WorldWideScience

Sample records for carbon chemically modified

  1. Chemically modified carbon fibers and their applications

    International Nuclear Information System (INIS)

    Ermolenko, I.N.; Lyubliner, I.P.; Gulko, N.V.

    1990-01-01

    This book gives a comprehensive review about chemically modified carbon fibers (e.g. by incorporation of other elements) and is structured as follows: 1. Types of carbon fibers, 2. Structure of carbon fibers, 3. Properties of carbon fibers, 4. The cellulose carbonization process, 5. Formation of element-carbon fiber materials, 6. Surface modification of carbon fibers, and 7. Applications of carbon fibers (e.g. adsorbents, catalysts, constituents of composites). (MM)

  2. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process

    Directory of Open Access Journals (Sweden)

    Longsheng Lu

    2017-03-01

    Full Text Available Carbon fiber microelectrode (CFME has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs, denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF monofilaments grafted with CNTs (simplified as CNTs/CFs were fabricated in two key steps: (i nickel electroless plating, followed by (ii chemical vapor deposition (CVD. Second, a single CNTs/CF monofilament was selected and encapsulated into a CNTs/CFME with a simple packaging method. The morphologies of as-prepared CNTs/CFs were characterized by scanning electron microscopy. The electrochemical properties of CNTs/CFMEs were measured in potassium ferrocyanide solution (K4Fe(CN6, by using a cyclic voltammetry (CV and a chronoamperometry method. Compared with a bare CFME, a CNTs/CFME showed better CV curves with a higher distinguishable redox peak and response current; the higher the CNT content was, the better the CV curves were. Because the as-grown CNTs significantly enhanced the effective electrode area of CNTs/CFME, the contact area between the electrode and reactant was enlarged, further increasing the electrocatalytic active site density. Furthermore, the modified microelectrode displayed almost the same electrochemical behavior after 104 days, exhibiting remarkable stability and outstanding reproducibility.

  3. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    International Nuclear Information System (INIS)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M.A.; Nistal, A.; Rubio, J.

    2016-01-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO_3/H_2SO_4 reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  4. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Uicab, O. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Yazdani-Pedram, M. [Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, S. Livingstone 1007, Independencia, Santiago (Chile); Toro, P. [Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Beauchef 850, Santiago (Chile); Gamboa, F. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso, 97310 Mérida, Yucatán (Mexico); Mazo, M.A.; Nistal, A.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain)

    2016-11-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO{sub 3}/H{sub 2}SO{sub 4} reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  5. Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth

    Science.gov (United States)

    Hu, Hui; Ni, Yingchun; Montana, Vedrana; Haddon, Robert C.; Parpura, Vladimir

    2009-01-01

    We report the use of chemically modified carbon nanotubes as a substrate for cultured neurons. The morphological features of neurons that directly reflect their potential capability in synaptic transmission are characterized. The chemical properties of carbon nanotubes are systematically varied by attaching different functional groups that confer known characteristics to the substrate. By manipulating the charge carried by functionalized carbon nanotubes we are able to control the outgrowth and branching pattern of neuronal processes. PMID:21394241

  6. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH.

    Science.gov (United States)

    Pérez, Briza; Del Valle, Manel; Alegret, Salvador; Merkoçi, Arben

    2007-12-15

    Carbon materials (CMs), such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), and carbon microparticles (CMPs) are used as doping materials for electrochemical sensors. The efficiency of these materials (either before or after acidic treatments) while being used as electrocatalysts in electrochemical sensors is discussed for beta-nicotinamide adenine dinucleotide (NADH) detection using cyclic voltammetry (CV). The sensitivity of the electrodes (glassy carbon (GC) and gold (Au)) modified with both treated and untreated materials have been deeply studied. The response efficiencies of the GC and Au electrodes modified with CNF and CMP, using dimethylformamide (DMF) as dispersing agent are significantly different due to the peculiar physical and chemical characteristics of each doping material. Several differences between the electrocatalytic activities of CMs modified electrodes upon NADH oxidation have been observed. The CNF film promotes better the electron transfer of NADH minimizing the oxidation potential at +0.352 V. Moreover higher currents for the NADH oxidation peak have been observed for these electrodes. The shown differences in the electrochemical reactivities of CNF and CMP modified electrodes should be with interest for future applications in biosensors.

  7. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes.

    Science.gov (United States)

    Cheng, Jun; Zhang, Meng; Wu, Gai; Wang, Xin; Zhou, Junhu; Cen, Kefa

    2014-06-17

    The photoelectrocatalytic (PEC) reduction of CO2 into high-value chemicals is beneficial in alleviating global warming and advancing a low-carbon economy. In this work, Pt-modified reduced graphene oxide (Pt-RGO) and Pt-modified TiO2 nanotubes (Pt-TNT) were combined as cathode and photoanode catalysts, respectively, to form a PEC reactor for converting CO2 into valuable chemicals. XRD, XPS, TEM, AFM, and SEM were employed to characterize the microstructures of the Pt-RGO and Pt-TNT catalysts. Reduction products, such as C2H5OH and CH3COOH, were obtained from CO2 under band gap illumination and biased voltage. A combined liquid product generation rate (CH3OH, C2H5OH, HCOOH, and CH3COOH) of approximately 600 nmol/(h·cm(2)) was observed. Carbon atom conversion rate reached 1,130 nmol/(h·cm(2)), which were much higher than those achieved using Pt-modified carbon nanotubes and platinum carbon as cathode catalysts.

  8. Osteoblast cell response to surface-modified carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Faming; Weidmann, Arne; Nebe, J. Barbara; Burkel, Eberhard

    2012-01-01

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  9. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaomin [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Zhu, Bo, E-mail: zhubo@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Cai, Xun, E-mail: caixunzh@sdu.edu.cn [School of Computer Science and Technology, Shandong University, Jinan 250101 (China); Liu, Jianjun [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Qiao, Kun [Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Yu, Junwei [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2017-04-15

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  10. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    International Nuclear Information System (INIS)

    Yuan, Xiaomin; Zhu, Bo; Cai, Xun; Liu, Jianjun; Qiao, Kun; Yu, Junwei

    2017-01-01

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  11. Nitrogen-modified carbon nanostructures derived from metal-organic frameworks as high performance anodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Shen, Cai; Zhao, Chongchong; Xin, Fengxia; Cao, Can; Han, Wei-Qiang

    2015-01-01

    Here, we report preparation of nitrogen-modified nanostructure carbons through carbonization of Cu-based metal organic nanofibers at 700 °C under argon gas atmosphere. After removal of copper through chemical treatment with acids, pure N-modified nanostructure carbon with a nitrogen content of 8.62 wt% is obtained. When use as anodes for lithium-ion battery, the nanostructure carbon electrode has a discharge capacity of 853.1 mAh g −1 measured at a current of 500 mA g −1 after 800 cycles.

  12. Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling

    International Nuclear Information System (INIS)

    Najam-ul-Haq, M.; Rainer, M.; Schwarzenauer, T.; Huck, C.W.; Bonn, G.K.

    2006-01-01

    Biomarkers play a potential role in the early detection and diagnosis of a disease. Our aim is to derivatize carbon nanotubes for exploration of the differences in human body fluids e.g. serum, through matrix assisted laser desorption ionisation/time of flight mass spectrometry (MALDI/TOF-MS) that can be related to disease and subsequently to be employed in the biomarker discovery process. This application we termed as the material enhanced laser desorption ionisation (MELDI). The versatility of this technology is meant to increase the amount of information from biological samples on the protein level, which will have a major impact to serve the cause of diagnostic markers. Serum peptides and proteins are immobilized on derivatized carbon nanotubes, which function as binding material. Protein-loaded suspension is placed on a stainless steel target or buckypaper on aluminum target for direct analysis with MALDI-MS. The elution method to wash the bound proteins from carbon nanotubes was employed to compare with the direct analysis procedure. Elution is carried out by MALDI matrix solution to get them out of the entangled nanotubes, which are difficult to desorb by laser due to the complex nanotube structures. The advantage of these optimized methods compared to the conventional screening methods is the improved sensitivity, selectivity and the short analysis time without prior albumin and immunoglobulin depletion. The comparison of similarly modified diamond and carbon nanotubes exhibit differences in their nature to bind the proteins out of serum due to the differences in their physical characteristics. Infrared (IR) spectroscopy provided hint for the presence of tertiary amine peak at the crucial chemical step of iminodiacetic acid addition to acid chloride functionality on carbon nanotubes. Atomic absorption spectroscopy (AAS) was utilized to quantitatively measure the copper capacity of these derivatized carbon nanotubes which is a direct measure of capacity of

  13. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode

    International Nuclear Information System (INIS)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-01-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb) = dI p,a (Meb) / d[Meb] = 19.65 μA μM −1 ), a low detection limit (LOD (Meb) = 19 nM) and a wide linear dynamic range (0.06–3 μM) was resulted for the voltammetric quantification of Meb. - Highlights: • Electrochemical oxidation mechanism of Meb was investigated. • A carbon nanostructure modified electrode was developed for the determination of Meb. • The modified electrode surface was characterized by SEM and impedance studies. • This study provides an effective chemically modified electrode with satisfactory repeatability and reproducibility

  14. Removal of Chlorinated Chemicals in H2 Feedstock Using Modified Activated Carbon

    Directory of Open Access Journals (Sweden)

    Prapaporn Luekittisup

    2015-01-01

    Full Text Available Activated carbon (GAC was impregnated by sodium and used as adsorbent to remove chlorinated hydrocarbon (CHC gases contaminated in H2 feedstock. The adsorption was carried out in a continuous packed-bed column under the weight hourly space velocity range of 0.8–1.0 hr−1. The adsorption capacity was evaluated via the breakthrough curves. This modified GAC potentially adsorbed HCl and VCM of 0.0681 gHCl/gadsorbent and 0.0026 gVCM/gadsorbent, respectively. It showed higher adsorption capacity than SiO2 and Al2O3 balls for both organic and inorganic CHCs removal. In addition, the kinetic adsorption of chlorinated hydrocarbons on modified GAC fit well with Yoon-Nelson model.

  15. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  16. Highly sensitive simultaneous electrochemical determination of trace amounts of Pb(II) and Cd(II) using a carbon paste electrode modified with multi-walled carbon nanotubes and a newly synthesized Schiff base

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Ghaedi, Hamed; Madrakian, Tayyebeh; Rezaeivala, Majid

    2013-01-01

    Highlights: ► A new chemically modified carbon paste electrode was constructed and used. ► A new Schiff base and multi-walled carbon nanotube was used as modifiers. ► The electrochemical properties of the modified electrode were studied. ► The electrode was used to the simultaneous determination of Pb 2+ and Cd 2+ . -- Abstract: A new chemically modified electrode was constructed for rapid, simple, accurate, selective and highly sensitive simultaneous determination of lead and cadmium using square wave anodic stripping voltammetry (SWASV). The electrode was prepared by incorporation of new synthesized Schiff base and multi-walled carbon nanotubes (MWCNT) in carbon paste electrode. The limit of detection was found to be 0.25 ng mL −1 and 0.74 ng mL −1 for Pb 2+ and Cd 2+ , respectively. The stability constants of the complexes of the ligand with several metal cations in ethanol medium were determined. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective. The proposed chemically modified electrode was used for the determination of lead and cadmium in several foodstuffs and water samples

  17. Removal of copper ions from water using chemical modified multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Y.J.; Yang, J.

    2014-01-01

    Multi-walled carbon nanotubes (CNTs) were modified by oxidation with sodium hypochlorite (NaClO) solutions and were employed as adsorbents to study the adsorption characteristics of copper ions from water. The results show that adsorption capacity of CNTs treated by NaClO solution can be greatly enhanced. The adsorption capacity of Cu2+ on as received and modified CNTs increased with the increase of pH and CNTs mass, but it decreased with the temperature. Experimental data also indicated that the adsorption process could achieve equilibrium within 40 min. Both Langmuir and Freundlich isotherm models fitted the experimental data very well. According to the Langmuir model the maximum copper ions adsorption uptake onto modified CNTs was determined as 40.00 mg/g. Our results suggest that CNTs have profound potential application in environmental protection. (author)

  18. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien; Appaix, Florence; De Waard, Michel

    2011-01-01

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  19. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien [CEA, LETI-Minatec, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Appaix, Florence; De Waard, Michel, E-mail: fabien.sauter@cea.fr, E-mail: michel.dewaard@ujf-grenoble.fr [Inserm U836, Grenoble Institute of Neuroscience, Site Sante la Tronche, Batiment Edmond J Safra, Chemin Fortune Ferrini, BP170, 38042 Grenoble Cedex 09 (France)

    2011-05-13

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  20. Thermal desorption of deuterium from modified carbon nanotubes and its correlation to the microstructure

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; van den Berg, A.H.J.; Smithers, Mark A.; Smithers, M.A.

    2006-01-01

    The process of deuterium desorption from single-wall carbon nanotubes (SWNTs) modified by atomic (D) and molecular (D2) deuterium treatment was investigated in an ultrahigh vacuum environment using thermal desorption mass spectroscopy (TDMS). Microstructural and chemical analyses of SWNT material,

  1. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Jana Vlachova

    2015-01-01

    Full Text Available Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH. It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  2. A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode.

    Science.gov (United States)

    Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-22

    Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  3. Carbon dioxide as chemical feedstock

    National Research Council Canada - National Science Library

    Aresta, M

    2010-01-01

    ... Dioxide as an Inert Solvent for Chemical Syntheses 15 Alessandro Galia and Giuseppe Filardo Introduction 15 Dense Carbon Dioxide as Solvent Medium for Chemical Processes 15 Enzymatic Catalysis in Dense Carbon Dioxide 18 Other Reactions in Dense Carbon Dioxide 19 Polymer Synthesis in Supercritical Carbon Dioxide 20 Chain Polymerizations: Synt...

  4. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    International Nuclear Information System (INIS)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C.

    2016-01-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  5. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  6. Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.

    Science.gov (United States)

    Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J

    2010-02-02

    Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.

  7. Adsorption of a reactive dye on chemically modified activated carbons--influence of pH.

    Science.gov (United States)

    Orfão, J J M; Silva, A I M; Pereira, J C V; Barata, S A; Fonseca, I M; Faria, P C C; Pereira, M F R

    2006-04-15

    The surface chemistry of a commercial activated carbon with a slightly basic nature was modified by appropriate treatments in order to obtain two additional samples, respectively with acidic and basic properties, without changing its textural parameters significantly. Different techniques (N2 adsorption at 77 K, temperature programmed desorption, and determination of acidity, basicity, and pH at the point of zero charge) were used to characterize the adsorbents. Kinetic and equilibrium adsorption data of a selected textile reactive dye (Rifafix Red 3BN, C.I. reactive red 241) on the mentioned materials were obtained at the pH values of 2, 7, and 12. The kinetic curves are fitted using the second-order model. The respective rate constants seem to diminish progressively with the initial concentration for the more diluted solutions tested, reaching a constant value at higher concentrations, which depends on the experimental system under consideration (adsorbent and pH). In general, the Langmuir model provides the best fit for the equilibrium data. The different uptakes obtained are discussed in relation to the surface chemical properties of the adsorbents. It is shown that the adsorption of the reactive (anionic) dye on the basic sample (prepared by thermal treatment under H2 flow at 700 degrees C) is favored. This conclusion is explained on the basis of the dispersive and electrostatic interactions involved. Moreover, it is also shown that the optimal adsorption condition for all the activated carbons tested corresponds to solution pH values not higher than the pH(pzc) of the adsorbents, which may be interpreted by taking into account the electrostatic forces present.

  8. Magnetic and Electrical Properties of Nitrogen-Doped Multiwall Carbon Nanotubes Fabricated by a Modified Chemical Vapor Deposition Method

    Directory of Open Access Journals (Sweden)

    María Luisa García-Betancourt

    2015-01-01

    Full Text Available Chemical vapor deposition (CVD is a preferential method to fabricate carbon nanotubes (CNTs. Several changes have been proposed to obtain improved CNTs. In this work we have fabricated nitrogen-doped multiwall carbon nanotubes (N-MWCNTs by means of a CVD which has been slightly modified. Such modification consists in changing the content of the by-product trap. Instead of acetone, we have half-filled the trap with an aqueous solution of NaCl (0–26.82 wt.%. Scanning electron microscope (SEM characterization showed morphological changes depending upon concentration of NaCl included in the trap. Using high resolution transmission electron microscopy several shape changes on the catalyst nanoparticles were also observed. According to Raman spectroscopy results N-MWCNTs fabricated using pure distillate water exhibit better crystallinity. Resistivity measurements performed on different samples by physical properties measurement Evercool system (PPMS showed metallic to semiconducting temperature dependent transitions when high content of NaCl is used. Results of magnetic properties show a ferromagnetic response to static magnetic fields and the coercive fields were very similar for all the studied cases. However, saturation magnetization is decreased if aqueous solution of NaCl is used in the trap.

  9. The Method of Coating Fe₃O₄ with Carbon Nanoparticles to Modify Biological Properties of Oxide Measured in Vitro.

    Science.gov (United States)

    Niemiec, Tomasz; Dudek, Mariusz; Dziekan, Natalia; Jaworski, Sławomir; Przewozik, Aleksandra; Soszka, Emilia; Koperkiewicz, Anna; Koczoń, Piotr

    2017-07-01

    The coating of nanoparticles on materials for medical application [e.g., the coating of Fe3O4 nanopowder (IONP) with a carbon nanolayer] serves to protect and modify the selected biological, physical, and chemical properties of the coated material. Increases in chemical stability, changes in biocompatibility, and a modified surface structure are examples of the effects caused by the formation of carbon coatings. In the current study, Fe3O4 nanoparticles were coated with a carbon nanolayer (IONP@C) in a plasmochemical reactor (using radio-frequency plasma-enhanced chemical vapor deposition methods) under various experimental conditions. Based on data from X-ray diffraction, Raman, and IR spectroscopy, the best processing parameters were determined in order to produce a carbon coating that would not change the structure of the IONP. The materials with the best cover, i.e., a uniform carbon nanolayer, were used in cytotoxic tests to investigate their biological properties using the human HepG2 hepatocarcinoma cell line and chicken embryo red blood cells as an in vitro model. The obtained results proved the low cytotoxicity of Fe3O4 micropowder and IONP in contrast to IONP@C, which reduced cell viability, increased hemolysis, and generally was more toxic than bare Fe3O4.

  10. Mechanical properties of chemically modified portuguese pinewood

    OpenAIRE

    Lopes, Duarte B; Mai, Carsten; Militz, Holger

    2014-01-01

    To turn wood into a construction material with enhanced properties, many methods of chemical modification have been developed in the last few decades. In this work, mechanical properties of pine wood were chemically modified, compared and evaluated. Maritime pine wood (Pinus pinaster) was modified with four chemical processes: 1,3-dimethylol-4,5- dihydroxyethyleneurea, N-methylol melamine formaldehyde, tetra-alkoxysilane and wax. The following mechanical properties were assessed experiment...

  11. EDTA modified glassy carbon electrode: Preparation and characterization

    International Nuclear Information System (INIS)

    Ustuendag, Zafer; Solak, Ali Osman

    2009-01-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){2-[bis(carboxymethyl)amino]-ethyl}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb 2+ ions was investigated if this electrode could be used as a metal sensor.

  12. A sensitive electrochemical sensor for paracetamole based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles

    International Nuclear Information System (INIS)

    Liu, Xue; Wang, Ling-Ling; Wang, Ya-Ya; Zhang, Xiao-Yan

    2014-01-01

    We describe an electrochemical sensor for paracetamole that is based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. The functionalized nanospheres were prepared by a chemical route and characterized by scanning electron microscopy. The well-dispersed gold nanoparticles were anchored on the dopamine nanosphere via a chemical reduction of the gold precursor. The stepwise fabrication of the modified electrode and its electrochemical response to paracetamole were evaluated using electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode displayed improved electrocatalytic activity towards paracetamole, a lower oxidation potential (371 mV), and a larger peak current when compared to a bare electrode or other modified electrodes. The kinetic parameters governing the electro-oxidation of paracetamole were studied, and the analytical conditions were optimized. The peak current was linearly related to the concentration of paracetamole in 0.8–400 μM range, and the detection limit was 50 nM (at an SNR of 3). The method was successfully applied to the determination of paracetamole in spiked human urine samples and gave recoveries between 95.3 and 105.2 %. (author)

  13. Determination of specific capacitance of modified candlenut shell based carbon as electrode material for supercapacitor

    Science.gov (United States)

    Zakir, M.; Budi, P.; Raya, I.; Karim, A.; Wulandari, R.; Sobrido, A. B. J.

    2018-03-01

    Surface modification of candlenut shell carbon (CSC) using three chemicals: nitric acid (HNO3), hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) has been carried out. Activation of CSC was performed using H3PO4 solution with different ratio between CSC and activator. Carbon surface area was determined by methylene blue adsorption method. Surface characterization was performed using FTIR spectroscopy and Boehm titration method. Specific capacitance of electrode prepared from CSAC (candlenuts shell activated carbon) materials was quantified by Cyclic Voltammetry (CV) measurement. The surface area before and after activation are 105,127 m2/g, 112,488 m2/g, 124,190 m2/g, and 135,167 m2/g, respectively. Surface modification of CSAC showed the improvement in the chemical functionality of CSAC surface. Analyses using FTIR spectroscopy and Boehm titration showed that modifications with HNO3, H2SO4 and H2O2 on the surface of the CSAC increased the number of oxygen functional groups. As a consequence, the specific capacitance of CSAC modified with 65% HNO3 attained the highest value (127 μF/g). There is an incredible increase by a factor of 298% from electrode which was constructed with un-modified CSAC material. This increase correlates to the largest number of oxygen functional groups of CSAC modified with nitric acid (HNO3).

  14. EDTA modified glassy carbon electrode: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ustuendag, Zafer [Dumlupinar University, Faculty of Arts and Sciences, Department of Chemistry, Kuetahya (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, Degol Street, Tandogan, 06100 Ankara (Turkey)], E-mail: osolak@science.ankara.edu.tr

    2009-11-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){l_brace}2-[bis(carboxymethyl)amino]-ethyl{r_brace}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb{sup 2+} ions was investigated if this electrode could be used as a metal sensor.

  15. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  16. CVD carbon powders modified by ball milling

    Directory of Open Access Journals (Sweden)

    Kazmierczak Tomasz

    2015-09-01

    Full Text Available Carbon powders produced using a plasma assisted chemical vapor deposition (CVD methods are an interesting subject of research. One of the most interesting methods of synthesizing these powders is using radio frequency plasma. This method, originally used in deposition of carbon films containing different sp2/sp3 ratios, also makes possible to produce carbon structures in the form of powder. Results of research related to the mechanical modification of these powders have been presented. The powders were modified using a planetary ball mill with varying parameters, such as milling speed, time, ball/powder mass ratio and additional liquids. Changes in morphology and particle sizes were measured using scanning electron microscopy and dynamic light scattering. Phase composition was analyzed using Raman spectroscopy. The influence of individual parameters on the modification outcome was estimated using statistical method. The research proved that the size of obtained powders is mostly influenced by the milling speed and the amount of balls. Powders tend to form conglomerates sized up to hundreds of micrometers. Additionally, it is possible to obtain nanopowders with the size around 100 nm. Furthermore, application of additional liquid, i.e. water in the process reduces the graphitization of the powder, which takes place during dry milling.

  17. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naderi, Leila [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran (Iran, Islamic Republic of); Institute for advanced technology, Shahid Rajaee Teacher Training University, Lavizan, Tehran, 16788 (Iran, Islamic Republic of)

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001–2.0 μM and 2.0–10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. - Highlights: • The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the modified electrode with different carbon nanomaterials by Linear sweep voltammetry. • Two linear dynamic ranges and a low detection limit were obtained. • The modified electrode was applied for the detection of Fu in pharmaceutical and clinical preparations.

  18. Single-wall carbon nanotube chemical attachment at platinum electrodes

    International Nuclear Information System (INIS)

    Rosario-Castro, Belinda I.; Contes-de-Jesus, Enid J.; Lebron-Colon, Marisabel; Meador, Michael A.; Scibioh, M. Aulice; Cabrera, Carlos R.

    2010-01-01

    Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). A physico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700 nm to 1.5 μm, and 1.0-3.0 μm, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array.

  19. Electrochemical determination of mesotrione at organoclay modified glassy carbon electrodes.

    Science.gov (United States)

    Kamga Wagheu, Josephine; Forano, Claude; Besse-Hoggan, Pascale; Tonle, Ignas K; Ngameni, Emmanuel; Mousty, Christine

    2013-01-15

    A natural Cameroonian smectite-type clay (SaNa) was exchanged with cationic surfactants, namely cetyltrimethylammonium (CTA) and didodecyldimethyl ammonium (DDA) modifying its physico-chemical properties. The resulting organoclays that have higher adsorption capacity for mesotrione than the pristine SaNa clay, have been used as modifiers of glassy carbon electrode for the electrochemical detection of this herbicide by square wave voltammetry. The stripping performances of SaNa, SaCTA and SaDDA modified electrodes were therefore evaluated and the experimental parameters were optimized. SaDDA gives the best results in deoxygenated acetate buffer solution (pH 6.0) after 2 min accumulation under open circuit conditions. Under optimal conditions, the reduction current is proportional to mesotrione concentration in the range from 0.25 to 2.5 μM with a detection limit of 0.26 μM. The fabricated electrode was also applied for the commercial formulation CALLISTO, used in European maize market. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  1. Epoxy modified bitumen : Chemical hardening and its interpretation

    NARCIS (Netherlands)

    Apostolidis, P.; Pipintakos, G.; van de Ven, M.F.C.; Liu, X.; Erkens, Sandra; Scarpas, Athanasios

    2018-01-01

    Epoxy modified bitumen (EMB) is a promising technology for long lasting paving materials ensuring higher resistance to rutting, oxygen- and moisture-induced damage. In this paper, an analysis of the chemical reactions that take place during the chemical hardening process (curing) of epoxy modified

  2. Removal of Chromium (III from Water by Using Modified and Nonmodified Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Muataz Ali Atieh

    2010-01-01

    Full Text Available This study was carried out to evaluate the environmental application of modified and nonmodified carbon nanotubes through the experiment removal of chromium trivalent (III from water. The aim was to find the optimal condition of the chromium (III removal from water under different treatment conditions of pH, adsorbent dosage, contact time and agitation speed. Multi wall carbon nanotubes (MW-CNTs were characterized by field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM. The diameter of the carbon nanotubes produced varied from 20–40 nm with average diameter of 24 nm and 10 micrometer in length. Adsorption isotherms were used to model the adsorption behavior and to calculate the adsorption capacity of the absorbents. The results showed that, 18% of chromium (III removal was achieved using modified carbon nanotubes (M-CNTs at pH 7, 150 rpm, and 2 hours for a dosage of 150 mg of CNTs. The removal of Cr (III is mainly attributed to the affinity of chromium (III to the physical and chemical properties of the CNTs. The adsorption isotherms plots were well fitted with experimental data.

  3. Analysis of the mechanical behavior of single wall carbon nanotubes by a modified molecular structural mechanics model incorporating an advanced chemical force field

    Science.gov (United States)

    Eberhardt, Oliver; Wallmersperger, Thomas

    2018-03-01

    The outstanding properties of carbon nanotubes (CNTs) keep attracting the attention of researchers from different fields. CNTs are promising candidates for applications e.g. in lightweight construction but also in electronics, medicine and many more. The basis for the realization of the manifold applications is a detailed knowledge of the material properties of the carbon nanotubes. In particular for applications in lightweight constructions or in composites, the knowledge of the mechanical behavior of the CNTs is of vital interest. Hence, a lot of effort is put into the experimental and theoretical determination of the mechanical material properties of CNTs. Due to their small size, special techniques have to be applied. In this research, a modified molecular structural mechanics model for the numerical determination of the mechanical behavior of carbon nanotubes is presented. It uses an advanced approach for the geometrical representation of the CNT structure while the covalent bonds in the CNTs are represented by beam elements. Furthermore, the model is specifically designed to overcome major drawbacks in existing molecular structural mechanics models. This includes energetic consistency with the underlying chemical force field. The model is developed further to enable the application of a more advanced chemical force field representation. The developed model is able to predict, inter alia, the lateral and radial stiffness properties of the CNTs. The results for the lateral stiffness are given and discussed in order to emphasize the progress made with the presented approach.

  4. Chemical equilibrium of glycerol carbonate synthesis from glycerol

    International Nuclear Information System (INIS)

    Li Jiabo; Wang Tao

    2011-01-01

    Research highlights: → Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for the preparation of glycerol carbonate from glycerol. → The reaction of glycerol and carbon dioxide is thermodynamically limited. → High temperature and low pressure is favourable to the reaction of glycerol and urea. → Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol and dimethyl carbonate. → For the reaction of glycerol and ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. - Abstract: In this paper, the chemical equilibrium for the glycerol carbonate preparation from glycerol was investigated. The chemical equilibrium constants were calculated for the reactions to produce glycerol carbonate from glycerol. The theoretical calculation was compared with the experimental results for the transesterification of glycerol with dimethyl carbonate. Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for producing glycerol carbonate from glycerol according to the equilibrium constant. Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol with dimethyl carbonate. For the reaction of glycerol with ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. The reaction of glycerol with carbon dioxide is thermodynamically limited. High temperature and low pressure are favourable to the reaction of glycerol and urea.

  5. Chemical reactions confined within carbon nanotubes.

    Science.gov (United States)

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  6. Adsorption Efficiency of Iron Modified Carbons for Removal of Pb(II Ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Salmani

    2016-06-01

    Full Text Available Abstract Introduction: The Lead causes severe damage to several systems of the body, especially to bony tissues. Until now, several low-cost biosorbents have been studied for removal of heavy metal ions from aqueous solutions. In the present study, carbonized pomegranate peels modified with Fe2+ and Fe3+ ions and then it was investigated for removal of Pb(II ions from aqueous solution. Materials and methods: the washed granola of pomegranate peel was separately socked with FeCl3 and FeCl2 solutions for 24 h. Then, the granules were carbonized at 400 ºC for 3 h in a programmable furnace in the atmosphere of nitrogen. The adsorption experiments were carried out for two types of iron-modified carbons by batch adsorption using one variable at a time procedures. Results: The optimum conditions were found as contact time 90 min, initial concentration 50 mg/l, and adsorbent dose, 1.00 g/100 ml solution. Maximum removal efficiency was calculated as 84% and 89% for Fe3+ and Fe2+ impregnated pomegranate peel carbons respectively. Conclusion: The iron treatment pomegranate peel carbons modified their surfaces for adsorption of heavy metals. The results showed that chemical modification of the low-cost adsorbents originating from agricultural waste has stood out for metal removal capabilities.

  7. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    Science.gov (United States)

    Chu,Benjamin; Hsiao, Benjamin S.

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  8. Gemini Surfactant-Modified Activated Carbon for Remediation of Hexavalent Chromium from Water

    Directory of Open Access Journals (Sweden)

    Yingying Zhou

    2018-01-01

    Full Text Available Gemini surfactants, with double hydrophilic and hydrophobic groups, offer potentially orders of magnitude greater surface activity compared to similar single unit molecules. A cationic Gemini surfactant (Propyl didodecyldimethylammonium Bromide, PDDDAB and a conventional cationic surfactant (Dodecyltrimethylammonium Bromide, DTAB were used to pre-treat and generate activated carbon. The removal efficiency of the surfactant-modified activated carbon through adsorption of chromium(VI was investigated under controlled laboratory conditions. Fourier-transform infrared spectroscopy (FT-IR and scanning electron microscopy (SEM were used to investigate the surface changes of surfactant-modified activated carbon. The effect of important parameters such as adsorbent dosage, pH, ionic strength and contact time were also investigated. The chromium(VI was adsorbed more significantly on the Gemini surfactant-modified activated carbon than on the conventional surfactant-modified activated carbon. The correlation coefficients show the data best fit the Freundlich model, which confirms the monolayer adsorption of chromium(VI onto Gemini surfactant-modified activated carbon. From this assessment, the surfactant-modified (especially Gemini surfactant-modified activated carbon in this study showed promise for practical applications to treat water pollution.

  9. Towards electron transport measurements in chemically modified graphene: effect of a solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Arnhild; Ensslin, Klaus [Solid State Physics Laboratory, ETH Zurich (Switzerland); Koehler, Fabian M; Stark, Wendelin J, E-mail: arnhildj@phys.ethz.ch, E-mail: fabian.koehler@chem.ethz.ch [Institute for Chemical and Bioengineering, ETH Zurich (Switzerland)

    2010-12-15

    The chemical functionalization of graphene modifies the local electron density of carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on electron transport. The latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that the solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport, which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look at the influence of solvents used for chemical modification in order to understand their influence.

  10. Towards electron transport measurements in chemically modified graphene: effect of a solvent

    International Nuclear Information System (INIS)

    Jacobsen, Arnhild; Ensslin, Klaus; Koehler, Fabian M; Stark, Wendelin J

    2010-01-01

    The chemical functionalization of graphene modifies the local electron density of carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on electron transport. The latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that the solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport, which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look at the influence of solvents used for chemical modification in order to understand their influence.

  11. Effects of potassium hydroxide post-treatments on the field-emission properties of thermal chemical vapor deposited carbon nanotubes.

    Science.gov (United States)

    Lee, Li-Ying; Lee, Shih-Fong; Chang, Yung-Ping; Hsiao, Wei-Shao

    2011-12-01

    In this study, a simple potassium hydroxide treatment was applied to functionalize the surface and to modify the structure of multi-walled carbon nanotubes grown on silicon substrates by thermal chemical vapor deposition. Scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive spectrometry were employed to investigate the mechanism causing the modified field-emission properties of carbon nanotubes. From our experimental data, the emitted currents of carbon nanotubes after potassium hydroxide treatment are enhanced by more than one order of magnitude compared with those of untreated carbon nanotubes. The emitted current density of carbon nanotubes increases from 0.44 mA/cm2 to 7.92 mA/cm2 after 30 minutes KOH treatment. This technique provides a simple, economical, and effective way to enhance the field-emission properties of carbon nanotubes.

  12. Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode.

    Science.gov (United States)

    Nguyen, Hoai Viet; Richtera, Lukas; Moulick, Amitava; Xhaxhiu, Kledi; Kudr, Jiri; Cernei, Natalia; Polanska, Hana; Heger, Zbynek; Masarik, Michal; Kopel, Pavel; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-04-25

    In this study, enhancement of the electrochemical signals of etoposide (ETO) measured by differential pulse voltammetry (DPV) by modifying a glassy carbon electrode (GCE) with carbon quantum dots (CQDs) is demonstrated. In comparison with a bare GCE, the modified GCE exhibited a higher sensitivity towards electrochemical detection of ETO. The lowest limit of detection was observed to be 5 nM ETO. Furthermore, scanning electron microscopy (SEM), fluorescence microscopy (FM), and electrochemical impedance spectroscopy (EIS) were employed for the further study of the working electrode surface after the modification with CQDs. Finally, the GCE modified with CQDs under optimized conditions was used to analyse real samples of ETO in the prostate cancer cell line PC3. After different incubation times (1, 3, 6, 9, 12, 18 and 24 h), these samples were then prepared prior to electrochemical detection by the GCE modified with CQDs. High performance liquid chromatography with an electrochemical detection method was employed to verify the results from the GCE modified with CQDs.

  13. Copper nanoparticle modified carbon electrode for determination of dopamine

    International Nuclear Information System (INIS)

    Oztekin, Yasemin; Tok, Mutahire; Bilici, Esra; Mikoliunaite, Lina; Yazicigil, Zafer; Ramanaviciene, Almira; Ramanavicius, Arunas

    2012-01-01

    This paper reports the synthesis and characterization of copper nanoparticles (CuNPs) and application of copper nanoparticle-modified glassy carbon electrode for the electrochemical determination of dopamine. Electrochemical measurements were performed using differently modified glassy carbon (GC) electrodes. Bare, oxidized before modification and copper nanoparticle-modified glassy carbon electrodes (bare-GC, ox-GC and CuNP/GC electrodes, respectively) were characterized by cyclic voltammetry and electrochemical impedance spectroscopy in the presence of redox probes. Atomic force microscopy was used for the visualization of electrode surfaces. The CuNP/GC electrode was found to be suitable for the selective determination of dopamine even in the presence of ascorbic acid, uric acid, and p-acetamidophenol. The observed linear range of CuNP/GC for dopamine was from 0.1 nM to 1.0 μM while the detection limit was estimated to be 50 pM. It was demonstrated that here reported glassy carbon electrode modified by copper nanoparticles is suitable for the determination of dopamine in real samples such as human blood serum.

  14. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone.

    Science.gov (United States)

    Shahrokhian, Saeed; Naderi, Leila; Ghalkhani, Masoumeh

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001-2.0 μM and 2.0-10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. mwnts composite film modified glassy carbon electrode

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A poly p-aminosalicylic acid (Poly(p-ASA)) and multiwall carbon nanotubes. (MWCNTs) composite modified glassy carbon (GC) electrode was constructed by casting the MWNTs on the GC electrode surface followed by electropolymerization of the p-ASA on the MWCNTs/GCE. The electrochemical behaviours ...

  16. Chemical composition and digestibility of Trifolium exposed to elevated ozone and carbon dioxide in a free-air (FACE) fumigation system

    Science.gov (United States)

    R.B. Muntifering; A.H. Chappelka; J.C. Lin; D.F. Karnosky; G.L. Somers

    2006-01-01

    Tropospheric ozone (O3) and carbon dioxide (CO2) are significant drivers of plant growth and chemical composition. We hypothesized that exposure to elevated concentrations of O3 and CO2, singly and in combination, would modify the chemical composition of Trifolium...

  17. Sensitive determination of buformin using poly-aminobenzoic acid modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Gui-Ying Jin

    2012-12-01

    Full Text Available Glassy carbon electrode, which is used to electrochemically determine the content of buformin, is modified with an electropolymerized film of p-aminobenzoic acid in pH 7.0 acetate buffer solution (ABS. The polymer showed an excellent electrocatalytic activity for the reduction of buformin. In pH 7.0 ABS, the cathodic peak current increased linearly over three concentration intervals of buformin, and the detection limit (S/N=3 was 2.0×10−9 g/mL. The method was successfully applied to directly determine buformin in tablets with standard addition recoveries of 95.8–102.5%. The proposed method is simple, cheap and highly efficient. Keywords: Chemically modified electrode, Aminobenzoic acid, Buformin

  18. Electrochemical detection of phenolic estrogenic compounds at clay modified carbon paste electrode

    Science.gov (United States)

    Belkamssa, N.; Ouattara, L.; Kawachi, A.; Tsujimura, M.; Isoda, H.; Chtaini, A.; Ksibi, M.

    2015-04-01

    A simple and sensitive electroanalytical method was developed to determine the Endocrine Disrupting chemical 4-tert-octylphenol on clay modified carbon paste electrode (Clay/CPE). The electrochemical response of the proposed electrode was studied by means of cyclic and square wave voltammetry. It has found that the oxidation of 4-tert-octylphenol on the clay/CPE displayed a well-defined oxidation peak. Under these optimal conditions, a linear relation between concentrations of 4-tert-octylphenol current response was obtained over range of 7.26×10-6 to 3.87×10-7 with a detection and quantification limit of 9.2×10-7 M and 3.06×10-6 M, respectively. The correlation coefficient is 0.9963. The modified electrode showed suitable sensitivity, high stability and an accurate detection of 4-tert-octylphenol. The modified electrode also relevant suitable selectivity for various phenolic estrogenic compounds.

  19. Chemical composition of silica-based biocidal modifier

    Directory of Open Access Journals (Sweden)

    Grishina Anna Nikolaevna

    2016-11-01

    Full Text Available Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

  20. Sulphate Removal from Water by Carbon Residue from Biomass Gasification: Effect of Chemical Modification Methods on Sulphate Removal Efficiency

    Directory of Open Access Journals (Sweden)

    Hanna Runtti

    2016-02-01

    Full Text Available Sulphate removal from mine water is a problem because traditional chemical precipitation does not remove all sulphates. In addition, it creates lime sediment as a secondary waste. Therefore, an inexpensive and environmental-friendly sulphate removal method is needed in addition to precipitation. In this study, carbon residues from a wood gasification process were repurposed as precursors to a suitable sorbent for SO42- ion removal. The raw material was modified using ZnCl2, BaCl2, CaCl2, FeCl3, or FeCl2. Carbon residues modified with FeCl3 were selected for further consideration because the removal efficiency toward sulphate was the highest. Batch sorption experiments were performed to evaluate the effects of the initial pH, initial SO42- ion concentration, and contact time on sulphate removal. The removal of SO42- ions using Fe-modified carbon residue was notably higher compared with unmodified carbon residue and commercially available activated carbon. The sorption data exhibited pseudo-second-order kinetics. The isotherm analysis indicated that the sorption data of Fe-modified carbon residues can be represented by the bi-Langmuir isotherm model.

  1. Biosorption of uranium by chemically modified Rhodotorula glutinis

    International Nuclear Information System (INIS)

    Bai Jing; Yao Huijun; Fan Fangli; Lin Maosheng; Zhang Lina; Ding Huajie; Lei Fuan; Wu Xiaolei; Li, Xiaofei; Guo Junsheng; Qin Zhi

    2010-01-01

    The present paper reports the biosorption of uranium onto chemically modified yeast cells, Rhodotorula glutinis, in order to study the role played by various functional groups in the cell wall. Esterification of the carboxyl groups and methylation of the amino groups present in the cells were carried out by methanol and formaldehyde treatment, respectively. The uranium sorption capacity increased 31% for the methanol-treated biomass and 11% for the formaldehyde-treated biomass at an initial uranium concentration of 140 mg/L. The enhancement of uranium sorption capacity was investigated by Fourier transform infrared (FTIR) spectroscopy analysis, with amino and carboxyl groups were determined to be the important functional groups involved in uranium binding. The biosorption isotherms of uranium onto the raw and chemically modified biomass were also investigated with varying uranium concentrations. Langmuir and Freundlich models were well able to explain the sorption equilibrium data with satisfactory correlation coefficients higher than 0.9. -- Research highlights: → Uranium biosorption on to chemically modified yeast cells → Cells before and after uranium sorption were investigate by FTIR spectroscopy → Amino and carboxyl groups were important functional groups involved in uranium binding → The sorption equilibrium date of raw and chemically modified biomass fitted well with Langmuir and Freundlich models

  2. Biosorption of uranium by chemically modified Rhodotorula glutinis

    Energy Technology Data Exchange (ETDEWEB)

    Bai Jing, E-mail: baijing@impcas.ac.c [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yao Huijun [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Fan Fangli; Lin Maosheng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang Lina; Ding Huajie; Lei Fuan; Wu Xiaolei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Xiaofei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Guo Junsheng; Qin Zhi [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-11-15

    The present paper reports the biosorption of uranium onto chemically modified yeast cells, Rhodotorula glutinis, in order to study the role played by various functional groups in the cell wall. Esterification of the carboxyl groups and methylation of the amino groups present in the cells were carried out by methanol and formaldehyde treatment, respectively. The uranium sorption capacity increased 31% for the methanol-treated biomass and 11% for the formaldehyde-treated biomass at an initial uranium concentration of 140 mg/L. The enhancement of uranium sorption capacity was investigated by Fourier transform infrared (FTIR) spectroscopy analysis, with amino and carboxyl groups were determined to be the important functional groups involved in uranium binding. The biosorption isotherms of uranium onto the raw and chemically modified biomass were also investigated with varying uranium concentrations. Langmuir and Freundlich models were well able to explain the sorption equilibrium data with satisfactory correlation coefficients higher than 0.9. -- Research highlights: {yields} Uranium biosorption on to chemically modified yeast cells {yields} Cells before and after uranium sorption were investigate by FTIR spectroscopy {yields} Amino and carboxyl groups were important functional groups involved in uranium binding {yields} The sorption equilibrium date of raw and chemically modified biomass fitted well with Langmuir and Freundlich models

  3. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.

    Science.gov (United States)

    Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng

    2017-11-23

    Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.

  4. The use of chemical modified chitosan with succinic anhydride in the methylene blue adsorption

    International Nuclear Information System (INIS)

    Lima, Ilauro S.; Ribeiro, Emerson S.; Airoldi, Claudio

    2006-01-01

    The adsorption capacity of a-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically in L class and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methylene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 ± 0.02 kJ mol-1 with an equilibrium constant of 7350 ± 10 and for the carbon/dye interaction this constant gave 5951 ± 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 ± 0.4 and -21.5 ± 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable. (author)

  5. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments.

    Science.gov (United States)

    Wu, Weidong; Li, Jianhong; Niazi, Nabeel Khan; Müller, Karin; Chu, Yingchao; Zhang, Lingling; Yuan, Guodong; Lu, Kouping; Song, Zhaoliang; Wang, Hailong

    2016-11-01

    Biochar has received widespread attention as an eco-friendly and efficient material for immobilization of toxic heavy metals in aqueous environments. In the present study, three types of coconut fiber-derived biochars were obtained by pyrolyzing at three temperatures, i.e., 300, 500, and 700 °C. In addition, nine types of biochars were prepared by chemical modification with ammonia, hydrogen peroxide, and nitric acid, respectively, which were used to investigate changes in physico-chemical properties by inter alia, Fourier transformation infrared spectrophotometry (FTIR), scanning electron microscope (SEM), and BET specific surface area analysis. Batch sorption experiments were carried out to determine the sorption capacity of the biochars for lead (Pb) in aqueous solutions. Results showed that the cation exchange capacity of biochar pyrolyzed at 300 °C and modified with nitric acid increased threefold compared to the control. Loosely corrugated carbon surface and uneven carbon surface of the biochar pyrolyzed at 300 °C were produced during ammonia and nitric acid modifications. Removal rate of Pb by the coconut biochar pyrolyzed at 300 °C and modified with ammonia was increased from 71.8 to 99.6 % compared to the untreated biochar in aqueous solutions containing 100 mg L -1 Pb. However, chemical modification did not enhance adsorption of Pb of the biochars pyrolyzed at higher temperatures (e.g., 500 or 700 °C), indicating that resistance of biochars to chemical treatment increased with pyrolysis temperature.

  6. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    Science.gov (United States)

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  7. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  8. Poly(amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals.

    Science.gov (United States)

    Yang, Gongjun; Wang, Cunxiao; Zhang, Rui; Wang, Chenying; Qu, Qishu; Hu, Xiaoya

    2008-06-01

    Amidosulfonic acid was electropolymerized by cyclic voltammetry onto the surface of glassy carbon electrode (GCE) to fabricate the chemically modified electrode, which showed high stability, good selectivity and reproducibility for determination of isoniazid. The modified electrode showed an excellent electrocatalytical effect on the oxidation of isoniazid. Under the optimum conditions, there was a good linear relationship between anodic peak current and isoniazid concentration in the range of 5.0 x 10(-8)- 1.0 x 10(-5) M, and a detection limit of 1.0 x 10(-8) M (S/N = 3) was obtained after 120 s at the accumulation potential of - 0.2 V (vs. SCE). This developed method had been applied to the direct determination of isoniazid in injection and tablet samples with satisfactory results.

  9. Electrochemical investigations of Pu(IV)/Pu(III) redox reaction using graphene modified glassy carbon electrodes and a comparison to the performance of SWCNTs modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Gupta, Ruma; Gamare, Jayashree; Sharma, Manoj K.; Kamat, J.V.

    2016-01-01

    Highlights: • First report of aqueous electrochemistry of Plutonium on graphene modified electrode. • Graphene is best electrocatalytic material for Pu(IV)/Pu(III) redox couple among the reported modifiers viz. reduced graphene oxide (rGO) and SWCNT’s. • The electrochemical reversibility of Pu(IV)/Pu(III) redox couple improves significantly on graphene modified electrode compared to previously reported rGO & SWCNTs modified electrodes • Donnan interaction between plutonium species and graphene surface offers a possibility for designing a highly sensitive sensor for plutonium • Graphene modified electrode shows higher sensitivity for the determination of plutonium compared to glassy carbon and single walled carbon nanotube modified electrode - Abstract: The work reported in this paper demonstrates for the first time that graphene modified glassy carbon electrode (Gr/GC) show remarkable electrocatalysis towards Pu(IV)/Pu(III) redox reaction and the results were compared with that of single-walled carbon nanotubes modified GC (SWCNTs/GC) and glassy carbon (GC) electrodes. Graphene catalyzes the exchange of current of the Pu(IV)/Pu(III) couple by reducing both the anodic and cathodic overpotentials. The Gr/GC electrode shows higher peak currents (i p ) and smaller peak potential separation (ΔE p ) values than the SWCNTs/GC and GC electrodes. The heterogeneous electron transfer rate constants (k s ), charge transfer coefficients (α) and the diffusion coefficients (D) involved in the electrocatalytic redox reaction were determined. Our observations show that graphene is best electrocatalytic material among both the SWCNTs and GC to study Pu(IV)/Pu(III) redox reaction.

  10. Chemical Oceanography and the Marine Carbon Cycle

    Science.gov (United States)

    Emerson, Steven; Hedges, John

    The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.

  11. Electrochemical detection of carbidopa using a ferrocene-modified carbon nanotube paste electrode

    Directory of Open Access Journals (Sweden)

    FATEMEH KARIMI

    2009-12-01

    Full Text Available A chemically modified carbon paste electrode (MCPE containing ferrocene (FC and carbon nanotubes (CNT was constructed. The electrochemical behavior and stability of the MCPE were investigated by cyclic voltammetry. The electrocatalytic activity of the MCPE was investigated and it showed good characteristics for the oxidation of carbidopa (CD in phosphate buffer solution (PBS. A linear concentration range of 5 to 600 μM CD, with a detection limit of 3.6±0.17 μM CD, was obtained. The diffusion coefficient of CD and the transfer coefficient ( were also determined. The MCPE showed good reproducibility, remarkable long-term stability and especially good surface renewability by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for the determination of CD in real samples, such as urine samples.

  12. Glassy carbon electrodes modified with hemin-carbon nanomaterial films for amperometric H2O2 and NO2− detection

    International Nuclear Information System (INIS)

    Valentini, Federica; Cristofanelli, Lara; Carbone, Marilena; Palleschi, Giuseppe

    2012-01-01

    In this work a new chemical sensor for the H 2 O 2 and nitrite amperometric detection was assembled, using a glassy carbon (GC) bare electrode modified by two different nanocomposite materials. The nanocomposite films were prepared by casting a functionalised carbon nanofiber (CNF-COOH) and single-walled carbon nanotubes (SWCNT-OH, for comparison) on the glassy carbon electrode surface; then an iron(III) protoporphyrin IX (Fe(III)P) was adsorbed on these modified surfaces. A morphological investigation of the nanocomposite layers was also carried out, using the Scanning Electron Microscopy (SEM). The electrochemical characterization, performed optimising several electro-analytical parameters (such as different medium, pH, temperature, scan rate, and potential window), demonstrated that the direct electrochemistry of the Fe(III)P/Fe(II)P redox couple involves 1e − /1H + process. A kinetic evaluation of the electron-transfer reaction mechanism was also carried out, demonstrating that the heterogeneous electron transfer rate constant resulted higher at CNF/hemin/GC biosensor than that evaluated at SWCNT/hemin/GC modified electrode. Finally, the electrocatalytic activity toward the H 2 O 2 reduction was also demonstrated for both sensors but better results were observed working at CNF/hemin/GC modified electrode, especially in terms of an extended linearity (ranging from 50 to 1000 μM), a lower detection limit (L.O.D. = 3σ) of 2.0 × 10 −6 M, a higher sensitivity of 2.2 × 10 −3 A M −1 cm −2 , a fast response time (9 s), a good reproducibility (RSD% −3 to 2.5 × 10 −1 M), a lower detection limit (L.O.D. = 3σ) of 3.18 × 10 −4 M, a higher sensitivity of 1.2 × 10 −2 A M −1 cm −2 , a fast response time of 10 s, a good reproducibility (RSD% <1, n = 3) and finally a good operational stability.

  13. Calculation of Multiphase Chemical Equilibrium by the Modified RAND Method

    DEFF Research Database (Denmark)

    Tsanas, Christos; Stenby, Erling Halfdan; Yan, Wei

    2017-01-01

    method. The modified RAND extends the classical RAND method from single-phase chemical reaction equilibrium of ideal systems to multiphase chemical equilibrium of nonideal systems. All components in all phases are treated in the same manner and the system Gibbs energy can be used to monitor convergence....... This is the first time that modified RAND was applied to multiphase chemical equilibrium systems. The combined algorithm was tested using nine examples covering vapor–liquid (VLE) and vapor–liquid–liquid equilibria (VLLE) of ideal and nonideal reaction systems. Successive substitution provided good initial......A robust and efficient algorithm for simultaneous chemical and phase equilibrium calculations is proposed. It combines two individual nonstoichiometric solving procedures: a nested-loop method with successive substitution for the first steps and final convergence with the second-order modified RAND...

  14. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin.

    Science.gov (United States)

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Carbon materials modified by plasma treatment as electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lota, Grzegorz; Frackowiak, Elzbieta [Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Tyczkowski, Jacek; Kapica, Ryszard [Technical University of Lodz, Faculty of Process and Environmental Engineering, Division of Molecular Engineering, Wolczanska 213, 90-924 Lodz (Poland); Lota, Katarzyna [Institute of Non-Ferrous Metals Branch in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznan (Poland)

    2010-11-15

    The carbon material was modified by RF plasma with various reactive gases: O{sub 2}, Ar and CO{sub 2}. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application. (author)

  16. Half-metallicity and electronic structures for carbon-doped group III-nitrides: Calculated with a modified Becke-Johnson potential

    Science.gov (United States)

    Fan, Shuai-wei; Wang, Ri-gao; Xu, Pemg

    2016-09-01

    The electronic structures and magnetism for carbon-doped group III-nitrides are investigated by utilizing the first principle method with the modified Becke-Johnson potential. Calculations show that carbon substituting cations (anions) would induce the group III-nitrides to be paramagnetic metals (half-metallic ferromagnets). Single carbon substituting nitrogen could produce 1.00μB magnetic moment. Electronic structures indicate that the carriers-mediated double-exchange interaction plays a crucial role in forming the ferromagnetism. Based on the mean-field theory, the Curie temperature for carbon-doped group III-nitrides would be above the room temperature. Negative chemical pair interactions imply that carbon dopants tend to form clustering distribution in group III-nitrides. The nitrogen vacancy would make the carbon-doped group III-nitrides lose the half-metallic ferromagnetism.

