WorldWideScience

Sample records for carbon additions

  1. Carbon additives for electrical double layer capacitor electrodes

    Science.gov (United States)

    Weingarth, D.; Cericola, D.; Mornaghini, F. C. F.; Hucke, T.; Kötz, R.

    2014-11-01

    Electrochemical double layer capacitors (EDLCs) are inherently high power devices when compared to rechargeable batteries. While capacitance and energy storage ability are mainly increased by optimizing the electrode active material or the electrolyte, the power capability could be improved by including conductive additives in the electrode formulations. This publication deals with the use of four different carbon additives - two carbon blacks and two graphites - in standard activated carbon based EDLC electrodes. The investigations include: (i) physical characterization of carbon powder mixtures such as surface area, press density, and electrical resistivity measurements, and (ii), electrochemical characterization via impedance spectroscopy and cyclic voltammetry of full cells made with electrodes containing 5 wt.% of carbon additive and compared to cells made with pure activated carbon electrodes in organic electrolyte. Improved cell performance was observed in both impedance and cyclic voltammetry responses. The results are discussed considering the main characteristics of the different carbon additives, and important considerations about electrode structure and processability are drawn.

  2. Ecotoxicological effects of activated carbon addition to sediments.

    NARCIS (Netherlands)

    Jonker, M.T.O.; Suijkerbuijk, M.P.; Schmitt, H.; Sinnige, T.L.

    2009-01-01

    Activated carbon (AC) addition is a recently developed technique for the remediation of sediments and soils contaminated with hydrophobic organic chemicals. Laboratory and field experiments have demonstrated that the addition of 3-4% of AC can reduce aqueous concentrations and the bioaccumulation po

  3. Improvement of cement concrete strength properties by carbon fiber additives

    Science.gov (United States)

    Nevsky, Andrey; Kudyakov, Konstantin; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The paper presents the results of studies of fiber-reinforced concrete with carbon fibers. The effectiveness of carbon fibers uniform distribution in the concrete was obtained as a result of its preliminary mechanical mixing in water solution with chemical additives. Additives are to be used in the concrete technology as modifiers at initial stage of concrete mix preparing. The technology of preparing of fiber-reinforced concrete mix with carbon fibers is developed. The superplasticizer is based on ether carboxylates as a separator for carbon fibers. The technology allows increasing of concrete compressive strength up to 43.4% and tensile strength up to 17.5% as well as improving stability of mechanical properties.

  4. Sintering process study of boron carbide with carbon addition

    International Nuclear Information System (INIS)

    This work studies the pressureless sintering process of boron carbide with carbon addition, in order to obtain absorber pellets to the nuclear reactors PWR. Sintering's tests were made with addition of 1 to 10% weight of carbon in several temperature, to determine the influence of these parameters in sintering process. The original material was leached in sulfochromic solution to remove the free carbon present. Sample sintering microstructure were analyzed by scanning electronic microscopic. Different stages of sintering were observed and we tried to identify the process that avoid the densification. The leached material with sulfochromic solution, as coarse material, showed limited densification during the sintering, showing a pores structure, coarsening, with grain/particle domains separated by interconnected pores. The several stages evolution of densification process denotes that the surface to surface transport leads the structure coarsened. The limited densification coincides with the coarsened microstructure and it can be explained in terms of kinetic and thermodynamic barriers. Carbon additions and powder with smaller particles got easier the densification, that allowed to obtain pellets with densities 97% TD at 22000 C. It's believed that carbon inhibited the surface to surface transport and coarsening, because it would eliminate or control the oxygen activity. (author). 97 refs., 60 figs., 7 tabs

  5. Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Menchhofer, Paul A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Johnson, Joseph E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Lindahl, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-06-06

    Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is critical to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.

  6. Testing Carbon Sequestration in Soil Through the Addition of Gypsum

    Science.gov (United States)

    Han, Y.; Tokunaga, T. K.; Wan, J.; Conrad, M. E.; Salve, R.

    2011-12-01

    In order to help control adverse effects of increased atmospheric concentrations of CO2, effective methods for fixing carbon need to be developed. Given the large C inventories and fluxes associated with soils, it is important to identify cost- and energy-effective means for increasing long-term C retention within soil profiles. This study investigates the alternative strategy of increasing carbon retention in soils through accelerating calcite (CaCO3) precipitation and promoting soil organic carbon (SOC) complexation on mineral surfaces. With the addition of calcium ion to soils with pH > 8 often found in arid and semi-arid regions, the slow process of calcite precipitation may be accelerated. Calcium also promotes SOC binding onto mineral surfaces, diminishing leaching of SOC. Addition of flue gas desulfurization gypsum (FGDG) represents an inexpensive source of calcium to natural, slightly alkaline soil surfaces which might promote the fixation of CO2 as calcite and decrease leaching losses of organic carbon. To test this hypothesis, we prepared laboratory soil columns (7.5 cm in diameter and 85 cm in height) with and without calcium sulfate-amended layers. The distribution of carbon in the columns was monitored in gaseous, aqueous and solid phases over a period of several months to test the effect of adding calcium ions. In some columns, a relatively high fraction of 13C-labeled bicarbonate was injected to differentiate the newly precipitated calcite from the initial calcite present in the soil. The potential for more distinct calcite precipitation within the soil root zone will be investigated in vegetated soil columns. Through obtaining C mass balances in soil profiles, this study is quantifying the efficiency of gypsum amendments for mitigating C losses to the atmosphere.

  7. Effects of carbon additives on the performance of negative electrode of lead-carbon battery

    International Nuclear Information System (INIS)

    Highlights: • The negative electrode sheets are prepared by simulating manufacture condition of negative plates. • The effect of carbon additives on negative electrode sheets is studied by electrochemical method. • Carbon additives in NAM enhance electrochemical properties of the negative sheets. • The negative sheets with 0.5 wt% carbon additive exhibit better electrochemical performance. • The charge-discharge mechanism is discussed in detail according to the experimental results. - Abstract: In this study, carbon additives such as activated carbon (AC) and carbon black (CB) are introduced to the negative electrode to improve its electrochemical performance, the negative electrode sheets are prepared by simulating the negative plate manufacturing process of lead-acid battery, the types and contents of carbon additives in the negative electrode sheets are investigated in detail for the application of lead-carbon battery. The electrochemical performance of negative electrode sheets are measured by chronopotentiometry, galvanostatic charge-discharge and electrochemical impedance spectroscopy, the crystal structure and morphology are characterized by X-ray diffraction and scanning electron microscopy, respectively. The experimental results indicate that the appropriate addition of AC or CB can enhance the discharge capacity and prolong the cycle life of negative electrode sheets under high-rate partial-state-of-charge conditions, AC additive exerts more obvious effect than CB additive, the optimum contents for the best electrochemical performance of the negative electrode sheets are determined as 0.5wt% for both AC and CB. The reaction mechanism of the electrochemical process is also discussed in this paper, the appropriate addition of AC or CB in negative electrode can promote the conversion of PbSO4 to Pb, suppress the sulfation of negative electrode sheets and reduce the electrochemical reaction resistance

  8. Palladium-Catalyzed Addition of Carbon Monoxide and Carbon Tetrachloride to 1-Octene in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    张群健; 孙均华; 江焕峰; 欧阳小月; 程金生

    2003-01-01

    The Pd-catalyzed addition of carbon monoxide and carbon tetrachloride to 1-octene gave coadduct [alkyl 2-( 2, 2, 2-trichloroethyl)octanoate] as the major product in supercritical carbon dioxide by using pyridine as the base. It was found that the selectivity and the yield of coadduct were greatly affected by the pressure of carbon dioxide, the reaction temperature and the amounts of alcohol and base used.

  9. Zirconium and niobium carbide sintering with carbon additives

    International Nuclear Information System (INIS)

    Zirconium and niobium carbide sintering with carbon additives in the form of diamond and graphite was studied within a temperature range of 1000-2700 deg C. It is shown that for ZrC-C, NbC-C compositions within the temperature range of diamond polymorphous transformation the shrinkage either completely stops or loss of compaction is observed depending on the diamond content. ZrC and NbC samples with diamond additives are compressed to greater finite compactness as compared with the ZrC and NbC samples containing graphite as a second phase. Sintering of ZrC-C and NbC-C compositions was controlled primarily by the processes of boundary diffusion up to sintering temperatures 1300-1400 deg C. It is determined that at higher temperatures the role of volume diffusion in sintering kinetics becomes more noticeable

  10. Effect of Metal Additives on Performance of Low-Carbon Magnesia-Carbon Materials

    Institute of Scientific and Technical Information of China (English)

    PENG Xiaoyan; LI Lin; HE Zhiyong; LIU Kaiqi; WANG Bingjun

    2007-01-01

    In this paper, both oxidation and corrosion resistance of low-carbon magnesia-carbon materials containing 4.0wt% graphite with metallic Al and Mg-Al alloy powders as antioxidants were investigated. Meanwhile,the microstructures of samples corroded by slag were observed with optical microscope as well. The test results revealed the properties of oxidation and corrosion resistance of low-carbon magnesia-carbon materials could be improved obviously by adding metal Al powder and Mg-Al alloy powder. The rule of improving oxidation resistance was illegibility when metal Al powder and Mg-Al alloy powder were added together. It was harmful to corrosion resistance by mixed adding metal Al powder and Mg-Al alloy powder into the materials, at the same time, the corrosion resistance would decreased with the increasing of Mg-Al alloy content. The corrosion resistance of samples with 0.5wt% or 3.0wt% Mg-Al alloy was better. The oxidation resistance and corrosion resistance of materials with metal Al or Mg-Al alloy respectively were better than that with mixed metal Al and Mg-Al alloy. As a result, Mg-Al alloy was more suitable for low-carbon composite materials than metal Al as additives.

  11. Effect of carbon nanofibre addition on the mechanical properties of different f carbon-epoxy composites

    Indian Academy of Sciences (India)

    I Srikanth; Suresh Kumar; Vajinder Singh; B Rangababu; Partha Ghosal; Ch Subrahmanyam

    2015-04-01

    Carbon-epoxy (C-epoxy) laminated composites having different fibre volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of aminofunctionalized carbon nanofibres (A-CNF). Flexural strength, interlaminar shear strength (ILSS) and tensile strength of the composite laminates were determined. It was observed that, the ability of A-CNF to enhance the mechanical properties of C-epoxy diminished significantly as the fibre volume fraction (f) of the C-epoxy increased from 40 to 60. At 70f, the mechanical properties of the A-CNF reinforced C-epoxy were found to be lower compared to the C-epoxy composite made without the addition of A-CNF. In this paper suitable mechanisms for the observed trends are proposed on the basis of the fracture modes of the composite.

  12. Recycling and fluxes of carbon gases in a stratified boreal lake following experimental carbon addition

    Directory of Open Access Journals (Sweden)

    H. Nykänen

    2014-11-01

    Full Text Available Partly anoxic stratified humic lakes are important sources of methane (CH4 and carbon dioxide (CO2 to the atmosphere. We followed the fate of CH4 and CO2 in a small boreal stratified lake, Alinen Mustajärvi, during 2007–2009. In 2008 and 2009 the lake received additions of dissolved organic carbon (DOC with stable carbon isotope ratio (δ13C around 16‰ higher than that of local allochthonous DOC. Carbon transformations in the water column were studied by measurements of δ13C of CH4 and of the dissolved inorganic carbon (DIC. Furthermore, CH4 and CO2 production, consumption and emissions were estimated. Methane oxidation was estimated by a diffusion gradient method. The amount, location and δ13C of CH4-derived biomass and CO2 in the water column were estimated from the CH4 oxidation pattern and from measured δ13C of CH4. Release of CH4 and CO2 to the atmosphere increased during the study. Methane production and almost total consumption of CH4 mostly in the anoxic water layers, was equivalent to the input from primary production (PP. δ13C of CH4 and DIC showed that hydrogenotrophic methanogenesis was the main source of CH4 to the water column, and methanogenic processes in general were the reasons for the 13C-enriched DIC at the lake bottom. CH4 and DIC became further 13C-enriched in the anoxic layer of the water column during the years of DOC addition. Even gradient diffusion measurements showed active CH4 oxidation in the anoxic portion of the water column; there was no clear 13C-enrichment of CH4 as generally used to estimate CH4 oxidation strength. Increase in δ13C-CH4 was clear between the metalimnion and epilimnion where the concentration of dissolved CH4 and the oxidation of CH4 were small. Thus, 13C-enrichment of CH4 does not reveal the main location of methanotrophy in a lake having simultaneous anaerobic and aerobic oxidation of CH4. Overall the results show that organic carbon is processed efficiently to CH4 and CO2 and

  13. Additional carbon sequestration benefits of grassland diversity restoration

    NARCIS (Netherlands)

    De Deyn, G.B.; Shiel, R.S.; Ostle, N.J.; McNamara, N.P.; Oakley, S.; Young, I.; Freeman, C.; Fenner, N.; Quirk, H.; Bardgett, R.D.

    2011-01-01

    1. In Europe, grassland agriculture is one of the dominant land uses. A major aim of European agri-environment policy is the management of grassland for botanical diversity conservation and restoration, together with the delivery of ecosystem services including soil carbon (C) sequestration. 2. To t

  14. Additional carbon sequestration benefits of grassland diversity restoration

    NARCIS (Netherlands)

    Deyn, de G.B.; Shiel, R.S.; Ostle, N.J.; McNamara, N.P.; Oakley, S.; Young, I.; Freeman, C.; Fenner, N.; Quirk, H.; Bardgett, R.D.

    2011-01-01

    1. In Europe, grassland agriculture is one of the dominant land uses. A major aim of European agri-environment policy is the management of grassland for botanical diversity conservation and restoration, together with the delivery of ecosystem services including soil carbon (C) sequestration. 2. To t

  15. Soil carbon mineralization following biochar addition associated with external nitrogen

    Directory of Open Access Journals (Sweden)

    Rudong Zhao

    2015-12-01

    Full Text Available Biochar has been attracting increasing attention for its potentials of C sequestration and soil amendment. This study aimed to understand the effects of combining biochar with additional external N on soil C mineralization. A typical red soil (Plinthudults was treated with two biochars made from two types of plantation-tree trunks (soil-biochar treatments, and was also treated with external N (soil-biochar-N treatments. All treatments were incubated for 42 d. The CO2-C released from the treatments was detected periodically. After the incubation, soil properties such as pH, microbial biomass C (MBC, and microbial biomass N (MBN were measured. The addition of biochar with external N increased the soil pH (4.31-4.33 compared to the soil treated with external N only (4.21. This was not observed in the comparison of soil-biochar treatments (4.75-4.80 to soil only (4.74. Biochar additions (whether or not they were associated with external N increased soil MBC and MBN, but decreased CO2-C value per unit total C (added biochar C + soil C according to the model fitting. The total CO2-C released in soil-biochar treatments were enhanced compared to soil only (i.e., 3.15 vs. 2.57 mg and 3.23 vs. 2.45 mg, which was attributed to the labile C fractions in the biochars and through soil microorganism enhancement. However, there were few changes in soil C mineralization in soil-biochar-N treatments. Additionally, the potentially available C per unit total C in soil-biochar-N treatments was lower than that observed in the soil-biochar treatments. Therefore, we believe in the short term, that C mineralization in the soil can be enhanced by biochar addition, but not by adding external N concomitantly.

  16. Carbon Materials as Additives to WO3 for an Enhanced Conversion of Simulated Solar Light

    OpenAIRE

    Carmona, Rocio J.; Velasco, Leticia F.; Laurenti, Enzo; Maurino, Valter; Conchi O. Ania

    2016-01-01

    We have explored the impact of the incorporation of nanoporous carbons as additives to tungsten oxide on the photocatalytic degradation of two recalcitrant pollutants: rhodamine B (RhB) and phenol, under simulated solar light. For this purpose, WO3/carbon mixtures were prepared using three carbon materials with different properties (in terms of porosity, structural order and surface chemistry). Despite the low carbon content used (2 wt.%), a significant increase in the photocatalytic performa...

  17. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio

    2012-11-21

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon additive, the irreversible capacity during galvanostatic cycling between 2.75 and 5.25 V versus Li/Li+ could be as high as 700 mAh g-1 (of carbon). In the potential region below 5 V versus Li/Li+, high surface carbon additives also showed irreversible plateaus at about 4.1-4.2 and 4.6 V versus Li/Li+. These plateaus disappeared after thermal treatments at or above 150 °C in inert gas. The influence of the irreversible capacity of carbon additives on the overall performances of positive electrodes was discussed. © 2012 Springer Science+Business Media Dordrecht.

  18. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    YIN Yun-feng; HE Xin-hua; GAO Ren; MA Hong-liang; YANG Yu-sheng

    2014-01-01

    Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of 13C-labelled rice straw or its pyrolysed biochar at 250 or 350°C to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC;microbial biomass C, MBC;and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25°C. Four treatments were examined as (1) the control soil without amendment (Soil);(2) soil plus 13C-labelled rice straw (Soil+Straw);(3) soil plus 250°C biochar (Soil+B250) and (4) soil plus 350°C biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and d13C (1 742-1 877‰). Among treatments, signiifcant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw>Soil+B250>Soil+B350, whilst signiifcant higher SOC from the new C as Soil+B250>Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, signiifcant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst signiifcant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.

  19. Carbon dynamics in subtropical forest soil. Effects of atmospheric carbon dioxide enrichment and nitrogen addition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juxiu X.; Zhou, Guoyi Y.; Zhang, Deqiang Q.; Duan, Honglang L.; Deng, Qi; Zhao, Liang [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Xu, Zhihong H. [Griffith Univ., Nathan, Queensland (Australia). Environmental Futures Centre and School of Biomolecular and Physical Sciences

    2010-06-15

    The levels of atmospheric carbon dioxide concentration ([CO{sub 2}]) are rapidly increasing. Understanding carbon (C) dynamics in soil is important for assessing the soil C sequestration potential under elevated [CO{sub 2}]. Nitrogen (N) is often regarded as a limiting factor in the soil C sequestration under future CO{sub 2} enrichment environment. However, few studies have been carried out to examine what would happen in the subtropical or tropical areas where the ambient N deposition is high. In this study, we used open-top chambers to study the effect of elevated atmospheric [CO{sub 2}] alone and together with N addition on the soil C dynamics in the first 4 years of the treatments applied in southern China. Materials and methods Above- and below-ground C input (tree biomass) into soil, soil respiration, soil organic C, and total N as well as dissolved organic C (DOC) were measured periodically in each of the open-top chambers. Soil samples were collected randomly in each chamber from each of the soil layers (0-20, 20-40, and 40-60 cm) using a standard soil sampling tube (2.5-cm inside diameter). Soil leachates were collected at the bottom of the chamber below-ground walls in stainless steel boxes. Results and discussion The highest above- and below-ground C input into soil was found in the high CO{sub 2} and high N treatment (CN), followed by the only high N treatment (N+), the only high CO{sub 2} treatment (C+), and then the control (CK) without any CO{sub 2} enrichment or N addition. DOC in the leachates was small for all the treatments. Export of DOC played a minor role in C cycling in our experiment. Generally, soil respiration rate in the chambers followed the order: CN treatment > C + treatment > N + treatment > the control. Except for the C+ treatment, there were no significant differences in soil total N among the CN treatment, N + treatment, and the control. Overall, soil organic C (SOC) was significantly affected by the treatments (p < 0.0001). SOC

  20. Carbon-13 magnetic resonance chemical shift additivity relationships of clinically used furocoumarins and furchromones

    International Nuclear Information System (INIS)

    The natural abundance carbon-13 nuclear magnetic resonance spectra of various clinically used furocoumarins and furochromones have been studied. The assignments of carbon chemical shift values were based on the theory of chemical shift, additivity rules, SFORD spectra and model compounds. (author)

  1. Feature based cost and carbon emission modelling for wire and arc additive manufacturing

    OpenAIRE

    Guo, Jianing

    2012-01-01

    The wire and arc additive manufacturing (WAAM) is a CNC and welding deposition based additive manufacturing method. This novel manufacturing technique has potential cost and environment advantage and was developed as an ideal alternative for industrial sustainable development. The aim of this project is to develop a cost and carbon emission model primarily for the WAAM manufacturing cost (£) calculation and secondly for the WAAM carbon emission (KgCO2e) estimation, which can be used by the...

  2. Chemical and biological consequences of using carbon dioxide versus acid additions in ocean acidification experiments

    Science.gov (United States)

    Yates, Kimberly K.; DuFore, Christopher M.; Robbins, Lisa L.

    2013-01-01

    Use of different approaches for manipulating seawater chemistry during ocean acidification experiments has confounded comparison of results from various experimental studies. Some of these discrepancies have been attributed to whether addition of acid (such as hydrochloric acid, HCl) or carbon dioxide (CO2) gas has been used to adjust carbonate system parameters. Experimental simulations of carbonate system parameter scenarios for the years 1766, 2007, and 2100 were performed using the carbonate speciation program CO2SYS to demonstrate the variation in seawater chemistry that can result from use of these approaches. Results showed that carbonate system parameters were 3 percent and 8 percent lower than target values in closed-system acid additions, and 1 percent and 5 percent higher in closed-system CO2 additions for the 2007 and 2100 simulations, respectively. Open-system simulations showed that carbonate system parameters can deviate by up to 52 percent to 70 percent from target values in both acid addition and CO2 addition experiments. Results from simulations for the year 2100 were applied to empirically derived equations that relate biogenic calcification to carbonate system parameters for calcifying marine organisms including coccolithophores, corals, and foraminifera. Calculated calcification rates for coccolithophores, corals, and foraminifera differed from rates at target conditions by 0.5 percent to 2.5 percent in closed-system CO2 gas additions, from 0.8 percent to 15 percent in the closed-system acid additions, from 4.8 percent to 94 percent in open-system acid additions, and from 7 percent to 142 percent in open-system CO2 additions.

  3. Effect of Carbon Addition on Microstructure and Properties of WC-Co Cemented Carbides

    Institute of Scientific and Technical Information of China (English)

    Chongbin Wei; Xiaoyan Song; Jun Fu; Xiaosen Lv; Haibin Wang; Yang Cao; ShixianZhao; Xuemei Liu

    2012-01-01

    Based on a unique method to synthesize WC-Co composite powder by in-situ reactions of metal oxides and carbon, the effects of the carbon addition in the initial powders on the phase constitution, microstructure and mechanical properties of the cemented carbides were investigated. It is found that with a suitable carbon addition the pure phase constitution can be obtained in the sintered bulk from the composite powder. The mechanical properties of the cemented carbides depend on the phase constitution and the WC grain structure. To obtain the excellent properties of the WC-Co bulk, it is important to obtain the pure phase constitution from the appropriate carbon addition in the initial powders and a suitable grain size.

  4. Electrochemical Investigation of Carbon as Additive to the Negative Electrode of Lead-Acid Battery

    Directory of Open Access Journals (Sweden)

    Fernandez Matthew M.

    2015-01-01

    Full Text Available The increasing demand of cycle life performance of Pb-acid batteries requires the improvement of the negative Pb electrode’s charge capacity. Electrochemical investigations were performed on Pb electrode and Pb+Carbon (Carbon black and Graphite electrodes to evaluate the ability of the additives to enhance the electrochemical faradaic reactions that occur during the cycle of Pb-acid battery negative electrode. The electrodes were characterized through Cyclic Voltammetry (CV, Potentiodynamic Polarization (PP, and Electrochemical Impedance Spectroscopy (EIS. CV revealed that the addition of carbon on the Pb electrode increased anodic and cathodicreactions by tenfold. The kinetics of PbSO4 passivation measured through PPrevealed that the addition of Carbon on the Pb electrode accelerated the oxide formation by tenfold magnitude. The Nyquist plot measured through EIS suggest that the electrochemical mechanism and reaction kinetics is under charge-transfer. From the equivalent circuit and physical model, Pb+CB1 electrode has the lowest EIS parameters while Pb+G has the highest which is attributed to faster faradaic reaction.The Nyquist plot of the passivated Pb+CB1 electrode showed double semicircular shape. The first layer represents to the bulk passive PbSO4 layer and the second layer represents the Carbon+PbSO4 layer. The enhancements upon addition of carbon on the Pb electrode were attributed to the additive’s electrical conductivity and total surface area. The electrochemical active sites for the PbSO4 to nucleate and spread increases upon addition of electrical conductive and high surface area carbon additives.

  5. Economic consequences of consideration of permanence, leakage and additionality for soil carbon sequestration projects

    International Nuclear Information System (INIS)

    This paper introduces, explains, and describes methods for addressing the issues of permanence, leakage, and additionality (PLA) of agricultural soil carbon sequestration (ASCS) activities at the project level. It is important to cast these as project-level issues, because they relate to the integrity and consistency of using location-specific ASCS projects as an offset against GHG emissions generated in other sectors (e.g., energy). The underlying objective is to understand and quantify what the net carbon benefits of an ASCS project are once we account for the fact that (1) the sequestered carbon may be stored impermanently, (2) the project may displace emissions outside the project boundaries (leakage), and (3) the project's carbon sequestration may not be entirely additional to what would have occurred anyway under business-as-usual (no project) conditions. This article evaluates methods for identifying and estimating PLA and gauges the potential magnitude of these effects on the economic returns to a project

  6. An investigation on physical properties of polyethylene composite with bentonite, kaolin and calcium carbonate additives

    OpenAIRE

    Karabeyoğlu, Sencer S.; , Nurşen Öntürk

    2014-01-01

    Bentonite, Kaolin, Calcium carbonate easily obtained in nature as mineral products are widely used in plastics industry for additive materials. In this study, Bentonite, Kaolin, and Calcium carbonate minerals were compounded with polyethylene matrix used in specific rates. Prepared compounds melted in sheet metal molds and cooled down under appropriate conditions. Thus, production of composite material was achieved. Hardness, water absorption, and physical properties of manufactured composite...

