh

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion c...

  15. A hybrid modelling approach to develop scenarios for China's carbon dioxide emissions to 2050

    International Nuclear Information System (INIS)

    This paper describes a hybrid modelling approach to assess the future development of China's energy system, for both a “hypothetical counterfactual baseline” (HCB) scenario and low carbon (“abatement”) scenarios. The approach combines a technology-rich integrated assessment model (MESSAGE) of China's energy system with a set of sector-specific, bottom-up, energy demand models for the transport, buildings and industrial sectors developed by the Grantham Institute for Climate Change at Imperial College London. By exploring technology-specific solutions in all major sectors of the Chinese economy, we find that a combination of measures, underpinned by low-carbon power options based on a mix of renewables, nuclear and carbon capture and storage, would fundamentally transform the Chinese energy system, when combined with increasing electrification of demand-side sectors. Energy efficiency options in these demand sectors are also important. - Highlights: • Combining energy supply and demand models reveals low-carbon technology choices across China's economy. • China could reduce its CO2 emissions to close to 3 Gt in 2050, costing around 2% of GDP. • Decarbonising the power sector underpins the energy system transformation. • Electrification of industrial processes, building heating and transport is required. • Energy efficiency across the demand side is also important

  16. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  17. Carbon Dioxide Mitigation Benefit of High-Speed Railway in Terms of Carbon Tax

    OpenAIRE

    Fu Yanbing; Zhang Sufen; Xie Meiquan; Li Shuping; Huang Zelin

    2013-01-01

    This paper calculates the carbon dioxide mitigation benefit of high-speed railway based on the carbon dioxide tax policy. We define the carbon dioxide emission system boundary for high-speed railway in its whole life cycle and estimate the life cycle carbon dioxide inventories during its construction, application, and recovery stages. And then we establish a theoretical model to calculate the life cycle carbon dioxide mitigation quantity for high-speed railway when compared with road transpor...

  18. Developed and developing world contributions to climate system change based on carbon dioxide, methane and nitrous oxide emissions

    Science.gov (United States)

    Wei, Ting; Dong, Wenjie; Yan, Qing; Chou, Jieming; Yang, Zhiyong; Tian, Di

    2016-05-01

    One of the key issues in international climate negotiations is the formulation of targets for emissions reduction for all countries based on the principle of "common but differentiated responsibilities". This formulation depends primarily on the quantitative attribution of the responsibilities of developed and developing countries for historical climate change. Using the Commuity Earth System Model (CESM), we estimate the responsibilities of developed countries and developing countries for climatic change from 1850 to 2005 using their carbon dioxide, methane and nitrous oxide emissions. The results indicate that developed countries contribute approximately 53%-61%, and developing countries approximately 39%-47%, to the increase in global air temperature, upper oceanic warming, sea-ice reduction in the NH, and permafrost degradation. In addition, the spatial heterogeneity of these changes from 1850 to 2005 is primarily attributed to the emissions of greenhouse gases (GHGs) in developed countries. Although uncertainties remain in the climate model and the external forcings used, GHG emissions in developed countries are the major contributor to the observed climate system changes in the 20th century.

  19. Energy Consumption and Carbon Dioxide Emissions from Petroleum Refining Sector in Mexico from 2015 to 2030

    Directory of Open Access Journals (Sweden)

    Granados-Hernández Elías

    2015-09-01

    Full Text Available The increase in the volume of production of petroleum products of high demand, such as gasoline, rises the use of energy and therefore emissions of CO2 in oil refineries. In Mexico, for example, gasoline demand scenario for the next 20 years growth will increase the fuel consumption by almost 55%, considering a historical trend in traffic. The purpose of this study as to determine the impact of energy consumption per unit of processing oil and CO2 emissions using the methodology of the Intergovernmental Panel on Climate Change (IPCC as well as employing the stoichiometric calculation based on the carbon content. Different projections were made using four technological options of oil refining, processing three types of pure raw (Olmeca, Istmo, Maya and four blends (M1, M2, M3, M4. When performing an energy balance results show that projecting very complex refineries to meet a specific demand for gasoline will consume less energy and therefore CO2 emissions will be lower. This study is important as a tool for energy planning and environmental pollution in Mexico, as well as an object of analysis of the energy sector worldwide.

  20. Evaluation of carbon dioxide emission factor from urea during rice cropping season: A case study in Korean paddy soil

    Science.gov (United States)

    Kim, Gil Won; Jeong, Seung Tak; Kim, Gun Yeob; Kim, Pil Joo; Kim, Sang Yoon

    2016-08-01

    Fertilization with urea can lead to a loss of carbon dioxide (CO2) that was fixed during the industrial production process. The extent of atmospheric CO2 removal from urea manufacturing was estimated by the Industrial Processes and Product Use sector (IPPU sector). On its basis, the Intergovernmental Panel on Climate Change (IPCC) has proposed a value of 0.2 Mg C per Mg urea (available in 2006 revised IPCC guidelines for greenhouse gas inventories), which is the mass fractions of C in urea, as the CO2 emission coefficient from urea for the agricultural sector. Notably, due to the possibility of bicarbonate leaching to waters, all C in urea might not get released as CO2 to the atmosphere. Hence, in order to provide an accurate value of the CO2 emission coefficient from applied urea in the rice ecosystem, the CO2 emission factors were characterized under different levels of 13C-urea applied paddy field in the current study. The total CO2 fluxes and rice grain yields increased significantly with increasing urea application (110-130 kg N ha-1) and thereafter, decreased. However, with increasing 13C-urea application, a significant and proportional increase of the 13CO2sbnd C emissions from 13C-urea was also observed. From the relationships between urea application levels and 13CO2sbnd C fluxes from 13C-urea, the CO2sbnd C emission factor from urea was estimated to range between 0.0143 and 0.0156 Mg C per Mg urea. Thus, the CO2sbnd C emission factor of this study is less than that of the value proposed by IPCC. Therefore, for the first time, we propose to revise the current IPCC guideline value of CO2sbnd C emission factor from urea as 0.0143-0.0156 Mg C per Mg urea for Korean paddy soils.

  1. Reduction of Carbon Dioxide Emissions from a SCGT/CC by Ammonia Solution Absorption – Preliminary Results

    Directory of Open Access Journals (Sweden)

    Lidia Lombardi

    2004-12-01

    Full Text Available The reduction of carbon dioxide from the flue gases of a semi-closed gas turbine combined cycle (SCGT/CC by means of absorption in ammonia aqueous solutions has been studied. The absorption system has been simulated by means of Aspen PlusTM. The main variables of the removal system have been varied in order to understand their influence on system performance. With reference to the SCGT/CC case study, the removal of CO2, considering a removal efficiency of 89%, dramatically decreases the overall cycle efficiency from 53 to 41%, with the main contribution to this decrease being due to the power consumption for flue gas compression up to the absorption unit pressure. CO2 specific emissions pass from 390 to 57 kg/MWh.

  2. The capture and storage of carbon dioxide emissions : a significant opportunity to help Canada meet its Kyoto targets

    International Nuclear Information System (INIS)

    The current status of carbon dioxide (CO2) capture and storage technology development in Canada was reviewed and the contribution that this technology could make to lower national greenhouse gas (GHG) emissions was discussed. Other options to reducing GHG emissions include reducing energy consumption, increasing energy efficiency, adopting lower or zero carbon fuels and promoting the use of renewable energy sources. CO2 capture and storage technology involves the removal of CO2 from large sources such as power station stacks and using it where applicable, or storing it underground in geological reservoirs. The technology has potential in western Canada or in Atlantic Canada and its adjacent offshore where large fossil fuel users are located close to suitable underground reservoirs. The cost of CO2 capture is generally high because the technology is currently in the demonstration stage. The costs can be lowered when CO2 will have an economic value. It was suggested that the technology will be widely used when the costs are reduced to $20 per tonne from the current level of $35-50. The use of CO2 capture and storage technology has been included as an action plan in the First National Business Plan on Climate Change. The technology is also the main focus of a 10-year $1 billion research and development plan proposed by the Canadian Clean Power Coalition. The technology is attractive because it allows continued use of fossil fuels while simultaneously helping Canada meet its Kyoto target. 13 refs., 1 tab

  3. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    Science.gov (United States)

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  4. Glucosinolate breakdown products as insect fumigants and their effect on carbon dioxide emission of insects

    Directory of Open Access Journals (Sweden)

    Coats Joel R

    2002-03-01

    Full Text Available Abstract Background Glucosinolate breakdown products are volatile, therefore good candidates for insect fumigants. However, although they are insecticidal, the mode of action of such natural products is not clear. We studied the insecticidal effect of these compounds as fumigants, and monitored the production of carbon dioxide by the insects as a probe to the understanding of their mode of action. Results The fumigation 24-h LC50 against the house fly (Musca domestica L. of allyl thiocyanate, allyl isothiocyanate, allyl cyanide, and l-cyano-2-hydroxy-3-butene was 0.1, 0.13, 3.66, and 6.2 μg cm-3, respectively; they were 0.55, 1.57, 2.8, and > 19.60 μg cm-3, respectively, against the lesser grain borer (Rhyzopertha dominica Fabricius. The fumigation toxicity of some of the glucosinolate products was very close to or better than that of the commercial insect fumigants such as chloropicrin (LC50: 0.08 and 1.3 μg cm-3 against M. domestica and R. dominica, respectively and dichlorovos (LC50: -3 against M. domestica and R. dominica, respectively in our laboratory tests. Significantly increased CO2 expiration was found in insects exposed to the vapor of allyl isothiocyanate, allyl thiocyanate and allyl isocyanate. Allyl isothiocyanate was also found to increase the CO2 expiration of the American cockroach (Periplaneta americana L.. Conclusions Glucosinolate breakdown products have potential as biodegradable and safe insect fumigants. They may act on the insect respiratory system in their mode of action.

  5. Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations.

    Science.gov (United States)

    Curtarelli, Marcelo Pedroso; Ogashawara, Igor; de Araújo, Carlos Alberto Sampaio; Lorenzzetti, João Antônio; Leão, Joaquim Antônio Dionísio; Alcântara, Enner; Stech, José Luiz

    2016-05-01

    We used a three-dimensional model to assess the dynamics of diffusive carbon dioxide flux (FCO2) from a hydroelectric reservoir located at Amazon rainforest. Our results showed that for the studied periods (2013 summer/wet and winter/dry seasons) the surface averaged FCO2 presented similar behaviors, with regular emissions peaks. The mean daily surface averaged FCO2 showed no significant difference between the seasons (p>0.01), with values around -1338mgCm-2day-1 (summer/wet) and -1395mgCm-2day-1 (winter/dry). At diel scale, the FCO2 was large during the night and morning and low during the afternoon in both seasons. Regarding its spatial distribution, the FCO2 showed to be more heterogeneous during the summer/wet than during the winter/dry season. The highest FCO2 were observed at transition zone (-300mgCm-2h-1) during summer and at littoral zone (-55mgCm-2h-1) during the winter. The total CO2 emitted by the reservoir along 2013year was estimated to be 1.1TgCyear-1. By extrapolating our results we found that the total carbon emitted by all Amazonian reservoirs can be around 7TgCyear-1, which is 22% lower than the previous published estimate. This significant difference should not be neglected in the carbon inventories since the carbon emission is a key factor when comparing the environmental impacts of different sources of electricity generation and can influences decision makers in the selection of the more appropriate source of electricity and, in case of hydroelectricity, the geographical position of the reservoirs. PMID:26914722

  6. Mitigation potential of carbon dioxide emissions by management of forests in Asia

    International Nuclear Information System (INIS)

    Substantial areas of available forest lands in Asia could be managed for conservation and sequestration of carbon. These include 133 Mha for establishment of plantations and agroforests, 33.5 Mha for slowed tropical deforestation, and 48 Mha for natural and assisted regeneration of tropical forests. The potential quantity of C conserved and sequestered on these lands was conservatively estimated to be 24 Pg C (1 Pg = 1015 g) by 2050. Establishment of plantations and agroforests could account for 58% of the total mitigation potential on Asian forest lands. The amount of C that could be conserved and sequestered by all forest sector practices by 2050 under baseline conditions is equivalent to about 4% of the global fossil fuel emissions over the same time period. The uncertainties in estimates of mitigation potential presented in this paper are likely to be high, particularly with respect to the land area available for forestation projects and the rate at which deforestation could be slowed. The uncertainty terms are compounded in making global estimates of the mitigation potential, perhaps to large proportions, but to what extent is presently unknown. An example of a forestry project in China whose main goal was to rehabilitate degraded lands and at the same time provide biomass fuel for the local rural inhabitants is presented to demonstrate that C sequestration, and thus mitigation, is an added benefit to more traditional uses of forests. This forestry project is currently mitigating CO2 emissions (up to 1.4 Mg C ha-1 yr -1) and, with a change in management, an almost two-fold increase in the current reduction of net C emissions would occur. 33 refs, 2 figs, 2 tabs

  7. A multi-scale approach to monitor urban carbon-dioxide emissions in the atmosphere over Vancouver, Canada

    Science.gov (United States)

    Christen, A.; Crawford, B.; Ketler, R.; Lee, J. K.; McKendry, I. G.; Nesic, Z.; Caitlin, S.

    2015-12-01

    Measurements of long-lived greenhouse gases in the urban atmosphere are potentially useful to constrain and validate urban emission inventories, or space-borne remote-sensing products. We summarize and compare three different approaches, operating at different scales, that directly or indirectly identify, attribute and quantify emissions (and uptake) of carbon dioxide (CO2) in urban environments. All three approaches are illustrated using in-situ measurements in the atmosphere in and over Vancouver, Canada. Mobile sensing may be a promising way to quantify and map CO2 mixing ratios at fine scales across heterogenous and complex urban environments. We developed a system for monitoring CO2 mixing ratios at street level using a network of mobile CO2 sensors deployable on vehicles and bikes. A total of 5 prototype sensors were built and simultaneously used in a measurement campaign across a range of urban land use types and densities within a short time frame (3 hours). The dataset is used to aid in fine scale emission mapping in combination with simultaneous tower-based flux measurements. Overall, calculated CO2 emissions are realistic when compared against a spatially disaggregated scale emission inventory. The second approach is based on mass flux measurements of CO2 using a tower-based eddy covariance (EC) system. We present a continuous 7-year long dataset of CO2 fluxes measured by EC at the 28m tall flux tower 'Vancouver-Sunset'. We show how this dataset can be combined with turbulent source area models to quantify and partition different emission processes at the neighborhood-scale. The long-term EC measurements are within 10% of a spatially disaggregated scale emission inventory. Thirdly, at the urban scale, we present a dataset of CO2 mixing ratios measured using a tethered balloon system in the urban boundary layer above Vancouver. Using a simple box model, net city-scale CO2 emissions can be determined using measured rate of change of CO2 mixing ratios

  8. Clinical usefulness of positron emission tomography in the evaluation of regional cerebral blood flow and cerebral oxygen metabolism under glycerol and carbon dioxide loadings

    Energy Technology Data Exchange (ETDEWEB)

    Tanada, Shuji; Yonekura, Yoshiharu; Senda, Michio

    1987-02-01

    Cerebral blood flow (CBF) and oxygen metabolism (CMRO/sub 2/) were studied in normal cerebral cortices by positron emission tomography using continuous inhalation method of oxygen-15 labeled carbon dioxide and oxygen, and single inhalation method of oxygen-15 labeled carbon monoxide. The values of CBF, CMRO/sub 2/, and oxygen extraction fraction (OEF) in cerebral cortices of 18 healthy normal volunteers represented 40 +- 7 ml/100 ml/min, 3.2 +- 0.5 ml O/sub 2//100 ml/min, and 0.43 +- 0.07, respectively. In cases with glycerol loading, CBF increased in 10/14 cases. Studies of 6 cases with intracranial pressure indicated the presence of mechanism by which depressed CMRO/sub 2/ improved and was kept in normal values. The loading of 5% carbon dioxide showed an increase in CBF in cases with cerebral infarction, which implied the good cerebral vascular response to the elevated arterial carbon dioxide, but no particular changes were observed in CMRO/sub 2/ which seemed to be less responsive to the elevated arterial carbon dioxide level. In cases with moyamoya disease, 5% carbon dioxide loading showed no changes in CBF and CMRO/sub 2/. This suggested the poor cerebral vascular response to the elevation of arterial carbon dioxide, while X-ray CT failed to demonstrate any abnormalities in corresponding areas. Positron emission tomography proved to have a great potentiality regarding the evaluation of the changes in cerebral blood flow and cerebral oxygen metabolism under various loadings.

  9. Associations of health, physical activity and weight status with motorised travel and transport carbon dioxide emissions: a cross-sectional, observational study

    OpenAIRE

    Goodman Anna; Brand Christian; Ogilvie David

    2012-01-01

    Abstract Background Motorised travel and associated carbon dioxide (CO2) emissions generate substantial health costs; in the case of motorised travel, this may include contributing to rising obesity levels. Obesity has in turn been hypothesised to increase motorised travel and/or CO2 emissions, both because heavier people may use motorised travel more and because heavier people may choose larger and less fuel-efficient cars. These hypothesised associations have not been examined empirically, ...

  10. Associations of health, physical activity and weight status with motorised travel and transport carbon dioxide emissions : a cross-sectional, observational study

    OpenAIRE

    Goodman, A.; Brand, C; Ogilvie, D

    2012-01-01

    BACKGROUND: Motorised travel and associated carbon dioxide (CO₂) emissions generate substantial health costs; in the case of motorised travel, this may include contributing to rising obesity levels. Obesity has in turn been hypothesised to increase motorised travel and/or CO₂ emissions, both because heavier people may use motorised travel more and because heavier people may choose larger and less fuel-efficient cars. These hypothesised associations have not been examined empirically, however,...

  11. Soil carbon dioxide emission from intensively cultivated black soil in Northeast China. Nitrogen fertilization effect

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Kang [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Graduate University of Chinese Academy of Sciences, Beijing (China); Ding, Weixin; Cai, Zucong [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Wang, Yufeng; Zhang, Xilin; Zhou, Baoku [Heilongjiang Academy of Agricultural Sciences, Harbin (China). Inst. of Soil and Fertilizer

    2012-08-15

    Purpose: The aim of this study was to understand the effect of nitrogen fertilization on soil respiration and native soil organic carbon (SOC) decomposition and to identify the key factor affecting soil respiration in a cultivated black soil. Materials and methods: A field experiment was conducted at the Harbin State Key Agroecological Experimental Station, China. The study consisted of four treatments: unplanted and N-unfertilized soil (U0), unplanted soil treated with 225 kg N ha{sup -1} (UN), maize planted and N-unfertilized soil (P0), and planted soil fertilized with 225 kg N ha{sup -1} (PN). Soil CO{sub 2} and N{sub 2}O fluxes were measured using the static closed chamber method. Results and discussion: Cumulative CO{sub 2} emissions during the maize growing season with the U0, UN, P0, and PN treatments were 1.29, 1.04, 2.30 and 2.27 Mg C ha{sup -1}, respectively, indicating that N fertilization significantly reduced the decomposition of native SOC. However, no marked effect on soil respiration in planted soil was observed because the increase of rhizosphere respiration caused by N addition was counteracted by the reduction of native SOC decomposition. Soil CO{sub 2} fluxes were significantly affected by soil temperature but not by soil moisture. The temperature sensitivity (Q{sub 10}) of soil respiration was 2.16-2.47 for unplanted soil but increased to 3.16-3.44 in planted soil. N addition reduced the Q{sub 10} of native SOC decomposition possibly due to low labile organic C but increased the Q{sub 10} of soil respiration due to the stimulation of maize growth. The estimated annual CO{sub 2} emission in N-fertilized soil was 1.28 Mg C ha{sup -1} and was replenished by the residual stubble, roots, and exudates. In contrast, the lost C (1.53 Mg C ha{sup -1}) in N-unfertilized soil was not completely supplemented by maize residues, resulting in a reduction of SOC. Although N fertilization significantly increased N{sub 2}O emissions, the global warming potential

  12. Guidance to regulations on trade with emission permits for carbon dioxide; Vaegledning till lagstiftning om handel med utslaeppsraetter foer koldioxid

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-15

    (NFS 2007:5) and general recommendations on carbon dioxide emission allowances and the Swedish Energy Agency regulations (STEMFS 2004:8) on an emission allowance registry. All these documents can be found at www.utslappshandel.se

  13. Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  14. Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    A. Hooijer

    2011-08-01

    Full Text Available Peat surface CO2 emission, groundwater table depth and peat temperature were monitored for two years along transects in an Acacia plantation on thick tropical peat (>4 m in Sumatra, Indonesia. A total of 2300 emission measurements were taken at 144 locations. The autotrophic root respiration component of the CO2 emission was separated from heterotrophic emissions caused by peat oxidation in three ways: (i by comparing CO2 emissions within and beyond the tree rooting zone, (ii by comparing CO2 emissions with and without peat trenching (i.e. cutting any roots remaining in the peat beyond the tree rooting zone, and (iii by comparing CO2 emissions before and after Acacia tree harvesting. On average, the contribution of root respiration to daytime CO2 emission is 21 % along transects in mature tree stands. At locations 0.5 m from trees this is up to 80 % of the total emissions, but it is negligible at locations more than 1.3 m away. This means that CO2 emission measurements well away from trees are free of any root respiration contribution and thus represent only peat oxidation emission. We find daytime mean annual CO2 emission from peat oxidation alone of 94 t ha−1 yr−1 at a mean water table depth of 0.8 m, and a minimum emission value of 80 t ha−1 yr−1 after correction for the effect of diurnal temperature fluctuations, which resulted in a 14.5 % reduction of the daytime emission. There is a positive correlation between mean long-term water table depths and peat oxidation CO2 emission. However, no such relation is found for instantaneous emission/water table depth within transects and it is clear that factors other than water table depth also affect peat oxidation and total CO2 emissions. The increase in the temperature of the surface peat due to plantation development may explain over 50 % of peat oxidation emissions.

  15. Fuel switching, energy saving and carbon trading - three ways to control carbon dioxide emissions in the Finnish forest industry

    Energy Technology Data Exchange (ETDEWEB)

    Villa, A.

    2007-07-01

    This study consists of three parts, namely: (1) an integrated harvesting of residual forest biomass and industrial roundwood for the three mills of a multinational Finnish based corporation, (2) energy saving linked with the energy conversion of these mills, and (3) the knowledge and understanding of non-specialists (represented by undergraduate students) of the coupling of energy saving and carbon trading in forest industry using procedures of experimental economics. The aim was to analyze CO{sub 2} mitigation alternatives on the basis of a case study and to provide opportunities to generalize the results in Finland and elsewhere under similar conditions. The data base of final felling stands was used to calculate the production cost of residues at different mills using two optional harvesting methods, the roadside chipping (RC) and the residue log (RL). The production costs of the RL method were a little bit more competitive than the RC. Also a uniform recovery model for the integrated harvesting at the maximum radius of 100 kilometres from the mill was developed. The energy saving reports of the mills were used to calculate the costs of different energy saving investments and saved CO{sub 2} emissions as a result of decreased use of main mill fuels. When the production costs of residues were compared with the costs of energy saving at different mills, the economic possibilities of integrated harvesting were more promising. However, both two elements are required to mitigate global CO{sub 2} emissions. The alternative economic decisions of carbon trading experiments - either to make an energy saving investment at their own mill and sell surplus emission allowances to other mills, or to buy lacking allowances up to the emission constraint - was not easy to enforce profitably for most non-specialists. However, as a training tool to educate people on the economic aspects of global warming, experiments are justified. (orig.)

  16. Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China

    International Nuclear Information System (INIS)

    This study assessed household CO2 emissions (related to the consumption of necessary and luxury goods and services) of peasants and herdsmen households in arid-alpine regions in Gansu, Qinghai and Ningxia provinces, China. We also explored whether agriculture types, family income and family size have played any role in household CO2 emissions. In order to address these issues, we: (i) developed assessment indicators for household emissions; (ii) conducted semi-structured questionnaire household surveys; and (iii) employed input-output analysis (IOA). The results showed that, the average household CO2 emission per capita is 1.43 tons (t) CO2; the proportion of subsistence emissions (related to the consumption of necessary goods and services) accounts for 93.24%, whereas luxury emissions (generated due to consumption of specific goods and services that are consumed only when household income improves) only account for 6.76%t. Moreover, household CO2 emissions increase with family income and family size, but per capita emissions are inversely related to family size. The highest average household emissions were found in the alpine agricultural and pastoral region (6.18 t CO2), followed by the irrigated agricultural region (6.07 t CO2) and the rain-fed agricultural region (5.34 t CO2). In consideration of insignificant amount of household emissions from these poor and vulnerable groups of the society, this study suggests to follow the principle of fairness while making energy conservation, emission reduction and adaptation policies. - Highlights: ► Per capita emissions decrease as the household size increases. ► The subsistence emissions accounts for 93.24% of the total emissions. ► If heating related emissions are excluded, household emissions are negligible. ► The reduction of emissions below current levels is almost impossible. ► Poor and vulnerable groups should be given special consideration

  17. Energy Consumption and Carbon Dioxide Emissions of China’s Non-Metallic Mineral Products Industry: Present State, Prospects and Policy Analysis

    Directory of Open Access Journals (Sweden)

    Hui Hu

    2014-11-01

    Full Text Available China is the largest non-metallic mineral producer in the world and one of the key consumers of four major non-metallic mineral products, including cement, refractories, plate glass and ceramics. The non-metallic mineral products industry’s rapid growth has brought about a large demand for energy. The present study provides an overview of China’s non-metallic mineral products industry in terms of production, energy consumption and carbon dioxide emissions. In this industry, the energy efficiency is relatively low and the level of carbon dioxide emission is much higher than developed countries’ average. This study interprets the effects of some newly issued policies and analyses the influential factors in achieving energy conservation and emission reduction goals. It also discusses the prospects for saving energy and emission reduction in the industry. Retrofitting facilities and using new production technologies is imperative. Additionally, implementing market-based policies, promoting industrial transformation and effective international cooperation would help decrease carbon dioxide emissions and energy consumption.

  18. Carbon dioxide emission reduction by increased utilization of waste-derived fuels in the cement industry

    OpenAIRE

    Tokheim, Lars-André; Brevik, Per

    2007-01-01

    Considerable reductions in Norway's emissions of greenhouse gases like CO2 are required to meet the commitments of the Kyoto Protocol. CO2 emissions from cement clinker production originate from decarbonation of limestone as well as fuel combustion, and the cement plants in Norway have to comply with requirements given by the pollution control authorities via the national emissions trading system. There are several ways of reducing CO2 emissions from the cement industry. Utiliz...

  19. Carbon dioxide emissions from passenger transport in China since 1949: Implications for developing sustainable transport

    International Nuclear Information System (INIS)

    This paper traces the historical evolution and spatial disparity of CO2 emissions from passenger transport in China. The general trends of CO2 emissions from four passenger transport modes are estimated by both the distance-based and fuel-based methods. The results suggest that CO2 emissions from road transport represented the leading source of passenger transport CO2 emissions in China. Moreover, they have continued to grow rapidly. Air transport was the second largest contributor since 1998. Emissions from rail and water transport have remained relatively stable with lower emission intensity. At the provincial level, great regional disparity was noticeable, especially in road transport. Moreover, the decomposition analysis shows that income growth was the principal factor leading to the growth of passenger transport CO2 emissions in China for both the 1949–1979 and 1980–2009 periods. The second most important factor was increased transport intensity and modal shifts for the former and the latter period, respectively. The main factor contributed to emission reduction was the lower emission intensity supported by policies, although the effect was weak. In the future, more policies to encourage modal shifts toward sustainable transport modes and travel reduction should be encouraged. - Highlights: ► CO2 emissions from passenger transport in China were estimated. ► Road transport was the largest contributor to CO2 emission. Air transport followed. ► Factors influencing CO2 emissions growth are analyzed by decomposition analysis. ► Income growth, higher travel intensity and modal shift were driving CO2 emissions up. ► Policies to promote modal shifts and travel demand reduction should be encouraged.

  20. The Use of an Automated System (GreenFeed) to Monitor Enteric Methane and Carbon Dioxide Emissions from Ruminant Animals.