  17. Influence of citric acid as chemical modifier for lead determination in dietary calcium supplement samples by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Cezar Paz de Mattos, Julio; Medeiros Nunes, Adriane; Figueiredo Martins, Ayrton; Luiz Dressler, Valderi; Marlon de Moraes Flores, Erico

    2005-01-01

    Citric acid was used as a chemical modifier for Pb determination by graphite furnace atomic absorption spectrometry in dietary supplement samples (calcium carbonate, dolomite and oyster shell samples) and its efficiency was compared to the use of palladium. Pyrolysis and atomization curves were established without use of chemical modifier, with the addition of 20, 100 and 200 μg of citric acid, and with 3 μg of palladium. The citric acid modifier made possible the interference-free Pb determination in the presence of high concentrations of Ca and Mg nitrates. Acid sample digestion involving closed vessels (microwave-assisted and conventional heating) and acid attack using polypropylene vessels at room temperature were compared. All digestion procedures presented similar results for calcium carbonate and dolomite samples. However, for oyster shell samples accurate results were obtained only with the use of closed vessel systems. Analyte addition and matrix-matched standards were used for calibration. The characteristic mass for Pb using citric acid and palladium were 16 and 25 pg, respectively. The relative standard deviation (RSD) was always less than 5% when citric acid was used. The relative and absolute limits of detection were 0.02 μg g -1 and 8 pg with citric acid and 0.1 μg g -1 and 44 pg with the Pd modifier, respectively (n = 10, 3σ). The recovery of Pb in spiked calcium supplement samples (10 μg l -1 ) was between 98% and 105%. With the use of 100 μg of citric acid as chemical modifier, problems such as high background absorption and high RSD values were minimized in comparison to the addition of 3 μg of palladium

  18. The use of simultaneous chemical precipitation in modified activated ...

    African Journals Online (AJOL)

    The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal: Part 6: Modelling of simultaneous chemical-biological P removal - review of existing models.

  19. Artificial Specific Binders Directly Recovered from Chemically Modified Nucleic Acid Libraries

    Directory of Open Access Journals (Sweden)

    Yuuya Kasahara

    2012-01-01

    Full Text Available Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

  20. Artificial specific binders directly recovered from chemically modified nucleic acid libraries.

    Science.gov (United States)

    Kasahara, Yuuya; Kuwahara, Masayasu

    2012-01-01

    Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

  1. Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation

    International Nuclear Information System (INIS)

    Zhou, Lei; Zhou, Minghua; Hu, Zhongxin; Bi, Zhaoheng; Serrano, K. Groenen

    2014-01-01

    Highlights: • Chemically modified graphite felt was prepared using ethanol and hydrazine hydrate as reagents. • Carbon nanoparticles with functional groups were deposited on the surface after modification. • The electrochemical activity for ORR and H 2 O 2 generation on the modified electrode was improved. • The cathode modification effictively improved the EF performance for pollutant degradation. - Abstract: A simple method with low-cost chemical reagents ethanol and hydrazine hydrate was used to modify graphite felt as the cathode for electro-Fenton (EF) application, using p-nitrophenol (p-Np) as the model pollutant. Characterized by scanning electron microscope, contact angle, Raman spectrum and X-ray photoelectron spectroscopy, the morphology and surface physicochemical properties after modification were observed considerably changed. After modification, some nanoparticles and oxygen and nitrogen-containing functional groups appeared on the cathode surface, which greatly improved the surface hydrophilic property and the electrocatalytic activity for oxygen reduction reaction. The effects led to the hydrogen peroxide accumulation on the modified cathode markedly increased to 175.8 mg L −1 , while that on the unmodified one was only 67.5 mg L −1 . p-Np of initial 50 mg L −1 could be completely removed by EF using the modified cathode, and the mineralization ratio reached 51.4%, more than 2 times of the pristine one. After 10 cycles, the mineralization ratio of the modified cathode was still above 45%, suggesting that the modification method can provide an effective approach to improve EF performance, and thus benefits to promote its environmental applications

  2. Chemically modified graphene based supercapacitors for flexible and miniature devices

    Science.gov (United States)

    Ghosh, Debasis; Kim, Sang Ouk

    2015-09-01

    Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.

  3. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  4. Voltammetric sensor for electrochemical determination of the floral origin of honey based on a zinc oxide nanoparticle modified carbon paste electrode

    Directory of Open Access Journals (Sweden)

    K. Tiwari

    2018-04-01

    Full Text Available A new methodology based on cyclic voltammetry using a chemically modified electrode has been developed for the discrimination of the floral origin of honey. This method involves an electronic tongue with an electrochemical sensor made from a carbon paste (CPs electrode where zinc oxide (ZnO nanoparticles are used as an electroactive binder material. The bare CPs electrode is evaluated for comparison. The electrochemical response of the modified electrode in 50 samples of five different floral types of honey has been analysed by the cyclic voltammetric technique. The voltammograms of each floral variety of honey reflect the redox properties of the ZnO nanoparticles present inside the carbon paste matrix and are strongly influenced by the nectar source of honey. Thus, each type of honey provides a characteristic signal which is evaluated by using principal component analysis (PCA and an artificial neural network (ANN. The result of a PCA score plot of the transient responses obtained from the modified carbon paste electrode clearly shows discrimination among the different floral types of honey. The ANN model for floral classification of honey shows more than 90 % accuracy. These results indicate that the ZnO nanoparticles modified carbon paste (ZnO Nps modified CPs electrode can be a useful electrode for discrimination of honey samples from different floral origins.

  5. Process for derivatizing carbon nanotubes with diazonium species

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  6. Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes.

    Science.gov (United States)

    Wang, Sheng-Fu; Xu, Qiao

    2007-05-01

    In this paper, some electrochemical parameters of ethamsylate at a multi-walled carbon nanotube modified glassy carbon electrode, such as the charge number, exchange current density, standard heterogeneous rate constant and diffusion coefficient, were measured by cyclic voltammetry, chronoamperometry and chronocoulometry. The modified electrode exhibits good promotion of the electrochemical reaction of ethamsylate and increases the standard heterogeneous rate constant of ethamsylate greatly. The differential pulse voltammetry responses of ethamsylate were linearly dependent on its concentrations in a range from 2.0 x 10(-6) to 6.0 x 10(-5) mol L(-1), with a detection limit of 4.0 x 10(-7) mol L(-1).

  7. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    Science.gov (United States)

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-28

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod.

  8. Chemical activation of gasification carbon residue for phosphate removal

    Science.gov (United States)

    Kilpimaa, Sari; Runtti, Hanna; Lassi, Ulla; Kuokkanen, Toivo

    2012-05-01

    Recycling of waste materials provides an economical and environmentally significant method to reduce the amount of waste. Bioash formed in the gasification process possesses a notable amount of unburned carbon and therefore it can be called a carbon residue. After chemical activation carbon residue could be use to replace activated carbon for example in wastewater purification processes. The effect of chemical activation process variables such as chemical agents and contact time in the chemical activation process were investigated. This study also explored the effectiveness of the chemically activated carbon residue for the removal of phosphate from an aqueous solution. The experimental adsorption study was performed in a batch reactor and the influence of adsorption time, initial phosphate concentration and pH was studied. Due to the carbon residue's low cost and high adsorption capacity, this type of waste has the potential to be utilised for the cost-effective removal of phosphate from wastewaters. Potential adsorbents could be prepared from these carbonaceous by-products and used as an adsorbent for phosphate removal.

  9. Electrochemical oxidation of ascorbic acid mediated by carbon nano tubes/ Li+/ carbon paste modified solid electrode

    International Nuclear Information System (INIS)

    Goh, J.K.; Tan, W.T.

    2008-01-01

    Multi-walled carbon nano tube (MWCNT) was used to modify BPPG electrode because of its unique structure and extraordinary properties. MWCNT modified electrode exhibited obvious enhancing and electro catalyzing effects to the oxidation of ascorbic acid using cyclic voltammetry technique. MWCNT was bonded on BPPG electrode surface using carbon paste with ratio of 30 % (w/ W) carbon paste (binder): 70 % (w/ w) MWCNT. This method of modification has lowered the capacitance background current and enabled lower detection limit of ascorbic acid concentration. The electrical conductivity property of MWCNT modified electrode was further improved with the intercalation with lithium ion and resulted in current enhancement of 2 times on the oxidation current of ascorbic acid. Parameters of pH and temperature showed significant relation to the sensitivity of MWCNT modified electrode. Under the optimized parameters, the calibration curve constructed was linear up from 50 μM to 5 mM with sensitivity of 34.5 mA M -1 . The practical application of MWCNT modified electrode was demonstrated with Vitamin C pill and orange juice. Good reproducibility and recovery of ascorbic acid concentration showed the feasibility of MWCNT modified electrode to be used in the detection of ascorbic acid in aqueous solution. This also proposed MWCNT modified BPPG electrode possessed advantages such as low detection limit, high stability, low cost and simplicity in fabrication. (author)

  10. Glucose oxidase-modified carbon-felt-reactor coupled with peroxidase-modified carbon-felt-detector for amperometric flow determination of glucose

    International Nuclear Information System (INIS)

    Wang Yue; Hasebe, Yasushi

    2012-01-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were covalently immobilized on a porous carbon-felt (CF) by using cyanuric chloride (CC) as a linking reagent. The resulting GOx-modified-CF (GOx-ccCF) was used as column-type enzyme reactor and placed on upstream of the HRP-ccCF-based H 2 O 2 flow-detector to fabricate amperometric flow-biosensor for glucose. Sensor setting conditions and the operational conditions were optimized, and the analytical performance characteristics of the resulting flow-biosensor were evaluated. The chemical modification of the GOx via CC was found to be effective to obtain larger catalytic activity as compared with the physical adsorption. Under the optimized conditions (i.e., volume ratio of the GOx-ccCF-reactor to the HRP-ccCF-detector is 1.0; applied potential is − 0.12 V vs. Ag/AgCl; carrier pH is 6.5; and carrier flow rate is 4.3 ml/min), highly selective and quite reproducible peak current responses toward glucose were obtained: the RSD for 30 consecutive injections of 3 mM glucose was 1.04%, and no serious interferences were observed for fructose, ethanol, uric acid, urea and tartaric acid for the amperometric measurements of glucose. The magnitude of the cathodic peak currents for glucose was linear up to 5 mM (sensitivity, 6.38 ± 0.32 μA/μM) with the limit detection of 9.4 μM (S/N = 3, noise level, 20 nA). The present GOx-ccCF-reactor and HRP-ccCF-detector-coupled flow-glucose biosensor was utilized for the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by the conventional spectrophotometry. - Highlights: ► Glucose oxidase (GOx) and peroxidase (HRP) were modified on carbon-felt. ► GOx-CF reactor and HRP-CF detector-coupled flow glucose biosensor was developed. ► This flow biosensor enabled the determination of glucose in beverages and liquors.

  11. Glucose oxidase-modified carbon-felt-reactor coupled with peroxidase-modified carbon-felt-detector for amperometric flow determination of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue [School of Chemical Engineering, University of Science and Technology LiaoNing, 185 Qianshan Middle Road, High-tech Zone, Anshan, LiaoNing, 114501 (China); Hasebe, Yasushi, E-mail: hasebe@sit.ac.jp [Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293 (Japan)

    2012-04-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were covalently immobilized on a porous carbon-felt (CF) by using cyanuric chloride (CC) as a linking reagent. The resulting GOx-modified-CF (GOx-ccCF) was used as column-type enzyme reactor and placed on upstream of the HRP-ccCF-based H{sub 2}O{sub 2} flow-detector to fabricate amperometric flow-biosensor for glucose. Sensor setting conditions and the operational conditions were optimized, and the analytical performance characteristics of the resulting flow-biosensor were evaluated. The chemical modification of the GOx via CC was found to be effective to obtain larger catalytic activity as compared with the physical adsorption. Under the optimized conditions (i.e., volume ratio of the GOx-ccCF-reactor to the HRP-ccCF-detector is 1.0; applied potential is - 0.12 V vs. Ag/AgCl; carrier pH is 6.5; and carrier flow rate is 4.3 ml/min), highly selective and quite reproducible peak current responses toward glucose were obtained: the RSD for 30 consecutive injections of 3 mM glucose was 1.04%, and no serious interferences were observed for fructose, ethanol, uric acid, urea and tartaric acid for the amperometric measurements of glucose. The magnitude of the cathodic peak currents for glucose was linear up to 5 mM (sensitivity, 6.38 {+-} 0.32 {mu}A/{mu}M) with the limit detection of 9.4 {mu}M (S/N = 3, noise level, 20 nA). The present GOx-ccCF-reactor and HRP-ccCF-detector-coupled flow-glucose biosensor was utilized for the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by the conventional spectrophotometry. - Highlights: Black-Right-Pointing-Pointer Glucose oxidase (GOx) and peroxidase (HRP) were modified on carbon-felt. Black-Right-Pointing-Pointer GOx-CF reactor and HRP-CF detector-coupled flow glucose biosensor was developed. Black-Right-Pointing-Pointer This flow biosensor enabled the determination of glucose in beverages and

  12. Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Bagheri, Hasan; Khoshsafar, Hosein; Saber-Tehrani, Mohammad; Tabatabaee, Masoumeh; Shirzadmehr, Ali

    2012-01-01

    Highlights: ► A new chemically modified carbon paste electrode was constructed and used. ► A new Schiff base and multi-walled carbon nanotube was used as a modifier. ► The electrochemical properties of the modified electrode were studied. ► The electrode was used to the simultaneous determination of Pb 2+ and Hg 2+ . - Abstract: A modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and 3-(4-methoxybenzylideneamino)-2-thioxothiazolodin-4-one as a new synthesized Schiff base was constructed for the simultaneous determination of trace amounts of Hg(II) and Pb(II) by square wave anodic stripping voltammetry. The modified electrode showed an excellent selectivity and stability for Hg(II) and Pb(II) determinations and for accelerated electron transfer between the electrode and the analytes. The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as pH, deposition potential and deposition time were optimized for the purpose of determination of traces of metal ions at pH 3.0. Under optimal conditions the limits of detection, based on three times the background noise, were 9.0 × 10 −4 and 6.0 × 10 −4 μmol L −1 for Hg(II) and Pb(II) with a 90 s preconcentration, respectively. In addition, the modified electrode displayed a good reproducibility and selectivity, making it suitable for the simultaneous determination of Hg(II) and Pb(II) in real samples such as sea water, waste water, tobacco, marine and human teeth samples.

  13. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa

    Energy Technology Data Exchange (ETDEWEB)

    Shoja, Yalda; Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH = 7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol–gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more −NH{sub 2} reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N = 3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility. - Highlights: • Glassy carbon electrode modified by a novel composite in which pPDA as nucleophile is chemically attached to MWCNTs. • The developed biosensor exhibited excellent electrocatalytic activity in electrochemically determination of L-Dopa. • The biosensor showed acceptable sensitivity, reproducibility, detection limit, selectivity and stability. • MWCNT-pPDA provides a good electrical conductivity and large effective surface area for enzyme immobilization.

  14. Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions

    International Nuclear Information System (INIS)

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Wang, Jinbiao; Zhang, Yanping

    2014-01-01

    Highlights: • Activated carbons with different pore structure and surface chemical properties were prepared by modification process. • HgCl 2 as a pollution target to evaluate the adsorption performance. • Influence of pore structure and surface chemical properties of activated carbon on adsorption of mercury was investigated. -- Abstract: Reactivation and chemical modification were used to obtain modified activated carbons with different pore structure and surface chemical properties. The samples were characterized by nitrogen absorption–desorption, Fourier transform infrared spectroscopy and the Bothem method. Using mercury chloride as the target pollutant, the Hg 2+ adsorption ability of samples was investigated. The results show that the Hg 2+ adsorption capacity of samples increased significantly with increases in micropores and acidic functional groups and that the adsorption process was exothermic. Different models and thermodynamic parameters were evaluated to establish the mechanisms. It was concluded that the adsorption occurred through a monolayer mechanism by a two-speed process involving both rapid adsorption and slow adsorption. The adsorption rate was determined by chemical reaction

  15. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Huiying Wang

    2013-11-01

    Full Text Available A versatile strategy for electrochemical determination of glycoalkaloids (GAs was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  16. Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths

    Directory of Open Access Journals (Sweden)

    Hanen Guedidi

    2017-05-01

    Full Text Available This study aims to investigate the performance of an activated carbon cloth for adsorption of ibuprofen. The cloth was oxidized by a NaOCl solution (0.13 mol L−1 or thermally treated under N2 (700 °C for 1 hour. The raw and modified cloths were characterized by N2 adsorption–desorption measurement at 77 K, CO2 adsorption at 273 K, Boehm titrations, pHPZC measurements, X-ray Photoelectron Spectroscopy analysis, and by infrared spectroscopy. The NaOCl treatment increases the acidic sites, mostly creating phenolic and carboxylic groups and decreases both the specific surface area and slightly the micropore volume. However, the thermal treatment at 700 °C under N2 induced a slight increase in the BET specific surface area and yielded to the only increase in the carbonyl group content. Ibuprofen adsorption studies of kinetics and isotherms were carried out at pH = 3 and 7. The adsorption properties were correlated to the cloth porous textures, surface chemistry and pH conditions. The isotherms of adsorption were better reproduced by Langmuir–Freundlich models at 298, 313 and 328 K. The adsorption of ibuprofen on the studied activated carbon cloths at pH 3 was an endothermic process. The pore size distributions of all studied ibuprofen-loaded fabrics were determined by DFT method to investigate the accessible porosity of the adsorbate. Both treatments do not influence the kind of micropores where the adsorption of ibuprofen occurred.

  17. Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations

    Science.gov (United States)

    Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.

    2017-02-01

    In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.

  18. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-01-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L −1 . The lower detection limits were found to be 0.02 μmol L −1 . The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  19. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L{sup −1}. The lower detection limits were found to be 0.02 μmol L{sup −1}. The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  20. Synthesis and characterization of carbon nanofilms for chemical sensing

    Science.gov (United States)

    Kumar, Vivek

    Carbon nanofilms obtained by high temperature graphitization of diamond surface in inert atmospheres or vacuum are modified by treatment in plasma of different precursor gases. At temperatures above 1000 °C, a stable conductive film of thickness between 10 - 100 nm and specific resistivity 10-3-10-4 Ωm, depending upon the heating conditions and the growth atmosphere, is formed on diamond surface. A gray, thin film of high surface resistivity is obtained in high vacuum, while at low vacuum (below 10-4 mbar), a thick black film of low surface resistivity forms. It is observed that the exposure to plasma reduces the surface conductance of carbon nanofilms as result of a partial removal of carbon and the plasma-stimulated amorphization. The rate of the reduction of conductance and hence the etching ability of plasma depends on the type of precursor gas. Hydrogen reveals the strongest etching ability, followed by oxygen and argon, whereas SF6 is ineffective. The carbon nanofilms show significant sensitivity of their electrical conductance to temperature and exposure to the vapors of common organic compounds. The oxygen plasma treated films exhibit selective response to acetone and water vapors. The fast response and recovery of the conductance are the features of the carbon nanofilms. The plasma-treated carbon nanofilm on graphitized diamond surface is discussed as a promising sensing material for development of all-carbon chemical sensors, which may be suitable for biological and medical applications. An alternative approach of fabrication of temperature and chemical sensitive carbon nanofilms on insulating substrates is proposed. The films are obtained by direct deposition of sputtered carbon on highly polished quartz substrates followed by subsequent annealing at temperatures above 400 °C. It is observed that the as-deposited films are essentially amorphous, while the heating induces irreversible structural ordering and gradual conversion of amorphous carbon in

  1. ZnS nanoflakes deposition by modified chemical method

    International Nuclear Information System (INIS)

    Desai, Mangesh A.; Sartale, S. D.

    2014-01-01

    We report deposition of zinc sulfide nanoflakes on glass substrates by modified chemical method. The modified chemical method involves adsorption of zinc–thiourea complex on the substrate and its dissociation in presence of hydroxide ions to release sulfur ions from thiourea which react with zinc ions present in the complex to form zinc sulfide nanoflakes at room temperature. Influence of zinc salt and thiourea concentrations ratios on the morphology of the films was investigated by scanning electron microscope (SEM). The ratio of zinc and thiourea in the zinc–thiourea complex significantly affect the size of the zinc sulfide nanoflakes, especially width and density of the nanoflakes. The X-ray diffraction analysis exhibits polycrystalline nature of the zinc sulfide nanoflakes with hexagonal phase

  2. Removal of 226Ra, Fe3+ and Mn2+ from ground water using modified activated carbon

    International Nuclear Information System (INIS)

    Daifullah, A.A.M.

    2003-01-01

    A locally available biomass material, rice husk, was carbonized and activated in a steam/nitrogen flow by the use of a bench-scale fluidized bed reactor. The virgin carbon prepared from rice husk was further treated chemically using an alkali (e.g.10% NaOH and 10% KOH) in order to change the surface basicity of the carbon or oxidized with 30%H 2 O 2 and 10% HNO 3 in order to introduce different oxygen surface complexes. The modified carbons were characterized by FTIR and elemental analysis and investigated for removing unacceptably high concentrations of 326 Ra from ground water. The results showed that the best removal was obtained by the virgin carbon. The effect of process variables such as: contact time, Ph, carbon mass, sorbent surface modification and cation interference (e.g.iron and manganese) on the removal efficiency by the virgin carbon was studied. The data was fitted to Freundlich adsorption equation. Recommended procedures were adapted for complete removal of 226 Ra, Fe 3+ and Mn 2+ from ground water. Treated water quality remained good and no significant external radiation dose was caused to the residents

  3. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Vikkisk, Merilin; Kruusenberg, Ivar; Joost, Urmas; Shulga, Eugene; Tammeveski, Kaido

    2013-01-01

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O 2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  4. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    Science.gov (United States)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Carbon paste electrode modified with silver thimerosal for the potentiometric flow injection analysis of silver(I)

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Hosny [Chemistry Department, Faculty of Science, Cairo University, Cairo (Egypt)]. E-mail: dr_hosny@yahoo.com

    2005-07-27

    The utility of carbon paste electrode modified with silver ethylmercurythiosalicylate (silver thimerosal) in both static mode and flow injection analysis (FIA) is demonstrated. The electrode was fully characterized in terms of composition, response time, thermal stability, usable pH and ionic strength ranges. It has been shown that diisononyl phthalate (DINP) acts as more suitable solvent mediator for preparation of the electrode, which exhibits linear response range to Ag(I) extending from 5.0 x 10{sup -7} to 1.0 x 10{sup -3} M with detection limit of 2.5 x 10{sup -7} M and Nernstian slope of 59.3 {+-} 1.0 mV/decade. The proposed chemically modified carbon paste electrode shows a very good selectivity for Ag(I) over a wide variety of metal ions and successfully used for the determination of the silver content of silver sulphadiazine (burning cream) and developed radiological films. The electrode was also used as an indicator electrode in the potentiometric titration of thiopental and thimerosal with AgNO{sub 3}.

  6. Chemical analysis of carbonates and carbonate rocks by atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tardon, S

    1981-01-01

    Evaluates methods of determining chemical composition of rocks surrounding black coal seams. Carbonate rock samples were collected in the Ostrava-Karvina coal mines. Sampling methods are described. Determination of the following elements and compounds in carbonate rocks is discussed: calcium, magnesium, iron, manganese, barium, silicon, aluminium, titanium, sodium, potassium, sulfur trioxide, phosphorus pentoxide, water and carbon dioxide. Proportion of compounds insoluble in water in the investigated rocks is also determined. Most of the elements are determined by means of atomic absorption analysis. Phosphorus is also determined by atomic absorption analysis. Other compounds are determined gravimetrically. The described procedure permits weight of a rock sample to be reduced to 0.5 g without reducing analysis accuracy. The results of determining carbonate rock components by X-ray analysis and by chemical analysis are compared. Equipment used for atomic absorption analysis is characterized (the 503 Perkin-Elmer and the CF-4 Optica-Milano spectrophotometers). The analyzed method for determining carbonate rock permits more accurate classification of rocks surrounding coal seams and rock impurities in run-of-mine coal. (22 refs.) (In Czech)

  7. Chemical-to-Electricity Carbon: Water Device.

    Science.gov (United States)

    He, Sisi; Zhang, Yueyu; Qiu, Longbin; Zhang, Longsheng; Xie, Yun; Pan, Jian; Chen, Peining; Wang, Bingjie; Xu, Xiaojie; Hu, Yajie; Dinh, Cao Thang; De Luna, Phil; Banis, Mohammad Norouzi; Wang, Zhiqiang; Sham, Tsun-Kong; Gong, Xingao; Zhang, Bo; Peng, Huisheng; Sargent, Edward H

    2018-03-26

    The ability to release, as electrical energy, potential energy stored at the water:carbon interface is attractive, since water is abundant and available. However, many previous reports of such energy converters rely on either flowing water or specially designed ionic aqueous solutions. These requirements restrict practical application, particularly in environments with quiescent water. Here, a carbon-based chemical-to-electricity device that transfers the chemical energy to electrical form when coming into contact with quiescent deionized water is reported. The device is built using carbon nanotube yarns, oxygen content of which is modulated using oxygen plasma-treatment. When immersed in water, the device discharges electricity with a power density that exceeds 700 mW m -2 , one order of magnitude higher than the best previously published result. X-ray absorption and density functional theory studies support a mechanism of operation that relies on the polarization of sp 2 hybridized carbon atoms. The devices are incorporated into a flexible fabric for powering personal electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  9. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    International Nuclear Information System (INIS)

    Salinas-Torres, David; Huerta, Francisco; Montilla, Francisco; Morallon, Emilia

    2011-01-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong π-π interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  10. A new sensor based on glassy carbon electrode modified with nanocomposite for simultaneous determination of acetaminophen, ascorbic acid and uric acid

    Directory of Open Access Journals (Sweden)

    Mohammad Afrasiabi

    2016-09-01

    Full Text Available A chemically-modified electrode has been constructed based on a single walled carbon nanotube/chitosan/room temperature ionic liquid nanocomposite modified glassy carbon electrode (SWCNTs–CHIT–RTIL/GCE. It was demonstrated that this sensor could be used for simultaneous determination of acetaminophen (ACT, uric acid (URI and ascorbic acid (ASC. The measurements were carried out by application of differential pulse voltammetry (DPV, cyclic voltammetry (CV and chronoamperometry (CA methods. Electrochemical studies suggested that the RTIL and SWCNTs provided a synergistic augmentation that can increase current responses by improvement of electron transfers of these compounds on the electrode surface. The presence of the CHIT in the modified electrode can enhance the repeatability of the sensor by its antifouling effect. The modified electrode showed electrochemical responses with high sensitivity for ACT, URI and ASC determination, which makes it a suitable sensor for simultaneous sub-μmol L−1 detection of ACT, URI and ASC in aqueous solutions. The analytical performance of this sensor has been evaluated for detection of ACT, URI and ASC in human serum and urine with satisfactory results.

  11. Nanomodified Carbon/Carbon Composites for Intermediate Temperature

    Science.gov (United States)

    2007-08-31

    7] Properties Values Appearance Light yellow liquid (material is waxy at room temperature) Specific Gravity 1.245 Ionic Cl (ppm) ᝺ Ionic Na and K...and several types of nanoparticles: chemically modified montmorillonite (MMT) organoclays, polyhedral oligomeric silsesquioxanes (POSS®), carbon...montmorillonite (MMT) organoclays, carbon nanofibers, polyhedral oligomeric silsesquioxanes (POSS®), nanosilica, nano- silicon carbide (n-SiC), and

  12. Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine

    International Nuclear Information System (INIS)

    Zare, Hamid R.; Nasirizadeh, Navid

    2007-01-01

    A new hydrazine sensor has been fabricated by immobilizing hematoxylin at the surface of a glassy carbon electrode (GCE) modified with multi-wall carbon nanotube (MWCNT). The adsorbed thin films of hematoxylin on the MWCNT modified GCE show one pair of peaks with surface confined characteristics. The hematoxylin MWCNT (HMWCNT) modified GCE shows highly catalytic activity toward hydrazine electro-oxidation. The results show that the peak potential of hydrazine at HMWCNT modified GCE surface shifted by about 167 and 255 mV toward negative values compared with that at an MWCNT and activated modified GCE surface, respectively. In addition, at HMWCNT modified electrode surface remarkably improvement the sensitivity of determination of hydrazine. The kinetic parameters, such as the electron transfer coefficient, α, and the standard heterogeneous rate constant, k 0 , for oxidation of hydrazine at the HMWCNT modified GCE were determined and also is shown that the heterogeneous rate constant, k', is strongly potential dependent. The overall number of electron involved in the catalytic oxidation of hydrazine and the number of electrons involved in the rate-determining steps are 2 and 1, respectively. The amperometric detection of hydrazine is carried out at 220 mV in 0.1 M phosphate buffer solution (pH 7) with linear response range 2.0-122.8 μM hydrazine, detection limit of 0.68 μM and sensitivity of 0.0208 μA μM -1 . Finally the amperometric response for hydrazine determination is reproducible, fast and extremely stable, with no loss in sensitivity over a continual 400 s operation

  13. ELECTROCHEMICAL DETERMINATION OF HYDROGEN SULFIDE AT CARBON NANOTUBE MODIFIED ELECTRODES. (R830900)

    Science.gov (United States)

    Carbon nanotube (CNT) modified glassy carbon electrodes exhibiting a strong and stable electrocatalytic response towards sulfide are described. A substantial (400 mV) decrease in the overvoltage of the sulfide oxidation reaction (compared to ordinary carbon electrodes) is...

  14. Encoded libraries of chemically modified peptides.

    Science.gov (United States)

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries. Copyright © 2015. Published by Elsevier Ltd.

  15. A study on the chemical stability and electrode performance of modified NiO cathodes for molten carbonate fuel cells

    International Nuclear Information System (INIS)

    Kim, Seung-Goo; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Lim, Tae Hoon; Oh, In-Hwan; Hong, Seong-Ahn

    2004-01-01

    The chemical stabilities of modified NiO cathodes doped with 1.5 mol% CoO and 1.5 mol% LiCoO 2 fabricated by a conventional tape casting method were evaluated through the real MCFC single cell operation. The heat-treated samples before oxidation had proper porosities and microstructures for a MCFC cathode. At 150 mA cm -2 in current density, the MCFC single cell using a CoO-doped NiO cathode showed stable cell voltages in the range of 0.833-0.843 V for 1000 h. In contrast, the cell using a LiCoO 2 -doped NiO cathode with a maximum of 0.836 V at 500 h degraded to 0.826 V at 1000 h due to a wet seal breakdown at the cathode side. The amounts of nickel precipitated in the electrolytes of the cells using modified NiO cathodes doped with CoO and LiCoO 2 after the operation for 1000 h were 1.2 and 1.4 wt.%, respectively, which were about 60% lower than that of the standard cells using pure NiO cathodes. The enhanced chemical stability of modified NiO cathodes seems to be attributed to the fact that the presence of cobalt increases the lithium content in the cathodes by converting Ni 2+ to Ni 3+ , resulting in stabilizing the layered crystal structure

  16. Evaluation of carbon fiber composites modified by in situ incorporation of carbon nanofibers

    Directory of Open Access Journals (Sweden)

    André Navarro de Miranda

    2011-12-01

    Full Text Available Nano-carbon materials, such as carbon nanotubes and carbon nanofibers, are being thought to be used as multifunctional reinforcement in composites. The growing of carbon nanofiber at the carbon fiber/epoxy interface results in composites having better electrical properties than conventional carbon fiber/epoxy composites. In this work, carbon nanofibers were grown in situ over the surface of a carbon fiber fabric by chemical vapor deposition. Specimens of carbon fiber/nanofiber/epoxy (CF/CNF/epoxy composites were molded and electrical conductivity was measured. Also, the CF/CNF/epoxy composites were tested under flexure and interlaminar shear. The results showed an overall reduction in mechanical properties as a function of added nanofiber, although electrical conductivity increased up to 74% with the addition of nanofibers. Thus CF/CNF/epoxy composites can be used as electrical dissipation discharge materials.

  17. Anti-tumor response with immunologically modified carbon nanotubes and phototherapy

    Science.gov (United States)

    Acquaviva, Joseph T.; Zhou, Feifan; Boarman, Ellen; Chen, Wei R.

    2013-02-01

    While successes of different cancer therapies have been achieved in various degrees a systemic immune response is needed to effectively treat late-stage, metastatic cancers, and to establish long-term tumor resistance in the patients. A novel method for combating metastatic cancers has been developed using immunologically modified carbon nanotubes in conjunction with phototherapy. Glycated chitosan (GC) is a potent immunological adjuvant capable of increasing host immune responses, including antigen presentation by activation of dendritic cells (DCs) and causing T cell proliferation. GC is also an effective surfactant for nanomaterials. By combining single-walled carbon nanotubes (SWNTs) and GC, immunologically modified carbon nanotubes (SWNT-GC) were constructed. The SWNT-GC suspension retains the enhanced light absorption properties in the near infrared (NIR) region and the ability to enter cells, which are characteristic of SWNTs. The SWNT-GC also retains the immunological properties of GC. Cellular SWNT-GC treatments increased macrophage activity, DC activation and T cell proliferation. When cellular SWNT-GC was irradiated with a laser of an appropriate wavelength, these immune activities could be enhanced. The combination of laser irradiation and SWNT-GC induced cellular toxicity in targeted tumor cells, leading to a systemic antitumor response. Immunologically modified carbon nanotubes in conjunction with phototherapy is a novel and promising method to produce a systemic immune response for the treatment of metastatic cancers.

  18. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  19. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    Science.gov (United States)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  20. Chemically grafted carbon-coated LiFePO4 using diazonium chemistry

    Science.gov (United States)

    Delaporte, Nicolas; Perea, Alexis; Amin, Ruhul; Zaghib, Karim; Bélanger, Daniel

    2015-04-01

    The effect of surface functionalization of aminophenyl and bromophenyl groups on carbon-coated LiFePO4 and the electrochemical properties of composite electrode containing these materials are reported. The functionalization was performed by spontaneous reduction of the corresponding in situ generated diazonium ions. The resulting chemically grafted LiFePO4/C materials were characterized by energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. XRD analyses indicated the cathode material was partially oxidized. Thermogravimetric and elemental analyses revealed the loading of grafted molecules was between 0.2 and 1.1 wt.% depending on the reaction conditions. Interestingly, the electrochemical performances of the modified LiFePO4/C are not adversely affected by the presence of either aminophenyl and bromophenyl groups at the carbon surface, and in fact the grafted LiFePO4/C displayed slightly superior discharge capacity at the highest C rate investigated for a low loading of organic molecules.

  1. Heat exchange performance of stainless steel and carbon foams modified with carbon nano fibers

    NARCIS (Netherlands)

    Tuzovskaya, I.; Pacheco Benito, Sergio; Chinthaginjala, J.K.; Reed, C.P.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2012-01-01

    Carbon nanofibers (CNF), with fishbone and parallel wall structures, were grown by catalytic chemical vapor deposition on the surface of carbon foam and stainless steel foam, in order to improve their heat exchange performance. Enhancement in heat transfer efficiency between 30% and 75% was achieved

  2. Biological resistance of polyethylene composites made with chemically modified fiber or flour

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons

    2002-01-01

    The role of moisture in the biological decay of wood-plastic composites was investigated. Southern pine wood fiber and ponderosa pine wood flour were chemically modified using either acetic anhydride (AA), butylene oxide (BO), or propylene oxide (PO). A 50:50 mixture of high density polyethylene and either chemically modified fiber or flour, or untreated fiber or flour...

  3. Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2012-02-01

    Full Text Available A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate. The experimental results suggest that the pheniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response. Peak current response is linearly dependent on the concentration of pheniramine in the range 200–1500 μg/mL with correlation coefficient 0.9987. The limit of detection is 58.31 μg/mL. The modified electrode shows good sensitivity and repeatability. Keywords: Pheniramine, Sodium lauryl sulfate (SLS, Glassy carbon electrode modified with multi-walled carbon nanotubes (GCE-MWCNTs, Solubilized systems, Voltammetric quantification

  4. Chemical sensors based on molecularly modified metallic nanoparticles

    International Nuclear Information System (INIS)

    Haick, Hossam

    2007-01-01

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  5. Chemically Conjugated Carbon Nanotubes and Graphene for Carrier Modulation.

    Science.gov (United States)

    Kim, Ki Kang; Kim, Soo Min; Lee, Young Hee

    2016-03-15

    Nanocarbons such as fullerene and carbon nanotubes (CNT) in late 20th century have blossomed nanoscience and nanotechnology in 21st century, which have been further proliferated by the new finding of graphene and have indeed opened a new carbon era. Several new branches of research, for example, zero-dimensional nanoparticles, one-dimensional nanowires, and two-dimensional insulating hexagonal boron nitride, and semiconducting and metallic transition metal dichalcogenides including the recently emerging black phosphorus, have been explored and numerous unprecedented quantum mechanical features have been revealed, that have been hardly accessible otherwise. Extensive research has been done on devices and applications related to such materials. Many experimental instruments have been developed with high sensitivity and improved spatial and temporal resolution to detect such tiny objects. The need for multidisciplinary research has been growing stronger than ever, which will be the tradition in the next few decades. In this Account, we will demonstrate an example of multidisciplinary effort of utilizing CNTs and graphene for electronics by modulating electronic structures. While there are several methods of modifying electronic structures of nanocarbons such as gate bias, contact metal, and conventional substitutional doping, we focus on chemical doping approaches here. We first introduce the concept of chemical doping on CNTs and graphene in terms of electronegativity of molecules and electrochemical potential of CNTs and graphene. To understand the relationship of electrochemical potential of CNTs and graphene to electronegativity of molecules, we propose a simple water bucket model: how to fill or drain water (electrons in CNTs or graphene) in the bucket (density of states) by the chemical dopants. The doping concept is then demonstrated experimentally by tracking the absorption spectroscopy, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy

  6. Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells

    Science.gov (United States)

    Zeng, Lizhen; Zhao, Shaofei; He, Miao

    2018-02-01

    The anode material is a crucial factor that significantly affects the cost and performance of microbial fuel cells (MFCs). In this study, a novel macroscale porous, biocompatible, highly conductive and low cost electrode, carbonized polydopamine-modified cotton textile (NC@CCT), is fabricated by using normal cheap waste cotton textiles as raw material via a simple in situ polymerization and carbonization treatment as anode of MFCs. The physical and chemical characterizations show that the macroscale porous and biocompatible NC@CCT electrode is coated by nitrogen-doped carbon nanoparticles and offers a large specific surface area (888.67 m2 g-1) for bacterial cells growth, accordingly greatly increases the loading amount of bacterial cells and facilitates extracellular electron transfer (EET). As a result, the MFC equipped with the NC@CCT anode achieves a maximum power density of 931 ± 61 mW m-2, which is 80.5% higher than that of commercial carbon felt (516 ± 27 mW m-2) anode. Moreover, making full use of the normal cheap waste cotton textiles can greatly reduce the cost of MFCs and the environmental pollution problem.

  7. Photocatalytic Activity and Characterization of Carbon-Modified Titania for Visible-Light-Active Photodegradation of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Chun-Hung Huang

    2012-01-01

    Full Text Available A variety of carbon-modified titania powders were prepared by impregnation method using a commercial available titania powder, Hombikat UV100, as matrix material while a range of alcohols from propanol to hexanol were used as precursors of carbon sources. Rising the carbon number of alcoholic precursor molecule, the modified titania showed increasing visible activities of NOx photodegradation. The catalyst modified with cyclohexanol exhibited the best activities of 62%, 62%, 59%, and 54% for the total NOx removal under UV, blue, green, and red light irradiation, respectively. The high activity with long wavelength irradiation suggested a good capability of photocatalysis in full visible light spectrum. Analysis of UV-visible spectrum indicated that carbon modification promoted visible light absorption and red shift in band gap. XPS spectroscopic analysis identified the existence of carbonate species (C=O, which increased with the increasing carbon number of precursor molecule. Photoluminescence spectra demonstrated that the carbonate species suppressed the recombination rate of electron-hole pair. As a result, a mechanism of visible-light-active photocatalyst was proposed according to the formation of carbonate species on carbon-modified TiO2.

  8. Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media

    Science.gov (United States)

    Yan, Xiaomei; Xu, Xiao; Liu, Qin; Guo, Jia; Kang, Longtian; Yao, Jiannian

    2018-06-01

    Iron single-atom catalyst in form of iron-nitrogen-carbon structure possesses the excellent catalytic activity in various chemical reactions. However, exploring a sustainable and stable single-atom metal catalyst still faces a great challenge due to low yield and complicated synthesis. Here, we report a functional multi-wall carbon nanotubes modified with iron phthalocyanine molecules via a liquid chemical reaction and realize the performance of similar single-atom catalysis for oxygen reduction reaction. A serial of characterizations strongly imply the structure change of iron phthalocyanine molecule and its close recombination with multi-wall carbon nanotubes, which are in favor of ORR catalysis. Compared to commercial platinum-carbon catalyst, composites exhibit superior activity for oxygen reduction reaction with higher half-wave potential (0.86 V), lower Tafel slope (38 mV dec-1), higher limiting current density and excellent electrochemical stability. The corresponding Zinc-air battery also presents higher maximum power density and discharge stability. Therefore, these findings provide a facile route to synthesize a highly efficient non-precious metal carbon-based catalyst.

  9. Facile synthesis of tunable carbon modified mesoporous TiO{sub 2} for visible light photocatalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiao-Na; Wang, Hui-Long, E-mail: hlwang@dlut.edu.cn; Wang, Xin-Kui; Jiang, Wen-Feng

    2017-08-01

    Highlights: • Combined hydrothermal-calcination steps were used to prepare mesoporous C-TiO{sub 2}. • Polyacrylate was employed as the carbon source. • XPS revealed the interstitial carbon modifying mode through carbonate-like species. • C-TiO{sub 2} exhibited visible light activity towards dinitro butyl phenol degradation. - Abstract: In this paper, we describe a simple and novel approach for preparing tunable carbon-modified mesoporous TiO{sub 2} photocatalysts by combining the in-situ carbonization of PAA-Ti/TiO{sub 2}, hydrothermal reaction process and post-calcination treatment. The synthesized carbon-modified mesoporous TiO{sub 2} powders were of high crystallinity, large specific surface area and good visible light response. The carbon species were formed by the carbonization of polyacrylate (PAA). The presence of carbonates was subsequently confirmed by the XPS spectra, which significantly narrow down the band gap of TiO{sub 2}. The organic group in polyacrylate served as the carbon source and carbon resulted from in-situ carbonization treatment could help to inhibit the excessive growth of TiO{sub 2} grain and enlarge the pore structure of TiO{sub 2}. The amount of carbon species could be feasibly modulated by adjusting the post-calcination temperature and the surface area of the photocatalyst was enlarged further after the partial removal of carbon species. The carbon-modified mesoporous TiO{sub 2} powders exhibit excellent reproducibility and photocatalytic performance under visible light irradiation.

  10. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Blacha-Grzechnik, Agata, E-mail: agata.blacha@polsl.pl [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Piwowar, Katarzyna; Krukiewicz, Katarzyna [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Koscielniak, Piotr; Szuber, Jacek [Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice (Poland); Zak, Jerzy K. [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland)

    2016-05-15

    Highlights: • The selected group of four NH{sub 2}-derivatives of phenothiazine was grafted to Glassy Carbon (GC) surface. • The grafted phenothiazines are able to generate {sup 1}O{sub 2} when activated by the radiation. • Such modified solid surfaces may find their application in the wastewater treatment. - Abstract: The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate {sup 1}O{sub 2} when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals’ synthesis or in the wastewater treatment.

  11. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  12. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  13. Nafion® modified-screen printed gold electrodes and their carbon nanostructuration for electrochemical sensors applications.

    Science.gov (United States)

    García-González, Raquel; Fernández-Abedul, M Teresa; Costa-García, Agustín

    2013-03-30

    Screen printed electrodes are frequently used in electroanalytical applications because of their properties such as small size, low detection limit, fast response time, high reproducibility and disposable nature. On the other hand, since the discovery of carbon nanotubes there has been enormous interest in exploring and exploiting their properties, especially for their use in chemical (bio)sensors and nanoscale electronic devices. This paper reports the characterization of gold screen printed electrodes, modified with Nafion(®) and nanostructured with carbon nanotubes and carbon nanofibers dispersed on Nafion(®). The dispersing agent and the nanostructure have a marked effect on the analytical signal that, in turn depends on the intrinsic characteristics of the analyte. Several model analytes have been employed in this study. Anionic, cationic and neutral species such as methylene blue, dopamine, iron (III) sulfate, potassium ferrycianide and urea were considered. The importance for the development of nanostructured sensors relies on the fact that depending on these factors the situation may vary from a notorious enhancement of the signal to a blocking or even decrease. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Co3O4 nanocrystals with exposed low-surface-energy planes anchored on chemically integrated graphitic carbon nitride-modified nitrogen-doped graphene: A high-performance anode material for lithium-ion batteries

    Science.gov (United States)

    Zhang, Wenyao; Fu, Yongsheng; Wang, Xin

    2018-05-01

    A facile strategy to synthesize a composite composed of cubic Co3O4 nanocrystals anchored on chemically integrated g-C3N4-modified N-graphene (CN-NG) as an advanced anode material for high-performance lithium-ion batteries is reported. It is found that the morphology of the Co3O4 nanocrystals contains blunt-edge nanocubes with well-demarcated boundaries and numerous exposed low-index (1 1 1) crystallographic facets. These planes can be directly involved in the electrochemical reactions, providing rapid Li-ion transport channels for charging and discharging and thus enhancing the round-trip diffusion efficiency. On the other hand, the CN-NG support displays unusual textural features, such as superior structural stability, accessible active sites, and good electrical conductivity. The experimental results reveal that the chemical and electronic coupling of graphitic carbon nitride and nitrogen-doped graphene synergistically facilitate the anchoring of Co3O4 nanocrystals and prevents their migration. The resulting Co3O4/CN-NG composite exhibits a high specific reversible capacity of up to 1096 mAh g-1 with excellent cycling stability and rate capability. We believe that such a hybrid carbon support could open a new path for applications in electrocatalysis, sensors, supercapacitors, etc., in the near future.

  15. Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons.

    Science.gov (United States)

    Huang, Hsu-Hui; Lu, Ming-Chun; Chen, Jong-Nan; Lee, Cheng-Te

    2003-06-01

    The objective of this research was to examine the heterogeneous catalytic decomposition of H(2)O(2) and 4-chlorophenol (4-CP) in the presence of activated carbons modified with chemical pretreatments. The decomposition of H(2)O(2) was suppressed significantly by the change of surface properties including the decreased pH(pzc) modified with oxidizing agent and the reduced active sites occupied by the adsorption of 4-CP. The apparent reaction rate of H(2)O(2) decomposition was dominated by the intrinsic reaction rates on the surface of activated carbon rather than the mass transfer rate of H(2)O(2) to the solid surface. By the detection of chloride ion in suspension, the reduction of 4-CP was not only attributed to the advanced adsorption but also the degradation of 4-CP. The catalytic activity toward 4-CP for the activated carbon followed the inverse sequence of the activity toward H(2)O(2), suggesting that acidic surface functional group could retard the H(2)O(2) loss and reduce the effect of surface scavenging resulting in the increase of the 4-CP degradation efficiency. Few effective radicals were expected to react with 4-CP for the strong effect of surface scavenging, which could explain why the degradation rate of 4-CP observed in this study was so slow and the dechlorination efficiency was independent of the 4-CP concentration in aqueous phase. Results show that the combination of H(2)O(2) and granular activated carbon (GAC) did increase the total removal of 4-CP than that by single GAC adsorption.

  16. Sensitive detection of hydroxylamine at a simple baicalin carbon nanotubes modified electrode.

    Science.gov (United States)

    Zhang, Hongfang; Zheng, Jianbin

    2012-05-15

    A baicalin multi-wall carbon nanotubes (BaMWCNT) modified glassy carbon electrode (GCE) for the sensitive determination of hydroxylamine was described. The BaMWCNT/GCE with dramatic stability was firstly fabricated with a simple adsorption method. And it showed excellent catalytic activity toward the electrooxidation of hydroxylamine. The amperometric response at the BaMWCNT/GCE modified electrode increased linearly to hydroxylamine concentrations in the range of 0.5 μM to 0.4mM with a detection limit of 0.1 μM. The modified electrode was applied to detection hydroxylamine in the tap water, and the average recovery for the standards added was 96.0%. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Adsorptive properties and thermal stability of carbon fibers modified by boron and phosphorus compounds

    International Nuclear Information System (INIS)

    Malygin, A.A.; Postnova, A.M.; Shevchenko, G.K.

    1996-01-01

    Sorptional characteristics as regards water vapors and thermal stability of carbon fibers modified by method of molecular superposition of borohydroxide groupings have been studied. Sorptional activity in the range of low and medium relative pressures of water vapors in modified samples increases several times, while thermal stability of carbon fiber increases, as well. 14 refs.; 1 fig.; 1 tab

  18. Use of carbonates for biological and chemical synthesis

    Science.gov (United States)

    Rau, Gregory Hudson

    2014-09-09

    A system of using carbonates, especially water-insoluble or sparing soluble mineral carbonates, for maintaining or increasing dissolved inorganic carbon concentrations in aqueous media. In particular, the system generates concentrated dissolve inorganic carbon substrates for photosynthetic, chemosynthetic, or abiotic chemical production of carbonaceous or other compounds in solution. In some embodiments, the invention can also enhance the dissolution and retention of carbon dioxide in aqueous media, and can produce pH buffering capacity, metal ions, and heat, which can be beneficial to the preceding syntheses.

  19. Modifying the electronic and optical properties of carbon nanotubes

    Science.gov (United States)

    Kinder, Jesse M.

    The intrinsic electronic and optical properties of carbon nanotubes make them promising candidates for circuit elements and LEDs in nanoscale devices. However, applied fields and interactions with the environment can modify these intrinsic properties. This dissertation is a theoretical study of perturbations to an ideal carbon nanotube. It illustrates how transport and optical properties of carbon nanotubes can be adversely affected or intentionally modified by the local environment. The dissertation is divided into three parts. Part I analyzes the effect of a transverse electric field on the single-electron energy spectrum of semiconducting carbon nanotubes. Part II analyzes the effect of the local environment on selection rules and decay pathways relevant to dark excitons. Part III is a series of 26 appendices. Two different models for a transverse electric field are introduced in Part I. The first is a uniform field perpendicular to the nanotube axis. This model suggests the field has little effect on the band gap until it exceeds a critical value that can be tuned with strain or a magnetic field. The second model is a transverse field localized to a small region along the nanotube axis. The field creates a pair of exponentially localized bound states but has no effect on the band gap for particle transport. Part II explores the physics of dark excitons in carbon nanotubes. Two model calculations illustrate the effect of the local environment on allowed optical transitions and nonradiative recombination pathways. The first model illustrates the role of inversion symmetry in the optical spectrum. Broken inversion symmetry may explain low-lying peaks in the exciton spectrum of boron nitride nanotubes and localized photoemission around impurities and interfaces in carbon nanotubes. The second model in Part II suggests that free charge carriers can mediate an efficient nonradiative decay process for dark excitons in carbon nanotubes. The appendices in Part III

  20. Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode.

    Science.gov (United States)

    Li, Yonghong; Zhai, Xiurong; Liu, Xinsheng; Wang, Ling; Liu, Herong; Wang, Haibo

    2016-02-01

    A simple bisphenol A (BPA) sensor was successfully fabricated based on ordered mesoporous carbon CMK-3 modified nano-carbon ionic liquid paste electrode (CMK-3/nano-CILPE). The nanostructure of CMK-3 and the surface morphologies of modified electrodes were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Electrochemical properties of the fabricated electrodes were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The fabricated sensor displayed excellent electroactivity towards bisphenol A using linear sweep voltammetry (LSV). Experimental conditions influencing the analytical performance of the modified electrode were optimized. Under optimal conditions, the oxidation peak current was proportional to BPA concentration in the range from 0.2 μM to 150 μM with a detection limit of 0.05 μM (S/N=3). This method was successfully used for determination of BPA leached from drinking bottle and plastic bag with good recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Selective Detection of Serotonin from the Interference by Ascorbic Acid and Uric Acid at Poly(thionine)-modified Glassy Carbon Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ahammad, A. J. Saleh; Nath, Narayan Chandra Deb; Kim, Sung Hyun [Konkuk University, Seoul (Korea, Republic of); Kim, Young Jun; Lee, Jae Joon [Konkuk University, Chungju (Korea, Republic of)

    2011-03-15

    Various approaches, such as using polymer film modified electrode, applying chemical modification, employing nano materials and molecularly imprinted polymers, have been developed to detect 5-HT selectively from interferences. The polymer-modified electrodes have widely been used because of their enhanced selectivity and sensitivity for many analytes. Previously, we have reported the role of poly(thionine) film (PTH) deposited on the electrochemically preanodized glassy carbon electrode (GCE) for the separation of the voltammetric signal of dopamine (DA) from that of AA and UA. In this communication, we are presenting the preliminary results of the electrochemical signal separation of 5-HT by suppressing those of AA and UA on another type PTH modified GCE (PTHGCE) which is prepared by electrochemical deposition of PTH directly on the mechanically polished GCE.

  2. A glassy carbon electrode modified with a multiwalled carbon nanotube-reduced graphene oxide nanoribbon core-shell structure for electrochemical sensing of p-dihydroxybenzene

    International Nuclear Information System (INIS)

    Zhu, Gangbing; Yi, Yinhui; Liu, Zhenjiang; Sun, Jianfan; Wu, Xiangyang; Zou, Bin

    2015-01-01

    Multiwalled carbon nanotubes (MWCNT) were covered with reduced graphene oxide nanoribbons (rGONR) to give a material with a core-shell heterostructure of the type MWCNT-rGONR. It was obtained by (a) longitudinal partial unzipping of MWCNT to form MWCNT-GONR, and (b) subsequent chemical reduction with hydrazine to give MWCNT-rGONR. The MWCNT-rGONR heterostructure was used to modify a glassy carbon electrode (GCE) to obtain an electrochemical sensor for p-dihydroxybenzene (DHB). The synergistic effects of the MWCNT and the rGONR results in a distinctly improved redox current towards DHB compared to a bare GCE, an MWCNT/GCE, and an MWCNT-GONR/GCE. At the working voltage range from −1 00 to 400 mV, it displays a linear response to DHB in the 80 to 3000 nM concentration range with a 20 nM detection limit. (author)

  3. Hot-wire chemical vapour deposition of carbon nanotubes

    CSIR Research Space (South Africa)

    Cummings, FR

    2006-07-01

    Full Text Available ablation of graphite, carbon-arc discharge and chemical vapour deposition (CVD). However, some of these techniques have been shown to be expensive due to high deposition temperatures and are not easily controllable. Recently hot-wire chemical vapour...