  7. Comprehensive analysis of direct aqueous mineral carbonation using dissolution enhancing organic additives.

    OpenAIRE

    Bonfils, Benjamin; Julcour-Lebigue, Carine; Guyot, François; Bodénan, Françoise; Chiquet, Pierre; Bourgeois, Florent

    2012-01-01

    Direct aqueous mineral carbonation using organic anions has been presented by many as a promising strategy for mineral carbonation, on the basis that additives such as oxalate increase the rate and extent of dissolution of magnesium silicates several folds. Through geochemical modelling and detailed solid characterization, this paper discusses and extends our current understanding of this process. The role of disodium oxalate as a dissolution enhancing agent for olivine is thoroughly examined...

  8. Treatment of Scumming Effects of Pottery Clay by Sodium Carbonate Addition

    Energy Technology Data Exchange (ETDEWEB)

    Wasanapiarnpong, T; Thueploy, A; Arayaphong, D [Research Unit of Advanced Ceramic, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); Nilpairach, S, E-mail: thanakorn.w@chula.ac.t [National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University (Thailand)

    2011-10-29

    Earthenware pottery products made by using red plastic clay in Ratchaburi province of Thailand and fired at 850-1000 deg. C, always shows some blemishes, caused by scumming on the surface. This scumming contains calcium sulfate, contaminated in the raw clay as gypsum form. The addition of barium carbonate is a suggested solution to prevent this white stain. However, it is difficult for barium carbonate to spread throughout the clay so that it takes a long time to complete the reaction. This research aims to find the solution by using sodium carbonate as an alternative chemical. Sodium carbonate was mixed in the clay at 1wt% dissolved in distilled water controlled the moisture at 22 % by wet weight. The mixture was kneaded and aged for 24 h, then formed, dried and fired at 850-950 deg. C. The types and quantities of ion in mixed clay and deposited on the surface product were determined after drying. It was found that the white stain areas were diminished, as same as the result from the addition of barium carbonate. Moreover, the sample after firing at 950 deg. C had lower water absorption as 12.22%, higher three point bending strength as 32.53 MPa when compared to the addition of barium carbonate, which had higher water absorption as 15.58 % and lower three point bending strength as 25.25 MPa.

  9. MgB2 superconductors with addition of ZrB2 and different carbon sources

    International Nuclear Information System (INIS)

    MgB2 has been catching the attention due to the possibility to apply the material in magnets and electronic devices, operating with cryocoolers. In this work, MgB2 bulks were developed and analyzed with addition of ZrB2, another diboride with the same C32 hexagonal structure as MgB2, and simultaneous addition of different carbon sources (SiC, graphite, and carbon nanotubes). The objective of these additions is to modify the Mg planes with the diborides and to dope the material with carbon, improving the upper critical fields. Besides the doping of the material, this method creates crystalline defects in the superconducting matrix, which can act as pinning centers. As a result we could improve the critical current density of the material and estimate the behavior of dopants on the superconducting properties.

  10. Synthesis of Porous and Mechanically Compliant Carbon Aerogels Using Conductive and Structural Additives

    Directory of Open Access Journals (Sweden)

    Carlos Macias

    2016-01-01

    Full Text Available We report the synthesis of conductive and mechanically compliant monolithic carbon aerogels prepared by sol-gel polycondensation of melamine-resorcinol-formaldehyde (MRF mixtures by incorporating diatomite and carbon black additives. The resulting aerogels composites displayed a well-developed porous structure, confirming that the polymerization of the precursors is not impeded in the presence of either additive. The aerogels retained the porous structure after etching off the siliceous additive, indicating adequate cross-linking of the MRF reactants. However, the presence of diatomite caused a significant fall in the pore volumes, accompanied by coarsening of the average pore size (predominance of large mesopores and macropores. The diatomite also prevented structural shrinkage and deformation of the as-prepared monoliths upon densification by carbonization, even after removal of the siliceous framework. The rigid pristine aerogels became more flexible upon incorporation of the diatomite, favoring implementation of binderless monolithic aerogel electrodes.

  11. Fluoroethylene Carbonate Addition Effect on Electrochemical Properties of Mixed Carbonate-based Organic Electrolyte Solution for a Capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mingyeong; Kim, Seok [Pusan National Univ., Busan (Korea, Republic of); Kim, Ickjun; Yang, Sunhye [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2014-02-15

    In this paper, organic solvent electrolytes were prepared by a mixture of propylene carbonate (PC), dimethyl carbonate (DMC), tetraethylammonium tetrafluoroborate (TEABF{sub 4}) as a salt, and by containing a different content of fluoroethylene carbonate (FEC) as an additive agenT{sup -} The aim of this paper is to evaluate the ionic properties of propylene carbonate (PC)/dimethyl carbonate (DMC) mixtures as solvents for a capacitor application, in view of improving the electrochemical performances. The bulk resistance and interfacial resistance of the mixture electrolytes were investigated using an AC impedance method. The morphology of carbon-based electrodes which were contained in different electrolytes was analyzed by scanning electron microscopy (SEM) method. From the experimental results, by increasing the FEC content, capacitance of electrodes was increased, and the interfacial resistance was decreased. In particular, by a content of 2 vol % FEC in 0.2 M TEABF{sub 4} PC/DMC solvent, the electrolyte showed the superior capacitance. However, when FEC content exceeds 2 vol %, the capacitance was decreased and the interfacial resistance was increased.

  12. The effect of additional high dose carbon implantation on the tribological properties of titanium implanted steel

    International Nuclear Information System (INIS)

    The tribological properties and the structural changes of hardened steel implanted with titanium followed by carbon were investigated as a function of additional carbon dose. The dose of Ti was 5.1017 Ti cm-2 and the additional C doses were 0, 4.1017, 8.1017 and 1.2.1018 Ccm-2. After Ti implantation, the steel surface transformed to a Fe-Ti-C ternary amorphous phase. Additional implantation of carbon to a dose of 4.1017 Ccm-2 produced fine TiC precipitates dispersed in the ternary amorphous matrix. When the additional C dose exceeded 8.1017 Ccm-2, very fine graphite precipitates appeared in the ternary amorphous phase. The steel surface with very fine graphite precipitates exhibited superior tribological properties. The benefits provided by additional high dose carbon implantation are considered as follows: strengthening of the amorphous phase, thickening of the modified layer, dispersion strengthening of the implanted layer by very fine graphite precipitates and lubrication effect by graphite particles. Comparing the friction properties of Ti+C implanted steel with that of C implanted steel, the role of Ti implantation is to reduce the friction of the surface during sliding and the role of C implantation is to increase the lifetime of the surface against wear. (orig.)

  13. Activated carbon addition affects substrate pH and germination of six plant species

    NARCIS (Netherlands)

    Kabouw, P.; Nab, M.; Dam, van M.

    2010-01-01

    Activated carbon (AC) is widely used in ecological studies for neutralizing allelopathic compounds. However, it has been suggested that AC has direct effects on plants because it alters substrate parameters such as nutrient availability and pH. These side-effects of AC addition may interfere with al

  14. Denitrification potential enhancement by addition of external carbon sources in a pre-denitrification process

    Institute of Scientific and Technical Information of China (English)

    PENG Yong-zhen; MA Yong; WANG Shu-ying

    2007-01-01

    The aim of this study is to investigate the denitrification potential enhancement by addition of external carbon sources and to estimate the denitrification potential for the predenitrification system using nitrate utilization rate(NUR)batch tests.It is shown that the denitrification potential Can be substantially increased with the addition of three external carbon sources,i.e.methanol,ethanol,and acetate.and the denitrification rates of ethanol,acetate,and methanol reached up to 9.6,12,and 3.2 mgN/(gVSS·h),respectively,while mat of starch wastewater was only 0.74 mgN/(gVSS·h).By comparison,ethanol was found to be the best extemal carbon source.NUR batch tests with starch wastewater and waste ethanol were carried out.The denitrification potential increased from 5.6 to 16.5 mg NO.-N/L owing to waste ethanol addition.By means of NUR tests,the wastewater characteristics and kinetic parameters can be estimated.which are used to determine the denitrification potential of wastewater,to calculate the denitrification potential of the plant and to predict the nitrate effluent quality,as well as provide information for developing carbon dosage conlxol strategy.

  15. Carbon dioxide test as an additional clinical measure of treatment response in panic disorder

    OpenAIRE

    Valença Alexandre M; Nardi Antonio Egidio; Nascimento Isabella; Zin Walter A.; Versiani Márcio

    2002-01-01

    OBJECTIVE: We aim to determine if a treatment with a dose of clonazepam - 2 mg/day, for 6 weeks, blocks spontaneous panic attacks and the ones induced by the inhalation of 35% carbon dioxide (CO2) in panic disorder (PD) patients. The CO2 challenge-test may be a useful addition tool for measuring the pharmacological response during the initial phase (6 weeks) in the treatment of PD. METHOD: Eighteen PD patients drug free for a week participated in a carbon dioxide challenge test. Fourteen had ...

  16. Reassessing carbon sequestration in the North China Plain via addition of nitrogen.

    Science.gov (United States)

    Dong, Wenxu; Duan, Yongmei; Wang, Yuying; Hu, Chunsheng

    2016-09-01

    Soil inorganic carbon (SIC) exerts a strong influence on the carbon (C) sequestered in response to nitrogen (N) additions in arid and semi-arid ecosystems, but limited information is available on in situ SIC storage and dissolution at the field level. This study determined the soil organic/inorganic carbon storage in the soil profile at 0-100cm depths and the concentration of dissolved inorganic carbon (DIC) in soil leachate in 4N application treatments (0, 200, 400, and 600kgNha(-1)yr(-)(1)) for 15years in the North China Plain. The objectives were to evaluate the effect of nitrogen fertilizer on total amount of carbon sequestration and the uptake of atmospheric CO2 in an agricultural system. Results showed that after 15years of N fertilizer application the SOC contents at depths of 0-100cm significantly increased, whereas the SIC contents significantly decreased at depths of 0-60cm. However, the actual measured loss of carbonate was far higher than the theoretical maximum values of dissolution via protons from nitrification. Furthermore, the amount of HCO3(-) and the HCO3(-)/(Ca(2+)+Mg(2+)) ratio in soil leachate were higher in the N application treatments than no fertilizer input (CK) for the 0-80cm depth. The result suggested that the dissolution of carbonate was mainly enhanced by soil carbonic acid, a process which can absorb soil or atmosphere CO2 and less influenced by protons through the nitrification which would release CO2. To accurately evaluate soil C sequestration under N input scenarios in semi-arid regions, future studies should include both changes in SIC storage as well as the fractions of dissolution with different sources of acids in soil profiles. PMID:27135576

  17. Effect of Addition of Al and Mg on properties of Periclase-Spinel-Carbon Brick

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Periclase-spinel-carbon brick was made from sintered spinel,fused magnesia and flake graphite as principal raw materials,the influence of Mg/Al(w/w) ratio and the addition of Al,Mg in the matrix of periclas-spinel-carbon brikc on the carbonization and thermal expansion coeffi-cient and the weight los of the brick after heating at 1500℃ in a flowing stream of dry N2for 1.5 h have been studied.The results show that to control Mg/Al(w/w) ration and to add both Al and Mg appropriately can obvi-ously improve the properties of the bricks.

  18. Optimization of membrane bioreactors by the addition of powdered activated carbon.

    Science.gov (United States)

    Ng, Choon Aun; Sun, Darren; Bashir, Mohammed J K; Wai, Soon Han; Wong, Ling Yong; Nisar, Humaira; Wu, Bing; Fane, Anthony G

    2013-06-01

    It was found that with replenishment, powdered activated carbon (PAC) in the membrane bioreactor (MBR) would develop biologically activated carbon (BAC) which could enhance filtration performance of a conventional MBR. This paper addresses two issues (i) effect of PAC size on MBR (BAC) performance; and (ii) effect of sludge retention time (SRT) on the MBR performance with and without PAC. To interpret the trends, particle/floc size, concentration of mixed liquor suspended solid (MLSS), total organic carbon (TOC), short-term filtration properties and transmembrane pressure (TMP) versus time are measured. The results showed improved fouling control with fine, rather than coarse, PAC provided the flux did not exceed the deposition flux for the fine PAC. Without PAC, the longer SRT operation gave lower fouling at modest fluxes. With PAC addition, the shorter SRT gave better fouling control, possibly due to greater replenishment of the fresh PAC. PMID:23612160

  19. Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys

    International Nuclear Information System (INIS)

    Highlights: • Effect of boron and carbon on properties of three beta titanium alloys studied. • Ti–15V–3Cr–3Mo–3Sn, Ti–10V–2Fe–3Al, and Ti–5V–5Mo–5Al–3Cr alloys studied. • Hardness and 0.2% YS increases and elongation to failure deteriorates with the B and C addition. • Ageing in comparison to solution treatment results in increase in strength and decrease in elongation. • Low ‘n′ values and multiple slopes are observed in log–log plots of true stress–true strain curves. - Abstract: Effect of boron and carbon on microstructure and mechanical properties of β titanium alloys Ti–15V–3Cr–3Mo–3Sn, Ti–10V–2Fe–3Al, and Ti–5V–5Mo–5Al–3Cr has been studied in detail. The addition of boron and carbon results in refinement of β grain size and α-precipitates during ageing. While the hardness and tensile strength increase with the addition of boron and carbon, the elongation to failure deteriorates. The increase in strength is attributed to a synergistic effect of grain refinement and load sharing by TiB and TiC particles; whereas decrease in elongation is due to the brittleness of these hard particles. Ageing results in increase in strength and decrease in elongation as compared to solution treatment condition. In this case, the effect of boron and carbon is marginal. Further enhancement in the properties can be achieved by fine tuning heat treatment parameters. Multiple slopes are observed in log–log plots of true stress–true strain thereby implying different deformation mechanisms over a large range of plastic deformation

  20. THE INFLUENCE OF THE COMPLEX CHEMICAL ADDITIVE CONTAINING THE STRUCTURED CARBON NANOMATERIAL ON PROPERTIES OF CEMENT

    Directory of Open Access Journals (Sweden)

    O. Yu. Sheyda

    2015-01-01

    Full Text Available The paper presents results of investigations on influence of domestic complex chemical additive containing structured carbon nanomaterial and characterized by a combination effect (curing acceleration and plasticizing on cement and cement stone properties. The purpose of the investigations, on the one hand, has been to confirm efficacy of УКД-1additive from the perspective for increasing the rate of gain, strength growth of cement concrete and additive influence on setting time with the purpose to preserve molding properties of concrete mixes in time, and on the other hand, that is to assess “mechanism” of the УКД-1 additive action in the cement concrete. The research results have revealed regularities in changes due to the additive of water requirements and time period of the cement setting. The reqularities are considered as a pre-requisite for relevant changes in molding properties of the concrete mixes. The paper also experimentally substantiates the possibility to decrease temperature of cement concrete heating with the УДК-1 additive. It has been done with the purpose to save energy resources under production conditions. In addition to this the paper proves the efficiency of the additive which is expressed in strength increase of cement stone up to 20–40 % in the rated age (28 days that is considered as a basis for strength growth of cement concrete. The paper confirms a hypothesis on physical nature of this phenomenon because the X-ray phase analysis method has shown that there are no changes in morphology of portland cement hydration products under the action of the additive agent containing a structured carbon nanomaterial. Results of theoretical and experimental investigations on УКД-1 additive efficiency have been proved by industrial approbation while fabricating precast concrete products and construction of monolithic structures under plant industrial conditions (Minsk, SS “Stroyprogress” JSC MAPID and on

  1. Enhancement of orimulsion biodegradation through the addition of natural marine carbon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, L.M.; Toy, E.; Lapham, L.; Cherrier, J.; Chanton, J.P. [Florida State University, Tallahassee, FL (USA). Dept. of Oceanography

    2001-04-01

    Orimulsion is a bitumen-based heavy fuel that is a less expensive alternative to traditional fuel oils. However, because its density is intermediate between that of freshwater and seawater, in the event of a spill, the fuel could strand in the sediments. Previous work indicated that only 0.6 - 2.7% of the bitumen would degrade in long incubations of marine sediments. Various natural carbon substrates were added to stimulate the degradation of bitumen by native populations of benthic bacteria. The concentration and carbon isotopic signature of the respired carbon dioxide was measured to partition the substrates that supported bacterial respiration. It was found that the addition of seagrass and pinfish stimulated the degradation of bitumen by as much as 2 to 9-fold relative to incubations without these substrates. Biodegradation of bitumen may be enhanced by the addition of natural marine carbon substrates and may be a useful approach for bioremediation. Preadaption of the bacteria to bitumen did not significantly enhance their ability to degrade it. 13 refs., 5 figs., 2 tab.

  2. Michael addition of thiols, carbon nucleophiles and amines to dehydroamino acid and dehydropeptide derivatives

    OpenAIRE

    Ferreira, Paula M.T.; Maia, Hernâni L. S.; Monteiro, Luís S.; Sacramento, Joana

    2001-01-01

    Michael additions of nitrogen heterocycles, thiols, carbon nucleophiles and amines to dehydroalanine derivatives, including a glycyldehydroalanine peptide, were performed in fair to good yields. Dehydroaminobutyric acid derivatives reacted only with the stronger nucleophiles but in considerably lower yields and often no reaction was observed with the corresponding dehydrophenylalanine derivatives. When a tosyl group was bonded to the nitrogen atom of the dehydroamino acid, in some cases the a...

  3. Improved cement mortars by addition of carbonated fly ash from solid waste incinerators

    OpenAIRE

    López-Zaldívar, O.; Mayor-Lobo, P. L.; Fernández-Martínez, F.; Hernández-Olivares, F.

    2015-01-01

    This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA) stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates ...

  4. Rheological and LASER additives for higher efficiency in producing poly(acrylonitrile)-based carbon fibers

    OpenAIRE

    Herbert, Christian

    2016-01-01

    This work is based on the NRW Ziel2 ‘Megacarbon’ project which aims for the more resource efficient production of carbon fibers (CF) for the automotive market. In cooperation with the Dralon GmbH in Dormagen a CF precursor with properties at least equal to the industry reference fiber Bluestar was developed and used in fiber spinning experiments. For the improvement of the spinning process a hyperbranched, rheological additive was synthesized for the decrease of dynamic viscosity over a broad...

  5. Leachate Treatment by Batch Decant Activated Sludge Process and Powdered Activated Carbon Addition

    OpenAIRE

    Y Hashempur; R Rezaei Kalantary; Jaafarzadeh, N.; Jorfi, S.

    2009-01-01

    "n "nBackgrounds and Objectives: Direct biodegradation of landfill leachate is too difficult because of high concentrations of COD and NH3 and also the presence of toxic compounds. The main objective of this study was to application of Strurvite precipitation as a pretreatment stage, in order to remove inhibitors of biodegradation before the batch decant activated sludge process with addition of powdered activated carbon (PAC)."nMaterials and Methods: Strurvite precipitated leachate was intro...

  6. Influence of Molybdenum Addition on Mechanical Properties of Low Carbon HSLA-100 Steel

    OpenAIRE

    Bogucki R.; Pytel S.M.

    2014-01-01

    The results of mechanical properties and microstructure observation of low carbon copper bearing steel with high addition of molybdenum are presented in this paper. This steels were characterized by contents of molybdenum in the range from 1% to 3% wt. After the thermo -mechanical processing the steels were subsequently quenched and tempered at different temperatures (500-800 °C) for 1h. The changes of mechanical properties as function of tempering temperature were typical for the steel with ...

  7. The effect of sintering additive on fracture behavior of carbon-whisker-reinforced silicon carbide composites

    International Nuclear Information System (INIS)

    Hot-pressed silicon carbide composites reinforced with carbon fiber were prepared. Aluminum and yttrium oxides served as sintering additives and low-cost α phase SiC was used as starting powder, instead of the more expensive β-SiC. In the sintering process, the SiC-matrix grains grew larger via solution reprecipitation. Reaction of Al2O3/Y2O3 additives with SiO2 on the surface of SiC or its oxidation products caused formation and distribution of a low-eutectic-point phase around the SiC grains and carbon whiskers. Such amorphous films can be found in triple-junctions and boundaries of SiC grains. Excess sintering additives improve the room-temperature flexural strength, but reduce the fracture toughness. Coupled with a higher sintering temperature, they contribute to the diffusion of yttrium ions into carbon fiber, and make the reaction layer thicker. Non-homogeneous amorphous inclusions between grains and whiskers are harmful for mechanical properties. A combination of grain bridging, crack deflection and whisker debonding can improve fracture toughness

  8. Influence of carbon monoxide additives on detonating ability of air-hydrogen mixtures

    International Nuclear Information System (INIS)

    Corrective evaluation of detonating ability of postaccident hydrogen-containing atmosphere of the reactor containment is needed for studies on consequences of sere-re hypothetic accidents at NPPs. Numerical study on effect of CO additives on the size of the detonating cell is carried out. The calculations were conducted within the frames of one-dimensional model with an account of the detailed kinetic combustion scheme (56 elementary chemical reactions). It is established that the CO additives may essentially increase detonating ability of fuel-poor hydrogen + air + carbon monoxide mixtures

  9. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon

    Science.gov (United States)

    Semiletov, Igor; Pipko, Irina; Gustafsson, Örjan; Anderson, Leif G.; Sergienko, Valentin; Pugach, Svetlana; Dudarev, Oleg; Charkin, Alexander; Gukov, Alexander; Bröder, Lisa; Andersson, August; Spivak, Eduard; Shakhova, Natalia

    2016-05-01

    Ocean acidification affects marine ecosystems and carbon cycling, and is considered a direct effect of anthropogenic carbon dioxide uptake from the atmosphere. Accumulation of atmospheric CO2 in ocean surface waters is predicted to make the ocean twice as acidic by the end of this century. The Arctic Ocean is particularly sensitive to ocean acidification because more CO2 can dissolve in cold water. Here we present observations of the chemical and physical characteristics of East Siberian Arctic Shelf waters from 1999, 2000-2005, 2008 and 2011, and find extreme aragonite undersaturation that reflects acidity levels in excess of those projected in this region for 2100. Dissolved inorganic carbon isotopic data and Markov chain Monte Carlo simulations of water sources using salinity and δ18O data suggest that the persistent acidification is driven by the degradation of terrestrial organic matter and discharge of Arctic river water with elevated CO2 concentrations, rather than by uptake of atmospheric CO2. We suggest that East Siberian Arctic Shelf waters may become more acidic if thawing permafrost leads to enhanced terrestrial organic carbon inputs and if freshwater additions continue to increase, which may affect their efficiency as a source of CO2.

  10. Enhancement of nitrate removal at the sediment-water interface by carbon addition plus vertical mixing.

    Science.gov (United States)

    Chen, Xuechu; He, Shengbing; Zhang, Yueping; Huang, Xiaobo; Huang, Yingying; Chen, Danyue; Huang, Xiaochen; Tang, Jianwu

    2015-10-01

    Wetlands and ponds are frequently used to remove nitrate from effluents or runoffs. However, the efficiency of this approach is limited. Based on the assumption that introducing vertical mixing to water column plus carbon addition would benefit the diffusion across the sediment-water interface, we conducted simulation experiments to identify a method for enhancing nitrate removal. The results suggested that the sediment-water interface has a great potential for nitrate removal, and the potential can be activated after several days of acclimation. Adding additional carbon plus mixing significantly increases the nitrate removal capacity, and the removal of total nitrogen (TN) and nitrate-nitrogen (NO3(-)-N) is well fitted to a first-order reaction model. Adding Hydrilla verticillata debris as a carbon source increased nitrate removal, whereas adding Eichhornia crassipe decreased it. Adding ethanol plus mixing greatly improved the removal performance, with the removal rate of NO3(-)-N and TN reaching 15.0-16.5 g m(-2) d(-1). The feasibility of this enhancement method was further confirmed with a wetland microcosm, and the NO3(-)-N removal rate maintained at 10.0-12.0 g m(-2) d(-1) at a hydraulic loading rate of 0.5 m d(-1). PMID:25556005

  11. Tuning the oscillation of nested carbon nanotubes by insertion of an additional inner tube

    Science.gov (United States)

    Motevalli, B.; Liu, Jefferson Z.

    2013-12-01

    Different mechanisms of nano-oscillators with telescopic oscillations have attracted lots of attention due to the possible generation of GHz frequencies. In particular, nested carbon nanotubes are of special interest for which different mechanisms have been examined. In this paper, we will show that insertion of an additional inner tube into a conventional double walled carbon nanotube (DWCNT) oscillator not only can increase the oscillatory frequency considerably but also provides a wide range of system parameters for tuning the oscillatory behavior as well as its frequency. The insertion of an additional tube results in a number of different vdW force profiles (which only depend on the length ratios of the three tubes). Being subject to these different vdW force profiles and trigged with different initial velocity, an oscillating tube can exhibit various types of motions. We use a phase division diagram to discriminate the system parameters according to the different types of motions. Accordingly, a comprehensive study of the oscillatory frequency is also carried out. To perceive an insight into the effectiveness of insertion, a comparison is also made with the counterpart DWCNT oscillator. It is observed that this new mechanism offers a number of new possibilities in designing and characterizing a carbon nanotube based oscillator.

  12. 12 Years of NPK Addition Diminishes Carbon Sink Potential of a Nutrient Limited Peatland

    Science.gov (United States)

    Larmola, T.; Bubier, J. L.; Juutinen, S.; Moore, T. R.