    Science.gov (United States)

    Hristov, Alexander N; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler; Weeks, Holley; Zimmerman, Patrick R; Harper, Michael T; Hristova, Rada A; Zimmerman, R Scott; Branco, Antonio F

    2015-01-01

    Ruminant animals (domesticated or wild) emit methane (CH4) through enteric fermentation in their digestive tract and from decomposition of manure during storage. These processes are the major sources of greenhouse gas (GHG) emissions from animal production systems. Techniques for measuring enteric CH4 vary from direct measurements (respiration chambers, which are highly accurate, but with limited applicability) to various indirect methods (sniffers, laser technology, which are practical, but with variable accuracy). The sulfur hexafluoride (SF6) tracer gas method is commonly used to measure enteric CH4 production by animal scientists and more recently, application of an Automated Head-Chamber System (AHCS) (GreenFeed, C-Lock, Inc., Rapid City, SD), which is the focus of this experiment, has been growing. AHCS is an automated system to monitor CH4 and carbon dioxide (CO2) mass fluxes from the breath of ruminant animals. In a typical AHCS operation, small quantities of baiting feed are dispensed to individual animals to lure them to AHCS multiple times daily. As the animal visits AHCS, a fan system pulls air past the animal's muzzle into an intake manifold, and through an air collection pipe where continuous airflow rates are measured. A sub-sample of air is pumped out of the pipe into non-dispersive infra-red sensors for continuous measurement of CH4 and CO2 concentrations. Field comparisons of AHCS to respiration chambers or SF6 have demonstrated that AHCS produces repeatable and accurate CH4 emission results, provided that animal visits to AHCS are sufficient so emission estimates are representative of the diurnal rhythm of rumen gas production. Here, we demonstrate the use of AHCS to measure CO2 and CH4 fluxes from dairy cows given a control diet or a diet supplemented with technical-grade cashew nut shell liquid. PMID:26383886

  1. The Use of an Automated System (GreenFeed) to Monitor Enteric Methane and Carbon Dioxide Emissions from Ruminant Animals

    Science.gov (United States)

    Hristov, Alexander N.; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler; Weeks, Holley; Zimmerman, Patrick R.; Harper, Michael T.; Hristova, Rada A.; Zimmerman, R. Scott; Branco, Antonio F.

    2015-01-01

    Ruminant animals (domesticated or wild) emit methane (CH4) through enteric fermentation in their digestive tract and from decomposition of manure during storage. These processes are the major sources of greenhouse gas (GHG) emissions from animal production systems. Techniques for measuring enteric CH4 vary from direct measurements (respiration chambers, which are highly accurate, but with limited applicability) to various indirect methods (sniffers, laser technology, which are practical, but with variable accuracy). The sulfur hexafluoride (SF6) tracer gas method is commonly used to measure enteric CH4 production by animal scientists and more recently, application of an Automated Head-Chamber System (AHCS) (GreenFeed, C-Lock, Inc., Rapid City, SD), which is the focus of this experiment, has been growing. AHCS is an automated system to monitor CH4 and carbon dioxide (CO2) mass fluxes from the breath of ruminant animals. In a typical AHCS operation, small quantities of baiting feed are dispensed to individual animals to lure them to AHCS multiple times daily. As the animal visits AHCS, a fan system pulls air past the animal’s muzzle into an intake manifold, and through an air collection pipe where continuous airflow rates are measured. A sub-sample of air is pumped out of the pipe into non-dispersive infra-red sensors for continuous measurement of CH4 and CO2 concentrations. Field comparisons of AHCS to respiration chambers or SF6 have demonstrated that AHCS produces repeatable and accurate CH4 emission results, provided that animal visits to AHCS are sufficient so emission estimates are representative of the diurnal rhythm of rumen gas production. Here, we demonstrate the use of AHCS to measure CO2 and CH4 fluxes from dairy cows given a control diet or a diet supplemented with technical-grade cashew nut shell liquid. PMID:26383886

  2. Carbon dioxide emission factors for U.S. coal by origin and destination

    Science.gov (United States)

    Quick, J.C.

    2010-01-01

    This paper describes a method that uses published data to calculate locally robust CO2 emission factors for U.S. coal. The method is demonstrated by calculating CO2 emission factors by coal origin (223 counties, in 1999) and destination (479 power plants, in 2005). Locally robust CO2 emission factors should improve the accuracy and verification of greenhouse gas emission measurements from individual coal-fired power plants. Based largely on the county origin, average emission factors for U.S. lignite, subbituminous, bituminous, and anthracite coal produced during 1999 were 92.97,91.97,88.20, and 98.91 kg CO2/GJgross, respectively. However, greater variation is observed within these rank classes than between them, which limits the reliability of CO2 emission factors specified by coal rank. Emission factors calculated by destination (power plant) showed greater variation than those listed in the Emissions & Generation Resource Integrated Database (eGRID), which exhibit an unlikely uniformity that is inconsistent with the natural variation of CO2 emission factors for U.S. coal. ?? 2010 American Chemical Society.

  3. Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances.

    Science.gov (United States)

    Panneer Selvam, Balathandayuthabani; Natchimuthu, Sivakiruthika; Arunachalam, Lakshmanan; Bastviken, David

    2014-11-01

    Inland waters were recently recognized to be important sources of methane (CH4 ) and carbon dioxide (CO2 ) to the atmosphere, and including inland water emissions in large scale greenhouse gas (GHG) budgets may potentially offset the estimated carbon sink in many areas. However, the lack of GHG flux measurements and well-defined inland water areas for extrapolation, make the magnitude of the potential offset unclear. This study presents coordinated flux measurements of CH4 and CO2 in multiple lakes, ponds, rivers, open wells, reservoirs, springs, and canals in India. All these inland water types, representative of common aquatic ecosystems in India, emitted substantial amounts of CH4 and a major fraction also emitted CO2 . The total CH4 flux (including ebullition and diffusion) from all the 45 systems ranged from 0.01 to 52.1 mmol m(-2)  d(-1) , with a mean of 7.8 ± 12.7 (mean ± 1 SD) mmol m(-2)  d(-1) . The mean surface water CH4 concentration was 3.8 ± 14.5 μm (range 0.03-92.1 μm). The CO2 fluxes ranged from -28.2 to 262.4 mmol m(-2)  d(-1) and the mean flux was 51.9 ± 71.1 mmol m(-2)  d(-1) . The mean partial pressure of CO2 was 2927 ± 3269 μatm (range: 400-11 467 μatm). Conservative extrapolation to whole India, considering the specific area of the different water types studied, yielded average emissions of 2.1 Tg CH4  yr(-1) and 22.0 Tg CO2  yr(-1) from India's inland waters. When expressed as CO2 equivalents, this amounts to 75 Tg CO2 equivalents yr(-1) (53-98 Tg CO2 equivalents yr(-1) ; ± 1 SD), with CH4 contributing 71%. Hence, average inland water GHG emissions, which were not previously considered, correspond to 42% (30-55%) of the estimated land carbon sink of India. Thereby this study illustrates the importance of considering inland water GHG exchange in large scale assessments. PMID:24623552

  4. The effect of energy efficiency on Swedish carbon dioxide emissions 1993-2004

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Aasa; Muller, Adrian

    2008-06-15

    Observed decoupling of emissions from output on the aggregate may not only occur due to increased efficiency on sectoral level, but also in case the sectoral composition significantly changes from emissions-intensive industries towards others, by relocation of emission-intensive sectors to foreign countries, by substitution to cleaner types of energy, or by a contraction of the whole economy - all without changes in efficiencies. In this paper, we undertake a decomposition analysis using the logarithmic-mean Divisia Index method (LMDI) to investigate the overall change in CO{sub 2} emissions from 1993-2004 in the Swedish business and industry sectors, and to identify the most important factors explaining this change. We find that only four sectors (agriculture; pulp and paper; basic metal; land transportation), out of the eight sectors that each contribute with more than 5% of total CO{sub 2} emissions, contributed to a decrease in CO{sub 2} emissions through increased energy efficiency. Even more striking is the result that on the aggregate level for the whole economy and summarizing over the whole period 1993-2004, a slightly positive effect of energy efficiency on CO{sub 2} emissions can be identified, while changes in relative size, i.e. overall structural change, and substitution to cleaner fuels have been more important regarding reductions in aggregate emissions

  5. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

    2008-08-13

    Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

  6. Comparison of two U.S. power-plant carbon dioxide emissions data sets

    Science.gov (United States)

    Ackerman, K.V.; Sundquist, E.T.

    2008-01-01

    Estimates of fossil-fuel CO2 emissions are needed to address a variety of climate-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report power-plant CO 2 emissions in the conterminous U.S. for 2004, the most recent year reported in both data sets. The data sets were obtained from the Department of Energy's Energy Information Administration (EIA) and the Environmental Protection Agency's eGRID database. Conterminous U.S. total emissions computed from the data sets differed by 3.5% for total plant emissions (electricity plus useful thermal output) and 2.3% for electricity generation only. These differences are well within previous estimates of uncertainty in annual U.S. fossil-fuel emissions. However, the corresponding average absolute differences between estimates of emissions from individual power plants were much larger, 16.9% and 25.3%, respectively. By statistical analysis, we identified several potential sources of differences between EIA and eGRID estimates for individual plants. Estimates that are based partly or entirely on monitoring of stack gases (reported by eGRID only) differed significantly from estimates based on fuel consumption (as reported by EIA). Differences in accounting methods appear to explain differences in estimates for emissions from electricity generation from combined heat and power plants, and for total and electricity generation emissions from plants that burn nonconventional fuels (e.g., biomass). Our analysis suggests the need for care in utilizing emissions data from individual power plants, and the need for transparency in documenting the accounting and monitoring methods used to estimate emissions.

  7. Carbon dioxide emission from the Turkish electricity sector and its mitigation options

    International Nuclear Information System (INIS)

    In this study, electricity generation associated CO2 emissions and fuel-specific CO2 emission factors are calculated based on the IPCC methodology using the data of fossil-fueled power plants that ran between 2001 and 2008 in Turkey. The estimated CO2 emissions from fossil-fueled power plants between 2009 and 2019 are also calculated using the fuel-specific CO2 emission factors and data on the projected generation capacity of the power plants that are planned to be built during this period. Given that the total electricity supply (planned+existing) will not be sufficient to provide the estimated demand between 2011 and 2019, four scenarios based on using different fuel mixtures are developed to overcome this deficiency. The results from these scenarios show that a significant decrease in the amount of CO2 emissions from electricity generation can be achieved if the share of the fossil-fueled power plants is lowered. The Renewable Energy Scenario is found to result in the lowest CO2 emissions between 2009 and 2019. The associated CO2 emissions calculated based on this scenario are approximately 192 million tons lower than that of the Business As Usual Scenario for the estimation period. - Highlights: → Electricity associated CO2 emissions increased 62% and 56% between 2001 and 2008, respectively. → Emission factors for natural gas and lignite are calculated as 374 and 1080 kg CO2/MWh, respectively. → Existing and planned power plants will not be able to provide the demand between 2011 and 2019. → A reduction of 192 million tons can be achieved in CO2 emissions using renewable resources.

  8. Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis

    International Nuclear Information System (INIS)

    As the capital of China, Beijing is regarded as a major metropolis in the world. Study of the variation in temporal CO2 emissions generated by the driving forces in Beijing can provide guidance for policy decisions on CO2 emissions mitigation in global metropolises. Based on input–output structural decomposition analysis (IO-SDA), we analysed the driving forces for the increment in CO2 emissions in Beijing from both production and final demand perspectives during 1997–2010. According to our results, the CO2 emission growth in Beijing is driven mainly by production structure change and population growth, partly offset by CO2 emission intensity reduction as well as the decline in per capita final demand volume during the study period. Final demand structure change has a limited effect on the change in the CO2 emissions in Beijing. From the final demand perspective, urban trades, urban residential consumption, government consumption and fixed capital formation are mainly responsible for the booming emissions. This study showed how the “top-down” IO-SDA methodology was implemented on a city scale. Policy implications from this study would be helpful for addressing CO2 emissions mitigation in global capital cities and metropolises. - Highlights: • Changes in production structure and population are drivers of CO2 increment. • Changes in CO2 intensity and per capita GDP are forces to offset CO2 increment. • Final demand structure change has limited effect on Beijing's CO2 emission change. • Beijing's key final demand categories and economic sectors are identified. • Policy implications of Beijing's results are analyzed

  9. The impact of future carbon dioxide emission reduction targets on U.S. electric sector water use

    Science.gov (United States)

    Cameron, Colin MacKay

    The U.S. electric sector's reliance on water makes it vulnerable to the impacts of climate change on water resources. Here we analyze how constraints on U.S. energy system carbon dioxide (CO2) emissions could affect water withdrawal and consumption in the U.S. electric sector through 2055. We use simulations of the EPA's U.S. 9-region (EPAUS9r) MARKAL least-cost optimization energy systems model with updated water use factors for electricity generating technologies. Model results suggest CO2 constraints could force the retirement of old power plants and drive increased use of low water-use renewable and nuclear power as well as natural gas CCS plants with more advanced cooling systems. These changes in electric sector technology mix reduce water withdrawal in all scenarios but increase water consumption in aggressive scenarios. Decreased electric sector water withdrawal would likely reduce electric sector vulnerability to climate change, but the rise in consumption could increase competition with other users.

  10. Driving Factors of Carbon Dioxide Emissions and the Impact from Kyoto Protocol

    OpenAIRE

    Grunewald, Nicole; Martínez-Zarzoso, Inmaculada

    2009-01-01

    In the last two decades increasing attention has been paid to the relationship between environmental quality and economic development. According to the Environmental Kuznets Curve (EKC) hypothesis this relationship may be described by an inverted-U curve. However, recent evidence rejects the EKC hypothesis for GHG emissions in a broad sense. In this paper we aim to investigate whether the EKC behavior for CO2 emissions could be proved on the behalf of institutional regulations. We analyze the...

  11. Carbon dioxide emissions from the tropical Dowleiswaram Reservoir on the Godavari River, Southeast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, M.H.K.; Sarma, V.V.S.S.; Sarma, V.V.; Krishna, M.S.; Reddy, N.P.C.

    Time-series observations were conducted in the Dowleiswaram dam reservoir that was constructed on the largest monsoonal river in India to understand the source of inorganic carbon, and fluxes to the atmosphere. The reservoir stores water during dry...

  12. Carbon dioxide emissions in fallow periods of a corn-soybean rotation: eddy-covariance versus chamber methods

    Science.gov (United States)

    Carbon dioxide (CO2) fluxes at terrestrial surface are typically quantified using eddy-covariance (EC) or chamber (Ch) techniques; however, long-term comparisons of the two techniques are not available. This study was conducted to assess the agreement between EC and Ch techniques when measuring CO2 ...

  13. Diffusive emission of methane and carbon dioxide from two hydropower reservoirs in Brazil.

    Science.gov (United States)

    Marcelino, A A; Santos, M A; Xavier, V L; Bezerra, C S; Silva, C R O; Amorim, M A; Rodrigues, R P; Rogerio, J P

    2015-05-01

    The role of greenhouse gas emissions from freshwater reservoirs and their contribution to increase greenhouse gas concentrations in the atmosphere is currently under discussion in many parts of the world. We studied CO2 and CH4 diffusive fluxes from two large neotropical hydropower reservoirs with different climate conditions. We used floating closed-chambers to estimate diffusive fluxes of these gaseous species. Sampling campaigns showed that the reservoirs studied were sources of greenhouse gases to the atmosphere. In the Serra da Mesa Reservoir, the CH4 emissions ranged from 0.530 to 396.96 mg.m(-2).d(-1) and CO2 emissions ranged from -1,738.33 to 11,166.61 mg.m(-2).d(-1) and in Três Marias Reservoir the CH4 fluxes ranged 0.720 to 2,578.03 mg.m(-2).d(-1) and CO2 emission ranged from -3,037.80 to 11,516.64 to mg.m(-2).d(-1). There were no statistically significant differences of CH4 fluxes between the reservoirs, but CO2 fluxes from the two reservoirs studied were significantly different. The CO2 emissions measured over the periods studied in Serra da Mesa showed some seasonality with distinctions between the wet and dry transition season. In Três Marias Reservoir the CO2 fluxes showed no seasonal variability. In both reservoirs, CH4 emissions showed a tendency to increase during the study periods but this was not statistically significant. These results contributed to increase knowledge about the magnitude of CO2 and CH4 emission in hydroelectric reservoirs, however due to natural variability of the data future sampling campaigns will be needed to better elucidate the seasonal influences on the fluxes of greenhouse gases. PMID:26132015

  14. Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the "Birch effect".

    Science.gov (United States)

    Jarvis, Paul; Rey, Ana; Petsikos, Charalampos; Wingate, Lisa; Rayment, Mark; Pereira, João; Banza, João; David, Jorge; Miglietta, Franco; Borghetti, Marco; Manca, Giovanni; Valentini, Riccardo

    2007-07-01

    Observations on the net carbon exchange of forests in the European Mediterranean region, measured recently by the eddy covariance method, have revived interest in a phenomenon first characterized on agricultural and forest soils in East Africa in the 1950s and 1960s by H. F. Birch and now often referred to as the "Birch effect." When soils become dry during summer because of lack of rain, as is common in regions with Mediterranean climate, or are dried in the laboratory in controlled conditions, and are then rewetted by precipitation or irrigation, there is a burst of decomposition, mineralization and release of inorganic nitrogen and CO(2). In forests in Mediterranean climates in southern Europe, this effect has been observed with eddy covariance techniques and soil respiration chambers at the stand and small plot scales, respectively. Following the early work of Birch, laboratory incubations of soils at controlled temperatures and water contents have been used to characterize CO(2) release following the rewetting of dry soils. A simple empirical model based on laboratory incubations demonstrates that the amount of carbon mineralized over one year can be predicted from soil temperature and precipitation regime, provided that carbon lost as CO(2) is taken into account. We show that the amount of carbon returned to the atmosphere following soil rewetting can reduce significantly the annual net carbon gain by Mediterranean forests. PMID:17403645

  15. The effectiveness of differentiation of the Finnish car purchase tax according to carbon dioxide emission performance

    Energy Technology Data Exchange (ETDEWEB)

    Perrels, A.; Tuovinen, T.

    2012-01-15

    The study concerns an assessment of the effectiveness of car purchase tax differentiation according to the CO{sub 2}-emission performance of newly sold cars as implemented in Finland. This policy instrument came into force as of 1 January 2008. The effectiveness of the instrument is assessed by means of decomposition of car sales by key features of cars and by estimation of impact relations between changes in the emission performance of newly sold cars and various explanatory variables, including the imputed tax differentiation based price differences. (orig.)

  16. On the accuracy of HITEMP-2010 calculated emissivities of Water Vapor and Carbon Dioxide

    DEFF Research Database (Denmark)

    Alberti, Michael; Weber, Roman; Mancini, Marco;

    2015-01-01

    Line-by-line (LbL) calculations using either HITRAN or HITEMP spectral data bases are often used for predicting gas radiation properties like absorption coefficients or emissivities. Due to the large size of these data bases, calculations are computationally too expensive to be used in regular CFD...

  17. On the accuracy of HITEMP-2010 calculated emissivities of Water Vapor and Carbon Dioxide

    DEFF Research Database (Denmark)

    Alberti, M.; Weber, R.; Mancini, M.;

    Nowadays, spectral Line-by-Line calculations using either HITRAN or HITEMP data bases are frequently used for calculating gas radiation properties like absorption coefficients or emissivities. Such calculations are computationally very expensive because of the vast number of spectral lines and...

  18. Effects of air pollutants on the carbon dioxide (CO2) emission rate of human subjects

    DEFF Research Database (Denmark)

    Bako-Biro, Zsolt; Wargocki, Pawel; Wyon, David;

    2004-01-01

    Several laboratory studies have shown the negative effects of emissions from typical indoor pollution sources on perceived air quality, SBS symptoms and the performance of office work. The subjects performed typical office tasks at their own pace while they were exposed for several hours to diffe...

  19. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions

    NARCIS (Netherlands)

    Jaenicke, J.; Wösten, H.; Budiman, A.; Siegert, F.

    2010-01-01

    Extensive degradation of Indonesian peatlands by deforestation, drainage and recurrent fires causes release of huge amounts of peat soil carbon to the atmosphere. Construction of drainage canals is associated with conversion to other land uses, especially plantations of oil palm and pulpwood trees,

  20. The Effects of the Tractor and Semitrailer Routing Problem on Mitigation of Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    Hongqi Li

    2013-01-01

    Full Text Available The incorporation of CO2 emissions minimization in the vehicle routing problem (VRP is of critical importance to enterprise practice. Focusing on the tractor and semitrailer routing problem with full truckloads between any two terminals of the network, this paper proposes a mathematical programming model with the objective of minimizing CO2 emissions per ton-kilometer. A simulated annealing (SA algorithm is given to solve practical-scale problems. To evaluate the performance of the proposed algorithm, a lower bound is developed. Computational experiments on various problems generated randomly and a realistic instance are conducted. The results show that the proposed methods are effective and the algorithm can provide reasonable solutions within an acceptable computational time.

  1. Avoiding emissions of carbon dioxide through the use of fuels derived from sugar cane

    International Nuclear Information System (INIS)

    This paper shows that the use of ethyl alcohol and sugar cane bagasse as fuel substitutions for gasoline, and natural gas, fuel oil or coal, can have an important role to avoid GHG emissions. The Brazilian Alcohol program and the use of sugar cane bagasse for generating electricity may prove to be an important alternative for the reduction of GHG emissions. Large-scale production and the use of renewable energy from biomass may qualify Brazil for recognition at an international level. It is shown that the cost of alcohol is higher than that of gasoline with the present low price of oil on the international market, but the costs could be reduced by feasible technological improvements 10 refs, 4 figs, 2 tabs

  2. Low Emission Conversion of Fossil Fuels with Simultaneous or Consecutive Storage of Carbon Dioxide

    OpenAIRE

    Eftekhari, A.A.

    2013-01-01

    This thesis evaluates the possibility of using underground coal gasification with a low CO2 footprint. The thesis consists of two parts. In the first part, by using the concept of exergy, a framework was constructed through which the practicality (feasibility) of an energy conversion/extraction method can be systematically evaluated. This framework, based on exergy analysis and cumulative degree of perfection, is described by analyzing a low emission underground coal gasification (UCG) proces...

  3. Carbon dioxide and methane annual emissions from two boreal reservoirs and nearby lakes in Quebec, Canada

    Directory of Open Access Journals (Sweden)

    M. Demarty

    2009-03-01

    Full Text Available The results of dissolved GHG (CO2 and CH4 measurement campaigns carried out in Quebec (Canada during the open-water periods and under-ice in a newly created reservoir (Eastmain 1, a 25 year old reservoir (Robert-Bourassa and in three reference lakes are presented. While CO2 partial pressures varied with season with a net increase under the ice cover, CH4 partial pressures did not. We were able to extrapolate the highest CO2 partial pressures reached in the different studied systems just before ice break-up with high spring emission period. We then estimated the springtime CO2 fluxes and compared them to annual CO2 fluxes and GHG fluxes. Thus we clearly demonstrated that in our systems CH4 fluxes was of minor importance in the GHG emissions, CO2 fluxes representing around 90% of the annual fluxes. We also pointed out the importance of springtime emissions in the annual budget.

  4. Carbon dioxide emissions after application of different tillage systems for loam in northern China

    Science.gov (United States)

    Hongwen, Li; Lifeng, Hu; Fub, Chen; Xuemin, Zhang

    2010-05-01

    Tillage operations influence soil physical properties and crop growth, and thus both directly and indirectly the cropland CO2 exchange with the atmosphere. In this study, the results of CO2 flux measurements on cropland, under different tillage practices in northern China, are presented. CO2 flux on croplands with a winter wheat (Triticum aestivum L.) and maize (Zea may L.) rotation was monitored on plots with conventional tillage (CT), rotary tillage (RT) and no tillage (NT). Soil CO2 flux was generally greater in CT than in NT, and the RT CO2 flux was only slightly smaller than the CT. Daily soil CO2 emissions for CT, RT, and NT averaged 11.30g m-2, 9.63 g m-2 and 7.99 g m-2, respectively, during the growing period. Analysis of variance shows that these differences are significant for the three tillage treatments. Peak CO2 emissions were recorded on the CT and RT croplands after tillage operations. At the same time, no obviously increased emission of CO2 occurred on the NT plot. These differences demonstrate that tillage results in a rapid physical release of CO2.

  5. Evaluation of technologies for the reduction of emissions and removal of carbon dioxide

    International Nuclear Information System (INIS)

    Aim of this work is the detailed and transparent evaluation of the technologies in question for the reduction of CO2 concentrations in the atmosphere and for CO2 removal. For this purpose it is of particular importance to differentiate between the technically possible and the economically thinkable or the ecologically efficient by taking into account the particular conditions in the FRG (West and East German states). Based on the analysis of CO2 flows in the FRG energy conversion technologies in the areas power generation, road traffic and supply of households and small consumers with heat which emit together more than 80% of the total amount of CO2 are chosen for the comparative evaluation. On the basis of a comparative system-analytical evaluation of individual measures a demand-orientated consumption, emission and cost model can be established for the areas power generation, low-temperature heat and road traffic. The characteristic parameters determined in the evaluations serve as basis for such a model. If this model is conceived in a way that also developments in time can be shown it is possible to find out in scenario calculations to which extent these new technologies can contribute in future to a cost-effective reduction of CO2 emissions. The investigation period for the development in time of CO2 emission in the areas mentioned above was chosen to be 25 years (1990-2015). (orig./KW)

  6. Women's status and carbon dioxide emissions: A quantitative cross-national analysis.

    Science.gov (United States)

    Ergas, Christina; York, Richard

    2012-07-01

    Global climate change is one of the most severe problems facing societies around the world. Very few assessments of the social forces that influence greenhouse gas emissions have examined gender inequality. Empirical research suggests that women are more likely than men to support environmental protection. Various strands of feminist theory suggest that this is due to women's traditional roles as caregivers, subsistence food producers, water and fuelwood collectors, and reproducers of human life. Other theorists argue that women's status and environmental protection are linked because the exploitation of women and the exploitation of nature are interconnected processes. For these theoretical and empirical reasons, we hypothesize that in societies with greater gender equality there will be relatively lower impacts on the environment, controlling for other factors. We test this hypothesis using quantitative analysis of cross-national data, focusing on the connection between women's political status and CO(2) emissions per capita. We find that CO(2) emissions per capita are lower in nations where women have higher political status, controlling for GDP per capita, urbanization, industrialization, militarization, world-system position, foreign direct investment, the age dependency ratio, and level of democracy. This finding suggests that efforts to improve gender equality around the world may work synergistically with efforts to curtail global climate change and environmental degradation more generally. PMID:23017863

  7. Non-native plant litter enhances soil carbon dioxide emissions in an invaded annual grassland.

    Science.gov (United States)

    Zhang, Ling; Wang, Hong; Zou, Jianwen; Rogers, William E; Siemann, Evan

    2014-01-01

    Litter decomposition is a fundamental ecosystem process in which breakdown and decay of plant detritus releases carbon and nutrients. Invasive exotic plants may produce litter that differs from native plant litter in quality and quantity. Such differences may impact litter decomposition and soil respiration in ways that depend on whether exotic and native plant litters decompose in mixtures. However, few field experiments have examined how exotic plants affect soil respiration via litter decomposition. Here, we conducted an in situ study of litter decomposition of an annual native grass (Eragrostis pilosa), a perennial exotic forb (Alternanthera philoxeroides), and their mixtures in an annual grassland in China to examine potential invasion effects on soil respiration. Alternanthera litter decomposed faster than Eragrostis litter when each was incubated separately. Mass loss in litter mixes was more rapid than predicted from rates in single species bags (only 35% of predicted mass remained at 8 months) showing synergistic effects. Notably, exotic plant litter decomposition rate was unchanged but native plant litter decomposition rate was accelerated in mixtures (decay constant k = 0.20 month(-1)) compared to in isolation (k = 0.10 month(-1)). On average, every litter type increased soil respiration compared to bare soil from which litter was removed. However, the increases were larger for mixed litter (1.82 times) than for Alternanthera litter (1.58 times) or Eragrostis litter (1.30 times). Carbon released as CO2 relative to litter carbon input was also higher for mixed litter (3.34) than for Alternathera litter (2.29) or Eragrostis litter (1.19). Our results indicated that exotic Alternanthera produces rapidly decomposing litter which also accelerates the decomposition of native plant litter in litter mixtures and enhances soil respiration rates. Thus, this exotic invasive plant species will likely accelerate carbon cycling and increase soil respiration

  8. Non-Native Plant Litter Enhances Soil Carbon Dioxide Emissions in an Invaded Annual Grassland

    OpenAIRE

    Zhang, Ling; Wang, Hong; Zou, Jianwen; Rogers, William E; Siemann, Evan

    2014-01-01

    Litter decomposition is a fundamental ecosystem process in which breakdown and decay of plant detritus releases carbon and nutrients. Invasive exotic plants may produce litter that differs from native plant litter in quality and quantity. Such differences may impact litter decomposition and soil respiration in ways that depend on whether exotic and native plant litters decompose in mixtures. However, few field experiments have examined how exotic plants affect soil respiration via litter deco...

  9. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions

    OpenAIRE

    Jaenicke, J.; Wösten, H.; Budiman, A.; Siegert, F.