  4. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  5. Enhanced performance of microbial fuel cells by using MnO_2/Halloysite nanotubes to modify carbon cloth anodes

    International Nuclear Information System (INIS)

    Chen, Yingwen; Chen, Liuliu; Li, Peiwen; Xu, Yuan; Fan, Mengjie; Zhu, Shemin; Shen, Shubao

    2016-01-01

    The modification of anode materials is important to enhance the power generation of MFCs (microbial fuel cells). A novel and cost-effective modified anode that is fabricated by dispersing manganese dioxide (MnO_2) and HNTs (Halloysite nanotubes) on carbon cloth to improve the MFCs' power production was reported. The results show that the MnO_2/HNT anodes acquire more bacteria and provide greater kinetic activity and power density compared to the unmodified anode. Among all modified anodes, 75 wt% MnO_2/HNT exhibits the highest electrochemical performance. The maximum power density is 767.3 mWm"−"2, which 21.6 higher than the unmodified anode (631 mW/m"2). Besides, CE (Coulombic efficiency) was improved 20.7, indicating that more chemical energy transformed to electricity. XRD (X-Ray powder diffraction) and FTIR (Fourier transform infrared spectroscopy) are used to characterize the structure and functional groups of the anode. CV (cyclic voltammetry) scans and SEM (scanning electron microscope) images demonstrate that the measured power density is associated with the attachment of bacteria, the microorganism morphology differed between the modified and the original anode. These findings demonstrate that MnO_2/HNT nanocomposites can alter the characteristics of carbon cloth anodes to effectively modify the anode for practical MFC applications. - Highlights: • Different contents of MnO_2/HNT composites were prepared and used to modify anodes in MFCs. • The performance of MFCs was improved by the anode modification. • 75% wt MnO_2/HNT modified anode showed the better capacity on power density. • Water contact angle, CV, SEM were determined to figure out the effect of modification on MFCs. • MnO_2/HNT modified anode in MFCs was first studied to push MFCs technology forward.

  6. Electrochemical properties of the hexacyanoferrate(II)–ruthenium(III) complex immobilized on silica gel surface chemically modified with zirconium(IV) oxide

    International Nuclear Information System (INIS)

    Panice, Lucimara B.; Oliveira, Elisangela A. de; Filho, Ricardo A.D. Molin; Oliveira, Daniela P. de; Lazarin, Angélica M.; Andreotti, Elza I.S.; Sernaglia, Rosana L.; Gushikem, Yoshitaka

    2014-01-01

    Highlights: • The cyano-bridged mixed valence ruthenium composite material was synthesized. • This newly synthesized compound was incorporated into a carbon paste electrode. • The electrode did not show significant changes in response after six months of use. • The modified electrode is very stable and reproducible. • The electrode sensor was successfully applied for ascorbic acid determination. - Abstract: The chemically modified silica gel with zirconium(IV) oxide was used to immobilize the [Fe(CN) 6 ] 4− complex ion initially. The reaction of this material with [Ru(edta)H 2 O] − complex ion formed the immobilized cyano-bridged mixed valence ruthenium complex, (≡Zr) 5 [(edta)RuNCFe(CN) 5 ]. This material was incorporated into a carbon paste electrode and, its electrochemical properties were investigated. However, for an ascorbic acid solution, an enhancement of the anodic peak current was detected due to electrocatalytic oxidation. The electrode presented the same response for at least 150 successive measurements, with a good repeatability. The modified electrode is very stable and reproducible. The sensor was applied for ascorbic acid determination in pharmaceutical preparation with success

  7. 129Xe nuclear magnetic resonance study of pitch-based activated carbon modified by air oxidation/pyrolysis cycles: a new approach to probe the micropore size.

    Science.gov (United States)

    Romanenko, Konstantin V; Py, Xavier; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Fraissard, Jacques

    2006-02-23

    (129)Xe NMR has been used to study a series of homologous activated carbons obtained from a KOH-activated pitch-based carbon molecular sieve modified by air oxidation/pyrolysis cycles. A clear correlation between the pore size of microporous carbons and the (129)Xe NMR of adsorbed xenon is proposed for the first time. The virial coefficient delta(Xe)(-)(Xe) arising from binary xenon collisions varied linearly with the micropore size and appeared to be a better probe of the microporosity than the chemical shift extrapolated to zero pressure. This correlation was explained by the fact that the xenon collision frequency increases with increasing micropore size. The chemical shift has been shown to vary very little with temperature (less than 9 ppm) for xenon trapped inside narrow and wide micropores. This is indicative of a smooth xenon-surface interaction potential.

  8. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    In this PhD-study the different areas of chemical engineering, heterogeneous catalysis, supercritical fluids, and phase equilibrium thermodynamics have been brought together for selected reactions. To exploit the beneficial properties of supercritical fluids in heterogeneous catalysis, experimental...... studies of catalytic chemical reactions in dense and supercritical carbon dioxide have been complemented by the theoretical calculations of phase equilibria using advanced thermodynamic models. In the recent years, the use of compressed carbon dioxide as innovative, non-toxic and non-flammable, cheap......, and widely available reaction medium for many practical and industrial applications has drastically increased. Particularly attractive are heterogeneously catalysed chemical reactions. The beneficial use of CO2 is attributed to its unique properties at dense and supercritical states (at temperatures...

  9. Establishment of the carbon label mechanism of coal chemical products based oncarbon footprint

    Directory of Open Access Journals (Sweden)

    Wu Bishan

    Full Text Available ABSTRACT After redefining the carbon footprint and carbon label, the paper analyzesthe significance of the carbon labels under the background of the low carbon economy development, and establishes the concept of model of the carbon labels mechanism to chemical products. At the same time, the paper quantitatively studies carbon label data sourceof three kinds of coal chemical industry power products, which are fromhaving not CCS technologies of supercritical boiler of coal, using CCS technologies of supercritical boiler of coal and adopting CCS and IGCC technologies to power generation in CCI. Based on the three kinds of differences, the paper puts forward of establishing the carbon labels mechanism of chemical products under the low carbon consumption.

  10. Carbon nanostructured films modified by metal nanoparticles supported on filtering membranes for electroanalysis.

    Science.gov (United States)

    Paramo, Erica; Palmero, Susana; Heras, Aranzazu; Colina, Alvaro

    2018-02-01

    A novel methodology to prepare sensors based on carbon nanostructures electrodes modified by metal nanoparticles is proposed. As a proof of concept, a novel bismuth nanoparticle/carbon nanofiber (Bi-NPs/CNF) electrode and a carbon nanotube (CNT)/gold nanoparticle (Au-NPs) have been developed. Bi-NPs/CNF films were prepared by 1) filtering a dispersion of CNFs on a polytetrafluorethylene (PTFE) filter, and 2) filtering a dispersion of Bi-NPs chemically synthesized through this CNF/PTFE film. Next the electrode is prepared by sticking the Bi-NPs/CNF/PTFE film on a PET substrate. In this work, Bi-NPs/CNF ratio was optimized using a Cd 2+ solution as a probe sample. The Cd anodic stripping peak intensity, registered by differential pulse anodic stripping voltammetry (DPASV), is selected as target signal. The voltammograms registered for Cd stripping with this Bi-NPs/CNF/PTFE electrode showed well-defined and highly reproducible electrochemical. The optimized Bi-NPs/CNF electrode exhibits a Cd 2+ detection limit of 53.57 ppb. To demonstrate the utility and versatility of this methodology, single walled carbon nanotubes (SWCNTs) and gold nanoparticles (Au-NPs) were selected to prepare a completely different electrode. Thus, the new Au-NPs/SWCNT/PTFE electrode was tested with a multiresponse technique. In this case, UV/Vis absorption spectroelectrochemistry experiments were carried out for studying dopamine, demonstrating the good performance of the Au-NPs/SWCNT electrode developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Chemical vapour deposition of carbon nanotubes

    CSIR Research Space (South Africa)

    Arendse, CJ

    2006-02-01

    Full Text Available , effective, more versatile and easily scalable to large substrate sizes. In this paper, we present a design of the hot-wire CVD system constructed at the CSIR for the deposition of CNTs. Additionally, we will report on the structure of CNTs deposited... exhibit exceptional chemical and physical properties related to toughness, chemical inertness, magnetism, and electrical and thermal conductivity. A variety of preparation methods to synthesise CNTs are known, e.g. carbon-arc discharge, laser ablation...

  12. Optimization of chemical regeneration procedures of spent activated carbon

    Directory of Open Access Journals (Sweden)

    Naser Ghasemzadeh

    2017-01-01

    Full Text Available The chemical regeneration of granular activated carbon exhausted in a petrochemical wastewater unit was investigated. Gas chromatography and energy-dispersive X-ray spectroscopy demonstrated that spent activated carbon carries large types of organic and inorganic materials. Diverse chemical solvents were adopted in comparison with traditional chemical solvents and regeneration efficiency was investigated for each approach. The optimum procedure and optimum condition including temperature, concentration of solvent, and time were determined. The regenerated activated carbon was used in the adsorption of methylene blue (MB in order to find its regeneration efficiency. The regeneration efficiency can be identified by comparing of amount of MB absorbed by the fresh and regenerated activated carbon. The best acidic regenerator was hydrofluoric acid. The higher the temperature causes the faster desorption rate and consequently, the higher regeneration efficiency. The regeneration efficiency increased by means of an increase in the time of regeneration and solvent concentration, but there was an optimum time and solvent concentration for regeneration. The optimum temperature, solvent concentration and regeneration time obtained was 80 ⁰C, 3 molar and 3 hours, respectively.

  13. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  14. Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis

    International Nuclear Information System (INIS)

    Wang, Qunwei; Chiu, Yung-Ho; Chiu, Ching-Ren

    2015-01-01

    Research on the driving factors behind carbon dioxide emission changes in China can inform better carbon emission reduction policies and help develop a low-carbon economy. As one of important methods, production-theoretical decomposition analysis (PDA) has been widely used to understand these driving factors. To avoid the infeasibility issue in solving the linear programming, this study proposed a modified PDA approach to decompose carbon dioxide emission changes into seven drivers. Using 2005–2010 data, the study found that economic development was the largest factor of increasing carbon dioxide emissions. The second factor was energy structure (reflecting potential carbon), and the third factor was low energy efficiency. Technological advances, energy intensity reductions, and carbon dioxide emission efficiency improvements were the negative driving factors reducing carbon dioxide emission growth rates. Carbon dioxide emissions and driving factors varied significantly across east, central and west China. - Highlights: • A modified PDA used to decompose carbon dioxide emission changes into seven drivers. • Two models were proposed to ameliorate the infeasible occasions. • Economic development was the largest factor of increasing CO_2 emissions in China.

  15. Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    2012-05-01

    Full Text Available Multiwalled carbon nanotubes were used to modify the surface of a glassy carbon electrode to enhance its electroactivity. Nafion served to immobilise the carbon nanotubes on the electrode surface. The modified electrode was used to develop an analytical method for the analysis of ascorbic acid (AA by square-wave voltammetry (SWV. The oxidation of ascorbic acid at the modified glassy carbon electrode showed a peak potential at 315 mV, about 80 mV lower than that observed at the bare (unmodified electrode. The peak current was about threefold higher than the response at the bare electrode. Replicate measurements of peak currents showed good precision (3% rsd. Peak currents increased with increasing ascorbic acid concentration (dynamic range = 0.0047–5.0 mmol/L and displayed good linearity (R2 = 0.994. The limit of detection was 1.4 μmol/L AA, while the limit of quantitation was 4.7 μmol/L AA. The modified electrode was applied to the determination of the amount of ascorbic acid in four brands of commercial orange-juice products. The measured content agreed well (96–104% with the product label claim for all brands tested. Recovery tests on spiked samples of orange juice showed good recovery (99–104%. The reliability of the SWV method was validated by conducting parallel experiments based on high-performance liquid chromatography (HPLC with absorbance detection. The observed mean AA contents of the commercial orange juice samples obtained by the two methods were compared statistically and were found to have no significant difference (P = 0.05.

  16. Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III).

    Science.gov (United States)

    Monser, Lotfi; Adhoum, Nafaâ

    2009-01-15

    A two in one attempt for the removal of tartrazine and metal ions on activated carbon has been developed. The method was based on the modification of activated carbon with tartrazine then its application for the removal of Pb(II), Cd(II) and Cr(III) ions at different pH values. Tartrazine adsorption data were modelled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacities qm were 121.3, 67 and 56.7mgg(-1) at initial pH values of 1.0, 6.0 and 10, respectively. The adsorption of tartrazine onto activated carbon followed second-order kinetic model. The equilibrium time was found to be 240min at pH 1.0 and 120min at pH 10 for 500mgL(-1) tartrazine concentration. A maximum removal of 85% was obtained after 1h of contact time. The presence of tartrazine as modifier enhances attractive electrostatic interactions between metal ions and carbon surface. The adsorption capacity for Pb(II), Cd(II) and Cr(III) ions has been improved with respect to non-modified carbon reaching a maximum of 140%. The adsorption capacity was found to be a pH dependent for both modified and non-modified carbon with a greater adsorption at higher pH values except for Cr(III). The enhancement percent of Pb(II), Cd(II) and Cr(III) at different pH values was varied from 28% to 140% with respect to non-modified carbon. The amount of metal ions adsorbed using static regime was 11-40% higher than that with dynamic mode. The difference between adsorption capacities could be attributed to the applied flow rate.

  17. Adsorption and Pore of Physical-Chemical Activated Coconut Shell Charcoal Carbon

    Science.gov (United States)

    Budi, E.; Umiatin, U.; Nasbey, H.; Bintoro, R. A.; Wulandari, Fi; Erlina, E.

    2018-04-01

    The adsorption of activated carbon of coconut shell charcoal on heavy metals (Cu and Fe) of the wastewater and its relation with the carbon pore structure was investigated. The coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours to produce charcoal and then shieved into milimeter sized granule particles. Chemical activation was done by immersing the charcoal into chemical solution of KOH, NaOH, HCl and H3PO4, with various concentration. The activation was followed by physical activation using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology of activated carbon were characterized by using Scanning Electron Microscopy (SEM). Wastewater was made by dissolving CuSO4.5H2O and FeSO4.7H2O into aquades. The metal adsorption was analized by using Atomic Absorption Spectroscopy (AAS). The result shows that in general, the increase of chemical concentration cause the increase of pore number of activated carbon due to an excessive chemical attack and lead the increase of adsorption. However it tend to decrease as further increasing in chemical activator concentration due to carbon collapsing. In general, the adsorption of Cu and Fe metal from wastewater by activated carbon increased as the activator concentration was increased.

  18. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T)

    OpenAIRE

    Karim Asadpour-Zeynali; Venus Baghalabadi

    2017-01-01

    In this work poly eriochrome black T (EBT) was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH) was investigated. The poly (EBT)-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak ...

  19. Electrochemical selective detection of dopamine on microbial carbohydrate-doped multiwall carbon nanotube-modified electrodes.

    Science.gov (United States)

    Jin, Joon-Hyung; Cho, Eunae; Jung, Seunho

    2010-03-01

    Microbial carbohydrate-doped multiwall carbon nanotube (MWNT)-modified electrodes were prepared for the purpose of determining if 4-(2-aminoethyl)benzene-1,2-diol (3,4-dihydroxyphenylalanine; dopamine) exists in the presence of 0.5 mM ascorbic acid, a representative interfering agent in neurotransmitter detection. The microbial carbohydrate dopants were alpha-cyclosophorohexadecaose (alpha-C16) from Xanthomonas oryzae and cyclic-(1 --> 2)-beta-d-glucan (Cys) from Rhizobium meliloti. The cyclic voltammetric responses showed that the highest sensitivity (5.8 x 10(-3) mA cm(-2) microM(-1)) is attained with the Cys-doped MWNT-modified ultra-trace carbon electrode, and that the alpha-C16-doped MWNT-modified glassy carbon electrode displays the best selectivity to dopamine (the approximate peak potential separation is 310 mV).

  20. Mechanical Properties of Epoxy and Its Carbon Fiber Composites Modified by Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2017-01-01

    Full Text Available Compressive properties are commonly weak parts in structural application of fiber composites. Matrix modification may provide an effective way to improve compressive performance of the composites. In this work, the compressive property of epoxies (usually as matrices of fiber composites modified by different types of nanoparticles was firstly investigated for the following study on the compressive property of carbon fiber reinforced epoxy composites. Carbon fiber/epoxy composites were fabricated by vacuum assisted resin infusion molding (VARIM technique using stitched unidirectional carbon fabrics, with the matrices modified with nanosilica, halloysite, and liquid rubber. Testing results showed that the effect of different particle contents on the compressive property of fiber/epoxy composites was more obvious than that in epoxies. Both the compressive and flexural results showed that rigid nanoparticles (nanosilica and halloysite have evident strengthening effects on the compression and flexural responses of the carbon fiber composite laminates fabricated from fabrics.

  1. Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste

    International Nuclear Information System (INIS)

    Williams, Paul T.; Reed, Anton R.

    2006-01-01

    Biomass waste in the form of biomass flax fibre, produced as a by-product of the textile industry was processed via both physical and chemical activation to produce activated carbons. The surface area of the physically activated carbons were up to 840 m 2 g -1 and the carbons were of mesoporous structure. Chemical activation using zinc chloride produced high surface area activated carbons up to 2400 m 2 g -1 and the pore size distribution was mainly microporous. However, the process conditions of temperature and zinc chloride concentration could be used to manipulate the surface area and porosity of the carbons to produce microporous, mesoporous and mixed microporous/mesoporous activated carbons. The physically activated carbons were found to be a mixture of Type I and Type IV carbons and the chemically activated carbons were found to be mainly Type I carbons. The development of surface morphology of physically and chemically activated carbons observed via scanning electron microscopy showed that physical activation produced activated carbons with a nodular and pitted surface morphology whereas activated carbons produced through chemical activation had a smooth surface morphology. Transmission electron microscopy analysis could identify mesopore structures in the physically activated carbon and microporous structures in the chemically activated carbons

  2. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays

    Science.gov (United States)

    Lichtenstein, Amir; Havivi, Ehud; Shacham, Ronen; Hahamy, Ehud; Leibovich, Ronit; Pevzner, Alexander; Krivitsky, Vadim; Davivi, Guy; Presman, Igor; Elnathan, Roey; Engel, Yoni; Flaxer, Eli; Patolsky, Fernando

    2014-06-01

    The capability to detect traces of explosives sensitively, selectively and rapidly could be of great benefit for applications relating to civilian national security and military needs. Here, we show that, when chemically modified in a multiplexed mode, nanoelectrical devices arrays enable the supersensitive discriminative detection of explosive species. The fingerprinting of explosives is achieved by pattern recognizing the inherent kinetics, and thermodynamics, of interaction between the chemically modified nanosensors array and the molecular analytes under test. This platform allows for the rapid detection of explosives, from air collected samples, down to the parts-per-quadrillion concentration range, and represents the first nanotechnology-inspired demonstration on the selective supersensitive detection of explosives, including the nitro- and peroxide-derivatives, on a single electronic platform. Furthermore, the ultrahigh sensitivity displayed by our platform may allow the remote detection of various explosives, a task unachieved by existing detection technologies.

  3. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong, Dai [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia); Zou, Linda [SA Water Centre for Water Management and Reuse, University of South Australia, Adelaide, SA5095 (Australia); Zifeng, Yan [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Millikan, Mary [Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia)

    2009-08-30

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N{sub 2} adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO{sub 2} particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  4. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    International Nuclear Information System (INIS)

    Dai Xiaodong; Zou, Linda; Yan Zifeng; Millikan, Mary

    2009-01-01

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N 2 adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO 2 particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  5. High-performance supercapacitors of carboxylate-modified hollow carbon nanospheres coated on flexible carbon fibre paper: Effects of oxygen-containing group contents, electrolytes and operating temperature

    International Nuclear Information System (INIS)

    Phattharasupakun, Nutthaphon; Wutthiprom, Juthaporn; Suktha, Phansiri; Iamprasertkun, Pawin; Chanlek, Narong; Shepherd, Celine; Hadzifejzovic, Emina; Moloney, Mark G.; Foord, John S.; Sawangphruk, Montree

    2017-01-01

    Although functionalized carbon-based materials have been widely used as the supercapacitor electrodes, the optimum contents of the functional groups, the charge storage mechanisms, and the effects of electrolytes and operating temperature have not yet been clearly investigated. In this work, carboxylate-modified hollow carbon nanospheres (c-HCN) with different functional group contents synthesized by an oxidation process of carbon nanospheres with nitric acid were coated on flexible carbon fibre paper and used as the supercapacitor electrodes. An as-fabricated supercapacitor of the c-HCN with a finely tuned 6.2 atomic % of oxygen of the oxygen-containing groups in an ionic liquid electrolyte exhibits a specific capacitance of 390 F g"−"1, a specific energy of 115 Wh kg"−"1, and a maximum specific power of 13548 W kg"−"1 at 70 °C. The charge storage mechanism investigated is based on the chemical adsorption of the ionic liquid electrolyte on the c-HCN electrode. This process is highly reversible leading to high capacity retention. The supercapacitor in this work may be practically used in many high energy and power applications.

  6. Citrate- and Succinate-Modified Carbonate Apatite Nanoparticles with Loaded Doxorubicin Exhibit Potent Anticancer Activity against Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sultana Mehbuba Hossain

    2018-03-01

    Full Text Available Biodegradable inorganic apatite-based particle complex is popular for its pH-sensitivity at the endosomal acidic environment to facilitate drug release following cellular uptake. Despite being a powerful anticancer drug, doxorubicin shows severe off-target effects and therefore would need a carrier for the highest effectiveness. We aimed to chemically modify carbonate apatite (CA with Krebs cycle intermediates, such as citrate and succinate in order to control the growth of the resultant particles to more efficiently carry and transport the anticancer drug into the cancer cells. Citrate- or succinate-modified CA particles were synthesized with different concentrations of sodium citrate or sodium succinate, respectively, in the absence or presence of doxorubicin. The drug loading efficiency of the particles and their cellular uptake were observed by quantifying fluorescence intensity. The average diameter and surface charge of the particles were determined using Zetasizer. Cell viability was assessed by MTT assay. Citrate-modified carbonate apatite (CMCA exhibited the highest (31.38% binding affinity for doxorubicin and promoted rapid cellular uptake of the drug, leading to the half-maximal inhibitory concentration 1000 times less than that of the free drug in MCF-7 cells. Hence, CMCA nanoparticles with greater surface area enhance cytotoxicity in different breast cancer cells by enabling higher loading and more efficient cellular uptake of the drug.

  7. Electrocatalytic Study of Paracetamol at a Single-Walled Carbon Nanotube/Nickel Nanocomposite Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Koh Sing Ngai

    2015-01-01

    Full Text Available A rapid, simple, and sensitive method for the electrochemical determination of paracetamol was developed. A single-walled carbon nanotube/nickel (SWCNT/Ni nanocomposite was prepared and immobilized on a glassy carbon electrode (GCE surface via mechanical attachment. This paper reports the voltammetry study on the effect of paracetamol concentration, scan rate, pH, and temperature at a SWCNT/Ni-modified electrode in the determination of paracetamol. The characterization of the SWCNT/Ni/GCE was performed by cyclic voltammetry. Variable pressure scanning electron microscopy (VPSEM and energy dispersive X-ray (EDX spectrometer were used to examine the surface morphology and elemental profile of the modified electrode, respectively. Cyclic voltammetry showed significant enhancement in peak current for the determination of paracetamol at the SWCNT/Ni-modified electrode. A linear calibration curve was obtained for the paracetamol concentration between 0.05 and 0.50 mM. The SWCNT/Ni/GCE displayed a sensitivity of 64 mA M−1 and a detection limit of 1.17 × 10−7 M in paracetamol detection. The proposed electrode can be applied for the determination of paracetamol in real pharmaceutical samples with satisfactory performance. Results indicate that electrodes modified with SWCNT and nickel nanoparticles exhibit better electrocatalytic activity towards paracetamol.

  8. Electrocatalytic reduction of dioxygen by cobalt porphyrin-modified glassy carbon electrode with single-walled carbon nanotubes and nafion in aqueous solutions

    International Nuclear Information System (INIS)

    Choi, Ayoung; Jeong, Haesang; Kim, Songmi; Jo, Suhee; Jeon, Seungwon

    2008-01-01

    Cobalt porphyrin (CoP)-modified glassy carbon electrode (GCE) with single-walled carbon nanotubes (SWNTs) and Nafion demonstrated a higher electrocatalytic activity for the reduction of dioxygen in 0.1 M H 2 SO 4 solution. Cyclic and hydrodynamic voltammetry at the CoP-SWNTs/GCE-modified electrodes in O 2 -saturated aqueous solutions was used to study the electrocatalytic pathway. Compared with the CoP/GCE-modified electrodes, the reduction potential of dioxygen at the CoP-SWNTs/GCE-modified electrodes was shifted to the positive direction and the limiting current was greatly increased. Especially, the Co(TMPP)-SWNTs/GCE-modified electrode was catalyzed effectively by the 4e - reduction of dioxygen to water, because hydrodynamic voltammetry revealed the transference of approximately four electrons for dioxygen reduction and the minimal generation of hydrogen peroxide in the process of dioxygen reduction

  9. Design of a new hypoxanthine biosensor: xanthine oxidase modified carbon film and multi-walled carbon nanotube/carbon film electrodes.

    Science.gov (United States)

    Torres, A Carolina; Ghica, M Emilia; Brett, Christopher M A

    2013-04-01

    A new and simple-to-prepare hypoxanthine biosensor has been developed using xanthine oxidase (XOD) immobilised on carbon electrode surfaces. XOD was immobilised by glutaraldehyde cross-linking on carbon film (CF) electrodes and on carbon nanotube (CNT) modified CF (CNT/CF). A comparison of the performance of the two configurations was carried out by the current response using amperometry at fixed potential; the best characteristics being exhibited by XOD/CNT/CF modified electrodes. The effects of electrolyte pH and applied potential were evaluated, and a proposal is made for the enzyme mechanism of action involving competition between regeneration of flavin adenine dinucleotide and reduction of hydrogen peroxide. Under optimised conditions, the determination of hypoxanthine was carried out at -0.2 V vs. a saturated calomel electrode (SCE) with a detection limit of 0.75 μM on electrodes with CNT and at -0.3 V vs. SCE with a detection limit of 0.77 μM on electrodes without CNT. The applicability of the biosensor was verified by performing an interference study, reproducibility and stability were investigated, and hypoxanthine was successfully determined in sardine and shrimp samples.

  10. Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Mir Reza [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of); Jouyban, Abolghasem [Faculty of Pharmacy and Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of); Asadpour-Zeynali, Karim [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of)]. E-mail: asadpour@tabrizu.ac.ir

    2007-06-20

    Electrocatalytic oxidation of hydrazine (HZ) was studied on an overoxidized polypyrrole (OPPy) modified glassy carbon electrode using cyclic voltammetry and chronoamperometry techniques. The OPPy-modified glassy carbon electrode has very high catalytic ability for electrooxidation of HZ, which appeared as a reduced overpotential in a wide operational pH range of 5-10. The overall numbers of electrons involved in the catalytic oxidation of HZ, the number of electrons involved in the rate-determining and diffusion coefficient of HZ were estimated using cyclic voltammetry and chronoamperometry. It has been shown that using the OPPy-modified electrode, HZ can be determined by cyclic voltammetry and amperometry with limit of detection 36 and 3.7 {mu}M, respectively. The results of the analysis suggest that the proposed method promises accurate results and could be employed for the routine determination of HZ.

  11. Valorization of Renewable Carbon Resources for Chemicals.

    Science.gov (United States)

    Chen, Xi; Zhang, Bin; Wang, Yunzhu; Yan, Ning

    2015-01-01

    The overuse of fossil fuels has caused an energy crisis and associated environment issues. It is desirable to utilize renewable resources for the production of chemicals. This review mainly introduces our recent work on the transformation of renewable carbon resources including the conversion of cellulose, lignin, and chitin into sustainable chemicals. Various transformation routes have been established to form value-added chemicals, and accordingly a variety of effective catalytic systems have been developed, either based on metal catalysis and/or acid-base catalysis, to enable the desired transformation.

  12. Preparation of catechol-linked chitosan/carbon nanocomposite-modified electrode and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Jirimali, Harishchandra Digambar; Saravanakumar, Duraisamy; Shin, Woon Sup [Dept. of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul (Korea, Republic of)

    2015-04-15

    In this study, we report the synthesis of 2,3-dihydroxybenzaldehyde (catechol)-linked chitosan (cat-chitosan) and the preparation of its composite with carbon (cat-chitosan/carbon) to construct a catechol-modified electrode. The synthesis is similar to our previous work on hydroquinone–chitosan/carbon composite electrode. We synthesized catechol-linked chitosan polymer and prepared the its composite electrode with carbon. The catchitosan/carbon composite electrode shows a reversible confined redox behavior by the catechol functional group. The electrode catalyzes the oxidation of NADH. It has Cu{sup 2+} ion-binding capability and its binding constant 8.7 μM.

  13. Preparation of catechol-linked chitosan/carbon nanocomposite-modified electrode and its applications

    International Nuclear Information System (INIS)

    Jirimali, Harishchandra Digambar; Saravanakumar, Duraisamy; Shin, Woon Sup

    2015-01-01

    In this study, we report the synthesis of 2,3-dihydroxybenzaldehyde (catechol)-linked chitosan (cat-chitosan) and the preparation of its composite with carbon (cat-chitosan/carbon) to construct a catechol-modified electrode. The synthesis is similar to our previous work on hydroquinone–chitosan/carbon composite electrode. We synthesized catechol-linked chitosan polymer and prepared the its composite electrode with carbon. The catchitosan/carbon composite electrode shows a reversible confined redox behavior by the catechol functional group. The electrode catalyzes the oxidation of NADH. It has Cu"2"+ ion-binding capability and its binding constant 8.7 μM.

  14. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    OpenAIRE

    Moreno-Piraj?n, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2011-01-01

    An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-so...

  15. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  16. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Pallavi; Maire, Pascal [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland); Novak, Petr, E-mail: petr.novak@psi.c [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland)

    2011-04-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH{sub 2}){sub 3}OCO{sub 2}Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C{sub 6}H{sub 4}NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C{sub 6}H{sub 4}CH{sub 2}OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  17. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes

    Science.gov (United States)

    YanEqual Contribution, Liang; Zhao, Feng; Li, Shoujian; Hu, Zhongbo; Zhao, Yuliang

    2011-02-01

    The toxicity grade for a bulk material can be approximately determined by three factors (chemical composition, dose, and exposure route). However, for a nanomaterial it depends on more than ten factors. Interestingly, some nano-factors (like huge surface adsorbability, small size, etc.) that endow nanomaterials with new biomedical functions are also potential causes leading to toxicity or damage to the living organism. Is it possible to create safe nanomaterials if such a number of complicated factors need to be regulated? We herein try to find answers to this important question. We first discuss chemical processes that are applicable for nanosurface modifications, in order to improve biocompatibility, regulate ADME, and reduce the toxicity of carbon nanomaterials (carbon nanotubes, fullerenes, metallofullerenes, and graphenes). Then the biological/toxicological effects of surface-modified and unmodified carbon nanomaterials are comparatively discussed from two aspects: the lowered toxic responses or the enhanced biomedical functions. We summarize the eight biggest challenges in creating low-toxicity and safer nanomaterials and some significant topics of future research needs: to find out safer nanofactors; to establish controllable surface modifications and simpler chemistries for low-toxic nanomaterials; to explore the nanotoxicity mechanisms; to justify the validity of current toxicological theories in nanotoxicology; to create standardized nanomaterials for toxicity tests; to build theoretical models for cellular and molecular interactions of nanoparticles; and to establish systematical knowledge frameworks for nanotoxicology.

  18. Metal modified graphite. An innovative material for systems converting electro-chemical energy; Metallmodifizierter Graphit. Ein innovativer Werkstoff fuer Systeme zur elektrochemischen Energieumwandlung

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Peter

    2007-07-23

    The work deals with metal modification of graphite electrodes in a water-acid electrolyte solution. The target is to improve the catalytic properties of graphite electrodes as they are applied in redox storage batteries for storing electric energy. Different carbon and graphite materials were used and coated electro-chemically with different metals. After being coated with metal the graphite and carbon electrodes were investigated in terms of changing their catalytic properties by means of impedance measurements. It was shown, a metal coating without a prior activation with electro-chemical oxidation-reduction cycles only results in a low or zero increase of the catalytic properties. Investigations at the electrode material glass carbon showed, a prior activation of the electrode surface by means of electro-chemical oxidation-reduction cycles decreases the penetration resistance. The activation of the glass carbon surface prior to the surface coating with metal is favourable to the electro-chemical properties of the metal-modified electrode. All carbon types, which were used in this work, could be activated at a different level by means of electro-chemical oxidation-reduction cycles depending on the carbon type. The investigations further showed that the edge levels of the carbon were activated by means of the electro-chemical oxidation-reduction cycles. The metal precipitation favourably occurs at the activated positions. (orig.) [German] Die Arbeit befasst sich mit der Metallmodifizierung von Graphitelektroden in waessriger saurer Elektrolytloesung. Ziel ist es die katalytischen Eigenschaften von Graphitelektroden wie sie in Redoxspeicherbatterien zur Speicherung von elektrischer Energie eingesetzt werden zu verbessern. Fuer die Untersuchungen wurden unterschiedliche Kohlenstoff und Graphitmaterialien eingesetzt, die elektrochemisch mit verschiedenen Metallen belegt wurden. Die Graphit- und Kohlenstoffelektroden wurden nach der Metallbelegung durch

  19. Investigation of bioresistant dry building mixes modified by carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Korolev Evgeniy Valer'evich

    2015-04-01

    Full Text Available Dry construction mixes are today a product of high technologies. Depending on the purpose and requirements to the properties it is easy to produce dry construction mixes with different compositions and operating indicators in plant conditions using the necessary modifying additives. Cement, gypsum and other mineral binders are used in the construction mixes. Different types of cement are more heavily used in dry construction mixes. Such dry mixes are believed to be more effective materials comparing to traditional cement-sandy solutions of centralized preparation. The authors present the results of the investigations on obtaining biocidal cement-sand compositions. It was established, that introduction of sodium sulfate into the composition provides obtaining the materials with funginert and fungicide properties. The strength properties of the mixes modified by carbon nanotubes and biocide additive were investigated by mathematical planning methods. The results of the investigations showed that the modification of cement stone structure by carbon nanotubes positively influences their strength and technological properties. Nanomodifying of construction composites by introducing carbon nanotubes may be effectively used at different stages of structure formation of a construction material.

  20. Evaluation of activities of carbons in chemical equilibrium with uranium carbonitride

    International Nuclear Information System (INIS)

    Katsura, Masahiro; Hirota, Masayuki; Miyake, Masanobu; Hamada, Kazuo.

    1992-01-01

    A mixture of uranium sesquinitride and carbon was prepared by the reaction of UC of UC 2 with N 2 in the temperature range from 700 to 1400degC. When the mixture of uranium sesquinitride and carbon is kept at temperatures above 1200degC in the atmosphere of N 2 at low pressure, the state where uranium carbonitride (UC 1-x N x ) and carbon are present together in chemical equilibrium will be established. A thermodynamic analysis suggests that, in the equilibrium state, the composition of UC 1-x N x is determined by the chemical activity of carbon, a c , which is related to the chemical potential of the carbon, μ c , by the equation, μ c = μ c deg + RT 1n a c . Here μ c deg refers to graphite, which is usually taken as the standard state of carbon (a c = 1). Mixtures of U 2 N 3 and carbon with several degrees of graphitization were heat-treated at 1400degC, and the composition of UC 1-x N x in the reaction product was determined. From these experimental results and the thermodynamic analysis, values of the activity of the carbon coexisting with UC 1-x N x were estimated. (author)

  1. Effect of solvent on Se-modified ruthenium/carbon catalyst for oxygen reduction

    Directory of Open Access Journals (Sweden)

    Chuanxiang Zhang

    2014-12-01

    Full Text Available Se-modified ruthenium supporting on carbon (Sex–Ru/C electrocatalyst was prepared by solvothermal one-step synthesis method. The reaction mechanism was revealed after discussing impact of different solvents (i-propanol and EG in solvotermal reaction. The result showed that the grain size of Se-modified ruthenium electrocatalyst was as small as 1 to 3 nm and highly dispersed on carbon surface. X-ray photoelectron spectroscopy (XPS presented that selenium mainly existed in the catalyst in the form of elemental selenium and selenium oxides when the solvent was EG and i-propanol, respectively. The oxygen reduction reaction (ORR performance was improved by appearance of selenium oxides.

  2. Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries.

    Science.gov (United States)

    Selvan, Ramakrishnan Kalai; Zhu, Pei; Yan, Chaoi; Zhu, Jiadeng; Dirican, Mahmut; Shanmugavani, A; Lee, Yun Sung; Zhang, Xiangwu

    2018-03-01

    Biomass-derived porous carbon has been considered as a promising sulfur host material for lithium-sulfur batteries because of its high conductive nature and large porosity. The present study explored biomass-derived porous carbon as polysulfide reservoir to modify the surface of glass fiber (GF) separator. Two different carbons were prepared from Oak Tree fruit shells by carbonization with and without KOH activation. The KOH activated porous carbon (AC) provides a much higher surface area (796 m 2  g -1 ) than pyrolized carbon (PC) (334 m 2  g -1 ). The R factor value, calculated from the X-ray diffraction pattern, revealed that the activated porous carbon contains more single-layer sheets with a lower degree of graphitization. Raman spectra also confirmed the presence of sp 3 -hybridized carbon in the activated carbon structure. The COH functional group was identified through X-ray photoelectron spectroscopy for the polysulfide capture. Simple and straightforward coating of biomass-derived porous carbon onto the GF separator led to an improved electrochemical performance in Li-S cells. The Li-S cell assembled with porous carbon modified GF separator (ACGF) demonstrated an initial capacity of 1324 mAh g -1 at 0.2 C, which was 875 mAh g -1 for uncoated GF separator (calculated based on the 2nd cycle). Charge transfer resistance (R ct ) values further confirmed the high ionic conductivity nature of porous carbon modified separators. Overall, the biomass-derived activated porous carbon can be considered as a promising alternative material for the polysulfide inhibition in Li-S batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Bioelectrocatalytic mediatorless dioxygen reduction at carbon ceramic electrodes modified with bilirubin oxidase

    International Nuclear Information System (INIS)

    Nogala, Wojciech; Celebanska, Anna; Szot, Katarzyna; Wittstock, Gunther; Opallo, Marcin

    2010-01-01

    Carbon ceramic electrodes were prepared by sol-gel processing of a hydrophobic precursor - methyltrimethoxysilane (MTMOS) - together with dispersed graphite microparticles according to a literature procedure. Bilirubin oxidase (BOx) was adsorbed on this electrode from buffer solution and this process was followed by atomic force microscopy (AFM). The electrodes exhibited efficient mediatorless electrocatalytic activity towards dioxygen reduction. The activity depends on the time of adsorption of the enzyme and the pH. The electrode remains active in neutral solution. The bioelectrocatalytic activity is further increased when a fraction of the carbon microparticles is replaced by sulfonated carbon nanoparticles (CNPs). This additive enhances the electrical communication between the enzyme and the electronic conductor. At pH 7 the carbon ceramic electrode modified with bilirubin oxidase retains ca. half of its highest activity. The role of the modified nanoparticles is confirmed by experiments in which a film embedded in a hydrophobic silicate matrix also exhibited efficient mediatorless biocatalytic dioxygen reduction. Scanning electrochemical microscopy (SECM) of the studied electrodes indicated a rather even distribution of the catalytic activity over the electrode surface.

  4. Modification of asphaltic concrete with a mineral polymeric additive based on butadiene-styrene rubber and chemically precipitated calcium carbonate

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2016-01-01

    Full Text Available Modification of asphaltic concrete with a mineral polymeric additive based on butadiene – styrene rubber and chemically precipitated calcium carbonate. This paper presents the results of the study of physical – mechanical and service properties of the asphaltic concrete modified with the mineral polymeric composition. Calcium carbonate is used both as a filler and a coagulant. The chalk was preliminarily ground and hydrophobizated by stearic acid. These operations contribute to even distribution of the filler and interfere with lump coagulation. As a result of the experiments, it was found that the best results were obtained by combining the operations of dispersion and hydrophobization. The optimal amount of stearic acid providing the finest grinding in a ball mill is a content from 3 to 5% by weight. The optimal grinding time of the filler was found (4–6 hours. With increasing dispersion time the particles form agglomerates. Filling the butadiene styrene latex with the hydrophobic fine-grained calcium carbonate was carried out in the laboratory mixer. As a result of the experimental works, it was found that the best distribution of the filler takes place with ratio of rubber: chalk – 100:400. The resulting modifier was subjected to the thermal analysis on the derivatograph to determine its application temperature interval. A marked reduction in weight of the mineral polymeric modifier begins at 350 °C. Thus, high temperature of the modifier destruction allows to use it at the temperature of the technological process of asphaltic concrete preparation (up to 170 °C. It was found that an increase in the amount of the carbonate filler in the rubber SKS 30АRК significantly increases its thermal resistance and connection of the polymer with the chalk in the composition.

  5. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  6. A novel non-enzymatic hydrogen peroxide sensor based on single walled carbon nanotubes-manganese complex modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Mahdioun, Monierosadat; Noorbakhsh, Abdollah; Abdolmaleki, Amir; Ghavami, Raoof

    2011-01-01

    A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20-100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1-12). The surface coverages and heterogeneous electron transfer rate constants (k s ) of immobilized Mn-complex were approximately 1.58 x 10 -10 mole cm -2 and 48.84 s -1 . The modified electrode showed excellent electrocatalytic activity toward H 2 O 2 reduction. Detection limit, sensitivity, linear concentration range and k cat for H 2 O 2 were, 0.2 μM and 692 nA μM -1 cm -2 , 1 μM to 1.5 mM and 7.96(±0.2) x 10 3 M -1 s -1 , respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.

  7. Detection of NADH via electrocatalytic oxidation at single-walled carbon nanotubes modified with Variamine blue

    International Nuclear Information System (INIS)

    Radoi, A.; Compagnone, D.; Valcarcel, M.A.; Placidi, P.; Materazzi, S.; Moscone, D.; Palleschi, G.

    2008-01-01

    Screen-printed electrodes (SPEs) modified with Variamine blue (VB), covalently attached to the oxidized single-walled carbon nanotubes (SWCNTs-COOH), were developed and used as chemical sensors for the detection of the reduced nicotinamide adenine dinucleotide (NADH). The Variamine blue redox mediator was covalently linked to the SWCNTs-COOH by the N,N'-dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) chemistry. Infrared Fourier transform (FT-IR) spectroscopy revealed the presence of the amide bands situated at 1623 cm -1 (I band), 1577 cm -1 (II band) and 1437 cm -1 (III band) demonstrating the covalent linkage of Variamine blue to SWCNTs-COOH. The heterogeneous electron transfer rate, k obs. , was 13,850 M -1 s -1 , and the k s and α were 0.8 s -1 and 0.56, respectively. The pH dependence was also investigated. SPEs modified with Variamine blue by using the DCC/NHS conjugation method, showed a variation of -36 mV per pH unit. A successful application was the development of a lactate biosensor obtained by the immobilization of the L-lactate dehydrogenase on the NADH sensor

  8. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    International Nuclear Information System (INIS)

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-01-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH) 2 ). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum/carbon nanotube

  9. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maho, Anthony [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Fonds pour la Formation à la Recherche dans l' Industrie et dans l' Agriculture (FRIA), Rue d' Egmont 5, B-1000 Bruxelles (Belgium); Detriche, Simon; Delhalle, Joseph [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Zineb, E-mail: zineb.mekhalif@fundp.ac.be [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH){sub 2}). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum/carbon

  10. The use of simultaneous chemical precipitation in modified activated ...

    African Journals Online (AJOL)

    The IAWQ Activated Sludge Model (ASM) No. 2 is a kinetic-based model and incorporates two simple processes for chemical precipitation and redissolution that are readily integrated with biological processes for carbon, nitrogen and phosphorus removal. This model was applied to experimental data collected as part of this ...

  11. Modified NASA-Lewis chemical equilibrium code for MHD applications

    Science.gov (United States)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-01-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.

  12. Long-Term Performance of Chemically and Physically Modified Activated Carbons in Air Cathodes of Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2014-07-31

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Activated carbon (AC) is a low-cost and effective catalyst for oxygen reduction in air cathodes of microbial fuel cells (MFCs), but its performance must be maintained over time. AC was modified by three methods: 1)pyrolysis with iron ethylenediaminetetraacetic acid (AC-Fe), 2)heat treatment (AC-heat), and 3)mixing with carbon black (AC-CB). The maximum power densities after one month with these AC cathodes were 35% higher with AC-Fe (1410±50mW m-2) and AC-heat (1400±20mW m-2), and 16% higher with AC-CB (1210±30mW m-2) than for plain AC (1040±20mW m-2), versus 1270±50mW m-2 for a Pt control. After 16months, the Pt cathodes produced only 250±10mW m-2. However, the AC-heat and AC-CB cathodes still produced 960-970mW m-2, whereas plain AC produced 860±60mW m-2. The performance of the AC cathodes was restored to >85% of the initial maximum power densities by cleaning with a weak acid solution. Based on cost considerations among the AC materials, AC-CB appears to be the best choice for long-term performance.

  13. New Electrochemically-Modified Carbon Paste Inclusion β-Cyclodextrin and Carbon Nanotubes Sensors for Quantification of Dorzolamide Hydrochloride

    Directory of Open Access Journals (Sweden)

    Nawal Ahmad Alarfaj

    2016-12-01

    Full Text Available The present article introduces a new approach to fabricate carbon paste sensors, including carbon paste, modified carbon paste inclusion β-cyclodextrin, and carbon nanotubes for the quantification of dorzolamide hydrochloride (DRZ. This study is mainly based on the construction of three different carbon paste sensors by the incorporation of DRZ with phosphotungstic acid (PTA to form dorzolamide-phosphotungstate (DRZ-PT as an electroactive material in the presence of the solvent mediator ortho-nitrophenyloctyl ether (o-NPOE. The fabricated conventional carbon paste sensor (sensor I, as well as the other modified carbon paste sensors using β-cyclodextrin (sensor II and carbon nanotubes (sensor III, have been investigated. The sensors displayed Nernstian responses of 55.4 ± 0.6, 56.4 ± 0.4 and 58.1 ± 0.2 mV·decade−1 over concentration ranges of 1.0 × 10−5–1.0 × 10−2, 1.0 × 10−6–1.0 × 10−2, and 5.0 × 10−8–1.0 × 10−2 mol·L−1 with lower detection limits of 5.0 × 10−6, 5.0 × 10−7, and 2.5 × 10−9 mol·L−1 for sensors I, II, and III, respectively. The critical performance of the developed sensors was checked with respect to the effect of various parameters, including pH, selectivity, response time, linear concentration relationship, lifespan, etc. Method validation was applied according to the international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use ICH guidelines. The developed sensors were employed for the determination of DRZ in its bulk and dosage forms, as well as bio-samples. The observed data were statistically analyzed and compared with those obtained from other published methods.

  14. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode

    International Nuclear Information System (INIS)

    Zhou Ming; Guo Liping; Lin Fanyun; Liu Haixia

    2007-01-01

    In this work, we have developed a convenient and efficient method for the functionalization of ordered mesoporous carbon (OMC) using polyoxometalate H 6 P 2 Mo 18 O 62 .xH 2 O (P 2 Mo 18 ). By the method, glassy carbon (GC) electrode modified with P 2 Mo 18 which was immobilized on the channel surface of OMC was prepared and characterized for the first time. The large specific surface area and porous structure of the modified OMC particles result in high heteropolyacid loading, and the P 2 Mo 18 entrapped in this order matrix is stable. Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption-desorption isotherm and X-ray diffraction (XRD) were employed to give insight into the intermolecular interaction between OMC and P 2 Mo 18 . The electrochemical behavior of the modified electrode was studied in detail, including pH-dependence, stability and so on. The cyclic voltammetry (CV) and amperometry studies demonstrated that P 2 Mo 18 /OMC/GC electrode has high stability, fast response and good electrocatalytic activity for the reduction of nitrite, bromate, idonate, and hydrogen peroxide. The mechanism of catalysis on P 2 Mo 18 /OMC/GC electrode was discussed. Moreover, the development of our approach for OMC functionalization suggests the potential applications in catalysis, molecular electronics and sensors

  15. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.

    Science.gov (United States)

    Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il

    2014-02-01

    Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed.

  16. Reactive chemically modified piezoelectric crystal detectors: A new class of high-selectivity sensors

    International Nuclear Information System (INIS)

    Fadeev, A.Yu.; Filatov, A.L.; Lisichkin, G.V.

    1994-01-01

    A great number of works have focused on the study of properties of modified piezoelectric quartz crystal detectors (PQCDs) coated with sorbing substrates and on applying sensors based on them for the analysis of diluted gas mixtures and solutions. This work offers a new class of gravemetric sensors characterized by a reversible chemical reaction that occurs on their surface. Silica films are proposed as a sorbing coating of quartz detectors, and a chemical modification of a surface is suggested for covalent fixation of the necessary compounds. PQCDs were chemically modified with reactive diene derivatives that can also act as dienophiles. Hexachlorocyclopentadiene (HCCPD, resonater I) and cyclopentadiene (CPD, resonator II) were fixed on a PQCD surface in several stages. After treatment with the resonaters, the PQCD in a CPD gas phase exhibited time dependent frequency shifts from 20-100 Hz. The results suggest that there is a reversible chemical reaction on the electrode surface of resonators I and II when they interact with CPD vapors. Therefore, PQCDs modified with reactive dienes were prepared for the first time and may be employed as selective sensors for CPD

  17. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  18. Development of a novel MWCNTs-triazene-modified carbon paste electrode for potentiometric assessment of Hg(II) in the aquatic environments.

    Science.gov (United States)

    Mashhadizadeh, Mohammad Hossein; Ramezani, Soleyman; Rofouei, Mohammad Kazem

    2015-02-01

    In this approach, a new chemically modified carbon paste electrode was assembled for potentiometric assay of mercury(II) ion in the aqueous environments. Hereby, MWCNTs were used in the carbon paste composition to meliorate the electrical conductivity and sensitivity of the carbon paste owing to its exceptional physicochemical characteristics. Likewise, participation of the BEPT as a super-selective ionophore in the carbon paste composition boosted significantly the selectivity of the modified electrode towards Hg(II) ions over a wide concentration range of 4.0 × 10(-9)-2.2 × 10(-3) mol L(-1) with a lower detection limit of 3.1 × 10(-9) mol L(-1). Besides, Nernstian slope of the proposed sensor was 28.9(± 0.4)mV/decade over a pH range of 3.0-5.2 with potentiometric short response time of 10s. In the interim, by storing in the dark and cool dry place during non-usage period, the electrode can be used for at least 30 days without any momentous divergence of the potentiometric response. Eventually, to judge about its practical efficiency, the arranged sensor was utilized successfully as an indicator electrode for potentiometric titration of mercury(II) with standard solution of EDTA. As well, the quantitative analysis of mercury(II) ions in some aqueous samples with sensible accuracy and precision was satisfactorily performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. X-Ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Elio Desimoni

    2015-04-01

    Full Text Available The characterization of chemically modified sensors and biosensors is commonly performed by cyclic voltammetry and electron microscopies, which allow verifying electrode mechanisms and surface morphologies. Among other techniques, X-ray photoelectron spectroscopy (XPS plays a unique role in giving access to qualitative, quantitative/semi-quantitative and speciation information concerning the sensor surface. Nevertheless, XPS remains rather underused in this field. The aim of this paper is to review selected articles which evidence the useful performances of XPS in characterizing the top surface layers of chemically modified sensors and biosensors. A concise introduction to X-ray Photoelectron Spectroscopy gives to the reader the essential background. The application of XPS for characterizing sensors suitable for food and environmental analysis is highlighted.

  20. Stripping voltammetry of technetium using a TOA modified carbon paste electrode

    International Nuclear Information System (INIS)

    Ruf, H.; Schorb, K.

    1989-10-01

    Low concentrations of technetium have been measured DP-stripping-voltammetrically using a carbon paste electrode modified with tri-n-octylamine (TOA-CPE). Preconcentration of the metal ion on the electrode surface accomplished by dipping of the latter in the sample solution which is 2M in HCl, relies on the chemical reaction with the amine acting as a liquid anion exchanger. Both, Tc-IV occurring as the TcCl 6 2- ion in chloride solutions as well as Tc-VII hereby are deposited. Measurements following deposition yield voltammograms of essentially different shapes for the two Tc species. With Tc-IV a characteristic curve with a prominent current signal at -280 mV (vs. Ag/AgCl) is obtained which can be evaluated for Tc quantitation. However, starting from Tc-VII, complex voltammograms are registered not allowing direct technetium assays. Nevertheless, after reduction to Tc-IV, e.g. by means of ascorbic acid, also Tc-VII can be quantified reliably by the method described, the lower detection limit for both oxidation states being about 4x10 -8 M. (orig.) [de

  1. Surface-modified polymeric pads for enhanced performance during chemical mechanical planarization

    International Nuclear Information System (INIS)

    Deshpande, S.; Dakshinamurthy, S.; Kuiry, S.C.; Vaidyanathan, R.; Obeng, Y.S.; Seal, S.

    2005-01-01

    The chemical mechanical planarization (CMP) process occurs at an atomic level at the slurry/wafer interface and hence slurries and polishing pads play a critical role in their successful implementation. Polyurethane is a commonly used polymer in the manufacturing of CMP pads. These pads are incompatible with some chemicals present in the CMP slurries, such as hydrogen peroxide. To overcome these problems, Psiloquest has developed new Application Specific Pads (ASP). Surface of such pads has been modified by depositing a thin film of tetraethyl orthosilicate using plasma-enhanced chemical vapor deposition (PECVD) process. In the present study, mechanical properties of such coated pads have been investigated using nanoindentation. The surface morphology and the chemistry of the ASP were studied using scanning electron microcopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy techniques. It was observed that mechanical and chemical properties of the pad top surface are a function of the PECVD coating time. Such PECVD-treated pads are found to be hydrophilic and do not require storage in aqueous media during the not-in-use period. The metal removal rate using such surface-modified polishing pads was found to increase linearly with the PECVD coating time

  2. Immobilization of redox mediators on functionalized carbon nanotube

    Indian Academy of Sciences (India)

    Chemical functionalization of single-walled carbon nanotubes with redox mediators, namely, toluidine blue and thionin have been carried out and the performance of graphite electrode modified with functionalized carbon nanotubes is described. Mechanical immobilization of functionalized single-walled nanotube (SWNT) ...