    2011-12-01

    Peatlands store about a third of global soil carbon. Our aim was to study whether the vegetation feedbacks of nitrogen (N) deposition lead to stronger carbon sink or source in a nutrient limited peatland ecosystem. We investigated vegetation structure and ecosystem CO2 exchange at Mer Bleue Bog, Canada, that has been fertilized for 7-12 years. We have applied 5 and 20 times ambient annual wet N deposition (0.8 g N m-2) with or without phosphorus (P) and potassium (K). Gross photosynthesis, ecosystem respiration and net CO2 exchange (NEE) were measured weekly during the growing season using chamber technique. Under the highest N(PK) treatments, the light saturated photosynthesis (PSmax) was reduced by 20-30% compared to the control treatment, whereas under moderate N and PK additions PSmax slightly increased or was similar to the control. The ecosystem respiration showed similar trends among the treatments, but changes in the rates were less pronounced. High nutrient additions led to up to 65% lower net CO2 uptake than that in the control: In the NPK plots with cumulative N additions of 70, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.3), 2.0 (se. 0.4), and 2.4 (se. 0.3) μmol m-2 s-1, respectively. In the N only plots with cumulative N additions of 45, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.2), 2.6 (se. 0.4), and 1.8 (se. 0.3) μmol m-2 s-1, respectively. The reduced plant photosynthetic capacity and diminished carbon sink potential in the highest nutrient treatments correlated with the loss of peat mosses and were not compensated for by the increased vascular plant biomass that has mainly been allocated to woody shrub stems.

  13. Effect of the ruthenium loading and barium addition on the activity of ruthenium/carbon catalysts in carbon monoxide methanation

    Directory of Open Access Journals (Sweden)

    Truszkiewicz Elżbieta

    2014-12-01

    Full Text Available A group of supported ruthenium catalysts was prepared and tested in methanation of small CO amounts (7000 ppm in hydrogen-rich streams. High surface area graphitized carbon (484 m2/g was used as a support for ruthenium and RuCl3 was used as a Ru precursor. Some of the Ru/C systems were additionally doped with barium (Ba(NO32 was barium precursor. The catalysts were characterized by the chemisorption technique using CO as an adsorbate. To determine the resistance of the catalysts to undesired carbon support methanation, the TG-MS experiments were performed. They revealed that the barium addition inhibits support losses. The studies of CO methanation (fl ow reactor, atmospheric pressure have shown that some of the supported ruthenium catalysts exhibit high activities referred to the metal mass. The catalytic properties of ruthenium proved to be dependent on metal dispersion. Some of the Ru/C and Ba-Ru/C systems exhibit higher activity in CO hydrogenation than the commercial nickel-based catalyst.

  14. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    Directory of Open Access Journals (Sweden)

    Farshad Barzegar

    2015-09-01

    Full Text Available This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg−1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  15. Effects of Nitrogen and Phosphorus Additions on Carbon Cycling of Tropical Mountain Rainforests in Hainan, China

    Science.gov (United States)

    Lai, J.

    2015-12-01

    Nitrogen (N) and Phosphorus (P) deposition is projected to increase significantly in tropical regions in the coming decades, which has changed and will change the structure and function of ecosystems, and affects on ecosystem Carbon (C) cycle. As an important part in global C cycle, how the C cycle of tropical rainforests will be influenced by the N and P deposition should be focused on. This study simulated N and P deposition in a primary and secondary forest of tropical mountain rainforest in Jianfengling, Hainan, China, during five-year field experiment to evaluate the effects of N and P deposition on C cycling processes and relate characteristics. Six levels of N and P treatments were treated: Control, Low-N, Medium-N, High-N, P and N+P. The relative growth rates (RGR) of tree layer in treatment plots were different from that in control plots after years of N and P addition. Simulated N and P deposition also increased ANPP in primary forest. N and P addition changed the growth of trees by altering soil nutrient and microbial activities. N and P addition increased soil organic carbon (SOC) and total N (TN) content, and significantly increased soil total P (TP) content, not changing soil pH. During the whole process of N and P addition, as net nitrification rate and net N mineralization rate were promoted by N and P addition, and effective N content (nitrate) of soil increased in the plot treated with N treatments compared to the control treatment. The microbial P content was increased by N and P addition, and microbial N was not changed. The increasing N deposition may enhance soil nutrient and stimulate growth of trees, which will lead to an increase of the C sequestration.

  16. Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials

    Directory of Open Access Journals (Sweden)

    Galao, O.

    2012-09-01

    Full Text Available This paper reports on recent work that is directed at studying the changes in the mechanical properties of Portland cement based mortars due to the addition of carbon nanofiber (CNF. Both flexural and compression strength has been determined and related to the CNF addition to the mix, to the curing time and to the porosity and density of the matrix. Also, corrosion of embedded steel rebars in CNF cement pastes exposed to carbonation and chloride attacks has been investigated. The increase in CNF addition implies higher corrosion intensity and higher levels of mechanical properties.En este artículo se han estudiado los cambios en las propiedades mecánicas de los morteros de cemento Portland debido a la adición de nanofibras de carbono (NFC. Se han determinado las resistencias a flexotracción y a compresión de los morteros en relación a la cantidad de NFC añadidas a la mezcla, al tiempo de curado y a la porosidad y densidad de los mismos. Además se han investigado los niveles de corrosión de barras de acero embebidas en pastas de cemento con NFC expuestos al ataque por carbonatación y por ingreso de cloruros. El aumento en el porcentaje de NFC añadido se traduce en un aumento la intensidad de corrosión registrada y una mejora de las propiedades mecánicas.

  17. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis.

    Science.gov (United States)

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition. PMID:26813078

  18. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis

    Science.gov (United States)

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition.

  19. The influence of molybdenum on stress corrosion in Ultra Low Carbon Steels with copper addition

    OpenAIRE

    Mazur, M.; R. Bogucki; Pytel, S.

    2010-01-01

    The influence of molybdenum content on the process of stress corrosion of ultra-low carbon structural steels with the addition of copper HSLA (High Strength Low Alloy) was analyzed. The study was conducted for steels after heat treatment consisting of quenching andfollowing tempering at 600°C and it was obtained microstructure of the tempered martensite laths with copper precipitates and the phaseLaves Fe2Mo type. It was found strong influence of Laves phase precipitate on the grain boundarie...

  20. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems

    Directory of Open Access Journals (Sweden)

    X. Lu

    2013-01-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  1. Long-term nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem

    Directory of Open Access Journals (Sweden)

    X. Lu

    2013-06-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  2. Influence of Molybdenum Addition on Mechanical Properties of Low Carbon HSLA-100 Steel

    Directory of Open Access Journals (Sweden)

    Bogucki R.

    2014-10-01

    Full Text Available The results of mechanical properties and microstructure observation of low carbon copper bearing steel with high addition of molybdenum are presented in this paper. This steels were characterized by contents of molybdenum in the range from 1% to 3% wt. After the thermo -mechanical processing the steels were subsequently quenched and tempered at different temperatures (500-800 °C for 1h. The changes of mechanical properties as function of tempering temperature were typical for the steel with the copper addition. The sudden drop of impact resistance after tempering from 575 °C to 600 °C was caused probably by precipitates of Laves phase of type Fe2Mo.

  3. Controlling a toxic shock of pentachlorophenol (PCP) to anaerobic digestion using activated carbon addition.

    Science.gov (United States)

    Xiao, Yeyuan; De Araujo, Cecilia; Sze, Chun Chau; Stuckey, David C

    2015-04-01

    Several powdered and granular activated carbons (PACs and GACs) were tested for adsorption of pentachlorophenol (PCP) in bench-scale anaerobic digestion reactors to control the toxicity of PCP to acetoclastic methanogenesis. Results showed that the adsorption capacities of PAC were reduced by 21-54%, depending on the PAC addition time, in the presence of the methanogenic sludge compared to the controls without sludge. As a preventive measure, PAC at a low dose of 20% (mass ratio to the VSS) added 24 h prior to, or simultaneously with, the addition of PCP could completely eliminate the toxic effects of PCP. At the same dose, PAC also enabled methanogenesis to recover immediately after the sludge had been exposed to PCP for 24h. GAC was not effective in enabling the recovery of methanogenesis due to its slow adsorption kinetics; however, at a dose of 80% it could partially ameliorate the toxic shock of PCP. PMID:25665874

  4. Enhancement of reaction rates for catalytic benzaldehyde hydrogenation and sorbitol dehydration in water solvent by addition of carbon dioxide

    Indian Academy of Sciences (India)

    Masayuki Shirai; Osamu Sato; Norihito Hiyoshi; Aritomo Yamaguchi

    2014-03-01

    The effect of pressured carbon dioxide on heterogeneous hydrogenation of benzaldehyde and homogeneous dehydration of sorbitol in water solvent was studied. Initial hydrogenation rates of benzaldehyde over a charcoal-supported palladium catalyst in water at 313 K were enhanced by the addition of carbon dioxide. The initial rate increased with an increase in carbon dioxide pressure and became a maximum at 5 MPa. Dehydration of sorbitol proceeded in water phase at 500 K and initial dehydration rates were enhanced by addition of 30 MPa of carbon dioxide.

  5. Mathematical modelling of the composition of a high-strength composite concrete containing blended carbonate additive

    International Nuclear Information System (INIS)

    A new high-strength concrete has been developed on the basis of the utilization of the blended carbonates as an active additive (BCA). The main technological features are the preliminary mechanical-chemical activation of this natural mineral product and the stage method of production. A three-parameter polynomial model has been developed for determining the amount of the main formulation components - Portland cement, BCA and water/cement ratio by evaluation of their influence on the changes of the compressive strength for one-year time period of the hardening. The experimental plan contains 27 tests. The regression equations have been calculated for five ages. The obtained regression coefficients reflecting the trend and the effect of the three factors on the output data during the investigated period have been analyzed. The compressive strength depending on two factors has been plotted for the ages of 28 and 365 days, the value of the third factor being constant. They are important for the construction practice and they display the whole spectrum of possibilities for variation of the formulation parameters, achieving at the same time the specified design strength. Key words: high-strength composite concrete, blended carbonate additive, polynomial model, regression, compressive strength

  6. Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth.

    Science.gov (United States)

    Zhang, Hong-Bo; Hou, Dingyu; Law, Chung K; You, Xiaoqing

    2016-02-11

    Using density functional theory and master equation modeling, we have studied the kinetics of small unsaturated aliphatic molecules reacting with polycyclic aromatic hydrocarbon (PAH) molecules having a diradical character. We have found that these reactions follow the mechanism of carbon addition and hydrogen migration (CAHM) on both spin-triplet and open-shell singlet potential energy surfaces at a rate that is about ten times those of the hydrogen-abstraction-carbon-addition (HACA) reactions at 1500 K in the fuel-rich postflame region. The results also show that the most active reaction sites are in the center of the zigzag edges of the PAHs. Furthermore, the reaction products are more likely to form straight rather than branched aliphatic side chains in the case of reacting with diacetylene. The computed rate constants are also found to be independent of pressure at conditions of interest in soot formation, and the activation barriers of the CAHM reactions are linearly correlated with the diradical characters. PMID:26799641

  7. Fuzzy Control of Nitrate Recirculation and External Carbon Addition in A/O Nitrogen Removal Process

    Institute of Scientific and Technical Information of China (English)

    马勇; 彭永臻; 王淑莹; 王晓莲

    2005-01-01

    Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict.Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parazneter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at-86 mV and -90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.

  8. Mineral elements of subtropical tree seedlings in response to elevated carbon dioxide and nitrogen addition.

    Directory of Open Access Journals (Sweden)

    Wenjuan Huang

    Full Text Available Mineral elements in plants have been strongly affected by increased atmospheric carbon dioxide (CO2 concentrations and nitrogen (N deposition due to human activities. However, such understanding is largely limited to N and phosphorus in grassland. Using open-top chambers, we examined the concentrations of potassium (K, calcium (Ca, magnesium (Mg, aluminum (Al, copper (Cu and manganese (Mn in the leaves and roots of the seedlings of five subtropical tree species in response to elevated CO2 (ca. 700 μmol CO2 mol(-1 and N addition (100 kg N ha(-1 yr(-1 from 2005 to 2009. These mineral elements in the roots responded more strongly to elevated CO2 and N addition than those in the leaves. Elevated CO2 did not consistently decrease the concentrations of plant mineral elements, with increases in K, Al, Cu and Mn in some tree species. N addition decreased K and had no influence on Cu in the five tree species. Given the shifts in plant mineral elements, Schima superba and Castanopsis hystrix were less responsive to elevated CO2 and N addition alone, respectively. Our results indicate that plant stoichiometry would be altered by increasing CO2 and N deposition, and K would likely become a limiting nutrient under increasing N deposition in subtropics.

  9. Effect of cerium addition on microstructures of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    S Sriram; R Balasubramaniam; M N Mungole; S Bharagava; R G Baligidad

    2005-10-01

    The effect of Ce addition on the microstructure of carbon-alloyed Fe3Al-based intermetallic has been studied. Three different alloys of composition, Fe–18.5Al–3.6C, Fe–20.0Al–2.0C and Fe–19.2Al–3.3C–0.07Ce (in at%), were prepared by electroslag remelting process. Their microstructures were characterized using optical and scanning electron microscopies. Stereological methods were utilized to understand the observed microstructures. All the alloys exhibited a typical two-phase microstructure consisting of Fe3AlC carbides in an iron aluminide matrix. In the alloy without Ce addition, large bulky carbides were equally distributed throughout the matrix with many smaller precipitates interspersed in between. In the alloy with Ce addition, the carbide grain sizes were finer and uniformly distributed throughout the matrix. The effect of Ce addition on the carbide morphology has been explained based on the known effect of Ce in modifying carbide morphology in cast irons.

  10. Effect of aluminum-containing additives on the reactivity in air and CO2 of carbon anode for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    LAI Yanqing; LI Jie; LI Qingyu; DING Fengqi

    2004-01-01

    Airbum reaction and carboxy reaction result in the excess consumption of carbon anode in aluminum electrolysis.To reduce the excess carbon consumption, carbon anode was doped with aluminum-containing additives, such as Al, Al4C3,AlF3 and Al2O3. Their reactivity in air and CO2 was determined with an isothermal-gravimetric method to study the effect of aluminum-containing additives on the reactivity in air and CO2 of carbon anode. Results shown that the airburn reactivity at 450℃ and carboxy reactivity at 970 ℃ of carbon anode both decreased with Al-containing additives adding, while shown a minimutn with the amount of Al4C3, AlF3 and Al2O3 increasing. However, all Al-containing additives increase the airbum reactivity at 550℃ of carbon anodes. Coke yield measurement and XRD examination with aluminum containing additives doped pitch cokes revealed that the effect of Al-containing additives on the airbum reactivity and carboxy reactivity of carbon anode would result from chemical factors and structural factors.

  11. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent

    Energy Technology Data Exchange (ETDEWEB)

    Satyawali, Yamini [TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070 (India); Balakrishnan, Malini, E-mail: malinib@teri.res.in [TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070 (India); Energy and Resources Institute (TERI), Darbari Seth Block, India Habitat Center, Lodhi Road, New Delhi 110003 (India)

    2009-10-15

    This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8 L reactor was equipped with a submerged 30 {mu}m nylon mesh filter with 0.05 m{sup 2} filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m{sup -3} d{sup -1}. PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh.

  12. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent

    International Nuclear Information System (INIS)

    This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8 L reactor was equipped with a submerged 30 μm nylon mesh filter with 0.05 m2 filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m-3 d-1. PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh.

  13. Leachate Treatment by Batch Decant Activated Sludge Process and Powdered Activated Carbon Addition

    Directory of Open Access Journals (Sweden)

    Y Hashempur

    2009-07-01

    Full Text Available "n "nBackgrounds and Objectives: Direct biodegradation of landfill leachate is too difficult because of high concentrations of COD and NH3 and also the presence of toxic compounds. The main objective of this study was to application of Strurvite precipitation as a pretreatment stage, in order to remove inhibitors of biodegradation before the batch decant activated sludge process with addition of powdered activated carbon (PAC."nMaterials and Methods: Strurvite precipitated leachate was introduced to a bench scale batch decant activated sludge reactor with hydraulic retention times of 6 and 12 hour. PAC was added to aeration tank directly at the rate of 3.5 g/L."nResults:TCOD, SCOD, NH3 and P removal efficiency with addition of PAC in HRT of 6 h were 90,87, 98.3 and 94 % respectively and 96, 95, 99.2 and 98.7 5 in HRT of 12 h."nConcusion:According to obtained data from this work, it can be concluded that Strurvite precipitation before batch decant activated sludge process and simultaneous addition of PAC is promising technology for leachate treatment and can meet effluent standards for discharge to the receiving waters.

  14. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent.

    Science.gov (United States)

    Satyawali, Yamini; Balakrishnan, Malini

    2009-10-15

    This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8L reactor was equipped with a submerged 30 microm nylon mesh filter with 0.05 m(2) filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m(-3)d(-1). PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh. PMID:19467782

  15. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  16. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    Best, J.H. de; Hunneman, P.; Doddema, H.J.; Janssen, D.B.; Harder, W.

    1999-01-01

    Carbon tetrachloride (52 μM) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were sometim

  17. The influence of molybdenum on stress corrosion in Ultra Low Carbon Steels with copper addition

    Directory of Open Access Journals (Sweden)

    M. Mazur

    2010-07-01

    Full Text Available The influence of molybdenum content on the process of stress corrosion of ultra-low carbon structural steels with the addition of copper HSLA (High Strength Low Alloy was analyzed. The study was conducted for steels after heat treatment consisting of quenching andfollowing tempering at 600°C and it was obtained microstructure of the tempered martensite laths with copper precipitates and the phaseLaves Fe2Mo type. It was found strong influence of Laves phase precipitate on the grain boundaries of retained austenite on rate anddevelopment of stress corrosion processes. The lowest corrosion resistance was obtained for W3 steel characterized by high contents ofmolybdenum (2.94% Mo which should be connected with the intensity precipitate processes of Fe2Mo phase. For steels W1 and W2which contents molybdenum equals 1.02% and 1.88%, respectively were obtained similar courses of corrosive cracking.

  18. RDX/AP-CMDB Propellants Containing Fullerenes and Carbon Black Additives

    Directory of Open Access Journals (Sweden)

    X. Han

    2009-05-01

    Full Text Available The influence of fullerene additives on the combustion behaviour of cyclotrimethylene trinitramine/ammonium perchlorate composite modified double-base (RDX/AP-CMDB propellants are investigated by thermogravimetricdifferential thermogravimetric (TG-DTG analysis, burning rate tests, and scanning electron microscopy observations. The difference between lead salicylate (F-Pb and bismuth citrate acid (CP-Bi as combustion modifiers has also been examined. TG-DTG investigations show that the addition of all additives advanced and accelerated the evaporation of nitroglycerin (NG. The addition of Extracted Fullerene Soot (EFS, C60 and carbon black (CB additives obviously accelerated the liquid  phase decomposition of NG. Also, the solid phasedecomposition of nitrocellulose (NC and the liquid phase  decomposition of RDX were accelerated by 0.5 per cent Fullerene Soot (FS/2.5 per cent CP-Bi/0.5 per cent copper adipic acid (J-Cu composite catalyst. The addition of all composite catalysts promoted the decomposition of ammonium perchlorate (AP except 0.5 per cent EFS/2.5 per cent CP-Bi/0.5 per cent J-Cu composite catalysts. It is well known that there exists dark zone in the flame structure of RDX-CMDB propellant, but in our observation, the dark zone vanished with the addition of 10 per cent AP to the forenamed propellant. The burning rates were increased at low pressure but reduced at high pressure by all catalysts except 0.5 per cent EFS/2.5 per cent CP-Bi/0.5 per cent J-Cu and 0.5 per cent C60/2.5 per cent CP-Bi/0.5 per cent J-Cu which reduced the burning rates at every tested pressure. The pressure exponents of tested propellants were reduced by 0.5 per cent FS/2.5 per cent CP-Bi/0.5 per cent J-Cu with a factor of 17 per cent . The quenched surface observations significantly differed with the additions of diverse composite catalysts, which were consistent with the burning rate results.Defence Science Journal, 2009, 59(3, pp.284-293,

  19. Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum.

    Science.gov (United States)

    Qiao, Na; Xu, Xingliang; Hu, Yuehua; Blagodatskaya, Evgenia; Liu, Yongwen; Schaefer, Douglas; Kuzyakov, Yakov

    2016-01-01

    Decomposition of organic matter (OM) in soil, affecting carbon (C) cycling and climate feedbacks, depends on microbial activities driven by C and nitrogen (N) availability. However, it remains unknown how decomposition of various OMs vary across global supplies and ratios of C and N inputs. We examined OM decomposition by incubating four types of OM (leaf litter, wood, organic matter from organic and mineral horizons) from a decay continuum in a subtropical forest at Ailao Mountain, China with labile C and N additions. Decomposition of wood with high C:N decreased for 3.9 to 29% with these additions, while leaf decomposition was accelerated only within a narrow C:N range of added C and N. Decomposition of OM from organic horizon was accelerated by high C:N and suppressed by low C:N, but mineral soil was almost entirely controlled by high C:N. These divergent responses to C and N inputs show that mechanisms for priming (i.e. acceleration or retardation of OM decomposition by labile inputs) vary along this decay continuum. We conclude that besides C:N ratios of OM, those of labile inputs control the OM decay in the litter horizons, while energy (labile C) regulates decomposition in mineral soil. This suggests that OM decomposition can be predicted from its intrinsic C:N ratios and those of labile inputs. PMID:26806914

  20. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    Science.gov (United States)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  1. Salt additions alter short-term nitrogen and carbon mobilization in a coastal Oregon Andisol.

    Science.gov (United States)

    Compton, Jana E; Church, M Robbins

    2011-01-01

    Deposition of sea salts is commonly elevated along the coast relative to inland areas, yet little is known about the effects on terrestrial ecosystem biogeochemistry. We examined the influence of NaCl concentrations on N, C, and P leaching from a coastal Oregon forest Andisol in two laboratory studies: a rapid batch extraction (approximately 1 d) and a month-long incubation using microlysimeters. In the rapid extractions, salt additions immediately mobilized significant amounts of ammonium and phosphate but not nitrate. In the month-long incubations, salt additions at concentrations in the range of coastal precipitation increased nitrate leaching from the microcosms by nearly 50% and reduced the mobility of dissolved organic carbon. Our findings suggest that coupled abiotic-biotic effects increase nitrate mobility in these soils: exchange of sodium for ammonium, then net nitrification. Changes in sea salt deposition to land and the interactions with coastal soils could alter the delivery of N and C to sensitive coastal waters. PMID:21869523

  2. Mechanism of hydrofluoric acid formation in ethylene carbonate electrolytes with fluorine salt additives

    Science.gov (United States)

    Tebbe, Jonathon L.; Fuerst, Thomas F.; Musgrave, Charles B.

    2015-11-01

    We utilized density functional theory to examine HF generation in lithium-ion battery electrolytes from reactions between H2O and the decomposition products of three electrolyte additives: LiPF6, LiPOF4, and LiAsF6. Decomposition of these additives produces PF5, AsF5, and POF3 along with LiF precipitates. We found PF5 and AsF5 react with H2O in two sequential steps to form two HF molecules and POF3 and AsOF3, respectively. PF5 (or AsF5) complexes with H2O and undergoes ligand exchange to form HF and PF4OH (AsF4OH) with an activation barrier of 114.2 (30.5) kJ mol-1 and reaction enthalpy of 14.6 (-11.3) kJ mol-1. The ethylene carbonate (EC) electrolyte forms a Lewis acid-base complex with the PF4OH (AsF4OH) product, reducing the barrier to HF formation. Reactions of POF3 were examined and are not characterized by complexation of POF3 with H2O or EC, while PF5 and AsF5 complex favorably with H2O and EC. HF formation from POF3 occurs with a reaction enthalpy of -3.8 kJ mol-1 and a 157.7 kJ mol-1 barrier, 43.5 kJ mol-1 higher than forming HF from PF5. HF generation in electrolytes employing LiPOF4 should be significantly lower than those using LiPF6 or LiAsF6 and LiPOF4 should be further investigated as an alternative electrolyte additive.

  3. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    Science.gov (United States)

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    The release of carbon through plant roots to the soil has been recognized as a governing factor for soil microbial community composition and decomposition processes, constituting an important control for ecosystem biogeochemical cycles. Moreover, there is increasing awareness that the flux of recently assimilated carbon from plants to the soil may regulate ecosystem response to environmental change, as the rate of the plant-soil carbon transfer will likely be affected by increased plant C assimilation caused by increasing atmospheric CO2 levels. What has received less attention so far is how sensitive the plant-soil C transfer would be to possible regulations coming from belowground, such as soil N addition or microbial community changes resulting from anthropogenic inputs such as biochar amendments. In this study we investigated the size, rate and sensitivity of the transfer of recently assimilated plant C through the root-soil-mycorrhiza-microbial continuum. Wheat plants associated with arbuscular mycorrhizal fungi were grown in split-boxes which were filled either with soil or a soil-biochar mixture. Each split-box consisted of two compartments separated by a membrane which was penetrable for mycorrhizal hyphae but not for roots. Wheat plants were only grown in one compartment while the other compartment served as an extended soil volume which was only accessible by mycorrhizal hyphae associated with the plant roots. After plants were grown for four weeks we used a double-labeling approach with 13C and 15N in order to investigate interactions between C and N flows in the plant-soil-microorganism system. Plants were subjected to an enriched 13CO2 atmosphere for 8 hours during which 15NH4 was added to a subset of split-boxes to either the root-containing or the root-free compartment. Both, 13C and 15N fluxes through the plant-soil continuum were monitored over 24 hours by stable isotope methods (13C phospho-lipid fatty acids by GC-IRMS, 15N/13C in bulk plant

  4. Pulsed addition of limiting-carbon during Aspergillus oryzae fermentation leads to improved productivity of a recombinant enzyme.