    2010-01-01

    Extensive degradation of Indonesian peatlands by deforestation, drainage and recurrent fires causes release of huge amounts of peat soil carbon to the atmosphere. Construction of drainage canals is associated with conversion to other land uses, especially plantations of oil palm and pulpwood trees, and with widespread illegal logging to facilitate timber transport. A lowering of the groundwater level leads to an increase in oxidation and subsidence of peat. Therefore, the groundwater level is...

  10. An Integrated, Low Temperature Process to Capture and Sequester Carbon Dioxide from Industrial Emissions

    Science.gov (United States)

    Wendlandt, R. F.; Foremski, J. J.

    2013-12-01

    Laboratory experiments show that it is possible to integrate (1) the chemistry of serpentine dissolution, (2) capture of CO2 gas from the combustion of natural gas and coal-fired power plants using aqueous amine-based solvents, (3) long-term CO2 sequestration via solid phase carbonate precipitation, and (4) capture solvent regeneration with acid recycling in a single, continuous process. In our process, magnesium is released from serpentine at 300°C via heat treatment with ammonium sulfate salts or at temperatures as low as 50°C via reaction with sulfuric acid. We have also demonstrated that various solid carbonate phases can be precipitated directly from aqueous amine-based (NH3, MEA, DMEA) CO2 capture solvent solutions at room temperature. Direct precipitation from the capture solvent enables regenerating CO2 capture solvent without the need for heat and without the need to compress the CO2 off gas. We propose that known low-temperature electrochemical methods can be integrated with this process to regenerate the aqueous amine capture solvent and recycle acid for dissolution of magnesium-bearing mineral feedstocks and magnesium release. Although the direct precipitation of magnesite at ambient conditions remains elusive, experimental results demonstrate that at temperatures ranging from 20°C to 60°C, either nesquehonite Mg(HCO3)(OH)●2H2O or a double salt with the formula [NH4]2Mg(CO3)2●4H2O or an amorphous magnesium carbonate precipitate directly from the capture solvent. These phases are less desirable for CO2 sequestration than magnesite because they potentially remove constituents (water, ammonia) from the reaction system, reducing the overall efficiency of the sequestration process. Accordingly, the integrated process can be accomplished with minimal energy consumption and loss of CO2 capture and acid solvents, and a net generation of 1 to 4 moles of H2O/6 moles of CO2 sequestered (depending on the solid carbonate precipitate and amount of produced H2

  11. Carbon-dioxide emissions trading and hierarchical structure in worldwide finance and commodities markets

    Science.gov (United States)

    Zheng, Zeyu; Yamasaki, Kazuko; Tenenbaum, Joel N.; Stanley, H. Eugene

    2013-01-01

    In a highly interdependent economic world, the nature of relationships between financial entities is becoming an increasingly important area of study. Recently, many studies have shown the usefulness of minimal spanning trees (MST) in extracting interactions between financial entities. Here, we propose a modified MST network whose metric distance is defined in terms of cross-correlation coefficient absolute values, enabling the connections between anticorrelated entities to manifest properly. We investigate 69 daily time series, comprising three types of financial assets: 28 stock market indicators, 21 currency futures, and 20 commodity futures. We show that though the resulting MST network evolves over time, the financial assets of similar type tend to have connections which are stable over time. In addition, we find a characteristic time lag between the volatility time series of the stock market indicators and those of the EU CO2 emission allowance (EUA) and crude oil futures (WTI). This time lag is given by the peak of the cross-correlation function of the volatility time series EUA (or WTI) with that of the stock market indicators, and is markedly different (>20 days) from 0, showing that the volatility of stock market indicators today can predict the volatility of EU emissions allowances and of crude oil in the near future.

  12. The potential of nuclear power for reduction of carbon dioxide emissions in Europe

    International Nuclear Information System (INIS)

    Various scenarios are investigated in order to assess the reduction potential of different nuclear energy strategies in the coming decades. Beside electricity generation from nuclear power, CO2-free alternatives to fossil fuels will become increasingly significant for space heating, process heat, and transportation. Small thermal reactors, or heat extraction from large light water reactors situated close to major consumption centers, offer further possibilities for CO2 emission reduction. The HTR-Module reactor can provide process heat for industry and for coal gasification. It is shown how high-temperature reactors can be used to transform the CO2 obtained as a by-product of fossil-fuel gasification into a useful source for methanol and gasoline production. (orig./HP)

  13. Emission Flux of Soil Carbon Dioxide in Hydrothermal Area of the Tatun Volcano Group, Northern Taiwan

    Science.gov (United States)

    Wen, H.; Yang, T. F.; Lan, T. F.; Lee, H.

    2009-12-01

    Tatun Volcano Group (TVG) is located at north of Taiwan and considered as a potential active volcano. Hydrothermal activity occurs actively along the Chinshan Fault in this area. Based on the numbers of active fumarole/venting in the area, we can classify TVG into three major groups: (I) active hydrothermal area with major fumaroles (e.g., Da-you-keng, DYK), (II) active hydrothermal area without major fumaroles (e.g., Geng-tze-ping, GTP and Liu-huang-ku, LHK), and (III) non-active hydrothermal area (e.g., Tatun Natural Park, TNP). In this study we measure the soil CO2 flux in the representative areas of TVG by closed-chamber method. Soil CO2 flux can be obtained ca. 537 g m-2 day-1 at GTP, ca. 122 g m-2 day-1 at DYK, and ca. 25 g m-2 day-1 at TNP, respectively. We can compare these values with previous measured data of soil CO2 flux at LHK, 659 g m-2 day-1, which is close to the value of GTP but much higher than that of DYK. The results show that the emission flux of soil CO2 at group-I area (DYK) is much lower than the value of group-II area (GTP and LHK). It could be explained that most CO2 gas can release to the surface through the highly permeable conduit/pathway (fumaroles) at group-I area and hence, less emission flux of soil CO2 can be observed. Furthermore, the total amount of 111 t day-1 of soil CO2 in the hydrothermal area of TVG can be estimated. It is close to the values from other active hydrothermal areas in the world.

  14. Implication of Land-Use and Land-Cover Change into Carbon Dioxide Emissions in Karang Gading and Langkat Timur Wildlife Reserve, North Sumatra, Indonesia

    OpenAIRE

    Mohammad Basyuni; Lollie Agustina Pancawaraswati Putri; Muammar Bakar Murni

    2015-01-01

    Mangrove forest in the context of climate change is important sector to be included in the inventory of greenhouse gas (GHG) emissions. The present study describes land-use and land-cover change during 2006–2012 of a mangrove forest conservation area, Karang Gading and Langkat Timur Laut Wildlife Reserve (KGLTLWR) in North Sumatra, Indonesia and their implications to carbon dioxide emissions. A land-use change matrix showed that the decrease of mangrove forest due to increases of other land-u...

  15. Carbon Dioxide Embolism during Laparoscopic Surgery

    OpenAIRE

    Park, Eun Young; Kwon, Ja-Young; Kim, Ki Jun

    2012-01-01

    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ra...

  16. Emission characteristics of carbon dioxide in the semiarid Stipa grandis steppe in Inner Mongolia, China

    Institute of Scientific and Technical Information of China (English)

    DONG Yun-she; QI Yu-chun; LIU Ji-yuan; Manfred Domroes; LIU Li-xin; GENG Yuan-bo; LIU Xing-ren; YANG Xiao-hong; LI Ming-feng

    2006-01-01

    Using the static opaque chamber method, the soil respiration rates (SR) were measured through the continuous experiments in situ in semiarid Stipa grandis steppe in Xilin River Basin of Inner Mongolia, China from June 2001 to June 2003, in parallel, the difference between the SR and the ecosystem respiration rates (TER) were compared. The results indicated that the seasonal variations of the SR and TER were obvious with higher emissions in growing season and a relatively low efflux level in non-growing season, furthermore, the negative effluxes were found in the (ANOVA) indicated that the difference between the annual average TER and SR did not reach the significance level of 0.05. The TER was under similar environmental controls as SR, in growing seasons of drought years, the variations of soil moisture at 0-10 cm and 10-20 cm depth could account for 79.1%-95.6% of the changes of the SR and TER, but in non-growing season, more than 75% of the variations of the SR and TER could be explained by the changes of the ground temperature of soil surface layers.

  17. Impact of Urbanization on Carbon Dioxide Emissions in China%我国城镇化对碳排放的影响研究

    Institute of Scientific and Technical Information of China (English)

    卢祖丹

    2011-01-01

    Accelerated urbanization and development of low-carbon economy are two important missions of the Chinese government at the moment. The paper explores the influence of urbanization on carbon dioxide emissions by utilizing the Three-Stage Least Square method. The results show that urbanization is generally beneficial to reducing carbon dioxide emissions, especially in the mid-western regions. However, in the eastern regions, urbanization dose not show any significant impact on carbon dioxide emissions in the sample period. Instead, a tendency of increased emissions is observed in the recent years. The above difference is attributed to different consumption patterns, economic structures, infrastructures and policies of the regions under study.%加快城镇化和发展低碳经济是摆在我国政府面前的两大重要任务.本文利用三阶段最小二乘法探讨了我国城镇化对碳排放的影响及其地区差异.研究显示:总体而言,城镇化发展将有利于我国实现碳减排,这在中西部地区尤为明显.此外,东部地区城镇化在样本期内对碳排放影响不明显,但近年来该地区城镇化加剧,碳排放的趋势却日渐清晰.这种差异与地区间不同的消费模式、经济结构、基础设施和区域发展政策有重要关联.

  18. Novel Dual-Functional Membrane for Controlling Carbon Dioxide Emissions from Fossil Fuel Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    C. Brinker; George Xomeritakis; C.-Y. Tsai; Ying-Bing Jiang

    2009-04-30

    CO{sub 2} captured from coal-fired power plants represents three-quarters of the total cost of an entire carbon sequestration process. Conventional amine absorption or cryogenic separation requires high capital investment and is very energy intensive. Our novel membrane process is energy efficient with great potential for economical CO{sub 2} capture. Three classes of microporous sol-gel derived silica-based membranes were developed for selective CO{sub 2} removal under simulated flue gas conditions (SFG), e.g. feed of 10% vol. CO{sub 22} in N{sub 2}, 1 atm total pressure, T = 50-60 C, RH>50%, SO2>10 ppm. A novel class of amine-functional microporous silica membranes was prepared using an amine-derivatized alkoxysilane precursor, exhibiting enhanced (>70) CO{sub 2}:N{sub 2} selectivity in the presence of H{sub 2}O vapor, but its CO{sub 2} permeance was lagging (<1 MPU). Pure siliceous membranes showed higher CO{sub 2} permeance (1.5-2 MPU) but subsequent densification occurred under prolonged SFG conditions. We incorporated NiO in the microporous network up to a loading of Ni:Si = 0.2 to retard densification and achieved CO2 permeance of 0.5 MPU and CO{sub 2}:N{sub 2} selectivity of 50 after 163 h exposure to SFG conditions. However, CO{sub 2} permeance should reach greater than 2.0 MPU in order to achieve the cost of electricity (COE) goal set by DOE. We introduced the atomic layer deposition (ALD), a molecular deposition technique that substantially reduces membrane thickness with intent to improve permeance and selectivity. The deposition technique also allows the incorporation of Ni or Ag cations by proper selection of metallorganic precursors. In addition, preliminary economic analysis provides a sensitivity study on the performance and cost of the proposed membranes for CO{sub 2} capture. Significant progress has been made toward the practical applications for CO{sub 2} capture. (1 MPU = 1.0 cm{sup 3}(STP){center_dot}cm-2{center_dot}min-1{center_dot}atm-1)

  19. Effects of carbon dioxide emission, kinetically-limited reactions, and diffusive transport on ammonia emission from manure

    Science.gov (United States)

    Volatilization of ammonia (NH3) from animal manure causes significant loss of fixed N from livestock operations. Ammonia emission from manure is the culmination of biological, chemical, and physical processes, all of which are well-understood. In this work, we present a speciation and transport mode...

  20. Carbon dioxide emissions in conventional and no-till corn production systems under different fertilizer management practices

    Science.gov (United States)

    Soil management practices such as tillage and fertilizer application methods affect soil emissions of greenhouse gases which impacts agricultural contributions of greenhouse gases. It is important to develop and evaluate strategies for reducing soil emissions of greenhouse gases such as carbon diox...

  1. Energy and carbon dioxide implications of building construction

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, A.H. (Canterbury Univ., Christchurch (New Zealand)); Honey, B.G. (Canterbury Univ., Christchurch (New Zealand))

    1994-01-01

    This paper investigates the amount of energy required to construct buildings, and the resulting carbon dioxide emissions to the atmosphere from the fossil fuel components of that energy. Energy requirements and carbon dioxide emissions are compared for typical commercial, industrial and residential buildings, using New Zealand as an example. A modest change from concrete and steel to more wood construction could lead to a substantial reduction in energy requirements and carbon dioxide emissions, but the sustainability of such a change has significant forestry implications. (orig.)

  2. The carbon dioxide thermometer and the cause of global warming

    International Nuclear Information System (INIS)

    Carbon dioxide in the air may be increasing because the world is warming. This possibility, which contradicts the hypothesis of an enhanced greenhouse warming driven by manmade emissions, is here pursued in two ways. First, increments in carbon dioxide are treated as readings of a natural thermometer that tracks global and hemispheric temperature deviations, as gauged by meteorologists' thermometers. Calibration of the carbon dioxide thermometer to conventional temperatures then leads to a history of carbon dioxide since 1856 that diverges from the ice-core record. Secondly, the increments of carbon dioxide can also be accounted for, without reference to temperature, by the combined effects of cosmic rays, El Nino and volcanoes. The most durable effect is due to cosmic rays. A solar wind history, used as a long-term proxy for the cosmic rays, gives a carbon dioxide history similar to that inferred from the global temperature deviations. (author)

  3. The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port

    International Nuclear Information System (INIS)

    This study analyzes the changes in carbon dioxide (CO2) emissions resulting from the movement of containers from established ports through the emerging port of Taipei in Northern Taiwan. An activity-based emissions model is used to estimate the CO2 emissions of container transport under four scenarios where there are switches of market share from existing ports to the emerging port. The results show that there are greater reductions in CO2 when transhipment routes are changed from the ports of Kaohsiung, Taichung and Keelung to the emerging port of Taipei. The paper concludes that the analytical approach adopted in the paper can help decision-makers understand potential CO2 emissions reduction strategies in the route selection of inland container transportation and such consideration should provide a broader and more meaningful basis for the socio-economic evaluation of port investment projects.

  4. The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.-H., E-mail: chliao@mail.ncku.edu.t [Department of Transportation and Communication Management Science, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan (China); Tseng, P.-H., E-mail: tzeng_ypo@yahoo.com.t [Department of Transportation and Communication Management Science, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan (China); Cullinane, Kevin, E-mail: k.cullinane@napier.ac.u [Transport Research Institute (TRI), Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT (United Kingdom); School of Business, Economics and Law, University of Gothenburg (Sweden); Lu, C.-S., E-mail: lucs@mail.ncku.edu.t [Department of Transportation and Communication Management Science, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan (China)

    2010-09-15

    This study analyzes the changes in carbon dioxide (CO{sub 2}) emissions resulting from the movement of containers from established ports through the emerging port of Taipei in Northern Taiwan. An activity-based emissions model is used to estimate the CO{sub 2} emissions of container transport under four scenarios where there are switches of market share from existing ports to the emerging port. The results show that there are greater reductions in CO{sub 2} when transhipment routes are changed from the ports of Kaohsiung, Taichung and Keelung to the emerging port of Taipei. The paper concludes that the analytical approach adopted in the paper can help decision-makers understand potential CO{sub 2} emissions reduction strategies in the route selection of inland container transportation and such consideration should provide a broader and more meaningful basis for the socio-economic evaluation of port investment projects.

  5. The impact of an emerging port on the carbon dioxide emissions of inland container transport. An empirical study of Taipei port

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chun-Hsiung; Tseng, Po-Hsing; Lu, Chin-Shan [Department of Transportation and Communication Management Science, National Cheng Kung University, No. 1 University Road, Tainan City 701 (China); Cullinane, Kevin [Transport Research Institute (TRI), Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT (United Kingdom); School of Business, Economics and Law, University of Gothenburg (Sweden)

    2010-09-15

    This study analyzes the changes in carbon dioxide (CO{sub 2}) emissions resulting from the movement of containers from established ports through the emerging port of Taipei in Northern Taiwan. An activity-based emissions model is used to estimate the CO{sub 2} emissions of container transport under four scenarios where there are switches of market share from existing ports to the emerging port. The results show that there are greater reductions in CO{sub 2} when transhipment routes are changed from the ports of Kaohsiung, Taichung and Keelung to the emerging port of Taipei. The paper concludes that the analytical approach adopted in the paper can help decision-makers understand potential CO{sub 2} emissions reduction strategies in the route selection of inland container transportation and such consideration should provide a broader and more meaningful basis for the socio-economic evaluation of port investment projects. (author)

  6. Road Transport, Economic Growth and Carbon Dioxide Emissions in the BRIICS: Conditions For a Low Carbon Economic Development

    OpenAIRE

    Atte-Oudeyi, Barakatou; Kestemont, Bruno; De Meulemeester, Jean Luc

    2016-01-01

    In this article, we investigate the relationship between economic growth and CO2 emissions per capita due to road transport in order to test the validity of the Environmental Kuznets Curve (EKC) hypothesis. We test an EKC model on a sample of six emerging countries (Brazil, Russia, India, Indonesia, China and South Africa so-called BRIICS) using yearly data from 2000 to 2010. Empirical results reveal an inverted U-shaped EKC curve relating CO2 emissions per capita due to road transport to the...

  7. Embodied carbon dioxide emission at supra-national scale: A coalition analysis for G7, BRIC, and the rest of the world

    International Nuclear Information System (INIS)

    Presented in this study is an empirical analysis of embodied carbon dioxide emissions induced by fossil fuel combustion for the world divided into three supra-national coalitions, i.e., G7, BRIC, and the rest of the world (ROW), via the application of a multi-region input-output modeling for 2004. Embodied emission intensities for the three coalitions are calculated and compared, with market exchange rate and purchase power parity separately used to investigate the difference between nominal and real production efficiencies. Emissions embodied in different economic activities such as production, consumption, import, and export are calculated and analyzed accordingly, and remarkable carbon trade imbalances associated with G7 (surplus of 1.53 billion tons, or 36% its traded emissions) and BRIC (deficit of 1.37 billion tons, or 51% its traded emissions) and approximate balance with ROW (deficit of 0.16 billion tons, or 3% its traded emissions) are concretely revealed. Carbon leakages associated with industry transfer and international trades are illustrated in terms of impacts on global climate policies. The last but not least, per capita consumption based emissions for G7, BRIC, and ROW are determined as 12.95, 1.53, and 2.22 tons, respectively, and flexible abatement policies as well as equity on per capita entitlement are discussed. - Research highlights: → We compare the embodied CO2 emissions in 2004 for G7, BRIC, and ROW. → Emissions embodied in production, consumption, import, and export are investigated. → Considerable CO2 trade surplus and deficit are obtained by G7 and BRIC, respectively. → Per head embodied emissions are 13, 1.5, and 2.2 tons for G7, BRIC, and ROW, respectively.

  8. Implication of Land-Use and Land-Cover Change into Carbon Dioxide Emissions in Karang Gading and Langkat Timur Wildlife Reserve, North Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    Mohammad Basyuni

    2015-06-01

    Full Text Available Mangrove forest in the context of climate change is important sector to be included in the inventory of greenhouse gas (GHG emissions. The present study describes land-use and land-cover change during 2006–2012 of a mangrove forest conservation area, Karang Gading and Langkat Timur Laut Wildlife Reserve (KGLTLWR in North Sumatra, Indonesia and their implications to carbon dioxide emissions. A land-use change matrix showed that the decrease of mangrove forest due to increases of other land-use such as aquaculture (50.00% and oil palm plantation (28.83%. Furthermore, the net cumulative of carbon emissions in KGLTLWR for 2006 was 3804.70 t CO2-eq year-1, whereas predicting future emissions in 2030 was 11,318.74 t CO2-eq year-1 or an increase of 33.61% for 12 years. Source of historical emissions mainly from changes of secondary mangrove forests into aquaculture and oil palm plantation were 3223.9 t CO2-eq year-1 (84.73% and 959.00 t CO2-eq year-1 (25.21%, respectively, indicating that the KGLTLWR is still a GHG emitter. Mitigation scenario with no conversion in secondary mangrove forest reduced 16.21% and 25.8% carbon emissions in 2024 and 2030, respectively. This study suggested that aquaculture and oil palm plantation are drivers of deforestation as well as the largest of GHG emission source in this area. Keywords: carbon emission, climate change, deforestation, forest degradation, mangrove conservation

  9. Understanding the Causality between Carbon Dioxide Emission, Fossil Energy Consumption and Economic Growth in Developed Countries: An Empirical Study

    Directory of Open Access Journals (Sweden)

    Bing Xue

    2014-02-01

    Full Text Available Issues on climate change have been recognized as serious challenges for regional sustainable development both at a global and local level. Given the background that most of the artificial carbon emissions are resulted from the energy consumption sector and the energy is also the key element resource for economic development, this paper investigated the relationship between CO2 emission, fossil energy consumption, and economic growth in the period 1970–2008 of nine European countries, based on the approach of Granger Causality Test, followed by the risk analysis on impacts of CO2 reduction to local economic growth classified by the indicator of causality degree. The results show that there are various feedback causal relationships between carbon emission, energy consumption and economic growth, with both unidirectional and dual-directional Granger causality. The impact of reducing CO2 emission to economic growth varies between countries as well.

  10. High fluxes but different patterns of nitrous oxide and carbon dioxide emissions from soil in a cattle overwintering area

    Czech Academy of Sciences Publication Activity Database

    Hynšt, Jaroslav; Šimek, Miloslav; Brůček, Petr; Petersen, S. O.

    2007-01-01

    Roč. 120, 2-4 (2007), s. 269-279. ISSN 0167-8809 R&D Projects: GA ČR GA526/04/0325 Grant ostatní: Evropská unie(XE) EVK2-CT-2000-00096; MŠMT(CZ) 21-1072/2004 Institutional research plan: CEZ:AV0Z60660521 Source of funding: R - rámcový projekt EK ; V - iné verejné zdroje Keywords : nitrous oxide * carbon dioxide * denitrification Subject RIV: EH - Ecology, Behaviour Impact factor: 2.308, year: 2007

  11. Carbon Dioxide - Our Common "Enemy"

    Science.gov (United States)

    James, John T.; Macatangay, Ariel

    2009-01-01

    Health effects of brief and prolonged exposure to carbon dioxide continue to be a concern for those of us who manage this pollutant in closed volumes, such as in spacecraft and submarines. In both examples, considerable resources are required to scrub the atmosphere to levels that are considered totally safe for maintenance of crew health and performance. Defining safe levels is not a simple task because of many confounding factors, including: lack of a robust database on human exposures, suspected significant variations in individual susceptibility, variations in the endpoints used to assess potentially adverse effects, the added effects of stress, and the fluid shifts associated with micro-gravity (astronauts only). In 2007 the National Research Council proposed revised Continuous Exposure Guidelines (CEGLs) and Emergency Exposure Guidelines (EEGLs) to the U.S. Navy. Similarly, in 2008 the NASA Toxicology Group, in cooperation with another subcommittee of the National Research Council, revised Spacecraft Maximum Allowable Concentrations (SMACs). In addition, a 1000-day exposure limit was set for long-duration spaceflights to celestial bodies. Herein we examine the rationale for the levels proposed to the U.S. Navy and compare this rationale with the one used by NASA to set its limits. We include a critical review of previous studies on the effects of exposure to carbon dioxide and attempt to dissect out the challenges associated with setting fully-defensible limits. We also describe recent experiences with management of carbon dioxide aboard the International Space Station with 13 persons aboard. This includes the tandem operations of the Russian Vozduk and the U.S. Carbon Dioxide Removal System. A third removal system is present while the station is docked to the Shuttle spacecraft, so our experience includes the lithium hydroxide system aboard Shuttle for the removal of carbon dioxide. We discuss strategies for highly-efficient, regenerable removal of carbon

  12. 我国火电行业燃用不同煤质时CO 2排放量计算∗%The calculation of carbon dioxide emissions from different kinds of coal in thermal power industry of China

    Institute of Scientific and Technical Information of China (English)

    武世福; 苏铁熊; 张培华; 马理强

    2014-01-01

    通过对火电行业CO2排放源的梳理及煤质变化对 CO2的影响,由火电行业不同煤种推算出标准煤在不同煤种下得到的CO2排放值,阐述了燃煤电厂中 CO2排放量实际计算方法,提高了火电行业计算碳排放量的可靠性和准确度,有效解决了当前火电行业CO2排放量统计、计算的困难。%Based on carbon dioxide emission source of thermal power industry and the influ-ence of coal quality changing carbon dioxide,the carbon dioxide emissions have been calculated in different types coal in thermal power industry.The actual calculation of carbon dioxide emissions from coal fired power plants have been stated.The reliability and accuracy of carbon emissions calculation has been improved in thermal power industry,which solved the problems of statistics and calculation of carbon dioxide emissions.

  13. Carbon emissions and income inequality

    International Nuclear Information System (INIS)

    We find that the distribution of income matters to aggregate carbon dioxide emissions and hence global warming. Higher inequality, both between and within countries is associated with lower carbon emissions at given average incomes. We also confirm that economic growth generally comes with higher emissions. Thus our results suggest that trade-offs exist between climate control (on the one hand) and both social equity and economic growth (on the other). However, economic growth improves the trade off with equity, and lower inequality improves the trade off with growth. By combining growth with equity, more pro-poor growth processes yield better longer-term trajectories of carbon emissions. (Author)

  14. CARBON DIOXIDE EMISSION ASSOCIATED WITH THE PRODUCTION OF PLASTICS - A COMPARISON OF PRODUCTION FROM CRUDE OIL AND RECYCLING FOR THE DUTCH CASE

    DEFF Research Database (Denmark)

    Rem, Peter C.; Olsen, Stig Irving; Welink, Jan-Henk;

    2009-01-01

    Literature data show that in general, plastics produced through the mechanical recycling route involve less carbon dioxide emission than when produced from crude oil. A review of readily available data shows that road transport of untreated waste plastics account for a significant portion...... recycling to the production of plastics from crude oil as a reference. The first scenario deals with packaging waste from selective collection, in which data from the current practice of the German DSD system were translated for the Dutch situation. In the second scenario, plastic packaging recovered from...

  15. Evaluation of refrigerating and air-conditioning technologies in heat cascading systems under the carbon dioxide emissions constraint: the proposal of the energy cascade balance table

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both heat cascading systems and thermal recycling systems in industries located around urban areas. It is necessary to introduce heat cascading systems in the industrial sector in Japan to reduce carbon dioxide emissions. The concept of heat cascading is the multi-stage use of thermal energy by temperature level. This paper introduces three energy policies for introducing the heat cascading systems. The author develops an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Carbon dioxide emission constraints result in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature heat is shifted to refrigeration. It was found that increasing the amount of garbage combustion waste heat could reduce electric power for the turbo compression refrigerator by promoting waste heat driven ammonia absorption refrigerator. In addition, this study proposes an energy cascade balance table with respect to the temperature level

  16. High capacity carbon dioxide sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  17. Carbon dioxide transport over complex terrain

    OpenAIRE

    Sun, RC

    2004-01-01

    The nocturnal transport of carbon dioxide over complex terrain was investigated. The high carbon dioxide under very stable conditions flows to local low-ground. The regional drainage flow dominates the carbon dioxide transport at the 6 m above the ground and carbon dioxide was transported to the regional low ground. The results show that the local drainage flow was sensitive to turbulent mixing associated with local wind shear.

  18. Perspectives in the use of carbon dioxide

    OpenAIRE

    1999-01-01

    The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the...

  19. Modelling Sublimation of Carbon Dioxide

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  20. Space–time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea

    Directory of Open Access Journals (Sweden)

    I. P. Semiletov

    2013-09-01

    Full Text Available This study aims to improve understanding of carbon cycling in the Buor-Khaya Bay (BKB and adjacent part of the Laptev Sea by studying the inter-annual, seasonal, and meso-scale variability of carbon and related hydrological and biogeochemical parameters in the water, as well as factors controlling carbon dioxide (CO2 emission. Here we present data sets obtained on summer cruises and winter expeditions during 12 yr of investigation. Based on data analysis, we suggest that in the heterotrophic BKB area, input of terrestrially borne organic carbon (OC varies seasonally and inter-annually and is largely determined by rates of coastal erosion and river discharge. Two different BKB sedimentation regimes were revealed: Type 1 (erosion accumulation and Type 2 (accumulation. A Type 1 sedimentation regime occurs more often and is believed to be the quantitatively most important mechanism for suspended particular matter (SPM and particulate organic carbon (POC delivery to the BKB. The mean SPM concentration observed in the BKB under a Type 1 regime was one order of magnitude greater than the mean concentration of SPM (~ 20 mg L−1 observed along the Lena River stream in summer 2003. Loadings of the BKB water column with particulate material vary by more than a factor of two between the two regimes. Higher partial pressure of CO2 (pCO2, higher concentrations of nutrients, and lower levels of oxygen saturation were observed in the bottom water near the eroded coasts, implying that coastal erosion and subsequent oxidation of eroded organic matter (OM rather than the Lena River serves as the predominant source of nutrients to the BKB. Atmospheric CO2 fluxes from the sea surface in the BKB vary from 1 to 95 mmol m−2 day−1 and are determined by specific features of hydrology and wind conditions, which change spatially, seasonally, and inter-annually. Mean values of CO2 emission from the shallow Laptev Sea were similar in September 1999 and 2005 (7.2 and 7

  1. Carbon dioxide emissions and the overshoot ratio change resulting from the implementation of 2nd Energy Master Plan in South Korea

    Science.gov (United States)

    Yeo, M. J.; Kim, Y. P.