  3. Osteogenesis ability of biomimetic modified 3Y-TZP ceramic using chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shih-Kuang [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China); Chang, Pai-Ling [Taoyuan General Hospital, Taoyuan 33004, Taiwan, ROC (China); Ho, Wen-Fu [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Hsu, Hsueh-Chuan; Liao, Huei-Jyuan [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China); Wu, Shih-Ching, E-mail: scwu@ctust.edu.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China)

    2015-12-01

    In this study, RGD peptide derived from extracellular matrix proteins was employed to modify the surface of yttria-tetragonal zirconia polycrystal (3Y-TZP) to promote cell adhesion. The surface of 3Y-TZP ceramic specimens was first modified using chemical treatment with aqueous solutions of H{sub 3}PO{sub 4}, CH{sub 3}COOH, and NaOH, for the formation of Zr–OH surface functional groups. Then, the RGD peptide was immobilized on the surface of the 3Y-TZP through silanization method, with covalent bonding via the Zr–OH surface functional groups. From this study, the RGD peptide can successfully be grafted onto the chemical modified 3Y-TZP surface. The –OH functional groups formed on the surface of 3Y-TZP after acid/alkaline chemical treatment contribute to the grafting reaction of RGD peptides. The use of phosphoric acid solution in 3Y-TZP surface treatment before RGD peptide grafting for biomimetic modification can significantly enhance cell adhesion, proliferation, and differentiation. - Highlights: • This study successfully immobilized the peptides onto the surface of zirconia. • Acid/alkaline chemical treatment promotes the formation of − OH functional groups. • The use of phosphoric acid solution produced the formation of most − OH. • Peptides can significantly enhance cell adhesion, proliferation, and differentiation.

  4. Development of the removal technology for toxic heavy metal ions by surface-modified activated carbon

    International Nuclear Information System (INIS)

    Park, Geun Il; Song, Kee Chan; Kim, Kwang Wook; Kim, In Tae; Cho, Il Hoon; Kim, Joon Hyung

    2001-01-01

    Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated. Surface-modified activated carbons are classified as AC(as-received carbon), OAC(single surface-modified carbon with nitric acid solution) and OAC-Na(double surface-modified carbon with various alkali solutions). It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt. Variations of adsorption efficiencies in pH ranges of 2∼10 and the adsorption capacities in batch adsorber and fixed bed for removal of both radionuclides and toxic heavy metals using OAC-Na were shown to be superior to that of the AC and OAC even in a low pH range. Capacity factors of OAC-Na for the removal of various metal ions are also excellent to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is comparable to that of XAD-16-TAR used as commercial ion exchange resin

  5. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin

    Science.gov (United States)

    Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang

    2015-01-01

    Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth’s climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets. PMID:26150000

  6. Pt-modified carbon nanotube networked layers for enhanced gas microsensors

    International Nuclear Information System (INIS)

    Penza, M.; Rossi, R.; Alvisi, M.; Suriano, D.; Serra, E.

    2011-01-01

    Carbon nanotubes (CNTs) networked films have been grown by chemical vapor deposition (CVD) technology onto miniaturized low-cost alumina substrates, coated by nanosized Co-catalyst for growing CNTs, to perform chemical detection of toxic gasses (NO 2 and NH 3 ), greenhouse gasses (CO 2 and CH 4 ) and domestic safety gasses (CO and C 2 H 5 OH) at an operating sensor temperature of 120 °C. The morphology and structure of the CNTs networks have been characterized by scanning electron microscopy (SEM). A dense network of bundles of multiple tubes consisting of multi-walled carbon nanostructures appears with a maximum length of 1–5 μm and single-tube diameter varying in the range of 5–40 nm. Surface modifications of the CNTs networks with sputtered Platinum (Pt) nanoclusters, at tuned loading of 8, 15 and 30 nm, provide higher sensitivity for significantly enhanced gas detection compared to un-decorated CNTs. This could be caused by a spillover of the targeted gas molecules onto Pt-catalyst surface with a chemical gating into CNTs layers. The measured electrical conductance of the functionalized CNTs upon exposures of a given oxidizing and reducing gas is modulated by a charge transfer model with p-type semiconducting characteristics. The effect of activated carbons as chemical filters to reduce the influence of the domestic interfering alcohols on CO gas detection has been studied. Functionalized CNT gas sensors exhibited better performances compared to unmodified CNTs, making them highly promising candidates for functional applications of gas control and alarms.

  7. Electrochemical detection of nitrite based on the polythionine/carbon nanotube modified electrode

    International Nuclear Information System (INIS)

    Deng, Chunyan; Chen, Jinzhuo; Nie, Zhou; Yang, Minghui; Si, Shihui

    2012-01-01

    In this paper, thionine was electro-polymerized onto the surface of carbon nanotube (CNT)-modified glassy carbon (GC) to fabricate the polythionine (PTH)/CNT/GC electrode. It was found that the electro-reduction current of nitrite was enhanced greatly at the PTH/CNT/GC electrode. It may be demonstrated that PTH was used as a mediator for electrocatalytic reduction of nitrite, and CNTs as an excellent nanomaterial can improve the electron transfer between the electrode and nitrite. Therefore, based on the synergic effect of PTH and CNTs, the PTH/CNT/GC electrode was employed to detect nitrite, and the high sensitivity of 5.81 μA mM −1 , and the detection limit of 1.4 × 10 −6 M were obtained. Besides, the modified electrode showed an inherent stability, fast response time, and good anti-interference ability. These suggested that the PTH/CNT/GC electrode was favorable and reliable for the detection of nitrite. - Highlights: ► Polythionine (PTH) was used as a mediator for electrocatalytic reduction of nitrite. ► Carbon nanotubes (CNTs) improve electron transfer between the electrode and nitrite. ► The PTH/CNT/glassy carbon electrode showed excellent nitrite detection performance.

  8. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions

    International Nuclear Information System (INIS)

    Long, Christopher M.; Nascarella, Marc A.; Valberg, Peter A.

    2013-01-01

    Airborne particles containing elemental carbon (EC) are currently at the forefront of scientific and regulatory scrutiny, including black carbon, carbon black, and engineered carbon-based nanomaterials, e.g., carbon nanotubes, fullerenes, and graphene. Scientists and regulators sometimes group these EC-containing particles together, for example, interchangeably using the terms carbon black and black carbon despite one being a manufactured product with well-controlled properties and the other being an undesired, incomplete-combustion byproduct with diverse properties. In this critical review, we synthesize information on the contrasting properties of EC-containing particles in order to highlight significant differences that can affect hazard potential. We demonstrate why carbon black should not be considered a model particle representative of either combustion soots or engineered carbon-based nanomaterials. Overall, scientific studies need to distinguish these highly different EC-containing particles with care and precision so as to forestall unwarranted extrapolation of properties, hazard potential, and study conclusions from one material to another. -- Highlights: •Major classes of elemental carbon-containing particles have distinct properties. •Despite similar names, carbon black should not be confused with black carbon. •Carbon black is distinguished by a high EC content and well-controlled properties. •Black carbon particles are characterized by their heterogenous properties. •Carbon black is not a model particle representative of engineered nanomaterials. -- This review demonstrates the significant physical and chemical distinctions between elemental carbon-containing particles e.g., carbon black, black carbon, and engineered nanomaterials

  9. Three modified activated carbons by different ligands for the solid phase extraction of copper and lead

    International Nuclear Information System (INIS)

    Ghaedi, M.; Ahmadi, F.; Tavakoli, Z.; Montazerozohori, M.; Khanmohammadi, A.; Soylak, M.

    2008-01-01

    In the presented work, 5,5-diphenylimidazolidine-2,4-dione (phenytoin) (DFTD), 5,5-diphenylimidazolidine-2-thione-,4-one (thiophenytoin) (DFID) and 2-(4'-methoxy-benzylidenimine) thiophenole (MBIP) modified activated carbons have been used for the solid phase extraction of copper and lead ions prior to their flame atomic absorption spectrometric determinations. The influences of the various analytical parameters including pH, amounts of reagent, sample volume and eluent type, etc. on the recovery efficiencies of copper and lead ions were investigated. The influences of alkaline, earth alkaline and some transition metals on the adsorption of the analytes were also examined. The detection limits by three sigma for analyte ions were 0.65 and 0.42 μg L -1 using activated carbon modified with DFID; 0.52 and 0.37 μg L -1 using activated carbon modified with DFTD and 0.46 and 0.31 μg L -1 using activated carbon modified with MBIP for Pb(II) and Cu(II), respectively. The procedure was applied to the determination of analytes in natural waters, soil, and blood samples with satisfactory results (recoveries greater than 95%, R.S.D.'s lower than 4%)

  10. Three modified activated carbons by different ligands for the solid phase extraction of copper and lead

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, M. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Ahmadi, F.; Tavakoli, Z. [Gachsaran Azad University, Gachsaran (Iran, Islamic Republic of); Montazerozohori, M. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of); Khanmohammadi, A. [Young Researchers Club, Gachsaran Azad University, Gachsaran (Iran, Islamic Republic of); Soylak, M. [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-04-15

    In the presented work, 5,5-diphenylimidazolidine-2,4-dione (phenytoin) (DFTD), 5,5-diphenylimidazolidine-2-thione-,4-one (thiophenytoin) (DFID) and 2-(4'-methoxy-benzylidenimine) thiophenole (MBIP) modified activated carbons have been used for the solid phase extraction of copper and lead ions prior to their flame atomic absorption spectrometric determinations. The influences of the various analytical parameters including pH, amounts of reagent, sample volume and eluent type, etc. on the recovery efficiencies of copper and lead ions were investigated. The influences of alkaline, earth alkaline and some transition metals on the adsorption of the analytes were also examined. The detection limits by three sigma for analyte ions were 0.65 and 0.42 {mu}g L{sup -1} using activated carbon modified with DFID; 0.52 and 0.37 {mu}g L{sup -1} using activated carbon modified with DFTD and 0.46 and 0.31 {mu}g L{sup -1} using activated carbon modified with MBIP for Pb(II) and Cu(II), respectively. The procedure was applied to the determination of analytes in natural waters, soil, and blood samples with satisfactory results (recoveries greater than 95%, R.S.D.'s lower than 4%)

  11. A novel non-enzymatic hydrogen peroxide sensor based on single walled carbon nanotubes-manganese complex modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@uok.ac.i [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Mahdioun, Monierosadat; Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Abdolmaleki, Amir [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156/83111 (Iran, Islamic Republic of); Ghavami, Raoof [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2011-03-30

    A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20-100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1-12). The surface coverages and heterogeneous electron transfer rate constants (k{sub s}) of immobilized Mn-complex were approximately 1.58 x 10{sup -10} mole cm{sup -2} and 48.84 s{sup -1}. The modified electrode showed excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Detection limit, sensitivity, linear concentration range and k{sub cat} for H{sub 2}O{sub 2} were, 0.2 {mu}M and 692 nA {mu}M{sup -1} cm{sup -2}, 1 {mu}M to 1.5 mM and 7.96({+-}0.2) x 10{sup 3} M{sup -1} s{sup -1}, respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.

  12. Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors.

    Science.gov (United States)

    Hu, PingAn; Zhang, Jia; Li, Le; Wang, Zhenlong; O'Neill, William; Estrela, Pedro

    2010-01-01

    Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

  13. Characterization of a surface modified carbon cryogel and a carbon supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    BILJANA M. BABIĆ

    2007-08-01

    Full Text Available A carbon cryogel, synthesized by carbonization of a resorcinol/formaldehyde cryogel and oxidized in nitric acid, was used as catalyst support for Pt nano-particles. The Pt/C catalyst was prepared by a modified polyol synthesis method in an ethylene glycol (EG solution. Characterization by nitrogen adsorption showed that the carbon cryogel support and the Pt/C catalyst were mesoporous materials with high specific surface areas (SBET > 400 m2 g-1 and large mesoporous volumes. X-Ray diffraction of the catalyst demonstrated the successful reduction of the Pt precursor to metallic form. TEM Images of the Pt/C catalyst and Pt particle size distribution showed that the mean Pt particle size was about 3.3 nm. Cyclic voltammetry (CV experiments at various scan rates (from 2 to 200 mV s-1 were performed in 0.5 mol dm-3 HClO4 solution. The large capacitance of the oxidized carbon cryogel electrode, which arises from a combination of the double-layer capacitance and pseudocapacitance, associated with the participation of surface redox-type reactions was demonstrated. For the oxidized carbon cryogel, the total specific capacitance determined by 1/C vs. ν0.5 extrapolation method was found to be 386 F g-1. The hydrogen oxidation reaction at the investigated Pt/C catalyst proceeded as an electrochemically reversible, two-electron direct discharge reaction.

  14. Determination of Chemical States of Mercury on Activated Carbon Using XANES

    International Nuclear Information System (INIS)

    Takaoka, Masaki; Takeda, Nobuo; Oshita, Kazuyuki; Yamamoto, Takashi; Tanaka, Tsunehiro; Uruga, Tomoya

    2007-01-01

    Although the adsorption of mercury vapor onto activated carbon is a widely used technology to prevent environmental release, the adsorption mechanism is not clearly understood. In this study, we determined the chemical states of mercury on two kinds of activated carbon using X-ray absorption near-edge spectroscopy (XANES) to elucidate the adsorption mechanism. The adsorption experiments of elemental mercury onto activated carbon were conducted under air and nitrogen atmospheres at temperatures of 20 and 160 deg. C. Two types of activated carbon were prepared. X-ray absorption fine structure (XAFS) measurements were carried out on beamline BL01B1 at SPring-8. Hg-LIII edge XANES spectra suggested that chemical adsorption of elemental mercury on the activated carbon occurred in the 20-160 deg. C temperature range. According to the XANES spectra, a difference occurred in the chemical states of mercury between AC no. 1 and AC no. 2. The Hg XANES spectra on AC no. 1 were similar to those of Hg2Cl2 and HgS, and the Hg XANES spectra on AC no. 2 were similar to that of HgO, which suggested that nitric acid treatment removed sulfur from AC no. 1 and functional groups that were strong oxidizers on the surface of AC no. 2 created HgO. According to the EXAFS oscillation, a difference occurred in the chemical states of mercury on AC no. 1 between 20 and 160 deg. C. We found that impurities and oxidant functional groups on activated carbon play key roles in mercury adsorption

  15. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

    OpenAIRE

    Amare, Meareg; Aklog, Senait

    2017-01-01

    Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 ? 10?6 to 100 ? 10?6?mol?L?1 with determination coefficient and method detection limit (LoD = 3?s/slope) of 0....

  16. Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase

    International Nuclear Information System (INIS)

    Wen, H.; Nallathambi, V.; Chakraborty, D.; Barton, S.C.

    2011-01-01

    Carboxylated carbon nanotubes were coated onto carbon microfiber electrodes to create a micron-scale bioelectrode. This material has a high surface area and can serve as a support for immobilization of enzymes such as glucose oxidase. A typical carbon nanotube loading of 13 μg cm -1 yields a coating thickness of 17 μm and a 2000-fold increase in surface capacitance. The modified electrode was further coated with a biocatalytic hydrogel composed of a conductive redox polymer, glucose oxidase, and a crosslinker to create a glucose bioelectrode. The current density on oxidation of glucose is 16.6 mA cm-2 at 0.5 V (vs. Ag/AgCl) in oxygen-free glucose solution. We consider this approach to be useful for designing and characterizing surface treatments for carbon mats and papers by mimicking their local microenvironment. (author)

  17. A study of nanostructured gold modified glassy carbon electrode for ...

    Indian Academy of Sciences (India)

    A nanostructured gold modified glassy carbon electrode (Aunano/GCE) was employed for the determination of trace chromium(VI). To prepare Aunano/GCE, the GCE was immersed into KAuCl4 solution and electrodeposition was conducted at the potential of -0.4 V (vs Ag/AgCl) for 600 s. Scanning electron microscopy ...

  18. Carbon-Nanotube-Based Chemical Gas Sensor

    Science.gov (United States)

    Kaul, Arunpama B.

    2010-01-01

    Conventional thermal conductivity gauges (e.g. Pirani gauges) lend themselves to applications such as leak detectors, or in gas chromatographs for identifying various gas species. However, these conventional gauges are physically large, operate at high power, and have a slow response time. A single-walled carbon-nanotube (SWNT)-based chemical sensing gauge relies on differences in thermal conductance of the respective gases surrounding the CNT as it is voltage-biased, as a means for chemical identification. Such a sensor provides benefits of significantly reduced size and compactness, fast response time, low-power operation, and inexpensive manufacturing since it can be batch-fabricated using Si integrated-circuit (IC) process technology.

  19. Carbon source in the future chemical industries

    Science.gov (United States)

    Hofmann, Peter; Heinrich Krauch, Carl

    1982-11-01

    Rising crude oil prices favour the exploitation of hitherto unutilised energy carriers and the realisation of new technologies in all sectors where carbon is used. These changed economic constraints necessitate both savings in conventional petrochemistry and a change to oil-independent carbon sources in the chemical industry. While, in coal chemistry, the synthesis and process principles of petrochemistry — fragmentation of the raw material and subsequent buildup of molecular structures — can be maintained, the raw material structure largely remains unchanged in the chemistry of renewable raw materials. This lecture is to demonstrate the structural as well as the technological and energy criteria of the chemistry of alternative carbon sources, to forecast the chances of commercial realization and to discuss some promising fields of research and development.

  20. Thermal and Electrical Characterization of the Carbon Nanofibers Based Cement Composites

    Directory of Open Access Journals (Sweden)

    Agnieszka ŚLOSARCZYK

    2017-08-01

    Full Text Available The paper describes the influence of chemical modification of vapor grown carbon nanofibers (VGCnFs on the thermal and electrical properties of the cement composites. The surface modification of nanofibers was performed by means of ozone and nitric acid treatments. It was shown that the oxidized carbon nanofibers surface plays an important role in shaping the mechanical and especially electrical properties of cement composite. For cement matrix modified with carbon nanofibers subjected to oxidized treatment, the slightly increase of cement paste resistivity was observed. It confirms the better adhesion of carbon nanofibers to cement paste. However, independently of carbon nanofibers modification, the occurrence of VGCnFs in cement paste increased the electrical conductivity of the composite in comparison to the cement paste without fibers. The obtained values of electrical resistivity were comparable with values of cement composites modified with 4 mm long carbon fibers. Moreover, it was shown that the chemical modification of carbon nanofibers surface does not influence on the thermal properties of cement composites. In case of cement paste with unmodified and modified carbon nanofibers, the Seebeck voltage was proportional to the temperature difference and was independent of the oxidation degree of carbon nanofibers.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.14993

  1. Electrochemical Investigation of Catechol at Poly(niacinamide Modified Carbon Paste Electrode: A Voltammetric Study

    Directory of Open Access Journals (Sweden)

    A. B. Teradale

    2016-01-01

    Full Text Available A polymeric thin film modified electrode, that is, poly(niacinamide modified carbon paste electrode (MCPE, was developed for the electrochemical determination of catechol (CC by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE, the poly(niacinamide MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide modified carbon paste electrode gave a linear response between concentration of CC and its anodic peak current in the range within 20.6–229.0 μM. The limit of detection (3S/M and limit of quantification (10S/M were 1.497 μM and 4.99 μM, respectively. From the study of scan rate variation, the electrode process was found to be adsorption-controlled. The involvement of protons and electrons in the oxidation of CC was found to be equal. The probable electropolymerisation mechanism of niacinamide was proposed. Finally, this method can be used in development of a sensor for sensitive determination of CC.

  2. Selective Determination of Serotonin on Poly(3,4-ethylenedioxy pyrrole)-single-walled Carbon Nanotube-Modified Glassy Carbon Electrodes

    International Nuclear Information System (INIS)

    Kim, Seul Ki; Bae, Si Ra; Ahmed, Mohammad Shamsuddin; You, Jung Min; Jeon, Seung Won

    2011-01-01

    An electrochemically-modified electrode [P(EDOP-SWNTs)/GCE] was prepared by electropolymerization of 3,4-ethylenedioxy pyrrole (EDOP) single-walled carbon nanotubes (SWNTs) on the surface of a glassy carbon electrode (GCE) and characterized by SEM, CV, and DPV. This modified electrode was employed as an electrochemical biosensor for the selective determination of serotonin concentrations at pH 7.4 and exhibited a typical enhanced effect on the current response of serotonin with a lower oxidation overpotential. The linear response was in the range of 1.0 x 10"-"7 to 1.0 x 10"-"5 M, with a correlation coefficient of 0.998 on the anodic current. The lower detection limit was calculated as 5.0 nM. Due to the relatively low currents and difference of potentials in the electrochemical responses of uric acid (UA), ascorbic acid (AA), and dopamine (DA), the modified electrode was a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of UA, AA, and DA

  3. Selective Determination of Serotonin on Poly(3,4-ethylenedioxy pyrrole)-single-walled Carbon Nanotube-Modified Glassy Carbon Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seul Ki; Bae, Si Ra; Ahmed, Mohammad Shamsuddin; You, Jung Min; Jeon, Seung Won [Chonnam National University, Gwangju (Korea, Republic of)

    2011-04-15

    An electrochemically-modified electrode [P(EDOP-SWNTs)/GCE] was prepared by electropolymerization of 3,4-ethylenedioxy pyrrole (EDOP) single-walled carbon nanotubes (SWNTs) on the surface of a glassy carbon electrode (GCE) and characterized by SEM, CV, and DPV. This modified electrode was employed as an electrochemical biosensor for the selective determination of serotonin concentrations at pH 7.4 and exhibited a typical enhanced effect on the current response of serotonin with a lower oxidation overpotential. The linear response was in the range of 1.0 x 10{sup -7} to 1.0 x 10{sup -5} M, with a correlation coefficient of 0.998 on the anodic current. The lower detection limit was calculated as 5.0 nM. Due to the relatively low currents and difference of potentials in the electrochemical responses of uric acid (UA), ascorbic acid (AA), and dopamine (DA), the modified electrode was a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of UA, AA, and DA.

  4. Low-cost metal oxide activated carbon prepared and modified by microwave heating method for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, S. E. [Islamic Azad University, Sari (Iran, Islamic Republic of)

    2014-09-15

    Novel microporous activated carbon (MAC) with high surface area and pore volume has been synthesized by microwave heating. Iron oxide nanoparticles were loaded into MAC by using Fe(NO{sub 3}){sub 3}·9H{sub 2}O followed by microwave irradiation for up to five minutes. The surface modified microporous activated carbon was characterized by BET, XRD, SEM and thermogravimetric examinations. Adsorption data of H{sub 2} on the unmodified and modified MACs were collected with PCT method for a pressure range up to 120 bar at 303 K. Greater hydrogen adsorption was observed on the carbon adsorbents doped with 1.45 wt% of iron oxide nanoparticle loaded due to the joint properties of hydrogen adsorption on the carbon surface and the spill-over of hydrogen molecules into carbon structures.

  5. Characterisation of chemically-modified proteins by electrospray ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Bennett, K.L.

    1996-09-01

    Electrospray mass spectrometry (ESI-MS) has been used to examine a range of intact monoclonal antibodies (MAbs), antibody fragments such as F(ab') 2 , F ab and F c , chemically-modified fragments and a range of other chemically-modified peptides and proteins as part of a broader study aimed at establishing ESI-MS as a method for the characterisation of radioimmunoconjugates (radiolabelled monoclonal antibodies). For example, the addition of up to 10 biotin molecules to the 'papain-sensitive' 50 kDa F ab fragment can be easily detected in ESI mass spectra. For intact MAbs, however, it is only possible to detect average shifts in the mass of intact antibodies following modification. Successful ESI-MS analysis of complexes formed between chelators and other small molecules conjugated to synthetic peptides, hen egg-white Iysozyme (HEL) (M r 14 306) and horse heart myoglobin (M r 16 951) has been demonstrated. ESI-MS offers considerable advantages compared with existing methods for the characterisation of chemically-conjugated proteins including speed and sensitivity of analysis and the capability for obtaining specific structural information. The conditions for ESI-MS of intact MAbs and MAb fragments have been examined in detail and it was found that 150 kDa MAbs generally required lower sample concentration and higher skimmer potentials compared with the 50 kDa F ab fragment and other lower molecular weight proteins. In addition, the m/z range over which ions from MAbs were observed was higher (m/z ∼2000-4500) than for smaller proteins. ESI-MS was also found to be useful for probing the action of the protease papain, that is used to generate MAb fragments (F(ab) '2, F ab and F c ). Further, different sensitivities to papain for different MAb preparations was demonstrated. Finally, the tandem mass spectra of a range of peptides modified by iodine and biotin were examined. In the case of biotinylated peptides, a characteristic fragment ion was identified that could

  6. Influence of chemical structure on carbon isotope composition of lignite

    Science.gov (United States)

    Erdenetsogt, Bat-Orshikh; Lee, Insung; Ko, Yoon-Joo; Mungunchimeg, Batsaikhan

    2017-04-01

    During the last two decades, a number of studies on carbon isotopes in terrestrial organic matter (OM) have been carried out and used to determine changes in paleoatmospheric δ13C value as well as assisting in paleoclimate analysis. Coal is abundant terrestrial OM. However, application of its δ13C value is very limited, because the understanding of changes in isotopic composition during coalification is relatively insufficient. The purpose of this study was to examine the influence of the chemical structure on the carbon isotope composition of lignite. Generally, lignite has more complex chemical structures than other higher rank coal because of the existence of various types of oxygen-containing functional groups that are eliminated at higher rank level. A total of sixteen Lower Cretaceous lignite samples from Baganuur mine (Mongolia) were studied by ultimate, stable carbon isotope and solid-state 13C CP/MAS NMR analyses. The carbon contents of the samples increase with increase in depth, whereas oxygen content decreases continuously. This is undoubtedly due to normal coalification process and also consistent with solid state NMR results. The δ13C values of the samples range from -23.54‰ to -21.34‰ and are enriched in 13C towards the lowermost samples. Based on the deconvolution of the NMR spectra, the ratios between carbons bonded to oxygen (60-90 ppm and 135-220 ppm) over carbons bonded to carbon and hydrogen (0-50 ppm and 90-135 ppm) were calculated for the samples. These correlate well with δ13C values (R2 0.88). The results indicate that the δ13C values of lignite are controlled by two mechanisms: (i) depletion in 13C as a result of loss of isotopically heavy oxygen-bounded carbons and (ii) enrichment in 13C caused by a loss of isotopically light methane from aliphatic and aromatic carbons. At the rank of lignite, coal is enriched in 13C because the amount of isotopically heavy CO2 and CO, released from coal as a result of changes in the chemical

  7. Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems.

    Science.gov (United States)

    Jain, Rajeev; Sharma, Sanjay

    2012-02-01

    A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate. The experimental results suggest that the pheniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response. Peak current response is linearly dependent on the concentration of pheniramine in the range 200-1500 μg/mL with correlation coefficient 0.9987. The limit of detection is 58.31 μg/mL. The modified electrode shows good sensitivity and repeatability.

  8. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    Science.gov (United States)

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  9. Estudo teórico de propriedades ópticas não-lineares de nanotubos de carbono de parede única quimicamente modificados Theoretical analysis of non-linear optical properties for chemically modified single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Antônio M. Da Silva Jr.

    2009-01-01

    Full Text Available Structure and first hyperpolarizability for a series of armchair a(5,5 chemically modified carbon nanotubes (CNT were calculated at semiempirical and density functional levels of theory. The 4,4´-substituted stilbenes were selected as chromophore with substituents at position 4´ set to X=NO2, H, Cl, OH and NH2. The calculated values for static first hyperpolarizability (β were almost linearly dependent on the electronic effect of the group X, increasing from NO2 to NH2. At DFT level the effect of inserting the chromophore in the CNT surface was to enhance the β value up to 70% relative to the free 4,4´-substituted stilbene.

  10. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils

  11. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Science.gov (United States)

    Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping

    2012-10-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  12. Determination of ascorbic acid in pharmaceutical preparation and fruit juice using modified carbon paste electrode

    Directory of Open Access Journals (Sweden)

    Simona Žabčíková

    2016-06-01

    Full Text Available Acrobic acid is key substance in the human metabolism and the rapid and accurate determination in food is of a great interest. Ascorbic acid is an electroactive compound, however poorly responded on the bare carbon paste electrodes. In this paper, brilliant cresyl blue and multi-walled carbon nanotubes were used for the modification of carbon paste electrode. Brilliant cresyl blue acts as a mediator improving the transition of electrons, whereas multiwalled carbon nanotubes increased the surface of the electrode. Both brilliant cresyl blue and multiwalled carbon nanotubes were added directly to the composite material. The electrochemical behavior of modified electode was determined in electrolyte at various pH, and the effect of the scan rate was also performed. It was shown that the electrochemical process on the surface of the modified carbon paste electrode was diffusion-controlled. The resulted modified carbon paste electrode showed a good electrocatalytic activity towards the oxidation of ascorbic acid at a reduced overpotential of +100 mV descreasing the risk of interferences. A linear response of the ascorbic acid oxidation current measured by the amperometry in the range of 0.1 - 350 µmol.L-1 was obtained applying the sensor for the standard solution. The limit of detection and limit of quantification was found to be 0.05 and 0.15 µmol.L-1, respectively. The novel method was applied for the determination of ascorbic acid in pharmaceutical vitamin preparation and fruit juice, and the results were in good agreement with the standard HPLC method. The presented modification of carbon paste electrode is suitable for the fast, sensitive and very accurate determination of ascorbic acid in fruit juices and pharmaceutical preparation.

  13. Biosensor based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Ren, J.; Kang, T.F.; Xue, R.; Ge, C.N.; Cheng, S.Y.

    2011-01-01

    We describe a biosensor for phenolic compounds that is based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes (MWNTs). The MWNTs possess excellent inherent electrical conductivity which enhances the electron transfer rate and results in good electrochemical catalytic activity towards the reduction of benzoquinone produced by enzymatic reaction. The biosensor was characterized by cyclic voltammetry, and the experimental conditions were optimized. The cathodic current is linearly related to the concentration of the phenols between 0.4 μM and 10 μM, and the detection limit is 0.2 μM. The method was applied to the determination of phenol in water samples (author)

  14. Aspects of the Fracture Toughness of Carbon Nanotube Modified Epoxy Polymer Composites

    Science.gov (United States)

    Mirjalili, Vahid

    Epoxy resins used in fibre reinforced composites exhibit a brittle fracture behaviour, because they show no sign of damage prior to a catastrophic failure. Rubbery materials and micro-particles have been added to epoxy resins to improve their fracture toughness, which reduces strength and elastic properties. In this research, carbon nanotubes (CNTs) are investigated as a potential toughening agent for epoxy resins and carbon fibre reinforced composites, which can also enhance strength and elastic properties. More specifically, the toughening mechanisms of CNTs are investigated theoretically and experimentally. The effect of aligned and randomly oriented carbon nanotubes (CNTs) on the fracture toughness of polymers was modelled using Elastic Plastic Fracture Mechanics. Toughening from CNT pull-out and rupture were considered, depending on the CNTs critical length. The model was used to identify the effect of CNTs geometrical and mechanical properties on the fracture toughness of CNT-modified epoxies. The modelling results showed that a uniform dispersion and alignment of a high volume fraction of CNTs normal to the crack growth plane would lead to the maximum fracture toughness enhancement. To achieve a uniform dispersion, the effect of processing on the dispersion of single walled and multi walled CNTs in epoxy resins was investigated. An instrumented optical microscope with a hot stage was used to quantify the evolution of the CNT dispersion during cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. The dispersion quality was then directly correlated to the fracture toughness of the modified resin. It was shown that the fine tuning of the ratio of epoxy resin, curing agent and CNT content was paramount to the improvement of the base resin fracture toughness. For the epoxy resin (MY0510 from Hexcel), an improvement of 38% was achieved with 0.3 wt

  15. Cytokine Adsorption onto the Modified Carbon Sorbent Surface in vitro in Peritonitis

    Directory of Open Access Journals (Sweden)

    T. I. Dolgikh

    2009-01-01

    Full Text Available Objective: to evaluate the efficiency of cytokine sorption with carbon with a locally aminocaproic acid-modified surface from the plasma of patients with general purulent peritonitis. Materials and methods. The material of the investigation was the plasma obtained during plasmapheresis in 10 patients with acute pancreatitis complicated by pancreonecrosis and general purulent peritonitis, which was used to estimate before and after sorption the content of the cytokines: interleukin (IL-1/8, IL-4, and IL-8 by enzyme immunoassay. The sorption properties of carbon hemosor-bent and aminocaproic acid-modified sorbent were comparatively evaluated. Results. Aminocaproic acid-induced modification of the carbon adsorbent surface with its further polycondensation results in the higher content of superficial functional groups (oxygen- and nitrogen-containing that enhance the hydrophility of the surface and the specific pattern of sorption, thus acting as a means for controlling and regulating the plasma concentration of regulatory proteins, primarily the proinflammatory cytokine IL-1^3, the chemokine IL-8 and the T-helper cell clone cytokine IL-4.

  16. [Influence of surface chemical properties and pore structure characteristics of activated carbon on the adsorption of nitrobenzene from aqueous solution].

    Science.gov (United States)

    Liu, Shou-Xin; Chen, Xi; Zhang, Xian-Quan

    2008-05-01

    Commercial activated carbon was treated by HNO3 oxidation and then subsequently heat treated under N2 atmosphere. Effect of surface chemical properties and pore structure on the adsorption performance of nitrobenzene was investigated. N2/77K adsorption isotherm and scanning electron microscopy (SEM) were used to characterize the pore structure and surface morphology of carbon. Boehm titration, Fourier transform infrared spectroscopy (FTIR), the point of zero charge (pH(PZC)) measurement and elemental analysis were used to characterize the surface properties. The results reveal that HNO3 oxidation can modify the surface chemical properties, increase the number of acidic surface oxygen-containing groups and has trivial effect on the pore structure of carbon. Further heat treatment can cause the decomposition of surface oxygen-containing groups, and increase the external surface area and the number of mesopores. Adsorption capacity of nitrobenzene on AC(NO-T), AC(raw) and AC(NO) was 1011.31, 483.09 and 321.54 mg x g(-1), respectively. Larger external surface area and the number of meso-pores, together with the less acid surface oxygen-containing groups were the main reason for the larger adsorption capacity AC(NO-T).

  17. Chemical synthesis, characterization and electro-oxidation of hydrazine via a carbon paste electrode modified with poly (P-phenylendiamine/Al2O3) nanocomposite

    International Nuclear Information System (INIS)

    Emamgholizadeh, Abbas; Omrani, Abdollah; Rostami, Abbas Ali

    2012-01-01

    Highlights: ► A novel nanocomposite based on poly (P-phenylendiamine)/alumina was synthesized. ► It was observed that the nanocomposite increased the surface catalytic activity of CPE toward oxidation of hydrazine. ► The EIS measurements showed that the values of R ct decreases by the nanoalumina presence. - Abstract: In this article, the chemical synthesis and characterization of Al 2 O 3 nanoparticles dispersed into poly (P-phenylendiamine) (PpDP) was reported. The morphology, conductivity and structure of the nanocomposite was characterized by scanning electron microscopy (SEM), four probe testing and XRD experiment, respectively. Catalytic activity and stability for the oxidation of hydrazine were studied by using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The results show that the nanocomposite significantly enhances the effective surface area and the catalytic activity of the CPE (carbon paste electrode) for oxidation of hydrazine. The results obtained confirmed that the dispersion of the Al 2 O 3 particles is connected with catalytic response to a higher activity. The nanotubular morphology of poly (P-phenylendiamine) helps in the effective dispersion of Al 2 O 3 particles facilitating the easier access of hydrazine to the catalytic sites. The poly (P-phenylendiamine) nanotubes modified with Al 2 O 3 nanoparticles cause a great increase in electroactivity and the electro-catalytic properties of CPE for hydrazine oxidation.

  18. Isotope dependence of chemical erosion of carbon

    International Nuclear Information System (INIS)

    Reinhold, C.O.; Krstic, P.S.; Stuart, S.J.; Zhang, H.; Harris, P.R.; Meyer, F.W.

    2010-01-01

    We study the chemical erosion of hydrogen-supersaturated carbon due to bombardment by hydrogen isotopes H, D, and T at energies of 1-30 eV using classical molecular dynamics simulations. The chemical structure at the hydrogen-saturated interface (the distribution of terminal hydrocarbon moieties, in particular) shows a weak dependence on the mass of the impinging atoms. However, the sputtering yields increase considerably with increasing projectile mass. We analyze the threshold energies of chemical sputtering reaction channels and show that they are nearly mass independent, as expected from elementary bond-breaking chemical reactions involving hydrocarbons. Chemical sputtering yields for D impact are compared with new experimental data. Good agreement is found for small hydrocarbons but the simulations overestimate the production of large hydrocarbons for energies larger than 15 eV. We present a thorough analysis of the dependence of our simulations on the parameters of the bombardment schemes and discuss open questions and possible avenues for development.

  19. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Wang, W.H.; Wang, X.D.

    2007-01-01

    Porous graphite felts have been used as electrode materials for all-vanadium redox flow batteries due to their wide operating potential range, stability as both an anode and a cathode, and availability in high surface area. In this paper, the carbon felt was modified by pyrolysis of Ir reduced from H 2 IrCl 6 . ac impedance and steady-state polarization measurements showed that the Ir-modified materials have improved activity and lowered overpotential of the desired V(IV)/V(V) redox process. Ir-modification of carbon felt enhanced the electro-conductivity of electrode materials. The Ir-material, when coated on the graphite felt electrode surface, lowered the cell internal resistance. A test cell was assembled with the Ir-modified carbon felt as the activation layer of the positive electrode, the unmodified raw felt as the activation layer of the negative electrode. At an operating current density of 20 mA cm -2 , a voltage efficiency of 87.5% was achieved. The resistance of the cell using Ir-modified felt decreased 25% compared to the cell using non-modified felt

  20. Mechano-sorptive creep of Portuguese pinewood chemically modified

    Directory of Open Access Journals (Sweden)

    Barroso Lopes Duarte

    2014-03-01

    Full Text Available The effect of chemical modification on mechano-sorptive creep in bending was studied by experimental work. Stakes with 20 × 20 × 400 mm RTL of Portuguese wood species (Pinus pinaster Aiton modified with 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU, m-methylated melamine resin (MMF, tetraethoxysilane (TEOS and amid wax (WA were measured under asymmetric moistening conditions over a period of 42 days (app. 1000 hours with stress level (SL of 12 MPa, according to ENV 1156.

  1. Synthesis of electronically modified carbon nitride from a processable semiconductor, 3-aminotriazole-1,2,4 oligomer, via a topotactic-like phase transition

    OpenAIRE

    Savateev, A.; Pronkin, S.; Epping, J.; Willinger, M.; Antonietti, M.; Dontsova, D.

    2017-01-01

    The thermally induced topotactic transformation of organic polymeric semiconductors is achieved using similarity of the chemical structures of the two C,N,H-containing materials. Namely, the oligomer of 3-aminotriazole-1,2,4 (OATA) is transformed into an electronically modified graphitic carbon nitride (OATA-CN) upon heating at 550 °C. During the transition, the flat band potential of the organic semiconductor is only slightly shifted from -0.11 eV to -0.06 eV, while the optical band gap is s...

  2. Chemical production from waste carbon monoxide: its potential for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmann, C.A.; Schiefelbein, G.F.; Molton, P.M.; Li, C.T.; Elliott, D.C.; Baker, E.G.

    1977-11-01

    Results of a study of the potential for energy conservation by producing chemicals from by-product or waste carbon monoxide (CO) from industrial sources are summarized. Extensive compilations of both industrial sources and uses for carbon monoxide were developed and included. Reviews of carbon monoxide purification and concentration technology and preliminary economic evaluations of carbon monoxide concentration, pipeline transportation and utilization of CO in the synthesis of ammonia and methanol are included. Preliminary technical and economic feasibility studies were made of producing ammonia and methanol from the by-product CO produced by a typical elemental phosphorus plant. Methanol synthesis appears to be more attractive than ammonia synthesis when using CO feedstock because of reduced water gas shift and carbon dioxide removal requirements. The economic studies indicate that methanol synthesis from CO appears to be competitive with conventional technology when the price of natural gas exceeds $0.82/million Btu, while ammonia synthesis from CO is probably not competitive until the price of natural gas exceeds $1.90/million Btu. It is concluded that there appears to be considerable potential for energy conservation in the chemical industry, by collecting CO rather than flaring it, and using it to make major chemicals such as ammonia and methanol.

  3. The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts

    Energy Technology Data Exchange (ETDEWEB)

    Ilnicka, Anna, E-mail: annakucinska@o2.pl; Walczyk, Mariusz; Lukaszewicz, Jerzy P.

    2015-07-01

    Renewable raw materials chitin and chitosan (N-deacetylated derivative of chitin) were subjected to action of different copper modifiers that were carbonized in the atmosphere of the N{sub 2} inert gas. As a result of the novel manufacturing procedure, a series of carbon materials was obtained with developed surface area and containing copper derivatives of differentiated form, size, and dispersion. The copper modifier and manufacturing procedure (concentration, carbonization temperature) influence the physical–chemical and fungicide properties of the carbons. The received carbons were chemically characterized using several methods like low-temperature adsorption of nitrogen, X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry, elemental analysis, and bioassay. Besides chemical testing, some biological tests were performed and let to select carbons with the highest fungicidal activity. Such carbons were characteristic of the specific form of copper derivatives occurring in them, i.e., nanocrystallites of Cu{sup 0} and/or Cu{sub 2}O of high dispersion on the surface of carbon. The carbons may find an application as effective contact fungistatic agents in cosmetology, medicine, food industry, etc. - Highlights: • The novel manufacturing procedure yields new functional carbon materials. • Two biopolymers chitin and chitosan can undergo copper(II) ion modification. • The Cu-modified carbon materials exhibit high fungicidal activity. • The fungicidal activity results from the presence of Cu{sup 0} and Cu{sub 2}O nano-crystallites.

  4. Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue.

    Science.gov (United States)

    Almazán-Sánchez, Perla Tatiana; Solache-Ríos, Marcos J; Linares-Hernández, Ivonne; Martínez-Miranda, Verónica

    2016-01-01

    Indigo blue dye is mainly used in dyeing of denim clothes and its presence in water bodies could have adverse effects on the aquatic system; for this reason, the objective of this study was to promote the removal of indigo blue dye from aqueous solutions by iron and copper electrochemically modified clay and activated carbon and the saturated materials were regenerated by a Fenton-like process. Montmorillonite clay was modified at pH 2 and 7; activated carbon at pH 2 and pH of the system. The elemental X-ray dispersive spectroscopy analysis showed that the optimum pH for modification of montmorillonite with iron and copper was 7 and for activated carbon was 2. The dye used in this work was characterized by infrared. Unmodified and modified clay samples showed the highest removal efficiencies of the dye (90-100%) in the pH interval from 2 to 10 whereas the removal efficiencies decrease as pH increases for samples modified at pH 2. Unmodified clay and copper-modified activated carbon at pH 2 were the most efficient activated materials for the removal of the dye. The adsorption kinetics data of all materials were best adjusted to the pseudo-second-order model, indicating a chemisorption mechanism and the adsorption isotherms data showed that the materials have a heterogeneous surface. The iron-modified clay could be regenerated by a photo-Fenton-like process through four adsorption-regeneration cycles, with 90% removal efficiency.

  5. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes.

    Science.gov (United States)

    Torres, A Carolina; Barsan, Madalina M; Brett, Christopher M A

    2014-04-15

    A simple, economic, highly sensitive and highly selective method for the detection of caffeine has been developed at bare and Nafion-modified glassy carbon electrodes (GCE). The electrochemical behaviour of caffeine was examined in electrolyte solutions of phosphate buffer saline, sodium perchlorate, and in choline chloride plus oxalic acid, using analytical determinations by fixed potential amperometry, phosphate buffer saline being the best. Modifications of the GCE surface with poly(3,4-ethylenedioxythiophene) (PEDOT), Nafion, and multi-walled carbon nanotubes were tested in order to evaluate possible sensor performance enhancements, Nafion giving the most satisfactory results. The effect of interfering compounds usually found in samples containing caffeine was examined at GCE without and with Nafion coating, to exclude interferences, and the sensors were successfully applied to determine the caffeine content in commercial beverages and drugs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  7. Sedimentation behaviour and colloidal properties of porous, chemically modified silicas in non-aqueous solvents

    NARCIS (Netherlands)

    Vissers, J.P.C.; Laven, J.; Claessens, H.A.; Cramers, C.A.M.G.; Agterof, W.G.M.

    1997-01-01

    The sedimentation behaviour and colloidal properties of porous, chemically modified silicas dispersed in non-aqueous solvents have been studied. The free settling behaviour of non-aggregated silica suspensions could effectively be described with a modified Stokes equation that takes into account the

  8. Carbon coated (carbonous) catalyst in ebullated bed reactor for production of oxygenated chemicals from syngas/CO2

    International Nuclear Information System (INIS)

    Peizheng Zhou

    2002-01-01

    This report summarizes the work completed under DOE's Support of Advanced Fuel Research program, Contract No. DE-FG26-99FT40681. The contract period was October 2000 through September 2002. This R and D program investigated the modification of the mechanical strength of catalyst extrudates using Hydrocarbon Technologies, Inc. (HTI) carbon-coated catalyst technology so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO 2 efficiently and economically. Exothermic chemical reactions benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. The carbon-coated extrudates prepared using these procedures had sufficient attrition resistance and surface area for use in ebullated bed operation. The low cost of carbon coating makes the carbon-coated catalysts highly competitive in the market of catalyst extrudates

  9. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Charles S. [Instituto Federal Sul-rio-grandense, Câmpus Pelotas, Pelotas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis, SC (Brazil); Andrade, Jailson B. [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg{sup −1} and 4.7 mg kg{sup −1}, respectively. - Highlights: • Ir, Ru and Zr were investigated as permanent modifiers. • Ca, Mg, Pd and Pd/Mg were investigated as modifiers in solution. • Indirect determination of sulfur monitoring the molecular absorbance of the CS • Direct analysis of diesel samples using a dilution in propan-1-ol.

  10. Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet

    Directory of Open Access Journals (Sweden)

    Helena Ma A. M. M. S. Ali

    2017-11-01

    Full Text Available The chemical modification of hydrophobic polymer matrices is an alternative way to elchange their surface properties. The introduction of sulfonic groups in the polymer changes the surface properties such as adhesion, wettability, catalytic ability, and adsorption capacity. This work describes the production and application of chemically modified polyvinyl chloride (PVC as adsorbent for dyes removal. Chemical modification of PVC was evaluated by infrared spectroscopy and elemental analysis, which indicated the presence of sulfonic groups on PVC. The chemically modified PVC (PVCDS showed an ion exchange capacity of 1.03 mmol−1, and efficiently removed the thionine dye (Lauth’s violet from aqueous solutions, reaching equilibrium in 30 min. The adsorption kinetics was better adjusted for a pseudo second order model. This result indicates that the adsorption of thionine onto PVCDS occurs by chemisorption. Among the models for the state of equilibrium, SIPS and Langmuir exhibited the best fit to the experimental results and PVCDS showed high adsorption capacities (370 mg−1. Thus, it is assumed that the system presents homogeneous characteristics to the distribution of active sites. The modification promoted the formation of surface characteristics favorable to the dye adsorption by the polymer.

  11. Spectroscopic and thermal characterization of carbon nanotubes functionalized through diazonium salt reduction

    International Nuclear Information System (INIS)

    Pandurangappa, Malingappa; Ramakrishnappa, Thippeswamy

    2010-01-01

    Chemical reduction of anthraquinone diazonium chloride (Fast Red AL salt) in presence of hypophosphorous acid and carbon nanotubes results in anthraquinonyl functionalized carbon nanotubes. The surface functionalized moieties have been examined electrochemically by immobilizing them onto the surface of basal plane pyrolytic graphite electrode and studying its voltammetric behaviour. The effect of pH, and scan rate has revealed that the modified species are confined on the electrode surface. The spectroscopic characterization of the modified single walled carbon nanotubes using Fourier transform infrared spectroscopy, X-ray photoemission spectroscopy, thermogravimetric analysis and transmission electron microscopy have revealed that the modifier molecules are covalently bonded on the surface of carbon nanotubes.

  12. Spectroscopic and thermal characterization of carbon nanotubes functionalized through diazonium salt reduction

    Energy Technology Data Exchange (ETDEWEB)

    Pandurangappa, Malingappa, E-mail: mprangachem@gmail.com [Department of Chemistry, Bangalore University, Central College Campus, Dr Ambedkar Veedhi, Bangalore 560 001 (India); Ramakrishnappa, Thippeswamy [Department of Chemistry, Bangalore University, Central College Campus, Dr Ambedkar Veedhi, Bangalore 560 001 (India)

    2010-08-01

    Chemical reduction of anthraquinone diazonium chloride (Fast Red AL salt) in presence of hypophosphorous acid and carbon nanotubes results in anthraquinonyl functionalized carbon nanotubes. The surface functionalized moieties have been examined electrochemically by immobilizing them onto the surface of basal plane pyrolytic graphite electrode and studying its voltammetric behaviour. The effect of pH, and scan rate has revealed that the modified species are confined on the electrode surface. The spectroscopic characterization of the modified single walled carbon nanotubes using Fourier transform infrared spectroscopy, X-ray photoemission spectroscopy, thermogravimetric analysis and transmission electron microscopy have revealed that the modifier molecules are covalently bonded on the surface of carbon nanotubes.

  13. Dehydration and hydration behavior of metal-salt-modified materials for chemical heat pumps

    International Nuclear Information System (INIS)

    Ishitobi, Hirokazu; Uruma, Keirei; Takeuchi, Masato; Ryu, Junichi; Kato, Yukitaka

    2013-01-01

    Lithium chloride (LiCl) modified magnesium hydroxide (Mg(OH) 2 ) is a potential new material for chemical heat pumps. However, there is insufficient information concerning its dehydration and hydration behavior. In this study, the dehydration and hydration reactions, corresponding to the heat storage and the heat output operations, respectively, of authentic Mg(OH) 2 and LiCl-modified Mg(OH) 2 were investigated by thermogravimetric methods and near infrared spectroscopy. The dehydration of authentic Mg(OH) 2 proceeded as a one-step reaction. In contrast, the dehydration of LiCl-modified Mg(OH) 2 occurred in two steps. The dehydration reaction rates were increased by LiCl modification of the Mg(OH) 2 surface, while the activation energy for the first-order dehydration reaction was lowered. The mechanism for the hydration reaction of magnesium oxide (MgO) was different to that for the hydration of LiCl-modified MgO. This difference was explained by the effect of the LiCl on the MgO particle surface. - Highlights: ► LiCl-modified Mg(OH) 2 is a candidate material for chemical heat pumps. ► The dehydration reaction of LiCl-modified Mg(OH) 2 is a two-step reaction. ► The dehydration reaction of Mg(OH) 2 was enhanced by LiCl modification. ► The hydration mechanisms of authentic MgO and LiCl-modified MgO were different.

  14. Synergistic effect of single-electron-trapped oxygen vacancies and carbon species on the visible light photocatalytic activity of carbon-modified TiO2

    International Nuclear Information System (INIS)

    Wang, Xiaodong; Xue, Xiaoxiao; Liu, Xiaogang; Xing, Xing; Li, Qiuye; Yang, Jianjun

    2015-01-01

    Carbon-modified TiO 2 (CT) nanoparticles were prepared via a two-step method of heat treatment without the resorcinol-formaldehyde (RF) polymer. As-prepared CT nanoparticles were characterized by means of X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS), transmission electron microscopy (TEM), N 2 adsorption–desorption isotherms, thermal analysis (TA), electron spin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities were evaluated on the basis of the degradation of methyl orange (MO). The synergistic effect of single-electron-trapped oxygen vacancies (SETOVs) and the carbon species on the visible light photocatalytic activities of the CT nanoparticles were discussed. It was found that the crystalline phase, the morphology, and particle size of the CT nanoparticles depended on the second heat-treatment temperature instead of the first heat-treatment temperature. The visible light photocatalytic activities were attributed to the synergistic effect of SETOVs and the carbon species, and also depended on the specific surface area of the photocatalysts. - Highlights: • Carbon-modified TiO 2 particles have been prepared without RF polymer. • The visible light photocatalytic activities of the particles have been evaluated. • The band gap energy structure of the carbon-modified TiO 2 has been proposed. • Synergistic effect of SETOVs and carbon species has been discussed. • The activities also depend on the specific surface area of the catalysts

  15. Sorption of nonpolar aromatic contaminants by chlorosilane surface modified natural minerals.

    Science.gov (United States)

    Huttenloch, P; Roehl, K E; Czurda, K

    2001-11-01

    The efficacy of the surface modification of natural diatomite and zeolite material by chlorosilanes is demonstrated. Chlorosilanes used were trimethylchlorosilane (TMSCI), tert-butyldimethylchlorosilane (TBDMSCI), dimethyloctadecylchlorosilane (DMODSCI), and diphenyldichlorosilane (DPDSCI) possessing different headgroups and chemical properties. Silanol groups of the diatomite and zeolite were modified by chemical reaction with the chlorosilanes resulting in a stable covalent attachment of the organosilanes to the mineral surface. The alteration of surface properties of the modified material was proved by measurements of water adsorption capacity, total organic carbon (TOC) content, and thermoanalytical data. The surface modified material showed great stability even when exposed to extremes in ionic strength, pH, and to pure organic solvents. Sorption of toluene, o-xylene, and naphthalene from water was greatly enhanced by the surface modification compared to the untreated materials which showed no measurable sorption of these compounds. The enhanced sorption was dependent on the organic carbon content as well as on chemical characteristics of the chlorosilanes used. Batch sorption experiments showed that the phenyl headgroups of DPDSCI have the best affinity for aromatic compounds. Removal from an aqueous solution of 10 mg/L of naphthalene, o-xylene, and toluene was 71%, 60%, and 30% for surface modified diatomite and 51%, 30%, and 16% for modified clinoptilolite, respectively. Sorption data were well described by the Freundlich isotherm equation, which indicated physical adsorption onto the lipophilic surface rather than partitioning into the surface organic phase. The chlorosilane modified materials have an apparent potential for application in environmental technologies such as permeable reactive barriers (PRB) or wastewater treatment.

  16. Sulfur dioxide adsorption by activated carbons having different textural and chemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Nilgun Karatepe; Ilkun Orbak; Reha Yavuz; Ayse Ozyuguran [Istanbul Technical University, Istanbul (Turkey). Institute of Energy

    2008-11-15

    Activated carbons from Turkish lignite were prepared with different methods to investigate the influence of physico-chemical characteristics of the carbon materials on the sulfur dioxide (SO{sub 2}) adsorption. The effects of SO{sub 2} concentration, adsorption temperature, and sample particle size on adsorption were investigated using a thermogravimetric analysis system. An intraparticle diffusion model based on Knudsen diffusion and Freundlich isotherm (or Henry isotherm) was applied for predicting the amount of SO{sub 2} adsorbed. The textural and chemical properties of the activated carbon samples, resulted from the effects of activation conditions and demineralization of the carbon precursor, on the SO{sub 2} adsorption were also analyzed. 30 refs., 7 figs., 4 tabs.