    Science.gov (United States)

    Bhargava, Swapnil; Wenger, Kevin S; Marten, Mark R

    2003-04-01

    Fungal morphology in many filamentous fungal fermentations leads to high broth viscosity which limits oxygen mass transfer, and often results in reduced productivity. The objective in this study was to determine if a simple, fed-batch, process strategy-pulsed addition of limiting-carbon source-could be used to reduce fungal broth viscosity, and increase productivity of an industrially relevant recombinant enzyme (glucoamylase). As a control, three Aspergillus oryzae fed-batch fermentations were carried out with continuous addition of limiting-carbon. To determine the effect of pulse-feeding, three additional fermentations were carried out with limiting-carbon added in 90-second pulses, during repeated five-minute cycles. In both cases, overall carbon feed-rate was used to control dissolved oxygen concentration, such that increased oxygen availability led to increased addition of limiting-carbon. Pulse-fed fermentations were found to have smaller fungal mycelia, lower broth viscosity, and improved oxygen mass transfer. As a result, more carbon was added to pulse-fed fermentations that led to increased enzyme productivity by as much as 75%. This finding has significant implications for the bioprocessing industry, as a simple process modification which is likely to cost very little to implement in most production facilities, has the potential to substantially increase productivity. PMID:12569630

  5. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, D.; Silver, W.L.; Torn, M.S.; McDowell, W.H.

    2011-04-15

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these Nrich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p\\0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p\\0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.

  6. Graphene Platelets as Morphology Tailoring Additive in Carbon Nanotube Transparent and Flexible Electrodes for Heating Applications

    Directory of Open Access Journals (Sweden)

    Grzegorz Wroblewski

    2015-01-01

    Full Text Available Flexible and transparent electrodes were fabricated with spray coating technique from paints based on multiwalled carbon nanotubes with the addition of graphene platelets. The work presents the influence of graphene platelets on the paints rheology and layers morphology, which has a strong connection to the electrooptical parameters of the electrodes. The paints rheology affects the atomization during spray coating and later the leveling of the coating on the substrate. Both technological aspects shape the morphology of the electrode and the distribution of nanoparticles in the coating. All these factors influence the sheet resistance and roughness, which is linked to the optical transmission and absorbance. In our research the electrode was applied as a transparent and elastic heating element with 68% optical transmission at 550 nm wavelength and 8.4 kΩ/□ sheet resistance. The elastic heating element was tested with a thermal camera at the 3 diverse supply voltages −20, 30, and 60 VDC. The test successfully confirmed and supported our proposed uses of elaborated electrodes.

  7. Magnetically anisotropic additive for scalable manufacturing of polymer nanocomposite: iron-coated carbon nanotubes

    Science.gov (United States)

    Yamamoto, Namiko; Manohara, Harish; Platzman, Ellen

    2016-02-01

    Novel nanoparticles additives for polymer nanocomposites were prepared by coating carbon nanotubes (CNTs) with ferromagnetic iron (Fe) layers, so that their micro-structures can be bulk-controlled by external magnetic field application. Application of magnetic fields is a promising, scalable method to deliver bulk amount of nanocomposites while maintaining organized nanoparticle assembly throughout the uncured polymer matrix. In this work, Fe layers (˜18 nm thick) were deposited on CNTs (˜38 nm diameter and ˜50 μm length) to form thin films with high aspect ratio, resulting in a dominance of shape anisotropy and thus high coercivity of ˜50-100 Oe. The Fe-coated CNTs were suspended in water and applied with a weak magnetic field of ˜75 G, and yet preliminary magnetic assembly was confirmed. Our results demonstrate that the fabricated Fe-coated CNTs are magnetically anisotropic and effectively respond to magnetic fields that are ˜103 times smaller than other existing work (˜105 G). We anticipate this work will pave the way for effective property enhancement and bulk application of CNT-polymer nanocomposites, through controlled micro-structure and scalable manufacturing.

  8. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition.

    Science.gov (United States)

    Wang, Wei; Ding, Yi; Wang, Yuhui; Song, Xinshan; Ambrose, Richard F; Ullman, Jeffrey L

    2016-10-01

    Nitrogen removal performance response of twelve constructed wetlands (CWs) to immobilized nitrifier pellets and different influent COD/N ratios (chemical oxygen demand: total nitrogen in influent) were investigated via 7-month experiments. Nitrifier was immobilized on a carrier pellet containing 10% polyvinyl alcohol (PVA), 2.0% sodium alginate (SA) and 2.0% calcium chloride (CaCl2). A batch experiment demonstrated that 73% COD and 85% ammonia nitrogen (NH4-N) were degraded using the pellets with immobilized nitrifier cells. In addition, different carbon source supplement strategies were applied to remove the nitrate (NO3-N) transformed from NH4-N. An increase in COD/N ratio led to increasing reduction in NO3-N. Efficient nitrification and denitrification promoted total nitrogen (TN) removal in immobilized nitrifier biofortified constructed wetlands (INB-CWs). The results suggested that immobilized nitrifier pellets combined with high influent COD/N ratios could effectively improve the nitrogen removal performance in CWs. PMID:27396293

  9. Effect of Additives and pH on the Formation of Carbonate Mineral by CO2 Sequestration of Cement Paste

    Science.gov (United States)

    Lee, J. H.; Hwang, J.; Lee, H.; Son, B. S.; Oh, J.

    2015-12-01

    CO2 in the atmosphere causes a global warming that is a big issue nowadays. Many studies of CO2 capture and storage (CCS) technologies have been studied all over the world. Waste cement is a good source for aqueous carbonation because it is rich in calcium. Therefore, this study was performed to develop the aqueous carbonation method for waste cement powder. Cement paste was made with water/cement ratio of 6:4 and cured for 28 days in water bath. The cement paste was pulverized into a fine powder sizing less than 0.15 mm. To study effect of additives and pH on the formation of carbonate minerals, aqueous carbonation experiments were conducted. The mineral compositions and morphology of carbonate mineral were identified by XRD and SEM/EDS analysis. 1.0 M NaCl and 0.25 M MgCl2 were applied as additives. Aqueous carbonation experiment was conducted with injecting pure CO2 gas (99.9%) to a reactor containing 200 ㎖ of reacting solution. The pH of reacting solution was controled to determine formational condition of carbonate minerals. In 0.25 M MgCl2 solution, calcite was dominant mineral at high pH. More aragonite, however, formed as decreasing pH of solution with injection of CO2. The presence of Mg2+ in solution makes aragonite more dominant than calcite. Aragonite was mainly formed at the high pH of solution with 1.0 M NaCl additive, whereas calcite was more preponderant mineral than aragonite as falling pH. It show that unstable aragonite transformed to calcite as decreasing pH. In no additive solution, vaterite was dominantly formed at the initial stage of experiement, but unstable vaterite transformed to well crystallized calcite with further carbonation.

  10. Performance of Submerged Membrane Bioreactor Combined with Powdered Activated Carbon Addition for the Treatment of an Industrial Wastewater

    OpenAIRE

    Tri Widjaja; Ali Altway; Soeprijanto Soeprijanto

    2010-01-01

    Membrane technology is one of the alternative solutions to overcome industrial wastewater treatment developed nowadays. The addition of PAC (Powdered Activated Carbon) in the activated sludge using Submerged Membrane Adsorption Hybrid Bioreactor (SMAHBR) is expected to increase the organic material removal. The purpose of this study was to determine the performance of submerged membrane bioreactor and activated carbon adsorption capacity of organic materials in wastewater. This study used SIE...

  11. The influence of polyaspartate additive on the growth and morphology of calcium carbonate crystals

    Science.gov (United States)

    Gower, Laurie Anne

    The addition of low levels of polyaspartate to a supersaturated calcium carbonate (CaCOsb3) solution leads to unusual morphologies in the inorganic phase. Spherulitic vaterite aggregates with helical protrusions, and distorted calcite crystals that contain spiral pits, have been produced. The helical particles are coated with an inorganic membrane that appears to be responsible for the helical twist. The polymer also causes deposition of thin CaCOsb3 tablets and films on the glass substrate. Two distinct types of films are deposited; the first is a mosaic of calcite crystals, and the second is spherulitic vaterite. In situ observations of the crystallization reaction have determined that the thin-film morphology is a result of the phase separation of a hydrated CaCOsb3/polymer liquid-precursor, whereby accumulation of isotropic droplets creates a coating on the substrate, and subsequent dehydration and crystallization yields birefringent CaCOsb3 films. During the amorphous to crystalline transition, incremental growth steps lead to "transition bars" and sectored calcite tablets. This in vitro system was originally modeled after certain aspects of CaCOsb3 biomineralization, in which the soluble proteins extracted from biominerals tend to have high levels of aspartic acid residues. Based on the similarities between features exhibited by the products of this system and those in biominerals, an argument has been presented to suggest that this polymer-induced liquid-precursor (PILP) process is involved in the morphogenesis of CaCOsb3 biominerals. These features include the following: thin CaCOsb3 tablets that grow laterally; tablets that express unstable crystallographic faces; non-faceted single crystals with curved surfaces; spatially-delineated single crystals; sectored calcite tablets; hollow-shell spheres; calcium carbonate cements; and magnesium-bearing calcites. This work has demonstrated that a means of morphological control can be accomplished through non

  12. Topsoil organic carbon content of Europe, a new map based on a generalised additive model

    Science.gov (United States)

    de Brogniez, Delphine; Ballabio, Cristiano; Stevens, Antoine; Jones, Robert J. A.; Montanarella, Luca; van Wesemael, Bas

    2014-05-01

    There is an increasing demand for up-to-date spatially continuous organic carbon (OC) data for global environment and climatic modeling. Whilst the current map of topsoil organic carbon content for Europe (Jones et al., 2005) was produced by applying expert-knowledge based pedo-transfer rules on large soil mapping units, the aim of this study was to replace it by applying digital soil mapping techniques on the first European harmonised geo-referenced topsoil (0-20 cm) database, which arises from the LUCAS (land use/cover area frame statistical survey) survey. A generalized additive model (GAM) was calibrated on 85% of the dataset (ca. 17 000 soil samples) and a backward stepwise approach selected slope, land cover, temperature, net primary productivity, latitude and longitude as environmental covariates (500 m resolution). The validation of the model (applied on 15% of the dataset), gave an R2 of 0.27. We observed that most organic soils were under-predicted by the model and that soils of Scandinavia were also poorly predicted. The model showed an RMSE of 42 g kg-1 for mineral soils and of 287 g kg-1 for organic soils. The map of predicted OC content showed the lowest values in Mediterranean countries and in croplands across Europe, whereas highest OC content were predicted in wetlands, woodlands and in mountainous areas. The map of standard error of the OC model predictions showed high values in northern latitudes, wetlands, moors and heathlands, whereas low uncertainty was mostly found in croplands. A comparison of our results with the map of Jones et al. (2005) showed a general agreement on the prediction of mineral soils' OC content, most probably because the models use some common covariates, namely land cover and temperature. Our model however failed to predict values of OC content greater than 200 g kg-1, which we explain by the imposed unimodal distribution of our model, whose mean is tilted towards the majority of soils, which are mineral. Finally, average

  13. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement.

    Science.gov (United States)

    Persson, Cecilia; López, Alejandro; Fathali, Hoda; Hoess, Andreas; Rojas, Ramiro; Ott, Marjam Karlsson; Hilborn, Jöns; Engqvist, Håkan

    2016-01-01

    With the increasing elderly population an increase in the number of bony fractures associated to age-related diseases such as osteoporosis also follows. The relatively high stiffness of the acrylic bone cements used in these patients has been suggested to give raise to a suboptimal load distribution surrounding the cement in vivo, and hence contribute to clinical complications, such as additional fractures. The aim of this study was to develop a low-modulus bone cement, based on currently used, commercially available poly(methyl methacrylate) (PMMA) cements for vertebroplasty. To this end, acrylate end-functionalized oligo(trimethylene carbonate) (oTMC) was incorporated into the cements, and the resulting compressive mechanical properties were evaluated, as well as the cytotoxic and handling properties of selected formulations. Sixteen wt%oTMC was needed in the vertebroplastic cement Osteopal V to achieve an elastic modulus of 1063 MPa (SD 74), which gave a corresponding compressive strength of 46.1 MPa (SD 1.9). Cement extracts taken at 1 and 12 hours gave a reduced MG-63 cell viability in most cases, while extracts taken at 24 hours had no significant effect on cell behavior. The modification also gave an increase in setting time, from 14.7 min (SD 1.7) to 18.0 min (SD 0.9), and a decrease in maximum polymerization temperature, from 41.5°C (SD 3.4) to 30.7°C (SD 1.4). While further evaluation of other relevant properties, such as injectability and in vivo biocompatibility, remains to be done, the results presented herein are promising in terms of approaching clinically applicable bone cements with a lower stiffness. PMID:26727581

  14. Regulation of Soil Microbial Carbon-use Efficiency by Soil Moisture, Substrate Addition, and Incubation Time

    Science.gov (United States)

    Stark, J.

    2015-12-01

    Microbial carbon-use efficiency (CUE) is a key variable in biogeochemical cycling that regulates soil C sequestration, greenhouse gas emissions, and retention of inorganic nutrients. Microbial CUE is the fraction of C converted to biomass rather than respired as CO2. Biogeochemical models have been shown to be highly sensitive to variation in CUE; however, we currently have a poor understanding of how CUE responds to environmental variables such as soil moisture and nutrient limitations. We examined the effect of soil moisture and C supply on CUE in soil from a western hemlock / sitka spruce forest in Oregon, USA, using a novel technique which supplies 13C and 15N substrates through the gas phase so that water addition is not necessary. Soil samples (28 g oven-dry equiv. wt) at two water potentials (-0.03 and -3.55 MPa) were exposed to 13C-acetic acid vapor for either 6 or 30 sec to provide two different concentrations of acetate to soil microbial communities. The soils were also injected with small amounts of 15NH3 gas to allow quantification of microbial N assimilation rates and to provide an alternate method of calculating CUE. Rates of 13CO2 respiration were measured continuously during a 48-h incubation using cavity ring-down spectroscopy. Soil samples were extracted at seven time intervals (0, 0.5, 1.5, 4.5, 12, 24, and 48 h) in 0.5 M K2SO4 and analyzed for DO13C, microbial 13C, DO15N, inorganic 15N, and microbial 15N to calculate how gross rates of C and N assimilation and microbial CUE change with incubation time. As expected, microbial C and N assimilation rates and CUE increased with soil moisture and the quantity of acetate added; however, C:N assimilated was higher at lower soil moisture, suggesting that either C-storage compounds were being created, or that fungal communities were responsible for a greater proportion of the assimilation in drier soils. Assimilation rates and CUE also changed with incubation time, demonstrating that estimates of CUE

  15. TGA and DMA studies of blends from very good coking Zofiowka coal and various carbon additives: Weakly coking coals, industrial coke and carbonized plants

    Energy Technology Data Exchange (ETDEWEB)

    Krzesinska, M. [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marii Curie- Sklodowskiej 34, PL-41819 Zabrze (Poland); Silesian Technical University, Department of Electron Technology, Institute of Physics, Krzywoustego 2, PL-44100 Gliwice (Poland); Szeluga, U.; Majewska, J.; Pusz, S.; Czajkowska, S. [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marii Curie- Sklodowskiej 34, PL-41819 Zabrze (Poland); Smedowski, L. [Silesian Technical University, Department of Electron Technology, Institute of Physics, Krzywoustego 2, PL-44100 Gliwice (Poland); Kwiecinska, B. [AGH-University of Science and Technology, Aleja Mickiewicza 30, PL-30059 Krakow (Poland)

    2010-04-01

    The aim of this work is to study the effects of various carbon additives, blended with very good coking coal, on the thermal decomposition of the blends. The blends possess fixed content (50 wt.%) of very good coking coal from the Zofiowka Mine. The remaining components of the blends are worse coking coals collected from the Janina, Krupinski, Szczyglowice, Jas-Mos mines (coals of carbon content ranging from 73 up to 92 wt.%), and very porous carbons: coke (from the coking plant Zdzieszowice), as well as woody stems of bamboo and yucca carbonized at 400 C. The content of porous carbon in a blend does not exceed 20 wt.%. Thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) are used in the study. The weight loss during low-temperature pyrolysis (< 600 C), and storage/loss elastic moduli measured as a function of the increasing temperature are related to the kind and concentration of additives. The temperature dependences of elastic moduli determined for binary coal blends differ clearly from those of ternary coal blends. The consumption of energy during the interaction of the components in binary blends was found to be distinctly bigger than the one observed for ternary blends. Non-softening additives such as carbonized plants and low rank coal, containing many functional groups, diminish both moduli of the blends distinctly. However, the addition of coke does not reduce the value of the elastic moduli but increases the width of the maximum occurring in the temperature dependence of the moduli. The influence of the coke additive on rheological properties of the blends, different in comparison with the remaining additives studied, was assigned with different number of functional groups and radicals. (author)

  16. Thermal stability and oxidizing properties of mixed alkaline earth-alkali molten carbonates: A focus on the lithium-sodium carbonate eutectic system with magnesium additions

    International Nuclear Information System (INIS)

    Highlights: • TG/DSC analysis was conducted on magnesium-containing eutectic Li/Na eutectic carbonates. • Magnesium influence on the oxygen solubility properties of carbonate was also experimentally determined at 600 °C and 650 °C. • A reproducible partial decarbonation process in premelting region caused formation of magnesium oxycarbonate-like phases. • The acidobase buffering action of magnesium oxycarbonate species could explain the high basic/oxidizing properties of such carbonate melts. • A general correlation between thermal instability in premelting region and basic/oxidizing melt properties was established. - Abstract: A comparative study on thermal behavior and oxygen solubility properties of eutectic 52/48 lithium/sodium carbonate salt containing minor additions of magnesium up to 10 mol% has been made in order to determine whether a general correlation between these two properties can be found or not. Consecutive TG/DSC heating/cooling thermal cycles carried out under alternating CO2 and N2 gas flows allowed to assign thermal events observed in the premelting region to a partial decarbonation process of the magnesium-alkali mixed carbonates. The observed decarbonation process at 460 °C is believed to come from initial stage of thermal decomposition of magnesium carbonate resulting in the metastable formation of magnesium oxycarbonate-like phases MgO·2MgCO3, in a similar manner as previously reported for lanthanum. Reversible formation and decomposition of the magnesium carbonate phase has been observed under a CO2 gas atmosphere. The intensity of the decomposition process shows a maximum for a 3 mol% MgO addition that gives also the highest oxygen solubility, suggesting therefore that instability thermal analysis in the premelting region can be considered as providing an effective measure of the basicity/oxidizing properties of alkali carbonate melts with magnesium or, in more general terms, with cations that are strong modifiers of the

  17. Effect of ZnO Addition on Structural Properties of ZnO-PANi/ Carbon Black Thin Films

    International Nuclear Information System (INIS)

    The aim of this project was to investigate the effect of ZnO addition on the structural properties of ZnO-PANi/ carbon black thin films. The sol gel method was employed for the preparation of ZnO sol. The sol was dried for 24 h at 100 degree Celsius and then annealed at 600 degree Celsius for 5 h. XRD characterization of the ZnO powder showed the formation of wurtzite type ZnO crystals. The ZnO powder were mixed into PANi/ carbon black solution which was dissolved into M-Pyrol, N-Methyl-2-Pyrrolidinone (NMP) to produce a composite solution of ZnO-PANi/ carbon black. The weight ratio of ZnO were 4 wt %, 6 wt % and 8 wt %. The composite solutions were deposited onto glass substrates using a spin-coating technique to fabricate ZnO-PANi/ carbon black thin films. AFM characterization showed the decreasing of average roughness from 7.98 nm to 2.23 nm with the increment of ZnO addition in PANi/ carbon black films. The thickness of the films also decreased from 59.5 nm to 28.3 nm. FESEM image revealed that ZnO-PANi/ carbon black thin films have changed into agglomerated surface morphology resulting in the increment of porosity of the films. (author)

  18. Impact of the addition of a compound fertilizer on the dissolution of carbonate rock tablets: A column experiment

    International Nuclear Information System (INIS)

    Highlights: → Impact of compound fertilizer on carbonate dissolution is studied by columns. → Compound fertilizer reduced soil pH and increased the leach of ions. → Carbonate dissolution accelerated due to compound fertilizer application. → Impact of fertilizer on the budget of CO2 sink cannot be disregarded. - Abstract: The chemical weathering dynamics of carbonate and the C cycle are strongly influenced by anthropogenic perturbations such as agricultural fertilization. In this study, two columns (a control column and a fertilizer column) with carbonate rock tablets in the bottom of each were established to explore the impact of the addition of a compound fertilizer on the dissolution of carbonate rock tablets. The impacts were assessed from hydro-chemical analyses of the leachates from the two columns and comparison of the amount of dissolution of the carbonate rock tablets. The results showed that NH4+, free CO2, HCO3-,HPO42- and COD increased in the leachate after addition of the compound fertilizer, whereas the pH decreased. The pH decrease was attributed to the release of protons from the nitrification reaction. The amount of dissolution of limestone and dolomite tablets decreased as a result of the compound fertilizer application. Furthermore, the calculated results using Phreeqci software showed that the compound fertilizer reduced the saturation index of calcite and dolomite. Thus, the impact of a compound fertilizer, especially an ammonium fertilizer, on the budget of the CO2 sink cannot be disregarded on either a regional or a global scale.

  19. Thermodynamic aspects of production of composites by sintering powder metal materials modified with nano-sized carbon additives

    International Nuclear Information System (INIS)

    Based on the thermodynamic principles it is shown that nano-sized additives with high surface energy have a significant influence on the processes of surface and bulk diffusion in the powder system accelerating the sintering and the compaction of the powder composition. During heating of the metal powder composition of iron-based and nano-sized diamond-graphite particles, there occur the restoration of metal oxides due to their interaction with the carbon diamond-graphite additives and the dissolution of graphite layers in iron followed by diffusion of carbon atoms in the surface layers of metal powder particles. The particles of nano-sized diamond-graphite additives may be additional crystallization centers of molten matrix volumes ensuring the formation of a more dispersed and homogeneous structure.(authors)

  20. Soil carbon sequestration in semi-arid soil through the addition of fuel gas desulfurization gypsum (FGDG)

    Science.gov (United States)

    Han, Young-Soo; Tokunaga, Tetsu; Oh, Chamteut

    2014-05-01

    This study investigated a new strategy for increasing carbon retention in slightly alkaline soils through addition of fuel gas desulfurization gypsum (FGDG, CaSO4•2H2O). FGDG is moderately soluble and thus the FGDG amendment may be effective to reduce microbial respiration, to accelerate calcite (CaCO3) precipitation, and to promote soil organic carbon (SOC) complexation on mineral surfaces, but rates of these processes need to be understood. The effects of FGDG addition were tested in laboratory soil columns with and without FGDG-amended layers, and in greenhouse soil columns planted with switchgrass, a biofuel crop. The results of laboratory column experiments demonstrated that additions of FGDG promote soil carbon sequestration through suppressing microbial respiration to the extent of ~200 g per m2 soil per m of supplied water, and promoting calcite precipitation at similar rates. The greenhouse experiments showed that the FGDG treatments did not adversely affect biomass yield (~600 g dry biomass/m2/harvest) at the higher irrigation rate (50 cm/year), but substantially reduced recoverable biomass under the more water-limited conditions (irrigation rate = 20 cm/year). The main achievements of this study are (1) the identification of conditions in which inorganic and organic carbon sequestration is practical in semi-arid and arid soils, (2) development of a method for measuring the total carbon balance in unsaturated soil columns, and (3) the quantification of different pathways for soil carbon sequestration in response to FGDG amendments. These findings provide information for evaluating land use practices for increased soil carbon sequestration under semi-arid region biofuel crop production.

  1. Improved cement mortars by addition of carbonated fly ash from solid waste incinerators

    Directory of Open Access Journals (Sweden)

    López-Zaldívar, O.

    2015-09-01

    Full Text Available This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates by treated MSWIFA. Physical/mechanical properties of these mortars have been studied. Presence of Zn, Pb, Cu and Cd has been also analyzed confirming that leaching of these heavy metal ions is mitigated. Conclusions prove better behavior of CAC and CSA mortars than those of CEM-I and CEM-II cement. Results are remarkable for the CAC mortars, improving reference strengths in more than 25%, which make them a fast-curing product suitable for the repair of structures or industrial pavements.Este artículo presenta los resultados del desarrollo de morteros mejorados con la incorporación de cenizas volantes de residuos sólidos urbanos inertizadas en forma de carbonatos. Además se consigue la encapsulación de un residuo peligroso. Las cenizas presentan una alta concentración de cloruros, Zn y Pb. Se ha desarrollado un proceso de estabilización con NaHCO3 reduciendo en un 99% el contenido de cloruros. Los morteros reemplazan un 10% en peso del árido por cenizas tratadas. Se han analizado sus propiedades físico/mecánicas y la presencia de Zn, Pb, Cu y Cd. Se demuestra un mejor comportamiento de los morteros de CAC y CSA que los de CEM-I y CEM-II y se mitiga el lixiviado de metales pesados. Los resultados son significativos en los morteros CAC al mejorar las resistencias de los de referencia en un 25%. Los morteros desarrollados son de curado rápido adecuados para la reparación de estructuras o soleras industriales.

  2. Microbiological and Mineralogical Characterization of Columbia River Basalts Prior to Supercritical Carbon Dioxide Addition

    Science.gov (United States)

    Colwell, F. S.; Fisk, M. R.; Yip, H.; Schwartz, A.; Briggs, B. R.; Spane, F.