    2015-12-01

    The direction of the energy policies of the country is important in the projection of environmental impacts of the country. The greenhouse gases (GHGs) emission of the energy sector in South Korea is very huge, about 600 MtCO2e in 2011. Also the carbon footprint due to the energy consumption contributes to the ecological footprint is also large, more than 60%. Based on the official plans (the national greenhouse gases emission reduction target for 2030 (GHG target for 2030) and the 2nd Energy Master Plan (2nd EMP)), several scenarios were proposed and the sensitivity of the GHG emission amount and 'overshoot ratio' which is the ratio of ecological footprint to biocapacity were estimated. It was found that to meet the GHG target for 2030 the ratio of non-emission energy for power generation should be over 71% which would be very difficult. We also found that the overshoot ratio would increase from 5.9 in 2009 to 7.6 in 2035. Thus, additional efforts are required to reduce the environmental burdens in addition to optimize the power mix configuration. One example is the conversion efficiency in power generation. If the conversion efficiency in power generation rises up 50% from the current level, 40%, the energy demand and resultant carbon dioxide emissions would decrease about 10%. Also the influence on the environment through changes in consumption behavior, for example, the diet choice is expected to be meaningful.

  2. 全球气候变化与CO_2减排方案的探讨%On exploration for global climate changes and carbon dioxide emission-reducing scheme

    Institute of Scientific and Technical Information of China (English)

    赵洁

    2012-01-01

    The study points out the greenhouse gas mainly with carbon dioxide is the major driving factor for the global climate changes,explores the emission-reducing scheme of the carbon dioxide from the population,the Per Capita GDP,unit energy consumption and the energy carbon content,which play the role in the emission of the carbon dioxide,and considers the geological sequestration including the oil deposits,the gas layer and the deep aquifer can increase the carbon content,and indicates the reduction of the man-made carbon dioxide is the most potential way to reduce the emission of carbon dioxide.%指出以CO2为主的温室气体是全球气候变化的最主要的驱动因素,就影响CO2排放量的入口、人均GDP、单位耗能量和能源含碳量以及碳汇量等进行CO2减排方案的探讨,并认为油田、煤气层和深部含水层等地质处置方法能够有效增加CO2的碳汇量,降低CO2的人为排放量,是当前最有潜力的CO2减排途径。

  3. 21 CFR 582.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  4. A CGE analysis to study the impacts of energy investment on economic growth and carbon dioxide emission: A case of Shaanxi Province in western China

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chuanyi; Zhang, Xiliang; He, Jiankun [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2010-11-15

    A two-region ten-sector computable general equilibrium (CGE) model was built to analyze the effects of investment growth in the energy sectors of western areas of China on the local economy and emission of carbon dioxide (CO{sub 2}). There are three different scenarios in the quantitative analysis for the investment increase in energy sectors of the western areas. The investment to energy sectors is increased at the rate of 20%, 40%, and 60%. Based on Shaanxi Province's 2002 input-output table, the change of some macro-economic variables is simulated under these scenarios. The results show that the GDP growth is at 0-8.92%, households disposable income growth is at 0-8.94%, and emission of carbon dioxide growth is at 0-11.10% when the investment growth is at 0-60%. The oil and gas sector is the most effective sector with a growth rate of 0-19.47%. (author)

  5. Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Goldman, N. [eds.

    1991-06-01

    The ``International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers`` was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

  6. Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Goldman, N. (eds.)

    1991-06-01

    The International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

  7. Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers

    International Nuclear Information System (INIS)

    The ''International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries

  8. Nuclear power and carbon dioxide free automobiles

    International Nuclear Information System (INIS)

    Nuclear energy has been developed as a major source of electric power in Canada. Electricity from nuclear energy already avoids the emission of about 100 million tonnes of carbon dioxide to the atmosphere in Canada. This is a significant fraction of the 619 million tonnes of Canadian greenhouse gas emissions in 1995. However, the current scope of application of electricity to end use energy needs in Canada limits the contribution nuclear energy can make to carbon dioxide emission reduction. Nuclear energy can also contribute to carbon dioxide emissions reduction through expansion of the use of electricity to less traditional applications. Transportation, in particular contributed 165 million tonnes of carbon dioxide to the Canadian atmosphere in 1995. Canada's fleet of personal vehicles consisted of 16.9 million cars and light trucks. These vehicles were driven on average 21,000 km/year and generated 91 million tonnes of greenhouse gases expressed as a C02 equivalent. Technology to improve the efficiency of cars is under development which is expected to increase the energy efficiency from the 1995 level of about 10 litres/100 km of gasoline to under 3 litres/100km expressed as an equivalent referenced to the energy content of gasoline. The development of this technology, which may ultimately lead to the practical implementation of hydrogen as a portable source of energy for transportation is reviewed. Fuel supply life cycle greenhouse gas releases for several personal vehicle energy supply systems are then estimated. Very substantial reductions of greenhouse gas emissions are possible due to efficiency improvements and changing to less carbon intensive fuels such as natural gas. C02 emissions from on board natural gas fueled versions of hybrid electric cars would be decreased to approximately 25 million t/year from the current 91 million tonnes/year. The ultimate reduction identified is through the use of hydrogen fuel produced via electricity from CANDU power

  9. Real-World Carbon Dioxide Impacts of Traffic Congestion

    OpenAIRE

    Barth, Matthew; Boriboonsomsin, Kanok

    2010-01-01

    Transportation plays a significant role in carbon dioxide (CO2) emissions, accounting for approximately a third of the U.S. inventory. To reduce CO2 emissions in the future, transportation policy makers are planning on making vehicles more efficient and increasing the use of carbon-neutral alternative fuels. In addition, CO2 emissions can be lowered by improving traffic operations, specifically through the reduction of traffic congestion. Traffic congestion and its impact on CO2 emissions wer...

  10. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  11. Perspectives in the use of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Aresta Michele

    1999-01-01

    Full Text Available The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the potential of carbon dioxide utilisation in the short-, medium-term is reviewed.

  12. Turning carbon dioxide into fuel.

    Science.gov (United States)

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  13. Historical changes in carbon dioxide (CO2) and dimethyl sulphide (DMS) emissions in the eutrophied Southern North Sea

    Science.gov (United States)

    Gypens, N.; Borges, A. V.; Lancelot, C.

    2012-04-01

    Anthropogenic activities after the Second World War have severely increased river nutrient [nitrogen (N) and phosphorus (P)] loads to European coastal areas. The resulting N: P: Si imbalance (compared to phytoplankton requirements) stimulated in the Southern North Sea the growth of Phaeocystis colonies modifying the functioning of the ecosystem and, therefore, the carbon but also the biogenic sulphur cycles. Phaeocystis is a significant producer of DMSP (dimethylsulphide propionate), the precursor of DMS. When emitted to the atmosphere the DMS has a cooling effect on the climate contrarily to the CO2 greenhouse gas. Since the late 1990's specific nutrient reduction policies have however considerably reduced P loads while N is maintained. In this application we explore, with a mathematical tool, the effects of changing N and P loads on air-sea CO2 exchanges and DMS marine emissions. The chosen model is the MIRO-CO2-DMS, a complex biogeochemical model describing carbon, biogenic sulphur and nutrient cycles in the marine domain. Model simulations are performed for the contemporary period since 1950, using real forcing fields for sea surface temperature, wind speed and atmospheric CO2 and RIVERSTRAHLER model simulations for river carbon and nutrient loads. Results are discussing the importance of human activities and river inputs of carbon and nutrients on the eutrophication of coastal areas, their ability to absorb atmospheric CO2 and the importance of DMS emissions associated with phytoplankton blooms, especially Phaeocystis.

  14. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    S.C. Xiang; Y. He; Z. Zhang; H. Wu; W. Zhou; R. Krishna; B. Chen

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve s

  15. Changes in carbon dioxide emissions and LMDI-based impact factor decomposition:the Xinjiang Uygur autonomous region as a case

    Institute of Scientific and Technical Information of China (English)

    Li ZHANG; Jun LEI; Xuan ZHOU; XiaoLei ZHANG; Wen DONG; Yu YANG

    2014-01-01

    Studies on carbon dioxide (CO2) emissions at provincial level can provide a scientific basis for the op-timal use of energy and the formulation of CO2 reduction policies. We studied the variation of CO2 emissions of primary energy consumption and its influencing factors based on data in Xinjiang Uygur autonomous region from 1952 to 2008, which were calculated according to the 2006 IPCC Guidelines for National Greenhouse Gas Inven-tories. Xinjiang’s CO2 emission process from 1952 to 2008 could be divided into five stages according to the growth rates of total amount of CO2 emissions and CO2 emission intensity. The impact factors were quantitatively analyzed using Logarithmic Mean Divisia Index (LMDI) method in each stage. Various factors, including government policies and technological progress related to the role of CO2 emissions, were comprehensively analyzed, and the internal relationships among various factors were clarified. The results show that the contribution rates of various impact factors are different in each stage. Overall, economic growth and energy consumption intensity were the main driving factors for CO2 emissions. Since the implementation of the birth control policy, the driving force of population growth on the increase in CO2 emissions has slowly weakened. The energy consumption intensity was further af-fected by the industrial structure and energy consumption intensity of primary, secondary and tertiary industries, with the energy consumption intensity of the secondary industries and the proportion of secondary industries being the most important factors affecting the energy consumption intensity. Governmental policies and technological progress were also important factors that affected CO2 emissions.

  16. Carbon dioxide retention in divers

    Energy Technology Data Exchange (ETDEWEB)

    Florio, J.T.; Mackenzie, D.A.R.; McKenzie, R.S. [ARE Physiological Laboratory, Gosport (United Kingdom)

    1998-04-01

    This report summarises the work carried out at the ARE Physiological Laboratory (ARE(PL)) between July 1978 and December 1983. The work was intended to examine the proposition that some divers have a low ventilatory response to carbon dioxide; that this results in a low ventilatory response to exercise with consequent hypercapnia; and that these characteristics put the diver at a greater-than-normal risk by increasing the individual`s susceptibility to oxygen toxicity and to other hazards associated with diving (e.g. nitrogen narcosis, decompression sickness and hypothermia). The specific aims of the project can be summarised as follows: (a) to demonstrate the existence of divers who exhibit the tendency to `retain carbon dioxide` when working in hyperbaric conditions; (b) to define the circumstances under which such individuals are at risk; (c) to assess the magnitude of the risk; and (d) to recommend ways to eliminate or to reduce the risk. (author)

  17. Summer Ice and Carbon Dioxide

    Science.gov (United States)

    Kukla, G.; Gavin, J.

    1981-10-01

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and research ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55 degrees and 80 degrees N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  18. Method for carbon dioxide sequestration

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  19. Oxygen and carbon dioxide sensing

    Science.gov (United States)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  20. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    Science.gov (United States)

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-12-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10-3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10-7, nO2/nN = 5.39 × 10-5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  1. Transient Earth system responses to cumulative carbon dioxide emissions: linearities, uncertainties, and probabilities in an observation-constrained model ensemble

    Science.gov (United States)

    Steinacher, M.; Joos, F.

    2016-02-01

    Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An ˜ 1000-member ensemble of the Bern3D-LPJ carbon-climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

  2. A Global Outlook to the Carbon Dioxide Emissions in the World and Emission Factors of the Thermal Power Plants in Turkey

    International Nuclear Information System (INIS)

    World primary energy demand increases with increases in population and economic development. Within the last 25 yr, the total energy consumption has almost doubled. For the purpose of meeting this demand, fossil energy sources are used and various pollutants are generated. CO2 is also one of these gases, which cannot be removed like other pollutants, and it causes greenhouse effect and climate change. Reducing the CO2 emission is very important because of the environmental concerns and regulations, especially the Kyoto Protocol. This paper reviews the estimated world carbon emissions, Turkey's situation in electrical energy production, emission amounts estimated until the year 2020 and emission factors for dust, SO2, NOx and CO2. The estimated results show that CO2 emissions from thermal power plants in Turkey will make about 0.66 % of the global CO2 emissions in 2020

  3. Associations of health, physical activity and weight status with motorised travel and transport carbon dioxide emissions: a cross-sectional, observational study

    Directory of Open Access Journals (Sweden)

    Goodman Anna

    2012-08-01

    Full Text Available Abstract Background Motorised travel and associated carbon dioxide (CO2 emissions generate substantial health costs; in the case of motorised travel, this may include contributing to rising obesity levels. Obesity has in turn been hypothesised to increase motorised travel and/or CO2 emissions, both because heavier people may use motorised travel more and because heavier people may choose larger and less fuel-efficient cars. These hypothesised associations have not been examined empirically, however, nor has previous research examined associations with other health characteristics. Our aim was therefore to examine how and why weight status, health, and physical activity are associated with transport CO2 emissions. Methods 3463 adults completed questionnaires in the baseline iConnect survey at three study sites in the UK, reporting their health, weight, height and past-week physical activity. Seven-day recall instruments were used to assess travel behaviour and, together with data on car characteristics, were used to estimate CO2 emissions. We used path analysis to examine the extent to which active travel, motorised travel and car engine size explained associations between health characteristics and CO2 emissions. Results CO2 emissions were higher in overweight or obese participants (multivariable standardized probit coefficients 0.16, 95% CI 0.08 to 0.25 for overweight vs. normal weight; 0.16, 95% CI 0.04 to 0.28 for obese vs. normal weight. Lower active travel and, particularly for obesity, larger car engine size explained 19-31% of this effect, but most of the effect was directly explained by greater distance travelled by motor vehicles. Walking for recreation and leisure-time physical activity were associated with higher motorised travel distance and therefore higher CO2 emissions, while active travel was associated with lower CO2 emissions. Poor health and illness were not independently associated with CO2 emissions. Conclusions Establishing

  4. C balance, carbon dioxide emissions and global warming potentials in LCA-modeling of waste management systems

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Gentil, Emmanuel; Boldrin, Alessio; Larsen, Anna Warberg; Weidema, B.P.; Hauschild, Michael Zwicky

    2009-01-01

    Global warming potential (GWP) is an important impact category in life-cycle-assessment modelling of waste management systems. However, accounting of biogenic CO2 emissions and sequestered biogenic carbon in landfills and in soils, amended with compost, is carried out in different ways in reported...... showed that criteria for assigning global warming contributions are partly linked to the system boundary conditions. While the boundary to the paper industry and the energy industry usually is specified in LCA studies, the boundary to the forestry industry and the interaction between forestry and the...

  5. Carbon Dioxide Removal via Passive Thermal Approaches

    Science.gov (United States)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  6. 水泥工业CO2减排及利用技术进展%Technical Progress of Emission-reduction and Utilization of Carbon Dioxide in Cement Industry

    Institute of Scientific and Technical Information of China (English)

    马忠诚; 汪澜

    2011-01-01

    Emission-reduction exists potentially in cement industry, which is the key industry for carbon dioxide emission. Carbonate decomposition, fuel combustion and electric power consumption, etc. Which discharge carbon dioxide in cement industry, are introduced. A series of methods for decreasing carbon dioxide emission in cement industry, such as improving energy utilization, using alternative raw materials and fuels, developing new low carbone-mission binding materials, etc. Are expounded. Finally, several technologies for recycling of carbon dioxide, such as separation, capture, storage, fixation, etc. Are suggested.%水泥工业是CO2排放的重点行业,减排潜力巨大.全面介绍了水泥生产中碳酸盐分解、燃料燃烧和电力消耗等方面CO2的排放情况;详细阐述了水泥生产中通过提高能源利用率、使用替代原燃料、开发新型低碳排放的胶凝材料等措施实现CO2减排的方法,提出了对水泥工业CO2排放实施的分离、捕集、封存、固定等回收利用技术.

  7. Carbon dioxide emissions as affected by alternative long-term irrigation and tillage management practices in the lower Mississippi River Valley.

    Science.gov (United States)

    Smith, S F; Brye, K R

    2014-01-01

    Ensuring the sustainability of cultivated soils is an ever-increasing priority for producers in the Lower Mississippi River Valley (LMRV). As groundwater sources become depleted and environmental regulations become more strict, producers will look to alternative management practices that will ensure the sustainability and cost-effectiveness of their production systems. This study was conducted to assess the long-term (>7 years) effects of irrigation (i.e., irrigated and dryland production) and tillage (conventional and no-tillage) on estimated carbon dioxide (CO2) emissions from soil respiration during two soybean (Glycine max L.) growing seasons from a wheat- (Triticum aestivum L.-) soybean, double-cropped production system in the LMRV region of eastern Arkansas. Soil surface CO2 fluxes were measured approximately every two weeks during two soybean growing seasons. Estimated season-long CO2 emissions were unaffected by irrigation in 2011 (P > 0.05); however, during the unusually dry 2012 growing season, season-long CO2 emissions were 87.6% greater (P = 0.044) under irrigated (21.9 Mg CO2 ha(-1)) than under dryland management (11.7 Mg CO2 ha(-1)). Contrary to what was expected, there was no interactive effect of irrigation and tillage on estimated season-long CO2 emissions. Understanding how long-term agricultural management practices affect soil respiration can help improve policies for soil and environmental sustainability. PMID:25371912

  8. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: effect of pH, mixing and aeration

    DEFF Research Database (Denmark)

    Dai, Xiao-Rong; Blanes-Vidal, Victoria

    2013-01-01

    This study aimed at evaluating the effect of swine slurry acidification and acidification-aeration treatments on ammonia (NH(3)), carbon dioxide (CO(2)) and hydrogen sulfide (H(2)S) emissions during slurry treatment and subsequent undisturbed storage. The study was conducted in an experimental...... setup consisting of nine dynamic flux chambers. Three pH levels (pH = 6.0, pH = 5.8 and pH = 5.5), combined with short-term aeration and venting (with an inert gas) treatments were studied. Acidification reduced average NH(3) emissions from swine slurry stored after acidification treatment compared to...... emissions during storage of non-acidified slurry. The reduction were 50%, 62% and 77% when pH was reduce to 6.0, 5.8 and 5.5, respectively. However, it had no significant effect on average CO(2) and H(2)S emissions during storage of slurry after acidification. Aeration of the slurry for 30 min had no effect...

  9. Changes in the carbon dioxide emission from soils in the course of postagrogenic succession in the Chernozems forest-steppe

    Science.gov (United States)

    Karelin, D. V.; Lyuri, D. I.; Goryachkin, S. V.; Lunin, V. N.; Kudikov, A. V.

    2015-11-01

    The CO2 emission from soils in the course of the long-term postagrogenic succession on Calcic Chernozems under meadow-steppe vegetation was studied. Seasonal dynamics of the emission at different stages of the restoration of natural vegetation and long-term changes in the main pools of carbon in the soils and phytomass were examined. These data were used to create a regression model of the CO2 emission on the basis of data on the soil water content and temperature with a temporal resolution of 3 h. The results were compared with an analogous study of the postagrogenic succession on sandy Agropodzols of southern taiga. It was found that the long-term pattern of the CO2 emission has a bimodal character. The first maximum corresponds to the early stages of the succession (2-8 years) and is ensured by a sharp intensification of respiration in the organomineral soil horizons under the impact of plant species typical of these stages, active growth of their underground parts, and, probably, activation of microbiota in the rhizosphere. The second maximum of the emission is observed at the final stages of the succession and is mainly ensured by the increasing pool of steppe litter. A decrease in the soil temperature because of the thermal insulation of the soil surface by the accumulating litter and organic substances in the topsoil horizons leads to a temporary decrease in the emission intensity at the middle stages of the succession, when the litter pool is still not vary large. The restoration of the initial level of the CO2 emission typical of the natural cenoses is achieved in about 80-100 years after the abandoning of the cultivated fields, i.e., considerably faster than that in the southern taiga zone (150-170 years). The results of modeling suggest that this is caused by the considerable accumulation of steppe litter, organic substances, and phytomass in the topsoil horizons rather than by the somewhat increased heat supply owing to longer duration of vegetation

  10. Potential for reducing paper mill energy use and carbon dioxide emissions through plant-wide energy audits: A case study in China

    International Nuclear Information System (INIS)

    Highlights: ► We audited a paper mill in China to reduce its energy use and CO2 emissions. ► The energy use and CO2 emissions of the mill and each paper machine are presented. ► The energy saving potential for the paper machine is estimated at 8–37%. ► The energy saving potential is 967.8 TJ, equal to 14.4% of the mill’s energy use. ► The CO2 reduction potential is 93,453 tonnes CO2 for the studied paper mill. -- Abstract: The pulp and paper industry is one of the most energy-intensive industries worldwide. In 2007, it accounted for 5% of total global industrial energy consumption and 2% of direct industrial carbon dioxide (CO2) emissions. An energy audit is a primary step toward improving energy efficiency at the facility level. This paper describes a plant-wide energy audit aimed at identifying energy conservation and CO2 mitigation opportunities at a paper mill in Guangdong province, China. We describe the energy audit methods, relevant Chinese standards, methods of calculating energy and carbon indicators, baseline energy consumption and CO2 emissions of the audited paper mill, and nine energy-efficiency improvement opportunities identified by the audit. For each of the nine options, we evaluate the energy conservation and associated CO2 mitigation potential. The total technical energy conservation potential for these nine opportunities is 967.8 terajoules (TJ), and the total CO2 mitigation potential is equal to 93,453 tonnes CO2 annually, representing 14.4% and 14.7%, respectively, of the mill’s total energy consumption and CO2 emissions during the audit period.

  11. Effects of ozone exposure on `Golden' papaya fruit by photoacoustic phase-resolved method: Physiological changes associated with carbon dioxide and ethylene emission rates during ripening

    Science.gov (United States)

    Corrêa, Savio Figueira; Mota, Leonardo; Paiva, Luisa Brito; Couto, Flávio Mota do; Silva, Marcelo Gomes da; Oliveira, Jurandi Gonçalves de; Sthel, Marcelo Silva; Vargas, Helion; Miklós, András

    2011-06-01

    This work addresses the effects of ozone activity on the physiology of `Golden' papaya fruit. Depth profile analysis of double-layer biological samples was accomplished using the phase-resolved photoacoustic spectroscopy. The feasibility of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of papaya fruit. The same approach was used to monitor changes occurring on the fruit during ripening when exposed to ozone. In addition, one has performed real time studies of fluorescence parameters and the emission rates of carbon dioxide and ethylene. Finally, the amount of pigments and the changes in waxy cuticle have been monitored. Results indicate that a fruit deliberately subjected to ozone at a level of 6 ppmv underwent ripening sooner (at least 24-48 h) than a fruit stored at ambient conditions. Moreover, ozone caused a reduction in the maximum quantum yield of photosynthetic apparatus located within the skin of papaya fruit.

  12. Effects of ozone exposure on 'Golden' papaya fruit by photoacoustic phase-resolved method: Physiological changes associated with carbon dioxide and ethylene emission rates during ripening

    International Nuclear Information System (INIS)

    This work addresses the effects of ozone activity on the physiology of 'Golden' papaya fruit. Depth profile analysis of double-layer biological samples was accomplished using the phase-resolved photoacoustic spectroscopy. The feasibility of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of papaya fruit. The same approach was used to monitor changes occurring on the fruit during ripening when exposed to ozone. In addition, one has performed real time studies of fluorescence parameters and the emission rates of carbon dioxide and ethylene. Finally, the amount of pigments and the changes in waxy cuticle have been monitored. Results indicate that a fruit deliberately subjected to ozone at a level of 6 ppmv underwent ripening sooner (at least 24-48 h) than a fruit stored at ambient conditions. Moreover, ozone caused a reduction in the maximum quantum yield of photosynthetic apparatus located within the skin of papaya fruit.

  13. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    Science.gov (United States)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  14. Carbon dioxide accounting:2014 Commonwealth Games Atheletes’ Village

    OpenAIRE

    Sampson, Jennifer; Biesta, Mark; Crapper, Martin; Hall, Iain; Shepherd, Alan

    2013-01-01

    A spreadsheet-based tool for whole-life carbon dioxide accounting of soil remediation projects has been created. The tool carries out whole-life analysis of projects, including supply chain emissions. It was applied to the Glasgow 2014 Commonwealth Games Athletes' Village remediation project, for which a calculated total ‘carbon footprint’ of 2328 t of carbon dioxide equivalent emission (tCO2e) was obtained. This is 71 tCO2e/ha of the site or 13·3 kgCO2e/t whole life of soil treated. These fi...

  15. Absorption of carbon dioxide in waste tanks

    International Nuclear Information System (INIS)

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  16. The carbon dioxide capture and geological storage

    International Nuclear Information System (INIS)

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO2 generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO2 capture from lage fossil-fueled combustion installations, the three capture techniques and the CO2 transport options, the geological storage of the CO2 and Total commitments in the domain. (A.L.B.)

  17. Transformation and utilization of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Bhanage, Bhalchandra M. [Institute of Chemical Technology, Mumbai (India). Dept. of Chemistry; Arai, Masahiko (ed.) [Hokkaido Univ., Sapporo (Japan). Division of Chemical Process Engineering

    2014-04-01

    This book shows the various organic, polymeric and inorganic compounds which result from the transformation of carbon dioxide through chemical, photocatalytic, electrochemical, inorganic and biological processes. The book consists of twelve chapters demonstrating interesting examples of these reactions, depending on the types of reaction and catalyst. It also includes two chapters dealing with the utilization of carbon dioxide as a reaction promoter and presents a wide range of examples of chemistry and chemical engineering with carbon dioxide.

  18. 21 CFR 184.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C....

  19. A preliminary assessment of carbon dioxide mitigation options

    International Nuclear Information System (INIS)

    The purpose of this paper is to place the potential needs to control global carbon dioxide emissions in perspective. In order to limit carbon dioxide levels in the earth's atmosphere to no more than twice pre- anthropogenic levels, it will be necessary to limit carbon emissions to approximately 10 gigatons per year by 2050. The implications of such a constraint to the developed countries, developing countries, and international community are assessed. It is clear that international priorities must be established and specific approaches developed in the first quarter of the 21st century to define the necessary, minimum- cost mitigation strategies. Because of the complexity of establishing a meaningful policy approach, imposition of an arbitrary carbon tax is unlikely to provide the constraints necessary to achieve a satisfactory earth atmosphere - carbon dioxide equilibrium state

  20. Carbon dioxide-guided angioplasty

    International Nuclear Information System (INIS)

    Revascularization procedures are frequently necessary in patients with severe peripheral vascular disease and renal insufficiency (often coexistent with diabetes mellitus). This paper examines the use of carbon dioxide as the contrast agent in percutaneous revascularization procedures (balloon angioplasty). Over the past 10 months, our protocol has used CO2 as the contrast agent for balloon angioplasty in a select group of patients (n = 12) with peripheral vascular disease and renal insufficiency. Some had coexistent diabetes mellitus. With digital subtraction angiography, CO2 was the only contrast agent used during revascularization. Pressure gradients were obtained in appropriate patients

  1. VEGETATION SYNTAXONOMY AND LAND MANAGEMENT EFFECT ON METHANE AND CARBON DIOXIDE EMISSIONS FROM WETLANDS: A CASE STUDY FROM TIDAL SALT AND BRACKISH MARSH

    Directory of Open Access Journals (Sweden)

    Annisa Satyanti

    2014-07-01

    Full Text Available Carbon dioxide (CO2 and methane (CH4 emission from wetlands significantly contribute to climate change and global warming. The interaction between among vegetation type, various environmental factors, and management regimes such as grazing and mowing is considered important in the calculation of CO2 and CH4 gas flux for an ecosystem. In this study, vegetation composition, CH4 and CO2 flux, soil characteristics, air temperature and humidity from the brackish marsh and salt marsh wetland ecosystems on Terschelling Island in Northern Holland were measured. We aimed to investigate the relationship between vegetation composition, grazing, and mowing on CH4 and CO2 emission. The abundance and number of plant species were higher in brackish than in salt marsh. Grazing was found to influence species richness, 39 species being found in a grazed site of brackish marsh compared to 31 species in a similar ungrazed site. CO2 fluxes in salt and brackish marsh were found to be similar while CH4 flux in the salt marsh was found to be lower than in the brackish marsh. Within the brackish marsh, a higher methane emission was recorded in the grazed zone. However the overall effect of grazing and mowing was found to be negligible for CH4 flux but is suggested to clearly reduce CO2 flux in both the salt and brackish marsh.