  17. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons

    Directory of Open Access Journals (Sweden)

    Valentina Bernal

    2017-06-01

    Full Text Available Paracetamol adsorption in acidic, neutral and basic media on three activated carbons with different chemistry surfaces was studied. A granular activated carbon (GAC was prepared from coconut shell; starting from this sample, an oxidized activated carbon (GACo was obtained by treating the GAC with a boiling solution of 6 M nitric acid, so to generate a greater number of oxygenated surface groups. In addition, a reduced activated carbon (GACr was obtained by heating the GAC at 1173 K, to remove the oxygenated surface groups. Paracetamol adsorption was higher for GACr due to the lower presence of oxygenated surface functional groups. Moreover, adsorption was highest at neutral pH. The magnitude of the interactions between paracetamol molecules and activated carbons was studied by measuring the immersion enthalpies of activated carbons in solution of paracetamol at different concentrations and pH values and by calculating the interaction enthalpy. The highest value was obtained for GACr in a paracetamol solution of 1000 mg L−1 at pH 7, confirming that paracetamol adsorption is favoured on basic activated carbons at pH values near to neutrality. Finally, the Gibbs energy changes confirmed the latter result, allowing explaining the different magnitudes of the interactions between paracetamol and activated carbons, as a function of solution pH.

  18. Surface modified carbon nanoparticle papers and applications on polymer composites

    Science.gov (United States)

    Ouyang, Xilian

    Free-standing paper like materials are usually employed as protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, and electronic or optoelectric components. Free-standing papers made from carbon nanoparticles have drawn increased interest because they have a variety of superior chemical and physical characteristics, such as light weight, high intrinsic mechanical properties, and extraordinary high electrical conductivity. Nanopapers fabricated from 1- D shape carbon nanofibers (CNFs) and carbon nanotubes (CNTs) are promising reinforcing materials for polymer composites, because the highly porous CNF and CNT nanopapers (porosity ˜80% and ˜70% respectively) can be impregnated with matrix polymers. In the first part of this work, polyaniline (PANI) was used to functionalize the surface of CNFs, and the resultant carbon nanopapers presented impressive mechanical strength and electrical conductivity that it could be used in the in-mold coating (IMC)/ injection molding process to achieve high electromagnetic interference (EMI) shielding effectiveness. Aniline modified (AF) CNT nanopapers were used as a 3D network in gas separation membranes. The resultant composite membranes demonstrated better and stable CO2 permeance and CO 2/H2 selectivity in a high temperature (107°C) and high pressure (15-30 atm) gas separation process, not achievable by conventional polymer membranes. In the second part, we demonstrated that 2-D graphene (GP) or graphene oxide (GO) nanosheets could be tightly packed into a film which was impermeable to most gases and liquids. GP or GO nanopapers could be coated on polymer composites. In order to achieve well-dispersed single-layer graphene in aqueous medium, we developed a facile approach to synthesize functional GP bearing benzenesulfonic acid groups which allow the preparation of nanopapers by water based assembly. With the optimized processing conditions, our best GP nanopapers could reach

  19. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Ghorbani-Bidkorbeh, Fatemeh; Shahrokhian, Saeed; Mohammadi, Ali; Dinarvand, Rassoul

    2010-01-01

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 μL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 μM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 μM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  20. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors.

    Science.gov (United States)

    Ghica, M Emilia; Brett, Christopher M A

    2014-12-01

    Poly(brilliant green) (PBG) and poly(thionine) (PTH) films have been formed on carbon film electrodes (CFEs) modified with carbon nanotubes (CNT) by electropolymerisation using potential cycling. Voltammetric and electrochemical impedance characterisation were performed. Glucose oxidase and uricase, as model enzymes, were immobilised on top of PBG/CNT/CFE and PTH/CNT/CFE for glucose and uric acid (UA) biosensing. Amperometric determination of glucose and UA was carried out in phosphate buffer pH 7.0 at -0.20 and +0.30 V vs. SCE, respectively, and the results were compared with other similarly modified electrodes existing in the literature. An interference study and recovery measurements in natural samples were successfully performed, indicating these architectures to be good and promising biosensor platforms. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Methanol oxidation at carbon paste electrodes modified with (Pt–Ru)/carbon aerogels nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fort, Carmen I., E-mail: iladiu@chem.ubbcluj.ro [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania); Cotet, Liviu C. [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania); Vasiliu, Florin [The National Institute of Materials Physics, Atomistilor str. 105 bis, PO Box MG. 7, Magurele, RO 077125, Bucharest (Romania); Marginean, Petre [National Institute for Research and Development of Isotopic and Molecular Technologies, RO 400293, Cluj-Napoca (Romania); Danciu, Virginia; Popescu, Ionel C. [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania)

    2016-04-01

    Mesoporous carbon aerogels (CAs) impregnated with (Pt–Ru) nanoparticles were prepared, incorporated into carbon paste electrodes (CPEs) and investigated as electrocatalysts for CH{sub 3}OH electro-oxidation. The sol–gel method, followed by supercritical drying with liquid CO{sub 2} and thermal pyrolysis in an inert atmosphere, was used to obtain high mesoporous CAs. (Pt–Ru)/CAs nanocomposites with various (Pt–Ru) loading were prepared by using Ru(AcAc){sub 3} and H{sub 2}PtCl{sub 6} as metal precursors and the impregnation method. The morpho-structural peculiarities of the so prepared (Pt–Ru)/CAs electrocatalysts were examined by using elemental analysis, N{sub 2} adsorption-desorption isotherms, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) and selected area electron diffraction (SAED). Cyclic voltammetry measurements, carried out at (Pt–Ru)/CA-CPEs incorporating nanocomposites with various Pt–Ru loading and different specific surface areas, showed that CA with the highest specific surface area (843 m{sup 2}/g) and impregnated with 6% (w/w) (Pt–Ru) nanoparticles exhibit the best CH{sub 3}OH electro-oxidation efficiency. The Michaelis–Menten formalism was used to describe the dependence of the oxidation peak current on the CH{sub 3}OH concentration, allowing the estimation of the modified electrodes sensitivities. Thus, for (Pt–Ru, 10%)/CA{sub 535}-CPE was observed the highest sensitivity (12.5 ± 0.8 mA/M) and, at the same time, the highest maximum current density ever reported (153.1 mA/cm{sup 2} for 2 M CH{sub 3}OH and an applied potential of 600 mV vs. SHE). - Highlights: • (Pt–Ru) nanoparticles were deposited on high mesoporous carbon aerogels (CAs). • (Pt–Ru)/CAs were characterized by TEM, EDX, SAED and N{sub 2} adsorption-desorption. • Carbon paste electrodes modified with (Pt–Ru)/CA were used for CH{sub 3}OH oxidation. • (Pt–Ru, 10

  3. Chemically bonded carbon nanotubes on modified gold substrate as novel unbreakable solid phase microextraction fiber

    International Nuclear Information System (INIS)

    Bagheri, H.; Ayazi, Z.; Sistani, H.

    2011-01-01

    A new technique is introduced for preparation of an unbreakable fiber using gold wire as a substrate for solid phase microextraction (SPME). A gold wire is used as a solid support, onto which a first film is deposited that consists of a two-dimensional polymer obtained by hydrolysis of a self-assembled monolayer of 3-(trimethoxysilyl)-1-propanthiol. This first film is covered with a layer of 3-(triethoxysilyl)-propylamine. Next, a stationary phase of oxidized multi-walled carbon nanotubes was chemically bound to the surface. The synthetic strategy was verified by Fourier transform infrared spectroscopy and scanning electron microscopy. Thermal stability of new fiber was examined by thermogravimetric analysis. The applicability of the novel coating was verified by its employment as a SPME fiber for isolation of diazinon and fenthion, as model compounds. Parameters influencing the extraction process were optimized to result in limits of detection as low as 0.2 ng mL -1 for diazinon, and 0.3 ng mL -1 for fenthion using the time-scheduled selected ion monitoring mode. The method was successfully applied to real water, and the recoveries for spiked samples were 104% for diazinon and 97% for fenthion. (author)

  4. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dong Yongping; Pei Lizhai; Chu Xiangfeng; Zhang Wangbing; Zhang Qianfeng

    2010-01-01

    A CuGeO 3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of L-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 x 10 -6 to 1 x 10 -3 mol L -1 , which make it possible to sensitive detection of cysteine with the CuGeO 3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.

  5. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode.

    Science.gov (United States)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-12-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb)=dIp,a(Meb)/d[Meb]=19.65μAμM(-1)), a low detection limit (LOD (Meb)=19nM) and a wide linear dynamic range (0.06-3μM) was resulted for the voltammetric quantification of Meb. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. An immersion calorimetric study of the interactions between some organic molecules and functionalized carbon nanotube surfaces

    International Nuclear Information System (INIS)

    Castillejos-López, E.; Bachiller-Baeza, B.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I.

    2013-01-01

    Highlights: ► The interaction of organic chemicals with the surface of modified CNTs was studied. ► Specific π–π interactions between graphitic CNTs and toluene have been considered. ► Confinement effects in CNTs increase the adsorption strength of aromatic compounds. ► Methanol molecules form H-bonds with the oxygen functional groups on CNT surfaces. - Abstract: The interaction of organic chemicals with the surface of carbon nanotubes has been studied by immersion calorimetry revealing significant differences in the properties when these materials are modified thermally or chemically. Therefore, multiwall carbon nanotubes have been synthesized using a chemical vapour deposition procedure and subsequently aliquots were treated with HNO 3 at reflux, maintaining the reaction during different times, in order to incorporate oxygen surface groups, or were treated at 2873 K under inert atmosphere. The aim of this thermal treatment is to eliminate structural defects of the carbon nanostructures and to graphitize the amorphous carbon phases. These features were confirmed by high-resolution transmission electron microscopy. The immersion in organic compounds, including toluene, methanol and methylcyclohexane, of all these carbon nanotubes samples reveals that the surface properties are remarkably modified. Thus, the formation of different types of interaction, depending on the surface, gives place to changes in the immersion enthalpies

  7. Long-term stability of superhydrophilic oxygen plasma-modified single-walled carbon nanotube network surfaces and the influence on ammonia gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sungjoon [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Joonhyub [Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-ro, Sejong City 339-770 (Korea, Republic of); Park, Chanwon [Department of Electrical and Electronic Engineering, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jin, Joon-Hyung, E-mail: jj1023@chol.com [Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227 (Korea, Republic of); Min, Nam Ki, E-mail: nkmin@korea.ac.kr [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of)

    2017-07-15

    Graphical abstract: Superhydrophilic single-walled carbon nanotube obtained by O{sub 2} plasma treatment voluntarily and non-reversibly reverts to a metastable state. This aerobic aging is an essential process to develop a stable carbon nanotube-based sensor. - Highlights: • Superhydrophilic single-walled carbon nanotube network can be obtained by O{sub 2} plasma-based surface modification. • The modified carbon nanotube surface invariably reverts to a metastable state in a non-reversible manner. • Aerobic aging is essential to stabilize the modified carbon nanotube and the carbon nanotube-based sensing device due to minimized sensor-to-sensor variation. - Abstract: Single-walled carbon nanotube (SWCNT) networks are subjected to a low-powered oxygen plasma for the surface modification. Changes in the surface chemical composition and the stability of the plasma-treated SWCNT (p-SWCNT) with aging in air for up to five weeks are studied using X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The contact angle decreases from 120° of the untreated hydrophobic SWCNT to 0° for the superhydrophilic p-SWCNT. Similarly, the ratio of oxygen to carbon (O:C) based on the XPS spectra increases from 0.25 to 1.19, indicating an increase in surface energy of the p-SWCNT. The enhanced surface energy is gradually dissipated and the p-SWCNT network loses the superhydrophilic surface property. However, it never revert to the original hydrophobic surface state but to a metastable hydrophilic state. The aging effect on sensitivity of the p-SWCNT network-based ammonia sensor is investigated to show the importance of the aging process for the stabilization of the p-SWCNT. The best sensitivity for monitoring NH{sub 3} gas is observed with the as-prepared p-SWCNT, and the sensitivity decreases as similar as the p-SWCNT loses its hydrophilicity with time goes by. After a large performance degradation during the aging time for about two weeks, the response

  8. Thermal and chemical durability of nitrogen-doped carbon nanotubes

    International Nuclear Information System (INIS)

    Liu Hao; Zhang Yong; Li Ruying; Sun Xueliang; Abou-Rachid, Hakima

    2012-01-01

    Nitrogen-doped carbon nanotubes (CN x tubes) with nitrogen content of 7.6 at.% are synthesized on carbon papers. Thermal and chemical stability of the nanotubes are investigated by thermogravimetric analysis, differential scanning calorimetry and X-ray photoelectron spectroscopy techniques. The results indicate that the nitrogen can be firmly kept in the nanotubes after annealing at 300 °C in air. Under an argon atmosphere, the nitrogen would not release until 670 °C, and half of the nitrogen incorporated is released after annealing at 700 °C for 30 min. Chemical stability investigation indicates that the nitrogen incorporated in the nanotubes is very stable under the thermal and acid environment comparable to working condition of proton exchange membrane (PEM) fuel cells. Profile of the nitrogen species inside the nanotubes reveals that graphite-like nitrogen releases slower than any other kind of nitrogen in the nanotubes during the chemical stability measurement. These CN x tubes synthesized by this simple chemical vapor deposition method are expected to be suitable for many applications, such as PEM fuel cells that work under both thermal and corrosive conditions and some other mild thermal environments.

  9. Inorganic-organic hybrid polyoxometalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode

    International Nuclear Information System (INIS)

    Han Zhangang; Zhao Yulong; Peng Jun; Liu Qun; Wang Enbo

    2005-01-01

    An inorganic-organic hybrid polyoxometalate (POM) (Hbpy) 4 [SiMo 12 O 40 ] (1) (bpy = 2,4-bipyridine), has been prepared and characterized. X-ray diffraction study reveals that compound 1 contains interesting organic double helical chains. The hybrid nanoparticles was used as a solid bulkmodifier to fabricate a three-dimensional chemically modified carbon paste electrode (1-CPE) by direct mixing. The electrochemical behavior and electrocatalysis of 1-CPE has been studied in detail. The results indicate that 1-CPE has a good electrocatalytic activity toward the reduction of nitrite in 1 M H 2 SO 4 aqueous solution. 1-CPE shows remarkable stability that can be ascribed to the interactions existed between POM anions and organic double helical bpy chains, which are very important for practical applications in electrode modification

  10. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    Directory of Open Access Journals (Sweden)

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  11. Surface modification of carbon fibers and its effect on the fiber–matrix interaction of UHMWPE based composites

    International Nuclear Information System (INIS)

    Chukov, D.I.; Stepashkin, A.A.; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.

    2014-01-01

    Highlights: • Both chemical and thermal treatments of UKN 5000 carbon fibers allow one to obtain well-developed surface. • The changes of structure and properties of VMN-4 fibers after both thermal and chemical oxidation are insignificant due to more perfect initial structure of these fibers. • The oxidative treatment of carbon fibers allows one to improve the interfacial interaction in the UHMWPE-based composites. • The oxidative treatment of the fibers allows one to a triple increase of Young’s modulus of the modified fibers reinforced UHMWPE composites. -- Abstract: The PAN-based carbon fibers (CF) were subjected to thermal and chemical oxidation under various conditions. The variation in the surface morphology of carbon fibers after surface treatment was analyzed by scanning electron microscopy (SEM). It was found that the tensile strength of carbon fibers changed after surface modification. The interaction between the fibers and the matrix OF ultra-high molecular weight polyethylene (UHMWPE) was characterized by the Young modulus of produced composites. It was shown that the Young modulus of composites reinforced with modified carbon fibers was significantly higher than that of composites reinforced with non-modified fibers

  12. Redox electrodes comprised of polymer-modified carbon nanomaterials

    Science.gov (United States)

    Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team

    2013-03-01

    A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.

  13. Immobilization of Glucose Oxidase on Modified-Carbon-Paste-Electrodes for Microfuel Cell

    Directory of Open Access Journals (Sweden)

    Laksmi Ambarsari

    2016-03-01

    Full Text Available Glucose oxidase (GOx is being developed for many applications such as an implantable fuel cell, due to its attractive property of operating under physiological conditions. This study reports the functional immobilization of glucose oxidase onto polyaniline-nanofiber-modified-carbon-paste-electrodes (GOx/MCPE as bioanodes in fuel cell applications. In particular, GOx is immobilized onto the electrode surface via a linker molecule (glutaraldehyde. Polyaniline, synthesized by the interfacial polymerization method, produces a morphological form of nanofibers (100-120 nm which have good conductivity. The performance of the polyaniline-modified-carbon-paste-electrode (MCPE was better than the carbon- paste-electrode (CPE alone. The optimal pH and temperature of the GOx/MCPE were 4.5 (in 100 mM acetate buffer and 65 °C, respectively. The GOx/MCPE exhibit high catalytic performances (activation energy 16.4 kJ mol-1, have a high affinity for glucose (Km value 37.79 µM and can have a maximum current (Imax of 3.95 mA. The sensitivity of the bioelectrode also was high at 57.79 mA mM-1 cm-2.

  14. Electrooxidation of Indomethacin at Multiwalled Carbon Nanotubes-Modified GCE and Its Determination in Pharmaceutical Dosage Form and Human Biological Fluids

    OpenAIRE

    Sataraddi, Sanjeevaraddi R.; Patil, Shreekant M.; Bagoji, Atmanand M.; Pattar, Vijay P.; Nandibewoor, Sharanappa T.

    2014-01-01

    A simple, rapid, selective, and sensitive electrochemical method for the direct determination of indomethacin was developed. The electrochemical behavior of indomethacin was carried at multiwalled carbon nanotube- (MWCNTs-) modified glassy carbon electrode (GCE). The cyclic voltammetric results indicated that MWCNT-modified glassy carbon electrode remarkably enhanced electrocatalytic activity towards the oxidation of indomethacin in slightly acidic solutions. It led to a considerable improvem...

  15. Double-ion imprinted polymer @magnetic nanoparticles modified screen printed carbon electrode for simultaneous analysis of cerium and gadolinium ions

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com; Jauhari, Darshika

    2015-05-22

    Highlights: • Synthesis of a double-ion imprinted polymer for analysis of Ce(IV) and Gd(III). • Imprinted nano-beads were grown on MNPs-modified SPCE surface. • Voltammetric determination of both templates was carried out simultaneously. • Ultra-trace analysis with LOD (ng mL{sup −1}) 0.07 for Ce(IV) and 0.19 for Gd(III) is achieved. - Abstract: A typical, reproducible, and rugged screen printed carbon electrode, modified with dual-ion imprinted beads, was fabricated employing the “surface grafting from” approach. For this, the acyl chloride functionalized magnetic nanoparticles were first immobilized and chemically attached with a typical functional monomer (but-2-enedioic acid bis-[(2-amino-ethyl)-amide]) on the electrode surface. This was subsequently subjected to the thermal polymerization in the presence of template ions (Ce(IV) and Gd(III)), cross-linker (ethylene glycol dimethacrylate), initiator (AIBN), and multiwalled carbon nanotubes. The modified sensor was used for the simultaneous analysis of both template ions in aqueous, blood serum, and waste-water samples, using differential pulse anodic stripping voltammetry which revealed two oxidation peaks for respective templates with resolution as much as 950 mV, without any cross reactivity, interferences and false-positives. The detection limits realized by the proposed sensor, under optimized conditions, were found to be as low as 0.07 ng mL{sup −1} for Ce(IV) and 0.19 ng mL{sup −1} for Gd(III) (S/N = 3) that could eventually be helpful for lanthanide estimation at stringent levels.

  16. Double-ion imprinted polymer @magnetic nanoparticles modified screen printed carbon electrode for simultaneous analysis of cerium and gadolinium ions

    International Nuclear Information System (INIS)

    Prasad, Bhim Bali; Jauhari, Darshika

    2015-01-01

    Highlights: • Synthesis of a double-ion imprinted polymer for analysis of Ce(IV) and Gd(III). • Imprinted nano-beads were grown on MNPs-modified SPCE surface. • Voltammetric determination of both templates was carried out simultaneously. • Ultra-trace analysis with LOD (ng mL −1 ) 0.07 for Ce(IV) and 0.19 for Gd(III) is achieved. - Abstract: A typical, reproducible, and rugged screen printed carbon electrode, modified with dual-ion imprinted beads, was fabricated employing the “surface grafting from” approach. For this, the acyl chloride functionalized magnetic nanoparticles were first immobilized and chemically attached with a typical functional monomer (but-2-enedioic acid bis-[(2-amino-ethyl)-amide]) on the electrode surface. This was subsequently subjected to the thermal polymerization in the presence of template ions (Ce(IV) and Gd(III)), cross-linker (ethylene glycol dimethacrylate), initiator (AIBN), and multiwalled carbon nanotubes. The modified sensor was used for the simultaneous analysis of both template ions in aqueous, blood serum, and waste-water samples, using differential pulse anodic stripping voltammetry which revealed two oxidation peaks for respective templates with resolution as much as 950 mV, without any cross reactivity, interferences and false-positives. The detection limits realized by the proposed sensor, under optimized conditions, were found to be as low as 0.07 ng mL −1 for Ce(IV) and 0.19 ng mL −1 for Gd(III) (S/N = 3) that could eventually be helpful for lanthanide estimation at stringent levels

  17. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors

    Science.gov (United States)

    Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru

    2016-09-01

    A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter < 4 nm) on multiwalled carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.

  18. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    Science.gov (United States)

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Modified granular activated carbon: A carrier for the recovery of nickel ions from aqueous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.; Natarajan, G.S.; Sen, R. [Central Fuel Research Inst., Nagpur (India)

    2004-07-01

    Granular Activated Carbon (GAC) is widely used for the removal and recovery of toxic pollutants including metals because of its low cost and high affinity towards the scavenging of metal ions. Activated carbon derived from bituminous coal is preferred for wastewater treatment due to its considerable hardness, a characteristic needed to keep down handling losses during re-activation. Commercial grade bituminous coal based carbon, viz. Filtrasorb (F-400), was used in the present work. The scavenging of precious metals such as nickel onto GAC was studied and a possible attempt made to recover the adsorbed Ni{sup 2+} ions through the use of some suitable leaching processes. As part of the study, the role of complexing agents on the surface of the carbon was also investigated. The use of organic complexing agents such as oxine and 2-methyloxine in the recovery process was found to be promising. In addition, the surface of the carbon was modified with suitable oxidising agents that proved to be more effective than chelating agents. Several attempts were made to optimise the recovery of metal ions by carrying out experiments with oxidising agents in order to obtain maximum recovery from the minimum quantity of carbon. Experiments with nitric acid indicated that not only was the carbon surface modified but such modification also helped in carbon regeneration.

  20. Effect of different chemical modification of carbon nanotubes for the oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Dumitru, Anca; Mamlouk, M.; Scott, K.

    2014-01-01

    The electrochemical reduction of oxygen on chemically modified multi-walled carbon nanotubes (CNTs) electrodes in 1 M KOH solution has been studied using the rotating ring disc electrode (RDE). The surface modification of CNTs has been estimated by XPS and Raman spectroscopy. The effect of different oxygen functionalities on the surface of carbon nanotube for the oxygen reduction reaction (ORR) is considered in terms of the number of electrons (n) involved. Electrochemical studies indicate that in the case of the modification of CNTs with citric acid and diazonium salts the n values were close to two in the measured potential range, and the electrochemical reduction is limited to the production of peroxide as the final product. In the case of the modification of carbon nanotubes with peroxymonosulphuric acid, in the measured potential range, the n value is close to 4 indicating the four-electron pathway for the ORR. By correlating ORR measurements with the XPS analysis, we propose that the increase in electrocatalytic activity towards the ORR, for CNT can be attributed to the increase in C-O groups on the surface of CNTs after modification with peroxymonosulphuric acid

  1. A Glucose Sensor Based on Glucose Oxidase Immobilized by Electrospinning Nanofibrous Polymer Membranes Modified with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    You Wang

    2013-05-01

    Full Text Available A glucose biosensor based on glucose oxidase immobilized by electrospinning nanofibrous membranes has been developed. Nanofibrous membranes were electrospun from the solution of poly(acrylonitrile-co-acrylic acid containing carbon nanotubes suspension and directly deposited on Pt electrodes for immobilizing glucose oxidase. The morphologies and structure of the nanofibrous membranes with or without carbon nanotubes were characterized by scanning electron microscopy. The fabrication parameters of nanofibers were optimized such as thickness of the nanofibrous membranes and mass ration of carbon nanotubes. The biosensor showed the relationship with a concentration range of 0.1–10 mM and response time was 60 s. The sensitivity of carbon nanotubes modified biosensors was two times larger than which of no carbon nanotubes modified ones. The pH effect, interference and lifetime of biosensors were discussed.

  2. Chemical attachment of functionalized multiwalled carbon nanotubes on glassy carbon electrode for electrocatalytic application

    International Nuclear Information System (INIS)

    Rajalakshmi, K.; Abraham John, S.

    2015-01-01

    Highlights: • FMWCNTs were covalently attached on GC surface with the aid of alkyldiamine. • The attached FMWCNTs were stable for a wide potential window due to the robust C−N bond. • The composite electrode was prepared by electropolymerizing thiadiazole on FMWCNTs. • The detection limit of 0.27 μM (S/N = 3) of GMP was achieved using composite modified electrode. - Abstract: The covalent attachment of acid functionalized multiwalled carbon nanotubes (FMWCNTs) on glassy carbon (GC) electrode using 1,8-octanediamine (OD) as a linker via carbodiimide chemistry was described. The attachment of FMWCNTs on GC electrode were confirmed by attenuated total reflectance Fourier transform infra-red (ATR-FT-IR) spectroscopy, Raman, scanning electron microscopy (SEM) and electrochemical impedance studies. Raman spectrum of FMWCNTs modified surface shows the characteristic G and D bands at 1563 cm −1 and 1340 cm −1 , respectively. This confirmed the successful attachment of FMWCNTs on the OD modified GC surface. Further, the attachment of FMWCNTs on OD modified surface via amide linkage was confirmed from the observed characteristic peak at 1681 cm −1 in the ATR-FT-IR spectrum. The SEM images showed that the covalently attached FMWCNTs retained their morphology similar to powder and the average diameter of them was found to be 58 nm. Unlike modification of FMWCNTs on gold substrates with the aid of conventional thiol linkers (Au−S bond), modification of them by the present method was stable for a wide positive potential window due to the robust C−N bond. To demonstrate the electrochemical stability of the MWCNTs modified electrode at more positive potential, guanosine 5′-monophosphate (GMP) was selected as a representative probe because its oxidation occurs at more than 1 V. It was found that the FMWCNTs modified electrode not only showed a stable signal for GMP but also enhanced its oxidation current when compared to bare GC electrode. Further, the

  3. Gas analysis during the chemical vapor deposition of carbon

    International Nuclear Information System (INIS)

    Lieberman, M.L.; Noles, G.T.

    1973-01-01

    Gas chromatographic analyses were performed during the chemical vapor deposition of carbon in both isothermal and thermal gradient systems. Such data offer insight into the gas phase processes which occur during deposition and the interrelations which exist between gas composition, deposition rate, and resultant structure of the deposit. The results support a carbon CVD model presented previously. The application of chromatographic analysis to research, development, and full-scale facilities is shown. (U.S.)

  4. Low temperature electrical transport in modified carbon nanotube fibres

    International Nuclear Information System (INIS)

    Lekawa-Raus, Agnieszka; Walczak, Kamil; Kozlowski, Gregory; Hopkins, Simon C.; Wozniak, Mariusz; Glowacki, Bartek A.; Koziol, Krzysztof

    2015-01-01

    Carbon nanotube fibres are a new class of materials highly promising for many electrical/electronic applications. The range of applications could be extended through the modification of their electrical transport properties by inclusions of foreign materials. However, the changes in electrical transport are often difficult to assess. Here, we propose that the analysis of resistance–temperature dependencies of modified fibres supported by a recently developed theoretical model may aid research in this area and accelerate real life applications of the fibres

  5. Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes

    International Nuclear Information System (INIS)

    Chen, Yingwen; Xu, Yuan; Chen, Liuliu; Li, Peiwen; Zhu, Shemin; Shen, Shubao

    2015-01-01

    In this paper, we modified biocathodes with PANI (Polyaniline)/MWCNT (Multi-Walled Carbon Nanotube) composites to improve hydrogen production in single-chamber, membrane-free biocathode MECs. The results showed that the hydrogen production rates increased with an increase in applied voltage. At an applied voltage of 0.9 V, the modified biocathode MECs achieved a hydrogen production rate of 0.67m 3 m −3 d −1 , current density of 205 Am −3 , COD of 86.8%, coulombic efficiency of 72%, cathodic hydrogen recovery of 42%, and energy efficiency of 81% with respect to the electrical power input. LSV (Linear Sweep Voltammetry) scans, SEM (Scanning Electron Microscopy) images and DGGE (Denaturing Gradient Gel Electrophoresis) demonstrated that hydrogen production is catalyzed by the special biofilm attached on a modified biocathode, and the microorganism species and quantity present were significantly different between the modified biocathode and the non-modified biocathode. In general, the performance of MECs with modified biocathodes was improved in the presence of a higher current density and hydrogen generation rate. - Highlights: • Different PANI/MWCNT composites were prepared and used to modify biocathode in MECs. • The performance of MECs was improved by the modification. • 75% wt PANI/MWCNT modified biocathode showed the better capacity on hydrogen generation. • LVS, SEM, DGGE were determined to figure out the effect of modification on MECs. • PANI/MWCNT modified biocathode in MECs was first studied to push MECs technology forward

  6. Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.

    Science.gov (United States)

    Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger

    2011-01-01

    Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes

    KAUST Repository

    Hamzaoui, Rabah; Guessasma, Sofiane; Mecheri, Boubakeur; Eshtiaghi, Amir M.; Bennabi, Abdelkrim

    2014-01-01

    Mechanical performance of modified mortar using hemp fibres is studied following various processing conditions. Hemp fibres combined with carbon nanotubes (CNT) are introduced in mortar and their effect is studied as function of curing time

  8. Developing electrodes chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA) by voltammetry

    International Nuclear Information System (INIS)

    Tadini, Maraine Catarina; Balbino, Marco Antonio; Eleoterio, Izabel Cristina; Siqueirade Oliveira, Laura; Dias, Luis Gustavo; Jean-François Demets, Grégoire; Firmino de Oliveira, Marcelo

    2014-01-01

    Graphical abstract: - Highlights: • A new stand in forensic chemistry. • Voltammetric method for the determination of MDMA in seized samples. • A new voltammetric sensor for MDMA. - Abstract: This study aimed to develop an electrode chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA), the main active principle of ecstasy samples, by voltammetry. We modified the electrode surface with a film containing cucurbit[6]uril, Nafion, and methanol, using the dip coating or the spin coating technique. During analysis, we employed an electrochemical cell with a conventional three-electrode system and KCl solution (0.1 mol L −1 ) as the supporting electrolyte. We conducted cyclic voltammetry at concentrations ranging from 4.2 × 10 −6 to 4.8 × 10 −5 mol L −1 . We also accomplished scanning electron microscopy, to investigate the structural behavior of the film that originated on the electrode surface. We obtained the following results when we used dip coating to prepare the modified electrode: standard deviation (SD) = 0.024 μA, limit of detection (LOD) = 3.5 μmol L −1 , limit of quantification (LOQ) = 11.7 μmol L −1 , and amperometric sensitivity (m) = 20.9 × 10 3 μA L mol −1 . As for spin coating, we obtained SD = 0.024 μA, LOD = 2.7 μmol L −1 , LOQ = 9.1 μmol L −1 and m = 25.9 × 10 3 μA mol L −1 . These are very promising data: the modified electrode is more sensitive than the conventional glassy carbon electrode under the studied experimental conditions

  9. Sensory and rheological properties of transgenically and chemically modified starch ingredients as evaluated in a food product model

    DEFF Research Database (Denmark)

    Ahmt, T.; Wischmann, Bente; Blennow, A.

    2004-01-01

    gels with a higher tendency to retrograde and a low freeze/thaw stability as compared to starches with shorter amylopectin chains and lower phosphorous content. The textural properties of the food product model prepared from genetically and chemically modified starches were characterised by sensory......Starches derived from five genetically modified potato lines, two chemically modified potato starches and two native starches from potato and maize were subjected to physical and chemical analyses and their functionality evaluated in a milk-based food product model. The transgenic starches were...... and rheological analyses. To clearly visualise the effects of the modifications, data was evaluated by radar plots and multiple regression analysis (chemometrics). Genetically modified potato starches with longer amylopectin chains and increased phosphorous content gave a more gelled and a shorter texture...

  10. Electronic properties of pristine and modified single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kharlamova, M V

    2013-01-01

    The current status of research on the electronic properties of filled single-walled carbon nanotubes (SWCNTs) is reviewed. SWCNT atomic structure and electronic properties are described, and their correlation is discussed. Methods for modifying the electronic properties of SWCNTs are considered. SWCNT filling materials are systematized. Experimental and theoretical data on the electronic properties of filled SWCNTs are analyzed. Possible application areas for filled SWCNTs are explored. (reviews of topical problems)

  11. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    Directory of Open Access Journals (Sweden)

    Cesar GAITAN-FONSECA

    2013-01-01

    Full Text Available Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS. Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA. The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT. Results and Conclusions Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system.

  12. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  13. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    Science.gov (United States)

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Electrochemistry of metoclopramide at multi-walled carbon nanotube modified electrode and its voltammetric detection.

    Science.gov (United States)

    Guo, Wei; Geng, Mingjiang; Zhou, Lingyun

    2012-01-01

    A simple, sensitive and inexpensive electrochemical method was developed for the determination of metoclopramide (MCP) with a multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE). MWNT was dispersed into polyacrylic acid (PAA); the aqueous suspension was then cast on GCE electrodes, forming MWNT-PAA films after evaporation of the solvent. The electrochemical behavior of MCP at the MWNT-modified electrode was investigated in detail. Compared with the bare GCE, the MWNT-modified electrode exhibits electrocatalytic activity to the oxidation of MCP because of the significant oxidation peak-current enhancement. Furthermore, various experimental parameters, such as the solution pH value, the amount of MWNT-PAA suspension and accumulation conditions were optimized for the determination of MCP. Based on the electrocatalytic effect of the MWNT-modified electrode, linear sweep voltammetry (LSV) was developed for the determination of MCP with the linear response in the range from 1.0 × 10(-7) to 1.0 × 10(-5) mol L(-1) and a detection limit of 5.0 × 10(-8) mol L(-1). The method has been successfully applied to the determination of MCP in commercial MCP tablets.

  15. Functional materials based on carbon nanotubes: Carbon nanotube actuators and noncovalent carbon nanotube modification

    Science.gov (United States)

    Fifield, Leonard S.

    Carbon nanotubes have attractive inherent properties that encourage the development of new functional materials and devices based on them. The use of single wall carbon nanotubes as electromechanical actuators takes advantage of the high mechanical strength, surface area and electrical conductivity intrinsic to these molecules. The work presented here investigates the mechanisms that have been discovered for actuation of carbon nanotube paper: electrostatic, quantum chemical charge injection, pneumatic and viscoelastic. A home-built apparatus for the measurement of actuation strain is developed and utilized in the investigation. An optical fiber switch, the first demonstrated macro-scale device based on the actuation of carbon nanotubes, is described and its performance evaluated. Also presented here is a new general process designed to modify the surface of carbon nanotubes in a non-covalent, non-destructive way. This method can be used to impart new functionalities to carbon nanotube samples for a variety of applications including sensing, solar energy conversion and chemical separation. The process described involves the achievement of large degrees of graphitic surface coverage with polycyclic aromatic hydrocarbons through the use of supercritical fluids. These molecules are bifunctional agents that anchor a desired chemical group to the aromatic surface of the carbon nanotubes without adversely disrupting the conjugated backbone that gives rise the attractive electronic and physical properties of the nanotubes. Both the nanotube functionalization work and the actuator work presented here emphasize how an understanding and control of nanoscale structure and phenomena can be of vital importance in achieving desired performance for active materials. Opportunities for new devices with improved function over current state-of-the-art can be envisioned and anticipated based on this understanding and control.

  16. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Science.gov (United States)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  17. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    International Nuclear Information System (INIS)

    Xue Kuanhong; Liu Jiamei; Wei Ribing; Chen Shaopeng

    2006-01-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2 SO 4 , at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E pa and E pc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k 0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process

  18. Physical properties of chemical vapour deposited nanostructured carbon thin films

    International Nuclear Information System (INIS)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H.; Rajpure, K.Y.

    2011-01-01

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C 10 H 16 )' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp 3 bonds with diamond phase and less for SS shows graphitization effect with dominant sp 2 bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  19. Chemically modified cellulose paper as a thin film microextraction phase.

    Science.gov (United States)

    Saraji, Mohammad; Farajmand, Bahman

    2013-11-01

    In this paper, chemically modified cellulose paper was introduced as a novel extracting phase for thin film microextraction (TFME). Different reagents (Octadecyltrichlorosilane, diphenyldichlorosilane, cyclohexyl isocyanate and phenyl isocyanate) were used to modify the cellulose papers. The modified papers were evaluated as a sorbent for the extraction of some synthetic and natural estrogenic hormones (17α-ethynylestradiol, estriol and estradiol) from aqueous samples. Liquid chromatography-fluorescence detection was used for the quantification of the extracted compounds. The cellulose paper modified with phenyl isocyanate showed the best affinity to the target compounds. TEME parameters such as desorption condition, shaking rate, sample ionic strength and extraction time were investigated and optimized. Limit of detections were between 0.05 and 0.23μgL(-1) and relative standard deviations were less than 11.1% under the optimized condition. The calibration curves were obtained in the range of 0.2-100μgL(-1) with a good linearity (r(2)>0.9935). Wastewater, human urine, pool and river water samples were studied as real samples for the evaluation of the method. Relative recoveries were found to be between 75% and 101%. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Enhancement of methylbenzene adsorption capacity through cetyl trimethyl ammonium bromide-modified activated carbon derived from Astragalus residue

    Science.gov (United States)

    Feng, Ningchuan; Zhang, Yumei; Fan, Wei; Zhu, Meilin

    2018-02-01

    Activated carbon was prepared from astragalus residue by KOH and then treated with cetyl trimethyl ammonium bromide (CTAB) and used for the removal of methylbenzene from aqueous solution. The samples were characterized by FTIR, XRD, SEM and Boehm titration. The results showed that CTAB changed the physicochemical properties of activated carbon significantly. The isotherm adsorption studies of methylbenzene onto the astragalus residue activated carbon (ASC) and CTAB-modified astragalus residue activated carbon (ASCCTAB) were examined by using batch techniques and agreed well with the Langmuir model. The maximum adsorption capacity of ASC and ASC-CTAB for methylbenzene determined from the Langmuir model was183.56 mg/g and 235.18 mg/g, respectively. The results indicated that using CTAB as a modifier for ASC modification could markedly enhance the methylbenzene removal from water.

  1. Chemically modified oligonucleotides with efficient RNase H response

    DEFF Research Database (Denmark)

    Vester, Birte; Boel, Anne Marie; Lobedanz, Sune

    2008-01-01

    Ten different chemically modified nucleosides were incorporated into short DNA strands (chimeric oligonucleotides ON3-ON12 and ON15-ON24) and then tested for their capacity to mediate RNAse H cleavage of the complementary RNA strand. The modifications were placed at two central positions directly...... in the RNase H cleaving region. The RNA strand of duplexes with ON3, ON5 and ON12 were cleaved more efficiently than the RNA strand of the DNA:RNA control duplex. There seems to be no correlation between the thermal stability between the duplexes and RNase H cleavage....

  2. Adsorption of Arsenate by Nano Scaled Activated Carbon Modified by Iron and Manganese Oxides

    Directory of Open Access Journals (Sweden)

    George P. Gallios

    2017-09-01

    Full Text Available The presence of arsenic in water supplies is a major problem for public health and still concerns large parts of population in Southeast Asia, Latin America and Europe. Removal of arsenic is usually accomplished either by coagulation with iron salts or by adsorption with iron oxides or activated alumina. However, these materials, although very efficient for arsenic, normally do not remove other undesirable constituents from waters, such as chlorine and organo-chlorine compounds, which are the results of water chlorination. Activated carbon has this affinity for organic compounds, but does not remove arsenic efficiently. Therefore, in the present study, iron modified activated carbons are investigated as alternative sorbents for the removal of arsenic(V from aqueous solutions. In addition, modified activated carbons with magnetic properties can easily be separated from the solutions. In the present study, a simple and efficient method was used for the preparation of magnetic Fe3(Mn2+O4 (M:Fe and/or Mn activated carbons. Activated carbons were impregnated with magnetic precursor solutions and then calcinated at 400 °C. The obtained carbons were characterized by X-ray diffraction (XRD, nitrogen adsorption isotherms, scanning electron microscopy (SEM, vibrating sample magnetometer (VSM, Fourier Transform Infrared Spectrometry (FTIR and X-ray photoelectron spectroscopy (XPS measurements. Their adsorption performance for As(V was evaluated. The iron impregnation presented an increase in As(V maximum adsorption capacity (Qmax from about 4 mg g−1 for the raw carbon to 11.05 mg g−1, while Mn incorporation further increased the adsorption capacity at 19.35 mg g−1.

  3. Vibrationally Excited Carbon Monoxide Produced via a Chemical Reaction Between Carbon Vapor and Oxygen

    Science.gov (United States)

    Jans, Elijah R.; Eckert, Zakari; Frederickson, Kraig; Rich, Bill; Adamovich, Igor V.

    2017-06-01

    Measurements of the vibrational distribution function of carbon monoxide produced via a reaction between carbon vapor and molecular oxygen has shown a total population inversion on vibrational levels 4-7. Carbon vapor, produced using an arc discharge to sublimate graphite, is mixed with an argon oxygen flow. The excited carbon monoxide is vibrationally populated up to level v=14, at low temperatures, T=400-450 K, in a collision-dominated environment, 15-20 Torr, with total population inversions between v=4-7. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of the reaction enthalpy. Kinetic modeling of the flow reactor, including state specific vibrational processes, was performed to infer the vibrational distribution of the products of the reaction. The results show viability of developing of a new chemical CO laser from the reaction of carbon vapor and oxygen.

  4. Mechanical, Rheological and Thermal Properties of Polystyrene/1-Octadecanol Modified Carbon Nanotubes Nanocomposites

    KAUST Repository

    Amr, Issam Thaher; Al-Amer, Adnan; Thomas, Selvin P.; Sougrat, Rachid; Atieh, Muataz Ali

    2014-01-01

    The results of the studies on the functionalization of multi-walled carbon nanotubes (MWCNT) with 1-octadecanol and its usage as reinforcing filler in the bulk polymerization of styrene are reported in this article. Both unmodified and modified CNTs

  5. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption

    International Nuclear Information System (INIS)

    Saleh, Muhammad; Chandra, Vimlesh; Christian Kemp, K; Kim, Kwang S

    2013-01-01

    A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO 2 ). The PIG hybrid was chemically activated at temperatures of 400–800 ° C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO 2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m 2 g −1 . The hybrid activated at 600 ° C (PIG6) possesses a surface area of 534 m 2 g −1 and a micropore volume of 0.29 cm 3 g −1 . PIG6 shows a maximum CO 2 adsorption capacity of 3.0 mmol g −1 at 25 ° C and 1 atm. This high CO 2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO 2 over N 2 , CH 4 and H 2 of 23, 4 and 85 at 25 ° C, respectively. (paper)

  6. Oxidized multi walled carbon nanotubes for improving the electrocatalytic activity of a benzofuran derivative modified electrode

    Directory of Open Access Journals (Sweden)

    Mohammad Mazloum-Ardakani

    2016-01-01

    Full Text Available In the present paper, the use of a novel carbon paste electrode modified by 7,8-dihydroxy-3,3,6-trimethyl-3,4-dihydrodibenzo[b,d]furan-1(2H-one (DTD and oxidized multi-walled carbon nanotubes (OCNTs is described for determination of levodopa (LD, acetaminophen (AC and tryptophan (Trp by a simple and rapid method. At first, the electrochemical behavior of DTD is studied, then, the mediated oxidation of LD at the modified electrode is investigated. At the optimum pH of 7.4, the oxidation of LD occurs at a potential about 330 mV less positive than that of an unmodified carbon paste electrode. Based on differential pulse voltammetry (DPV, the oxidation current of LD exhibits a linear range between 1.0 and 2000.0 μM of LD with a detection limit (3σ of 0.36 μM. DPV was also used for simultaneous determination of LD, AC and Trp at the modified electrode. Finally, the proposed electrochemical sensor was used for determinations of these substances in human serum sample.

  7. Evaluating The Performance of Asphalt Concrete Mixes by Utilizing Carbon Black as Asphalt Modifier

    Directory of Open Access Journals (Sweden)

    Aliaa Faleh Al.ani

    2018-02-01

    Full Text Available Carbon black produced from several factories in Iraq is expected to provide a reinforcing agent for asphalt paving materials. Carbon black has many characteristics that distinguish  it from conventional mineral fillers, as well as their different function in pavement mixtures. Theory and exercise advanced  in the inclusive utilize of carbon black as a reinforcing agent for rubber has led to concept of asphalt reinforcement. The very fine particles of micro filler added in different contents will be dispersed in asphalt cement improving the mechanical properties of asphalt concrete mixes. In this Four percentages rates were utilized; 0, 3, 6, and 9 percent adding to asphalt grade (60-70. Mixes of asphalt concrete were destined at their optimum asphalt content (OAC then experienced to assess their engineering characteristics that contain moisture of damage, permanent deformation, modulus of resilient and characteristics of fatigue. These characteristics have been assessed utilizing indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixtures improved with carbon black were existed to have amended permanent deformation and fatigue characteristics, else exhibited high resilient modulus and lower moisture susceptibility. Result showed that a rate changed from 3 to 9 percent has shown an increase in resilient modulus for increment of carbon black and modulus of resilient for mixes with 9 percent carbon black was 1.4 times that for mixes with 0 percent carbon black. The altering of carbon black from a range (3-9 percent has modified the fatigue property of the asphalt concrete mixes as determined by flexural test, Significantly, to modify the asphalt concrete manner taken the  percent of carbon black 6, and to produce the mixes more durable , higher resistance to distresses by adding the local knowledge.

  8. Grafting of activated carbon cloths for selective adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S., E-mail: delpeux@cnrs-orleans.fr

    2016-05-01

    Graphical abstract: - Highlights: • A controlled grafting of carboxylic functions on activated carbon fibers. • The carbon material nanotextural properties preservation after grafting. • An identification of the grafting mechanism through ToF SIMS analysis. • A chemical mapping of the grafted surface using ToF SIMS technique and imaging. - Abstract: Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  9. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  10. Characterization of functionalized multiwalled carbon nanotubes for use in an enzymatic sensor.

    Science.gov (United States)

    Guadarrama-Fernández, Leonor; Chanona-Pérez, Jorge; Manzo-Robledo, Arturo; Calderón-Domínguez, Georgina; Martínez-Rivas, Adrián; Ortiz-López, Jaime; Vargas-García, Jorge Roberto

    2014-10-01

    Carbon nanotubes (CNT) have proven to be materials with great potential for the construction of biosensors. Development of fast, simple, and low cost biosensors to follow reactions in bioprocesses, or to detect food contaminants such as toxins, chemical compounds, and microorganisms, is presently an important research topic. This report includes microscopy and spectroscopy to characterize raw and chemically modified multiwall carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition with the intention of using them as the active transducer in bioprocessing sensors. MWCNT were simultaneously purified and functionalized by an acid mixture involving HNO3-H2SO4 and amyloglucosidase attached onto the chemically modified MWCNT surface. A 49.0% decrease in its enzymatic activity was observed. Raw, purified, and enzyme-modified MWCNTs were analyzed by scanning and transmission electron microscopy and Raman and X-ray photoelectron spectroscopy. These studies confirmed purification and functionalization of the CNTs. Finally, cyclic voltammetry electrochemistry was used for electrical characterization of CNTs, which showed promising results that can be useful for construction of electrochemical biosensors applied to biological areas.

  11. Chemically modified tetracyclines stimulate matrix metalloproteinase-s production by periodontal ligament cells

    NARCIS (Netherlands)

    Bildt, M.M.; Snoek-van Beurden, A.M.P.; Groot, J. de; El, B. van; Kuijpers-Jagtman, A.M.; Hoff, J.W. van den

    2006-01-01

    Background and Objective: The purpose of this study was to investigate the effects of chemically modified tetracyclines (CMTs) on the production of gelatinases [matrix metalloproteinase (MMP)-2 and -9] by human periodontal ligament (PDL) cells, and on the activity of recombinant gelatinases.

  12. Deflouridation of water using physico-chemically treated sand as a ...

    African Journals Online (AJOL)

    Prof. Dr. Mahamadi

    chemically modified sand has potential application as an adsorbent for fluoride ions removal. ... activated carbon, minerals, fish bone charcoal, coconut ... (2003), established that red soils ..... solutions by granular ferric hydroxide (GFH). Water ...

  13. Carbon Footprint Calculations: An Application of Chemical Principles

    Science.gov (United States)

    Treptow, Richard S.

    2010-01-01

    Topics commonly taught in a general chemistry course can be used to calculate the quantity of carbon dioxide emitted into the atmosphere by various human activities. Each calculation begins with the balanced chemical equation for the reaction that produces the CO[subscript 2] gas. Stoichiometry, thermochemistry, the ideal gas law, and dimensional…

  14. A highly stable and sensitive chemically modified screen-printed electrode for sulfide analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, D.-M. [Department of Chemistry, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40217, Taiwan (China); Kumar, Annamalai Senthil [Department of Chemistry, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40217, Taiwan (China); Zen, J.-M. [Department of Chemistry, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40217, Taiwan (China)]. E-mail: jmzen@dragon.nchu.edu.tw

    2006-01-18

    We report here a highly stable and sensitive chemically modified screen-printed carbon electrode (CMSPE) for sulfide analysis. The CMSPE was prepared by first ion-exchanging ferricyanide into a Tosflex anion-exchange polymer and then sealing with a tetraethyl orthosilicate sol-gel layer. The sol-gel overlayer coating was crucial to stabilize the electron mediator (i.e., Fe(China){sub 6} {sup 3-}) from leaching. The strong interaction between the oxy-hydroxy functional group of sol-gel and the hydrophilic sites of Tosflex makes the composite highly rigid to trap the ferricyanide mediator. An obvious electrocatalytic sulfide oxidation current signal at {approx}0.20 V versus Ag/AgCl in pH 7 phosphate buffer solution was observed at the CMSPE. A linear calibration plot over a wide range of 0.1 {mu}M to 1 mM with a slope of 5.6 nA/{mu}M was obtained by flow injection analysis. The detection limit (S/N = 3) was 8.9 nM (i.e., 25.6 ppt). Practical utility of the system was applied to the determination of sulfide trapped from cigarette smoke and sulfide content in hot spring water.

  15. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces

    OpenAIRE

    Jogikalmath, G.; Stuart, J.K.; Pungor, A.; Hlady, V.

    1999-01-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface mo...

  16. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  17. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, C.; Orozco, G. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Verde, Y. [Instituto Tecnologico de Cancun, Av. Kabah Km. 3, C.P. 77500, Cancun, Quintana Roo (Mexico); Jimenez, S. [Unidad Queretaro Centro de Investigacion y de Estudios Avanzados del I.P.N., Juriquilla, Santiago de Queretaro (Mexico); Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Juaristi, E. [Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico); Bustos, E. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)], E-mail: ebustos@cideteq.mx

    2009-02-15

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H{sub 2}O{sub 2}) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H{sub 2}O{sub 2} takes place. The proposed H{sub 2}O{sub 2} sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively.

  18. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    International Nuclear Information System (INIS)

    Guzman, C.; Orozco, G.; Verde, Y.; Jimenez, S.; Godinez, Luis A.; Juaristi, E.; Bustos, E.

    2009-01-01

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H 2 O 2 ) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H 2 O 2 takes place. The proposed H 2 O 2 sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively

  19. The use of chemical modified chitosan with succinic anhydride in the methylene blue adsorption; O emprego de quitosana quimicamente modificada com anidrido succinico na adsorcao de azul de metileno

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Ilauro S.; Ribeiro, Emerson S.; Airoldi, Claudio [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: airoldi@iqm.unicamp.br

    2006-05-15

    The adsorption capacity of a-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically iclass and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methylene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 {+-} 0.02 kJ mol-1 with an equilibrium constant of 7350 {+-} 10 and for the carbon/dye interaction this constant gave 5951 {+-} 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 {+-} 0.4 and -21.5 {+-} 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable. (author)

  20. A Voltammetric Sensor Based on Chemically Reduced Graphene Oxide-Modified Screen-Printed Carbon Electrode for the Simultaneous Analysis of Uric Acid, Ascorbic Acid and Dopamine

    Directory of Open Access Journals (Sweden)

    Prosper Kanyong

    2016-12-01

    Full Text Available A disposable screen-printed carbon electrode (SPCE modified with chemically reduced graphene oxide (rGO (rGO-SPCE is described. The rGO-SPCE was characterized by UV-Vis and electrochemical impedance spectroscopy, and cyclic voltammetry. The electrode displays excellent electrocatalytic activity towards uric acid (UA, ascorbic acid (AA and dopamine (DA. Three resolved voltammetric peaks (at 183 mV for UA, 273 mV for AA and 317 mV for DA, all vs. Ag/AgCl were found. Differential pulse voltammetry was used to simultaneously detect UA, AA and DA in their ternary mixtures. The linear working range extends from 10 to 3000 μM for UA; 0.1 to 2.5 μM, and 5.0 to 2 × 104 µM for AA; and 0.2 to 80.0 μM and 120.0 to 500 µM for DA, and the limits of detection (S/N = 3 are 0.1, 50.0, and 0.4 μM, respectively. The performance of the sensor was evaluated by analysing spiked human urine samples, and the recoveries were found to be well over 98.0% for the three compounds. These results indicate that the rGO-SPCE represents a sensitive analytical sensing tool for simultaneous analysis of UA, AA and DA.

  1. Nanomolar simultaneous determination of levodopa and serotonin at a novel carbon ionic liquid electrode modified with Co(OH)2 nanoparticles and multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Babaei, Ali; Taheri, Ali Reza; Aminikhah, Majid

    2013-01-01

    Highlights: ► A novel modified carbon ionic liquid electrode is fabricated as Nafion/Co(OH) 2 –MWCNTs/CILE. ► The modified electrode was used as the new sensor for nanomolar simultaneous determinations of L-dopa and serotonin. ► The electrode was impermeable to uric acid and ascorbic acid and other anionic species as electroactive coexistent compounds. ► Several techniques as cyclic voltammetry, differential pulse voltammetry and chronoamperometry were used for investigations. ► The proposed sensor showed a wide linear range, low detection limit, high stability and good reproducibility. -- Abstract: A novel modified carbon ionic liquid electrode is prepared as an electrochemical sensor for simultaneous determination of levodopa (L-dopa) and serotonin (5-HT). The experimental results suggest that a carbon ionic liquid electrode modified with multi-walled carbon nanotubes and cobalt hydroxide nanoparticles, and coated with Nafion (Nafion/Co(OH) 2 –MWCNTs/CILE), accelerates the electron transfer reactions of L-dopa and 5-HT. In addition it shows no significant interferences of uric acid and ascorbic acid as electroactive coexistent compounds with L-dopa and 5-HT in biological systems. The fabricated sensor revealed some advantages such as convenient preparation, good stability and high sensitivity toward 5-HT and L-dopa determination. The DPV data showed that the obtained anodic peak currents were linearly dependent on the L-dopa and 5-HT concentrations in the range of 0.25–225 and 0.05–75 μmol L −1 , respectively. The applicability of the modified electrode was demonstrated by simultaneous determination of 5-HT and L-dopa in human serum

  2. Dissolution of uranium dioxide in supercritical carbon dioxide modified with tri-n-butyl phosphate-hydrogen peroxide

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.; Manchanda, V.K.