    2009-12-01

    Deep geologic sequestration of supercritical carbon dioxide can remove excess carbon dioxide from the atmosphere but will cause profound changes to the geochemistry and microorganisms in the deep strata where it is injected. Here we report the original subsurface microbial constituents in basalt aquifers where supercritical carbon dioxide will be injected as part of the DOE Big Sky Regional Partnership field pilot investigation. Microbial cells were acquired by filtration of water from five discrete depth intervals in the Columbia River basalts during drilling of the borehole in eastern Washington state. Microbes were present in all five of the groundwater samples collected. DNA extracted from the cells was successfully amplified using 16S rRNA gene primers for bacteria, but not archaea. Terminal restriction fragment length polymorphism suggested that microbial communities in aquifers from the upper Grand Ronde basalt flows (518 to 553 m) were similar to each other, but distinct from those present in groundwater from the shallower, overlying Wanapum and deeper Grand Ronde basalt flows. Quantitative polymerase chain reaction directed at the 16S rRNA gene indicated that the aquifers had approximately 10,000 cells per ml. To date, our analysis demonstrates the presence of diverse microbial communities at and above the depths where a limited field test carbon dioxide injection (ca. 1,000 metric tons) is planned for early in 2010. A variety of secondary mineral assemblages (mainly clay minerals, silicates and carbonates) have been observed in thin section, and X-ray diffraction examination of the basalt cuttings from the pilot characterization borehole. This pre-injection study supports our inquiry of how indigenous microbial communities may be altered by supercritical carbon dioxide injection, and possible processes that may increase basalt reaction/weathering and re-precipitation of carbonate minerals. Microbial communities that become established after the carbon

  3. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers

    KAUST Repository

    Satyawali, Yamini

    2011-04-01

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)3) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)3), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs. © 2010 Elsevier B.V.

  4. Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Baath, Erland;

    2007-01-01

    carbon turnover (measured as changes in the pools during a growing-season-long field incubation of soil cores in situ). The mainly N limited bacterial communities had shifted slightly towards limitation by C and P in response to seven growing seasons of warming. This and the significantly increased...... bacterial growth rate under warming may partly explain the observed higher C loss from the warmed soil. This is furthermore consistent with the less dramatic increase in the contents of dissolved organic carbon (DOC) and dissolved organic N (DON) in the warmed soil than in the soil from ambient temperature...... during the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the...

  5. Single-walled carbon nanotubes modified by ionic liquid as antiwear additives of thermoplastics

    OpenAIRE

    Carrión, F.J.; Espejo, C.; Sanes, J.; Bermúdez, M.D.

    2010-01-01

    Abstract Pristine single-walled carbon nanotubes (CNTs) were dispersed in the room-temperature ionic liquid (IL) 1-octyl, 3-methylimidazolium tetrafluoroborate ([OMIM]BF4) by grinding and ultrasounds. Excess IL was removed to obtain single-walled carbon nanotubes modified by [OMIM]BF4 (mCNTs). mCNTs were added in a 1wt.% to polystyrene (PS), polymethylmethacrylate (PMMA) and polycarbonate (PC) to obtain PS+mCNT, PMMA+mCNT and PC+mCNT. The dry tribological performance of the new nan...

  6. Effect of powdered activated carbon (PAC) on MBR performance and effluent trihalomethane formation: At the initial stage of PAC addition.

    Science.gov (United States)

    Gao, Yue; Ma, Defang; Yue, Qinyan; Gao, Baoyu; Huang, Xia

    2016-09-01

    In this study, the MBR was used to treat municipal wastewater for reuse. Effects of powdered activated carbon (PAC) addition on MBR system in terms of effluent water quality, trihalomethane (THM) formation and membrane organic fouling tendency of MBR sludge supernatant at the initial stage of PAC addition were investigated. Effects of chlorine dose and contact time on THM formation and speciation were also studied. PAC addition enhanced the removal of organic matters, especially aromatic components, which improved the UV254 removal rate from 34% to 83%. PAC addition greatly reduced the membrane organic fouling tendency of MBR sludge supernatant. PAC addition reduced the MBR effluent trihalomethane formation potential (THMFP) from 351.29 to 241.95μg/L, while increased THM formation reactivity by 42%. PAC addition enhanced the formation of higher toxic bromine-containing THMs. High chlorine dose and contact time resulted in higher THM formation but lower proportion of bromine-containing THMs. PMID:27318162

  7. Why low powdered activated carbon addition reduces membrane fouling in MBRs

    NARCIS (Netherlands)

    Remy, M.J.J.; Potier, V.; Temmink, B.G.; Rulkens, W.H.

    2010-01-01

    Previous research had demonstrated that powdered activated carbon (PAC), when applied at very low dosages and long SRTs, reduces membrane fouling in membrane bioreactor (MBRs). In this contribution several mechanisms to explain this beneficial effect of PAC were investigated, including enhanced scou

  8. Turnover of soil carbon pools following addition of switchgrass-derived biochar to four soils

    Science.gov (United States)

    The amendment of soils with biochar may improve plant growth and sequester carbon, especially in marginal soils not suitable for the majority of commodity production. While biochar can persist in soils, it is not clear whether its persistence is affected by soil type. Moreover, we know little of how...

  9. Lithium carbonate as an electrolyte additive for enhancing the high-temperature performance of lithium manganese oxide spinel cathode

    International Nuclear Information System (INIS)

    Highlights: • The addition of Li2CO3 to the electrolyte can suppress the contents of HF in the electrolyte. • The low self-discharge rate of the LiMn2O4 cells with Li2CO3 is lower than that of no additive. • The LiMn2O4 cells with Li2CO3 exhibit better rate capability and excellent cycle stability than that without Li2CO3. • A stable film can be formed on the LiMn2O4 cathode using containing-Li2CO3 electrolyte. - Abstract: The effect of lithium carbonate (Li2CO3) as an additive on the stability of the electrolyte and cycling performance of lithium manganese oxide spinel (LiMn2O4) batteries at elevated temperature was studied. The addition of Li2CO3 to the electrolyte can suppress the capacity fading of LiMn2O4 batteries. The linear sweep voltammetry (LSV) and the cyclic voltammetry (CV) indicate that Li2CO3 has a lower oxidation potential in the mixed solvents of ethylene carbonate (EC), diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), participating in the formation process of the stable cathode electrolyte interface (CEI) film. In addition, the results of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrate that the stable CEI film of the cells with Li2CO3 can be formed, which can effectively reduce the dissolution of Mn2+ from LiMn2O4 into the electrolyte at elevated temperature. It is concluded that the addition of Li2CO3 to a solution of 1 M LiPF6–EC/EMC/DEC = 1/1/1 (weight ratio) may decrease solvent decomposition and change the structure of the passivation film on the LiMn2O4 cathode

  10. Effects of porous carbon additives and induced fluorine on low dielectric constant polyimide synthesized with an e-beam

    International Nuclear Information System (INIS)

    We report the synthesis of a polyimide matrix with a low dielectric constant for application as an intercalation material between metal interconnections in electronic devices. Porous activated carbon was embedded in the polyimide to reduce the dielectric constant, and a thin film of the complex was obtained using the spin-coating and e-beam irradiation methods. The surface of the thin film was modified with fluorine functional groups to impart water resistance and reduce the dielectric constant further. The water resistance was significantly improved by the modification with hydrophobic fluorine groups. The dielectric constant was effectively decreased by porous activated carbon. The fluorine modification also resulted in a low dielectric constant on the polyimide surface by reducing the polar surface free energy. The dielectric constant of polyimide film decreased from 2.98 to 1.9 by effects of porous activated carbon additive and fluorine surface modification.

  11. Multi-Walled Carbon Nanotube Functionalization by Radical Addition Using Hydroxymethylene Groups.

    Science.gov (United States)

    Rodríguez-Jiménez, Rubén; Alonso-Núñez, Gabriel; Paraguay-Delgado, Francisco; Espinoza-Gómez, Heriberto; Vélez-López, Ernesto; Rogel-Hernández, Eduardo

    2016-01-01

    Synthetic methodology and characterization of multi-walled carbon nanotubes (MWCNTs) function- alized with hydroxymethylene groups are reported. The MWCNTs were synthesized by the spray pyrolysis technique using toluene as carbon source and ferrocene as catalyst. Hydroxymethylation of MWCNTs was carried out by methanol using benzoyl peroxide (BPO) at different quantities (300 to 900 mg); the optimum BPO quantity was 300 mg. The resulting materials were characterized by FT-IR, Raman Spectroscopy, Thermal Gravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). The presence of the hydroxymethylene group on the MWCNTs surface was demonstrated by FT-IR, Raman Spectroscopy, TGA, EDS, TEM and Mass Spectrometry. The func- tionalized MWCNTs were not damaged by this methodology. PMID:27398563

  12. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    Science.gov (United States)

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. PMID:26750627

  13. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery

    Science.gov (United States)

    Saravanan, M.; Ganesan, M.; Ambalavanan, S.

    2014-04-01

    In this work, we report an in situ generated carbon from sugar as additive in the Negative Active Mass (NAM) which enhances the charge-discharge characteristics of the lead-acid cells. In situ formed sugar derived carbon (SDC) with leady oxide (LO) provides a conductive network and excellent protection against NAM irreversible lead sulfation. The effect of SDC and carbon black (CB) added negative plates are characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The results show that subtle changes in the addition of carbon to NAM led to subsequent changes on the performance during partial-state-of-charge (PSoC) operations in lead-acid cells. Furthermore, SDC added cells exhibit remarkable improvement in the rate capability, active material utilization, cycle performance and charge acceptance compared to that of the conventional CB added cells. The impact of SDC with LO at various synthesis conditions on the electrochemical performance of the negative plate is studied systematically.

  14. Effect of Additional Carbonates on CO2 Emission from Calcareous Soil During the Closed-Jar Incubation

    Institute of Scientific and Technical Information of China (English)

    DONG Yan-Jie; CAI Miao; LIANG Bin; ZHOU Jian-Bin

    2013-01-01

    The closed-jar incubation method is widely used to estimate the mineralization of soil organic C.There are two C pools (i.e.,organic and inorganic C) in calcareous soil.To evaluate the effect of additional carbonates on CO2 emission from calcareous soil during closed-jar incubation,three incubation experiments were conducted by adding different types (CaCO3 and MgCO3) and amounts of carbonate to the soil.The addition of carbonates significantly increased CO2 emission from the soil; the increase ranged from 12.0% in the CaCO3 amended soil to 460% in the MgCO3 amended soil during a 100-d incubation.Cumulative CO2 production at the end of the incubation was three times greater in the MgCO3 amended soil compared to the CaCO3 amended one.The CO2 emission increased with the amount of CaCO3 added to the soil.In contrast,CO2 emission decreased as the amount of MgCO3 added to the soil increased.Our results confirmed that the closed-jar incubation method could lead to an overestimate of organic C mineralization in calcareous soils.Because of its effect on soil pH and the dissolution of carbonates,HgC12 should not be used to sterilize calcareous soil if the experiment includes the measurement of soil CO2 production.

  15. Thermal stability and oxidizing properties of mixed alkaline earth-alkali molten carbonates: A focus on the lithium-sodium carbonate eutectic system with magnesium additions

    Energy Technology Data Exchange (ETDEWEB)

    Frangini, Stefano, E-mail: stefano.frangini@enea.it [Hydrogen and Fuel Cell Laboratory (UTRINN-IFC), ENEA CR Casaccia, Via Anguillarese 301, I-00123 Rome (Italy); Scaccia, Silvera [Sustainable Combustion Laboratory (UTTEI-COMSO), ENEA CR Casaccia, Via Anguillarese 301, I-00123 Rome (Italy)

    2013-12-20

    Highlights: • TG/DSC analysis was conducted on magnesium-containing eutectic Li/Na eutectic carbonates. • Magnesium influence on the oxygen solubility properties of carbonate was also experimentally determined at 600 °C and 650 °C. • A reproducible partial decarbonation process in premelting region caused formation of magnesium oxycarbonate-like phases. • The acidobase buffering action of magnesium oxycarbonate species could explain the high basic/oxidizing properties of such carbonate melts. • A general correlation between thermal instability in premelting region and basic/oxidizing melt properties was established. - Abstract: A comparative study on thermal behavior and oxygen solubility properties of eutectic 52/48 lithium/sodium carbonate salt containing minor additions of magnesium up to 10 mol% has been made in order to determine whether a general correlation between these two properties can be found or not. Consecutive TG/DSC heating/cooling thermal cycles carried out under alternating CO{sub 2} and N{sub 2} gas flows allowed to assign thermal events observed in the premelting region to a partial decarbonation process of the magnesium-alkali mixed carbonates. The observed decarbonation process at 460 °C is believed to come from initial stage of thermal decomposition of magnesium carbonate resulting in the metastable formation of magnesium oxycarbonate-like phases MgO·2MgCO{sub 3}, in a similar manner as previously reported for lanthanum. Reversible formation and decomposition of the magnesium carbonate phase has been observed under a CO{sub 2} gas atmosphere. The intensity of the decomposition process shows a maximum for a 3 mol% MgO addition that gives also the highest oxygen solubility, suggesting therefore that instability thermal analysis in the premelting region can be considered as providing an effective measure of the basicity/oxidizing properties of alkali carbonate melts with magnesium or, in more general terms, with cations that are

  16. Significance of carbon additive in negative lead-acid battery electrodes

    Czech Academy of Sciences Publication Activity Database

    Calábek, M.; Micka, Karel; Křivák, P.; Bača, P.

    2006-01-01

    Roč. 158, č. 2 (2006), s. 864-867. ISSN 0378-7753 Institutional research plan: CEZ:AV0Z40400503 Keywords : negative lead battery electrode * cycle life * graphite additive * titanium dioxide additive Subject RIV: CG - Electrochemistry Impact factor: 3.521, year: 2006

  17. Real contact temperatures as the criteria for the reactivity of diamond-like carbon coatings with oil additives

    OpenAIRE

    Kalin, Mitjan; Vižintin, Jože

    2015-01-01

    The operating conditions under which chemical reactions between diamond-like-carbon (DLC) coatings and oil additives occur and the main driving forces, i.e., the activation criteria for these chemical reactions, have not yet been defined. In order to clarify the difference between the test temperature and real contact temperature, and to determine the effect of the real contact temperature for these reactions, we have calculated the contact temperatures using two well-known models and compare...

  18. External Carbon Source Addition as a Means to Control an Activated Sludge Nutrient Removal Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens; Søeberg, Henrik; Kymmel, Mogens

    1994-01-01

    In alternating type activated sludge nutrient removal processes, the denitrification rate can be limited by the availability of readily-degradable carbon substrate. A control strategy is proposed by which an easily metabolizable COD source is added directly to that point in the process at which...... denitrification momentarily occurs. This approach serves to increase the denitrification rate on demand, thereby allowing the accumulation of nitrate and nitrite during periods of peak nitrogen loading to be reduced or avoided. A pilot plant demonstration of the control strategy using acetate as COD source is...

  19. Controlling the Electrostatic Discharge Ignition Sensitivity of Composite Energetic Materials Using Carbon Nanotube Additives

    Energy Technology Data Exchange (ETDEWEB)

    Kade H. Poper; Eric S. Collins; Michelle L. Pantoya; Michael Daniels

    2014-10-01

    Powder energetic materials are highly sensitive to electrostatic discharge (ESD) ignition. This study shows that small concentrations of carbon nanotubes (CNT) added to the highly reactive mixture of aluminum and copper oxide (Al + CuO) significantly reduces ESD ignition sensitivity. CNT act as a conduit for electric energy, bypassing energy buildup and desensitizing the mixture to ESD ignition. The lowest CNT concentration needed to desensitize ignition is 3.8 vol.% corresponding to percolation corresponding to an electrical conductivity of 0.04 S/cm. Conversely, added CNT increased Al + CuO thermal ignition sensitivity to a hot wire igniter.

  20. Effect of vinyl acetate plus vinylene carbonate and vinyl ethylene carbonate plus biphenyl as electrolyte additives on the electrochemical performance of Li-ion batteries

    International Nuclear Information System (INIS)

    For application to Li-ion batteries, we studied the electrochemical behavior and thermal stability of the following two combinations of binary electrolyte additives in a triphenylphosphate (TPP)-containing ionic electrolyte: vinyl acetate (VA) plus vinylene carbonate (VC), and vinyl ethylene carbonate (VEC) plus biphenyl (BP). Mesocarbon microbeads (MCMB) and LiCoO2 were used as the anode and cathode materials, respectively. Cyclic voltammetry (CV), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) were used for the analyses. These results confirmed the capability of the VEC + BP electrolyte additive to improve the cell performance and electrolyte thermal stability in TPP-containing solutions in Li-ion batteries

  1. Performance of Submerged Membrane Bioreactor Combined with Powdered Activated Carbon Addition for the Treatment of an Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Tri Widjaja

    2010-02-01

    Full Text Available Membrane technology is one of the alternative solutions to overcome industrial wastewater treatment developed nowadays. The addition of PAC (Powdered Activated Carbon in the activated sludge using Submerged Membrane Adsorption Hybrid Bioreactor (SMAHBR is expected to increase the organic material removal. The purpose of this study was to determine the performance of submerged membrane bioreactor and activated carbon adsorption capacity of organic materials in wastewater. This study used SIER (Surabaya Industrial Estate Rungkut – Surabaya, Indonesia waste as activated sludge operated at Mixed Liquor Suspended Solid (MLSS concentrations of 8000 and 15000 mg/l, and Chemical Oxygen Demand (COD concentrations of 1500, 2500 mg/l, Sludge Retention Time (SRT of 10;20; and 30 days and activated carbon variables of 0%; 2.5%; 5%; 7.5%; 10%. The results showed that the fouling potential occurred at high MLSS where the COD removal occurred at PAC addition of 10% reaching 91.86%. High Soluble Microbial Product (SMP accumulation (± 10 mg/l occurred in short SRT and high MLSS concentration. PAC addition resulted in decreased microorganisms in the reactor and better effluent of SMAHBR, as a result, the performance of the submerged membrane bioreactor would be restored.

  2. Phosphorus-carbon bond formation by lewis Acid catalyzed/mediated addition of silylphosphines.

    Science.gov (United States)

    Hayashi, Minoru; Matsuura, Yutaka; Nishimura, Yasunobu; Yamasaki, Toshikazu; Imai, Yoshito; Watanabe, Yutaka

    2007-09-28

    Triethylaluminum-catalyzed/mediated addition of a silylphosphine to aldehydes and epoxides is described. Organophosphines containing a silyloxy group at the alpha- or beta-position on the alkyl substituent are successfully prepared in good yields. PMID:17784776

  3. Impacts of powdered activated carbon addition on trihalomethane formation reactivity of dissolved organic matter in membrane bioreactor effluent.

    Science.gov (United States)

    Ma, Defang; Gao, Yue; Gao, Baoyu; Wang, Yan; Yue, Qinyan; Li, Qian

    2014-12-01

    Characteristics and trihalomethane (THM) formation reactivity of dissolved organic matter (DOM) in effluents from two membrane bioreactors (MBRs) with and without powdered activated carbon (PAC) addition (referred to as PAC/MBR and MBR, respectively) were examined to investigate the effects of PAC addition on THM formation of MBR effluent during chlorination. PAC addition increased the specific UV absorbance. Hydrophobic DOM especially hydrophobic acids in PAC/MBR effluent (50%) were more than MBR effluent (42%). DOM with molecular weight <1 kDa constituted 12% of PAC/MBR effluent DOM, which was less than that of MBR effluent (16%). Data obtained from excitation and emission matrix fluorescence spectroscopy revealed that PAC/MBR effluent DOM contained more simple aromatic protein, but had less fulvic acid-like and soluble microbial by-product-like. PAC addition reduced the formation of bromine-containing THMs during chlorination of effluents, but increased THM formation reactivity of effluent DOM. PMID:25150685

  4. Energy budgeting and carbon footprint of transgenic cotton-wheat production system through peanut intercropping and FYM addition.

    Science.gov (United States)

    Singh, Raman Jeet; Ahlawat, I P S

    2015-05-01

    Two of the most pressing sustainability issues are the depletion of fossil energy resources and the emission of atmospheric green house gases like carbon dioxide to the atmosphere. The aim of this study was to assess energy budgeting and carbon footprint in transgenic cotton-wheat cropping system through peanut intercropping with using 25-50% substitution of recommended dose of nitrogen (RDN) of cotton through farmyard manure (FYM) along with 100% RDN through urea and control (0 N). To quantify the residual effects of previous crops and their fertility levels, a succeeding crop of wheat was grown with varying rates of nitrogen, viz. 0, 50, 100, and 150 kg ha(-1). Cotton + peanut-wheat cropping system recorded 21% higher system productivity which ultimately helped to maintain higher net energy return (22%), energy use efficiency (12%), human energy profitability (3%), energy productivity (7%), carbon outputs (20%), carbon efficiency (17%), and 11% lower carbon footprint over sole cotton-wheat cropping system. Peanut addition in cotton-wheat system increased the share of renewable energy inputs from 18 to 21%. With substitution of 25% RDN of cotton through FYM, share of renewable energy resources increased in the range of 21% which resulted into higher system productivity (4%), net energy return (5%), energy ratio (6%), human energy profitability (74%), energy productivity (6%), energy profitability (5%), and 5% lower carbon footprint over no substitution. The highest carbon footprint (0.201) was recorded under control followed by 50 % substitution of RDN through FYM (0.189). With each successive increase in N dose up to 150 kg N ha(-1) to wheat, energy productivity significantly reduced and share of renewable energy inputs decreased from 25 to 13%. Application of 100 kg N ha(-1) to wheat maintained the highest grain yield (3.71 t ha(-1)), net energy return (105,516 MJ ha(-1)), and human energy profitability (223.4) over other N doses applied to wheat

  5. Design of a Soil Science practical exercise to understand the soil carbon sequestration after biochar addition

    Science.gov (United States)

    Gascó, Gabriel; Cely, Paola; Saa-Requejo, Antonio; Mendez, Ana; Antón, Jose Manuel; Sánchez, Elena; Moratiel, Ruben; Tarquis, Ana M.

    2014-05-01

    The adaptation of the Universities to European Higher Education Area (EHEA) involves changes in the learning system. Students must obtain specific capabilities in the different degrees or masters. For example, in the degree of Agronomy at the Universidad Politécnica de Madrid (UPM, Spain), they must command Soil science, Mathematics or English. Sometimes, There is not a good communication between teachers and it causes that students do not understand the importance of the different subjects of a career. For this reason, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the role of soil on the carbon sequestration. The objective of this paper is to explain the followed steps to the design of the practice. Acknowledgement to Universidad Politécnica de Madrid for the Projects in Education Innovation IE12_13-02009 and IE12_13-02012.

  6. Xylem-Transported Glucose as an Additional Carbon Source for Leaf Isoprene Formation in Quercus Robur L.

    Science.gov (United States)

    Graus, M.; Kreuzwieser, J.; Schnitzler, J.; Wisthaler, A.; Hansel, A.; Rennenberg, H.

    2003-04-01

    Isoprene is emitted from mature, photosynthesizing leaves of many plant species, particularly of trees. Current interest in understanding the biochemical and physiological mechanisms controlling isoprene formation is caused by the important role isoprene plays in atmospheric chemistry. Isoprene reacts with hydroxyl radicals (OH) thereby generating oxidizing agents such as ozone and organic peroxides. Ozone causes significant deterioration in air quality and can pose threats to human health therefore its control is a major goal in Europe and the United States. In recent years, much progress has been made in elucidating the pathways of isoprene biosynthesis. Nevertheless the regulatory mechanisms controlling isoprene emission are not completely understood. Light and temperature appear to be the main factors controlling short-term variations in isoprene emission. Exposure of plants to C-13 labeled carbon dioxide showed instantaneous assimilated carbon is the primary carbon source for isoprene formation. However, variations in diurnal and seasonal isoprene fluxes, which cannot be explained by temperature, light, and leaf development led to the suggestion that alternative carbon sources may exist contributing to isoprene emissions. The aim of the present study was to test whether xylem-transported carbohydrates act as additional sources for isoprene biosynthesis. For this purpose, [U-C-13] alpha-D-glucose was fed to photosynthesizing leaves via the xylem of Quercus robur L. seedlings and the incorporation of glucose derived C-13 into emitted isoprene was monitored in real time using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). A rapid incorporation of C-13 from xylem-fed glucose into single (mass 70) and double (mass 71) C-13 labeled isoprene molecules was observed after a lag phase of approximately 5 to 10 minutes. This incorporation was temperature dependent and was highest (up to 13% C-13 of total carbon emitted as isoprene) at the temperature optimum of

  7. Mechanism of unusual polymorph transformations in calcium carbonate: Dissolution-recrystallization vs additive-mediated nucleation

    Indian Academy of Sciences (India)

    Arpita Sarkar; Samiran Mahapatra

    2012-11-01

    Unusual transformation of one CaCO3 phase to another has been reported by the process of dissolution-recrystallization and under the influence of additive. In one case, while metastable vaterite transforms to another metastable phase aragonite by simple refluxing in distilled water, it instead transforms thermodynamically stable phase calcite upon refluxing in its `mother-liquor’. This is explained by the process of dissolution-recrystallization. In another case, aragonite is preferentially synthesized over calcite in the presence of molten lauric acid as an additive.

  8. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    Science.gov (United States)

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source. PMID:26783836

  9. Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Jonasson, Sven Evert

    2008-01-01

    Climatic warming leads to the expansion of deciduous shrubs and trees in the Arctic. This leads to higher leaf litter inputs, which together with warming may alter the rate of carbon and nutrient cycling in the arctic ecosystems. We assessed effects of factorial warming and additional litter on t...... more to the soil and litter moisture conditions than to the change in the quality of the organic matter....... on the soil ecosystem of a subarctic heath in a 7-year-long field experiment. Fine root biomass, dissolved organic carbon (DOC) and total C concentration increased in response to warming, which probably was a result of the increased vegetation cover. Litter addition increased the concentration of inorganic P...... proportion of biomarkers for Gram-positive bacteria. The combined warming plus litter addition treatment decreased the soil water content in the uppermost 5 cm soil, which was a likely reason for many interactions between the effects of warming and litter addition. The soil organic matter quality...