  2. Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Heejin; Mago, Pedro J.; Luck, Rogelio; Chamra, Louay M. [Department of Mechanical Engineering, Mississippi State University, 210 Carpenter Engineering Building, P.O. Box ME, Mississippi State, MS 39762-5925 (United States)

    2009-12-15

    Optimization of combined cooling, heating, and power (CCHP) systems operation commonly focuses only on energy cost. Different algorithms have been developed to attain optimal utilization of CCHP units by minimizing the energy cost in CCHP systems operation. However, other outcomes resulting from CCHP operation such as primary energy consumption and emission of pollutants should also be considered during CCHP systems evaluation as one would expect these outcomes can be subject to regulation. This paper presents an optimization of the operation of CCHP systems for different climate conditions based on operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDE) using an optimal energy dispatch algorithm. The results for the selected cities demonstrate that in general there is not a common trend among the three optimization modes presented in this paper since optimizing one parameter may reduce or increase the other two parameters. The only cities that show reduction of PEC while also reducing the CDE are Columbus, MS; Minneapolis, MN; and Miami, FL. For these cities the operational cost always increases when compared to the reference case consisting of using a vapor/compression cycle for cooling and natural gas for heating. On the other hand, for San Francisco and Boston, CCHP systems increase the CDE. In general, if CCHP systems increase the cost of operation, as long as energy savings and reduction of emissions are guaranteed, the implementation of these systems should be considered. (author)

  3. Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard.

    Science.gov (United States)

    Maris, S C; Teira-Esmatges, M R; Arbonés, A; Rufat, J

    2015-12-15

    Drip irrigation combined with nitrogen (N) fertigation is applied in order to save water and improve nutrient efficiency. Nitrification inhibitors reduce greenhouse gas emissions. A field study was conducted to compare the emissions of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) associated with the application of N fertiliser through fertigation (0 and 50kgNha(-1)), and 50kgNha(-1)+nitrification inhibitor in a high tree density Arbequina olive orchard. Spanish Arbequina is the most suited variety for super intensive olive groves. This system allows reducing production costs and increases crop yield. Moreover its oil has excellent sensorial features. Subsurface drip irrigation markedly reduced N2O and N2O+N2 emissions compared with surface drip irrigation. Fertiliser application significantly increased N2O+N2, but not N2O emissions. Denitrification was the main source of N2O. The N2O losses (calculated as emission factor) ranging from -0.03 to 0.14% of the N applied, were lower than the IPCC (2007) values. The N2O+N2 losses were the largest, equivalent to 1.80% of the N applied, from the 50kgNha(-1)+drip irrigation treatment which resulted in water filled pore space >60% most of the time (high moisture). Nitrogen fertilisation significantly reduced CO2 emissions in 2011, but only for the subsurface drip irrigation strategies in 2012. The olive orchard acted as a net CH4 sink for all the treatments. Applying a nitrification inhibitor (DMPP), the cumulative N2O and N2O+N2 emissions were significantly reduced with respect to the control. The DMPP also inhibited CO2 emissions and significantly increased CH4 oxidation. Considering global warming potential, greenhouse gas intensity, cumulative N2O emissions and oil production, it can be concluded that applying DMPP with 50kgNha(-1)+drip irrigation treatment was the best option combining productivity with keeping greenhouse gas emissions under control. PMID:26367066

  4. Fossil fuels and the global carbon dioxide problem. Disposal and recycling of carbon dioxide may reduce the greenhouse effect

    International Nuclear Information System (INIS)

    Greenhouse gas reduction was defined as a global concern at the Kyoto conference of 1997. The emission reduction goals can be reached only if all options for energy saving and emission reduction are used, including disposal or recycling of carbon dioxide in fossil fuel combustion processes

  5. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Factors controlling the capacity of the ocean for taking up anthropogenic C02 include carbon chemistry, distribution of alkalinity, pCO2 and total concentration of dissolved C02, sea-air pCO2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C02 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C02 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C02 fertilization is a potential candidate for such missing carbon sinks

  6. New evidence on the convergence of per capita carbon dioxide emissions from panel seemingly unrelated regressions augmented Dickey-Fuller tests

    International Nuclear Information System (INIS)

    Using the data for per capita carbon dioxide (CO2) emissions relative to the average per capita emissions for 21 countries in the organisation for economic co-operation and development (OECD) covering the period 1960-2000, this paper seeks to determine whether the stochastic convergence and β-convergence of CO2 emissions are supported in countries with the same level of development. In other words, are shocks to relative per capita CO2 emissions temporary in industrialized countries? We respond to this question by utilizing Breuer et al.'s [Breuer JB, McNown R, Wallace MS. Misleading inferences from panel unit-root tests with an illustration from purchasing power parity. Review of International Economics 2001;9(3):482-93; Breuer JB, McNown R, Wallace MS. Series-specific unit-root tests with panel data. Oxford Bulletin of Economics and Statistics 2002 64(5):527-46] panel seemingly unrelated regressions augmented Dickey-Fuller (SURADF) unit-root tests, which allow us to account for possible cross-sectional effects and to identify how many and which members of the panel contain a unit root. Our empirical findings provide evidence that relative per capita CO2 emissions in OECD countries are a mixture of I(0) and I(1) processes, in which 14 out of 21 OECD countries exhibit divergence. The results reveal that conventional panel unit-root tests can lead to misleading inferences biased towards stationarity even if only one series in the panel is strongly stationary

  7. Carbon dioxide direct cycle modular reactor

    International Nuclear Information System (INIS)

    Recently, as the micro gas-turbine power generation is clean for environment and has high convenience, it is focused as a small size dispersion electric source for super markets, hospitals, factories, and so on. And, a modular high temperature gas reactor (PBMR) adopting the gas turbine is also focused recently, and is progressed on its construction in South Africa and reported on construction plan of the Exelon Inc. in U.S.A. PBMR has specific safety for a small size and pebble-bed reactor and also has some characters on low construction cost similar to that of LWR due to simplification and small size module adoption of its plant. The PBMR uses helium for its coolants, of which exit temperature is set for at 900degC to get higher thermal efficiency. This is because of its adoption of Brayton cycle to fast reduce the efficiency with falling temperature. However, as helium is a costly and easy-emission vapor, it is desired to alternate to cheaper and more difficult-emission vapor. Here were introduced on carbon dioxide (CO2) direct cycle using carbon dioxide with extremely higher thermal efficiency than helium and its applicability to nuclear reactors. (G.K.)

  8. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions

    International Nuclear Information System (INIS)

    We have examined how some major catchment disturbances may affect the aquatic greenhouse gas fluxes in the boreal zone, using gas flux data from studies made in 1994-1999 in the pelagic regions of seven lakes and two reservoirs in Finland. The highest pelagic seasonal average methane (CH4) emissions were up to 12 mmol m-2 d-1 from eutrophied lakes with agricultural catchments. Nutrient loading increases autochthonous primary production in lakes, promoting oxygen consumption and anaerobic decomposition in the sediments and this can lead to increased CH4 release from lakes to the atmosphere. The carbon dioxide (CO2) fluxes were higher from reservoirs and lakes whose catchment areas were rich in peatlands or managed forests, and from eutrophied lakes in comparison to oligotrophic and mesotrophic sites. However, all these sites were net sources of CO2 to the atmosphere. The pelagic CH4 emissions were generally lower than those from the littoral zone. The fluxes of nitrous oxide (N2O) were negligible in the pelagic regions, apparently due to low nitrate inputs and/or low nitrification activity. However, the littoral zone, acting as a buffer for leached nitrogen, did release N2O. Anthropogenic disturbances of boreal lakes, such as increasing eutrophication, can change the aquatic greenhouse gas balance, but also the gas exchange in the littoral zone should be included in any assessment of the overall effect. It seems that autochthonous and allochthonous carbon sources, which contribute to the CH4 and CO2 production in lakes, also have importance in the greenhouse gas emissions from reservoirs. (Author)

  9. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, Jari T.; Liikanen, Anu; Martikainen, Pertti J. [Kuopio Univ., Dept. of Environmental Sciences, Kuopio (Finland); Alm, Jukka [Finnish Forest Research Inst., Research Centre, Joensuu (Finland); Juutinen, Sari; Larmola, Tuula; Silvola, Jouko [Joensuu Univ., Dept. of Biology, Joensuu (Finland); Hammar, Taina [North Savo Regional Environment Centre, Kuopio (Finland)

    2003-07-01

    We have examined how some major catchment disturbances may affect the aquatic greenhouse gas fluxes in the boreal zone, using gas flux data from studies made in 1994-1999 in the pelagic regions of seven lakes and two reservoirs in Finland. The highest pelagic seasonal average methane (CH{sub 4}) emissions were up to 12 mmol m{sup -2} d{sup -1} from eutrophied lakes with agricultural catchments. Nutrient loading increases autochthonous primary production in lakes, promoting oxygen consumption and anaerobic decomposition in the sediments and this can lead to increased CH{sub 4} release from lakes to the atmosphere. The carbon dioxide (CO{sub 2}) fluxes were higher from reservoirs and lakes whose catchment areas were rich in peatlands or managed forests, and from eutrophied lakes in comparison to oligotrophic and mesotrophic sites. However, all these sites were net sources of CO{sub 2} to the atmosphere. The pelagic CH{sub 4} emissions were generally lower than those from the littoral zone. The fluxes of nitrous oxide (N{sub 2}O) were negligible in the pelagic regions, apparently due to low nitrate inputs and/or low nitrification activity. However, the littoral zone, acting as a buffer for leached nitrogen, did release N{sub 2}O. Anthropogenic disturbances of boreal lakes, such as increasing eutrophication, can change the aquatic greenhouse gas balance, but also the gas exchange in the littoral zone should be included in any assessment of the overall effect. It seems that autochthonous and allochthonous carbon sources, which contribute to the CH{sub 4} and CO{sub 2} production in lakes, also have importance in the greenhouse gas emissions from reservoirs. (Author)

  10. Robust optical carbon dioxide isotope analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  11. It is time to put carbon dioxide to work

    Energy Technology Data Exchange (ETDEWEB)

    Lipinsky, E.S. [Battelle, Columbus, OH (United States)

    1993-12-31

    The need to control emissions of carbon dioxide into the atmosphere is the subject of vigorous debate at this time. There is growing evidence that rising levels of carbon dioxide increase global warming, with perhaps highly adverse impacts for the human economy. There are calls for carbon taxes and other harsh measures. Japan has established a national goal of holding carbon dioxide emissions in the year 2000 to 1990 levels. I hope that this conference will be a turning point in the United States position on this issue. The current major end uses for CO{sub 2} include refrigeration, beverage carbonation, soda ash production, fire fighting, and urea fertilizer production. They are all based on chemistry that would not surprise a good chemist of the 19th century. Consumption of carbon dioxide in synthesis of industrial chemicals is limited. Usually one explains low production of chemicals from a candidate feedstock in terms of poor availability, price, purity, or reactivity. We can eliminate the first three as the causes of the underutilization of carbon dioxide.

  12. The role of renewable bioenergy in carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  13. Encapsulated liquid sorbents for carbon dioxide capture

    Science.gov (United States)

    Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Hardin, James O.; Lewicki, James; Glogowski, Elizabeth; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H.; Bourcier, William L.; Spadaccini, Christopher M.; Lewis, Jennifer A.; Aines, Roger D.

    2015-02-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  14. Sulfur Dioxide Emission Control, Blockade and Drainage

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper presents the present status of sulfur dioxide emission from thermal plants in China, tells the main problems existing in its emission control and finally gives out suggestions to the problems, that is, to constitute complete standards and regulations and enhancesupervision accordingly.

  15. Carbon dioxide emissions from non-energy use of fossil fuels. Summary of key issues and conclusions from the country analyses

    International Nuclear Information System (INIS)

    The non-energy use of fossil fuels is a source of carbon dioxide (CO2) emissions that is not negligible and has been increasing substantially in the last three decades. Current emission estimates for this source category are subject to major uncertainties. One important reason is that non-energy use as published in energy statistics is not defined in a consistent manner, rendering calculation results based on these data incomparable across countries (concerns in particular the Intergovernmental Panel on Climate Change (IPCC) Reference Approach). Further reasons are the complexity and interlinkage of the energy and material flows in the chemical/petrochemical sector and the current use of storage fractions as default values in the IPCC Reference Approach, which are based on a different definition of storage and refer to other flows than those available from energy statistics. Several other shortcomings of the IPCC Reference Approach are identified in this paper, e.g. the fact that it neglects international trade of synthetic organic products. In order to improve emissions accounting, the Non-Energy Use and CO2 Emissions (NEU-CO2) network developed a model called Non-Energy Use Emission Accounting Tables (NEAT), which is based on Material Flow Analysis (MFA). The NEAT model and other MFA approaches have been applied to several countries. In this paper, the results for Italy, Japan, Korea, the Netherlands and the USA are compared with the values published in National Communications to the United Framework Convention on Climate Change (UNFCCC). It is shown that the international harmonisation of the data sources (energy statistics) and the methods applied would lead to substantially different emissions results for some countries, in the order of several percent. Moreover, the NEAT model and the other MFA have proved to be a valuable tool to identify errors in energy statistics. These results confirm the need for enhanced efforts to improve and harmonise energy

  16. Calculation of Carbon Dioxide Emissions Considering Secondary Energy Deployment Among Provinces in China%基于二次能源省际调配的中国分省CO2排放量计算

    Institute of Scientific and Technical Information of China (English)

    周曙东; 赵明正; 王传星; 李斌

    2012-01-01

    Scientific and rational calculation of carbon dioxide emissions provides the base is for setting energy saving and emission reduction targets. The existing IPCC's method to calculate carbon dioxide emissions only considered primary energy fuels, but did not consider the secondary energy deployment, which did not reflect the true situation of carbon dioxide emissions and Chinese situation. This study provided a new method to calculate carbon dioxide emissions considering secondary energy deployment, and according to this method, carbon dioxide emissions of every province were estimated based on the statistic data in 2009. The results showed that carbon dioxide emissions in traditional energy production provinces, such as Inner Mongolia and Shanxi, decreased, and those in eastern coastal provinces increased after considering the secondary energy deployment. But the CO; emission intensity in the central and western provinces were significantly higher than those in the eastern coastal provinces. Low energy efficiency, backward energy processing technology and equipment existed in the central and western provinces, which resulted in high intensity of carbon dioxide emissions. Recommendation was made to the central government to enhance investment in energy processing industry in the western provinces to improve energy processing technology, processing equipment to increase energy efficiency and to reduce carbon dioxide emissions. The secondary energy-transferred-inprovinces should provide compensation funds to secondary energy-transferred-out-provinces , and this part of the compensation funds should be used to upgrade energy industry for traditional energy production provinces in order to achieve emissions-reduction targets successfully.%节能减排目标任务的制定需要依据科学合理的CO2排放量测算.现有的IPCC提供的CO2排放量计算方法仅考虑一次能源燃料所产生的CO2,来考虑到二次能源省际调配的情况

  17. Carbon dioxide cleaning pilot project

    International Nuclear Information System (INIS)

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved

  18. Anthropogenic sulfur dioxide emissions: 1850–2005

    Directory of Open Access Journals (Sweden)

    S. J. Smith

    2011-02-01

    Full Text Available Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  19. Anthropogenic sulfur dioxide emissions: 1850–2005

    Directory of Open Access Journals (Sweden)

    S. J. Smith

    2010-06-01

    Full Text Available Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  20. The carbon dioxide problem - a challenge to environmental protection

    International Nuclear Information System (INIS)

    Over the last century, man's activities on earth have sent off trace gases into the planet's atmosphere that have been concentrating to a level posing a threat to the global climate. Since scientists particularly spotted carbon dioxide as the main contributor to what we now call the greenhouse effect, there is urgent need for measures reducing carbon dioxide emission worldwide, may be on the basis of a global convention to be signed by both the industrialised and the developing countries. The industrialised countries, which certainly are the main pollutors, also will have the technological and financial resources to respond to the challenge of global warning more directly and faster than the developing countries. The power industry's management in the FRG is taking the problem seriously and has already come out with strategies for curbing carbon dioxide emissions from fossil-fuel power plant. (orig.)

  1. Regional carbon dioxide implications of forest bioenergy production

    OpenAIRE

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-01-01

    International audience Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests1, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions2, and forest thinning to reduce wildfire emissions3. Here, we use forest inventory data to show that fire prevention measures and large-scale bioenergy harvest in US West Coast forests lead to 2-14% (46-405 Tg C) higher emissions compared with cur...

  2. Sustainable catalyst supports for carbon dioxide gas adsorbent

    Science.gov (United States)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  3. DETERMINATION OF SULFUR DIOXIDE, NITROGEN OXIDES, AND CARBON DIOXIDE IN EMISSIONS FROM ELECTRIC UTILITY PLANTS BY ALKALINE PERMANGANATE SAMPLING AND ION CHROMATOGRAPHY

    Science.gov (United States)

    A manual 24-h integrated method for determining SO2, NOx, and CO2 in emissions from electric utility plants was developed and field tested downstream from an SO2 control system. Samples were collected in alkaline potassium permanganate solution contained in restricted-orifice imp...

  4. Evolution and world-wide projections of the carbon dioxide emissions; Evolucion y proyecciones mundiales de las emisiones de bioxido de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Saravia, Marisela; Gay, Carlos [Instituto de Ingenieria, UNAM (Mexico)

    1999-07-01

    In the frame of the present preoccupation on the global climatic change and its influence in the human activities, the possible mitigation scenarios of green house effect gases are analyzed (GEG) in the world-wide scope, the contribution of carbon dioxide future emissions as main green house effect gas originating from the burning of fossil fuels; taking into account two large classifications: Developed and developing countries. In accordance with the world-wide evolution in the 1972-1995 period and to diverse adjustments of future emissions a study of the necessary levels of these emissions is made to obtain the stabilization of the greenhouse effect gases in the atmosphere in a level in the vicinity of 550 ppmv. The considered projections are: emissions in accordance with the present tendency, basic scenario of the Intergovernmental Panel of Climatic Change (Panel Intergubernamental de Cambio Climatico) (IPCC-IS92a), mitigation proposals of the Netherlands (NL-1%, NL-2%) and profiles that entail the atmospheric CO{sub 2} stabilization. In addition the reduction in the contribution of future emissions that the developing countries would have to face to obtain the stabilization are compared, emissions that will depend on changes in factors such as population growth, economic, emissions per capita and carbon content of the power fuels, changes that would have to take place in all the countries, or certain key countries, in order to arrive to the necessary atmospheric stabilization of the emissions in accordance with those profiles. [Spanish] En el marco de la preocupacion actual sobre el cambio climatico global y su influencia en las actividades humanas, se analizan los posibles escenarios de mitigacion de gases efecto invernadero (GEI) en el ambito mundial, las cuotas de emisiones futuras de dioxido de carbono como principal gas invernadero proveniente de la quema de combustibles fosiles; tomando en cuenta dos grandes clasificaciones: Paises desarrollados y paises

  5. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  6. Nuclear power and the carbon dioxide problem

    International Nuclear Information System (INIS)

    This study deals with the question, which contribution can be delivered by nuclear power to the redution of the emission of carbon dioxide (CO2) from the power supply. The emphasis lays upon the following aspects: the emissions of CO2 which occur in the nuclear-power cycle (the so-called indirect emission of CO2 power plants); the amount of uranium stocks; the change of CO2 emission caused by replacement of fossil fuels, in particular coal, by nuclear power. First an energy-analysis of the nuclear power cycle is presented. On the base of this analysis the CO2 uranium can be calculated. The role of nuclear power in the reduction of CO2 emission depends on the development of the final power demand. Therefore in this study two scenarios derived from the 'IIASA-low' scenario; 'low-energy'-scenario in which the world-energy consumption remains at about the same level. In the calculations the indirect emissions of CO2, also dependent on the ore richness and the technology used, have always been taken into account. In the calculations two uranium-reserve variants of resp. 5.7 and 30 mln. tons have been assumed. From the results of the calculations it can be concluded that whether or not taking account of the indirect emissions of CO2 in the nuclear power cycle, has only limited effect on the calculated contribution of nuclear power to the solution of the greenhouse effect. The uranium reserves turn out to be determining for the potential contribution of nuclear power. By putting on the surely available reserve of 5.7 mln. tons, or the speculative reserve of 30 mln. tons, with the actual technology, an emission of resp. 130-140 billion and 880 billion tons CO2 can be avoided in replacing coal. With maximal employment of improved conversion techniques these contributions may be doubled. (H.W.). 40 refs.; 13 figs.; 10 tabs

  7. The fluorescent bioprobe with aggregation-induced emission features for monitoring to carbon dioxide generation rate in single living cell and early identification of cancer cells.

    Science.gov (United States)

    Chen, Didi; Wang, Huan; Dong, Lichao; Liu, Pai; Zhang, Yahui; Shi, Jianbing; Feng, Xiao; Zhi, Junge; Tong, Bin; Dong, Yuping

    2016-10-01

    A novel fluorescent probe, tris (2-(dimethylamino) ethyl)-4,4',4″-(1H-pyrrole-1,2,5-triyl) tribenzoate (TPP-TMAE), with aggregation-enhanced emission (AEE) feature showed a simple, highly selective, specific, and instant response to trace amount carbon dioxide (CO2). Because of this special characteristic, TPP-TMAE is ideal to be a biomarker for in-situ monitoring of the CO2 generation rate during the metabolism of single living cell. The rates in single living HeLa cell, MCF-7 cell, and MEF cell were 6.40 × 10(-6)±6.0 × 10(-8) μg/h, 5.78 × 10(-6)±6.0 × 10(-8) μg/h, and 4.27 × 10(-7)±4.0 × 10(-9) μg/h, respectively. The distinct responses of TPP-TMAE to CO2 generated from cancer cells and normal cells suggested TPP-TMAE as a useful tool for deeper understanding metabolism process and distinguishing cancer cells from normal cells during the early diagnosis of cancers. PMID:27372422

  8. Methane and carbon dioxide emissions from dairy cows in full lactation monitored over a six-month period.

    Science.gov (United States)

    Kinsman, R; Sauer, F D; Jackson, H A; Wolynetz, M S

    1995-12-01

    Methane and CO2 emissions from a herd of 118 lactating cows were measured directly by continuous monitoring with an infrared gas analyzer from 24 gas sampling locations. A total of 112 d of gas output was recorded between June 1993 and November 1993. Recordings were integrated at .5-h intervals, so that there were 48 data points for each 24-h period. The mean 24-h CH4 emission per cow was 587 +/- 61.3 L; the range was 436 to 721 L. The mean 24-h CO2 emission per cow was 6137 +/- 505 L, and the range was 5032 to 7427 L. These values were not corrected for gas emissions from stored manure, which contributed 5.8 and 6.1%, respectively, to CH4 and CO2 output under conditions of this experiment. PMID:8675759

  9. Green dyeing of cotton fabrics by supercritical carbon dioxide

    OpenAIRE

    Zhang Juan; Zheng Lai-Jiu; Zhao Yu-Ping; Yan Jun; Xiong Xiao-Qing; Du Bing

    2015-01-01

    Green dyeing process with zero waste water emission is a hot topic recently. This paper reveals that supercritical carbon dioxide is the best candidate for this purpose. Effects of thermodynamic parameters, such as enthalpy and entropy of activation, on dyeing process are studied experimentally.

  10. Green dyeing of cotton fabrics by supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Zhang Juan

    2015-01-01

    Full Text Available Green dyeing process with zero waste water emission is a hot topic recently. This paper reveals that supercritical carbon dioxide is the best candidate for this purpose. Effects of thermodynamic parameters, such as enthalpy and entropy of activation, on dyeing process are studied experimentally.

  11. Influence of freeze-thaw events on carbon dioxide emission from soils at different moisture and land use

    OpenAIRE

    Loftfield Norman; Teepe Robert; Kurganova Irina

    2007-01-01

    Abstract Background The repeated freeze-thaw events during cold season, freezing of soils in autumn and thawing in spring are typical for the tundra, boreal, and temperate soils. The thawing of soils during winter-summer transitions induces the release of decomposable organic carbon and acceleration of soil respiration. The winter-spring fluxes of CO2 from permanently and seasonally frozen soils are essential part of annual carbon budget varying from 5 to 50%. The mechanisms of the freeze-tha...

  12. A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland

    2013-04-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

  13. Carbon dioxide neutral, integrated biofuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2010-12-15

    Algae are efficient biocatalysts for both capture and conversion of carbon dioxide in the environment. In earlier work, we have optimized the ability of Chlorella vulgaris to rapidly capture CO{sub 2} from man-made emission sources by varying environmental growth conditions and bioreactor design. Here we demonstrate that a coupled biodiesel-bioethanol facility, using yeast to produce ethanol and photosynthetic algae to produce biodiesel, can result in an integrated, economical, large-scale process for biofuel production. Each bioreactor acts as an electrode for a coupled complete microbial fuel cell system; the integrated cultures produce electricity that is consumed as an energy source within the process. Finally, both the produced yeast and spent algae biomass can be used as added value byproducts in the feed or food industries. Using cost and revenue estimations, an IRR of up to 25% is calculated using a 5 year project lifespan. (author)

  14. The Fluid Mechanics of Carbon Dioxide Sequestration

    Science.gov (United States)

    Huppert, Herbert E.; Neufeld, Jerome A.

    2014-01-01

    Humans are faced with a potentially disastrous global problem owing to the current emission of 32 gigatonnes of carbon dioxide (CO2) annually into the atmosphere. A possible way to mitigate the effects is to store CO2 in large porous reservoirs within the Earth. Fluid mechanics plays a key role in determining both the feasibility and risks involved in this geological sequestration. We review current research efforts looking at the propagation of CO2 within the subsurface, the possible rates of leakage, the mechanisms that act to stably trap CO2, and the geomechanical response of the crust to large-scale CO2 injection. We conclude with an outline for future research.

  15. Estimates of carbon dioxide emissions from fossil fuels combustion in the main sectors of selected countries 1971-1990

    International Nuclear Information System (INIS)

    Calculations of sectoral CO2 emissions from fossil fuel burning in the period 1971-1990 were done for the 15 countries at the top of the list of nations ordered by decreasing contribution to global emissions, namely: United States of America, Soviet Union, People's Republic of China, Japan, Federal Republic of Germany, United Kingdom, India, Poland, Canada, France, Italy, German Democratic Republic, South Africa, Mexico and Czechoslovakia. In addition, the CO2 emission of two groups of industrialized countries, namely the OECD and the European Economic Community (EEC) were calculated. The main recommendations of the IPCC/OECD current methodology have been adopted for the calculations, with the principal exception that CO2 emissions from the use of bunker fuels have not been included in the national estimates. The sectors are: 1. Transformations. Total emissions and the part stemming from power plants 2. Industry (excluding Feedstocks) 3. Transportation 4. Agriculture 5. Residential 6. Commerce and Public Services 7. Non-specified Other 8. Non-Energy Use 9. Feedstocks (in Industry). Data are presented in tables and diagrams. (orig./KW)

  16. Application of System Dynamics model as decision making tool in urban planning process toward stabilizing carbon dioxide emissions from cities

    International Nuclear Information System (INIS)

    In spite of the fact that cities are the main sources of CO2 emissions, presently there are still no specific measures directly addressing the global warming issue in the urban planning process in Malaysia. The present study thus aims to shed new light in the urban planning sector in Malaysia by adopting System Dynamics Model as one of the decision making tools in the urban planning process, with specific considerations on the future CO2 emission trends. This paper presented projections of future CO2 emission trends based on the case of Iskandar Development Region of Malaysia, under various options of urban policies, using the System Dynamics Model. The projections demonstrated the capability of the said model in serving as a decision making tool in the urban planning process, with specific reference to CO2 emissions from cities. Recommendations have been made on the possible approach of adopting the model in the process of Structure Plan study. If the current model was successfully adopted in the urban planning process in Malaysia, it will mark the first step for Malaysia in taking specific considerations on the issues of CO2 emissions and global warming in the urban planning process. (author)

  17. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  18. The impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenarios

    International Nuclear Information System (INIS)

    The United States is the largest producer of maize in the world, a crop for which demand continues to rise rapidly. Past studies have projected that climate change will negatively impact mean maize yields in this region, while at the same time increasing yield variability. However, some have questioned the accuracy of these projections because they are often based on indirect measures of soil moisture, have failed to explicitly capture the potential interactions between temperature and soil moisture availability, and often omit the beneficial effects of elevated carbon dioxide (CO2) on transpiration efficiency. Here we use a new detailed dataset on field-level yields in Iowa, Indiana, and Illinois, along with fine-resolution daily weather data and moisture reconstructions, to evaluate the combined effects of moisture and heat on maize yields in the region. Projected climate change scenarios over this region from a suite of CMIP5 models are then used to assess future impacts and the differences between two contrasting emissions scenarios (RCP 4.5 and RCP 8.5). We show that (i) statistical models which explicitly account for interactions between heat and moisture, which have not been represented in previous empirical models, lead to significant model improvement and significantly higher projected yield variability under warming and drying trends than when accounting for each factor independently; (ii) inclusion of the benefits of elevated CO2 significantly reduces impacts, particularly for yield variability; and (iii) net damages from climate change and CO2 become larger for the higher emission scenario in the latter half of the 21st century, and significantly so by the end of century. (paper)

  19. Strategies for carbon dioxide emissions reductions: Residential natural gas efficiency, economic, and ancillary health impacts in Maryland

    International Nuclear Information System (INIS)

    As part of its commitments to the Regional Greenhouse Gas Initiative (RGGI), the State of Maryland, USA, auctions emission permits to electric utilities, creating revenue that can be used to benefit consumers and the environment. This paper explores the CO2 emissions reductions that may be possible by allocating some of that revenue to foster efficiency improvements in the residential sector's use of natural gas. Since these improvements will require changes to the capital stock of houses and end use equipment, efficiency improvements may be accompanied by economic and ancillary health impacts, both of which are quantified in this paper.