    2009-01-01

    Direct dissolution of uranium dioxide in supercritical carbon dioxide modified with tri-n-butyl phosphate (TBP) has been attempted. The effects of TBP concentration and pressure on the extraction of uranium have been studied. Addition of hydrogen peroxide in the modifier enhances the dissolution/extraction of uranium. (author)

  3. Fabrication of 3D Carbon Microelectromechanical Systems (C-MEMS).

    Science.gov (United States)

    Pramanick, Bidhan; Martinez-Chapa, Sergio O; Madou, Marc; Hwang, Hyundoo

    2017-06-17

    A wide range of carbon sources are available in nature, with a variety of micro-/nanostructure configurations. Here, a novel technique to fabricate long and hollow glassy carbon microfibers derived from human hairs is introduced. The long and hollow carbon structures were made by the pyrolysis of human hair at 900 °C in a N2 atmosphere. The morphology and chemical composition of natural and pyrolyzed human hairs were investigated using scanning electron microscopy (SEM) and electron-dispersive X-ray spectroscopy (EDX), respectively, to estimate the physical and chemical changes due to pyrolysis. Raman spectroscopy was used to confirm the glassy nature of the carbon microstructures. Pyrolyzed hair carbon was introduced to modify screen-printed carbon electrodes ; the modified electrodes were then applied to the electrochemical sensing of dopamine and ascorbic acid. Sensing performance of the modified sensors was improved as compared to the unmodified sensors. To obtain the desired carbon structure design, carbon micro-/nanoelectromechanical system (C-MEMS/C-NEMS) technology was developed. The most common C-MEMS/C-NEMS fabrication process consists of two steps: (i) the patterning of a carbon-rich base material, such as a photosensitive polymer, using photolithography; and (ii) carbonization through the pyrolysis of the patterned polymer in an oxygen-free environment. The C-MEMS/NEMS process has been widely used to develop microelectronic devices for various applications, including in micro-batteries, supercapacitors, glucose sensors, gas sensors, fuel cells, and triboelectric nanogenerators. Here, recent developments of a high-aspect ratio solid and hollow carbon microstructures with SU8 photoresists are discussed. The structural shrinkage during pyrolysis was investigated using confocal microscopy and SEM. Raman spectroscopy was used to confirm the crystallinity of the structure, and the atomic percentage of the elements present in the material before and after

  4. Dependence of radioprotective effect of chemical modifying agents on their intracellular concentrations

    International Nuclear Information System (INIS)

    Eidus, L.K.; Korystov, Y.N.; Kublik, L.N.; Vexler, A.M.

    1982-01-01

    Regularities of the radioprotective effect of chemical modifying agents cysteamine, caffeine benzoate, thioglycolic acid, and caffeine, all weak electrolytes, have been studied in cultured Chinese hamster cells. Efficiency of protection is shown to be dependent on pH and concentrations of the drug inside the cells and in the medium. Based on the theory of the dissociation of weak electrolytes and their distribution between the cells and the medium a strong correlation between the efficiency of modification of the radiation response and intracellular concentration of a modifying agent is shown. (author)

  5. Study of CaCl2 as an agent that modifies the surface of activated carbon used in sorption/treatment cycles for nitrate removal

    Directory of Open Access Journals (Sweden)

    O. Zanella

    2014-03-01

    Full Text Available The efficiency of the application of a chemically-modified activated carbon surface was investigated. The purpose of this study was to examine the effect of treatment with CaCl2 solution at a concentration of 2000 mg.L-1 on the sorption of nitrate ions from aqueous solutions in successive sorption/t reatment cycles. The sorbent was initially subjected to chemical treatment with CaCl2 and subsequently to the sorption process. Nine sorption cycles were performed. The concentrations of nitrate ions in the solution were measured by UV-Vis spectrophotometry before and after sorption. The results show that treatment with CaCl2 caused a significant increase in the percentage removal for each treatment step, reaching a removal rate of 80% of nitrate in the solution after nine cycles.

  6. Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue)

    International Nuclear Information System (INIS)

    Dai, Juan; Deng, Fei; He, Shuang; Deng, Dongli; Yuan, Yali; Zhang, Jinzhong

    2016-01-01

    An amperometric nitrite sensor modified with multi-walled carbon nanotubes (MWCNTs) and poly(toluidine blue) (PTB) on glassy carbon electrode was constructed. The surface morphology of the composite- modified electrode was characterized by scanning electron microscopy, and the electrochemical response behavior and electrocatalytic oxidation mechanism of nitrite were investigated by cyclic voltammetry. The high surface-to-volume ratio of MWCNTs and PTB brings the electrochemical sensing unit and nitrite in full contact. This renders the electrochemical response extremely sensitive to nitrite. Under the optimal measurement conditions and a working voltage of 0.73 V (vs. SCE), a linear relationship is obtained between the oxidation peak current and nitrite concentration in the range of 39 nM–1.1 mM, and the limit of detection is lowered to 19 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitrite in greenhouse soils. (author)

  7. Ablation behavior of rare earth La-modified ZrC coating for SiC-coated carbon/carbon composites under an oxyacetylene torch

    International Nuclear Information System (INIS)

    Jia, Yujun; Li, Hejun; Feng, Lei; Sun, Jiajia; Li, Kezhi; Fu, Qiangang

    2016-01-01

    Highlights: • La-modified ZrC coating was prepared by supersonic atmosphere plasma spraying. • The oxyacetylene ablation behavior of La-modified ZrC/SiC coating was evaluated. • The coating shows a good ablation resistance under heat flux of 2.4 MW/m"2. • La promotes the liquid phase sintering of ZrO_2 and the formation of a compact scale. • The protection of the scale results in retaining elemental C in its inner layer. - Abstract: To improve the ablation resistance of carbon/carbon (C/C) composites at ultra-high temperature, La-modified ZrC coating was prepared on SiC-coated C/C composites by supersonic atmosphere plasma spraying. The coating shows a significant improvement on the ablation resistance compared with ZrC coating and could protect C/C composites for more than 120 s under heat flux of 2.4 MW/m"2. La acted as a role in promoting the liquid phase sintering of ZrO_2 and forming a compact scale with high thermal stability, improving the ablation resistance of C/C composites.

  8. Preparation of activated Carbons from extracted waste biomass by chemical activation

    International Nuclear Information System (INIS)

    Toteva, V.; Nickolov, R.

    2013-01-01

    Full text: Novel biomass precursors for the production of activated carbons (ACs) were studied. ACs were prepared from extracted coffee husks and extracted spent ground coffee - separately or as mixtures with 10, 20 and 30 mass % Bulgarian lignite coal. Activation by potassium hydroxide was employed for all samples. The results obtained show that the surface and porous parameters of the ACs depend on the nature of the initial materials used. The specific surface areas (BET) and the microporosities of ACs obtained from extracted spent ground coffee mixed with 20 mass % Bulgarian lignite coals, are greater than those of the ACs from extracted coffee husks. It is likely that the reason for this result is the chemical composition of the precursors. The coffee husks have less lignin and more holocellulose. The latter undergoes more significant destructive changes in the process of chemical activation. On the contrary, waste ground coffee precursors contain more lignin and less holocellulose. As a result, after the chemical activation, the carbons prepared from extracted spent ground coffee exhibit better porous parameters and higher specific surface areas. key words: activated carbons, extraction, waste biomass

  9. Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING

    International Nuclear Information System (INIS)

    Wiesberg, Igor L.; Medeiros, José Luiz de; Alves, Rita M.B.; Coutinho, Paulo L.A.; Araújo, Ofélia Q.F.

    2016-01-01

    Highlights: • Evaluation of carbon dioxide conversion to methanol by two chemical routes. • HYDROGENATION: conversion via catalytic hydrogenation at high pressure. • BI-REFORMING: conversion via syngas from bi-reforming of natural gas. • HYDROGENATION is viable for hydrogen price inferior to 1000 US$/t. • BI-REFORMING is unable to avoid emissions; viable only if gas price is very low. - Abstract: Chemical conversion of carbon dioxide to methanol has the potential to address two relevant sustainability issues: economically feasible replacement of fossil raw materials and avoidance of greenhouse gas emissions. However, chemical stability of carbon dioxide is a challenging impediment to conversion requiring severe reaction conditions at the expense of increased energy input, therefore adding capital, operation and environmental costs, which could result in partial or total override of its potential sustainability as feedstock to the chemical and energy industries. This work investigates two innovative chemical destinations of carbon dioxide to methanol, namely a direct conversion through carbon dioxide hydrogenation (HYDROGENATION), and an indirect via carbon dioxide conversion to syngas through bi-reforming (BI-REFORMING). Process simulation is used to obtain mass and energy balances needed to support assessment of economic and environmental performance. A business scenario is considered where an industrial source of nearly pure carbon dioxide exists and an investment decision for utilization of carbon dioxide is faced. Due to uncertainties in prices of the raw materials, hydrogen (HYDROGENATION) and natural gas (BI-REFORMING), the decision procedure includes the definition of price thresholds to reach profitability. Sensitivity analyses are performed varying costs with greater uncertainty, i.e., carbon dioxide and methanol, and recalculating maximum allowable prices of raw materials. The analyses show that in a Brazilian scenario, BI-REFORMING is unlikely

  10. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xue Kuanhong [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)], E-mail: khxue@njnu.edu.cn; Liu Jiamei [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Wei Ribing [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Chen Shaopeng [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)

    2006-09-11

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H{sub 2}SO{sub 4}, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E {sub pa} and E {sub pc} shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k {sup 0} increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  11. Explosive compaction of aluminum oxide modified by multiwall carbon nanotubes

    Science.gov (United States)

    Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.

    2018-04-01

    This paper presents experiments and numerical research on explosive compaction of aluminum oxide powder modified by multiwall carbon nanotubes (MWCNT) and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the aluminum oxide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  12. Implementation of carbon nanomodification for sorption materials

    Directory of Open Access Journals (Sweden)

    Babkin Alexander

    2017-01-01

    Full Text Available The article addresses the urgent task of improving the adsorption capacity and expanding the scope of application for commonly used industrial sorbents – activated carbons and synthetic zeolites. Among a variety of methods for modifying these sorbents, more attention is now being given to techniques that employ carbon nanomaterials. This is due to the unique properties of nanostructures – developed surface, availability of active functional groups, etc. In the present work, the classic materials – NWC coconut shell activated carbon and synthetic NaX zeolite – were chosen as initial sorbent samples to be modified. The authors developed a process flowsheet for the carbon nanomodification, which contains the following main stages: preparation of a catalytic mixture solution under given temperature conditions, impregnation of porous materials using the obtained solution, and drying and synthesis of carbon nanotubes via chemical vapor deposition. The proposed technological line consists of a reactor for synthesis of carbon nanotubes, the patented design of which will allow for simultaneously modifying in an effective way different types of materials. As a result, the layer of carbon nanostructures, the quality of which can be varied by changing the conditions of the modification procedure, is formed on the substrate surface.

  13. Carbonate reservoirs modified by magmatic intrusions in the Bachu area, Tarim Basin, NW China

    Directory of Open Access Journals (Sweden)

    Kang Xu

    2015-09-01

    Full Text Available Oil and gas exploration in carbonate rocks was extremely successful in recent years in the Ordovician in Tarim Basin, NW China. Here, we investigate the carbonate reservoirs in the Bachu area of the Tarim Basin through petrological and geochemical studies combined with oil and gas exploration data. Geochemical analysis included the major, trace, and rare earth elements; fluid inclusion thermometry; clay mineral characterization; and carbon and oxygen isotopes of the carbonate rocks. Homogenization temperatures of the fluid inclusions of Well He-3 in the Bachu area indicate three groups, 60–80 °C, 90–130 °C, and 140–170 °C, and suggest that the carbonate rocks experienced modification due to heating events. The porosity in the reservoir is defined by fractures and secondary pores, and there is a notable increase in the porosity of the carbonate reservoirs in proximity to magmatic intrusion, particularly approximately 8–10 m from the intrusive rocks. The development of secondary pores was controlled by lithofacies and corrosion by various fluids. We identify supercritical fluids with high density (138.12–143.97 mg/cm3 in the Bachu area. The negative correlations of δ13C (−2.76‰ to −0.97‰ and δ18O (−7.91‰ to −5.07‰ suggest that the carbonate rocks in the study area were modified by high-salinity hydrothermal fluid. The formation of clay minerals, such as illite and montmorillonite, caused a decrease in porosity. Our study demonstrates the effect of magmatic intrusions in modifying the reservoir characteristics of carbonate rocks and has important implications for oil and gas exploration.

  14. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H 2 SO 4 and CaCl 2 . Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H 2 SO 4 and CaCl 2 ; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Adsorption of Nickel (II) from Aqueous Solution by Bicarbonate Modified Coconut Oilcake Residue Carbon.

    Science.gov (United States)

    Vijayakumari, N; Srinivasan, K

    2014-07-01

    The adsorption of Ni (II) on modified coconut oilcake residue carbon (bicarbonate treated coconut oilcake residue carbon-BCORC) was employed for the removal of Ni (II) from water and wastewater. The influence of various factors such as agitation time, pH and carbon dosage on the adsorption capacity has been studied. Adsorption isothermal data could be interpreted by Langmuir and Freundlich equations. In order to understand the reaction mechanism, kinetic data has been studied using reversible first order rate equation. Similar studies were carried out using commercially available activated carbon--CAC, for comparison purposes. Column studies were conducted to obtain breakthrough capacities of BCORC and CAC. Common anions and cations affecting the removal of Ni (II) on both the carbons were also studied. Experiments were also done with wastewater containing Ni (II), to assess the potential of these carbons.

  16. Layer-by-layer self-assembling copper tetrasulfonated phthalocyanine on carbon nanotube modified glassy carbon electrode for electro-oxidation of 2-mercaptoethanol

    International Nuclear Information System (INIS)

    Shaik, Mahabul; Rao, V.K.; Gupta, Manish; Pandey, P.

    2012-01-01

    This paper describes the electrocatalytic activity of layer-by-layer self-assembled copper tetrasulfonated phthalocyanine (CuPcTS) on carbon nanotube (CNT)-modified glassy carbon (GC) electrode. CuPcTS is immobilized on the negatively charged CNT surface by alternatively assembling a cationic poly(diallyldimethylammonium chloride) (PDDA) layer and a CuPcTS layer. UV–vis absorption spectra and electrochemical measurements suggested the successive linear depositions of the bilayers of CuPcTs and PDDA on CNT. The surface morphology was observed using scanning electron microscopy. The viability of this CuPcTS/PDDA/CNT modified GC electrode as a redox mediator for the anodic oxidation and sensitive amperometric determination of 2-mercaptoethanol (2-ME) in alkaline conditions is described. The effect of number of bilayers of CuPcTS/PDDA and pH on electrochemical oxidation of 2-ME was studied. The proposed electrochemical sensor displayed excellent characteristics towards the determination of 2-ME in 0.1 M NaOH; such as low overpotentials (− 0.15 V vs Ag/AgCl), linear concentration range of 3 × 10 −5 M to 6 × 10 −3 M, and with a detection limit of 2.5 × 10 −5 M using simple amperometry. - Highlights: ► Carbon nanotubes (CNT) were drop-dried on glassy carbon electrode (GCE). ► Copper tetrasulfonated phthalocyanine (CuPcTS) was deposited on CNT/GCE. ► Layer-by-layer self-assembling method is used for depositing CuPcTS. ► Electrocatalytic oxidation of 2-mercaptoethanol (ME) was studied at this electrode ► The detection limit of ME at modified electrode was 25 μM by amperometry.

  17. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    Science.gov (United States)

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  18. Efficient adsorption of Hg (II) ions in water by activated carbon modified with melamine

    Science.gov (United States)

    Qin, Hangdao; Meng, Jingling; Chen, Jing

    2018-04-01

    Removal of Hg (II) ions from industrial wastewater is important for the water treatment, and adsorption is an efficient treatment process. Activated carbon (AC) was modified with melamine, which introduced nitrogen-containing functional groups onto AC surface. Original AC and melamine modified activated carbon (ACM) were characterized by elemental analysis, N2 adsorption-desorption, determination of the pH of the point of zero charge (pHpzc) and X-ray photoelectron spectroscopy (XPS) and their performance in the adsorption of Hg(II) ions was investigated. Langmuir model fitted the experimental data of equilibrium isotherms well. ACM showed the higher Hg (II) ions adsorption capacity, increasing more than more than 1.8 times compared to the original one. Moreover, ACM showed a wider pH range for the maximum adsorption than the parent AC.

  19. Preliminary studies of epoxidized palm oil as sizing chemical for carbon fibers

    International Nuclear Information System (INIS)

    Salleh, S.N.M.; Ubaidillah, E.A.E.; Abidin, M.F.Z.

    2010-01-01

    Epoxidized palm oil is derived from palm oil through chemical reaction with peracetic acid. Preliminary studies to coat carbon fibers have shown promising result towards applying natural product in carbon fibre composites. Mechanical studies of sized carbon fibers with epoxidized palm oil showed significant increase in tensile and interfacial shear strength. Surface morphology of sized or coated carbon fibers with epoxidized palm oil reveals clear increase in root means square-roughness (RMS). This indicates the change of the surface topography due to sized or coated carbon fibers with epoxidized palm oil. (author)

  20. Cyclic Voltammetric Investigation of Dopamine at Poly-(Gabapentin Modified Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    M. T. Shreenivas

    2011-01-01

    Full Text Available The poly (gabapentin film was prepared on the surface of carbon paste electrode by electrochemical method using cyclic voltammetric technique. The poly (gabapentin film-modified carbon paste electrode was calibrated with standard potassium ferrocyanide solution in 1 M KCl as a supporting electrolyte. The prepared poly (gabapentin film-coated electrode exhibits excellent electrocatalytic activity towards the detection of dopamine at physiological pH. The scan rate effect was found to be diffusion-controlled electrode process. The concentration effect of dopamine was studied, and the redox peak potentials of dopamine were dependant on pH.

  1. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites

    Science.gov (United States)

    Yang, Wei; Luo, Ruiying; Hou, Zhenhua

    2016-01-01

    In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C) composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68.1 wt %, respectively. The matrix of the C/G/C composite was mainly composed of rough laminar (RL) pyrocarbon. The average hardness by nanoindentation of the C/G/C and C/C composite matrices were 0.473 and 0.751 GPa, respectively. The flexural strength (three point bending), interlaminar shear strength (ILSS), interfacial debonding strength (IDS), internal friction and storage modulus of the C/C composite were 106, 10.3, 7.6, 0.038 and 12.7 GPa, respectively. Those properties of the C/G/C composite increased by 76.4%, 44.6%, 168.4% and 22.8%, respectively, and their internal friction decreased by 42.1% in comparison with those of the C/C composite. Owing to the lower hardness of the matrix, improved fiber/matrix interface bonding strength, and self-lubricating properties of graphene, a complete friction film was easily formed on the friction surface of the modified composite. Compared with the C/C composite, the C/G/C composite exhibited stable friction coefficients and lower wear losses at simulating air-plane normal landing (NL) and rejected take-off (RTO). The method appears to be a competitive approach to improve the mechanical and frictional properties of C/C composites simultaneously. PMID:28773613

  2. Modified chemical synthesis of porous α-Sm{sub 2}S{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumbhar, V.S.; Jagadale, A.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, (M.S.) 416004 (India); Gaikwad, N.S. [Rayat Shikshan Sanstha, Satara, (M.S.) 415 001 (India); Lokhande, C.D., E-mail: l_chandrakant@yahoo.com [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, (M.S.) 416004 (India)

    2014-08-15

    Highlights: • A novel chemical route to prepare α-Sm{sub 2}S{sub 3} thin films. • A porous honeycomb like morphology of the α-Sm{sub 2}S{sub 3} thin film. • An application of α-Sm{sub 2}S{sub 3} thin film toward its supercapacitive behaviour. - Abstract: The paper reports synthesis of porous α-Sm{sub 2}S{sub 3} thin films using modified chemical synthesis, also known as successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), wettability and ultraviolet–visible spectroscopy (UV–vis) techniques are used for the study of structural, elemental, morphological and optical properties of α-Sm{sub 2}S{sub 3} films. An orthorhombic crystal structure of α-Sm{sub 2}S{sub 3} is resulted from XRD study. The SEM and AFM observations showed highly porous α-Sm{sub 2}S{sub 3} film surface. An optical band gap of 2.50 eV is estimated from optical absorption spectrum. The porous α-Sm{sub 2}S{sub 3} thin film tuned for supercapacitive behaviour using cyclic voltammetry and galvanostatic charge discharge showed a specific capacitance and energy density of 294 Fg{sup –1} and 48.9 kW kg{sup –1}, respectively in 1 M LiClO{sub 4}–propylene carbonate electrolyte.

  3. Carbon dioxide sorption on EDTA modified halloysite

    Directory of Open Access Journals (Sweden)

    Waszczuk Patrycja

    2016-01-01

    Full Text Available In this paper the sorption study of CO2 on EDTA surface modified halloysite was conducted. In the paper chemical modification of halloysite from the Dunino deposit (Poland and its influence on sorption of CO2 are presented. A halloysite samples were washed with water-EDTA 1% solution, centrifuged to separate liquid and impurities and dried. The samples were tested for the sorption capacity using a manometric method with pressure up to 3 MPa. A Langmuir adsorption model was fitted to the data. The results showed that EDTA had a limited effect on the increase of sorption potential at low pressure and the samples exhibited similar results to that ones treated solely with the water solution.

  4. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method

    Science.gov (United States)

    Manawi, Yehia M.; Samara, Ayman; Al-Ansari, Tareq; Atieh, Muataz A.

    2018-01-01

    Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD) method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, carbide-derived carbon (CDC), carbon nano-onion (CNO) and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research. PMID:29772760

  5. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD Method

    Directory of Open Access Journals (Sweden)

    Yehia M. Manawi

    2018-05-01

    Full Text Available Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs, carbon nanofibers (CNFs, graphene, carbide-derived carbon (CDC, carbon nano-onion (CNO and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research.

  6. Physical and chemical properties of selected agricultural byproduct-based activated carbons and their ability to adsorb geosmin

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.; Losso, J.N.; Rao, R.M. [Louisiana State University Agricultural Center, Baton Rouge, LA (United States). Department of Food Science; Marshall, W.E. [USDA-ARS, Southern Regional Research Center, New Orleans, LA (United States)

    2002-09-01

    The objectives of this study were to evaluate selected physical and chemical properties of agricultural byproduct-based activated carbons made from pecan shells and sugarcane bagasse, and compare those properties to a commercial coal-based activated carbon as well as to compare the adsorption efficiency of these carbons for geosmin. Comparison of the physical and chemical properties of pecan shell- and bagasse-based carbons to the commercial carbon, Calgon Filtrasorb 400, showed that pecan shell carbon, but not the bagasse carbon, compared favorably to Filtrasorb 400, especially in terms of surface area, bulk density, ash and attrition. A carbon dosage study done in a model system showed the amount of geosmin adsorbed to be greater for Filtrasorb 400 and the bagasse-based carbon at low carbon concentrations than for the pecan shell carbons, but geosmin adsorption was similar in all carbons at higher carbon dosages. Application of the Freundlich isotherm model to the adsorption data showed that carbons made by steam activation of pecan shells or sugarcane bagasse had geosmin adsorption characteristics most like those of the commercial carbon. In terms of physical, chemical and adsorptive properties, steam-activated pecan shell carbon most resembled the commercial carbon and has the potential to replace Filtrasorb 400 in applications involving removal of geosmin from aqueous environments. (author)

  7. Factors Influencing NO2 Adsorption/Reduction on Microporous Activated Carbon: Porosity vs. Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Imen Ghouma

    2018-04-01

    Full Text Available The textural properties and surface chemistry of different activated carbons, prepared by the chemical activation of olive stones, have been investigated in order to gain insight on the NO2 adsorption mechanism. The parent chemical activated carbon was prepared by the impregnation of olive stones in phosphoric acid followed by thermal carbonization. Then, the textural properties and surface chemistry were modified by chemical treatments including nitric acid, sodium hydroxide and/or a thermal treatment at 900 °C. The main properties of the parent and modified activated carbons were analyzed by N2-adsorption, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy (FTIR techniques, in order to enlighten the modifications issued from the chemical and thermal treatments. The NO2 adsorption capacities of the different activated carbons were measured in fixed bed experiments under 500 ppmv NO2 concentrations at room temperature. Temperature programmed desorption (TPD was applied after adsorption tests in order to quantify the amount of the physisorbed and chemisorbed NO2. The obtained results showed that the development of microporosity, the presence of oxygen-free sites, and the presence of basic surface groups are key factors for the efficient adsorption of NO2.

  8. Influence of chemical agents on the surface area and porosity of active carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    LJILJANA M. KLJAJEVIĆ

    2011-09-01

    Full Text Available Active carbon hollow fibers were prepared from regenerated polysulfone hollow fibers by chemical activation using: disodium hydrogen phosphate 2-hydrate, disodium tetraborate 10-hydrate, hydrogen peroxide, and diammonium hydrogen phosphate. After chemical activation fibers were carbonized in an inert atmosphere. The specific surface area and porosity of obtained carbons were studied by nitrogen adsorption–desorption isotherms at 77 K, while the structures were examined with scanning electron microscopy and X-ray diffraction. The activation process increases these adsorption properties of fibers being more pronounced for active carbon fibers obtained with disodium tetraborate 10-hydrate and hydrogen peroxide as activator. The obtained active hollow carbons are microporous with different pore size distribution. Chemical activation with phosphates produces active carbon material with small surface area but with both mesopores and micropores. X-ray diffraction shows that besides turbostratic structure typical for carbon materials, there are some peaks which indicate some intermediate reaction products when sodium salts were used as activating agent. Based on data from the electrochemical measurements the activity and porosity of the active fibers depend strongly on the oxidizing agent applied.

  9. Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

    OpenAIRE

    Vargas Diana P.; Giraldo Liliana; Moreno-Piraján Juan Carlos

    2017-01-01

    The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribu...

  10. The prospects for the research on chemical modifiers of cancer treatment

    International Nuclear Information System (INIS)

    Jin Yizun

    2002-01-01

    The current clinical statue of chemical modifiers of cancer treatment is described. It should enable greater enhancement ratios to be attained clinically. To search for less toxic and more potent sensitizers for radiotherapy and chemotherapy will be improved the cancer treatment. Phase I, II and III clinical trials with TPZ, one of the bioreductive drugs, has shown the benefit to patients with cancer

  11. Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes

    KAUST Repository

    Hamzaoui, Rabah

    2014-04-01

    Mechanical performance of modified mortar using hemp fibres is studied following various processing conditions. Hemp fibres combined with carbon nanotubes (CNT) are introduced in mortar and their effect is studied as function of curing time. The cement phase is replaced by different percentages of dry or wet hemp fibres ranging from 1.1. wt% up to 3.1. wt% whereas carbon nanotubes are dispersed in the aqueous solution. Our experimental results show that compressive and flexural strengths of wet fibres modified mortar are higher than those for dry hemp-mortar material. The achieved optimal percentage of wet hemp fibres is 2.1. wt% allowing a flexural strength higher than that of reference mortar. The addition of an optimal CNT concentration (0.01. wt%) combined with wet hemp has a reinforcing effect which turns to be related to an improvement of compressive and flexural strengths by 10% and 24%, respectively, in comparison with reference condition. © 2013 Elsevier Ltd.

  12. Structural and tribological properties of carbon steels modified by plasma pulses

    International Nuclear Information System (INIS)

    Sartowska, B.; Walis, L.; Piekoszewski, J.; Senatorski, J.; Stanislawski, J.; Nowicki, L.; Ratajczak, R.; Barlak, M.; Kopcewicz, M.; Kalinowska, J.; Prokert, F.

    2006-01-01

    Carbon steels with different concentration of carbon and heat (Armco-iron, steels 20, 45, 65 and N9) were treated according to the standard procedures: they were irradiated with five intense (about 5 J/cm 2 ), short (μs range) argon or nitrogen plasma pulses generated in a rod plasma injector (RPI) type of plasma generator. Samples were characterized by the following methods: nuclear reaction analysis (NRA) 14 N(d,α) 12 C , scanning electron microscopy (SEM), conversion electron Moessbauer spectroscopy (CEMS), X-ray diffraction analysis (GXRD), and Amsler wear tests. SEM observations shown that the morphology of the pulse treated samples, both argon and nitrogen plasma are identical. It has been found, that nitrogen is much more efficient than argon in ausenitization of carbon steel. The craters and droplets are uniformly distributed over the surface, which is typical of melted and rapidly recrystallized top layers. The thickness of the modified layers is in the range of 1.2-1.6 μm

  13. Examination of the metastable and stable pitting corrosion of aluminum modified with carbon by ion beam techniques

    International Nuclear Information System (INIS)

    Lensch, O.; Enders, B.; Knecht, J.; Ensinger, W.

    2001-01-01

    It is well known that aluminum and aluminum alloys are sensitive to pitting corrosion when exposed to aqueous solutions containing aggressive anions like halides. The destructive nature of pitting is due to its high local dissolution rates at electrode potentials above the so-called pitting potential U p . Recently, it has been realized that also at potentials below U p , in the passive and cathodic regions and around the free corrosion potential, anodic current transients appear which have been attributed to metastable pitting events. For the purpose of full characterization of the pitting behavior, a program routine has been developed where the occurrence frequency, lifetime and rate of metastable pitting events are extracted from potentiostatic current/time-measurements depending on the electrode potential. The routine has been applied to measurements of carbon modified pure aluminum. Carbon modifications were done with carbon evaporation and carbon sputtering under concurrent argon ion bombardment. The results are discussed in terms of the applied modification technique, their parameters and their effects on the corrosion protection ability of aluminum modified by carbon

  14. Hybrid membrane using polyethersulfone-modification of multiwalled carbon nanotubes with silane agent to enhance high performance oxygen separation

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2014-04-01

    Full Text Available Mixed matrix membrane comprising carbon nanotubes embedded in polymer matrix have become one of the emerging technologies. This study was investigated in order to study the effect of silane agent modification towards carbon nanotubes (CNT surface at different concentration on oxygen enrichment performances of asymmetric mixed matrix membrane. The modified carbon nanotubes were prepared by treating the carbon nanotubes with chemical modification using Dynasylan Ameo (DA silane agent to allow PES chains to be grafted on carbon nanotubes surface. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Sieve-in-a-cage’ morphology observed shows the poor adhesion between polymer and unmodified CNT. The gas separation performance of the asymmetric flat sheet mixed matrix membranes with modified CNT were relatively higher compared to the unmodified CNT. Hence, coated hollow fiber mixed matrix membrane with chemical modification on CNT surface using (3-aminopropyl-triethoxy methyl silane agent can potentially enhance the gas separation performance of O2 and N2.

  15. Electronic structures and magnetism for carbon doped CdSe: Modified Becke–Johnson density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.W., E-mail: fansw1129@126.com; Song, T.; Huang, X.N.; Yang, L.; Ding, L.J.; Pan, L.Q.

    2016-09-15

    Utilizing the full potential linearized augment plane wave method, the electronic structures and magnetism for carbon doped CdSe are investigated. Calculations show carbon substituting selenium could induce CdSe to be a diluted magnetic semiconductor. Single carbon dopant could induce 2.00 μ{sub B} magnetic moment. Electronic structures show the long-range ferromagnetic coupling mainly originates from the p–d exchange-like p–p coupling interaction. Positive chemical pair interactions indicate carbon dopants would form homogeneous distribution in CdSe host. The formation energy implies the non-equilibrium fabricated technology is necessary during the samples fabricated. - Highlights: • The C{sub Se} defects could induce the CdSe to be typical diluted magnetic semiconductor. • Electronic structures show ferromagnetism come from p-d exchange-like p-p coupling. • Chemical pair interactions indicate C{sub Se} prefer homogenous distribution in CdSe host.

  16. Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Gang; Shu, Honghui; Ji, Kai [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Liu, Xiong [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2014-01-01

    This work describes controllable preparation of gold nanoparticles on glassy carbon electrodes by using the seed mediated growth method, which contains two steps, namely, nanoseeds attachment and nanocrystals growth. The size and the dispersion of gold nanoparticles grown on glassy carbon electrodes could be easily tuned through the growth time based on results of field-emission scanning electron microscopy. Excellent electrochemical catalytic characteristics for glucose oxidation were observed for the gold nanoparticles modified glassy carbon electrodes (AuNPs/GC), resulting from the extended active surface area provided by the dense gold nanoparticles attached. It exhibited a wide linear range from 0.1 mM to 25 mM with the sensitivity of 87.5 μA cm{sup −2} mM{sup −1} and low detection limit down to 0.05 mM for the sensing of glucose. The common interfering species such as chloride ion, ascorbic acid, uric acid and 4-acetamidophenol were verified having no interference effect on the detection of glucose. It is demonstrated that the seed mediated method is one of the facile approaches for fabricating Au nanoparticles modified substrates, which could work as one kind of promising electrode materials for the glucose nonenzymatic sensing.

  17. Adsorption of mercury (II from liquid solutions using modified activated carbons

    Directory of Open Access Journals (Sweden)

    Hugo Soé Silva

    2010-06-01

    Full Text Available Mercury is one of the most toxic metals present in the environment. Adsorption has been proposed among the technologies for mercury abatement. Activated carbons are universal adsorbents which have been found to be a very effective alternative for mercury removal from water. The effectiveness with which a contaminant is adsorbed by the solid surface depends, among other factors, on the charge of the chemical species in which the contaminant is in solution and on the net charge of the adsorbent surface which depend on the pH of the adsorption system. In this work, activated carbon from carbonized eucalyptus wood was used as adsorbent. Two sulphurization treatments by impregnation with sulphuric acid and with carbon disulphide, have been carried out to improve the adsorption capacity for mercury entrapment. Batch adsorption tests at different temperatures and pH of the solution were carried out. The influence of the textural properties, surface chemistry and operation conditions on the adsorption capacity, is discussed.

  18. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    Science.gov (United States)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  19. Adsorption study of copper (II) by chemically modified orange peel

    International Nuclear Information System (INIS)

    Feng Ningchuan; Guo Xueyi; Liang Sha

    2009-01-01

    An adsorbent, the chemically modified orange peel, was prepared from hydrolysis of the grafted copolymer, which was synthesized by interaction of methyl acrylate with cross-linking orange peel. The presence of poly (acrylic acid) on the biomass surface was verified by infrared spectroscopy (IR), scanning electron microscopy (SEM) and thermogravimetry (TG). Total negative charge in the biomass surface and the zeta potentials were determined. The modified biomass was found to present high adsorption capacity and fast adsorption rate for Cu (II). From Langmuir isotherm, the adsorption capacity for Cu (II) was 289.0 mg g -1 , which is about 6.5 times higher than that of the unmodified biomass. The kinetics for Cu (II) adsorption followed the pseudo-second-order kinetics. The adsorbent was used to remove Cu (II) from electroplating wastewater and was suitable for repeated use for more than four cycles.

  20. Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

    International Nuclear Information System (INIS)

    Hopp, B.; Kresz, N.; Kokavecz, J.; Smausz, T.; Schieferdecker, H.; Doering, A.; Marti, O.; Bor, Z.

    2004-01-01

    In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9 mJ/cm 2 , and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96 deg. to 30-37 deg. and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9 MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy

  1. Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadnezhad, Gholamhossein, E-mail: mohammadnezhad@cc.iut.ac.ir; Dinari, Mohammad, E-mail: dinari@cc.iut.ac.ir; Soltani, Roozbeh; Bozorgmehr, Zahra

    2015-08-15

    Graphical abstract: - Highlights: • The surface of mesoporous carbon, FDU-15, was modified by 3-mercaptopropyl-trimethoxysilane. • Nanocomposites of PMMA and modified FDU-15 were prepared by solution polymerization. • XRD shows that modified mesoporous FDU-15 has an ordered hexagonal mesostructure. • TEM and SEM images confirm the presence of large pores and ordered mesostructure. • Mechanical data indicated improvement in the tensile strength and modulus. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters, ordered mesoporous carbons are suitable for applications in many areas of modern science and technology. In the present investigation, an ultrasonic irradiation was used for the modification of the mesoporous carbon FDU-15. Three nanocomposite films of the poly(methyl methacrylate) (PMMA) and modified FDU-15 were prepared by solution polymerization technique. The surface morphology and thermal and mechanical properties of the hybrid materials were evaluated by different methods. X-ray diffraction patterns showed that modified mesoporous FDU-15 had an ordered hexagonal mesostructure. Transmission electron microscopy (TEM) and field emission-scanning electron microscopy images confirmed the presence of large pores and a relatively ordered mesostructure for the functionalized materials. Thermogravimetric analysis data also revealed that the onset of decomposition temperature of the nanocomposites was higher than that of pristine PMMA, shifting toward higher temperatures as the amount of modified-FDU was increased. TEM images showed the well-ordered hexagonal arrays of mesopores FDU-15. Mechanical data indicated the improvement in the tensile strength and modulus with the modified FDU-15 loading. The film containing 1 wt.% of modified FDU-15 had a tensile strength of the order of 42 MPa, relative to the 28 MPa of the pristine PMMA.

  2. Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Mohammadnezhad, Gholamhossein; Dinari, Mohammad; Soltani, Roozbeh; Bozorgmehr, Zahra

    2015-01-01

    Graphical abstract: - Highlights: • The surface of mesoporous carbon, FDU-15, was modified by 3-mercaptopropyl-trimethoxysilane. • Nanocomposites of PMMA and modified FDU-15 were prepared by solution polymerization. • XRD shows that modified mesoporous FDU-15 has an ordered hexagonal mesostructure. • TEM and SEM images confirm the presence of large pores and ordered mesostructure. • Mechanical data indicated improvement in the tensile strength and modulus. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters, ordered mesoporous carbons are suitable for applications in many areas of modern science and technology. In the present investigation, an ultrasonic irradiation was used for the modification of the mesoporous carbon FDU-15. Three nanocomposite films of the poly(methyl methacrylate) (PMMA) and modified FDU-15 were prepared by solution polymerization technique. The surface morphology and thermal and mechanical properties of the hybrid materials were evaluated by different methods. X-ray diffraction patterns showed that modified mesoporous FDU-15 had an ordered hexagonal mesostructure. Transmission electron microscopy (TEM) and field emission-scanning electron microscopy images confirmed the presence of large pores and a relatively ordered mesostructure for the functionalized materials. Thermogravimetric analysis data also revealed that the onset of decomposition temperature of the nanocomposites was higher than that of pristine PMMA, shifting toward higher temperatures as the amount of modified-FDU was increased. TEM images showed the well-ordered hexagonal arrays of mesopores FDU-15. Mechanical data indicated the improvement in the tensile strength and modulus with the modified FDU-15 loading. The film containing 1 wt.% of modified FDU-15 had a tensile strength of the order of 42 MPa, relative to the 28 MPa of the pristine PMMA

  3. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping

    2012-01-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H 2 O 2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H 2 O 2 . The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM −1 ), low detection limit (1.8 μM), fast response time m ) and the maximum current density (i max ) values for the biosensor were 10.94 mM and 887 μA cm −2 respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  4. Hydrocarbon accumulation in deep fluid modified carbonate rock in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The activities of deep fluid are regionalized in the Tarim Basin. By analyzing the REE in core samples and crude oil, carbon isotope of carbon dioxide and inclusion temperature measurement in the west of the Tazhong Uplift in the western Tarim Basin, all the evidence confirms the existence of deep fluid. The deep fluid below the basin floor moved up into the basin through discordogenic fauit and volcanicity to cause corrosion and metaaomatosis of carbonate rock by exchange of matter and energy. The pore structure and permeability of the carbonate reservoirs were improved, making the carbonate reservoirs an excellent type of deeply buried modification. The fluorite ore belts discovered along the large fault and the volcanic area in the west of the Tazhong Uplift are the outcome of deep fluid action. Such carbonate reservoirs are the main type of reservoirs in the Tazhong 45 oilfield. The carbonate reservoirs in well YM 7 are improved obviously by thermal fluid dolomitization. The origin and territory of deep fluid are associated with the discordogenic fault and volcanicity in the basin. The discordogenic fault and volcanic area may be the pointer of looking for the deep fluid modified reservoirs. The primary characteristics of hydrocarbon accumulation in deep fluid reconstructed carbonate rock are summarized as accumulation near the large fault and volcano passage, late-period hydrocarbon accumulation after volcanic activity, and subtle trap reservoirs controlled by lithology.

  5. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  6. Effect of mediator added to modified paste carbon electrodes with immobilized laccase from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Marcelo Silva Ferreira

    2015-05-01

    Full Text Available Carbon paste electrodes based on the immobilization of laccase from Aspergillus oryzae were developed and voltammetric measurements were performed to evaluate the amperometric response. The 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid diammonium salt  (ABTS functions as substrate and mediator for the laccase enzyme. Electrodes were modified  in two different conditions: without mediator (EPC/laccase and with mediator (EPC/laccase/ABTS. The addition of ABTS as a mediator increased eight-fold the amperometric response. The electrode was sensitive to pH variation with best response at pH 4.0. Studies on different concentrations of laccase and ABTS at different pH rates revealed that the composition 187 U mL-1 in laccase and 200 µL of ABTS obtained the highest amperometric response. The carbon paste electrode modified with ABTS proved to be a good base for the immobilization of the laccase enzyme. Moreover, it is easy to manufacture and inexpensive to produce a modified electrode with potential application in biosensors.

  7. Ruthenium supported on nitrogen-doped carbon nanotubes for the oxygen reduction reaction in alkaline electrolyte; Poster

    CSIR Research Space (South Africa)

    Mabena, LF

    2012-07-01

    Full Text Available . Recently, several researchers have shown that nitrogen modified carbon nanotubes (CNTs) are good electrocatalyst supports and that they enhance the electrocatalytic activity for the ORR. Nitrogen-doped carbon nanotubes (N-CNTs) prepared via thermal chemical...

  8. A simple and efficient electrochemical sensor for folic acid determination in human blood plasma based on gold nanoparticles–modified carbon paste electrode

    International Nuclear Information System (INIS)

    Arvand, Majid; Dehsaraei, Mohammad

    2013-01-01

    Folic acid (FA) is a water soluble vitamin that exists in many natural species. The lack of FA causes some deficiencies in human body, so finding a simple and sensitive method for determining the FA is important. A new chemically modified electrode was fabricated for determination of FA in human blood plasma using gold nanoparticles (AuNPs) and carbon paste electrode (CPE). Gold nanoparticles–modified carbon paste electrode (AuNPs/CPE) was characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The experimental parameters such as pH, scan rate (ν) and amount of modifier were studied by cyclic voltammetry and the optimized values were chosen. The electrochemical parameters such as diffusion coefficient of FA (D FA ), electrode surface area (A) and electron transfer coefficient (α) were calculated. Square wave voltammetry as an accurate technique was used for quantitative calculations. A good linear relation was observed between anodic peak current (i pa ) and FA concentration (C FA ) in the range of 6 × 10 −8 to 8 × 10 −5 mol L −1 , and the detection limit (LOD) achieved 2.7 × 10 −8 mol L −1 , that is comparable with recently studies. This paper demonstrated a novel, simple, selective and rapid sensor for determining the FA in the biological samples. - Highlights: • We examine a AuNPs/CPE for direct electrooxidation behavior and determination of FA. • Characterization of the electrode showed an obvious increase in surface area and porosity after modification. • The modified electrode showed good ability to distinguish the electrochemical response of FA. • The results were attributed to the specific characteristics of AuNPs present in the AuNPs/CPE. • This paper demonstrated a simple and rapid sensor for determination of FA in plasma

  9. Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.

    Science.gov (United States)

    Suroviec, Alice H

    2017-01-01

    The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.

  10. Electrochemical determination of ascorbic acid at p-phenylenediamine film-holes modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Olana Bikila Nagasa

    2015-01-01

    Full Text Available In this work the determination of ascorbic acid (AA at glassy carbon electrode (GCE modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III. The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 μM to 45 μM with detection limit of 0.123 μM. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.

  11. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xincheng [Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Suojin wucun 16, Nanjing 210042 (China); Jiang Jianchun, E-mail: lhs_ac2011@yahoo.cn [Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Suojin wucun 16, Nanjing 210042 (China); Sun Kang; Xie Xinping; Hu Yiming [Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Suojin wucun 16, Nanjing 210042 (China)

    2012-08-01

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  12. Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air–Cathode Catalyst in Microbial Fuel Cells

    KAUST Repository

    Xia, Xue

    2013-08-28

    Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m2, which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m 2) and comparable to Pt cathodes (1550 ± 10 mW/m2). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC. © 2013 American Chemical Society.

  13. Bainite Formation in Medium-Carbon Low-Silicon Spring Steels Accounting for Chemical Segregation

    NARCIS (Netherlands)

    Goulas, C.; Mecozzi, M.G.; Sietsma, J.

    2016-01-01

    In this paper, the effect of chemical inhomogeneity on the isothermal bainite formation is investigated in medium-carbon low-silicon spring steel by dilatometry and microscopy. The analysis of the microstructure at different times during transformation shows that chemical segregation of

  14. Chemically Driven Printed Textile Sensors Based on Graphene and Carbon Nanotubes

    OpenAIRE

    Ewa Skrzetuska; Michał Puchalski; Izabella Krucińska

    2014-01-01

    The unique properties of graphene, such as the high elasticity, mechanical strength, thermal conductivity, very high electrical conductivity and transparency, make them it an interesting material for stretchable electronic applications. In the work presented herein, the authors used graphene and carbon nanotubes to introduce chemical sensing properties into textile materials by means of a screen printing method. Carbon nanotubes and graphene pellets were dispersed in water and used as a print...

  15. Fast vertical growth of ZnO nanorods using a modified chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae-hyun [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, Hyukhyun, E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, Won-Jae [Department of Materials and Components Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2014-06-01

    Highlights: • We grew vertical ZnO nanorods by a modified CBD process with a fast growth rate. • We studied the effects of the CBD process by varying growth temperature, time, and concentration. • The ZnO nanorods grown by the modified CBD showed good morphological and structural properties. - Abstract: In this study, we grew vertical ZnO nanorods on seeded Si (1 0 0) substrates using a modified chemical bath deposition (CBD). We investigated the effects of the growth temperature, growth time and concentration on the morphological and structural properties of the ZnO nanorods using field emission gun scanning electron microscopy (FEG-SEM) and X-ray diffraction. This modified CBD method shows improved results over conventional CBD. ZnO nanorods with good structural XRD properties were grown with a very fast growth rate in a wide range of growth conditions and did not require post-growth annealing.

  16. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber

    International Nuclear Information System (INIS)

    Li, J.

    2009-01-01

    Dielectric barrier discharges (DBD) in ambient air are used on carbon fiber to improve the fiber surface activity. Carbon fibers with length of 75 μm are placed into the plasma configuration. The interaction between modified carbon fibers and polypropylene (PP) was studied by three-point bending (TPB) test. The chemical changes induced by the treatments on carbon fiber surface are examined using X-ray photoelectron spectroscopy (XPS). XPS results reveal that the carbon fiber modified with the DBD at atmospheric pressure show a significant increase in oxygen and nitrogen concentration. These results demonstrate that the surface of the carbon fiber is more active and hydrophilic after plasma treatments using a DBD operating in ambient air.

  17. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive

    Science.gov (United States)

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-01-01

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors. PMID:29762528

  18. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive.

    Science.gov (United States)

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-05-15

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors.

  19. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    Science.gov (United States)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  20. Substitution of Acetylene Black by Using Modified Flake Graphite Applied in Activated Carbon Supercapacitors

    Directory of Open Access Journals (Sweden)

    Zhao Peng

    2018-01-01

    Full Text Available Flake graphite was mechanically modified at different times in N-methyl pyrrolidone under normal pressure. The results of the scanning electron microscopy, X-ray diffraction, and transmission electron microscopy suggested that the structure of the flake graphite was modified. The crystallinity of the flake graphite, and many defects were introduced into the material. The evaluation of capacitor performance by cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy was also performed. Results showed that the electrochemical performance of flake graphite was strongly enhanced, particularly when it was exfoliated for 6 h. Moreover, the electrochemical capacitive properties of activated carbon were obviously enhanced through the substitution of acetylene black by flake graphite modified for 6 h.

  1. Gene-diet-interactions in folate-mediated one-carbon metabolism modify colon cancer risk.

    Science.gov (United States)

    Liu, Amy Y; Scherer, Dominique; Poole, Elizabeth; Potter, John D; Curtin, Karen; Makar, Karen; Slattery, Martha L; Caan, Bette J; Ulrich, Cornelia M

    2013-04-01

    The importance of folate-mediated one-carbon metabolism (FOCM) in colorectal carcinogenesis is emphasized by observations that high dietary folate intake is associated with decreased risk of colon cancer (CC) and its precursors. Additionally, polymorphisms in FOCM-related genes have been repeatedly associated with risk, supporting a causal relationship between folate and colorectal carcinogenesis. We investigated ten candidate polymorphisms with defined or probable functional impact in eight FOCM-related genes (SHMT1, DHFR, DNMT1, MTHFD1, MTHFR, MTRR, TCN2, and TDG) in 1609 CC cases and 1974 controls for association with CC risk and for interaction with dietary factors. No polymorphism was statistically significantly associated with overall risk of CC. However, statistically significant interactions modifying CC risk were observed for DNMT1 I311V with dietary folate, methionine, vitamin B2 , and vitamin B12 intake and for MTRR I22M with dietary folate, a predefined one-carbon dietary pattern, and vitamin B6 intake. We observed statistically significant gene-diet interactions with five additional polymorphisms. Our results provide evidence that FOCM-related dietary intakes modify the association between CC risk and FOCM allelic variants. These findings add to observations showing that folate-related gene-nutrient interactions play an important role in modifying the risk of CC. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Microwave plasma induced surface modification of diamond-like carbon films

    Science.gov (United States)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  3. Chemical switches and logic gates based on surface modified semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Szacilowski; Wojciech, Macyk [Jagiellonian Univ., Dept. of Chemistry, Krakow (Poland)

    2006-02-15

    Photoelectrochemical properties of multicomponent photo-electrodes based on titanium dioxide and cadmium sulfide powders modified with hexacyanoferrate complexes have been examined. Photocurrent responses were recorded as functions of applied potential and photon energy. Surprisingly, the photocurrent can be switched between positive and negative values as a result of potential or photon energy changes. This new effect called Photo Electrochemical Photocurrent Switching (PEPS) opens a possibility of new chemical switches and logic gates construction. Boolean logic analysis and a tentative mechanism of the device are discussed. (authors)

  4. Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite

    International Nuclear Information System (INIS)

    Ma, X.; Liu, Z.; Qiu, C.; Chen, T.; Ma, H.

    2013-01-01

    We have synthesized a virtually monodisperse gold-graphene (Au-G) nanocomposite by a single-step chemical reduction method in aqueous dimethylformamide solution. The nanoparticles are homogenously distributed over graphene nanosheets. A glassy carbon electrode was modified with this nanocomposite and displayed high electrocatalytic activity and extraordinary electronic transport properties due to its large surface area. It enabled the simultaneous determination of hydroquinone (HQ) and catechol (CC) in acetate buffer solution of pH 4.5. Two pairs of well-defined, quasi-reversible redox peaks are obtained, one for HQ and its oxidized form, with a 43 mV separation of peak potentials (ΔEp), the other for CC and its oxidized form, with a ΔEp of 39 mV. Due to the large separation of oxidation peak potentials (102 mV), the concentrations of HQ and CC can be easily determined simultaneously. The oxidation peak currents for both HQ and CC increase linearly with the respective concentrations in the 1.0 μM to 0.1 mM concentration range, with the detection limits of 0.2 and 0. 15 μM (S/N = 3), respectively. The modified electrode was successfully applied to the simultaneous determination of HQ and CC in spiked tap water, demonstrating that the Au-G nanocomposite may act as a high-performance sensing material in the selective detection of some environmental pollutants. (author)

  5. Method of producing a carbon coated ceramic membrane and associated product

    Science.gov (United States)

    Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.

    1993-01-01

    A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

  6. Electrochemical Effect of Different Modified Glassy Carbon Electrodes on the Values of Diffusion Coefficient for Some Heavy Metal Ions

    International Nuclear Information System (INIS)

    Radhi, M M; Alwan, S H; Amir, Y K A; Tee, T W

    2013-01-01

    Glassy carbon electrode (GCE) was modified with carbon nanotubes (CNT), C 60 and activated carbon (AC) by mechanical attachment method and solution evaporation technique to preparation CNT/GCE, C 60 /GCE and AC/GCE, these electrodes were modified in Li + solution via cyclic voltammetry (CV) potential cycling to preparing CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li + /GCE. The sensing characteristics of the modified film electrodes, demonstrated in the application study for different heavy metal ions such as Hg 2+ , Cd 2+ , and Mn 2+ . Cyclic voltammetric effect by chronoamperometry (CA) technique was investigated to determination the diffusion coefficient (D f ) values from Cottrell equation at these ions. Based on Cottrell equation (diffusion coefficient) of the redox current peaks of different heavy metal ions at different modified electrodes were studied to evaluate the sensing of these electrodes by the diffusion coefficient values. The modification of GCE with nano materials and Li + act an enhancement for the redox current peaks to observe that the diffusion process are high at CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li+/GCE, but it has low values at unmodified GCE.

  7. Sensitive warfarin sensor based on cobalt oxide nanoparticles electrodeposited at multi-walled carbon nanotubes modified glassy carbon electrode (CoxOyNPs/MWCNTs/GCE)

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Solgi, Mohammad

    2017-01-01

    In this work, cobalt oxide nanoparticles were electrodeposited on multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE) to develop a new sensor for warfarin determination. The modified electrodes were characterized by cyclic voltammetry, scanning electron microscopy (SEM) along with energy dispersive x-ray spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS). The presence of cobalt oxide nanoparticles on the electrode surface enhanced the warfarin accumulation and its result was the improvement in the electrochemical response. The effect of various parameters such as pH, scan rate, accumulation potential, accumulation time and pulse amplitude on the sensor response were investigated. Under optimal conditions, the differential pulse adsorptive anodic stripping voltammetric (DPASV) response of the modified electrode was linear in the ranges of 8 nM to 50 μM and 50 μM to 800 μM with correlation coefficients greater than 0.998. The limit of detection of the proposed method was 3.3 nM. The proposed sensor was applied to determine warfarin in urine and plasma samples.