  10. Lithium carbonate as an electrolyte additive for enhancing the high-temperature performance of lithium manganese oxide spinel cathode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renheng [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Li, Xinhai, E-mail: 703131039@qq.com [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Wang, Zhixing; Guo, Huajun [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Hou, Tao [Jiangxi Youli New Materials Co., Ltd, Pingxiang 337000 (China); Yan, Guochun; Huang, Bin [School of Metallurgy and Environment, Central South University, Changsha 410083 (China)

    2015-01-05

    Highlights: • The addition of Li{sub 2}CO{sub 3} to the electrolyte can suppress the contents of HF in the electrolyte. • The low self-discharge rate of the LiMn{sub 2}O{sub 4} cells with Li{sub 2}CO{sub 3} is lower than that of no additive. • The LiMn{sub 2}O{sub 4} cells with Li{sub 2}CO{sub 3} exhibit better rate capability and excellent cycle stability than that without Li{sub 2}CO{sub 3}. • A stable film can be formed on the LiMn{sub 2}O{sub 4} cathode using containing-Li{sub 2}CO{sub 3} electrolyte. - Abstract: The effect of lithium carbonate (Li{sub 2}CO{sub 3}) as an additive on the stability of the electrolyte and cycling performance of lithium manganese oxide spinel (LiMn{sub 2}O{sub 4}) batteries at elevated temperature was studied. The addition of Li{sub 2}CO{sub 3} to the electrolyte can suppress the capacity fading of LiMn{sub 2}O{sub 4} batteries. The linear sweep voltammetry (LSV) and the cyclic voltammetry (CV) indicate that Li{sub 2}CO{sub 3} has a lower oxidation potential in the mixed solvents of ethylene carbonate (EC), diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), participating in the formation process of the stable cathode electrolyte interface (CEI) film. In addition, the results of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrate that the stable CEI film of the cells with Li{sub 2}CO{sub 3} can be formed, which can effectively reduce the dissolution of Mn{sup 2+} from LiMn{sub 2}O{sub 4} into the electrolyte at elevated temperature. It is concluded that the addition of Li{sub 2}CO{sub 3} to a solution of 1 M LiPF{sub 6}–EC/EMC/DEC = 1/1/1 (weight ratio) may decrease solvent decomposition and change the structure of the passivation film on the LiMn{sub 2}O{sub 4} cathode.

  11. External Carbon Source Addition as a Means to Control an Activated Sludge Nutrient Removal Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens; Søeberg, Henrik; Kymmel, Mogens

    1994-01-01

    denitrification momentarily occurs. This approach serves to increase the denitrification rate on demand, thereby allowing the accumulation of nitrate and nitrite during periods of peak nitrogen loading to be reduced or avoided. A pilot plant demonstration of the control strategy using acetate as COD source is...... provided, showing a marked improvement in effluent water quality as compared to the uncontrolled case. An examination of the resulting denitrification rates illustrates the direct proportionality between these rates and the rate of COD addition....

  12. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil

    International Nuclear Information System (INIS)

    Biodegradation processes and changes in microbial community structure were investigated in black carbon (BC) amended soils in a laboratory experiment using two soils (black soil and red soil). We applied different percentages of charcoal as BC (0%, 0.5% and 1% by weight) with 100 mg kg−1 of phenanthrene. Soil samples were collected at different incubation times (0, 7, 15, 30, 60, 120 d). The amendment with BC caused a marked decrease in the dissipation (ascribed to mainly degradation and/or sequestration) of phenanthrene residues from soil. Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil, 0.5% BC amendments were higher. There were significant changes in the PLFA pattern in phenanthrene-spiked soils with time but BC had little effect on the microbial community structure of phenanthrene-spiked soils, as indicated by principal component analysis (PCA) of the PLFA signatures. - Highlights: ► Extracted phenanthrene increased substantially as the BC amount increased. ► Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil. ► BC caused a marked decrease in the dissipation of phenanthrene from soil. ► PLFA pattern in phenanthrene-spiked soils with time had significant changes. - BC amendments on phenanthrene extraction were different for two soils and time was a more effective factor in microbial community changes.

  13. Diamond crystallization in a CO2-rich alkaline carbonate melt with a nitrogen additive

    Science.gov (United States)

    Khokhryakov, Alexander F.; Palyanov, Yuri N.; Kupriyanov, Igor N.; Nechaev, Denis V.

    2016-09-01

    Diamond crystallization was experimentally studied in a CO2-bearing alkaline carbonate melt with an increased content of nitrogen at pressure of 6.3 GPa and temperature of 1500 °C. The growth rate, morphology, internal structure of overgrown layers, and defect-impurity composition of newly formed diamond were investigated. The type of growth patterns on faces, internal structure, and nitrogen content were found to be controlled by both the crystallographic orientation of the growth surfaces and the structure of the original faces of diamond seed crystals. An overgrown layer has a uniform structure on the {100} plane faces of synthetic diamond and a fibrillar (fibrous) structure on the faceted surfaces of a natural diamond cube. The {111} faces have a polycentric vicinal relief with numerous twin intergrowths and micro twin lamellae. The stable form of diamond growth under experimental conditions is a curved-face hexoctahedron with small cube faces. The nitrogen impurity concentration in overgrown layers varies depending on the growth direction and surface type, from 100 to 1100 ppm.

  14. Precipitation strengthening and mechanical properties of ultra low carbon bainitic steel with Cu addition

    International Nuclear Information System (INIS)

    Effect of ageing parameters on tensile properties and impact energy of ultra low carbon bainitic steel (ULCB) was established. The investigated HN3MCu1.5 steel belongs to a new group of structural steels, which are going to be applied for constructions working at low temperatures.. The chemical composition of the steel is given. The microstructure of the steel after ageing at temperature 640oC during to 100 hours was observed by optical and electron microscopy. Special attention was paid to study primary austenite grain size, which determines the average diameter of bainite-martensite packet size and thus the impact transition temperature according to empirical equations. Then the quantitative determination of the average diameter of precipitates and the interparticle spacing was studied to calculate the precipitation strengthening effect on yield strength. The empirical equation, which relates effect of ageing time to the yield strength was determined. It was established that the optimum mechanical properties of HN3MCu1.5 steel aged at 649oC are achieved for ageing time in the range of 1 - 10 hours. For the above ageing parameters the investigated steels had: YS = 700-661 MPa, TS = 814-741 MPa and impact energy KCV = 150-170 J determined on Charpy V specimens at temperature -80oC. (author)

  15. Growth and sporulation of Trichoderma polysporum on organic substrates by addition of carbon and nitrogen sources

    International Nuclear Information System (INIS)

    During the present study nine different organic substrates viz., rice grains, sorghum grains, wheat grains, millet grains, wheat straw, rice husk, cow dung, sawdust and poultry manure were used for mass multiplication of Trichoderma polysporum. Grains, especially sorghum grains were found to be the best substrate for T. polysporum. Wheat straw and rice husk were less suitable, whereas, cow dung, sawdust and poultry manure were not suitable for growth of the fungus. Sucrose at the rate of 30,000 ppm and ammonium nitrate at the rate of 3,000 ppm were found to be the best carbon and nitrogen sources for growth and sporulation of T. polysporum. Amendment of the selected C and N sources to wheat straw, rice husk and millet grains resulted in significantly higher growth and conidia production by T. polysporum as compared to un-amended substrates. Sorghum and rice grains showed suppression in growth and sporulation of T. polysporum when amended with C and N sources. During studies on shelf life, populations of T. polysporum attained the peck at 60-135 days intervals on different substrates and declined gradually thereafter. However, even after 330 days, the populations were greater than the population at 0-day. At 345-360 days interval, populations were less than the initial populations at 0- days. Shelf life on C+N amended wheat straw and rice husk were more as compared to un-amended substrates. (author)

  16. Mechanical properties of pressure-less sintered ZrB{sub 2} with molybdenum, iron and carbon additives

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Mahsa Jalal, E-mail: Mahsa_mousavi62@yahoo.com [Ceramic Department, Imam Khomeini International University, P. O. Box: 34149-16818, Ghazvin (Iran, Islamic Republic of); Zakeri, Mohammad; Rahimipour, Mohammadreza [Ceramic Department, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Amini, Elham [Ceramic Department, Imam Khomeini International University, P. O. Box: 34149-16818, Ghazvin (Iran, Islamic Republic of)

    2014-09-08

    ZrB{sub 2} powder was successfully densified with Mo, Fe and carbon as sintering aid by pressure-less sintering method. Effects of the above additives were investigated on the densification, microstructure and mechanical properties (hardness, fracture toughness and compressive strength) of sintered samples. It was observed that the ZrB{sub 2} samples with 10 wt%Fe and 15 wt%Mo with 1 wt%C had the maximum density. The maximum compressive strength and fracture toughness of 425 MPa and 12.5 MPa m{sup 1/2} were obtained for ZrB{sub 2}–10 wt%Mo–1 wt%C, respectively. Fracture toughness of ZrB{sub 2}–10 wt%Fe was significantly improved at higher carbon content (2 wt%)

  17. Hot isostatic pressing of silicon nitride with boron nitride, boron carbide, and carbon additions

    Science.gov (United States)

    Mieskowski, Diane M.; Sanders, William A.

    1989-01-01

    Si3N4 test bars containing additions of BN, B4C, and C, were hot isostatically pressed in Ta cladding at 1900 and 2050 C to 98.9 percent to 99.5 percent theoretical density. Room-temperature strength data on specimens containing 2 wt pct BN and 0.5 wt pct C were comparable to data obtained for Si3N4 sintered with Y2O3, Y2O3 and Al2O3, or ZrO2. The 1370 C strengths were less than those obtained for additions of Y2O3 or ZrO2 but greater than those obtained from a combination of Y2O3 and Al2O3. SEM fractography indicated that, as with other types of Si3N4, room-temperature strength was controlled by processing flaws. The decrease in strength at 1370 C was typical of Si3N4 having an amorphous grain-boundary phase. The primary advantage of nonoxide additions appears to be in facilitating specimen removal from the Ta cladding.

  18. Hot isostatic pressing of silicon nitride with boron nitride, boron carbide, and carbon additions

    International Nuclear Information System (INIS)

    This paper reports how Si3N4 test bars containing additions of BN, B4C, and C, were hot isostatically pressed in Ta cladding at 1900 degrees and 2050 degrees C to 98.9% to 99.5% theoretical density. Room-temperature strength data on specimens containing 2 wt% BN and 0.5 wt% C were comparable to data obtained for Si3N4 sintered with Y2O3, Y2O3 and Al2O3 or ZrO2. The 1370 degrees C strengths were less than those obtained for additions of Y2O3 or ZrO2 but greater than those obtained from a combination of Y2O3 and Al2O3. Scanning electron microscope fractography indicated that, as with other types of Si3N4, room-temperature strength was controlled by processing flaws. The decrease in strength at 1370 degrees C was typical of Si3N4 having an amorphous grain-boundary phase. The primary advantage of non-oxide additions appears to be in facilitating specimen removal from the Ta cladding

  19. Effect of biomass addition on the surface and adsorption characterization of carbon-based adsorbents from sewage sludge

    Institute of Scientific and Technical Information of China (English)

    Changzi Wu; Min Song; Baosheng Jin; Yimin Wu; Yaji Huang

    2013-01-01

    Sewage sludge with the additive corn cob was used as prescusor to prepare sludge-based carbon adsorbents by pyrolysis method.And then,the carbonizated products were activated with potassium hydroxide.The mixing ratio of the corn cob to sewage sludge was investigated.The surface area and pore size distribution,elemental composition,surface chemistry structure and the surface physical morphology were determined and compared.The results demonstrated that the addition of corn cob into the sewage sludge sample could effectively improve the surface area (from 287 to 591 m2/g) and the microporosity (from 5% to 48%) of the carbon based adsorbent,thus enhancing the adsorption behavior.The sulfur dioxide adsorption capacity was measured according to breakthrough test.It was found that the sulfur dioxide adsorption capacity of the adsorbents was obviously enhanced after the addition of the corn cob.It is presumed that not only highly porous adsorbents,but also a high metallic content of these materials are required to achieve good performances.

  20. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation

    International Nuclear Information System (INIS)

    Two methods of biostimulation were compared in a laboratory incubation study with monitored natural attenuation (MNA) for total petroleum hydrocarbon (TPH) degradation in diesel-contaminated Tarpley clay soil with low carbon content. One method utilized rapid-release inorganic fertilizers rich in N and P, and the other used sterilized, slow-release biosolids, which added C in addition to N and P. After 8 weeks of incubation, both biostimulation methods degraded approximately 96% of TPH compared to MNA, which degraded 93.8%. However, in the first week of incubation, biosolids-amended soils showed a linear two orders of magnitude increase in microbial population compared to MNA, whereas, in the fertilizer-amended soils, only a one order of magnitude increase was noted. In the following weeks, microbial population in the fertilizer-amended soils dropped appreciably, suggesting a toxic effect owing to fertilizer-induced acidity and/or NH3 overdosing. Results suggest that biosolids addition is a more effective soil amendment method for biostimulation than the commonly practiced inorganic fertilizer application, because of the abilities of biosolids to supplement carbon. No statistically significant difference was observed between the biostimulation methods and MNA, suggesting that MNA can be a viable remediation strategy in certain soils with high native microbial population. - Addition of biosolids is a potentially effective method of biostimulation for degradation of petroleum hydrocarbons in soils

  1. Evaluation of the potential of additives as corrosion inhibitors of CA-50 carbon steel used as reinforcement in concretes

    International Nuclear Information System (INIS)

    In this work, various compounds were tested to evaluate their potential capability for their use as corrosion inhibitors of carbon steel reinforcement in concretes. The additives tested were sodium benzoate, polyethylene glycol, hexamethylenetetramine, benzotriazole and yttrium carbonate. Initially, exploratory tests were carried out to select the ones to be used as corrosion inhibitors, based on the inhibit ion efficiency determined from electrochemical tests, specifically polarization tests and electrochemical impedance spectroscopy. These tests were carried out in a solution composed of 0.01 N sodium hydroxide (NaOH) and 0.05 N potassium hydroxide (KOH) to simulate the composition of the solution inside the pores in concretes. The additive that presented the most promising potential to be used as corrosion inhibitor was benzotriazole (BTA). After the elimination of some compounds and selection of the additive with higher corrosion inhibit ion efficiency in the test medium, the effect of its concentration on the corrosion inhibition efficiency was evaluated. Sodium nitrite solutions with the same concentrations as those solutions with BTA were tested for comparison reasons. Sodium nitrite is a well established corrosion inhibitor for carbon steel reinforcement in concretes but it has been related to toxic effects. The BTA was associated to higher corrosion inhibition efficiencies than that of sodium nitrite in similar concentrations. A blackish adherent film was formed on the steel surface exposed to BTA solutions during long periods of immersion in the alkaline medium. The results suggest that BTA is a potential candidate for substitution of nitrites as corrosion inhibitor of reinforcements in concrete. (author)

  2. Effect of triolein addition on the solubility of capsanthin in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Highlights: ► We isolated capsanthin from red pepper (Capsicum annuum L.). ► We measured its solubility in pure CO2 and with triolein as cosolvent. ► We model the solubility of capsanthin in pure CO2 and with triolein. ► Solubility of triolein in mixtures CO2 + capsanthin was similar to pure CO2. ► Triolein has cosolvent effect over solubility of capsanthin in CO2. - Abstract: This manuscript presents new phase equilibrium data for capsanthin in pure and triolein-entrained Supercritical (SC) carbon dioxide (CO2). The aim of the work was to determine the cosolvent effect of triolein on capsanthin by comparing solubility results in a ternary (CO2 + triolein + capsanthin) system and binary (CO2 + capsanthin) system at (313 or 333) K and (19 to 34) MPa. For this, authors isolated capsanthin from red pepper (Capsicum annuum L.) and tested it using a dynamic-analytical method in an apparatus with recirculation and online analysis of the CO2-rich phase. Within the experimental region, the solubility of capsanthin in pure SC–CO2 increased with system temperature at isobaric conditions and also increased with pressure at isothermal conditions. Solubilities ranged from a minimal of 0.65 μmol/mol at 313 K and 19 MPa to a maximal of 1.97 μmol/mol at 333 K and 32 MPa. The concentration of triolein in the ternary system was equivalent to that its solubility in pure SC–CO2 depending on system temperature and pressure conditions. Crossover pressure was determined experimentally at 29.6 MPa, below which solubility of triolein decreased with temperature (effect of density). Above the crossover pressure, solubility of triolein increased with temperature (vapor pressure effect). Values of solubility within this range were 0.16 mmol/mol at 19 MPa and 313 K to 0.41 mmol/mol at 33 MPa and 333 K. Independent of system temperature and pressure, capsanthin solubility in triolein-entrained SC–CO2 increased by a factor of about 3 (triolein-induced enhancement factor) as

  3. Effects of silicon, carbon and molybdenum additions on IASCC of neutron irradiated austenitic stainless steels

    Science.gov (United States)

    Nakano, J.; Miwa, Y.; Kohya, T.; Tsukada, T.

    2004-08-01

    To study the effects of minor elements on irradiation assisted stress corrosion cracking (IASCC), high purity type 304 and 316 stainless steels (SSs) were fabricated and minor elements, Si or C were added. After neutron irradiation to 3.5 × 10 25 n/m 2 ( E>1 MeV), slow strain rate tests (SSRTs) of irradiated specimens were conducted in oxygenated high purity water at 561 K. Specimen fractured surfaces were examined using a scanning electron microscope (SEM) after the SSRTs. The fraction of intergranular stress corrosion cracking (IGSCC) on the fractured surface after the SSRTs increased with neutron fluence. In high purity SS with added C, the fraction of IGSCC was the smallest in the all SSs, although irradiation hardening level was the largest of all the SSs. Addition of C suppressed the susceptibility to IGSCC.

  4. Understanding drivers of the export of dissolved organic carbon from a German headwater catchment using Generalised Additive Models

    Science.gov (United States)

    Selle, Benny; Musolff, Andreas; Tittel, Jörg

    2016-04-01

    In the literature, several causes of recently increasing concentrations of dissolved organic carbon (DOC) in headwaters across eastern North America and northern and central Europe have been debated. One likely driver of the widespread increase of DOC concentrations since the early 1990s are decreasing depositions of acid rain resulting in an increased solubility of organic carbon compounds including humic acids. Here, we tested the hypothesis if the reduced availability of nitrate stimulated the microbial reduction of ferric iron soil minerals and the mobilisation of DOC. Forested catchments are relatively unaffected by agricultural and urban nitrate inputs. In these catchments, decreasing depositions often resulted in a reduced availability of nitrate, which are preferred electron acceptors in microbial decomposition processes. As ferric iron minerals act as efficient sorbents of organic compounds in soils its reduction may cause a release of humic substances and hence an export of DOC. To test this hypothesis, time series of DOC, dissolved iron and nitrate from a forested headwater catchment in Germany were examined using Generalised Additive Models. We found that rising DOC concentrations most likely resulted from a reductive dissolution of iron(III) minerals in soils and the associated mobilisation of adsorbed organic carbon. Phosphate, which can trigger undesired algal growth and is also known to be adsorbed by particulate iron(III), was released as well.

  5. Successful implementation of biochar carbon sequestration in European soils requires additional benefits and close collaboration with the bioenergy sector

    Science.gov (United States)

    Hauggaard-Nielsen, Henrik; Müller-Stöver, Dorette; Bruun, Esben W.; Petersen, Carsten T.

    2014-05-01

    Biochar soil application has been proposed as a measure to mitigate climate change and on the same time improve soil fertility by increased soil carbon sequestration. However, while on tropical soils the beneficial effects of biochar application on crop growth often become immediately apparent, it has been shown to be more difficult to demonstrate these effects on the more fertile soils in temperate regions. Therefore and because of the lack of carbon credits for farmers, it is necessary to link biochar application to additional benefits, both related to agricultural as well as to bioenergy production. Thermal gasification of biomass is an efficient (95% energy efficiency) and flexible way (able to cope with many different and otherwise difficult-to-handle biomass fuels) to generate bioenergy, while producing a valuable by-product - gasification biochar, containing recalcitrant carbon and essential crop nutrients. The use of the residual char product in agricultural soils will add value to the technology as well as result in additional soil benefits such as providing plant nutrients and improving soil water-holding capacity while reducing leaching risks. From a soil column (30 x 130 cm) experiment with gasification straw biochar amendment to coarse sandy subsoil increased root density of barley at critical depths in the soil profile reducing the mechanical resistance was shown, increasing yields, and the soil's capacity to store plant available water. Incorporation of residuals from a bioenergy technology like gasification show great potentials to reduce subsoil constraints increasing yield potentials on poor soils. Another advantage currently not appropriately utilized is recovery of phosphorus (P). In a recent pot experiments char products originating from low-temperature gasification of various biofuels were evaluated for their suitability as P fertilizers. Wheat straw gasification biochar generally had a low P content but a high P plant availability. To improve

  6. Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making.

    Science.gov (United States)

    Zhu, Xianqing; Li, Xian; Xiao, Li; Zhang, Xiaoyong; Tong, Shan; Wu, Chao; Ashida, Ryuichi; Liu, Wenqiang; Miura, Kouichi; Yao, Hong

    2016-05-01

    In this work, two extracts (Soluble and Deposit) were produced by degradative solvent extraction of biomass wastes from 250 to 350°C. The feasibilities of using Soluble and Deposit as additives for coke-making were investigated for the first time. The Soluble and Deposit, having significantly higher carbon content, lower oxygen content and extremely lower ash content than raw biomasses. All Solubles and most of Deposits can melt completely at the temperature ranged from 80 to 120°C and 140 to 180°C, respectively. The additions of Soluble or Deposit into the coke-making coal significantly improved their thermoplastic properties with as high as 9°C increase of the plastic range. Furthermore, the addition of Deposit or Soluble also markedly enhanced the coke quality through increasing coke strength after reaction (CSR) and reducing coke reactivity index (CRI). Therefore, the Soluble and Deposit were proved to be good additives for coke-making. PMID:26871958

  7. Improving the performance of an aerobic membrane bioreactor (MBR) treating pharmaceutical wastewater with powdered activated carbon (PAC) addition.

    Science.gov (United States)

    Kaya, Yasemin; Bacaksiz, A Murat; Golebatmaz, Ugur; Vergili, Ilda; Gönder, Z Beril; Yilmaz, Gulsum

    2016-04-01

    In this study, the effects of organic loading rate (OLR) and the addition of powdered activated carbon (PAC) on the performance and membrane fouling of MBR were conducted to treat real pharmaceutical process wastewater. Over 145 days of operation, the MBR system was operated at OLRs ranging from 1 to 2 kg COD m(-3) day(-1) without sludge wasting. The addition of PAC provided an improvement in the flux, despite an increase in the OLR:PAC ratio. The results demonstrated that the hybrid PAC-MBR system maintained a reduced amount of membrane fouling and steadily increased the removal performance of etodolac. PAC addition reduced the deposition of extracellular polymeric substance and organic matter on the membrane surface and resulted an increase in COD removal even at higher OLRs with low PAC addition. Membrane fouling mechanisms were investigated using combined adsorption fouling models. Modified fouling index values and normalized mass transfer coefficient values indicated that predominant fouling mechanism was cake adsorption. PMID:26846538

  8. Co-optimization of diesel fuel biodegradation and N2 fixation through the addition of particulate organic carbon

    International Nuclear Information System (INIS)

    Petroleum hydrocarbon pollution in the marine environment is widespread and current bioremedial techniques are often not cost effective for small spills. The formulation of simple and inexpensive bioremedial methods could help reduce the impacts of frequent low volume spills in areas like marinas and ports. Particulate organic carbon (POC) was added to diesel fuel amended samples from inshore marine waters in the form of corn-slash (post-harvest leaves and stems), with and without inorganic nutrients (nitrate and phosphate). Biodegradation of diesel fuel (14C hexadecane mineralization) and N2 fixation were measured in response to the additions, The addition of POC was necessary for N2 fixation and diesel fuel biodegradation to co-occur. The effects of diesel fuel and inorganic nutrient additions on N2 fixation rates were not consistent, with both inhibitory and stimulatory responses to each addition observed. The highest observed diesel fuel biodegradation levels were in response to treatments that included inorganic nutrients. The addition of POC alone increased diesel fuel degradation levels above that observed in the control. In an attempt to determine the effect of the POC on the microbial community, the corn particles were observed microscopically using scanning electron microscopy and light microscopy with tetrazolium salt additions. The corn particles were found to have abundant attached bacterial communities and microscale oxygen concentration gradients occurring on individual particles. The formation of oxygen replete microzones may be essential for the co-occurrence of aerobic diesel fuel biodegradation and oxygen inhibited N2 fixation. Mesocosm experiments are currently underway to further examine the structure and function of this primarily heterotrophic system and to explore the potential contribution of N2 fixation to the N requirements of diesel fuel biodegradation

  9. Increasing addition of autochthonous to allochthonous carbon in nutrient-rich aquatic systems stimulates carbon consumption but does not alter bacterial community composition

    Directory of Open Access Journals (Sweden)

    K. Attermeyer

    2013-08-01

    Full Text Available Dissolved organic carbon (DOC concentrations – mainly of terrestrial origin – are increasing worldwide in inland waters. The biodegradability of the DOC varies depending on quantity and chemical quality. Heterotrophic bacteria are the main consumers of DOC and thus determine DOC temporal dynamics and availability for higher trophic levels. It is therefore crucial to understand the processes controlling the bacterial turnover of additional allochthonous and autochthonous DOC in aquatic systems. Our aim was to study bacterial carbon (C turnover with respect to DOC quantity and chemical quality using both allochthonous and autochthonous DOC sources. We incubated a natural bacterial community with allochthonous C (13C-labeled beech leachate and increased concentrations and pulses (intermittent occurrence of organic matter input of autochthonous C (algae lysate. We then determined bacterial carbon consumption, activities, and community composition together with the carbon flow through bacteria using stable C isotopes. The chemical analysis of single sources revealed differences in aromaticity and fractions of low and high molecular weight substances (LMWS and HMWS, respectively between allochthonous and autochthonous C sources. In parallel to these differences in chemical composition, we observed a higher availability of allochthonous C as evidenced by increased DOC consumption and bacterial growth efficiencies (BGE when solely allochthonous C was provided. In treatments with mixed sources, rising concentrations of added autochthonous DOC resulted in a further, significant increase in bacterial DOC consumption from 52 to 68% when nutrients were not limiting. This rise was accompanied by a decrease in the humic substances (HS fraction and an increase in bacterial biomass. Stable C isotope analyses of phospholipid fatty acids (PLFA and respired dissolved inorganic carbon (DIC supported a preferential assimilation of autochthonous C and respiration

  10. Effects of Ti addition and reheating quenching on grain refinement and mechanical properties in low carbon medium manganese martensitic steel

    International Nuclear Information System (INIS)

    Highlights: → TiC precipitation can induce the grain refinement after reheating-quenching process. → EGS refinement is more effective to explain the improvement of toughness. → The experimental results of precipitation agree with the theoretical calculations. → Excellent mechanical properties with high strength and high toughness can be gained. -- Abstract: The grain refinement and mechanical properties improvement resulted from Ti addition and reheating quenching were demonstrated in this study. The direct quenched medium manganese steel with low carbon content (0.05C) was treated by reheating quenching process. The yield strength and Charpy impact energy were measured. The microstructures and the second precipitated particles were examined by optical microscopy (OM), scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD), transmission electron microscopy (TEM), X-rays diffraction and phase analysis method. It was found that reheating quenching at 900-1000 oC resulted in significant grain refinement, especially the refinement of effective grain size (EGS), which was attributed to the large amount nano-sized precipitation of TiC. In addition, high elastic modulus was also obtained from the large amount TiC precipitated from the matrix. It is concluded that reheating quenching process is a useful method to refine the grain size and improve the combined mechanical properties of the martensitic steel through Ti addition.