  20. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity. PMID:23901504

  1. Strategic analysis and prospect on carbon dioxide emission reduction of power industry%电力行业二氧化碳减排策略分析与展望

    Institute of Scientific and Technical Information of China (English)

    赵毅; 赵丽媛; 钱新凤

    2015-01-01

    全球CO2过量排放导致的温室效应日益严重,燃煤电厂作为碳排放大户,CO2控制与减排已成为电力行业亟待解决的重要任务之一。碳减排领域的研究主要集中在物理捕集、生物固定、化学转化与利用、地质封存等方面;结合其中几种策略取长补短,对CO2进行综合固定在电厂烟气处理中更具应用前景;对碳减排技术的潜在价值和面临的挑战进行了展望。%The greenhouse effect caused by excessive emissions of carbon dioxide has become a worldwide problem, coal-fired power plants as carbon emitters, limiting excessive carbon dioxide emissions has been an important task to be solved to electricity industry.The field of carbon emission reduction is mainly concentrated in physical capture, biological fixation, chemical conversion and utilization, geological storage, et al.Combined with several strategies, the way of comprehensively fixed carbon dioxide has more application prospects in the treatment of power plant flue gas.Prospecting The potential value and chal enges for carbon emission reduction technologies are propectd.

  2. Monitoring carbon dioxide in mechanically ventilated patients during hyperbaric treatment

    DEFF Research Database (Denmark)

    Bjerregård, Asger; Jansen, Erik

    2012-01-01

    Measurement of the arterial carbon dioxide (P(a)CO(2)) is an established part of the monitoring of mechanically ventilated patients. Other ways to get information about carbon dioxide in the patient are measurement of end-tidal carbon dioxide (P(ET)CO(2)) and transcutaneous carbon dioxide (PTCCO2...

  3. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  4. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  5. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  6. 46 CFR 108.627 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  7. 46 CFR 95.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  8. 46 CFR 76.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  9. 46 CFR 169.732 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  10. 生物质炭施用量及水热条件对淹水土壤 CO2释放的影响%Effects of carbon dioxide emissions from waterlogged soils by biochar amendments and hydrothermal condition

    Institute of Scientific and Technical Information of China (English)

    花莉; 唐志刚; 洛晶晶; 贾卫华

    2013-01-01

    通过模拟土柱实验,向水稻土中添加质量分数分别为0%(C0)、2%(C2)、5%(C5)、8%(C8)的生物质炭,并在不同淹水深度和温度下培养,旨在了解生物质炭的施用量及其水热条件对土壤CO2释放的影响,以期通过控制生物质炭的施炭量和改进农田管理措施,从而为农业温室气体碳减排提供依据.研究结果发现:施加生物质炭对土壤CO2释放的抑制作用明显,与对照相比,2%、5%、8%施炭量处理的土壤CO2累计释放量分别降低了5.1%、2.4%和26.5%.低施炭量对土壤CO2的释放降幅较少,而较高施炭量可能对抑制土壤CO2释放的效果更好;温度越高,土壤的呼吸作用越强,CO2释放速率也越快;在昼夜变化上,土壤夜间CO2的释放速率要高于白天;就淹水深度而言,土壤灌水深度愈深,CO2的释放速率愈低.此外,还从施炭量和水热条件对土壤CO2和CH4释放的综合排放效应进行了展望.%A waterlogged soil environment was simulated and added with mass fraction of 0%(C0) ,2% (C2) ,5% (C5) ,and 8% (C8) of biochar to paddy soils to realize the effects of carbon dioxide emissions by biochar amendments and hydrothermal condition under different irrigated water depths and culture temperature .It is aimed at decreasing agricultural green-house gases emissions by means of controlling biochar amendments and improving field man-agement measures .The results showed that there is a significant inhibition of carbon dioxide emission from soils due to biochar amendment .Compared with the control ,cumulative car-bon dioxide emissions from soils by biochar addition of 2% ,5% ,and 8% were reduced by 5 .1% ,2 .4% and 26 .5% respectively .In terms of inhibition of carbon dioxide emission from soils by biochar amendment ,higher biochar amendments might be better than lower amend-ments;with the higher temperature ,the stronger soil respiration became

  11. Reactive Capture of Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Reactive Innovations, LLC (RIL) proposes to develop a compact and lightweight electrochemical to capture carbon dioxide in the martian...

  12. Carbon Dioxide Collection and Pressurization Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reactive Innovations, LLC, proposes a Phase I SBIR program to develop a compact and lightweight electrochemical reactor to separate and pressurize carbon dioxide...

  13. The polity and politics of carbon-dioxide taxation in small European states

    OpenAIRE

    Andersen, Mikael Skou

    2016-01-01

    The most recent smaller country to adopt a carbon dioxide tax is Portugal (2014), but also Iceland (2013), Ireland (2010), Switzerland (2008), Croatia (2007), Estonia (2000) and Slovenia (1997) have managed to find ways to put into place taxes on carbon dioxide. France (2014) remains the exception to the adoption of carbon dioxide taxation in only smaller countries in Europe.The research questions addressed by the present paper are how and why is it that small countries that in terms of emiss...

  14. Assessing the potential impact of the CO2 performance ladder on the reduction of carbon dioxide emissions in the Netherlands

    NARCIS (Netherlands)

    Rietbergen, M.G.; Blok, K.

    2013-01-01

    Green public procurement is often promoted as a tool to reduce energy use and CO2 emissions in the supply chains of public entities. However, only a limited number of studies has quantitatively assessed the environmental impacts of green public procurement schemes. The aim of this paper was to asses

  15. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils.

    Science.gov (United States)

    Bogner, Jean E; Spokas, Kurt A; Chanton, Jeffrey P

    2011-01-01

    Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (cover types, including both final covers, averaging cover (50 cm) had the highest CH fluxes. For both the intermediate (50-100 cm) and final (>200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers. PMID:21546687

  16. Dazzled by diesel? The impact on carbon dioxide emissions of the shift to diesels in Europe through 2009

    International Nuclear Information System (INIS)

    This paper identifies trends in new gasoline and diesel passenger car characteristics in the European Union between 1995 and 2009. By 2009 diesels had captured over 55% of the new vehicle market. While the diesel version of a given car model may have as much as 35% lower fuel use/km and 25% lower CO2 emissions than its gasoline equivalent, diesel buyers have chosen increasingly large and more powerful cars than the gasoline market. As a result, new diesels bought in 2009 had only 2% lower average CO2 emissions than new gasoline cars, a smaller advantage than in 1995. A Laspeyres decomposition investigates which factors were important contributors to the observed emission reductions and which factors offset savings in other areas. More than 95% of the reduction in CO2 emissions per km from new vehicles arose because both diesel and gasoline new vehicle emissions/km fell, and only 5% arose because of the shift from gasoline to diesel technology. Increases in vehicle mass and power for both gasoline and diesel absorbed much of the technological efficiency improvements offered by both technologies. We also observe changes in the gasoline and diesel fleets in eight EU countries and find changes in fuel and emissions intensities consistent with the changes in new vehicles reported. While diesel cars continue to be driven far farther than gasoline cars, we attribute only some of this difference to a “rebound effect”. We conclude that while diesel technology has permitted significant fuel savings, the switch from gasoline to diesel in the new vehicle market contributed little itself to the observed reductions in CO2 emissions from new vehicles. - Highlights: ► By 2009 diesels had captured over 55% of the new car market in the EU. ► New diesels in 2009 emitted only 2% lower average CO2 than new gasoline cars. ► Diesel cars continue to be driven farther than gasoline cars. ► Overall there has been little net CO2 reduction from the switch to diesels in Europe

  17. Supercritical carbon dioxide hop extraction

    Directory of Open Access Journals (Sweden)

    Pfaf-Šovljanski Ivana I.

    2005-01-01

    Full Text Available The hop of Magnum cultivar was extracted using supercritical carbon dioxide (SFE-as extractant. Extraction was carried out in the two steps: the first one being carried out at 150 bar and 40°C for 2.5 h (Extract A, and the second was the extraction of the same hop sample at 300 bar and 40°C for 2.5 h (Extract B. Extraction kinetics of the system hop-SFE-CO2 was investigated. Two of four most common compounds of hop aroma (α-humulene and β-caryophyllene were detected in Extract A. Isomerised α-acids and β-acids were detected too. a-Acid content in Extract B was high (that means it is a bitter variety of hop. Mathematical modeling using empirical model characteristic time model and simple single sphere model has been performed on Magnum cultivar extraction experimental results. Characteristic time model equations, best fitted experimental results. Empirical model equation, fitted results well, while simple single sphere model equation poorly approximated the results.

  18. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    International Nuclear Information System (INIS)

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  19. Bench-to-bedside review: Carbon dioxide

    OpenAIRE

    Curley, Gerard; Laffey, John G; Kavanagh, Brian P.

    2010-01-01

    Carbon dioxide is a waste product of aerobic cellular respiration in all aerobic life forms. PaCO2 represents the balance between the carbon dioxide produced and that eliminated. Hypocapnia remains a common - and generally underappreciated - component of many disease states, including early asthma, high-altitude pulmonary edema, and acute lung injury. Induction of hypocapnia remains a common, if controversial, practice in both adults and children with acute brain injury. In contrast, hypercap...

  20. Arterialisation of transcutaneous oxygen and carbon dioxide.

    OpenAIRE

    Broadhurst, E; Helms, P; Vyas, H; Cheriyan, G

    1988-01-01

    We compared previously calculated global correction factors for oxygen and carbon dioxide arterial/transcutaneous ratios with individual in vivo calibrations from the first arterial sample. In infants beyond the neonatal period and older children in vivo calibration confers little benefit over the use of a global calibration correction factor for transcutaneous carbon dioxide, and may reduce the precision with which arterial oxygen can be estimated from transcutaneous oxygen.

  1. Quantification of carbon dioxide, methane, nitrous oxide, and chloroform emissions over Ireland from atmospheric observations at Mace Head

    International Nuclear Information System (INIS)

    Flux estimates of CO2, CH4, N2O and CHCl3 over Ireland are inferred from continuous atmospheric records of these species. We use radon-222 (222Rn) as a reference compound to estimate unknown sources of other species. The correlation between each species and 222Rn is calculated for a suite of diurnal events that have been selected in the Mace Head record over the period 1995-1997 to represent air masses exposed to sources over Ireland. We established data selection criteria based on 222Rn and 212Pb concentrations. We estimated flux densities of 12x103 kg CH4/km2/yr, 680 kg N2O/km2/yr and 20 kg CHCl3/km2/yr for CH4, N2O and CHCl3, respectively. We also inferred flux densities of 250x103 kg C/km2/yr for CO2 during wintertime, and of 760x103 kg C/km2/yr for CO2 during summer night-time. Our CH4 inferred flux compare well with the CORINAIR90 and CORNAIR94 inventories for Ireland. The N2O emission flux we inferred is close to the inventory value by CORINAIR90, but twice the inventory value by CORINAIR94 and EDGAR 2.0. This discrepancy may have been caused by the use of the revised 1996 IPCC guidelines for national greenhouse gas inventories in 1994, which include a new methodology for N2O emissions from agriculture. We carried out the first estimation of CHCl3 emission fluxes over Ireland. This estimation is 4 times larger than the CHCl3 emission fluxes measured close to the Mace Head station over peatlands. Our CHCl3 emission fluxes estimate is consistent with the interpretation of the same data by Ryall (personal communication, 2000), who obtained, using a Lagrangian atmospheric transport model, CHCl3 fluxes of 24±7 kg CHCl3/km2/yr. Our estimates of CO2 emission fluxes during summer night-time and wintertime are close to those estimated from inventories and to one biogeochemical model of heterotrophic respiration

  2. Higher capacity, lower carbon dioxide emissions. Idle power compensation in HV lines; Mehr Kapazitaet, weniger Kohlendioxid. Blindleistungskompensation bei Hochspannungsleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Jan-Hendrik von [Alstom Grid GmbH, Berlin (Germany). Team Leistungselektronik und Kompensationsanlagen

    2012-07-01

    Even today, many HP lines have reached their limits. It is therefore highly urgent to find measures for optimum utilization of the available overhead transmssion capacities, e.g. by idle power compensation. Together with a filter for harmonics reduction, this will ensure higher grid stability and enhance transport capacities while reducing transport losses, thus saving money and reducing CO{sub 2} emissions. (orig./AKB)

  3. The Use of an Automated System (GreenFeed) to Monitor Enteric Methane and Carbon Dioxide Emissions from Ruminant Animals

    OpenAIRE

    Hristov, Alexander N.; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler; Weeks, Holley; ZIMMERMAN, PATRICK R.; Harper, Michael T.; Hristova, Rada A.; Zimmerman, R. Scott; Branco, Antonio F.

    2015-01-01

    Ruminant animals (domesticated or wild) emit methane (CH4) through enteric fermentation in their digestive tract and from decomposition of manure during storage. These processes are the major sources of greenhouse gas (GHG) emissions from animal production systems. Techniques for measuring enteric CH4 vary from direct measurements (respiration chambers, which are highly accurate, but with limited applicability) to various indirect methods (sniffers, laser technology, which are practical, but ...

  4. Thermal energy consumption and carbon dioxide emissions in ceramic tile manufacture - Analysis of the Spanish and Brazilian industries

    International Nuclear Information System (INIS)

    Spain and Brazil are two of the world's biggest ceramic tile producers. The tile manufacturing process consumes a great quantity of thermal energy that, in these two countries, is mainly obtained from natural gas combustion, which entails CO2 emission, a greenhouse gas. This study presents a comparative analysis of the thermal energy consumption and CO2 emissions in the ceramic tile manufacturing process in Spain and Brazil, in terms of the different production technologies and different products made. The energy consumption and CO2 emissions in ceramic tile manufacture by the wet process are very similar in both countries. In the dry process used in Brazil, less thermal energy is consumed and less CO2 is emitted than in the wet process, but it is a process that is only used in manufacturing one particular type of product, which exhibits certain technical limitations. While in Spain the use of cogeneration systems in spray-dryers improves significantly the global energy efficiency. The average energy consumption in the different process stages, in both countries, lies within the range indicated in the Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry (BREF of the Ceramic Manufacturing Industry) of the European Union. (Author) 14 refs.

  5. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios.

    Science.gov (United States)

    Arndt, C; Powell, J M; Aguerre, M J; Wattiaux, M A

    2015-01-01

    Two trials were conducted simultaneously to study the effects of varying alfalfa silage (AS) to corn silage (CS) ratio in diets formulated to avoid excess protein or starch on lactating dairy cow performance, digestibility, ruminal parameters, N balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), methane (CH4), and ammonia-N (NH3-N)]. In trial 1 all measurements, except gas emissions, were conducted on 8 rumen-cannulated cows in replicated 4×4 Latin squares. In trial 2, performance and emissions were measured on 16 cows randomly assigned to 1 of 4 air-flow controlled chambers in a 4×4 Latin square. Dietary treatments were fed as total mixed rations with forage-to-concentrate ratio of 55:45 [dietary dry matter (DM) basis] and AS:CS ratios of 20:80, 40:60, 60:40, and 80:20 (forage DM basis). Measurements were conducted the last 3d of each 21-d period. Treatments did not affect DM intake, DM digestibility, and milk/DM intake. However, responses were quadratic for fat-and-protein-corrected milk, fat, and protein production, which reached predicted maxima for AS:CS ratio of 50:50, 49:51, and 34:66, respectively. Nitrogen use efficiency (milk N/N intake) decreased from 31 to 24g/100g as AS:CS ratio increased from 20:80 to 80:20. Treatments did not alter NH3-N/milk-N but tended to have a quadratic effect on daily NH3-N emission. Treatments had a quadratic effect on daily CH4 emission, which was high compared with current literature; they influenced CH4 emission per unit of neutral detergent fiber (NDF) intake and tended to influence CO2/NDF intake. Ruminal acetate-to-propionate ratio and total-tract NDF digestibility increased linearly with increasing AS:CS ratio. In addition, as AS:CS ratio increased from 20:80 to 80:20, NDF digested increased linearly from 2.16 to 3.24kg/d, but CH4/digested NDF decreased linearly from 270 to 190g/kg. These 2 counterbalancing effects likely contributed to the observed quadratic response in daily CH4

  6. Properties of equilibrium carbon dioxide hydrate in porous medium

    Science.gov (United States)

    Voronov, V. P.; Gorodetskii, E. E.; Podnek, V. E.; Grigoriev, B. A.

    2016-09-01

    Specific heat capacity, dissociation heat and hydration number of carbon dioxide hydrate in porous medium are determined by adiabatic calorimetry method. The measurements were carried out in the temperature range 250-290 K and in pressure range 1-5 MPa. The measured specific heat of the hydrate is approximately 2.7 J/(g K), which is significantly larger than the specific heat of methane hydrate. In particular, at heating, larger value of the specific heat of carbon dioxide hydrate is a result of gas emission from the hydrate. The hydration number at the hydrate-gas coexistence changes from 6.2 to 6.9. The dissociation heat of carbon dioxide hydrate varies from the 55 kJ/mol near the upper quadruple point to the 57 kJ/mol near the lower quadruple point.

  7. Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River, southwest of China

    Science.gov (United States)

    Wang, Fushun; Wang, Baoli; Liu, Cong-Qiang; Wang, Yuchun; Guan, Jin; Liu, Xiaolong; Yu, Yuanxiu

    2011-07-01

    Recently, controversies about whether hydropower is still a clean energy have been arisen up with the studies about high CO 2 emission flux from hydroelectric reservoirs in boreal and tropical regions. In this study, four subtropical reservoirs and their related reaches, draining on karstic area in southwest of China, were investigated to understand their CO 2 emission, with monthly sampling strategy from July 2007 to June 2008. pCO 2 values in the surface water of these reservoirs ranged from 38 to 3300 μ atm, indicating that reservoir surface could be not only source but also sink to atmosphere CO 2 in different seasons. In Hongfeng reservoir, the flux of CO 2 from surface water varied from -9 to 70 mmol m -2 d -2 with an average of 15 mmol m -2 d -2, and in Baihua reservoir, it had a range from -8 to 77 mmol m -2 d -2 with an average of 24 mmol m -2 d -2. Hongyan reservoir had similar average flux of CO 2 to Baihua reservoir. Xiuwen had the highest average flux of CO 2 with a value of 47 mmol m -2 d -2 among the studied reservoirs. Downstream the dams discharged by hydropower generation from these reservoirs generally had quite high flux of CO 2, with an average of 489 ± 297 mmol m -2 d -2, which is close to those from tropical rivers. This means that water releasing from these reservoirs would be an important way for CO 2 emission into atmosphere. The results showed that dam construction has significant impacts on the river water chemistry, with abrupt changes in pCO 2, DO, T, pH and SIc in surface water and their outlets. In addition, with the development of thermal gradient in warm seasons, water chemistry along the water column of reservoirs also showed seasonal variations, except in Xiuwen reservoir which only has daily storage capacity.

  8. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers.

    Science.gov (United States)

    Fernández, José M; Nieto, M Aurora; López-de-Sá, Esther G; Gascó, Gabriel; Méndez, Ana; Plaza, César

    2014-06-01

    Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions. PMID:24632059

  9. Carbon dioxide observations at Cape Rama, India for the period 1993–2002: implications for constraining Indian emissions

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, Y.K.; Patra, P.K.; Chevallier, F.; Francey, R.J.; Krummel, P.B.; Allison, C.E.; Revadekar, J.V.; Chakraborty, S.; Langenfelds, R.L.; Bhattacharya, S.K.; Borole, D.V.; RaviKumar, K.; Steele, L.P.

    stream_size 30418 stream_content_type text/plain stream_name Curr_Sci_101_1562.pdf.txt stream_source_info Curr_Sci_101_1562.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 RESEARCH COMMUNICATIONS.... In this study, we have compared CRI CO 2 observations for the period 1993–2002 with three different forward model simula- tions to explore the challenges facing observational and modelling efforts in order to link Indian emissions to the large...

  10. Carbon dioxide utilisation in anaerobic digesters as an on-site carbon revalorisation strategy

    OpenAIRE

    Bajón Fernández, Yadira

    2014-01-01

    The increasing carbon footprint of the water and organic waste sectors has led to water utilities to voluntarily include carbon mitigation approaches within their strategic plans and to an increase in research aimed at mitigating carbon dioxide (CO2) emissions. Injection of CO2 in anaerobic digesters (ADs) for its bioconversion into methane (CH4) has been identified as a potential solution. However, previous literature provided limited knowledge of the carbon benefits obtainable and presented...

  11. Evaluation of avoided carbon dioxide emissions in cogeneration projects; Evaluacion de las emisiones evitadas de bioxido de carbono en proyectos de cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Flores Zamudio, Jesus Antonio; Fernandez Montiel, Manuel Francisco; Alcaraz Calderon, Agustin Moises [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: jesus.flores@iie.org.mx; mffm@iie.org.mx; malcaraz@iie.org.mx

    2010-11-15

    In this paper, presents a methodology of how to calculate the emissions of CO{sub 2} (Carbon Dioxide) in cogeneration of plants for evaluate future cases with the type of fuel and fuel flow used in the plant. The methodology was in spreadsheets developed a series of stoichiometric balances. The methodology was done for three types of fossil fuels: solid, liquid and gas. The analysis is made only to the percentages of the items contained in the fuel flow automatically used and results in the combustion products in tons per hour. This method was compared with the results obtained in the software Thermoflow Inc. (Used in Gerencia de Procesos Termicos of Instituto de Investigaciones Electricas for evaluate various process systems that produce energy power) using different cogeneration systems, that is to say about the technology used emissions compared according to the amount of excess air for each type of technology and at one point before the gas cleaning systems. The results can be evaluated for emissions avoided through the fuel type used and developing a cogeneration plant compared to a conventional plant. [Spanish] En este articulo, se presenta una metodologia de como calcular las emisiones de CO{sub 2} (Bioxido de carbono) en plantas de cogeneracion, para evaluar casos a futuro por medio del tipo de combustible y flujo de combustible a utilizar en la planta. La metodologia se realizo en hojas de calculo, donde se desarrollaron una serie de balances estequiometricos. La metodologia se hizo para tres tipos de combustibles fosiles: solido, liquido y gas. El analisis se realiza con solo dar los porcentajes de los elementos que contiene el combustible y el flujo a utilizarse y automaticamente da como resultado los productos de la combustion en toneladas por hora. Esta metodologia se comparo con los resultados obtenidos en el software Thermoflow Inc. (Empleado en la Gerencia de Procesos Termicos del Instituto de Investigaciones Electricas para evaluar diversos

  12. Urban Traffic Congestion Pricing Model with the Consideration of Carbon Emissions Cost

    OpenAIRE

    Jian Wang; Libing Chi; Xiaowei Hu; Hongfei Zhou

    2014-01-01

    As one of the most effective traffic demand management opinions, congestion pricing can reduce private car travel demand and the associated carbon dioxide emissions. First, we summarized the status quo of transport carbon dioxide emission charges and congestion pricing, and then, we analyzed the characteristics of urban transport carbon dioxide emissions. Then, we proposed a (pricing) framework in which carbon emission costs would be considered as part of the generalized cost of travel. Based...

  13. Graphite suspension in carbon dioxide

    International Nuclear Information System (INIS)

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m3 and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m2/g (graphite particles about 1 μ), the powder surface area reaches an asymptotic value of 300 m2/g (all the particles less than 0.3 μ). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author)

  14. Changing Arctic Ecosystems: Updated forecast: Reducing carbon dioxide (CO2) emissions required to improve polar bear outlook

    Science.gov (United States)

    Oakley, Karen L.; Atwood, Todd C.; Mugel, Douglas N.; Rode, Karyn D.; Whalen, Mary E.

    2015-01-01

    The Arctic is warming faster than other regions of the world due to the loss of snow and ice, which increases the amount of solar energy absorbed by the region. The most visible consequence has been the rapid decline in sea ice over the last 3 decades-a decline projected to bring long ice-free summers if greenhouse gas (GHG) emissions are not significantly reduced. The polar bear (Ursus maritimus) depends on sea ice over the biologically productive continental shelves of the Arctic Ocean as a platform for hunting seals. In 2008, the U.S. Fish and Wildlife Service listed the polar bear as threatened under the Endangered Species Act (ESA) due to the threat posed by sea ice loss. The polar bear was the first species to be listed due to forecasted population declines from climate change.

  15. Understanding how individuals perceive carbon dioxide. Implications for acceptance of carbon dioxide capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Itaoka, K.; Saito, A. [Mizuho Information and Research Institute, Tokyo (Japan); Paukovic, M.; De Best-Waldhober, M. [ECN Policy Studies, Petten (Netherlands); Dowd, A.M.; Jeanneret, T.; Ashworth, P.; James, M. [The Global CCS Institute, Canberra (Australia)

    2012-06-15

    Carbon dioxide capture and storage (CCS) presents one potential technological solution for mitigating the atmospheric emission of carbon dioxide sources. However, CCS is a relatively new technology with associated uncertainties and perceived risks. For this reason, a growing body of research now focuses on public perceptions and potential for societal acceptance of CCS technology. Almost all explanations of CCS technology make reference to carbon dioxide, with an assumption that the general public understands CO2. It has become apparent that the general public’s knowledge and understanding of CO2’s properties influences how they engage with CO2 emitting industries and CCS technologies. However, surprisingly little research has investigated public perceptions, knowledge, and understanding of CO2. This investigation attempts to fill that gap. This report describes an investigation of how citizens of three countries (Japan, Australia, and the Netherlands) perceive CO2. Furthermore, it attempts to relate individual perceptions of CO2 to perceptions of CCS, and to determine how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards low carbon energy options, particularly CCS. In brief, the research had four ultimate aims. It aimed to: Explore the public’s knowledge and understanding of the properties of CO2; Examine the influence of that knowledge on their perceptions of CO2 and CCS; Investigate how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards CCS; and Identify if any differences between countries exist in relation to values and beliefs, knowledge of CO2’s properties, and CCS perceptions.

  16. Incentives of carbon dioxide regulation for investment in low-carbon electricity technologies in Texas

    International Nuclear Information System (INIS)

    This paper compares the incentives a carbon dioxide emissions price creates for investment in low carbon dioxide-emitting technologies in the electricity sector. We consider the extent to which operational differences across generation technologies - particularly, nuclear, wind and solar photovoltaic - create differences in the incentives for new investment, which is measured by the operating profits of a potential entrant. First, astylized model of an electricity system demonstrates that the composition of the existing generation system may cause electricity prices to increase by different amounts over time when a carbon dioxide price is imposed. Differences in operation across technologies therefore translate to differences in the operating profits of a potential entrant. Then, a detailed simulation model is used to consider a hypothetical carbon dioxide price of $10-$50 per metric ton for the Electric Reliability Council of Texas (ERCOT) market. The simulations show that, for the range of prices considered, the increase in electricity prices is positively correlated with output from a typical wind unit, but the correlation is much weaker for nuclear and photovoltaic. Consequently, a carbon dioxide price creates much stronger investment incentives for wind than for nuclear or photovoltaic technologies in the Texas market. - Highlights: → Compare incentives for new investment in low-emission electricity technologies created by carbon dioxide price. → Focus on ERCOT power system using stochastic unit commitment model. →Find a greater incentive for wind than solar or nuclear because of correlation between wind generation and increase in electricity prices.