  8. Simultaneous determination of mycophenolate mofetil and its active metabolite, mycophenolic acid, by differential pulse voltammetry using multi-walled carbon nanotubes modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Soleimani, Mohammad; Afkhami, Abbas

    2014-09-01

    A highly sensitive electrochemical sensor for the simultaneous determination of mycophenolate mofetil (MPM) and mycophenolic acid (MPA) was fabricated by multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE). The electrochemical behavior of these two drugs was studied at the modified electrode using cyclic voltammetry and adsorptive differential pulse voltammetry. MPM and MPA were oxidized at the GCE during an irreversible process. DPV analysis showed two oxidation peaks at 0.87 V and 1.1 V vs. Ag/AgCl for MPM and an oxidation peak at 0.87 V vs. Ag/AgCl for MPA in phosphate buffer solution of pH 5.0. The MWCNTs/GCE displayed excellent electrochemical activities toward oxidation of MPM and MPA relative to the bare GCE. The experimental design algorithm was used for optimization of DPV parameters. The electrode represents linear responses in the range 5.0 × 10{sup −6} to 1.6 × 10{sup −4} mol L{sup −1} and 2.5 × 10{sup −6} mol L{sup −1} to 6.0 × 10{sup −5} mol L{sup −1} for MPM and MPA, respectively. The detection limit was found to be 9.0 × 10{sup −7} mol L{sup −1} and 4.0 × 10{sup −7} mol L{sup −1} for MPM and MPA, respectively. The modified electrode showed a good sensitivity and stability. It was successfully applied to the simultaneous determination of MPM and MPA in plasma and urine samples. - Highlights: • A new modified electrochemical sensor was constructed and used. • Multiwalled carbon nanotubes were used as the modifiers. • MPM and MPA were measured simultaneously at the low levels. • The sensor was used to the determination of MPA and MPM in real samples.

  9. Effect of emulsifiers on complexation and retrogradation characteristics of native and chemically modified White sorghum (Sorghum bicolor) starch

    International Nuclear Information System (INIS)

    Ali, Tahira Mohsin; Hasnain, Abid

    2013-01-01

    Highlights: ► Sorghum starches were chemically modified. ► Starch–lipid complexes were studied in the presence of emulsifiers. ► Type II complexes were also detected in native and oxidized starches on adding GMS. ► Starch–lipid complexes sharply reduced retrogradation in modified starches. - Abstract: The effect of emulsifiers on complexation and retrogradation characteristics of native and chemically modified white sorghum starches was studied. Complex forming tendency of white sorghum starch with commercially available emulsifiers GMS and DATEM improved after acetylation. Presence of emulsifiers reduced λ max (wavelength of maximum absorbance) both for native and modified sorghum starches suggesting lower availability of amylose chains to complex with iodine. In native white sorghum starch (NWSS) and oxidized white sorghum starch (OWSS), both Type I and Type II starch–lipid complexes were observed on addition of 1.0% GMS prior to gelatinization. Acetylated-oxidized white sorghum starch (AOWSS) formed weakest complexes among all the modified starches. The results revealed that antistaling characteristics of modified sorghum starches were enhanced when used in combination with emulsifiers. The most prominent decline in reassociative capability among modified starches was observed for acetylated starches.

  10. A modified parallel artificial membrane permeability assay for evaluating the bioconcentration of highly hydrophobic chemicals in fish.

    Science.gov (United States)

    Kwon, Jung-Hwan; Escher, Beate I

    2008-03-01

    Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.

  11. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    International Nuclear Information System (INIS)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-01-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N 2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO x films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH 2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  12. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Science.gov (United States)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-10-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiOx films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV-vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of sbnd NH2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  13. TiO2-anatase modified by carbon as the photo catalyst under visible light

    International Nuclear Information System (INIS)

    Morawski, A.W.; Janus, M.; Tryba, B.; Kalucki, K.; Tryba, B.; Inagaki, M.

    2006-01-01

    The photo-catalytic oxidation of phenol in water under a visible light over anatase-type titanium dioxide (Tytanpol A11, Poland), modified by carbon deposited via n-hexane carbonization, was investigated. The catalysts, which had small (0-0.2 mass%) and high (0.69-0.85 mass%) contents of carbon showed a little lower catalytic photo-activity than pristine TiO 2 . However, the catalyst with high content of carbon (0.85 mass%) gave almost 14-times lower turbidity in the phenol solution after the photo-catalyst sedimentation. These two factors depend on the carbon content and have an influence on the 'practical efficiency' of the catalysts. The 'practical efficiency' of the catalyst under visible light, calculated from these two factors, was therefore 14-times higher for the catalyst containing 0.85 mass% carbon (whereas for UV radiation, it was found to be lower - 0.2 mass% -; this is the result of a previous work). The surface modification of the catalyst with 0.85% carbon seemed to be stable under visible light. The deposition of carbon on TiO 2 by carbonization of n-hexane was supposed to lead to obtain the catalyst, which could be easily used in a water-treatment system under visible light. (authors)

  14. Adsorption/oxidation of sulfur-containing gases on nitrogen-doped activated carbon

    Directory of Open Access Journals (Sweden)

    Liu Qiang

    2016-01-01

    Full Text Available Coconut shell-based activated carbon (CAC was used for the removal of methyl mercaptan (MM. CAC was modified by urea impregnation and calcined at 450°C and 950°C. The desulfurization activity was determined in a fixed bed reactor under room temperature. The results showed that the methyl mercaptan adsorption/oxidation capacity of modified carbon caicined at 950°C is more than 3 times the capacity of original samples. On the other hand, the modified carbon caicined at 950°C also has a high capacity for the simultaneous adsorption/oxidation of methyl mercaptan and hydrogen sulfide.The introduce of basic nitrogen groups siginificantly increases the desulfurization since it can facilitate the electron transfer process between sulfur and oxygen. The structure and chemical properties are characterized using Boehm titration, N2 adsorption-desorption method, thermal analysis and elemental analysis. The results showed that the major oxidation products were dimethyl disulfide and methanesulfonic acid which adsorbed in the activated carbon.

  15. Attractive forces in microporous carbon electrodes for capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Porada, S.; Levi, M.; Bazant, M.Z.

    2014-01-01

    The recently developed modified Donnan (mD) model provides a simple and useful description of the electrical double layer in microporous carbon electrodes, suitable for incorporation in porous electrode theory. By postulating an attractive excess chemical potential for each ion in the micropores

  16. Carbon nanotubes for biological and biomedical applications

    International Nuclear Information System (INIS)

    Yang Wenrong; Thordarson, Pall; Gooding, J Justin; Ringer, Simon P; Braet, Filip

    2007-01-01

    Ever since the discovery of carbon nanotubes, researchers have been exploring their potential in biological and biomedical applications. The recent expansion and availability of chemical modification and bio-functionalization methods have made it possible to generate a new class of bioactive carbon nanotubes which are conjugated with proteins, carbohydrates, or nucleic acids. The modification of a carbon nanotube on a molecular level using biological molecules is essentially an example of the 'bottom-up' fabrication principle of bionanotechnology. The availability of these biomodified carbon nanotube constructs opens up an entire new and exciting research direction in the field of chemical biology, finally aiming to target and to alter the cell's behaviour at the subcellular or molecular level. This review covers the latest advances of bio-functionalized carbon nanotubes with an emphasis on the development of functional biological nano-interfaces. Topics that are discussed herewith include methods for biomodification of carbon nanotubes, the development of hybrid systems of carbon nanotubes and biomolecules for bioelectronics, and carbon nanotubes as transporters for a specific delivery of peptides and/or genetic material to cells. All of these current research topics aim at translating these biotechnology modified nanotubes into potential novel therapeutic approaches. (topical review)

  17. Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide

    International Nuclear Information System (INIS)

    Xu Bing; Wang Xiaoshu; Lu Yun

    2006-01-01

    In this work, sized polyacrylonitrile (PAN)-based carbon fibers were chemically modified with nitric acid and maleic anhydride (MA) in order to improve the interaction between carbon fiber surface and polyimide matrix. Bismaleimide (BMI) was selected as a model compound of polyimide to react with modified carbon fiber. The surface characteristic changing after modification and surface reaction was investigated by element analysis (EA), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and surface enhanced Raman scattering (SERS). The results indicated that the modification of carbon fiber surface with MA might follow the Diels Alder reaction mechanism. In the surface reaction between modified fibers and BMI, among the various surface functional groups, the hydroxyl group provided from phenolic hydroxyl group and bridged structure on carbon fiber may be the most effective group reacted with imide structure. The results may shed some light on the design of the appropriate surface structure, which could react with polyimide, and the manufacture of the carbon fiber-reinforced polyimide matrix composites

  18. Chemical Properties of Brown Carbon Aerosol Generated at the Missoula Fire Sciences Laboratory

    Science.gov (United States)

    Washenfelder, R. A.; Womack, C.; Franchin, A.; Middlebrook, A. M.; Wagner, N.; Manfred, K.

    2017-12-01

    Aerosol scattering and absorption are still among the largest uncertainties in quantifying radiative forcing. Biomass burning is a major source of light-absorbing carbonaceous aerosol in the United States. These aerosol are generally classified into two categories: black carbon (graphitic-like aerosol that absorbs broadly across the ultraviolet and visible spectral regions) and brown carbon (organic aerosol that absorbs strongly in the ultraviolet and near-visible spectral regions). The composition, volatility, and chemical aging of brown carbon are poorly known, but are important to understanding its radiative effects. We deployed three novel instruments to the Missoula Fire Sciences Laboratory in 2016 to measure brown carbon absorption: a photoacoustic spectrometer, broadband cavity enhanced spectrometer, and particle-into-liquid sampler coupled to a liquid waveguide capillary cell. The instruments sampled from a shared inlet with well-characterized dilution and thermal denuding. We sampled smoke from 32 controlled burns of fuels relevant to western U.S. wildfires. We use these measurements to determine the volatility of water-soluble brown carbon, and compare this to the volatility of water-soluble organic aerosol and total organic aerosol. We further examine the wavelength-dependence of the water-soluble brown carbon absorption as a function of denuder temperature. Together this gives new information about the solubility, volatility, and chemical composition of brown carbon.

  19. Effects of Temperature on Polymer/Carbon Chemical Sensors

    Science.gov (United States)

    Manfireda, Allison; Lara, Liana; Homer, Margie; Yen, Shiao-Pin; Kisor, Adam; Ryan, Margaret; Zhou, Hanying; Shevade, Abhijit; James, Lim; Manatt, Kenneth

    2009-01-01

    Experiments were conducted on the effects of temperature, polymer molecular weight, and carbon loading on the electrical resistances of polymer/carbon-black composite films. The experiment were performed in a continuing effort to develop such films as part of the JPL Electronic Nose (ENose), that would be used to detect, identify, and quantify parts-per-million (ppm) concentration levels of airborne chemicals in the space shuttle/space station environments. The polymers used in this study were three formulations of poly(ethylene oxide) [PEO] that had molecular weights of 20 kilodaltons, 600 kilodaltons, and 1 megadalton, respectively. The results of one set of experiments showed a correlation between the polymer molecular weight and the percolation threshold. In a second set of experiments, differences among the temperature dependences of resistance were observed for different carbon loadings; these differences could be explained by a change in the conduction mechanism. In a third set of experiments, the responses of six different polymer/carbon composite sensors to three analytes (water vapor, methanol, methane) were measured as a function of temperature (28 to 36 C). For a given concentration of each analyte, the response of each sensor decreased with increasing temperature, in a manner different from those of the other sensors.

  20. Hall Measurements on Carbon Nanotube Paper Modified With Electroless Deposited Platinum

    Directory of Open Access Journals (Sweden)

    Iwuoha Emmanuel

    2009-01-01

    Full Text Available Abstract Carbon nanotube paper, sometimes referred to as bucky paper, is a random arrangement of carbon nanotubes meshed into a single robust structure, which can be manipulated with relative ease. Multi-walled carbon nanotubes were used to make the nanotube paper, and were subsequently modified with platinum using an electroless deposition method based on substrate enhanced electroless deposition. This involves the use of a sacrificial metal substrate that undergoes electro-dissolution while the platinum metal deposits out of solution onto the nanotube paper via a galvanic displacement reaction. The samples were characterized using SEM/EDS, and Hall-effect measurements. The SEM/EDS analysis clearly revealed deposits of platinum (Pt distributed over the nanotube paper surface, and the qualitative elemental analysis revealed co-deposition of other elements from the metal substrates used. When stainless steel was used as sacrificial metal a large degree of Pt contamination with various other metals was observed. Whereas when pure sacrificial metals were used bimetallic Pt clusters resulted. The co-deposition of a bimetallic system upon carbon nanotubes was a function of the metal type and the time of exposure. Hall-effect measurements revealed some interesting fluctuations in sheet carrier density and the dominant carrier switched from N- to P-type when Pt was deposited onto the nanotube paper. Perspectives on the use of the nanotube paper as a replacement to traditional carbon cloth in water electrolysis systems are also discussed.

  1. Voltammetric detection of bisphenol a by a chitosan–graphene composite modified carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Wang Qingxiang; Wang Yuhua; Liu Shengyun; Wang Liheng; Gao Feng; Gao Fei; Sun Wei

    2012-01-01

    In this paper 1-ethyl-3-methylimidazolium tetrafluoroborate based carbon ionic liquid electrode (CILE) was fabricated and further modified with chitosan (CTS) and graphene (GR) composite film. The fabricated CTS-GR/CILE was further used for the investigation on the electrochemical behavior of bisphenol A (BPA) by cyclic voltammetry and differential pulse voltammetry. A well-defined anodic peak appeared at 0.436 V in 0.1 mol/L pH 8.0 Britton–Robinson buffer solution, which was attributed to the electrooxidation of BPA on the modified electrode. The electrochemical parameters of BPA on the modified electrode were calculated with the results of the charge transfer coefficient (α) as 0.662 and the apparent heterogeneous electron transfer rate constant (k s ) as 1.36 s −1 . Under the optimal conditions, a linear relationship between the oxidation peak current of BPA and its concentration can be obtained in the range from 0.1 μmol/L to 800.0 μmol/L with the limit of detection as 2.64 × 10 −8 mol/L (3σ). The CTS-GR/CILE was applied to the detection of BPA content in plastic products with satisfactory results. - Highlights: ► A graphene modified carbon ionic liquid electrode was fabricated and characterized. ► Electrochemical behaviors of bisphenol A were investigated. ► Bisphenol A was detected by the proposed electrode.

  2. Effect of chemical modification on reduction and sorptive properties of chars from hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Stanczyk, K.; Miga, K.; Fabis, G.; Jastrzab, K. [Polskiej Akademii Nauk, Gliwice (Poland)

    1998-01-01

    Hydropyrolysis of bituminous coal and lignite as way of synthesis of adsorbents has been applied. Chemical modification of chars based on simultaneous carbonization of coal and plastics containing sulfur and nitrogen has been carried out. It was stated that modified chars exhibit better reduction and sorptive properties than non-modified and that modified adsorbents made of lignite exceed commercial ones. 7 refs., 4 figs., 3 tabs.

  3. Characterization of poly(5-hydroxytryptamine)-modified glassy carbon electrode and applications to sensing of norepinephrine and uric acid in preparations and human urines

    International Nuclear Information System (INIS)

    Shi, Peiying; Miao, Xiaoqing; Yao, Hong; Lin, Sijie; Wei, Biyu; Chen, Jianji; Lin, Xinhua; Tang, Yuhai

    2013-01-01

    Graphical abstract: A 5-hydroxytryptamine (5-HT) modified electrode was fabricated by electro-polymerization of 5-HT on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) in 0.05 M PBS (pH 7). The characterization of the modified electrode was carried out by atomic force microscopy (AFM), voltammetry and electrochemical impedance spectroscopy (EIS). The mechanism of electro-deposition of 5-HT at GCE was discussed based on electrochemical studies and quantum chemical calculations. The poly(5-HT)-modified electrode could separately detect NE and UA, even in the presence of 10-fold concentration of ascorbic acid (AA) and was applied successfully to the analysis of NE preparations and healthy human urines. Due to the favorable functionalized groups (-NH 2 and -OH), electroactivity, biocompatibility and stability, the poly(5-HT) film could be a promising immobilization matrix for anchoring interested biological molecules in the fabrication of sensors and biosensors. Highlights: ► A poly(5-HT)-modified electrode was fabricated originally by CV. ► The electro-deposition mechanism of 5-HT at GCE was proposed. ► The polymer film shows favorable electrocatalytic properties to NE and UA. ► The modified GCE was applied to the sensing analysis of real samples. -- Abstract: A poly(5-hydroxytryptamine) (poly(5-HT)) modified electrode was fabricated by electropolymerization of 5-hydroxytryptamine (5-HT) on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) in 0.05 M PBS (pH 7). The characterization of poly(5-HT)-modified electrode was carried out by atomic force microscopy (AFM), voltammetry and electrochemical impedance spectroscopy (EIS). Results showed that a brown and heterogeneous film was formed on the surface of the modified electrode. The mechanism of electro-deposition of 5-HT at GCE was discussed. The modified electrode showed good affinity and electrocatalytic properties to some species, such as norepinephrine (NE) and uric acid (UA). Furthermore

  4. Electrochemical immunosensors for the detection of survival motor neuron (SMN) protein using different carbon nanomaterials-modified electrodes.

    Science.gov (United States)

    Eissa, Shimaa; Alshehri, Nawal; Rahman, Anas M Abdel; Dasouki, Majed; Abu-Salah, Khalid M; Zourob, Mohammed

    2018-03-15

    Spinal muscular atrophy is an untreatable potentially fatal hereditary disorder caused by loss-of-function mutations in the survival motor neuron (SMN) 1 gene which encodes the SMN protein. Currently, definitive diagnosis relies on the demonstration of biallelic pathogenic variants in SMN1 gene. Therefore, there is an urgent unmet need to accurately quantify SMN protein levels for screening and therapeutic monitoring of symptomatic newborn and SMA patients, respectively. Here, we developed a voltammetric immunosensor for the sensitive detection of SMN protein based on covalently functionalized carbon nanofiber-modified screen printed electrodes. A comparative study of six different carbon nanomaterial-modified electrodes (carbon, graphene (G), graphene oxide (GO), single wall carbon nanotube (SWCNT), multi-wall carbon nanotube (MWCNT), and carbon nanofiber (CNF)) was performed. 4-carboxyphenyl layers were covalently grafted on the six electrodes by electroreduction of diazonium salt. Then, the terminal carboxylic moieties on the electrodes surfaces were utilized to immobilize the SMN antibody via EDC/NHS chemistry and to fabricate the immunosensors. The electrochemical characterization and analytical performance of the six immunosensors suggest that carbon nanofiber is a better electrode material for the SMN immunosensor. The voltammetric SMN carbon nanofiber-based immunosensor showed high sensitivity (detection limit of 0.75pg/ml) and selectivity against other proteins such as cystic fibrosis transmembrane conductance regulator (CFTR) and dystrophin (DMD). We suggest that this novel biosensor is superior to other developed assays for SMN detection in terms of lower cost, higher sensitivity, simplicity and capability of high throughput screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.

    Science.gov (United States)

    Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A

    2008-11-01

    We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.

  6. Evaluation of a carbon paste electrode modified with Strontium substituted bismuth and titanium oxide nanoparticles in the toxic metal chromium (VI determination potentiometric method

    Directory of Open Access Journals (Sweden)

    Atefeh Badri

    2016-09-01

    Full Text Available Strontium substituted bismuth and titanium oxide nanoparticles with aurivillius morphology synthesized by chemical co-precipitation method and were characterized using XRD. The nanopartcles were used in the composition of the carbon paste to improve conductivity and transduction of chemical signal to electrical signal. A procedure for the determination of chromium is described based on pre-concentration of the dichromate anion at a carbon paste electrode modified. A novel potentiometric Cr6+carbon paste electrode incorporating Strontium substituted bismuth and titanium oxide nanoparticles (SSBTO. Ina acetate buffer solution of pH 5, the sensor displays a rapid and linear response for Cr6+ over the concentration range 1.0×10-5 to 1.0×10-1mol L-1 M with an anionic slope of 54.8± 0.2 mV decade ’ and a detection limit of the order of0.002 /µg ml ‘. The sensor is used for determination of Cr6+ by direct monitoring of Cr6+.The average recoveries of Cr6+at concentration levels of 0.5~40 pg/ml ’is 98.3. The electrode has a short response time (<6s and can be used for at least twenty days without any considerable divergence in potentials and the working pH range was 4.5-6.5. The proposed electrode was successfully used as an indicator for potentiometric determination of Cr6+in water sample.

  7. Disposable screen-printed bismuth electrode modified with multi-walled carbon nanotubes for electrochemical stripping measurements.

    Science.gov (United States)

    Niu, Xiangheng; Zhao, Hongli; Lan, Minbo

    2011-01-01

    Integrating the advantages of screen printing technology with the encouraging electroanalytical characteristic of metallic bismuth, we developed an ultrasensitive and disposable screen-printed bismuth electrode (SPBE) modified with multi-walled carbon nanotubes (MWCNTs) for electrochemical stripping measurements. Metallic bismuth powders and MWCNTs were homogeneously mixed with graphite-carbon ink to mass-prepare screen-printed bismuth electrode doped with multi-walled carbon nanotubes (SPBE/MWCNT). The electroanalytical performance of the prepared SPBE/MWCNT was intensively evaluated by measuring trace Hg(II) with square-wave anodic stripping voltammetry (SWASV). The results indicated that the SPBE modified with 2 wt% MWCNTs could offer a more sensitive response to trace Hg(II) than the bare SPBE. The stripping current obtained at SPBE/MWCNT was linear with Hg(II) concentration in the range from 0.2 to 40 µg/L (R(2) = 0.9976), with a detection limit of 0.09 µg/L (S/N = 3) under 180 s accumulation. The proposed "mercury-free" electrode, with extremely simple preparation and ultrahigh sensitivity, holds wide application prospects in both environmental and industrial monitoring. 2011 © The Japan Society for Analytical Chemistry

  8. Electrochemically modified sulfisoxazole nanofilm on glassy carbon for determination of cadmium(II) in water samples

    International Nuclear Information System (INIS)

    Gupta, Vinod Kumar; Yola, Mehmet Lütfi; Atar, Necip; Solak, Ali Osman; Uzun, Lokman; Üstündağ, Zafer

    2013-01-01

    Highlights: • Sulfisoxazole was grafted onto glassy carbon electrode. • The electrode was characterized by spectroscopic and electrochemical methods. • It has been used for the determination of Cd(II) ions in real samples in very low concentrations. -- Abstract: Sulfisoxazole (SO) was grafted to glassy carbon electrode (GCE) via the electrochemical oxidation of SO in acetonitrile solution containing 0.1 M tetrabutylammoniumtetra-fluoroborate (TBATFB). The prepared electrode was characterized by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), reflection–absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS). The ellipsometric thickness of SO nanofilm at the glassy carbon surface was obtained as 14.48 ± 0.11 nm. The stability of the SO modified GCE was studied. The SO modified GCE was also utilized for the determination of Cd(II) ions in water samples in the presence of Pb(II) and Fe(II) by adsorptive stripping voltammetry. The linearity range and the detection limit of Cd(II) ions were 1.0 × 10 −10 to 5.0 × 10 −8 M and 3.3 × 10 −11 M (S/N = 3), respectively

  9. The effect of modified atmosphere packaging with carbon monoxide on the storage quality of master-packaged fresh pork

    NARCIS (Netherlands)

    Wilkinson, B.H.P.; Janz, J.A.M.; Morel, P.C.H.; Purchas, R.W.; Hendriks, W.H.

    2006-01-01

    Modified atmosphere packaging with carbon dioxide is effective for prolonging shelf-life of fresh meat. Addition of carbon monoxide to the system provides the advantage of enhancing meat colour. The study objective was to determine the effect of CO2-MAP + 0.4% CO, vs. 100% CO2-MAP, on the

  10. Fluorescence spectroscopic investigation of the interaction of citrinin with native and chemically modified cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Poór, Miklós, E-mail: poor.miklos@pte.hu [Department of Pharmacology and Pharmacotherapy, Toxicology Section, University of Pécs, Szigeti út 12, Pécs H-7624 (Hungary); Matisz, Gergely; Kunsági-Máté, Sándor [Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, Pécs H-7624 (Hungary); János Szentágothai Research Center, Ifjúság útja 20, Pécs H-7624 (Hungary); Derdák, Diána [Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, Pécs H-7624 (Hungary); Szente, Lajos [CycloLab Cyclodextrin Research & Development Laboratory Ltd., Illatos út 7, Budapest H-1097 (Hungary); and others

    2016-04-15

    Citrinin (CIT) is a nephrotoxic mycotoxin produced by several Aspergillus, Penicillium and Monascus species. CIT is unavoidable contaminant of different foods and drinks due to its wide occurrence and high thermal stability. For this reason, development of new, more sensitive analytical methods and decontamination strategies has high importance. In our study, the complex formation of CIT with native and chemically modified cyclodextrins was investigated using fluorescence spectroscopy. Furthermore, thermodynamic and molecular modeling studies were also performed for the deeper understanding of these host-guest interactions. Our results show that among the tested compounds methylated β-cyclodextrins form the most stable complexes with CIT and these derivatives cause the highest fluorescence enhancement of CIT as well. These observations recommend that some of the chemically modified derivatives show more favourable properties than the native cyclodextrin, and suggesting more promising analytical applicability and higher affinity as potential toxin binders.

  11. Relation between the adsorbed quantity and the immersion enthalpy in catechol aqueous solutions on activated carbons.

    Science.gov (United States)

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, Carbochem(TM)-PS230, was modified by chemical and thermal treatment in flow of H(2), in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pK(a). The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g(-1) for catechol aqueous solutions in a range of 20 at 1500 mg·L(-1).

  12. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2011-12-01

    Full Text Available An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG, the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1.

  13. Carbonized tantalum catalysts for catalytic chemical vapor deposition of silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Shimin [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Gao Huiping; Ren Tong; Ying Pinliang [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China); Li Can, E-mail: canli@dicp.ac.cn [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China)

    2012-06-01

    Catalytic chemical vapor deposition (Cat-CVD) has been demonstrated as a promising way to prepare device-quality silicon films. However, catalyst ageing due to Si contamination is an urgency to be solved for the practical application of the technique. In this study, the effect of carbonization of tantalum catalyst on its structure and performance was investigated. The carbonized Ta catalyst has a TaC surface layer which is preserved over the temperature range between 1450 and 1750 Degree-Sign C and no Si contamination occurs on the catalyst after long-term use. Si film prepared using the carbonized Ta catalyst has a similar crystal structure to that prepared by uncarbonized Ta catalyst. Formation of the TaC surface layer can alleviate the ageing problem of the catalyst, which shows great potential as a stable catalyst for Cat-CVD of Si films. - Highlights: Black-Right-Pointing-Pointer Si films prepared by catalytic chemical vapor deposition. Black-Right-Pointing-Pointer Carbonized Ta with a TaC surface layer used as catalyst. Black-Right-Pointing-Pointer TaC surface structure preserved after long-term use in a wide temperature range. Black-Right-Pointing-Pointer Help to solve the ageing problem of metal catalysts. Black-Right-Pointing-Pointer Si film obtained has a similar crystal structure to that prepared by Ta catalyst.

  14. Synthesis and characterization of chemically activated carbon derived from arecanut shell

    Directory of Open Access Journals (Sweden)

    A. S. Jadhav

    2016-03-01

    Full Text Available Activated carbon (AC was prepared from areca-nut shell (AS by chemical activation using phosphoric acid (PA. Activated carbon was prepared in three batches using phosphoric acid of 50 gm, 100 gm, and 300 gm with varying impregnation ratios by weight of 1:1, 2:1 and 3:1, 4:1 each. Characterization of the prepared activated carbon was done by methylene blue number (MBN, iodine number (IN, acid adsorption test (AAT, and elemental composition. Activation was carried out at 400 C. It was found that activated carbon derived from areca-nut shell shown improved results for methylene blue number (MBN, iodine number (IN, and acid adsorption test(AAT. Thermal analysis was carried out to know the weight loss and SEM was performed to know the morphology of AC.

  15. Preparation of yttrium hexacyanoferrate/carbon nanotube/Nafion nanocomposite film-modified electrode: Application to the electrocatalytic oxidation of L-cysteine

    International Nuclear Information System (INIS)

    Qu Lingbo; Yang Suling; Li Gang; Yang Ran; Li Jianjun; Yu Lanlan

    2011-01-01

    An yttrium hexacyanoferrate nanoparticle/multi-walled carbon nanotube/Nafion (YHCFNP/MWNT/Nafion)-modified glassy carbon electrode (GCE) was constructed. Several techniques, including infrared spectroscopy, energy dispersive spectrometry, scanning electron microscopy and electrochemistry, were performed to characterize the yttrium hexacyanoferrate nanoparticles. The electrochemical behavior of the YHCFNP/MWNT/Nafion-modified GCE in response to L-cysteine oxidation was studied. The response current of L-cysteine oxidation at the YHCFNP/MWNT/Nafion-modified GCE was obviously higher than that at the bare GCE or other modified GCE. The effects of pH, scan rate and interference on the response to L-cysteine oxidation were investigated. In addition, on the basis of these findings, a determination of L-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was carried out. Under the optimum experimental conditions, the electrochemical response to L-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was fast (within 4 s). Linear calibration plots were obtained over the range of 0.20-11.4 μmol L -1 with a low detection limit of 0.16 μmol L -1 . The YHCFNP/MWNT/Nafion-modified GCE exhibited several advantages, such as high stability and good resistance against interference by ascorbic acid and other oxidizable amino acids.

  16. Anodic stripping voltammetric determination of silver ion at a carbon paste electrode modified with carbon nanotubes

    International Nuclear Information System (INIS)

    Tashkhourian, J.; Javadi, S.; Ana, F.N.

    2011-01-01

    A carbon paste electrode (CPE) was modified with multi-wall carbon nanotubes and successfully applied to the determination of silver ion by differential pulse anodic stripping voltammetry. Compared to a conventional CPE, a remarkably improved peak current response and sensitivity is observed. The analytical procedure consisted of an open circuit accumulation step for 2 min in -0.4 V, this followed by an anodic potential scan between +0.2 and + 0.6 V to obtain the voltammetric peak. The oxidation peak current is proportional to the concentration of silver ion in the range from 1.0 x 10 -8 to 1.0 x 10 -5 mol L -1 , with a detection limit of 1.8 x 10 -9 mol L -1 after an accumulation time of 120 s. The relative standard deviation for 7 successive determinations of Ag(I) at 0.1 μM concentration is 1.99%. The procedure was validated by determining Ag(I) in natural waters. (author)

  17. Hydrotalcites: a highly efficient ecomaterial for effluent treatment originated from carbon nanotubes chemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Alves, O L; Stefani, D; Parizotto, N V; Filho, A G Souza, E-mail: oalves@iqm.unicamp.br [Solid State Chemistry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, P. O. Box 6154, 13083-970, Campinas-SP (Brazil)

    2011-07-06

    It has been reported that a mixture of carboxylated carbonaceous fragments (CCFs), so called oxidation debris, are generated during carbon nanotubes chemical processing using oxidant agents such as HNO{sub 3}. The elimination of these fragments from carbon nanotubes surface has been point out to be a crucial step for an effective functionalization of the nanotubes as well as for improving the material. However, this process can introduce a potential environmental problem related water contamination because these CCFs can be viewed as a mixture of carbonaceous polyaromatic systems similar to humic substances and dissolved organic matter (DOM). The negative aspects of humic substances and DOM to water quality and wastewater treatment are well known. Since carbon nanotubes industry expands at high rates it is expected that effluent containing oxidation debris will increase since HNO{sub 3} chemical processing is the most applied method for purification and functionalization of carbon nanotubes. In this work, we have demonstrated that Hydrotalcites (HT) are highly efficient to remove oxidation debris from effluent solution originated from HNO{sub 3}-treated multiwalled carbon nanotubes. The strategy presented here is a contribution towards green chemistry practices and life cycle studies in carbon nanotubes field.

  18. Cost-effective flow injection amperometric system with metal nanoparticle loaded carbon nanotube modified screen printed carbon electrode for sensitive determination of hydrogen peroxide.

    Science.gov (United States)

    Reanpang, Preeyaporn; Themsirimongkon, Suwaphid; Saipanya, Surin; Chailapakul, Orawon; Jakmunee, Jaroon

    2015-11-01

    Various metal nanoparticles (NPs) decorated on carbon nanotube (CNT) was modified on the home-made screen printed carbon electrode (SPCE) in order to enhances sensitivity of hydrogen peroxide (H2O2) determination. The simple casting method was used for the electrode modification. The monometallic and bimetallic NPs modified electrodes were investigated for their electrochemical properties for H2O2 reduction. The Pd-CNT/SPCE is appropriated to measure the H2O2 reduction at a potential of -0.3 V, then this modified electrode was incorporated with a home-made flow through cell and applied in a simple flow injection amperometry (FI-Amp). Some parameters influencing the resulted modified electrode and the FI-Amp system were studied. The proposed detection system was able to detect H2O2 in the range of 0.1-1.0 mM, with detection limit of 20 µM. Relative standard deviation for 100 replicated injections of 0.6 mM H2O2 was 2.3%. The reproducibility of 6 electrodes preparing in 3 different lots was 8.2%. It was demonstrated for determination of H2O2 in disinfectant, hair colorant and milk samples. Recoveries in the range of 90-109% were observed. The developed system provided high stability, good repeatability, high sample throughput and low reagent consumption. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Yuan Yu

    2012-01-01

    Full Text Available Boron-doped diamond (BDD thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC, carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.

  20. Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Liu, M.

    2011-01-01

    A highly sensitive and mercury-free method for determination of bisphenol A (BPA) was established using a glassy carbon electrode that was modified with carboxylated multi-walled carbon nanotubes. A sensitive oxidation peak is found at 550 mV in linear sweep voltammograms at pH 7. Based on this finding, trace levels of bisphenol A can be determined over a concentration range that is linear from 10 nM to 104 nM, the correlation coefficient being 0.9983, and the detection limit (S/N = 3) being 5.0 nM. The method was successfully applied to the determination of BPA in food package. (author)

  1. Electrocatalytic behaviour and application of manganese porphyrin/gold nanoparticle- surface modified glassy carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sebarchievici, I., E-mail: incemc@incemc.ro [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Tăranu, B.O. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Birdeanu, M. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223 Timisoara (Romania); Rus, S.F. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Fagadar-Cosma, E., E-mail: efagadar@yahoo.com [Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223 Timisoara (Romania)

    2016-12-30

    Highlights: • Mn-porphyrin/gold nanoparticle-modified glassy carbon electrodes were obtained. • AFM investigations of thin films display multilayer of triangular type architecture. • Oxidation and reduction processes of H{sub 2}O{sub 2} are diffusion controled. • There is a linear dependence between H{sub 2}O{sub 2} concentration and the currents intensity. • The modified electrodes show better electrochemical detection ability to H{sub 2}O{sub 2}. - Abstract: The main purpose of this research was to obtain manganese porphyrin/gold nanoparticle-modified glassy carbon electrodes and to use them for the detection of H{sub 2}O{sub 2}. Two sets of modified electrodes were prepared by drop-cast deposition of 5,10,15,20-tetra(4-methyl-phenyl)porphyrinato manganese(III) chloride alone and of the same Mn-porphyrin and gold-colloid solution and comparatively characterized by Raman, UV–vis, ellipsometry, AFM and TEM microscopy, XPS and cyclic voltammetry. XPS spectrum recorded for GC-MnP-nAu modified electrode displayed the characteristic signals of gold nanoparticles. The optical parameters have greater values for GC-MnP-nAu in comparison with GC-MnP, due to increasing charge transfer efficiency. The MnP-nAu film mediates the electron transfer between H{sub 2}O{sub 2} and GC, evidenced by an increase in the current intensity of the anodic peak, and facilitates the electrochemical regeneration of oxidized H{sub 2}O{sub 2} at cathodic potentials. From the cyclic voltammetry experiments a linear relationship between H{sub 2}O{sub 2} concentration vs oxidation and reduction currents was observed. The linear dependence between density of current and the square root of the scan rate indicates that the oxidation and reduction processes of H{sub 2}O{sub 2} are diffusion controlled. The GC-MnP-nAu modified electrode shows great potential as electrochemical sensor for determination of hydrogen peroxide.

  2. Electrocatalytic performance of Pu(IV)/Pu(III) redox reaction at graphene modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Gupta, Ruma; Gamare, J.S.; Kamat, J.V.; Aggarwal, S.K.

    2014-01-01

    In this paper we explore the analytical perspectives of graphene modified electrode utilising commercially available graphene, which is well characterised, completely free from surfactants and has not been purposely oxidised or treated. We compare and critically contrast the electro-analytical performance of graphene modified glassy carbon electrodes (Gr/GC) with that of unmodified GC electrode towards Pu(IV)/Pu(III) redox reaction, monitoring of which has considerable importance in a plethora of areas where electrochemistry is conveniently and beneficially utilised for determination of nuclear fuels

  3. A study of the performance and properties of diamond like carbon (DLC) coatings deposited by plasma chemical vapor deposition (CVD) for two stroke engine components

    Energy Technology Data Exchange (ETDEWEB)

    Tither, D. [BEP Grinding Ltd., Manchester (United Kingdom); Ahmed, W.; Sarwar, M.; Penlington, R. [Univ. of Northumbria, Newcastle-upon-Tyne (United Kingdom)

    1995-12-31

    Chemical vapor deposition (CVD) using microwave and RF plasma is arguably the most successful technique for depositing diamond and diamond like carbon (DLC) films for various engineering applications. However, the difficulties of depositing diamond are nearly as extreme as it`s unique combination of physical, chemical and electrical properties. In this paper, the modified low temperature plasma enhanced CVD system is described. The main focus of this paper will be work related to deposition of DLC on metal matrix composite materials (MMCs) for application in two-stroke engine components and results will be presented from SEM, mechanical testing and composition analysis studies. The authors have demonstrated the feasibility of depositing DLC on MMCs for the first time using a vacuum deposition process.

  4. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure.

    Science.gov (United States)

    X.M. Zoua; H.H. Ruanc; Y. Fua; X.D. Yanga; L.Q. Sha

    2005-01-01

    Labile carbon is the fraction of soil organic carbon with most rapid turnover times and its oxidation drives the flux of CO2 between soils and atmosphere. Available chemical and physical fractionation methods for estimating soil labile organic carbon are indirect and lack a clear biological definition. We have modified the well-established Jenkinson and Powlson’s...

  5. Transfer of Chemically Modified Graphene with Retention of Functionality for Surface Engineering.

    Science.gov (United States)

    Whitener, Keith E; Lee, Woo-Kyung; Bassim, Nabil D; Stroud, Rhonda M; Robinson, Jeremy T; Sheehan, Paul E

    2016-02-10

    Single-layer graphene chemically reduced by the Birch process delaminates from a Si/SiOx substrate when exposed to an ethanol/water mixture, enabling transfer of chemically functionalized graphene to arbitrary substrates such as metals, dielectrics, and polymers. Unlike in previous reports, the graphene retains hydrogen, methyl, and aryl functional groups during the transfer process. This enables one to functionalize the receiving substrate with the properties of the chemically modified graphene (CMG). For instance, magnetic force microscopy shows that the previously reported magnetic properties of partially hydrogenated graphene remain after transfer. We also transfer hydrogenated graphene from its copper growth substrate to a Si/SiOx wafer and thermally dehydrogenate it to demonstrate a polymer- and etchant-free graphene transfer for potential use in transmission electron microscopy. Finally, we show that the Birch reduction facilitates delamination of CMG by weakening van der Waals forces between graphene and its substrate.

  6. Determination of picomolar silver concentrations by differential pulse anodic stripping voltammetry at a carbon paste electrode modified with phenylthiourea-functionalized high ordered nanoporous silica gel

    International Nuclear Information System (INIS)

    Javanbakht, Mehran; Divsar, Faten; Badiei, Alireza; Fatollahi, Fatemeh; Khaniani, Yeganeh; Ganjali, Mohammad Reza; Norouzi, Parviz; Chaloosi, Marzieh; Ziarani, Ghodsi Mohammadi

    2009-01-01

    This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, -200 mV and 300 s, respectively, and the scan rate at 50 mV s -1 in the scan range of -200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.

  7. Determination of picomolar silver concentrations by differential pulse anodic stripping voltammetry at a carbon paste electrode modified with phenylthiourea-functionalized high ordered nanoporous silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Javanbakht, Mehran [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nano Science and Technology Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: mehranjavanbakht@gmail.com; Divsar, Faten [Department of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Badiei, Alireza [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Fatollahi, Fatemeh [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khaniani, Yeganeh [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza; Norouzi, Parviz [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Chaloosi, Marzieh [Department of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Department of Chemistry, University of Alzahra, Tehran (Iran, Islamic Republic of)

    2009-09-30

    This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, -200 mV and 300 s, respectively, and the scan rate at 50 mV s{sup -1} in the scan range of -200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.

  8. Removal of toxic chemicals from water with activated carbon

    Science.gov (United States)

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  9. Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Vargas Diana P.

    2017-12-01

    Full Text Available The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribution, surface area between 516 and 1685 m2 g−1 and pore volumes between 0.24 and 0.58 cm3 g−1 were obtained. Phenol adsorption capacity of the activated carbon materials increased with increasing BET surface area and pore volume, and is favored by their surface functional groups that act as electron donors. Phenol adsorption capacities are in ranged between 73.5 and 389.4 mg · g−1.

  10. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal.

    Science.gov (United States)

    Seyedein Ghannad, S M R; Lotfollahi, M N

    2018-03-01

    Heavy metals are continuously contaminating the surface and subsurface water. The adsorption process is an attractive alternative for removing the heavy metals because of its low cost, simple operation, high efficiency, and flexible design. In this study, influences of β-zeolite and Cu-modified β-zeolite on preparation of granular activated carbons (GACs) from a composite of powder activated carbon (PAC), methylcellulose as organic binder, bentonite as inorganic binder, and water were investigated. A number of granular samples were prepared by controlling the weight percentage of binder materials, PAC and zeolites as a reinforcing adsorbent. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction techniques were employed to characterize zeolite, modified zeolite and produced GAC. The produced GACs were used as the adsorbent for removal of Zn +2 , Cd 2+ and Pb 2+ ions from aqueous solutions. The results indicated that the adsorption of metals ions depended on the pH (5.5) and contact time (30 min). Maximum adsorption of 97.6% for Pb 2+ , 95.9% for Cd 2+ and 91.1% for Zn +2 occurred with a new kind of GAC made of Cu-modified β-zeolite. The Zn +2 , Cd 2+ and Pb 2+ ions sorption kinetics data were well described by a pseudo-second order model for all sorbents. The Langmuir and Freundlich isotherm models were applied to analyze the experimental equilibrium data.

  11. Mechanical performance of HMA-2 modified with purified and unpurified carbon nanotubes and nanofibers

    Directory of Open Access Journals (Sweden)

    Mario Rodrigo Rubio

    2017-05-01

    Full Text Available The present study evaluates the mechanical performance of a Hot Mix Asphalt – Type II (HMA-2 modified with carbon nanotubes and carbon nanofibers (CNTF. CNTF were made by means the Catalytic Vapor Deposition (CVD technique at 700° C using a Nickel, Copper and Aluminum (NiCuAl catalyst with a Cu/Ni molar relation of 0,33. In order to properly assess HMA-2 performance, three different mixtures were analyzed: 1 HMA-2 modified with purified CNTF; 2 HMA-2 modified with non-purified CNTF and, 3 a Conventional HMA-2 (control. Samples manufactured in accordance with the Marshall Mix Design were tested in the laboratory to study rutting, resilient modulus (Mr and fatigue. In addition to the aforementioned dynamic characterization, the effect of CNTF purification on the asphalt mixture’s mechanical properties was analyzed. In short, a comparative study was designed to determine whether or not CNTF should be purified before introduction into the HMA-2. This investigation responds to the growing demand for economical materials capable of withstanding traffic loads while simultaneously enhancing pavement durability and mechanical properties. Although purified CNTF increased HMA-2 stiffness and elastic modulus, non-purified CNTF increased the asphalt mixture’s elastic modulus without considerable increases in stiffness. Thus, the latter modification is deemed to help address fatiguerelated issues and improve the long-term durability of flexible pavements.

  12. Electrochemical removal of fluoride from water by PAOA-modified carbon felt electrodes in a continuous flow reactor.

    Science.gov (United States)

    Cui, Hao; Qian, Yan; An, Hao; Sun, Chencheng; Zhai, Jianping; Li, Qin

    2012-08-01

    A novel poly(aniline-co-o-aminophenol) (PAOA) modified carbon felt electrode reactor was designed and investigated for fluoride removal from aqueous solutions. This reactor design is innovative because it operates under a wider pH range because of coating with a copolymer PAOA ion exchange film. In addition, contaminant mass transfer from bulk solution to the electrode surface is enhanced by the porous carbon felt as an electron-conducting carrier material compared to other reactors. The electrically controlled anion exchange mechanism was investigated by X-ray photoelectron spectroscopy and cyclic voltammetry. The applicability of the reactor in the field was tested through a series of continuous flow experiments. When the flow rate and initial fluoride concentration were increased, the breakthrough curve became sharper, which lead to a decrease in the breakthrough time and the defluoridation capacity of the reactor. The terminal potential values largely influenced fluoride removal by the reactor and the optimal defluoridation efficiency was observed at around 1.2V. The breakthrough capacities were all >10mg/g over a wide pH range (pH 5-9) with an initial fluoride concentration of 10mg/L. Consecutive treatment-regeneration studies over a week (once each day) revealed that the PAOA-modified carbon felt electrode could be effectively regenerated for reuse. The PAOA-modified carbon felt electrode reactor is a promising system that could be made commercially available for fluoride removal from aqueous solutions in field applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Fabrication of bimetallic Ag/Fe immobilized on modified biochar for removal of carbon tetrachloride

    Institute of Scientific and Technical Information of China (English)

    Hongwei Wu; Qiyan Feng

    2017-01-01

    As an effective conventional absorbent,biochar exhibited limited adsorption ability toward small hydrophobic molecules.To enhance the adsorption capacity,a novel adsorbent was prepared by immobilizing nanoscale zero-valent iron onto modified biochar (MB) and then the elemental silver was attached to the surface of iron (Ag/Fe/MB).It's noted that spherical Ag/Fe nanoparticles with diameter of 51 nm were highly dispersed on the surface of MB.As the typical hydrophobic contaminant,carbon tetrachloride was selected for examining the removal efficiency of the adsorbent.The removal efficiencies of carbon tetrachloride by original biochar (OB),Ag/Fe,Ag/Fe/OB and Ag/Fe/MB were fully investigated.It's found that Ag/Fe/MB showed higher carbon tetrachloride removal efficiency,which is about 5.5 times higher than that of the OB sample due to utilizing the merits of high adsorption and reduction.Thermodynamic parameters revealed that the removal of carbon tetrachloride by Ag/Fe/MB was a spontaneous and exothermic process,which was affected by solution pH,initial carbon tetrachloride concentration and temperature.The novel Ag/Fe/MB composites provided a promising material for carbon tetrachloride removal from effluent.

  14. Chemically treated carbon black waste and its potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Pengwei; Maneerung, Thawatchai; Ng, Wei Cheng; Zhen, Xu [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Dai, Yanjun [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Tong, Yen Wah [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Ting, Yen-Peng [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Koh, Shin Nuo [Sembcorp Industries Ltd., 30 Hill Street #05-04, 179360 (Singapore); Wang, Chi-Hwa, E-mail: chewch@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore)

    2017-01-05

    Highlights: • Hazardous impurities separated from carbon black waste with little damage to solid. • Heavy metals were effectively removed from carbon black waste by HNO{sub 3} leaching. • Treated carbon black waste has high adsorption capacity (∼356.4 mg{sub dye}/g). • Carbon black waste was also found to show high electrical conductivity (10 S/cm). - Abstract: In this work, carbon black waste – a hazardous solid residue generated from gasification of crude oil bottom in refineries – was successfully used for making an absorbent material. However, since the carbon black waste also contains significant amounts of heavy metals (especially nickel and vanadium), chemical leaching was first used to remove these hazardous impurities from the carbon black waste. Acid leaching with nitric acid was found to be a very effective method for removal of both nickel and vanadium from the carbon black waste (i.e. up to 95% nickel and 98% vanadium were removed via treatment with 2 M nitric acid for 1 h at 20 °C), whereas alkali leaching by using NaOH under the same condition was not effective for removal of nickel (less than 10% nickel was removed). Human lung cells (MRC-5) were then used to investigate the toxicity of the carbon black waste before and after leaching. Cell viability analysis showed that the leachate from the original carbon black waste has very high toxicity, whereas the leachate from the treated samples has no significant toxicity. Finally, the efficacy of the carbon black waste treated with HNO{sub 3} as an absorbent for dye removal was investigated. This treated carbon black waste has high adsorption capacity (∼361.2 mg {sub dye}/g {sub carbonblack}), which can be attributed to its high specific surface area (∼559 m{sup 2}/g). The treated carbon black waste with its high adsorption capacity and lack of cytotoxicity is a promising adsorbent material. Moreover, the carbon black waste was found to show high electrical conductivity (ca. 10 S

  15. Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment.

    Directory of Open Access Journals (Sweden)

    Miyako Kusano

    Full Text Available As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms.

  16. Covering Chemical Diversity of Genetically-Modified Tomatoes Using Metabolomics for Objective Substantial Equivalence Assessment

    Science.gov (United States)

    Hirai, Tadayoshi; Oikawa, Akira; Matsuda, Fumio; Fukushima, Atsushi; Arita, Masanori; Watanabe, Shin; Yano, Megumu; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi; Saito, Kazuki

    2011-01-01

    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms. PMID:21359231

  17. Preparation and application of a carbon paste electrode modified with multi-walled carbon nanotubes and boron-embedded molecularly imprinted composite membranes.

    Science.gov (United States)

    Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Deng, Chunyan; Liao, Lifu; Deng, Jian; Lin, Ying-Wu

    2018-06-01

    An innovative electrochemical sensor was fabricated for the sensitive and selective determination of tinidazole (TNZ), based on a carbon paste electrode (CPE) modified with multi-walled carbon nanotubes (MWCNTs) and boron-embedded molecularly imprinted composite membranes (B-MICMs). Density functional theory (DFT) calculations were carried out to investigate the utility of template-monomer interactions to screen appropriate monomers for the rational design of B-MICMs. The distinct synergic effect of MWCNTs and B-MICMs was evidenced by the positive shift of the reduction peak potential of TNZ at B-MICMs/MWCNTs modified CPE (B-MICMs/MWCNTs/CPE) by about 200 mV, and the 12-fold amplification of the peak current, compared with a bare carbon paste electrode (CPE). Moreover, the coordinate interactions between trisubstituted boron atoms embedded in B-MICMs matrix and nitrogen atoms of TNZ endow the sensor with advanced affinity and specific directionality. Thereafter, a highly sensitive electrochemical analytical method for TNZ was established by different pulse voltammetry (DPV) at B-MICMs/MWCNTs/CPE with a lower detection limit (1.25 × 10 -12  mol L -1 ) (S/N = 3). The practical application of the sensor was demonstrated by determining TNZ in pharmaceutical and biological samples with good precision (RSD 1.36% to 3.85%) and acceptable recoveries (82.40%-104.0%). Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Copper separation using modified active carbon before the polarographic determination of Pb, Cd, Ni, Zn and Fe in wastes

    International Nuclear Information System (INIS)

    Rubel, S.; Lada, Z.M.; Golimowski, J.

    1977-01-01

    The investigations on the selective separation of Pb 2+ , Cd 2+ , Ni 2+ , Zn 2+ and Fe 3+ ions from the excess of copper were carried out. For this purpose active carbon modified by Na-diethyldithiocarbamate was used. The manner of DDTK-Na deposition on active carbon has been elaborated. The influence of pH was investigated and it was found that at pH 1(HNO 3 ) copper ions are quantitavely bound on modified carbon whereas other ions (Pb 2+ , Cd 2+ , Ni 2+ , Zn 2+ and Fe 3+ ) remain in the solution and can be determined polarographically. The elaborated method was applied to the determination of mentioned ions in the samples of wastes containing even 100-fold excess of copper. The concentration of copper can not exceed 100 mg/dm 3 . (author)

  19. Electrochemical behaviour of dopamine at covalent modified glassy carbon electrode with l-cysteine: preliminary results

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2009-01-01

    Full Text Available The surface of glassy carbon (GC electrode has been modified by oxidation of L-cysteine. The covalent modified GC electrode with L-Cysteine has been studied, according the supporting electrolyte used. Favourable interactions between the L-cysteine film and DA enhance the current response compared to that at the Nafion GC and bare GC electrodes, achieving better performances than those other electrodes. This behaviour was as result of the adsorption of the cysteine layer film, compact and uniform formation; depending on L-cysteine solution (phosphate buffer or chloridric acid supporting electrolyte used for modifying GC surface. In cyclic voltammetric measurements, modified electrodes can successfully separate the oxidation/reduction DA peaks in different buffer solutions, but an evident dependence in the response was obtained as function of pH and modified electrode. The modified electrode prepared with L-cysteine/HCl solution was used to obtain the calibration curve and it exhibited a stable and sensitive response to DA. The results are described and discussed in the light of the existing literature.

  20. The origin of carbon revisited: winds of carbon-stars

    International Nuclear Information System (INIS)

    Mattsson, L

    2008-01-01

    Chemical evolution models, differing in the nucleosynthesis prescriptions (yields) for carbon, nitrogen and oxygen, have been computed for the Milky Way and Andromeda (NGC 224). All models fit the observed O/H gradients well and reproduce the main characteristics of the gas distributions, but they are also designed to do so. The N/O gradient for NGC 224 cannot be reproduced without ad hoc modifications to the yields and a similar result is obtained for the Milky Way N/O gradient, although in the latter case the slopes of the gradients obtained with unmodified yields are consistent with the observed gradient. For the C/O gradients (obtained from B stars) the results are inconclusive. The C/Fe, N/Fe, O/Fe versus Fe/H, as well as C/O versus O/H trends predicted by the models for the solar neighbourhood were compared with stellar abundances from the literature. For O/Fe versus Fe/H, all models fit the data, but for C/Fe, N/Fe versus Fe/H and C/O versus O/H, only modified sets of yields provide good fits. Since in the best-fit model, the yields were modified such that carbon should be primarily produced in low-mass stars, it is quite possible that in every environment where the peak of star formation happened a few Gyr back in time, the winds of carbon stars are responsible for most of the carbon enrichment, although models with a significant contribution from high-mass stars cannot be ruled out. In the solar neighbourhood, almost two-thirds of the carbon in the interstellar medium may come from carbon stars. Finally, the challenges met by stellar evolution and nucleosynthesis modelling due to this 'carbon star hypothesis' for the origin of carbon are discussed. It is suggested that a mass-loss prescription where the mass-loss rate depends on the carbon excess may act as a self-regulating mechanism for how much carbon a carbon star can deliver to the interstellar medium.