  11. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. PMID:24980029

  12. The effects of FEC (fluoroethylene carbonate) electrolyte additive on the lithium storage properties of NiO (nickel oxide) nanocuboids

    International Nuclear Information System (INIS)

    Nanocuboid shaped NiO (nickel oxide) has been synthesized using an optical floating zone furnace. It was found that the nanocuboids exhibit single crystalline nature, and have clean and sharp edges. Furthermore, the NiO nanocuboids were tested for their electrochemical performances as anode material for LIBs (lithium-ion batteries) in a coin-type half cell. The effects of FEC (fluoroethylene carbonate) additive on the lithium storage performance were also investigated, which is the first of such studies for transition metal oxides. It was found that FEC has a positive effect on the cycling stability and also improves the rate performances of the nanocuboids. The capacity recorded at 0.1 C (100 mA g−1) after 50 charge/discharge cycles is 1400 mAh g−1. Lastly, the NiO nanocuboids can achieve very high rate capability of 12 C (12 A g−1) with capacity of 312 mAh g−1. - Highlights: • Synthesis of NiO nanocuboids using a novel optical floating zone furnace. • Systematic characterization of the effects of FEC additive toward NiO. • FEC additive enhances the cycling stability and rate performances

  13. Scientific Opinion on safety and efficacy of coated granulated cobaltous carbonate monohydrate as feed additive for all species

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed

    2012-07-01

    Full Text Available

    Cobalt(III is a component of cobalamin. Its essentiality as trace element results from the capacity of certain animal species to synthesise cobalamin by the gastrointestinal microbiota. Feeding cobalt(II carbonate hydroxide (2:3 monohydrate up to the maximum authorised total cobalt in feed is safe for the target animals. Cobalt is predominantly excreted via the faecal route. Absorbed cobalt follows aqueous excretion routes. About 43 % of body cobalt is stored in muscle; however, kidney and liver are the edible tissues containing the highest cobalt concentrations and are most susceptible to reflect dietary cobalt concentrations. In animals with the capacity to synthesise cobalamin, cobalt is also deposited in tissues as vitamin B12. Cobalt(II cations are genotoxic under in vitro and in vivo conditions. Cobalt(II carbonate has carcinogen, mutagen and reproduction toxicant (CMR properties. No data are available on the potential carcinogenicity of cobalt(II following oral exposure. However, oral exposure may potentially entail adverse threshold-related effects in humans. The estimated population intake of cobalt most likely includes the contribution of foodstuffs from animals fed cobalt-supplemented feedingstuffs. An increase in cobalt exposure by the use of cobalt-containing feed additives is therefore not expected. Considering the population exposure to cobalt, about 4–10 times lower than the health-based guidance value, no safety concern for the consumer is expected for threshold effects of oral cobalt. Cobalt(II carbonate is a skin and eye irritant, and a dermal and respiratory sensitiser. Its dust is a hazard to persons handling the substance. Exposure by inhalation must be avoided. The use of cobalt from any source at the authorised maximum content in feed does not provide a risk to the environment. The coated granulated cobalt(II carbonate hydroxide (2:3 monohydrate is available for cobalamin synthesis in

  14. The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to Training

    Directory of Open Access Journals (Sweden)

    Lukasz Smolka

    2014-03-01

    Full Text Available The purpose of the study was to investigate the effects of implementing additional respiratory dead space during cycloergometry-based aerobic training. The primary outcome measures were respiratory exchange ratio (RER and carbon dioxide production (VCO2. Two groups of young healthy males: Experimental (Exp, n = 15 and Control (Con, n = 15, participated in this study. The training consisted of 12 sessions, performed twice a week for 6 weeks. A single training session consisted of continuous, constant-rate exercise on a cycle ergometer at 60% of VO2max which was maintained for 30 minutes. Subjects in Exp group were breathing through additional respiratory dead space (1200ml, while subjects in Con group were breathing without additional dead space. Pre-test and two post-training incremental exercise tests were performed for the detection of gas exchange variables. In all training sessions, pCO2 was higher and blood pH was lower in the Exp group (p < 0.001 ensuring respiratory acidosis. A 12-session training program resulted in significant increase in performance time in both groups (from 17”29 ± 1”31 to 18”47 ± 1”37 in Exp; p=0.02 and from 17”20 ± 1”18 to 18”45 ± 1”44 in Con; p = 0.02, but has not revealed a significant difference in RER and VCO2 in both post-training tests, performed at rest and during submaximal workload. We interpret the lack of difference in post-training values of RER and VCO2 between groups as an absence of inhibition in glycolysis and glycogenolysis during exercise with additional dead space.

  15. Metal-carbonate formation from ammonia solution by addition of metal salts - An effective method for CO2 capture from landfill gas (LFG)

    International Nuclear Information System (INIS)

    The absorption of CO2 from LFG in different weight concentration ammonia solution and metal salts (Zinc and Barium) is investigated in this study. Addition of metal salts results in useful metal carbonates when LFG is passed through the solution. Barium salts show a better potential of removing CO2 as compared to Zinc salts. Addition of Barium salts to ammonia solution results in a new absorbent as no study has been focused on it till date. Also metal salts are added to alkaline wastewater which not only decreases the pH of the wastewater but also useful metal carbonates are obtained from wastewater when LFG is passed through it. Different parameters like CO2 loading, reaction rate and change in pH are investigated. Formation of carbonates is proved by using SEM and XRD analysis. Raman spectroscopy was performed on the discarded liquid after removal of carbonates to understand the formation of bicarbonates, carbonates and carbamates. (author)

  16. Corrosion and Heat Transfer Characteristics of Water Dispersed with Carboxylate Additives and Multi Walled Carbon Nano Tubes

    Science.gov (United States)

    Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli

    2016-02-01

    This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.

  17. Effect of boron addition on the microstructures and mechanical properties of thermomechanically processed and tempered low carbon bainitic steels

    Institute of Scientific and Technical Information of China (English)

    Liangyun LAN; Chunlin QIU; Ping ZHOU; Dewen ZHAO; Canming LI; Xiuhua GAO; Linxiu DU

    2011-01-01

    Thermomechanical process and tempering heat treatment were employed to produce the experimental steel plates.The effect of boron addition on the microstructure and mechanical properties of low carbon bainitic steels was studied in this paper.Microstructure observation and crystallographic features were conducted by using optical microscopy,SEM,TEM and electron back scattering diffraction (EBSD) analysis.The results showed that under the same rolling processes and heat treatment conditions,a substantial increase in strength is obtained by addition of boron into steel,but accompanied by an obvious drop in toughness.New martensite phase forms along the grain boundaries on tempering at 650 ℃ mainly due to boron segregation,which can further deteriorate impact toughness of the boron bearing steel.The EBSD analysis showed that high angle grain boundary,is not responsible for the deteriorated toughness of the boron bearing steel because it has relatively higher percentage of high angle grain boundary than the boron free steel.The low toughness of the boron bearing steel is mainly attributed to the coarse boride precipitated particles according to the results of fractograph observation.

  18. Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes

    International Nuclear Information System (INIS)

    A new biodegradable photoresponsive material was developed using poly(lactic acid) (PLA) as the matrix material and Disperse Orange 3 (DO3) as photoisomerizable azo-dye. It was observed that the addition of multi-walled carbon nanotubes (MWCNTs) leads to a new phenomenon consisting of an enhancement of the optical anisotropy in a wide range of temperatures. In particular, the optical anisotropy increases 100% at room temperature. Moreover, the material containing MWCNTs shows a faster optical response that is evidenced as an increase in the growth rate of optical anisotropy. Spectroscopic data is provided to study the interaction among DO3, MWCNTs and PLA. The enhancement of optical anisotropy obtained with the addition of MWCNTs was related to the glass transition temperature (Tg) of each material. Maximum optical anisotropy was obtained 15 °C below the Tg for both materials. Results are interpreted in terms of the interactions among DO3, MWCNTs and PLA and the packing density of the dye into the polymer chains. (paper)

  19. Differential scanning calorimetry analysis of an enhanced LiNi0.8Co0.2O2 cathode with single wall carbon nanotube conductive additives

    International Nuclear Information System (INIS)

    Highlights: · Replaced 4 wt% carbon black conductive additives with 1 wt% single wall carbon nanotubes (SWCNTs) in cathode composite. · Use of SWCNT additive increased conductivity of cathode composite by over an order of magnitude. · SWCNT additive composite had triple the capacity at a 10C rate. · SWCNT additive composite reduced exothermic energy released upon delithiation by 40%. - Abstract: The replacement of traditional conductive carbon additives with single wall carbon nanotubes (SWCNTs) in lithium metal oxide cathode composites has been shown to enhance thermal stability as well as power capability and electrode energy density. The dispersion of 1 wt% high purity laser-produced SWCNTs in a LiNi0.8Co0.2O2 electrode created an improved percolation network over an equivalent composite electrode using 4 wt% Super C65 carbon black; evidenced by additive connectivity in SEM images and an order of magnitude increase in electrode electrical conductivity. The cathode with 1 wt% SWCNT additives showed comparable active material capacity (185-188 mAh g-1), at a low rate, and Coulombic efficiency to the cathode composite with 4 wt% Super C65. At increased cycling rates, the cathode with SWCNT additives had higher capacity retention with more than three times the capacity at 10C (16.4 mA cm-2). The thermal stability of the electrodes was evaluated by differential scanning calorimetry after charging to 4.3 V and float charging for 12 h. A 40% reduction of the cathode exothermic energy released was measured when using 1 wt% SWCNTs as the additive. Thus, the results demonstrate that replacing traditional conductive carbon additives with a lower weight loading of SWCNTs is a simple way to improve the thermal transport, safety, power, and energy characteristics of cathode composites for lithium ion batteries.

  20. Effect of cycle time on fungal morphology, broth rheology, and recombinant enzyme productivity during pulsed addition of limiting carbon source.

    Science.gov (United States)

    Bhargava, Swapnil; Wenger, Kevin S; Rane, Kishore; Rising, Vanessa; Marten, Mark R

    2005-03-01

    For many years, high broth viscosity has remained a key challenge in large-scale filamentous fungal fermentations. In previous studies, we showed that broth viscosity could be reduced by pulsed addition of limiting carbon during fed-batch fermentation. The objective in this study was to determine how changing the frequency of pulsed substrate addition affects fungal morphology, broth rheology, and recombinant enzyme productivity. To accomplish this, a series of duplicate fed-batch fermentations were performed in 20-L fermentors with a recombinant glucoamylase producing strain of Aspergillus oryzae. The total cycle time for substrate pulsing was varied over a wide range (30-2,700 s), with substrate added only during the first 30% of each cycle. As a control, a fermentation was conducted with continuous substrate feeding, and in all fermentations the same total amount of substrate was added. Results show that the total biomass concentration remained relatively unaltered, while a substantial decrease in the mean projected area of fungal elements (i.e., average size) was observed with increasing cycle time. This led to reduced broth viscosity and increased oxygen uptake rate. However, high values of cycle time (i.e., 900-2,700 s) showed a significant increase in fungal conidia formation and significantly reduced recombinant enzyme productivity, suggesting that the fungi channeled substrate to storage compounds rather than to recombinant protein. In addition to explaining the effect of cycle time on fermentation performance, these results may aid in explaining the discrepancies observed on scale-up to larger fermentors. PMID:15643626

  1. Effects of molybdenum dithiocarbamate and zinc dialkyl dithiophosphate additives on tribological behaviors of hydrogenated diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Highlights: • For MoDTC, DLC coating showed better anti-friction and worse anti-wear behaviors. • The improved anti-friction property was due to graphitization and MoS2. • Formation of MoOx resulted in a high wear volume. • For ZDDP, DLC coating showed the best anti-wear and the worst anti-friction behaviors. • Absence of friction reducing product and graphitized layer resulted in a higher friction. - Abstract: The tribological behaviors of hydrogenated diamond-like carbon (DLC) coatings under varied load conditions lubricated with polyalpha olefin (PAO), molybdenum dithiocarbamate (MoDTC) and zinc dialkyl dithiophosphate (ZDDP) additives were investigated in this paper. Hydrogenated DLC coatings were synthesized through the decomposition of acetylene by the ion source. The tribological performances were measured on a SRV tribometer. The morphologies and chemical structures of the DLC coatings were investigated by the scanning electron microscope (SEM), Raman spectrometer (Raman) and X-ray photoelectron spectroscope (XPS). It was shown that the low friction and high wear were achieved on the hydrogenated DLC coating under MoDTC lubrication, while low wear was found on the hydrogenated DLC coating lubricated by ZDDP. The primary reason was attributed to different tribofilms formed on the contact area and the formation of graphitic layer. Both factors working together leaded to quite different tribological behaviors

  2. Mode-locked ytterbium fiber lasers using a large modulation depth carbon nanotube saturable absorber without an additional spectral filter

    International Nuclear Information System (INIS)

    We demonstrate an all-normal-dispersion ytterbium (Yb)-doped fiber laser mode-locked by a higher modulation depth carbon nanotube saturable absorber (CNT-SA) based on an evanescent field interaction scheme. The laser cavity consists of pure normal dispersion fibers without dispersion compensation and an additional spectral filter. It is exhibited that the higher modulation depth CNT-SA could contribute to stabilize the mode-locking operation within a limited range of pump power and generate the highly chirped pulses with a high-energy level in the cavity with large normal dispersion and strong nonlinearity. Stable mode-locked pulses with a maximal energy of 29 nJ with a 5.59 MHz repetition rate at the operating wavelength around 1085 nm have been obtained. The maximal time-bandwidth product is 262.4. The temporal and spectral characteristics of pulses versus pump power are demonstrated. The experimental results suggest that the CNT-SA provides a sufficient nonlinear loss to compensate high nonlinearity and catch up the gain at a different pump power and thus leads to the stable mode locking. (letter)

  3. Effect of solution additives on the performance of PMAN carbon anodes in 1M LiPF{sub 6}/EC-DMC solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.A.; Johnson, B.J. [Sandia National Labs., Albuquerque, NM (United States). Battery Development Dept.

    1996-12-31

    A study was undertaken to examine the use of a number of solution additives in 1M LiPF{sub 6}/ethylene carbonate (EC)-dimethyl carbonate (DMC) solutions to improve the performance of carbon anodes derived from polymethylacrylonitrile (PMAN)-divinylbenzene (DVB) copolymers. The study goals were to improve the cycle life and reduce the formation of the passivation layer during the first reduction, thereby minimizing the irreversible-capacity losses. Additives studied were 12-crown-4 (12-Cr-4) ether, decalin, and dilithium phthalocyanine (Li{sub 2}Pc). The carbon performance was characterized by galvanostatic cycling, cyclic voltammetry, and complex-impedance spectroscopy. Limited success was obtained with 12-Cr-4 ether at 0.25 M and decalin at 1 v/o. Poor results were noted with Li{sub 2}Pc at 0.025 M and 0.5 M.

  4. Magnesium chloride as a leaching and aragonite-promoting self-regenerative additive for the mineral carbonation of calcium-rich materials

    OpenAIRE

    Santos, Rafael; Bodor, Marius; Dragomir, Paul; Vraciu, Andreea; Vlad, Maria; Van Gerven, Tom

    2014-01-01

    Two approaches for the intensification of the mineral carbonation reaction are combined and studied in this work, namely: (i) the calcium leaching and aragonite promoting effects of magnesium chloride (MgCl2), and (ii) the passivating layer abrasion effect of sonication. The alkaline materials subjected to leaching and carbonation tests included lime, wollastonite, steel slags, and air pollution control (APC) residue. Batch leaching tests were conducted with varying concentrations of additive...

  5. Conductive additive content balance in Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon from LiFePO{sub 4}/C composites

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, Veronica; Goni, Aintzane; Muro, Izaskun Gil de; Rojo, Teofilo [Departamento de Quimica Inorganica, Universidad del Pais Vasco UPV/EHU, P.O. Box. 644, 48080, Bilbao (Spain); de Meatza, Iratxe; Bengoechea, Miguel [Energy Department, CIDETEC-IK4, P Miramon 196, Parque Tecnologico de San Sebastian, 20009, San Sebastian (Spain); Cantero, Igor [Departamento I+D+i Nuevas Tecnologias, CEGASA, Artapadura, 11, 01013 Vitoria-Gasteiz (Spain)

    2010-11-15

    Two samples of commercial conducting carbon black and the carbon generated in situ during LiFePO{sub 4}/C composite synthesis from citric acid are studied, with the aim of finding out whether carbon from the composite can fulfil the same function as carbon black in the electrode blend for a Li-ion battery. For this purpose, the carbon samples are analyzed by several techniques, such as X-ray diffraction, Raman spectroscopy, transmission electron microscopy, granulometry, BET specific area and conductivity measurements. Different cathode compositions and component proportions are tested for pellet and cast electrodes. Electrochemical results show that a moderate reduction of commercial carbon black content in both kinds of cathodes, by adding more LiFePO{sub 4}/C composite, enhanced the electrochemical behaviour by around 10%. In situ generated carbon can partially replace commercial conducting carbon black because its high specific surface probably enhances electrolyte penetration into the cathode, but it is always necessary to maintain a minimum amount of carbon black that provides better conductivity in order to obtain a good electrochemical response. (author)

  6. 黑碳添加对土壤活性有机碳和原有机碳的影响%Effects of Black Carbon Addition on Soil Labile Organic Carbon and Native Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    李淑香; 尹云锋; 杨玉盛; 高人; 马红亮; 李芳芳

    2013-01-01

    Black carbon (BC) is an important pool of the global C cycle. However, very little is known about the effect of BC addition on soil labile organic carbon and native soil organic carbon. In the study, BC was produced by charring the rice straw under 350℃ and mixed with soil under different rates of addition levels (0, 1%, 2%, 3%, 4%, 5%), and incubated for 56 days at 25 ℃. The results indicated that soil easily mineralization carbon (Cm) increased with the increase of BC addition level, and soil microbial biomass carbon (MBC) content had the similar trend (exception for 3%). Dissolved organic carbon (DOC) content in soil showed no significant difference among the lower addition levels (1%, 2%, 3%), but it was obviously lower in BC amended soils (1%, 2%, 3%) relative to the unamended soils. Using natural 13C abundance method, the results suggested that BC addition inhibited the native SOC decomposition at rate of 1% BC addition, but stimulated the native SOC decomposition at rates of 2%, 3%, 4% and 5% BC addition. However, the effects of BC additions on the native SOC decomposition were not significant among different treatments.%通过室内培养实验,向土壤(甘蔗土)中分别添加不同用量的黑碳(BC,350℃热解水稻秸秆),添加量分别为0(BC0)、1%(BC1)、2%(BC2)、3%(BC3)、4%(BC4)和5%(BC5),研究黑碳添加量对土壤活性有机碳和原有机碳的影响.结果表明,在25℃培养条件下,土壤易矿化碳(Cm)随黑碳添加量的增加而增加;土壤微生物生物量碳含量亦随添加量的增加呈增加趋势(BC3处理除外).土壤可溶性有机碳含量在BC1、BC2和BC3处理之间的差异不显著,并显著低于对照土壤(BC0);应用δ13C自然丰度方法研究发现,BC1处理抑制了土壤原有机碳分解,而BC2、BC3、BC4和BC5处理促进了土壤原有机碳的分解,但统计上未达显著水平.

  7. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens

    1995-01-01

    The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch ...

  8. Water- and Plant-Mediated Responses of Ecosystem Carbon Fluxes to Warming and Nitrogen Addition on the Songnen Grassland in Northeast China

    Science.gov (United States)

    Jiang, Li; Guo, Rui; Zhu, Tingcheng; Niu, Xuedun; Guo, Jixun; Sun, Wei

    2012-01-01

    Background Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition. Methodology/Principal Findings In-situ canopy CO2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO2 exchange (NEE) and increased ecosystem respiration (ER); but had no significant impacts on gross ecosystem productivity (GEP). N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland. Conclusion/Significance Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland. PMID:23028848

  9. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Science.gov (United States)

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P

  10. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Directory of Open Access Journals (Sweden)

    Andre eVelescu

    2016-05-01

    Full Text Available In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth.In 2007, we established a nutrient manipulation experiment (NUMEX to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N, 10 kg ha-1 a-1 of phosphorus (P, 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes.Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC and dissolved organic nitrogen (DON concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments.Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N

  11. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-07-01

    Full Text Available The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section over the visible wavelengths suggests black carbon is the dominating light-absorbing impurity. The response of first-year and multi-year sea ice albedo to increasing black carbon, from 1 to 1024 ng g−1, in a top 5 cm layer of a 155 cm-thick sea ice was calculated using a radiative-transfer model. The albedo of the first-year sea ice is more sensitive to additional loadings of black carbon than the multi-year sea ice. An addition of 8 ng g−1 of black carbon causes a decrease to 98.7% of the original albedo for first-year sea ice compared to a decrease to 99.7% for the albedo of multi-year sea ice, at a wavelength of 500 nm. The albedo of sea ice is surprisingly unresponsive to additional black carbon up to 100 ng g−1 . Snow layers on sea ice may mitigate the effects of black carbon in sea ice. Wet and dry snow layers of 0.5, 1, 2, 5 and 10 cm depth were added onto the sea ice surface. The albedo of the snow surface was calculated whilst the black carbon in the underlying sea ice was increased. A layer of snow 0.5 cm thick greatly diminishes the effect of black carbon in sea ice on the surface albedo. The albedo of a 2–5 cm snow layer (less than the e-folding depth of snow is still influenced by the underlying sea ice, but the effect of additional black carbon in the sea ice is masked.

  12. Suppression of hydrogenated carbon film deposition and hydrogen isotope retention by nitrogen addition into cold remote H/D and CH4 mixture plasmas

    International Nuclear Information System (INIS)

    Control of tritium retention and its removal from the first wall of future fusion devices are one of the most crucial issues for safety and effective use for fuel. Nitrogen addition into remote edge plasmas has been considered and tested as an effective method for suppression of carbon film deposition and reduction of hydrogen isotope absorption in the deposited films. In this paper we have investigated the scavenger effects of nitrogen injected into low temperature D2/CH4 plasmas on hydrogenated carbon film growth using a small helical device. The result of the deposition shows that the key reactive particles with CN and ND(H) bonds to suppression of hydrogenated carbon film growth and hydrogen isotope absorption are much slowly generated compared with hydrocarbon particles such as CD(H)x and C2D(H)x. This may be due to the slow atomic nitrogen diffusion into hydrogenated carbon layer and the chemical equilibrium between nitrogen absorption

  13. Suppression of hydrogenated carbon film deposition and hydrogen isotope retention by nitrogen addition into cold remote H/D and CH4 mixture plasmas

    Science.gov (United States)

    Iida, K.; Notani, M.; Uesugi, Y.; Tanaka, Y.; Ishijima, T.

    2015-08-01

    Control of tritium retention and its removal from the first wall of future fusion devices are one of the most crucial issues for safety and effective use for fuel. Nitrogen addition into remote edge plasmas has been considered and tested as an effective method for suppression of carbon film deposition and reduction of hydrogen isotope absorption in the deposited films. In this paper we have investigated the scavenger effects of nitrogen injected into low temperature D2/CH4 plasmas on hydrogenated carbon film growth using a small helical device. The result of the deposition shows that the key reactive particles with CN and ND(H) bonds to suppression of hydrogenated carbon film growth and hydrogen isotope absorption are much slowly generated compared with hydrocarbon particles such as CD(H)x and C2D(H)x. This may be due to the slow atomic nitrogen diffusion into hydrogenated carbon layer and the chemical equilibrium between nitrogen absorption.

  14. Transport current improvements of in situ MgB2 tapes by the addition of carbon nanotubes, silicon carbide or graphite

    International Nuclear Information System (INIS)

    Various types of carbon nanotube (CNT), as well as SiC and graphite powders, were used at the 5 wt% level as additions to a mixture of commercial Mg and B powder for the fabrication of single-core, in situ tapes using two-axial rolling deformation in an Nb/Fe sheath and final heat treatment at 650 deg. C/0.5 h in Ar. Transport current measurements showed that well distributed CNT, SiC and graphite additions lead to an improvement of Jc(μ0H) characteristics. The presence of carbon-containing particles causes substitution of boron by carbon, which decreases the critical temperature and increases the upper critical field as well as the current density in high magnetic fields. The uniform distribution of CNTs or other carbon-containing particles is an important factor for effective carbon substitution. This observation may be important for the development of practical MgB2 composite superconducting wires intended for magnets

  15. Separation of flavonoids and phenolic acids in complex natural products by microemulsion electrokinetic chromatography using surfactant-coated and carboxylic single-wall carbon nanotubes as additives.