  17. 长三角地区旅游业能源消耗的CO_2排放测度研究%Measuring carbon dioxide emissions from energy consumption by tourism in Yangtze River Delta

    Institute of Scientific and Technical Information of China (English)

    谢园方; 赵媛

    2012-01-01

    旅游业与气候环境变化息息相关,低碳旅游是旅游业对气候变化的积极响应,也是低碳经济的延伸,将会给全球旅游业带来深远影响。但目前国内大部分有关低碳旅游的研究仍停留在定性阶段,尤其是旅游业碳排放的测度研究仍比较薄弱。本文在深入分析和总结国内外已有研究的基础上,以能源消耗平衡表为依据,借鉴"旅游消费剥离系数"概念,构建出符合我国目前统计口径的旅游业碳排放测度方法。并以长江三角洲地区为研究范围,对江苏、浙江和上海三地旅游业碳排放进行测度和对比分析。研究表明:目前在长三角地区,旅游业碳排放总量持续攀升,并与旅游业总收入成正相关。其中旅游交通仓储和邮电业碳排放在旅游业碳排放总量中占主导地位,而旅游餐饮、住宿和购物过程中的碳排放也不容忽视。旅游收入增长与旅游低碳化发展的矛盾仍然十分突出,迫切需要转变旅游业发展方式。%Climate change is projected to have great impact on tourism in various ways;however,tourism also contributes to climate change through the carbon dioxide emissions from transport,accommodation and other tourist activities.Now low-carbon tourism is becoming a popular choice to protect the environment for tourists.A lot of people have already accepted the low-carbon conception,and more and more people like it.But there are still numerous hurdles on the road to really achieve the low-carbon goal in our travels,because there is a large amount of direct energy consumption in the form of fossil fuels or indirect energy consumption in the form of electricity during the whole journey.And this consumption directly leads to more emissions of carbon dioxide.According to international experience,measuring carbon dioxide emissions from tourism is a key step to developing low-carbon tourism.However,the study of low-carbon tourism in China is still in its

  18. Estimation and the monitoring research on carbon dioxide emission from the cement%水泥二氧化碳排放量预测及监测研究

    Institute of Scientific and Technical Information of China (English)

    张继义; 姬文强; 于涛; 马宁

    2013-01-01

    This paper is about the estimation of the carbon dioxide emission from the cement and the monitoring research on the emission reduction by using the method recommended by the Provincial Greenhouse Gas-emission Inventory and IPCC Guideline of the carbon dioxide emissions in the cement industry in Gansu Province.In this paper,we have adopted the GM (1,1) model,which was based on the gray-grade theory method in our work with the aid of MATLAB software.As the result,we have arrived the following conclusions in accordance with the model:(1) The carbon dioxide emissions have been worked out in recent years with the accuracy of the model verified.The relative error of the calculation done with the model proves less than 9.0% and the level ratio deviation being less than 0.1.This shows that the estimation of the emission amount comes in conformity with the demands as is required; (2) The amount of the emission in the cement production in the Province done by the model has been increased year by year,and the total emission is expected to beyond 15 million tons by the year of 2015.In addition,we have also introduced the current situation of carbon dioxide monitoring situation both at home and abroad.The carbon dioxide monitoring methods we have adopted can be divided into two categories:the in-situ measurement via instruments and via the sample analysis by using the monitoring methods employed in American Iron and Steel Enterprises.At the same time,we have also improved the monitoring methods and measures to reduce the emissions of the carbon dioxide of the cement industry.Therefore,our experience in using the model and the method can be taken as a reference to the reduction of the greenhouse gas emission in the Province in the future.%以甘肃省近几年水泥工业生产过程中的熟料产量为数据来源,依据《省级温室气体清单编制指南》和《IPCC指南》中推荐的方法,计算二氧化碳近几年的排放量.采用灰色

  19. Carbon dioxide diffuse emission and thermal energy release from hydrothermal systems at Copahue-Caviahue Volcanic Complex (Argentina)

    Science.gov (United States)

    Chiodini, Giovanni; Cardellini, Carlo; Lamberti, María Clara; Agusto, Mariano; Caselli, Alberto; Liccioli, Caterina; Tamburello, Giancarlo; Tassi, Franco; Vaselli, Orlando; Caliro, Stefano

    2015-10-01

    The north-western sector of Caviahue caldera (Argentina), close to the active volcanic system of Copahue, is characterized by the presence of several hydrothermal sites that host numerous fumarolic emissions, anomalous soil diffuse degassing of CO2 and hot soils. In March 2014, measurements of soil CO2 fluxes in 5 of these sites (namely, Las Máquinas, Las Maquinitas I, Las Maquinitas II, Anfiteatro, and Termas de Copahue) allowed an estimation that ~ 165 t of deeply derived CO2 is daily released. The gas source is likely related to a relatively shallow geothermal reservoir containing a single vapor phase as also suggested by both the geochemical data from the 3 deep wells drilled in the 1980s and gas geoindicators applied to the fumarolic discharges. Gas equilibria within the H-C-O gas system indicate the presence of a large, probably unique, single phase vapor zone at 200-210 °C feeding the hydrothermal manifestations of Las Máquinas, Las Maquinitas I and II and Termas de Copahue. A natural thermal release of 107 MW was computed by using CO2 as a tracer of the original vapor phase. The magmatic signature of the incondensable fumarolic gases, the wide expanse of the hydrothermal areas and the remarkable high amount of gas and heat released by fluid expulsion seem to be compatible with an active magmatic intrusion beneath this portion of the Caviahue caldera.

  20. Sintering furnace with hydrogen carbon dioxide atmosphere

    International Nuclear Information System (INIS)

    A heated furnace for sintering structures of uranium oxide containing composition being introduced to the furnace is described. The furnace receives an atmosphere comprising a mixture of hydrogen and carbon dioxide as initially introduced to the furnace, and this mixture reacts in the furnace to give the presence of water vapor and carbon monoxide

  1. Method for Extracting and Sequestering Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  2. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    Energy Technology Data Exchange (ETDEWEB)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing

  3. Carbon dioxide emission trends in cars and light trucks: A comparative analysis of emissions and methodologies for Florida's counties (2000 and 2008)

    International Nuclear Information System (INIS)

    This paper investigates methodologies to quantify CO2 emissions from cars and light trucks in Florida. The most widely used methodology to calculate greenhouse gas emissions in the transportation sector at the local level uses a harmonic average (HA) methodology based on nationally averaged fuel economies that assume 55% city and 45% highway VMTs. This paper presents a local condition (LC) methodology that accounts for county-level variations in city and highway VMTs, as opposed to assumed uniform driving conditions. Both HA and LC methodologies were used to estimate and compare absolute and per capita CO2 emissions both statewide and counties for 2000 and 2008. From 2000 to 2008, statewide absolute and per capita CO2 emissions increased similarly using HA and LC methodologies; however, the percent change varied considerably among counties. Statewide CO2 emissions calculated from HA and LC methodologies differed by only -0.2% (2000) and 1.7% (2008); however, the differences in the county-level emissions ranged from -8.0% to 14.9% (2000) and from -5.6% to 17.0% (2008). While either the HA or the LC methodology yields a similar result statewide, significant variation exists at the county level, warranting the need to consider local driving conditions when estimating county-level emissions. - Highlights: → The paper evaluates GHG emission methods for on-road passenger vehicles in Florida. → The paper compares methods that assume the harmonic average with actual VMTs driven. → The paper analyzes statewide GHG emissions aggregated by county for 2000 and 2008. → The paper improves on methods that balance bottom-up with top-down GHG emissions.

  4. Population Aging and Future Carbon Emissions in the United States

    OpenAIRE

    Dalton, M.G.; O'Neill, B. C.; Fuernkranz-Prskawetz, A.; Jiang, L.; Pitkin, J

    2005-01-01

    Changes in the age composition of U.S. households over the next several decades could affect energy use and carbon dioxide emissions. this article incorporates population age structure into and energy-economic growth model with multiple dynasties of heterogenous households. The model is used to estimate and compare effects of population aging and technical change on baseline paths of U.S. energy use and emissions. Results show that population aging reduces long-term carbon dioxide emissions, ...

  5. Regional carbon dioxide implications of forest bioenergy production

    Science.gov (United States)

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-11-01

    Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions, and forest thinning to reduce wildfire emissions. Here, we use forest inventory data to show that fire prevention measures and large-scale bioenergy harvest in US West Coast forests lead to 2-14% (46-405TgC) higher emissions compared with current management practices over the next 20 years. We studied 80 forest types in 19 ecoregions, and found that the current carbon sink in 16 of these ecoregions is sufficiently strong that it cannot be matched or exceeded through substitution of fossil fuels by forest bioenergy. If the sink in these ecoregions weakens below its current level by 30-60gCm-2yr-1 owing to insect infestations, increased fire emissions or reduced primary production, management schemes including bioenergy production may succeed in jointly reducing fire risk and carbon emissions. In the remaining three ecoregions, immediate implementation of fire prevention and biofuel policies may yield net emission savings. Hence, forest policy should consider current forest carbon balance, local forest conditions and ecosystem sustainability in establishing how to decrease emissions.

  6. [Pharmaceutical applications of supercritical carbon dioxide].

    Science.gov (United States)

    Delattre, L

    2007-01-01

    The supercritical state of a fluid is intermediate between that of gases and liquids. Supercritical fluids exhibit some solvent power which is tunable in function of pressure and temperature. In the pharmaceutical field, supercritical carbon dioxide is by far the most commonly used fluid; of course, the first applications of supercritical fluids were the replacement of organic solvents in extraction processes; other applications appeared during the last twenty years: supercritical fluids are also used as eluents in chromatography, as solvents in organic synthesis or for the processing of solid dosage forms by drug micronization, by the production of nanospheres, of solid dispersions, of porous polymeric matrices containing different active substances. Supercritical carbon dioxide has been proposed for encapsulating both hydrophilic and hydrophobic drug substances into liposomes as well as for including different active substances into cyclodextrins. There are also future prospects for the use of pressurized carbon dioxide as a sterilizing agent. PMID:17299352

  7. Analyzing Sulfur Dioxide Emissions of Nyamuragira Volcano

    Science.gov (United States)

    Guth, A. L.; Bluth, G. J.; Carn, S. A.

    2002-05-01

    Nyamuragira volcano, located in the Democratic Republic of Congo, is Africa's most active volcano, having erupted 13 times (every 1-3 years) since 1980. The eruption frequency, and the large amounts of sulfur dioxide emitted by this rift volcano, may produce a significant impact on the global sulfur budget. In this project we are attempting to quantify the sulfur dioxide emissions from this volcano over the past 20+ years using satellite data. Since 1978, satellites carrying NASA's Total Ozone Mapping Spectrometer (TOMS) instruments have been orbiting the earth collecting atmospheric data. These instruments use six wavelength bands located within the ultraviolet spectrum to measure solar irradiance and the energy reflected and backscattered by the Earth's surface and atmosphere. Sunlit planetary coverage is provided once per day by TOMS data. The spatial resolution of these satellites varies from 24 km (Earth Probe, 1996-1997, but raised to 39 km from 1997 to present) to 62 km (Meteor-3, 1991-1994). Nimbus-7, the satellite operating for the longest span of time (1978-1993), had a nadir footprint of 50 km. The (instantaneous) mass retrievals of sulfur dioxide cloud masses are derived using several different image processing schemes and net tonnages are calculated using a background correction. Volcanic activity associated with this volcano typically consists of long term (weeks to months), and often continuous, effusive emissions. Work to date has discovered over 120 days in which sulfur dioxide plumes were observed from the 13 eruptions (ranging from a minimum of one day to a maximum of 32 days). Most (82%) of the sulfur dioxide clouds measured are relatively low-level, below 100 kilotonnes (kt); 16% of the emissions are between 100 and 1000 kt, and 1.5% were measured to have more than 1000 kt. Current work is focusing on deriving net emission fluxes, integrating the TOMS instantaneous measurements of relatively continuous emission activity. The eruptive activity

  8. Uptake of carbon dioxide from flue gas by microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.M. [CLF Technologies, Inc., Denver, CO (United States)

    1996-05-01

    This research sought to provide affordable, and efficient methods for reducing carbon dioxide and other emissions from coal-fired electricity generation using biological assimilation. Photosynthetic microorganisms such as microalgae, when grown in large outdoor ponds could use carbon dioxide from flue gas directly injected into the culture. This process requires land, water, sunlight and other nutrients. Currently, commercial production of photosynthetic microorganisms is used to produce high value products such as pigments. Results to date indicate that at least some microalgae can tolerate moderate levels of SO{sub x} and NO{sub x} in laboratory culture, and that a well-engineered outdoor pond can easily achieve in excess of 90% carbon dioxide trapping efficiency when presented with pure carbon dioxide. In laboratory culture experiments with simulated flue gas, the green alga {ital Monoraphidium minutum} could tolerate 200 ppm sulfur dioxide and 150 ppm nitric oxide. Nitrite concentration in the culture media of flue gas treated cultures is much higher than in control cultures which did not receive sulfur dioxide and nitric oxide. This suggests that some of the NO may be dissolving and could be available as an N-source for the microalgae. Similarly, nitrate utilization is less in flue gas treated cultures, but cell growth is unaffected. This type of simulated flue gas seems to be well tolerated by microalgae, and is an excellent substrate for their growth. Culture pH remains quite stable during these experiments indicating that sulfur dioxide is not likely to be a problem under this sparging regime. 14 refs., 7 figs.

  9. The Carbon Emission Game

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    When Chinese President Hu Jintao attended the UN climate summit on September22,he made a solemn commitment that China will cut its per GDP unit carbon emission to a significant amount in 2020 compared with that of 2005.

  10. Synthesis of fluoropolymers in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Fluoropolymers are used in many technologically demanding applications because of their balance of high-performance properties. A significant impediment to the synthesis of variants of commercially available amorphous fluoropolymers is their general insolubility in most solvents except chlorofluorocarbons (CFCs). The environmental concerns about CFCs can be circumvented by preparing these technologically important materials in supercritical fluids. The homogeneous solution polymerization of highly fluorinated acrylic monomers can be achieved in supercritical carbon dioxide by using free radical methods. In addition, detailed decomposition rates and efficiency factors were measured for azobisisobutyronitrile in supercritical carbon dioxide and were compared to those obtained with conventional liquid solvents

  11. Global deforestation: contribution to atmospheric carbon dioxide.

    Science.gov (United States)

    Woodwell, G M; Hobbie, J E; Houghton, R A; Melillo, J M; Moore, B; Peterson, B J; Shaver, G R

    1983-12-01

    A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1860 and 1980 was between 135 x 10(15) and 228 x 10(15) grams. Between 1.8 x 10(15) and 4.7 x 10(15) grams of carbon were released in 1980, of which nearly 80 percent was due to deforestation, principally in the tropics. The annual release of carbon from the biota and soils exceeded the release from fossil fuels until about 1960. Because the biotic release has been and remains much larger than is commonly assumed, the airborne fraction, usually considered to be about 50 percent of the release from fossil fuels, was probably between 22 and 43 percent of the total carbon released in 1980. The increase in carbon dioxide in the atmosphere is thought by some to be increasing the storage of carbon in the earth's remaining forests sufficiently to offset the release from deforestation. The interpretation of the evidence presented here suggests no such effect; deforestation appears to be the dominant biotic effect on atmospheric carbon dioxide. If deforestation increases in proportion to population, the biotic release of carbon will reach 9 x 10(15) grams per year before forests are exhausted early in the next century. The possibilities for limiting the accumulation of carbon dioxide in the atmosphere through reduction in use of fossil fuels and through management of forests may be greater than is commonly assumed. PMID:17747369

  12. Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

    1997-03-01

    Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

  13. Development of Mixed Matrix Membranes for Carbon Dioxide Capture

    OpenAIRE

    Nafisi, Vajiheh

    2014-01-01

    Global warming is one of the world’s major environmental issues. Reduction of greenhouse gas emissions by the capture of carbon dioxide from flue gas is one out of different kinds of methods to try to address this problem. Due to the economic and environmental advantages of membrane separation over other separation technologies, a lot of research activities are being carried out for development of sophisticated membrane materials such as facilitated transport membranes, polymeric, inorganic a...

  14. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch.

    Science.gov (United States)

    Uhm, Han S; Kwak, Hyoung S; Hong, Yong C

    2016-04-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. PMID:26774765

  15. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M;

    1999-01-01

    to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically...

  16. Enhancement of enterotoxin production by carbon dioxide in Vibrio cholerae.

    OpenAIRE

    Shimamura, T; Watanabe, S; Sasaki, S.

    1985-01-01

    We found that Vibrio cholerae 569B produced much more cholera enterotoxin in the presence of added carbon dioxide than in its absence. An atmosphere of 10% carbon dioxide was optimal for maximal enterotoxin production.

  17. 78 FR 23524 - Approval and Promulgation of Implementation Plans; North Carolina: Deferral of Carbon Dioxide (CO2

    Science.gov (United States)

    2013-04-19

    ... Carbon Dioxide (CO 2 ) Emissions From Prevention of Significant Deterioration (PSD) Requirements for... applicability to biogenic carbon dioxide (CO 2 ) emissions from bioenergy and other biogenic stationary sources... Significant Deterioration (PSD) and Title V Programs,'' Final Rule, 76 FR 43490, (July 20, 2011)...

  18. Magnesian calcite sorbent for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Mabry, J.C.; Mondal, K. [Southern Illinois University, Carbondale, IL (United States)

    2011-07-01

    Magnesian calcite with controlled properties was synthesized for the removal of carbon dioxide. The results from characterization, reactivity and CO{sub 2} capture capacity for different synthesis conditions are reported. The magnesian calcite samples (CaCO{sub 3}:MgCO{sub 3}) were synthesized by the coprecipitation of specific amounts of commercially available CaO and MgO by carbon dioxide. Characterization was done with BET, SEM/EDS, particle size analysis and XRD. The capacity was measured using TGA cycles at 800 {sup o}C and compared for different preparation conditions. The effects of CaO, MgO and surfactant loading on the physical properties and carbonation activity were studied to determine the optimal synthesis condition. A long-term carbonation-calcination cycling test was conducted on the optimal sample. It was observed that the sample maintained its capacity to 86% of its original uptake even after 50 cycles.

  19. Plant Responses to Rising Carbon Dioxide and Nitrogen Relations

    OpenAIRE

    Bloom, Arnold J.

    2009-01-01

    The responses of higher plants to rising carbon dioxide concentration in the atmosphere are strongly dependent on their ability to acquire mineral nitrogen, ammonium and nitrate. Elevated atmospheric carbon dioxide limits both sources and sinks of plant mineral nitrogen. With regard to sources, elevated carbon dioxide stimulates microbial immobilization and inhibits nitrogen fixation. With regard to sinks, elevated carbon dioxide inhibits nitrate assimilation into amino acids within the shoo...

  20. Immobilized Ruthenium Catalyst for Carbon Dioxide Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Ying Min YU; Jin Hua FEI; Yi Ping ZHANG; Xiao Ming ZHENG

    2006-01-01

    Three kinds of cross linked polystyrene resin (PS) supported ruthenium complexes were developed as catalysts for the synthesis of formic acid from carbon dioxide hydrogenation. Many factors, such as the functionalized supports, solvents and ligands, could influence their activities and reuse performances greatly. These immobilized catalysts also offer the industrial advantages such as easy separation.

  1. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann;

    2014-01-01

    Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding on the...

  2. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  3. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...

  4. Recovery of carbon dioxide from fuel cell exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Healy, H.C.; Kolodney, M.; Levy, A.H.; Trocciola, P.

    1988-06-14

    An acid fuel cell power plant system operable to produce carbon dioxide as a by-product is described comprising: (a) fuel cell stack means having anode means, cathode means, and fuel cell cooling means, the cooling means using a water coolant; (b) means for delivering a hydrogen-rich fuel gas which contains carbon dioxide to the anode means for consumption of hydrogen by the anode means in an electrochemical reaction in the stack; (c) carbon dioxide absorber means including an absorbent for stripping carbon dioxide from gaseous mixtures thereof; (d) means for delivering hydrogen-depleted exhaust gas containing carbon dioxide from the anode means to the carbon dioxide absorber means for absorption of carbon dioxide from the exhaust gas; (e) an absorbent regenerator; (f) means for delivering carbon dioxide-enriched absorbent from the absorber means to the regenerator for separation of carbon dioxide from the absorbent; (g) means for exhausting carbon dioxide from the regenerator, the means for exhausting further including means for cooling and compressing carbon dioxide exhausted from the regenerator; and (h) means for removing the compressed carbon dioxide from the power plant.

  5. 46 CFR 169.565 - Fixed carbon dioxide system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  6. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  7. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  8. 9 CFR 313.5 - Chemical; carbon dioxide.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  9. 27 CFR 24.319 - Carbon dioxide record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  10. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  11. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    Science.gov (United States)

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (carbon dioxide removal.

  12. Materials for carbon dioxide separation

    International Nuclear Information System (INIS)

    The CO2 adsorption capacities at room temperature have been investigated by comparing carbon nanotubes, fullerene, graphenes, graphite and granular activated carbons. It turned out that the amount of the micropore surface area was dominating the CO2 adsorption ability. Another promising class of materials for CO2 capture and separation are CaO derived from the eggshells. Two aspects were studied in present work: a new hybrid materials synthesized by doping the CaTiO3 and the relationship between physisorption and chemisorption properties of CaO-based materials.

  13. Carbon dioxide research conference: carbon dioxide, science and consensus

    International Nuclear Information System (INIS)

    The DOE program focuses on three areas each of which requires more research before the many CO2-related questions can be answered. These areas include the global carbon cycle, climate effects, and vegetation effects. Additional information is needed to understand the sources and sinks of CO2. Research efforts include an attempt to estimate regional and global changes in temperature and precipitation. Increased atmospheric CO2 may be a potential benefit to vegetation and crops because it is an essential element required for plant growth. Eight separate papers are included

  14. Crop soil air carbon dioxide concentration and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Guiresse, M.; Gers, C.; Dourel, L.; Kaemmerer, M.; Revel, J.C. [Institut National Polytechnique de Toulouse, Toulouse (France). Ecole Nationale Superieure Agronomique de Toulouse

    1995-12-31

    The introduction of organic compounds into the soil may increase carbon dioxide emission and thus change the composition of the soil air and microfauna. These factors were studied in a field experiment in luvi-redoxisoils in the South West of France. The untreated liquid sludge from the wastewater treatment plant of Toulouse was tested. The first field plot was an unploughed plot, without any fertilizer and any sludge; the second was a control plot sown with Zea mays and a standard mineral fertilizer without any sludge; the third plot was sown with Zea mays and a normal amount of sludge; and the last plot was sown with Zea mays and a large amount of sludge. In these plots soil air dioxide carbon concentration during all the maize cultivation was measured using the Draeger field method twice a week. The results showed that burying degradable organic compounds increases soil air CO{sub 2}. 8 refs., 6 figs.

  15. The underground storages of carbon dioxide. Juridical aspects

    International Nuclear Information System (INIS)

    In the framework of the reduction of the carbon dioxide emissions in the air, the underground storage of the CO2 is studied. Some experimentation are already realized in the world and envisaged in France. This document aims to study the juridical aspects of these first works in France. After a presentation of the realization conditions and some recalls on the carbon dioxide its capture and storage, the natural CO2 underground storages and the first artificial storages are discussed. The CO2 waste qualification, in the framework of the environmental legislation is then detailed with a special task on the Lacq region. The problem of the sea underground storages is also presented. (A.L.B.)

  16. Biomass fuels - effects on the carbon dioxide budget

    International Nuclear Information System (INIS)

    It is highly desirable that the effects on the carbon dioxide balance of alternative energy sources are evaluated. Two important alternatives studied in Sweden are the extraction of logging residues left in the forest and willow production on farmland. Considered in isolation, a conversion from stem-wood harvest to whole-tree harvest has a negative effect on the carbon dioxide balance, because the amount of soil organic matter decreases. With the assumption that it takes 20 years for the logging residues to decompose, the net decrease in emissions that would result from the replacement of fossil fuels by logging residues appear moderate after 20 years. However, it will grow significantly as time passes. After 100 years with an annual combustion of logging residues the emissions are 12% of those associated with the production of an equivalent amount of energy through oil combustion. Corresponding values for 300 and 500 years are 4% and 2.5% respectively. In less than 100 years there should be a considerable reduction in the Swedish CO2-C emissions even if only every second new logging residue-produced TWH replaces a fossil-fuel-produced TWh. From a long-term perspective, effects on carbon reservoirs in Sweden, caused by conversions to whole-tree harvesting in forestry and to willow production on redundant farmland, can be considered negligible in terms of their influence on the carbon dioxide budget of Sweden. The orders of magnitude of influencing fluxes is exemplified in the following: The annual production of 50 TWh, whereof 40 TWh from logging residues, 8 TWh from willow and 2 TWh from annual crops is estimated to cause a total net decrease of the carbon reservoirs within Sweden corresponding to 32 Tg CO2-C, whereas the annual production of 50 TWh from oil combustion should emit 1200 Tg CO2-C in 300 years, 2000 Tg CO2-C in 500 years and so on. (au). 17 refs., 4 tabs

  17. Estimation of carbon dioxide emissions per urban center link unit using data collected by the Advanced Traffic Information System in Daejeon, Korea

    Science.gov (United States)

    Ryu, B. Y.; Jung, H. J.; Bae, S. H.; Choi, C. U.

    2013-12-01

    . Furthermore, an analysis of CO2 emissions can support traffic management to make decisions related to the reduction of carbon emissions.

  18. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Science.gov (United States)

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission...

  19. Urban carbon dioxide in Portland, Oregon

    Science.gov (United States)

    Bostrom, G. A.; Brooks, M.; Rice, A. L.

    2010-12-01

    Ambient concentrations of atmospheric carbon dioxide (CO2) are reported for the Portland, Oregon (USA) metropolitan region since late July, 2009. Three stationary locations were established: a downtown location on the campus of Portland State University; a residential site in southeast Portland; and a rural station on Sauvie Island, located ~30km northwest of Portland in the Columbia River Gorge. Continuous measurements of CO2 at the sites average 400-410ppm and show considerable variability due to CO2 sources, sinks and meteorological drivers of ventilation. Within this variability, a marked 20-30ppm diurnal cycle is observed due to photosynthetic activity and variations in the planetary boundary layer. In-city CO2 concentrations are on average enhanced by 5-6ppm over the Sauvie Island site during upgorge wind conditions, a difference which is greatest in the afternoon. Measurements of the 13C/12C ratio of CO2 in downtown Portland are significantly depleted in 13C relative to 12C compared with background air and suggest that regional CO2 is dominated by petroleum sources (70-80%). High degrees of relationship between CO2 variability and primary air pollutants CO and NO (r2=0.70 to 0.80), measured by the Oregon Department of Environmental Quality at the Southeast Portland location, corroborate this finding and illustrate the importance of traffic emissions on elevated ambient CO2 concentrations. In addition to CO2 at the fixed sites, measurements of street-level CO2 concentrations were obtained using a mobile instrument mounted in a bike trailer. Results from these field data show relatively homogenous CO2 concentrations throughout residential Portland neighborhoods with significant enhancements in CO2 on busy roadways or near areas of traffic congestion.

  20. Carbon dioxide in vascular imaging and intervention

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoming [Dept. of Clinical Radiology, Univ. Hospital, Kuopio (Finland); Manninen, H. [Dept. of Clinical Radiology, Univ. Hospital, Kuopio (Finland); Soimakallio, S. [Dept. of Clinical Radiology, Univ. Hospital, Kuopio (Finland)

    1995-07-01

    Angiography with iodinated contrast agents is bound up with the risks of contrast-induced nephrotoxicity and hypersensitivity, which led to the idea of using carbon dioxide (CO{sub 2}) gas as a negative contrast medium to eliminate these drawbacks. During the last decade, refinements and experiences have proved carbon dioxide digital subtraction angiography (CO{sub 2}-DSA) to be an accurate, safe, and clinically promising vascular imaging modality, with the advantages of no hypersensitivity and no nephrotoxicity as well as minimal patient discomfort. In this article, we have reviewed the history, physical and chemical aspects, techniques, and pathophysiologic changes with the use of CO{sub 2}-DSA as well as some clinical trials. Applications of CO{sub 2} gas in vascular interventions and other imagings, and the advantages and limitations of using CO{sub 2} gas in DSA are also discussed. (orig.).

  1. Carbon dioxide in vascular imaging and intervention.

    Science.gov (United States)

    Yang, X; Manninen, H; Soimakallio, S

    1995-07-01

    Angiography with iodinated contrast agents is bound up with the risks of contrast-induced nephrotoxicity and hypersensitivity, which led to the idea of using carbon dioxide (CO2) gas as a negative contrast medium to eliminate these drawbacks. During the last decade, refinements and experiences have proved carbon dioxide digital subtraction angiography (CO2-DSA) to be an accurate, safe, and clinically promising vascular imaging modality, with the advantages of no hypersensitivity and no nephrotoxicity as well as minimal patient discomfort. In this article, we have reviewed the history, physical and chemical aspects, techniques, and pathophysiologic changes with the use of CO2-DSA as well as some clinical trials. Applications of CO2 gas in vascular interventions and other imagings, and the advantages and limitations of using CO2 gas in DSA are also discussed. PMID:7619608

  2. Recycling technology of emitted carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hironori [National Inst. of Materials and Chemical Research (NIMC), Ibaraki (Japan)

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  3. Sequestering ADM ethanol plant carbon dioxide

    Science.gov (United States)

    Finley, R.J.; Riddle, D.