  1. Effect of the nature the carbon precursor on the physico-chemical characteristics of the resulting activated carbon materials

    International Nuclear Information System (INIS)

    Jimenez, Vicente; Sanchez, Paula; Valverde, Jose Luis; Romero, Amaya

    2010-01-01

    Carbon materials, including amorphous carbon, graphite, carbon nanospheres (CNSs) and different types of carbon nanofibers (CNFs) [platelet, herringbone and ribbon], were chemically activated using KOH. The pore structure of carbon materials was analyzed using N 2 /77 K adsorption isotherms. The presence of oxygen groups was analyzed by temperature programmed desorption in He and acid-base titration. The structural order of the materials was studied by X-ray diffraction and temperature programmed oxidation. The morphology and diameter distribution of CNFs and CNSs were characterized by transmission electron microscopy. The materials were also characterized by temperature-desorption programmed of H 2 and elemental composition. The ways in which the different structures were activated are described, showing the type of pores generated. Relationships between carbon yield, removed carbon, activation degree and graphitic character were also examined. The oxygen content in the form of oxygen-containing surface groups increased after the activation giving qualitative information about them. The average diameter of both CNFs and CNSs was decreased after the activation process as consequence of the changes produced on the material surface.

  2. Effect of the nature the carbon precursor on the physico-chemical characteristics of the resulting activated carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Vicente, E-mail: vicente.jimenez@uclm.es [Facultad de Ciencias Quimicas, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Sanchez, Paula; Valverde, Jose Luis [Facultad de Ciencias Quimicas, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Romero, Amaya [Escuela Tecnica Agricola, Departamento de Ingenieria Quimica, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2010-11-01

    Carbon materials, including amorphous carbon, graphite, carbon nanospheres (CNSs) and different types of carbon nanofibers (CNFs) [platelet, herringbone and ribbon], were chemically activated using KOH. The pore structure of carbon materials was analyzed using N{sub 2}/77 K adsorption isotherms. The presence of oxygen groups was analyzed by temperature programmed desorption in He and acid-base titration. The structural order of the materials was studied by X-ray diffraction and temperature programmed oxidation. The morphology and diameter distribution of CNFs and CNSs were characterized by transmission electron microscopy. The materials were also characterized by temperature-desorption programmed of H{sub 2} and elemental composition. The ways in which the different structures were activated are described, showing the type of pores generated. Relationships between carbon yield, removed carbon, activation degree and graphitic character were also examined. The oxygen content in the form of oxygen-containing surface groups increased after the activation giving qualitative information about them. The average diameter of both CNFs and CNSs was decreased after the activation process as consequence of the changes produced on the material surface.

  3. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  4. Titanium dioxide modified with various amines used as sorbents of carbon dioxide

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Pirog, Ewa; Kusiak-Nejman, Ewelina; Wrobel, Rafal J.; Gesikiewicz-Puchalska, Andzelika; Morawski, Antoni W.; Narkiewicz, Urszula; Michalkiewicz, Beata

    2017-01-01

    In this study, titanium dioxide was modified with various amines through hydrothermal treatment for adsorption of CO_2. The carbon dioxide adsorption performance of the prepared samples was measured using an STA 449 C thermo-balance (Netzsch Company, Germany). The morphological structures, functional groups and elemental compositions of the unmodified and amine-modified titanium dioxide sorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR/DR) and scanning electron microscopy (SEM), respectively. The results showed that modification of TiO_2 with amines through hydrothermal treatment is a simple method to prepare CO_2 sorbents with high adsorption capacities. Moreover, the results revealed that TEPA-modified titanium dioxide shoved the highest adsorption capacity, enabling an increase in CO_2 uptake from 0.45 mmol CO_2 g"-"1 in the case of raw TiO_2 to 1.63 mmol CO_2 g"-"1. This result could be indirectly related to the fact that TEPA has the highest amino group content among the three amines used in our research. Additionally, durability tests performed by cyclic adsorption-desorption revealed that TEPA modified titanium dioxide also possesses excellent stability, despite a slight decrease in adsorption capacity over time. (authors)

  5. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    International Nuclear Information System (INIS)

    Sicinski, M; Gozdek, T; Bielinski, D M; Kleczewska, J; Szymanowski, H; Piatkowska, A

    2015-01-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied. (paper)

  6. Improved hydrogen generation from alkaline NaBH{sub 4} solution using cobalt catalysts supported on modified activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Guo, Qingjie; Yue, Xuehai [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-12-15

    Hydrogen production from alkaline sodium borohydride (NaBH{sub 4}) solution via hydrolysis process over activated carbon supported cobalt catalysts is studied. Activated carbons are used in their original form and after liquid phase oxidation with HNO{sub 3}. The changes in surface functional groups of the activated carbon are detected by FTIR spectroscopy. The effects of HNO{sub 3} oxidation on the properties of the activated carbon and the resulting catalyst performance are investigated. FTIR analysis reveals that the oxidative treatment leads to the formation of various functional groups on the surface of the activated carbon. Cobalt catalysts supported on the modified activated carbon are found to exhibit higher activity and stability. (author)

  7. The Influences of H2Plasma Pretreatment on the Growth of Vertically Aligned Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Wen Hua-Chiang

    2008-01-01

    Full Text Available AbstractThe effects of H2flow rate during plasma pretreatment on synthesizing the multiwalled carbon nanotubes (MWCNTs by using the microwave plasma chemical vapor deposition are investigated in this study. A H2and CH4gas mixture with a 9:1 ratio was used as a precursor for the synthesis of MWCNT on Ni-coated TaN/Si(100 substrates. The structure and composition of Ni catalyst nanoparticles were investigated using scanning electron microscopy (SEM and transmission electron microscopy (TEM. The present findings showed that denser Ni catalyst nanoparticles and more vertically aligned MWCNTs could be effectively achieved at higher flow rates. From Raman results, we found that the intensity ratio of G and D bands (ID/IG decreases with an increasing flow rate. In addition, TEM results suggest that H2plasma pretreatment can effectively reduce the amorphous carbon and carbonaceous particles. As a result, the pretreatment plays a crucial role in modifying the obtained MWCNTs structures.

  8. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Afraz, Ahmadreza

    2014-06-01

    The zidovudine (ZDV) is the first drug approved for the treatment of HIV virus infection. The detection and determination of this drug are very importance in human serum because of its undesirable effects. A new ZDV sensor was fabricated on the basis of nanocomposite of silver nanofilm (Ag-NF) and multiwalled carbon nanotubes (MWCNTs) immobilized on glassy carbon electrode (GCE). The modified electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) techniques. Results showed that the electrodeposited silver has a nanofilm structure and further electrochemical studies showed that the prepared nanocomposite has high electrocatalytic activity and is appropriate for using in sensors. The amperometric technique under optimal conditions is used for the determination of ZDV ranging from 0.1 to 400 ppm (0.37 μM–1.5 mM) with a low detection limit of 0.04 ppm (0.15 μM) (S/N = 3) and good sensitivity. The prepared sensor possessed accurate and rapid response to ZDV and shows an average recovery of 98.6% in real samples. - Highlights: • New anti-HIV drug sensor was fabricated on the basis of nanomaterials composite. • The GCE modified by prepared hydrophilic MWCNT silver nanoparticles. • Silver nanofilm electrodeposited on MWCNT/GCE and characterized by SEM, EDX, CV and LSV • Response of electrode to ZDV was thoroughly investigated by electrochemical techniques.

  9. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping, E-mail: guolp078@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China)

    2012-10-15

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H{sub 2}O{sub 2} at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H{sub 2}O{sub 2}. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 {mu}A mM{sup -1}), low detection limit (1.8 {mu}M), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant (K{sub m}) and the maximum current density (i{sub max}) values for the biosensor were 10.94 mM and 887 {mu}A cm{sup -2} respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  10. Ubiquinol-cytochrome c reductase (Complex III) electrochemistry at multi-walled carbon nanotubes/Nafion modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Pelster, Lindsey N.; Minteer, Shelley D.

    2012-01-01

    Highlights: ► The electron transport chain is important to the understanding of metabolism in the living cell. ► Ubiquinol-cytochrome c reductase is a membrane bound complex of the electron transport chain (Complex III). ► The paper details the first bioelectrochemical characterization of ubiquinol-cytochrome c reductase at an electrode. - Abstract: Electron transport chain complexes are critical to metabolism in living cells. Ubiquinol-cytochrome c reductase (Complex III) is responsible for carrying electrons from ubiquinol to cytochrome c, but the complex has not been evaluated electrochemically. This work details the bioelectrochemistry of ubiquinol-cytochrome c reductase of the electron transport chain of tuber mitochondria. The characterization of the electrochemistry of this enzyme is investigated in carboxylated multi-walled carbon nanotube/tetrabutyl ammonium bromide-modified Nafion ® modified glassy carbon electrodes by cyclic voltammetry. Increasing concentrations of cytochrome c result in a catalytic response from the active enzyme in the nanotube sandwich. The experiments show that the enzyme followed Michaelis–Menten kinetics with a K m for the immobilized enzyme of 2.97 (±0.11) × 10 −6 M and a V max of 6.31 (±0.82) × 10 −3 μmol min −1 at the electrode, but the K m and V max values decreased compared to the free enzyme in solution, which is expected for immobilized redox proteins. This is the first evidence of ubiquinol-cytochrome c reductase bioelectrocatalysis.

  11. Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Adib, F.; Bagreev, A.; Bandosz, T.J.

    2000-02-22

    Wood-based activated carbon was modified by impregnation with urea and heat treatment at 450 and 950 C. The chemical and physical properties of materials were determined using acid/base titration, FTIR, thermal analysis, IGC, and sorption of nitrogen. The surface features were compared to those of a commercial urea-modified carbon. Then, the H{sub 2}S breakthrough capacity tests were carried out, and the sorption capacity was evaluated. The results showed that urea-modified sorbents have a capacity similar to that of the received material; however, the conversion of hydrogen sulfide to a water-soluble species is significantly higher. It happens due to a high dispersion of basic nitrogen compounds in the small pores of carbons, where oxidation of hydrogen sulfide ions to sulfur radicals followed by the creation of sulfur oxides and sulfuric acid occurs. It is proposed that the process proceeds gradually, from small pores to larger, and that the degree of microporosity is an important factor.

  12. Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production.

    Science.gov (United States)

    Zhang, Angela; Carroll, Austin L; Atsumi, Shota

    2017-09-01

    Atmospheric CO2 levels have reached an alarming level due to industrialization and the burning of fossil fuels. In order to lower the level of atmospheric carbon, strategies to sequester excess carbon need to be implemented. The CO2-fixing mechanism in photosynthetic organisms enables integration of atmospheric CO2 into biomass. Additionally, through exogenous metabolic pathways in these photosynthetic organisms, fixed CO2 can be routed to produce various commodity chemicals that are currently produced from petroleum. This review will highlight studies and modifications to different components of cyanobacterial CO2-fixing systems, as well as the application of these systems toward CO2-derived chemical production. 2,3-Butanediol is given particular focus as one of the most thoroughly studied systems for conversion of CO2 to a bioproduct. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Potential Challenges Faced by the U.S. Chemicals Industry under a Carbon Policy

    Directory of Open Access Journals (Sweden)

    Andrea Bassi

    2009-09-01

    Full Text Available Chemicals have become the backbone of manufacturing within industrialized economies. Being energy-intensive materials to produce, this sector is threatened by policies aimed at combating and adapting to climate change. This study examines the worst-case scenario for the U.S. chemicals industry when a medium CO2 price policy is employed. After examining possible industry responses, the study goes on to identify and provide a preliminary evaluation of potential opportunities to mitigate these impacts. If climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies to mitigate the impacts of rising energy costs, the examination shows that climate policies that put a price on carbon could have substantial impacts on the competiveness of the U.S. chemicals industry over the next two decades. In the long run, there exist technologies that are available to enable the chemicals sector to achieve sufficient efficiency gains to offset and manage the additional energy costs arising from a climate policy.

  14. Controllable growth of nanostructured carbon from coal tar pitch by chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuguang; Yang Yongzhen; Ji Weiyun; Liu Hongyan; Zhang Chunyi; Xu Bingshe

    2007-01-01

    The direct synthesis of vapor grown carbon fibers with different diameters was achieved by the pyrolysis of coal tar pitch by chemical vapor deposition. The products were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The experimental results demonstrated that ferrocene content, reaction temperature and Ar flow rate strongly influenced the yield and nature of nanostructured carbon materials, pure carbon microbeads, with diameter distribution ranging from 450 to 650 nm, were also obtained in the absence of catalyst, uniform and straight carbon nanofibers with the outer diameter of about 115 nm were obtained and curl and thick carbon fibers with narrow diameter distribution of 300-350 nm were produced

  15. Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Alizadeh, Taher; Ganjali, Mohammad Reza; Akhoundian, Maede; Norouzi, Parviz

    2016-01-01

    A carbon paste electrode was modified with a Ce(III)-imprinted polymer (Ce-IP) and used for voltammetric determination of Ce(III) ions in real water samples. Precipitation polymerization was used for synthesis of the nano-sized Ce-IP from vinylpyridine and methacrylic acid (acting as the complexing ligands and functional monomers), divinylbenzene (cross-linker) and AIBN as the radical starter. The Ce-IP was characterized by scanning electron microscopy and zeta potentials. A carbon paste electrode (CPE) was then impregnated with the Ce-IP and used for the extraction and subsequent determination of Ce(III). Oxidative square wave voltammetry showed the electrode to give a significantly better response than an electrode modified with the non-imprinted polymer. The addition of multiwalled carbon nanotubes to the Ce-IP-modified electrode further improves the signal, thereby increasing the sensitivity of the method. The effects of electrode composition, extraction pH value, volume and time were optimized. The electrode, if operated at a voltage of 1.05 V (vs. Ag/AgCl), displays a linear response to Ce(III) in the 1.0 μM to 25 pM concentration range, and the detection limit is 10 pM (at an S/N ratio of 3). The relative standard deviation of 5 separate determinations is 3.1 %. The method was successfully applied to the determination of Ce(III) in the spiked samples of drinking water and sea water. (author)

  16. Development of sensitive amperometric hydrogen peroxide sensor using a CuNPs/MB/MWCNT-C_6_0-Cs-IL nanocomposite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Roushani, Mahmoud; Bakyas, Kobra; Zare Dizajdizi, Behruz

    2016-01-01

    A sensitive hydrogen peroxide (H_2O_2) sensor was constructed based on copper nanoparticles/methylene blue/multiwall carbon nanotubes–fullerene–chitosan–ionic liquid (CuNPs/MB/MWCNTs–C_6_0–Cs–IL) nanocomposites. The MB/MWCNTs–C_6_0–Cs–IL and CuNPs were modified glassy carbon electrode (GCE) by the physical adsorption and electrodeposition of copper nitrate solution, respectively. The physical morphology and chemical composition of the surface of modified electrode was investigated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The electrochemical properties of CuNPs/MB/MWCNTs–C_6_0–Cs–IL/GCE were investigated by cyclic voltammetry (CV) and amperometry techniques and the sensor exhibited remarkably strong electrocatalytic activities toward the reduction of hydrogen peroxide. The peak currents possess a linear relationship with the concentration of H_2O_2 in the range of 0.2 μM to 2.0 mM, and the detection limit is 55.0 nM (S/N = 3). In addition, the modified electrode was used to determine H_2O_2 concentration in human blood serum sample with satisfactory results. - Highlights: • CuNPs/MB/MWCNT-C_6_0-Cs-IL/GC electrode was constructed by layer-by-layer method. • The catalytic performance of the sensor was studied with the use of amperometric technique. • The constructed sensor showed enhanced electrocatalytic activity toward the reduction of H_2O_2. • The CuNPs/MB/MWCNT-C_6_0-Cs-IL/GC electrode demonstrated high stability for the detection of H_2O_2.

  17. Development of sensitive amperometric hydrogen peroxide sensor using a CuNPs/MB/MWCNT-C{sub 60}-Cs-IL nanocomposite modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com; Bakyas, Kobra; Zare Dizajdizi, Behruz

    2016-07-01

    A sensitive hydrogen peroxide (H{sub 2}O{sub 2}) sensor was constructed based on copper nanoparticles/methylene blue/multiwall carbon nanotubes–fullerene–chitosan–ionic liquid (CuNPs/MB/MWCNTs–C{sub 60}–Cs–IL) nanocomposites. The MB/MWCNTs–C{sub 60}–Cs–IL and CuNPs were modified glassy carbon electrode (GCE) by the physical adsorption and electrodeposition of copper nitrate solution, respectively. The physical morphology and chemical composition of the surface of modified electrode was investigated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The electrochemical properties of CuNPs/MB/MWCNTs–C{sub 60}–Cs–IL/GCE were investigated by cyclic voltammetry (CV) and amperometry techniques and the sensor exhibited remarkably strong electrocatalytic activities toward the reduction of hydrogen peroxide. The peak currents possess a linear relationship with the concentration of H{sub 2}O{sub 2} in the range of 0.2 μM to 2.0 mM, and the detection limit is 55.0 nM (S/N = 3). In addition, the modified electrode was used to determine H{sub 2}O{sub 2} concentration in human blood serum sample with satisfactory results. - Highlights: • CuNPs/MB/MWCNT-C{sub 60}-Cs-IL/GC electrode was constructed by layer-by-layer method. • The catalytic performance of the sensor was studied with the use of amperometric technique. • The constructed sensor showed enhanced electrocatalytic activity toward the reduction of H{sub 2}O{sub 2}. • The CuNPs/MB/MWCNT-C{sub 60}-Cs-IL/GC electrode demonstrated high stability for the detection of H{sub 2}O{sub 2}.

  18. Platinum-modified cobalt nanosheets supported on three-dimensional carbon sponge as a high-performance catalyst for hydrogen peroxide electroreduction

    International Nuclear Information System (INIS)

    Ye, Ke; Zhang, Dongming; Zhang, Hongyu; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-01-01

    Graphical abstract: - Highlights: • The Pt-Co NS@carbon sponge electrode shows unique nanosheet structure on the three-dimensional (3D) porous network skeleton with a large surface area. • The Pt-Co NS@carbon sponge electrode achieves a reduction current density of −1.38 A cm"−"2 mg"−"1 in 3.0 mol L"−"1 KOH and 1.5 mol L"−"1 H_2O_2 at −0.50 V (vs. Ag/AgCl) • The Pt-Co NS@carbon sponge electrode exhibits a desirable stability for the H_2O_2 electroreduction. - Abstract: Pt-modified Co nanosheet@carbon sponge (Pt-Co NS@carbon sponge) electrode is synthesized via a facile sponge carbonization method coupled with a direct Co electrodeposition and Pt chemical-deposition. The obtained electrodes are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The catalytic performances of H_2O_2 electroreduction in alkaline medium are investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The Pt-Co NS@carbon sponge electrode exhibits unique nanosheet structure on the three-dimensional (3D) porous network skeleton with a large surface area and displays excellent catalytic performance. The Pt-Co NS@carbon sponge electrode achieves a reduction current density of −1.38 A cm"−"2 mg"−"1 in 3.0 mol L"−"1 KOH and 1.5 mol L"−"1 H_2O_2 at −0.50 V (vs. Ag/AgCl) accompanied with a desirable stability, which is significantly higher than the catalytic activity of H_2O_2 electroreduction achieved previously with precious metals as catalysts. The impressive electrocatalytic performance is largely attributed to the superior 3D open structure and high electronic conductivity, which ensures the full utilization of Pt surfaces and makes the electrode have higher electrochemical activity. Original Pt-Co NS@carbon sponge electordes have a great potential for the

  19. Highly sensitive hydrogen peroxide sensor based on a glassy carbon electrode modified with platinum nanoparticles on carbon nanofiber heterostructures

    International Nuclear Information System (INIS)

    Yang, Yang; Fu, Renzhong; Yuan, Jianjun; Wu, Shiyuan; Zhang, Jialiang; Wang, Haiying

    2015-01-01

    We are presenting a sensor for hydrogen peroxide (H 2 O 2 ) that is based on the use of a heterostructure composed of Pt nanoparticles (NPs) and carbon nanofibers (CNFs). High-density Pt NPs were homogeneously loaded onto a three-dimensional nanostructured CNF matrix and then deposited in a glassy carbon electrode (GCE). The resulting sensor synergizes the advantages of the conducting CNFs and the nanoparticle catalyst. The porous structure of the CNFs also favor the high-density immobilization of the NPs and the diffusion of water-soluble molecules, and thus assists the rapid catalytic oxidation of H 2 O 2 . If operated at a working voltage of −0.2 V (vs. Ag/AgCl), the modified GCE exhibits a linear response to H 2 O 2 in the 5 μM to 15 mM concentration range (total analytical range: 5 μM to 100 mM), with a detection limit of 1.7 μM (at a signal-to-noise ratio of 3). The modified GCE is not interfered by species such as uric acid and glucose. Its good stability, high selectivity and good reproducibility make this electrode a valuable tool for inexpensive amperometric sensing of H 2 O 2 . (author)

  20. TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition

    International Nuclear Information System (INIS)

    Tristao, Juliana Cristina; Moura, Flavia Cristina Camilo; Lago, Rochel Montero; Sapag, Karim

    2010-01-01

    In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al 2 O 3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields. (author)

  1. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T

    Directory of Open Access Journals (Sweden)

    Karim Asadpour-Zeynali

    2017-06-01

    Full Text Available In this work poly eriochrome black T (EBT was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH was investigated. The poly (EBT-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak current depends on the concentration of INH and solution pH. The number of electrons involved in the rate determining step was found 1. The diffusion coefficient of isoniazid was also estimated using chronoamperometry technique. The experimental results showed that the mediated oxidation peak current of isoniazid is linearly dependent on the concentration of isoniazid in the ranges of 8.0 × 10-6 – 1.18 × 10-3 M and 2.90 × 10-5 M – 1.67× 10-3 M with differential pulse voltammetry (DPV and amperometry methods, respectively. The detection limits (S/N = 3 were found to be 6.0 μM and 16.4 μM by DPV and amperometry methods, respectively. This developed method was applied to the determination of isoniazid in tablet samples with satisfactory results.

  2. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Energy Technology Data Exchange (ETDEWEB)

    Tunma, Somruthai [The Graduate School, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Song, Doo-Hoon [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Si-Eun; Kim, Kyoung-Nam [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Han, Jeon-Geon [Center for Advanced Plasma Surface Technology, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746 (Korea, Republic of); Boonyawan, Dheerawan [Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand)

    2013-10-15

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N{sub 2} films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO{sub x} films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH{sub 2} groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  3. Functionalization of vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Eloise Van Hooijdonk

    2013-02-01

    Full Text Available This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs. The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  4. Functionalization of vertically aligned carbon nanotubes.

    Science.gov (United States)

    Van Hooijdonk, Eloise; Bittencourt, Carla; Snyders, Rony; Colomer, Jean-François

    2013-01-01

    This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  5. Role of iron oxide impurities in electrocatalysis by multiwall carbon

    Indian Academy of Sciences (India)

    The role of iron oxide impurities in the electrocatalytic properties of multiwall carbon nanotubes (MWCNTs) prepared by catalytic chemical vapour decomposition method (CCVD) is studied in detail. A novel magnetically modified electrodes have been developed by which MWCNTs were immobilized on indium-tin oxide ...

  6. Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate)

    Science.gov (United States)

    Mohammadnezhad, Gholamhossein; Dinari, Mohammad; Soltani, Roozbeh; Bozorgmehr, Zahra

    2015-08-01

    With its well-ordered pore structure, high specific surface area and tunable pore diameters, ordered mesoporous carbons are suitable for applications in many areas of modern science and technology. In the present investigation, an ultrasonic irradiation was used for the modification of the mesoporous carbon FDU-15. Three nanocomposite films of the poly(methyl methacrylate) (PMMA) and modified FDU-15 were prepared by solution polymerization technique. The surface morphology and thermal and mechanical properties of the hybrid materials were evaluated by different methods. X-ray diffraction patterns showed that modified mesoporous FDU-15 had an ordered hexagonal mesostructure. Transmission electron microscopy (TEM) and field emission-scanning electron microscopy images confirmed the presence of large pores and a relatively ordered mesostructure for the functionalized materials. Thermogravimetric analysis data also revealed that the onset of decomposition temperature of the nanocomposites was higher than that of pristine PMMA, shifting toward higher temperatures as the amount of modified-FDU was increased. TEM images showed the well-ordered hexagonal arrays of mesopores FDU-15. Mechanical data indicated the improvement in the tensile strength and modulus with the modified FDU-15 loading. The film containing 1 wt.% of modified FDU-15 had a tensile strength of the order of 42 MPa, relative to the 28 MPa of the pristine PMMA.

  7. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  8. Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    M. Consales

    2008-01-01

    Full Text Available In this contribution, a review of the development of high-performance optochemical nanosensors based on the integration of carbon nanotubes with the optical fiber technology is presented. The paper first provide an overview of the amazing features of carbon nanotubes and their exploitation as highly adsorbent nanoscale materials for gas sensing applications. Successively, the attention is focused on the operating principle, fabrication, and characterization of fiber optic chemosensors in the Fabry-Perot type reflectometric configuration, realized by means of the deposition of a thin layer of single-walled carbon nanotubes (SWCNTs upon the distal end of standard silica optical fibers. This is followed by an extensive review of the excellent sensing capabilities of the realized SWCNTs-based chemical nanosensors against volatile organic compounds and other pollutants in different environments (air and water and operating conditions (room temperature and cryogenic temperatures. The experimental results reported here reveal that ppm and sub-ppm chemical detection limits, low response times, as well as fast and complete recovery of the sensor responses have been obtained in most of the investigated cases. This evidences the great potentialities of the proposed photonic nanosensors based on SWCNTs to be successfully employed for practical environmental monitoring applications both in liquid and vapor phase as well as for space. Furthermore, the use of novel SWCNTs-based composites as sensitive fiber coatings is proposed to enhance the sensing performance and to improve the adhesion of carbon nanotubes to the fiber surface. Finally, new advanced sensing configurations based on the use of hollow-core optical fibers coated and partially filled by carbon nanotubes are also presented.

  9. Chemical splitting of multiwalled carbon nanotubes to enhance electrochemical capacitance for supercapacitors

    Science.gov (United States)

    Li, Xinlu; Li, Tongtao; Zhang, Xinlin; Zhong, Qineng; Li, Hongyi; Huang, Jiamu

    2014-06-01

    Multiwalled carbon nanotubes (MWCNTs) were chemically split and self-assembled to a flexible porous paper made of graphene oxide nanoribbons (GONRs). The morphology and microstructure of the pristine MWCNTs and GONRs were analyzed by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. And the specific surface area and porosity structure were measured by N2 adsorption-desorption. The longitudinally split MWCNTs show an enhancement in specific capacitance from 21 F g-1 to 156 F g-1 compared with the pristine counterpart at 0.1 A g-1 in a 6 M KOH aqueous electrolytes. The electrochemical experiments prove that the chemical splitting of MWCNTs will make inner carbon layers opened and exposed to electrochemical double layers, which can effectively improve the electrochemical capacitance for supercapacitors.

  10. Simulation of an integrated gasification combined cycle with chemical-looping combustion and carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Jiménez Álvaro, Ángel; López Paniagua, Ignacio; González Fernández, Celina; Rodríguez Martín, Javier; Nieto Carlier, Rafael

    2015-01-01

    Highlights: • A chemical-looping combustion based integrated gasification combined cycle is simulated. • The energetic performance of the plant is analyzed. • Different hydrogen-content synthesis gases are under study. • Energy savings accounting carbon dioxide sequestration and storage are quantified. • A notable increase on thermal efficiency up to 7% is found. - Abstract: Chemical-looping combustion is an interesting technique that makes it possible to integrate power generation from fuels combustion and sequestration of carbon dioxide without energy penalty. In addition, the combustion chemical reaction occurs with a lower irreversibility compared to a conventional combustion, leading to attain a somewhat higher overall thermal efficiency in gas turbine systems. This paper provides results about the energetic performance of an integrated gasification combined cycle power plant based on chemical-looping combustion of synthesis gas. A real understanding of the behavior of this concept of power plant implies a complete thermodynamic analysis, involving several interrelated aspects as the integration of energy flows between the gasifier and the combined cycle, the restrictions in relation with heat balances and chemical equilibrium in reactors and the performance of the gas turbines and the downstream steam cycle. An accurate thermodynamic modeling is required for the optimization of several design parameters. Simulations to evaluate the energetic efficiency of this chemical-looping-combustion based power plant under diverse working conditions have been carried out, and a comparison with a conventional integrated gasification power plant with precombustion capture of carbon dioxide has been made. Two different synthesis gas compositions have been tried to check its influence on the results. The energy saved in carbon capture and storage is found to be significant and even notable, inducing an improvement of the overall power plant thermal efficiency of

  11. [Chemical denudation rates and carbon dioxide sink in Koxkar glacierised region at the south slope of Mt. Tianshan, China].

    Science.gov (United States)

    Wang, Jian; Xu, Jun-li; Zhang, Shi-qiang; Liu, Shi-yin; Han, Hai-dong

    2010-04-01

    Chemical denudation rates and carbon dioxide sink were from water samples from ice-melt water, precipitation and river water were collected daily from June 21st to September 10th in 2004 in the Koxkar glacier region, south slope of Mt. Tianshan, China. The law of conservation of mass was applied for calculating chemical denudation fluxes and transient carbon dioxide sink. It is found that: 1) There were average of 60.7 kg x (km2 x d)(-1) and 60.2 kg x (km2 x d)(-1) solutes supplied by precipitation and ice melt-water respectively which accounted for about 7.7% and 7.6% of the total solutes of bulk river water [791.2 kg x (km2 x d)(-1)]. Consequently, the rate of chemical denudation derived from the crustal flux was 558.0 kg x (km2 x d)(-1), accounting for 70.5%. 2) Carbonation weathering was 308.9 kg x (km2 x d)(-1), and heavier than that of the other chemical denudations. The crustal concentration of bicarbonates (HCO3-) is attributed chiefly to the carbonation of carbonates (limestone and dolomite) and aluminosilicates/silicates. A further important source of bicarbonates and sulphates is pyrite oxidation coupled with limestone/dolomite dissolution. The transient carbon dioxide sink can be estimated by ion balance law, which is 81.0 kg x (km2 x d)(-1), accounting for 14.2%. 3) The chemical denudation rates was 641.1 kg x (km2 x d)(-1) with relationship of specific conductivity to concentrations of dissolved carbonate in water, which is only 4.4% less than that obtained from mass balance method without regard to carbon dioxide sink. The study also implied important to evaluate chemical denudation fluxes of poor data in western mountain area, China. However, because of without chemical analysis and ion partitioning, the transient CO2 drawdown cannot be established.

  12. Effect of telechelic ionic groups on the dispersion of organically modified clays in bisphenol A polycarbonate nanocomposites by in-situ polymerization using activated carbonates

    Directory of Open Access Journals (Sweden)

    M. Colonna

    2017-05-01

    Full Text Available Nanocomposites of bisphenol A polycarbonate with organically modified clays have been prepared for the first time by in-situ polymerization using bis(methyl salicyl carbonate as activated carbonate. The use of the activated carbonate permits to conduct the polymerization reaction at lower temperature and with shorter polymerization time with respect to those necessary for traditional melt methods that uses diphenyl carbonate, affording a nanocomposite with improved color. Moreover, an imidazolium salt with two long alkyl chains has been used to modify the montmorillonite, providing an organically modified clay with high thermal stability and wide d-spacing. The addition of ionic groups at the end of the polymer chain increases the interaction between the clay surface and the polymer producing a better dispersion of the clay. The presence of the clay increases the thermal stability of the polymer.

  13. Electrochemically modified carbon fiber bundles as selective sorbent for online solid-phase microextraction of sulfonamides

    International Nuclear Information System (INIS)

    Ling, Xu; Zhang, Wenpeng; Chen, Zilin

    2016-01-01

    The authors show that carbon fiber bundles electrochemically modified with the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is a viable sorbent for online solid-phase microextraction (SPME) of the sulfonamides (sulfadiazine, sulfadimidine and sulfamethoxazole) prior to their determination by HPLC. The fibers were packed in a tube loop made from polyether ether ketone (PEEK) that was coupled to the HPLC system for online SPME. Preconcentration factors can reach values of up to 300, and the limit of detection (at an S/N ration of 3) can be as low as 0.05 ng⋅mL −1 . The method was applied to the analysis of the sulfonamides in spiked rat plasma with intra-day and inter-day RSDs of <3.33 and <4.57 %, and with recoveries in the range from 91.7 to 97.8 % in spiked plasma. The in-tube SPME was also applied to the determination of the 3 sulfonamides in rat plasma after oral administration (tablet powder) with high sensitivity. In addition to its efficient extraction, the PEEK tube based SPME has chemical and mechanical stability under even harsh conditions. (author)

  14. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5.

    Science.gov (United States)

    Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu

    2014-03-01

    Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process

    Science.gov (United States)

    McDonald, Erin E.; Wallace, Landon F.; Hickman, Gregory J. S.; Hsiao, Kuang-Ting

    2014-01-01

    The interlaminar shear response is studied for carbon nanofiber (CNF) modified out-of-autoclave-vacuum-bag-only (OOA-VBO) carbon fiber reinforced plastic (CFRP). Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testingwas used to study the in-plane shear performance of [±45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC) surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination. PMID:24688435

  16. Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process

    Directory of Open Access Journals (Sweden)

    Erin E. McDonald

    2014-01-01

    Full Text Available The interlaminar shear response is studied for carbon nanofiber (CNF modified out-of-autoclave-vacuum-bag-only (OOA-VBO carbon fiber reinforced plastic (CFRP. Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testingwas used to study the in-plane shear performance of [±45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination.

  17. Manufacturing and shear response characterization of carbon nanofiber modified CFRP using the out-of-autoclave-vacuum-bag-only cure process.

    Science.gov (United States)

    McDonald, Erin E; Wallace, Landon F; Hickman, Gregory J S; Hsiao, Kuang-Ting

    2014-01-01

    The interlaminar shear response is studied for carbon nanofiber (CNF) modified out-of-autoclave-vacuum-bag-only (OOA-VBO) carbon fiber reinforced plastic (CFRP). Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testing was used to study the in-plane shear performance of [± 45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC) surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination.

  18. Amperometric determination of 6-mercaptopurine on functionalized multi-wall carbon nanotubes modified electrode by liquid chromatography coupled with microdialysis and its application to pharmacokinetics in rabbit.

    Science.gov (United States)

    Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Shi, Guo-Yue; Zhang, Wen; Yamamoto, Katsunobu; Jin, Li-Tong

    2003-07-27

    In this paper, multi-wall carbon nanotubes functionalized with carboxylic groups modified electrode (MWNT-COOH CME) was fabricated. This chemically modified electrode (CME) can be used as the working electrode in the liquid chromatography for the determination of 6-mercaptopurine (6-MP). The results indicate that the CME exhibits efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP are linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N=3) of 2.0 x 10(-7) mol l(-1). Coupled with microdialysis, the method has been successfully applied to the pharmacokinetic study of 6-MP in rabbit blood. This method provides a fast, sensible and simple technique for the pharmacokinetic study of 6-MP in vivo.

  19. Norepinephrine-modified glassy carbon electrode for the simultaneous determination of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Zare, H.R.; Memarzadeh, F.; Ardakani, M. Mazloum; Namazian, M.; Golabi, S.M.

    2005-01-01

    The oxidation of norepinephrine (NE) on a preactivated glassy carbon electrode leads to the formation of a deposited layer of about 4.2 x 10 -10 mol cm -2 at the surface of the electrode. The electron transfer rate constant, k s , and charge transfer coefficient, α, for electron transfer between the electrode and immobilized NE film were calculated as 44 s -1 and 0.46, respectively. The NE-modified glassy carbon electrode exhibited good electrocatalytic properties towards ascorbic acid (AA) oxidation in phosphate buffer (pH 7.0) with an overpotential of about 475 mV lower than that of the bare electrode. The electrocatalytic response was evaluated by cyclic voltammetry, chronoamperometry, amperometry and rotating disk voltammetry. The overall number of electrons involved in the catalytic oxidation of AA and the number of electrons involved in the rate-determining step are 2 and 1, respectively. The rate constant for the catalytic oxidation of AA was evaluated by RDE voltammetry and an average value of k h was found to be 8.42 x 10 3 M -1 s -1 . Amperometric determination of AA in stirred solution exhibits a linear range of 2.0-1300.0 μM (correlation coefficient 0.9999) and a detection limit of 0.076 μM. The precision of amperometry was found to be 1.9% for replicate determination of a 49.0 μM solution of AA (n = 6). In differential pulse voltammetric measurements, the NE-modified glassy carbon electrode can separate the AA and uric acid (UA) signals. Ascorbic acid oxidizes at more negative potential than UA. Also, the simultaneous determination of UA and AA is achieved at the NE-modified electrode

  20. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yadegari, H. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Karimian, K. [Arasto Pharmaceutical Chemicals Inc., Tehran (Iran, Islamic Republic of); Khodadadi, A. [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-02-15

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS). During oxidation of deferiprone, two irreversible anodic peaks, with E{sub 1}{sup 0}=452 and E{sub 2}{sup 0}=906mV, appeared, using GC-CNT. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that deferiprone is oxidized via two two-electron steps. The results revealed that carbon nanotube (CNT) promotes the rate of oxidation by increasing the peak current, so that deferiprone is oxidized at lower potentials, which thermodynamically is more favorable. This result was confirmed by impedance measurements. The diffusion coefficient, electron-transfer coefficient and heterogeneous electron-transfer rate constant of deferiprone were found to be 1.49 x 10{sup -6} cm{sup 2} s{sup -1}, 0.44, and 3.83 x 10{sup -3} cm s{sup -1}, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of deferiprone. Using the proposed method, deferiprone can be determined with a detection limit of 5.25 x 10{sup -7} M. The applicability of the method to direct assays of spiked human serum and urine fluids is described.

  1. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene–chitosan composite

    International Nuclear Information System (INIS)

    Zheng, Meixia; Gao, Feng; Wang, Qingxiang; Cai, Xili; Jiang, Shulian; Huang, Lizhang; Gao, Fei

    2013-01-01

    The electrochemical behaviors of acetaminophen (ACOP) on a graphene–chitosan (GR–CS) nanocomposite modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), chronocoulometry (CC) and differential pulse voltammetry (DPV). Electrochemical characterization showed that the GR–CS nanocomposite had excellent electrocatalytic activity and surface area effect. As compared with bare GCE, the redox signal of ACOP on GR–CS/GCE was greatly enhanced. The values of electron transfer rate constant (k s ), diffusion coefficient (D) and the surface adsorption amount (Γ ⁎ ) of ACOP on GR–CS/GCE were determined to be 0.25 s −1 , 3.61 × 10 −5 cm 2 s −1 and 1.09 × 10 −9 mol cm −2 , respectively. Additionally, a 2e − /2H + electrochemical reaction mechanism of ACOP was deduced based on the acidity experiment. Under the optimized conditions, the ACOP could be quantified in the range from 1.0 × 10 −6 to 1.0 × 10 −4 M with a low detection limit of 3.0 × 10 −7 M based on 3S/N. The interference and recovery experiments further showed that the proposed method is acceptable for the determination of ACOP in real pharmaceutical preparations. Highlights: ► A chitosan–graphene nanocomposite modified glassy carbon electrode was prepared. ► The modified electrode was electrochemically characterized by CV and EIS. ► Electro-oxidation of acetaminophen was examined on the modified electrode. ► Sensing analysis of the modified electrode toward acetaminophen was studied

  2. Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions.

    Science.gov (United States)

    Li, Zhenhua; Chang, Xijun; Zou, Xiaojun; Zhu, Xiangbing; Nie, Rong; Hu, Zheng; Li, Ruijun

    2009-01-26

    A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n=8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.

  3. A carbon in molten carbonate anode model for a direct carbon fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongjiao; Liu Qinghua [Tianjin Key Laboratory of Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Weijing Road 92, Tianjin 300072 (China); State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Weijing Road 92, Tianjin 300072 (China); Li Yongdan, E-mail: ydli@tju.edu.c [Tianjin Key Laboratory of Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Weijing Road 92, Tianjin 300072 (China); State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Weijing Road 92, Tianjin 300072 (China)

    2010-02-15

    The electrochemical oxidation of carbon at the anode of a direct carbon fuel cell (DCFC) includes charge transfer steps and chemical steps. A microstructural model of carbon particle is built, in which perfect graphene stacks are taken as the basic building blocks of carbon. A modified mechanism taking account of the irreversibility of the process and supposing that the electrochemical oxidation of carbon takes place only at the edges of the graphene sheets is proposed. A Tafel type overall rate equation is deduced along with expressions of exchange current density (j{sub 0}) and activation polarization (eta{sub act}). The performance of carbon black and graphite as the fuel of DCFC is examined. It has been found that j{sub 0} is in the range of 0.10-6.12 mA cm{sup -2} at 923-1123 K and eta{sub act} is in the range of 0.024-0.28 V at 923-1123 K with current density in 10-120 mA cm{sup -2}. Analysis of the j{sub 0}, eta{sub act} values and the product composition reveals that the charge transfer steps as well as the oxygen ion absorption steps are both important for the reaction rate. The activity of the carbon material with respect to atom location is introduced to the open circuit potential difference (OCP) calculation with Nernst equation.

  4. Fluorescently labeled bionanotransporters of nucleic acid based on carbon nanotubes

    International Nuclear Information System (INIS)

    Novopashina, D.S.; Apartsin, E.K.; Venyaminova, A.G.

    2012-01-01

    We propose an approach to the design of a new type of hybrids of oligonucleotides with fluorescein-functionalized single-walled carbon nanotubes. The approach is based on stacking interactions of functionalized nanotubes with pyrene residues in conjugates of oligonucleotides. The amino- and fluorescein-modified single walled carbon nanotubes are obtained, and their physico-chemical properties are investigated. The effect of the functionalization type of carbon nanotubes on the efficacy of the sorption of pyrene conjugates of oligonucleotides was examined. The proposed noncovalent hybrids of fluorescein-labeled carbon nanotubes with oligonucleotides may be used for the intracellular transport of functional nucleic acids.

  5. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Isbir, Aybueke A. [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)]. E-mail: osolak@science.ankara.edu.tr; Ustuendag, Zafer [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Bilge, Selen [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Kilic, Zeynel [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)

    2006-07-28

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO{sub 2}, keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined.

  6. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Isbir, Aybueke A.; Solak, Ali Osman; Ustuendag, Zafer; Bilge, Selen; Kilic, Zeynel

    2006-01-01

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO 2 , keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined

  7. Synthesis and Characterizations of Poly(3-hexylthiophene and Modified Carbon Nanotube Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaul Karim

    2012-01-01

    Full Text Available Poly(3-hexylthiophene and modified (functionalized and silanized multiwall carbon nanotube (MWNT nanocomposites have been prepared through in situ polymerization process in chloroform medium with FeCl3 oxidant at room temperature. The composites are characterized through Fourier transfer infrared spectroscopy (FT-IR, Raman, and X-ray diffraction (XRD measurements to probe the nature of interaction between the moieties. Optical properties of the composites are measured from ultraviolet-visible (UV-Vis and photoluminescence (PL spectroscopy. Conductivity of the composites is followed by four probe techniques to understand the conduction mechanism. The change (if any in C=C symmetric and antisymmetric stretching frequencies in FT-IR, the shift in G band frequencies in Raman, any alterations in λmax of UV-Vis, and PL spectroscopic measurements are monitored with modified MWNT loading in the polymer matrix.

  8. Facile preparation of molecularly imprinted polypyrrole-graphene-multiwalled carbon nanotubes composite film modified electrode for rutin sensing.

    Science.gov (United States)

    Yang, Lite; Yang, Juan; Xu, Bingjie; Zhao, Faqiong; Zeng, Baizhao

    2016-12-01

    In this paper, a novel molecularly imprinted composite film modified electrode was presented for rutin (RT) detection. The modified electrode was fabricated by electropolymerization of pyrrole on a graphene-multiwalled carbon nanotubes composite (G-MWCNTs) coated glassy carbon electrode in the presence of RT. The netlike G-MWCNTs composite, prepared by in situ hydrothermal process, had high conductivity and electrocatalytic activity. At the resulting MIP/G-MWCNTs/GCE electrode RT could produce a sensitive anodic peak in pH 1.87 Britton-Robinson buffer solution. The factors affecting the electrochemical behavior and response of RT on the modified electrode were carefully investigated and optimized. Under the selected conditions, the linear response range of RT was 0.01-1.0μmolL -1 and the detection limit (S/N=3) was 5.0nmolL -1 . The electrode was successfully applied to the determination of RT in buckwheat tea and orange juice samples, and the recoveries for standards added were 93.4-105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Science.gov (United States)

    Berenguer, Erika; Gardner, Toby A; Ferreira, Joice; Aragão, Luiz E O C; Camargo, Plínio B; Cerri, Carlos E; Durigan, Mariana; Oliveira Junior, Raimundo C; Vieira, Ima C G; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  10. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Directory of Open Access Journals (Sweden)

    Erika Berenguer

    Full Text Available Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH, which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85 whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified

  11. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-01-01

    Highlights: • Hydrogen peroxide biosensor was constructed by combining the advantageous properties of MWCNTs and Co 3 O 4 . • Incorporating Co 3 O 4 nanoparticles into MWCNTs/gelatin film increased the electron transfer. • Co 3 O 4 /MWCNTs/gelatin/HRP/Nafion/GCE showed strong anti-interference ability. • Hydrogen peroxide was successfully determined in disinfector with an average recovery of 100.78 ± 0.89. - Abstract: In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co 3 O 4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co 3 O 4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at −0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10 −7 –1.9 × 10 −5 M with a detection limit of 7.4 × 10 −7 . The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89

  12. Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes

    Science.gov (United States)

    Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.

    2016-02-01

    Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.

  13. Two-dimensional dopant profiling by electrostatic force microscopy using carbon nanotube modified cantilevers

    International Nuclear Information System (INIS)

    Chin, S.-C.; Chang, Y.-C.; Chang, C.-S.; Tsong, T T; Hsu, Chen-Chih; Wu, Chih-I; Lin, W-H; Woon, W-Y; Lin, L-T; Tao, H-J

    2008-01-01

    A two-dimensional (2D) dopant profiling technique is demonstrated in this work. We apply a unique cantilever probe in electrostatic force microscopy (EFM) modified by the attachment of a multiwalled carbon nanotube (MWNT). Furthermore, the tip apex of the MWNT was trimmed to the sharpness of a single-walled carbon nanotube (SWNT). This ultra-sharp MWNT tip helps us to resolve dopant features to within 10 nm in air, which approaches the resolution achieved by ultra-high vacuum scanning tunnelling microscopy (UHV STM). In this study, the CNT-probed EFM is used to profile 2D buried dopant distribution under a nano-scale device structure and shows the feasibility of device characterization for sub-45 nm complementary metal-oxide-semiconductor (CMOS) field-effect transistors

  14. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.P.; Xu, J.W.; Ren, Z.F.; Wang, J.H. [Materials Synthesis Laboratory, Departments of Physics and Chemistry, and Center for Advanced Photonic and Electronic Materials (CAPEM), State University of New York at Buffalo, Buffalo, New York 14260 (United States); Siegal, M.P.; Provencio, P.N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States)

    1998-12-01

    Highly oriented, multiwalled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666 {degree}C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 {mu}m in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio, and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. {copyright} {ital 1998 American Institute of Physics.}

  15. Adsorptive Stripping Determination of Trace Nickel Using Bismuth Modified Mesoporous Carbon Composite Electrode

    Science.gov (United States)

    Ouyang, Ruizhuo; Feng, Kai; Su, Yongfu; Zong, Tianyu; Zhou, Xia; Lei, Tian; Jia, Pengpeng; Cao, Penghui; Zhao, Yuefeng; Guo, Ning; Chang, Haizhou; Miao, Yuqing; Zhou, Shuang

    Novel bismuth nanoparticle-modified mesoporous carbon (MPC) was successfully prepared on a glassy carbon electrode (Bi@MPC/GCE) for the adsorptive stripping voltammetric determination of nickel by complexing with dimethylglyoxime (DMG). The presence of MPC obviously improved the properties of Bi particles like the electron transfer ability, particle size and hydrophicility, important parameters to achieve preferable analytical performances of Bi@MPC/GCE toward Ni(II). The best electrochemical behaviors of Bi@MPC/GCE was obtained for the stripping determination of Ni(II), compared with electrodes individually modified with Bi and MPC. The synergic effect between metallic Bi and ordered MPC (forming a 3D array like Bi microelectrodes) made major contribution to such improved electrochemical properties of Bi@MPC/GCE for Ni(II) sensing. The good linear analytical curve was achieved in a Ni(II) concentration range from 0.1μM to 5.0μM with a correlation coefficient of 0.9995. The detection limit and sensitivity were calculated to be 1.2nM (S/N=3) and 1410μAmM-1cm-2, respectively. The new method was successfully applied to Ni(II) determination in soybean samples with recoveries higher than 99% and proved to be a simple, efficient alternative for Ni(II) monitoring in real samples.

  16. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    Science.gov (United States)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  17. Potentiometric stripping analysis of antimony based on carbon paste electrode modified with hexathia crown ether and rice husk

    International Nuclear Information System (INIS)

    Gadhari, Nayan S.; Sanghavi, Bankim J.; Srivastava, Ashwini K.

    2011-01-01

    Highlights: → Potentiometric stripping analysis (PSA) employed for the determination of antimony. → Hexathia-18C6 and rice husk modified carbon paste electrode developed for the analysis. → Lowest detection limit obtained for the determination of Sb(III) using PSA. → Analysis of Sb in pharmaceutical formulations, human hair, blood serum, urine and sea water. → Rice husk used as a modifier for the first time in electrochemistry. - Abstract: An electrochemical method based on potentiometric stripping analysis (PSA) employing a hexathia 18C6 (HT18C6) and rice husk (RH) modified carbon paste electrode (HT18C6-RH-CPE) has been proposed for the subnanomolar determination of antimony. The characterization of the electrode surface has been carried out by means of scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and chronocoulometry. By employing HT18C6-RH-CPE, a 12-fold enhancement in the PSA signal (dt/dE) was observed as compared to plain carbon paste electrode (PCPE). Under the optimized conditions, dt/dE (s V -1 ) was proportional to the Sb(III) concentration in the range of 1.42 x 10 -8 to 6.89 x 10 -11 M (r = 0.9944) with the detection limit (S/N = 3) of 2.11 x 10 -11 M. The practical analytical utilities of the modified electrode were demonstrated by the determination of antimony in pharmaceutical formulations, human hair, sea water, urine and blood serum samples. The prepared modified electrode showed several advantages, such as simple preparation method, high sensitivity, very low detection limit and excellent reproducibility. Moreover, the results obtained for antimony analysis in commercial and real samples using HT18C6-RH-CPE and those obtained by inductively coupled plasma-atomic emission spectrometry (ICP-AES) are in agreement at the 95% confidence level.

  18. Potentiometric stripping analysis of antimony based on carbon paste electrode modified with hexathia crown ether and rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Gadhari, Nayan S.; Sanghavi, Bankim J. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Srivastava, Ashwini K., E-mail: aksrivastava@chem.mu.ac.in [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India)

    2011-10-03

    Highlights: {yields} Potentiometric stripping analysis (PSA) employed for the determination of antimony. {yields} Hexathia-18C6 and rice husk modified carbon paste electrode developed for the analysis. {yields} Lowest detection limit obtained for the determination of Sb(III) using PSA. {yields} Analysis of Sb in pharmaceutical formulations, human hair, blood serum, urine and sea water. {yields} Rice husk used as a modifier for the first time in electrochemistry. - Abstract: An electrochemical method based on potentiometric stripping analysis (PSA) employing a hexathia 18C6 (HT18C6) and rice husk (RH) modified carbon paste electrode (HT18C6-RH-CPE) has been proposed for the subnanomolar determination of antimony. The characterization of the electrode surface has been carried out by means of scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and chronocoulometry. By employing HT18C6-RH-CPE, a 12-fold enhancement in the PSA signal (dt/dE) was observed as compared to plain carbon paste electrode (PCPE). Under the optimized conditions, dt/dE (s V{sup -1}) was proportional to the Sb(III) concentration in the range of 1.42 x 10{sup -8} to 6.89 x 10{sup -11} M (r = 0.9944) with the detection limit (S/N = 3) of 2.11 x 10{sup -11} M. The practical analytical utilities of the modified electrode were demonstrated by the determination of antimony in pharmaceutical formulations, human hair, sea water, urine and blood serum samples. The prepared modified electrode showed several advantages, such as simple preparation method, high sensitivity, very low detection limit and excellent reproducibility. Moreover, the results obtained for antimony analysis in commercial and real samples using HT18C6-RH-CPE and those obtained by inductively coupled plasma-atomic emission spectrometry (ICP-AES) are in agreement at the 95% confidence level.

  19. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  20. Removal of an endocrine disrupting chemical (17 alpha-ethinyloestradiol) from wastewater effluent by activated carbon adsorption: Effects of activated carbon type and competitive adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ifelebuegu, A.O.; Lester, J.N.; Churchley, J.; Cartmell, E. [Cranfield University, Cranfield (United Kingdom). School of Water Science

    2006-12-15

    Granular activated carbon has been extensively used for the adsorption of organic micropollutants for potable water production. In this study the removal of an endocrine disrupting chemical from wastewater final effluent by three types of granular activated carbon (wood, coconut and coal based) has been investigated in batch adsorption experiments and correlated with the removal of chemical oxygen demand (COD), total organic carbon (TOC) and ultraviolet absorbance (UV). The results obtained demonstrated 17 alpha-ethinyloestradiol (EE2) removals of 98.6%, 99.3%, and 96.4% were achieved by the coal based (ACo), coconut based (ACn) and wood based (AWd) carbons respectively at the lowest dose of carbon (0.1 gl{sup -1}). The other adsorbates investigated all exhibited good removal. At an equilibrium concentration of 7 mgl{sup -1} the COD adsorption capacities were 3.16 mg g{sup -1}, 4.8 mg g{sup -1} and 7.1 mg g{sup -1} for the wood, coconut and coal based carbons respectively. Overall, the order of removal efficiency of EE2 and the other adsorbates for the three activated carbons was ACn {gt} ACo {gt} AWd. The adsorption capacities of the carbons were found to be reduced by the effects of other competing adsorbates in the wastewater effluent.