    2008-01-01

    Archer Daniels Midland Co. (ADM) and the Illinois State Geological Survey (ISGS) are collaborating on a project in confirming that a rock formation can store carbon dioxide from the plant in its pores. The project aimed to sequester the gas underground permanently to minimize release of the greenhouse gas into the atmosphere. It is also designed to store one million tons of carbon dioxide over a three-year period. The project is worth $84.3M, funded by $66.7M from the US Department Energy, supplemented by co-funding from ADM and other corporate and state resources. The project will start drilling of wells to an expected depth over 6500 feet into the Mount Simon Sandstone formation.

  4. Supercritical carbon dioxide decontamination of PAH contaminants

    International Nuclear Information System (INIS)

    Before the 1940's, more than 2,000 manufactured gas plant sites existed across North America for the production of a low Btu gas for heating and lighting. These sites, now abandoned, are contaminated with polycyclic aromatic hydrocarbons (PAHs), a coal gasification byproduct that was dumped on-site into unlined pits. The potential for ground water contamination of PAHs has made these sites an environmental concern. The remediation of PAH contaminated sites is difficult to achieve by conventional cleaning methods. In this work, supercritical carbon dioxide extraction has been investigated on a town gas soil containing 3.37 wt% contamination. The soil has been remediated in a 300 cm3 semi-continuous extraction vessel and the effects of solvent temperature, pressure, and density will be discussed. Supercritical carbon dioxide extraction is an emerging technology that can extract compounds that are difficult or impossible by conventional processes

  5. Carbon dioxide in vascular imaging and intervention

    International Nuclear Information System (INIS)

    Angiography with iodinated contrast agents is bound up with the risks of contrast-induced nephrotoxicity and hypersensitivity, which led to the idea of using carbon dioxide (CO2) gas as a negative contrast medium to eliminate these drawbacks. During the last decade, refinements and experiences have proved carbon dioxide digital subtraction angiography (CO2-DSA) to be an accurate, safe, and clinically promising vascular imaging modality, with the advantages of no hypersensitivity and no nephrotoxicity as well as minimal patient discomfort. In this article, we have reviewed the history, physical and chemical aspects, techniques, and pathophysiologic changes with the use of CO2-DSA as well as some clinical trials. Applications of CO2 gas in vascular interventions and other imagings, and the advantages and limitations of using CO2 gas in DSA are also discussed. (orig.)

  6. Carbon dioxide methanation for intensified reactors

    OpenAIRE

    Coronado Martín, Irene

    2015-01-01

    The present work is related to the development of sustainable energy systems based on the Power-to-Gas concept. The main objective is to utilise renewable hydrogen and carbon dioxide to produce methane for storage in the natural gas infrastructure. Multitubular fixed-bed reactors are established at industrial scale for CO2 methanation. Catalytic pellets commonly loaded in this type of reactor involve poor heat transfer and high pressure drop that lead to inefficient processes. Today, reac...

  7. Plasma beam discharge in carbon dioxide

    International Nuclear Information System (INIS)

    The paper deals with the dissociation of carbon dioxide in nonequilibrium plasma of a stationary plasma-beam discharge. Experimental results of spectroscopic and probe measurements of plasma parameters are given. Moreover, a mass-spectrometric analysis of gaseous products of the chemical reactions is presented. In addition the measurement of the deposition rate of solid products by means of a quartz oscillator is described. The results show that plasma beam discharge is an effective tool for inducing plasma-chemical reactions. (author)

  8. Pulsed discharge plasmas in supercritical carbon dioxide

    OpenAIRE

    Kiyan, Tsuyoshi; Uemura, A.; Tanaka, K.; Zhang, C. H.; Namihira, Takao; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Roy, B.C; Sasaki, M.; Goto, M; キヤン, ツヨシ; ナミヒラ, タカオ; サクガワ, タカシ; カツキ, スナオ

    2005-01-01

    In recent years, several studies about electrical discharge plasma in supercritical carbon dioxide (CO2) have been carried out. One of the unique characteristics of supercritical fluid is a large density fluctuation near the critical point that can result in marked dramatic changes of thermal conductivity. Therefore, the electrical discharge plasma produced in supercritical fluid has unique features and reactions unlike those of normal plasma produced in gas phase. In our experiments, two typ...

  9. Carbon dioxide in Arctic and subarctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  10. Carbon dioxide embolism during laparoscopic sleeve gastrectomy

    Directory of Open Access Journals (Sweden)

    Amir Abu Zikry

    2011-01-01

    Full Text Available Bariatric restrictive and malabsorptive operations are being carried out in most countries laparoscopically. Carbon dioxide or gas embolism has never been reported in obese patients undergoing bariatric surgery. We report a case of carbon dioxide embolism during laparoscopic sleeve gastrectomy (LSG in a young super obese female patient. Early diagnosis and successful management of this complication are discussed. An 18-year-old super obese female patient with enlarged fatty liver underwent LSG under general anesthesia. During initial intra-peritoneal insufflation with CO 2 at high flows through upper left quadrant of the abdomen, she had precipitous fall of end-tidal CO 2 and SaO 2 % accompanied with tachycardia. Early suspicion led to stoppage of further insufflation. Clinical parameters were stabilized after almost 30 min, while the blood gas analysis was restored to normal levels after 1 h. The area of gas entrainment on the damaged liver was recognized by the surgeon and sealed and the surgery was successfully carried out uneventfully. Like any other laparoscopic surgery, carbon dioxide embolism can occur during bariatric laparoscopic surgery also. Caution should be exercised when Veress needle is inserted through upper left quadrant of the abdomen in patients with enlarged liver. A high degree of suspicion and prompt collaboration between the surgeon and anesthetist can lead to complete recovery from this potentially fatal complication.

  11. Trading permanent and temporary carbon emissions credits

    Energy Technology Data Exchange (ETDEWEB)

    Marland, Gregg [ORNL; Marland, Eric [Appalachian State University

    2009-08-01

    In this issue of Climatic Change, Van Kooten (2009) addresses an issue that has bedeviled negotiators since the drafting stage of the Kyoto Protocol. If we accept that increasing withdrawals of carbon dioxide from the atmpshere has the same net impact on the climate system as reducing emissions of carbon dioxide to the atmosphere, how do we design a system that allows trading of one for the other? As van Kooten expresses the challenge: 'The problem is that emissions reduction and carbon sequestration, while opposite sides of the same coin in some sense, are not directly comparable, thereby inhibiting their trade in carbon markets.' He explains: 'The difficulty centers on the length of time that mitigation strategies without CO{sub 2} from entering the atmosphere - the duration problem.' While reducing emissions of CO{sub 2} represents an essentially permanent benefit for the atmosphere, capturing CO{sub 2} that has been produced (whether capture is from the atmosphere or directly from, for example, the exhaust from power plants) there is the challenge of storing the carbon adn the risk that it will yet escape to the atmosphere. Permanent benefit to the atmosphere is often not assured for carbon sequestration activities. This is especially true if the carbon is taken up and stored in the biosphere - e.g. in forest trees or agricultural soils.

  12. Production of lightweight aggregate from industrial waste and carbon dioxide.

    Science.gov (United States)

    Gunning, Peter J; Hills, Colin D; Carey, Paula J

    2009-10-01

    The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m(3) and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere. PMID:19577916

  13. Conversion of carbon dioxide to valuable petrochemicals:An approach to clean development mechanism

    Institute of Scientific and Technical Information of China (English)

    Farnaz Tahriri Zangeneh; Saeed Sahebdelfar; Maryam Takht Ravanchi

    2011-01-01

    The increase of atmospheric carbon dioxide and the global warming due to its greenhouse effect resulted in worldwide concerns. On the other hand, carbon dioxide might be considered as a valuable and renewable carbon source. One approach to reduce carbon dioxide emissions could be its capture and recycle via transformation into chemicals using the technologies in C1 chemistry. Despite its great interest, there are difficulties in CO2 separation on the one hand, and thermodynamic stability of carbon dioxide molecule rendering its chemical activity low on the other hand. Carbon dioxide has been already used in petrochemical industries for production of limited chemicals such as urea.The utilization of carbon dioxide does not necessarily involve development of new processes, and in certain processes such as methanol synthesis and methane steam reforming, addition of CO2 into the feed results in its utilization and increases carbon efficiency. In other cases,modifications in catalyst and/or processes, or even new catalysts and processes, are necessary. In either case, catalysis plays a crucial role in carbon dioxide conversion and effective catalysts are required for commercial realization of the related processes. Technologies for CO2 utilization are emerging after many years of research and development efforts.

  14. Carbon-14 measurement using carbon dioxide absorption method - Our experience

    International Nuclear Information System (INIS)

    Carbon-C14 measurement using absorption technique consists of direct absorption of sample carbon dioxide into an absorber - scintillator mixture. This technique is a simple, fast, less expensive and less hazardous technique compared to benzene synthesis or any other technique. This techniques enable us in preparing six/seven samples in a day while benzene synthesis technique takes two days for the preparation of one sample. It is useful for radiocarbon age up to about 38,000 a BP (∼1 pMC), which is adequate for most of the hydrological investigations. All the total dissolved inorganic carbon (TDIC) is precipitated as barium carbonate from the ∼60 to 70 liters of water at the site. In the laboratory, it is reacted with orthophosphoric acid to give carbon dioxide (CO2). This carbon dioxide is transferred into 0.5 L capacity cylinder. The reaction and collection of gas is done under vacuum using a glass vacuum line. Carbon dioxide is directly absorbed in 11.5 ml of carbasorb + 11 ml of Permaflour V (commercially not available) or its equivalent scintillator in the specially made absorption apparatus. Since, absorption process is exothermic, temperature of the medium is maintained at about 220 deg. C, it results in the absorption of ∼7 m moles of carbon dioxide per mL of cabasorb. As reaction progresses, bubbles can be seen rising slowly. The end point is marked by rapid rise in the solution level. Carbon dioxide obtained from oxalic acid (Standard) and background carbon dioxide are also absorbed in the same quantity of absorber and scintillator mixture. Samples, standard and background are transferred in 22 mL teflon vials and counted in low level liquid scintillation counter (LKB Wallac 1220 Quantulus) for 1000 minutes. The counting efficiency at best factor of merit (AON/ON/√B) is ∼60 % where AON is normalized net count rate of standard and B is the background count rate. The mean count rate of last fifteen background samples is 0.64 ± .0005 cpm with an

  15. Application of Metal Organic Frameworks in Carbon Dioxide Capture and Separation

    OpenAIRE

    Hui Liu; Heping Zeng; Xiangfang Peng

    2013-01-01

    The environmental problem caused by excess carbon dioxide emissions has received great attention. The metal organic framework compounds as a new porous materials which self-assembled with inorganic vertices (metal ions or clusters) and organic struts can be used in carbon dioxide capture and separation due to their have advantage of the degree of orderliness, the high surface, diversity structures, tunable structures and modification porous. In this paper, the research progress of metal organ...

  16. Enzymatic conversion of carbon dioxide.

    Science.gov (United States)

    Shi, Jiafu; Jiang, Yanjun; Jiang, Zhongyi; Wang, Xueyan; Wang, Xiaoli; Zhang, Shaohua; Han, Pingping; Yang, Chen

    2015-10-01

    With the continuous increase in fossil fuels consumption and the rapid growth of atmospheric CO2 concentration, the harmonious state between human and nature faces severe challenges. Exploring green and sustainable energy resources and devising efficient methods for CO2 capture, sequestration and utilization are urgently required. Converting CO2 into fuels/chemicals/materials as an indispensable element for CO2 capture, sequestration and utilization may offer a win-win strategy to both decrease the CO2 concentration and achieve the efficient exploitation of carbon resources. Among the current major methods (including chemical, photochemical, electrochemical and enzymatic methods), the enzymatic method, which is inspired by the CO2 metabolic process in cells, offers a green and potent alternative for efficient CO2 conversion due to its superior stereo-specificity and region/chemo-selectivity. Thus, in this tutorial review, we firstly provide a brief background about enzymatic conversion for CO2 capture, sequestration and utilization. Next, we depict six major routes of the CO2 metabolic process in cells, which are taken as the inspiration source for the construction of enzymatic systems in vitro. Next, we focus on the state-of-the-art routes for the catalytic conversion of CO2 by a single enzyme system and by a multienzyme system. Some emerging approaches and materials utilized for constructing single-enzyme/multienzyme systems to enhance the catalytic activity/stability will be highlighted. Finally, a summary about the current advances and the future perspectives of the enzymatic conversion of CO2 will be presented. PMID:26055659

  17. Tendencies in the energy consumption and in the carbon dioxide emissions in the Mexican cement industry; Tendencias del consumo de energia y emisiones de bioxido de carbono de la industria cementera mexicana

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa M, Leticia; Sheinbaum P, Claudia [Instituto de Ingenieria UNAM, Mexico, D. F. (Mexico)

    1996-12-31

    This paper analyzes the changes occurred in the energy consumption and carbon dioxide in the Mexican cement industry. For this purpose, the energy consumption and the emissions are broken up into three types of changes that affect the energy demand of an industry: activity, structure and energy intensity. According to this analysis it is found that the Mexican cement industry has suffered an important reduction in the energy intensity as a result of the disappearance, almost complete, of the wet production process, of the increment in the production of pozzolanic cement and in the opening of new high technology industries. With respect to the intensity of carbon dioxide emissions it does not decrease at the same rate than the energy intensity due to the increased consumption of the fuel oil over the natural gas. At the end of this paper an international comparison is presented of the energy specific consumption and of its emissions. [Espanol] En este articulo se analizan los cambios ocurridos en el consumo de energia y emisiones de bioxido de carbono de la industria cementera mexicana. Para ello, se desagrega el consumo de energia y las emisiones en tres tipos de cambios que influyen en la demanda energetica de una industria: actividad, estructura, e intensidad energetica. De acuerdo con este analisis se encuentra que la industria cementera mexicana ha sufrido un importante decremento en la intensidad energetica producto de la desaparicion, casi por completo, del proceso de produccion por via humeda, del incremento en la produccion del cemento puzolanico y de la apertura de nuevas industrias con alta tecnologia. Por su parte, la intensidad en las emisiones de bioxido de carbono no disminuye a la misma tasa que la intensidad energetica debido al incremento en el uso del combustoleo sobre el gas natural. Al final del articulo se presenta una comparacion internacional del consumo especifico de energia y de las emisiones.

  18. Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009

    Directory of Open Access Journals (Sweden)

    J. C. Turnbull

    2011-01-01

    Full Text Available Direct quantification of fossil fuel CO2 (CO2ff in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in situ CO2, CO, and CH4 measurements and flask samples in the boundary layer and free troposphere over Sacramento, California, USA, during two aircraft flights over and downwind of this urban area during spring of 2009. The flask samples were analyzed for Δ14CO2 and CO2 to determine the recently added CO2ff mole fraction. A suite of greenhouse and other trace gases, including hydrocarbons and halocarbons, were measured in the same samples. Strong correlations were observed between CO2ff and numerous trace gases associated with urban emissions. From these correlations we estimate emission ratios between CO2ff and these species, and compare these with bottom-up inventory-derived estimates. Recent county level inventory estimates for carbon monoxide (CO and benzene from the California Air Resources Board CEPAM database are in good agreement with our measured emission ratios, whereas older emissions inventories appear to overestimate emissions of these gases by a factor of two. For most other trace species, there are substantial differences (200–500% between our measured emission ratios and those derived from available emission inventories. For the first flight, we combine in situ CO measurements with the measured CO:CO2ff emission ratio of 14 ± 2 ppbCO/ppmCO2 to derive an estimate of CO2ff mole fraction throughout this flight, and also estimate the biospheric CO2 mixing ratio (CO2bio from the difference of total and fossil CO2. The resulting CO2bio varies dramatically from up to 8 ± 2 ppm in the urban plume to −6 ± 1 ppm in the surrounding boundary layer air. Finally, we use the in situ estimates of CO

  19. `People on the move and goods on the go` behavioral factors driving carbon-dioxide emissions for travel and freight in OECD countries

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L. [Lawrence Berkeley Laboratory (United States)

    1996-12-01

    Concern has been expressed in many government and private studies over the cost of externalitites from transportation, which include safety, air pollution, noise, competition for urban space, balance of payments associated with oil imports, and risks from importing oil. If the individual (s) benefiting at the time faced those costs, the travel (or shipment) behind the externality might not take place, or technology would be applied to reduce the extent of the problem. For large trucks and busses, the costs (per vehicle-km) are considerably higher. Expressed as per unit of travel (passenger kilometers) or per unit of freight, i.e., taking into account the utilization of the vehicle, the specific cost change because of economics of scale. Transportation is a valuable part of our economy, but it is no free lunch. Emissions of CO{sub 2} or carbon from road transport are also on government agendas is industrialized countries. Not surprisingly, CO{sub 2} emissions from travel and freight have increased in most industrialized countries faster than population, albeit less rapidly than GDP. This paper reviews some of the factors driving that increase. Whatever the `real` external costs of each mode, all studies suggest two important findings: First, these costs are sometimes comparable to, or higher than, direct fuel costs per kilometer at the margin; Second, the value attached to the externality for carbon emissions tends to be low compared to those associated with other problems. Hence this suggests that CO{sub 2} by itself may not `felt` as a strong stimulus for change, but that changes to deal with the other problems may affect traffic, and therefore CO{sub 2} emissions, profoundly. (EG) 51 refs.

  20. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  1. Carbon emissions control strategies

    International Nuclear Information System (INIS)

    This study was undertaken to address a fundamental issue: the cost of slowing climate change. Experts in eight nations were asked to evaluate, using the best economic models available, the prospects for reducing fossil fuel-based carbon emissions in their respective nations. The nations selected as case studies include: the Soviet Union, Poland, the United States, Japan, Hungary, France, the United Kingdom, and Canada. As important contributors to the greenhouse effect, these industrialized nations must find ways to substantially reduce their emissions. This is especially critical given that developing nations' emissions are expected to rise in the coming decades in the search for economic development. Ten papers have been processed separately for inclusion in the appropriate data bases

  2. Policy applications of a highly resolved spatial and temporal onroad carbon dioxide emissions data product for the U.S.: Analyses and their implications for mitigation

    Science.gov (United States)

    Mendoza Lebrun, Daniel

    of CO2 emissions at a highly resolved level. Such a study would improve fossil fuel flux products by enhancing measurement accuracy and prompt location-specific mitigation policy. The carbon cycle science and policymaking communities are both poised to benefit greatly from the development of a highly resolved spatiotemporal emissions product.

  3. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010

    OpenAIRE

    Lu, Z.; Q. Zhang; D. G. Streets

    2011-01-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996–2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission ...

  4. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    International Nuclear Information System (INIS)

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur

  5. Enhanced photocatalytic activity of titanium dioxide by nut shell carbon

    Energy Technology Data Exchange (ETDEWEB)

    Shi Xiaoliang, E-mail: sxl@whut.edu.cn [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Wang Sheng; Dong Xuebin [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Zhang Qiaoxin [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2009-08-15

    Nut shell carbon (NSC)-nanotitanium dioxide (TiO{sub 2}) composites were prepared by sol-gel method. Photocatalytic activity on degradation of dye Rhodamine B was studied. X-ray diffraction, field emission scanning electron microscopy, Brunauer-Emmett-Teller surface area, pore size distribution, ultraviolet-vis light absorption spectrum, and photoluminescence spectrum were carried out to characterize the composite catalyst. The results indicated that the photocatalytic activity of NSC-nano-TiO{sub 2} composites was much higher than P25 (Degussa). NSC could greatly absorb the organic substance and oxygen of solution because of its large surface area.

  6. Interaction of carbon dioxide with Cu overlayers on Pt(111)

    DEFF Research Database (Denmark)

    Schumacher, N.; Andersson, Klas Jerker; Grabow, L.C.;

    2008-01-01

    Experimental and theoretical studies on the interaction of carbon dioxide with pseudomorphic and rough copper layers deposited on a platinum (111) single crystal are reported. Evidence for carbon dioxide dissociation and carbonate formation is presented and the relevance to methanol synthesis is...

  7. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    Institute of Scientific and Technical Information of China (English)

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  8. Environmental cables may provide electricity without carbon dioxide

    International Nuclear Information System (INIS)

    It is asserted in this article that a large-scale development of cables between Norway and the Continent may have such large environmental advantages that it will greatly affect the future energy and environmental policy in Norway. Preliminary figures show that by interaction of Norwegian hydropower and European thermal power the reduction in CO2 emission may amount to more than 6 million tonnes per year. This corresponds to Norway's Kyoto commitment. It is not always realized that when the thermal power stations must continuously adjust production in step with consumption then the efficiency is strongly reduced. The fuel consumption rises and so does the emission of carbon dioxide per kWh. Hydropower plants can easily take these load variations, and then the thermal power stations will be able to run more evenly which strongly increases efficiency and cuts the CO2 emissions to the environment

  9. Supercritical carbon dioxide: a solvent like no other

    Directory of Open Access Journals (Sweden)

    Jocelyn Peach

    2014-08-01

    Full Text Available Supercritical carbon dioxide (scCO2 could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs. Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity.

  10. Supercritical carbon dioxide: a solvent like no other

    OpenAIRE

    Jocelyn Peach; Julian Eastoe

    2014-01-01

    Supercritical carbon dioxide (scCO2) could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs). Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and at...

  11. Carbon dioxide kinetics and capnography during critical care

    OpenAIRE

    Anderson, Cynthia T; Breen, Peter H

    2000-01-01

    Greater understanding of the pathophysiology of carbon dioxide kinetics during steady and nonsteady state should improve, we believe, clinical care during intensive care treatment. Capnography and the measurement of end-tidal partial pressure of carbon dioxide (PETCO2) will gradually be augmented by relatively new measurement methodology, including the volume of carbon dioxide exhaled per breath (VCO2,br) and average alveolar expired PCO2 (PA̅E̅CO2). Future directions include the study of oxy...

  12. Designed amyloid fibers as materials for selective carbon dioxide capture

    OpenAIRE

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2013-01-01

    New and improved materials capable of binding carbon dioxide are essential to addressing the global threat of accelerating climate change. The presently used industrial methods for carbon dioxide capture have severe drawbacks, including toxicity and energy inefficiency. Newer porous materials are so far less effective in water, invariably a component of combustion gases. Here, we present a material for carbon dioxide capture. This material, amyloid fibers in powdered form, selectively capture...

  13. Elevated pressure of carbon dioxide affects growth of thermophilic Petrotoga sp.

    Science.gov (United States)

    Rakoczy, Jana; Gniese, Claudia; Schippers, Axel; Schlömann, Michael; Krüger, Martin

    2014-05-01

    Carbon capture and storage (CCS) is considered a promising new technology which reduces carbon dioxide emissions into the atmosphere and thereby decelerates global warming. During CCS, carbon dioxide is captured from emission sources (e.g. fossil fuel power plants or other industries), pressurised, and finally stored in deep geological formations, such as former gas or oil reservoirs as well as saline aquifers. However, with CCS being a very young technology, there are a number of unknown factors that need to be investigated before declaring CCS as being safe. Our research investigates the effect of high carbon dioxide concentrations and pressures on an indigenous microorganism that colonises a potential storage site. Growth experiments were conducted using the thermophilic thiosulphate-reducing bacterium Petrotoga sp., isolated from formation water of the gas reservoir Schneeren (Lower Saxony, Germany), situated in the Northern German Plain. Growth (OD600) was monitored over one growth cycle (10 days) at different carbon dioxide concentrations (50%, 100%, and 150% in the gas phase), and was compared to control cultures grown with 20% carbon dioxide. An additional growth experiment was performed over a period of 145 days with repeated subcultivation steps in order to detect long-term effects of carbon dioxide. Cultivation over 10 days at 50% and 100% carbon dioxide slightly reduced cell growth. In contrast, long-term cultivation at 150% carbon dioxide reduced cell growth and finally led to cell death. This suggested a more pronounced effect of carbon dioxide at prolonged cultivation and stresses the need for a closer consideration of long-term effects. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a sterilising effect on cells. This effect was not observed in control cultures

  14. Six-fold Coordinated Carbon Dioxide VI

    Energy Technology Data Exchange (ETDEWEB)

    Iota, V; Yoo, C; Klepeis, J; Jenei, Z

    2006-03-01

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent while silicon dioxide (SiO{sub 2}) is a covalent solid, and represents one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of a new extended-solid phase of carbon dioxide (CO{sub 2}): a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50GPa at 530-650K. Together with the previously reported CO{sub 2}-V and a-carbonia, this new extended phase indicates a fundamental similarity between CO{sub 2}--a prototypical molecular solid, and SiO{sub 2}--one of Earth's fundamental building blocks. The phase diagram suggests a limited stability domain for molecular CO{sub 2}-I, and proposes that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III, and IV. The crystal structure of phase VI suggests strong disorder along the caxis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  15. The Megacities Carbon Project: measuring urban carbon emissions

    Science.gov (United States)

    Duren, R. M.; Kort, E. A.; Miller, C. E.

    2012-12-01

    Carbon emissions from cities represent the single largest human contribution to climate change. Robust verification of emission changes due to growth or stabilization policies requires that we establish measurement baselines today and begin monitoring representative megacities immediately. An observing system designed to monitor the localized enhancements ("urban domes") of carbon dioxide and methane associated with cities must include a tiered set of surface, airborne, and satellite sensors and a framework for integrating top-down (atmospheric) and bottom-up (activity) data. We present a vision, strategy, requirements, and roadmap for an international effort to assess directly the carbon emission trends of the world's megacities. We describe a new coordinated pilot project for the megacities of Los Angeles and Paris that leverages and extends established measurement infrastructure in those cities and techniques being developed in methodological studies of smaller cities.

  16. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M;

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically...... insignificant. Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  17. [Determination of carbon dioxide released from soil at different humidities].

    Science.gov (United States)

    Imshenetskiĭ, A A; Murzakov, B G

    1978-01-01

    The detection of soil microorganisms by their evolution of carbon dioxide does not always correlate with the number of microorganisms and the rate of biochemical processes in soil. New microbial populations appear in the incubation chamber as the concentration of carbon dioxide increases; this results in an increase in the activity of such processes as photosynthesis, chemosynthesis and heterotrophic assimilation of carbon dioxide. Life detection on other planets by determining carbon dioxide evolved from the ground may lead to erroneous conclusions on the presence of microorganism in the ground. PMID:745559

  18. Carbon Dioxide Mitigation by Microalgal Photosynthesis

    International Nuclear Information System (INIS)

    Algal growth studies of Chlorella strains were conducted in a batch mode with bench type experiments. Carbon dioxide fixation rates of the following green microalgae were determined: Chlorella sp. H84, Chlorella sp. A2, Chlorella sorokiniana UTEX 1230, Chlorella vulgaris, and Chlorella pyrenoidosa. C. vulgaris, among other strains of microalgae, showed the highest growth rate (1.17 optical density/5 days). Cultivating conditions for C. vulgaris that produced the highest growth rate were at concentrations of 243 μg CO2/mL, 10 mM ammonia, and 1 mM phosphate, with an initial pH range of 7-8

  19. Carbon dioxide capture and geological storage

    OpenAIRE

    2013-01-01

    Sustainable Carbon dioxide Capture and Storage, or CCS, can be achieved using geological means, an approach that differs in many ways from CO2 capture and storage in vegetation. Firstly, it differs because this latter approach enables CO2 to be stored only temporarily – for less than one year in annual plants or for several centuries in tree phytomass. Secondly, CO2 capture is associated with bioconversion of the sun’s energy which is then stored in biochemical form in the phytomass. As the t...

  20. Carbon dioxide detection in adult Odonata.

    Science.gov (United States)

    Piersanti, Silvana; Frati, Francesca; Rebora, Manuela; Salerno, Gianandrea

    2016-04-01

    The present paper shows, by means of single-cell recordings, responses of antennal sensory neurons of the damselfly Ischnura elegans when stimulated by air streams at different CO2 concentrations. Unlike most insects, but similarly to termites, centipedes and ticks, Odonata possess sensory neurons strongly inhibited by CO2, with the magnitude of the off-response depending upon the CO2 concentration. The Odonata antennal sensory neurons responding to CO2 are also sensitive to airborne odors; in particular, the impulse frequency is increased by isoamylamine and decreased by heptanoic and pentanoic acid. Further behavioral investigations are necessary to assign a biological role to carbon dioxide detection in Odonata. PMID:26831359