    Science.gov (United States)

    Cao, Jun; Qu, Haibin; Cheng, Yiyu

    2010-05-01

    In this paper, we investigated the analytical potential of the use of single-walled carbon nanotubes (SWNTs) with different dispersion as additives in MEEKC. The addition of surfactant-coated single-walled carbon nanotubes (SC-SWNTs) in microemulsion provided a more efficient method than carboxylic SWNTs for the separation of three flavonoids and six phenolic acids depending on the interaction between the analytes and SWNTs surface. Additionally, the effect of important factors was examined by changing experimental variables such as the dispersion of SWNTs, surfactants and cosurfactants. Finally, the MEEKC method using SC-SWNTs was successfully applied to complex natural products (drug pair of Radix Astragali and Radix et Rhizoma Salvia Miltiorrhizae), with satisfactory results. PMID:20414881

  16. Enhanced performance of starter lighting ignition type lead-acid batteries with carbon nanotubes as an additive to the active mass

    Science.gov (United States)

    Marom, Rotem; Ziv, Baruch; Banerjee, Anjan; Cahana, Beni; Luski, Shalom; Aurbach, Doron

    2015-11-01

    Addition of various carbon materials into lead-acid battery electrodes was studied and examined in order to enhance the power density, improve cycle life and stability of both negative and positive electrodes in lead acid batteries. High electrical-conductivity, high-aspect ratio, good mechanical properties and chemical stability of multi-wall carbon nanotubes (MWCNT, unmodified and mofified with carboxylic groups) position them as viable additives to enhance the electrodes' electrical conductivity, to mitigate the well-known sulfation failure mechanism and improve the physical integration of the electrodes. In this study, we investigated the incorporation-effect of carbon nanotubes (CNT) to the positive and the negative active materials in lead-acid battery prototypes in a configuration of flooded cells, as well as gelled cells. The cells were tested at 25% and 30% depth-of-discharge (DOD). The positive effect of the carbon nanotubes (CNT) utilization as additives to both positive and negative electrodes of lead-acid batteries was clearly demonstrated and is explained herein based on microscopic studies.

  17. Studying soil organic carbon in Mediterranean soils. Different techniques and the effects of land management and use, climatic and topographic conditions, organic waste addition

    Science.gov (United States)

    Lozano-García, Beatriz; Parras-Alcántara, Luis

    2014-05-01

    Soil organic carbon (SOC) is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. The ability of soil to store SOC depends to a great extent on climate and some soil properties, in addition to the cultivation system in agricultural soils. Soils in Mediterranean areas are very poor in organic matter and are exposed to progressive degradation processes. Therefore, a lot of actions are conducted to improve soil quality and hence mitigate the negative environmental and agronomic limitations of these soils. Improved cultivation systems (conversion of cropland to pastoral and forest lands, conventional tillage to conservation tillage, no manure use to regular addition of manure) have been introduced in recent years, increasing the contents in SOC and therefore, enhancing the soil quality, reducing soil erosion and degradation, improving surface water quality and increasing soil productivity. Moreover, the organic waste addition to the soils is especially useful in Mediterranean regions, where the return of organic matter to soil not only does it help soils store SOC and improve soil structure and soil fertility but also it allows to reuse a wide range of agro-industrial wastes.

  18. Effects of niobium addition on the structure and properties of medium and high carbon steels. v. 1,2

    International Nuclear Information System (INIS)

    An evaluation about the use of niobium in medium and high carbon steels, with ferritic-pearlitic structure, through the understanding of niobium actuaction mechanism in the structure, and consequently in the mechanical properties of those steels is done. (E.G.)

  19. A systematic study on the effect of acidic, basic and neutral additives on dispersion of multiwalled carbon nanotubes using a dimethylformamide solution

    International Nuclear Information System (INIS)

    Presence of acidic, basic and neutral additives on dispersion of multiwalled carbon nanotubes (MWCNTs) in dimethylforamide (DMF) solution has been investigated. The surface charge measurement showed that MWCNTs in the presence of acidic additives in DMF exhibit a higher surface charge (−85 C g−1) than that with the basic additives (−22 C g−1). The stability of the MWCNTs dispersion was visually monitored and it was found that in the presence of acidic and no additives it would be stable and dispersed for more than five days, whereas MWCNTs suspension immediately settle down in the presence of basic and neutral additives. The degree of defects on MWCNTs was determined by analysis of detailed Raman spectra of as-received MWNCTs and MWNCTs dispersed in DMF with different additives. By exploring the correlation between the ID/IG (Raman analysis) ratio and the degree of defects, it was found that the carbon–carbon double bond (C=C) of MWCNTs was slightly damaged by adding additives to the solvent. (paper)

  20. Effect of NaOH addition on a ternary carbonate salt to be used as storage medium for CSP plants

    Science.gov (United States)

    Pérez, F. J.; Lasanta, M. I.; de Miguel, M. T.; García-Martín, G.; Encinas-Sánchez, V.

    2016-05-01

    A detailed analysis of the melting point and thermal degradation of a ternary mixture of carbonates to which various percentages of NaOH were added is presented. To this end, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) were carried out. Experimental results show that the melting point of the prepared salts can be down to below 450 °C with their decomposition temperatures around 900°C. The new kinds of mixed molten salts have a lower melting point and a slightly higher decomposition temperature, but the obtained improvements are not as large as expected. Therefore, it can be concluded that NaOH does not substantially improve the temperature operation range of the initial carbonate mixture.

  1. The influence of anti-wear additive ZDDP on doped and undoped diamond-like carbon coatings

    OpenAIRE

    Austin, L.; Liskiewicz, T; Kolev, I; Zhao, H.; Neville, A.

    2015-01-01

    Diamond-like carbon (DLC) coatings are recognised as a promising way to reduce friction and improve wear performance of automotive engine components. DLC coatings provide new possibilities in the improvement of the tribological performance of automotive components beyond what can be achieved with lubricant design alone. Lubricants are currently designed for metallic surfaces, the tribology of which is well defined and documented. DLC does not share this depth of tribological knowledge; thus, ...

  2. Study of Fluorine Addition Influence in the Dielectric Constant of Diamond-Like Carbon Thin Film Deposited by Reactive Sputtering

    Science.gov (United States)

    Trippe, S. C.; Mansano, R. D.

    The hydrogenated amorphous carbon films (a-C:H) or DLC (Diamond-Like Carbon) films are well known for exhibiting high electrical resistivity, low dielectric constant, high mechanical hardness, low friction coefficient, low superficial roughness and also for being inert. In this paper, we produced fluorinated DLC films (a-C:F), and studied the effect of adding CF4 on the above-mentioned properties of DLC films. These films were produced by a reactive RF magnetron sputtering system using a target of pure carbon in stable graphite allotrope. We performed measurements of electrical characteristic curves of capacitance as a function of applied tension (C-V) and current as a function of the applied tension (I-V). We showed the dielectric constant (k) and the resistivity (ρ) as functions of the CF4 concentration. On films with 65% CF4, we found that k = 2.7, and on films with 70% CF4, ρ = 12.3 × 1011 Ω cm. The value of the electrical breakdown field to films with 70% CF4 is 5.3 × 106 V/cm.

  3. Adsorptive Removal of Formaldehyde by Chemically Bamboo Activated Carbon with addition of Ag nanoparticle: Equilibrium and Kinetic

    Directory of Open Access Journals (Sweden)

    Pita Rengga Wara Dyah

    2016-01-01

    Full Text Available Carbon was prepared from dried waste bamboo (Dendrocalamus asper using chemical activation with KOH. The carbon was prepared with the activating agent in a mass ratio of KOH and dried bamboo (3:1 at 800oC. Using impregnation technique, the bamboo-based activated carbon has developed with modified Ag nanoparticle (Ag-AC to capture formaldehyde. The Ag-AC has characteristics of moderate surface area of 685 m2/g and average pore size of 2.7 nm. The adsorption equilibriums and kinetics of formaldehyde on Ag-AC measured. The influences of initial formaldehyde on adsorption performance have measured in a batch system. The equilibrium data were evaluated by isotherm models of Langmuir, Freundlich, and Temkin. The Langmuir model well describes the adsorptive removal of formaldehyde on Ag-AC in this study. Pseudo-first-order and pseudo-second-order kinetic equations were applied to test the experimental data. The pseudo-second-order exhibited the best fit for kinetic study.

  4. Effects of moisture and carbonate additions on CO2 emission from calcareous soil during closed-jar incubation

    Institute of Scientific and Technical Information of China (English)

    YanJie DONG; Miao CAI; JianBin ZHOU

    2014-01-01

    Calcareous soil contains organic and inorganic carbon (C) pools, which both contribute to CO2 emission during closed-jar incubation. The mineralization of organic C and dissolution of inorganic C are both related to soil moisture, but the exact effect of water content on CO2 emission from calcareous soil is unclear. The objective of this experiment was to determine the effect of soil water content (air-dried, 30%, 70%, and 100%water-holding capacity (WHC)), carbonate type (CaCO3 or MgCO3), and carbonate amount (0.0, 1.0%, and 2.0%) on CO2 emission from calcareous soil during closed-jar incubation. Soil CO2 emission increased significantly as the water content in-creased to 70%WHC, regardless of whether or not the soil was amended with carbonates. Soil CO2 emission re-mained the same or increased slowly as the soil water content increased from 70%WHC to 100%WHC. When the water content was≤30%WHC, soil CO2 emission from soil amended with 1.0%inorganic C was greater than that from unamended soil. When the soil water content was 70%or 100%WHC, CO2 emission from CaCO3 amended soil was greater than that from the control. Furthermore, CO2 emission from soil amended with 2.0%CaCO3 was greater than that from soil amended with 1.0%CaCO3. Soil CO2 emission was higher in the MgCO3 amended soil than from the unamended soil. Soil CO2 emission decreased as the MgCO3 content increased. Cumulative CO2 emission was 3-6 times higher from MgCO3 amended soil than from CaCO3 amended soil. There was significant interaction effect between soil moisture and carbonates on CO2 emission. Soil moisture plays an important role in CO2 emission from calcareous soil because it affects both biotic and abiotic processes during the closed-jar incu-bation.

  5. Effects of moisture and carbonate additions on CO2 emission from calcareous soil during closed–jar incubation

    Institute of Scientific and Technical Information of China (English)

    YanJie; DONG; Miao; CAI; JianBin; ZHOU

    2014-01-01

    Calcareous soil contains organic and inorganic carbon(C) pools,which both contribute to CO2 emission during closed-jar incubation. The mineralization of organic C and dissolution of inorganic C are both related to soil moisture,but the exact effect of water content on CO2 emission from calcareous soil is unclear. The objective of this experiment was to determine the effect of soil water content(air-dried,30%,70%,and 100% water-holding capacity(WHC)),carbonate type(CaCO3 or MgCO3),and carbonate amount(0.0,1.0%,and 2.0%) on CO2 emission from calcareous soil during closed-jar incubation. Soil CO2 emission increased significantly as the water content increased to 70% WHC,regardless of whether or not the soil was amended with carbonates. Soil CO2 emission remained the same or increased slowly as the soil water content increased from 70% WHC to 100% WHC. When the water content was ≤30% WHC,soil CO2 emission from soil amended with 1.0% inorganic C was greater than that from unamended soil. When the soil water content was 70% or 100% WHC,CO2 emission from CaCO3 amended soil was greater than that from the control. Furthermore,CO2 emission from soil amended with 2.0% CaCO3 was greater than that from soil amended with 1.0% CaCO3. Soil CO2 emission was higher in the MgCO3 amended soil than from the unamended soil. Soil CO2 emission decreased as the MgCO3 content increased. Cumulative CO2 emission was 3-6 times higher from MgCO3 amended soil than from CaCO3 amended soil. There was significant interaction effect between soil moisture and carbonates on CO2 emission. Soil moisture plays an important role in CO2 emission from calcareous soil because it affects both biotic and abiotic processes during the closed-jar incubation.

  6. Co-addition of nano-carbon and nano-silica: An effective method for improving the in-field properties of magnesium diboride superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Syju; Rahul, S.; Devadas, K.M.; Varghese, Neson [National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, Kerala 695019 (India); Sundaresan, A. [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Syamaprasad, U., E-mail: syamcsir@gmail.com [National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, Kerala 695019 (India)

    2014-11-14

    MgB{sub 2} superconductor sample co-doped with nano-carbon (n-C) and nano-silica (n-SiO{sub 2}) is prepared and its structural and superconducting properties are compared with pure and n-C and nano SiC (n-SiC) mono-doped samples. Shrinkage of a-lattice parameter is observed for all doped samples, among which the co-doped sample exhibits the maximum shrinkage, an evidence of effective carbon substitution at boron sites. All doped samples show significantly enhanced in-field critical current density J{sub C}(H), where the co-doped sample dominates others throughout the whole range of field studied. Lattice strains induced by carbon substitution and flux pinning caused by uniformly distributed nano sized Mg{sub 2}Si particles formed by the reaction between Mg and n-SiO{sub 2}, are the main reasons for the highly enhanced J{sub C}(H) behavior of the co-doped superconductor. - Highlights: • MgB{sub 2} pure and doped with n-C, n-SiC and n-C + n-SiO{sub 2} are prepared in bulk. • Addition of n-SiO{sub 2} with n-C improves carbon substitution. • Co-doped sample exhibits enhanced critical current density in entire range of field. • Uniformly distributed nano sized secondary phases provide additional flux pinning.

  7. Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries

    Science.gov (United States)

    Li, L. F.; Xie, B.; Lee, H. S.; Li, H.; Yang, X. Q.; McBreen, J.; Huang, X. J.

    The new electrolyte systems utilizing one type of Lewis acids, the boron based anion receptors (BBARs) with LiF, Li 2O, or Li 2O 2 in carbonate solutions have been developed and reported by us. These systems open up a new approach in developing non-aqueous electrolytes with higher operating voltage and less moisture sensitivity for lithium-ion batteries. However, the formation of a stable solid electrolyte interphase (SEI) layer on the graphitized anodes is a serious problem needs to be solved for these new electrolyte systems, especially when propylene carbonate (PC) is used as a co-solvent. Using lithium bis(oxalato)borate (LiBOB) as an additives, the SEI layer formation on mesophase carbon microbeads (MCMB) anode is significantly enhanced in these new electrolytes containing boron-based anion receptors, such as tris(pentafluorophenyl) borane, and lithium salt such as LiF, or lithium oxides such as Li 2O or Li 2O 2 in PC and dimethyl carbonate (DMC) solvents. The cells using these electrolytes and MCMB anodes cycled very well and the PC co-intercalation was suppressed. Fourier transform infrared spectroscopy (FTIR) studies show that one of the electrochemical decomposition products of LiBOB, lithium carbonate (Li 2CO 3), plays a quite important role in the stablizing SEI layer formation.

  8. Effect of Nb, V and Ti additions on the yield strength of hot direct rolled thin slab cast low carbon steel

    International Nuclear Information System (INIS)

    Ingots of low carbon steels with additions of Nb, V and Ti were made in a manner that simulated thin slab casting, and were hot direct rolled. Mn and Si contents were kept constant at 1.4 wt% and 0.25 wt% respectively. Carbon contents were varied from 0.04-0.88 wt%, vanadium from 0.02-0.09 wt% and titanium from 0.007-0.025. The niobium content was kept constant i.e. 0.042 for all the ingots. A yield strength of 385 Mpa and a tensile strength of 470 MPa was achieved in the steel microalloyed only with Nb. It was shown that addition of vanadium alone and vanadium and titanium together to steel containing 0.042 wt% Nb did not increase yield or tensile strength further. (author)

  9. An investigation of the effects of the addition of powdered activated carbon to the activated sludge of cellulose acetate manufacturing wastewater

    OpenAIRE

    Kwelle, Chidiadi Hart

    1985-01-01

    Equilibrium powdered activated carbon (PAC) concentrations of 20, 160, and 280 mg/L in activated sludge reactors treating cellulose acetate manufacturing wastewater were found to enhance substrate removal. The improved substrate removal as measured by COD averaged 20 percent. The apparent mechanism of improved removal was the stimulation of greater biomass growth. PAC addition increased the oxygen uptake rate (OUR), the observed cell yield coefficient (Ybbs) and the fi...

  10. Influence of carbon monoxide additions on the sensitivity of the dry hydrogen-air mixtures to detonation

    International Nuclear Information System (INIS)

    Under severe accident conditions of water cooled nuclear reactors the hydrogen-air detonation represents one of the most hazardous events which can result in the reactor containment damage. An important factor related with the measure of gas mixture detonability is the detonation cell size which correlates with the critical tube diameter and detonation initiation energy. A numerical kinetic study is presented of the influence of carbon monoxide admixtures (from 0 vol.% to 40 vol.%) upon the sensitivity (detonation cell size) of the dry hydrogen-air gas mixtures to detonation in post-accident containment atmosphere. (author). 3 refs., 3 figs

  11. Effect of carbon nanotube and aluminum oxide addition on plasma-sprayed hydroxyapatite coating's mechanical properties and biocompatibility

    International Nuclear Information System (INIS)

    This study reports on the synthesis of novel bioceramic composite coating of hydroxyapatite (HA) reinforced with carbon nanotubes (CNTs) and aluminum oxide (Al2O3) using plasma spray technique. Fracture toughness of HA-20 wt.% Al2O3 improved by 158% as compared to HA coating whereas HA-18.4 wt.% Al2O3-1.6 wt.% CNT showed an improvement of 300%. Carbon nanotubes provided reinforcement via rebar mechanism. Human fiber osteoblast cell-growth studies showed that biocompatibility of the coating remained unaltered, as Al2O3 retained its bio-inertness and CNT, its bioactivity, within the composite coatings. Composite coating showed lower attachment, but higher proliferation rate, for the osteoblast cells, which has been attributed to the surface roughness. An optimized relation between coating composition, its biocompatibility and mechanical properties was established to predict the most suited coating material for orthopedic implants. HA-Al2O3-CNT composite coating displayed most improved mechanical properties while retaining its biocompatibility.

  12. Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study.

    Science.gov (United States)

    Okuno, Yukihiro; Ushirogata, Keisuke; Sodeyama, Keitaro; Tateyama, Yoshitaka

    2016-03-28

    Additives in the electrolyte solution of lithium-ion batteries (LIBs) have a large impact on the performance of the solid electrolyte interphase (SEI) that forms on the anode and is a key to the stability and durability of LIBs. We theoretically investigated effects of fluoroethylene carbonate (FEC), a representative additive, that has recently attracted considerable attention for the enhancement of cycling stability of silicon electrodes and the improvement of reversibility of sodium-ion batteries. First, we intensively examined the reductive decompositions by ring-opening, hydrogen fluoride (HF) elimination to form a vinylene carbonate (VC) additive and intermolecular chemical reactions of FEC in the ethylene carbonate (EC) electrolyte, by using density functional theory (DFT) based molecular dynamics and the blue-moon ensemble technique for the free energy profile. The results show that the most plausible product of the FEC reductive decomposition is lithium fluoride (LiF), and that the reactivity of FEC to anion radicals is found to be inert compared to the VC additive. We also investigated the effects of the generated LiF on the SEI by using two model systems; (1) LiF molecules distributed in a model aggregate of organic SEI film components (SFCs) and (2) a LiF aggregate interfaced with the SFC aggregate. DFT calculations of the former system show that F atoms form strong bindings with the Li atoms of multiple organic SFC molecules and play as a joint connecting them. In the latter interface system, the LiF aggregate adsorbs the organic SFCs through the F-Li bindings. These results suggest that LiF moieties play the role of glue in the organic SFC within the SEI film. We also examined the interface structure between a LiF aggregate and a lithiated silicon anode, and found that they are strongly bound. This strong binding is likely to be related to the effectiveness of the FEC additive in the electrolyte for the silicon anode. PMID:26948716

  13. Effect of zirconium addition on the austenite grain coarsening behavior and mechanical properties of 900 Mpa low carbon bainite steel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The ultra-free bainitic microstructure of a 900 MPa low carbon bainitic Cu-Ni-Mo-B steel was obtained by a newly developed relaxation precipitation control (RPC) phase transformation processing.In a pan-cake like prior-anstenite grain,the microstructure consisted of lath bainite,a little of abnormal granular bainite,and acicular ferrite.The effect of zirconium carbonitrides on the austenite grain coarsening behavior was studied by transmission electron microscopy (TEM).The results show that,the lath is narrower with increasing cooling rate.The ratio of all kinds of bainitic microstructure is proper with the intermediate cooling rate;and Zr-containing precipitates distribute uniformly,which restrains austenite grain growing in heat-affected welding zone.

  14. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment.

    Science.gov (United States)

    Lin, Hongjun; Wang, Fangyuan; Ding, Linxian; Hong, Huachang; Chen, Jianrong; Lu, Xiaofeng

    2011-09-15

    The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH(4)(+)-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent. PMID:21794980

  15. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation

    International Nuclear Information System (INIS)

    The reaction phenomena of CPOM (catalytic partial oxidation of methane) in a Swiss-roll reactor are studied numerically where a rhodium-based catalyst bed is embedded at the center of the reactor. CO2 is added into the feed gas and excess enthalpy recovery is performed to evaluate their influences on CPOM performance. In the study, the mole ratio of O2 to CH4 (O2/CH4 ratio) is fixed at 0.5 and the mole ratio of CO2 to O2 (CO2/O2 ratio) is in the range of 0–2. The results reveal that CO2 addition into the influent has a slight effect on methane combustion, but significantly enhances dry reforming and suppresses steam reforming. The reaction extents of steam reforming and dry reforming in CPOM without heat recovery and CO2 addition are in a comparable state. Once CO2 is added into the feed gas, the dry reforming is enhanced, thereby dominating CH4 consumption. Compared to the reactor without excess enthalpy recovery, heat recirculation drastically increases the maximum reaction temperature and CH4 conversion in the catalyst bed; it also intensifies the H2 selectivity, H2 yield, CO2 conversion, and syngas production rate. The predictions indicate that the heat recirculation is able to improve the syngas formation up to 45%. - Highlights: • Catalytic partial oxidation of methane with CO2 addition and heat recovery is studied. • CO2 addition has a slight effect on methane combustion. • CO2 addition significantly enhances dry reforming and suppresses steam reforming. • Dry reforming dominates CH4 consumption when CO2 addition is large. • Heat recirculation can improve the syngas formation up to 45%

  16. Enantioselective construction of quaternary stereogenic carbons by the Lewis base catalyzed additions of silyl ketene imines to aldehydes.

    Science.gov (United States)

    Denmark, Scott E; Wilson, Tyler W; Burk, Matthew T; Heemstra, John R

    2007-12-01

    Silyl ketene imines derived from a variety of alpha-branched nitriles have been developed as highly useful reagents for the construction of quaternary stereogenic centers via the aldol addition reaction. In the presence of SiCl4 and the catalytic action of chiral phosphoramide (R,R)-5, silyl ketene imines undergo extremely rapid and high yielding addition to a wide variety of aromatic aldehydes with excellent diastereo- and enantioselectivity. Of particular note is the high yields and selectivities obtained from electron-rich, electron-poor, and hindered aldehydes. The nitrile function serves as a useful precursor for further synthetic manipulation. PMID:17988135

  17. Carbon sequestration and the forest sector: Implementing an additional project based on wood products in the construction sector

    OpenAIRE

    Jean-Jacques MALFAIT (GREThA UMR CNRS 5113); Pajot, Guillaume

    2008-01-01

    The aim of the paper is to analyse the implementation of a climate change mitigation strategy for the forest sector. We suggest a strategy based on an increased storage capacity in wood products. An additional resource is provided by recycling and a reallocation of timber usages. In the first part of the paper, the additionality notion (“Kyoto meaning”) is discussed (environmental and economic aspects). Then a case study is conducted on the “Landes de Gascogne forest”. The project is assessed...

  18. Cathodic electrodeposition of cerium based oxides on carbon steel from concentrated cerium nitrate. Part II: Influence of electrodeposition parameters and of the addition of PEG

    Energy Technology Data Exchange (ETDEWEB)

    Hamlaoui, Y. [Laboratoire d' Etudes des Materiaux en Milieux Agressifs (LEMMA), Pole Sciences et Technologie, Universite de La Rochelle, Avenue Michel Crepeau, 17042 La Rochelle Cedex 1 (France); Institut des Sciences et Sciences de l' Ingenieur, Centre Universitaire de Souk-Ahras, BP 1553, 41000 Souk-Ahras (Algeria); Tifouti, L. [Laboratoire de Genie de l' Environnement, Universite Badji Mokhtar, BP 1223, 23020, El Hadjar-Annaba (Algeria); Remazeilles, C. [Laboratoire d' Etudes des Materiaux en Milieux Agressifs (LEMMA), Pole Sciences et Technologie, Universite de La Rochelle, Avenue Michel Crepeau, 17042 La Rochelle Cedex 1 (France); Pedraza, F., E-mail: fpedraza@univ-lr.fr [Laboratoire d' Etudes des Materiaux en Milieux Agressifs (LEMMA), Pole Sciences et Technologie, Universite de La Rochelle, Avenue Michel Crepeau, 17042 La Rochelle Cedex 1 (France)

    2010-03-15

    The mechanisms of formation of cerium based oxides on carbon steel by cathodic electrodeposition from relatively concentrated cerium nitrate solutions were investigated in a previous work (Part I). It was shown that some corrosion products developed on the steel upon and soon after coating, thereby suggesting the films were not protective. This work (Part II) focuses on the influence of various elaboration parameters on the composition and morphology of the deposits likely to improve the corrosion resistance of carbon steel. It will be shown that an increase of the precursor concentration increases the Ce(OH){sub 3} content of the deposits and brings about larger crystallite sizes at low to moderate applied current densities. As a result, the formation of the carbonated green rust corrosion product is not hindered. The kinetics of formation of the film follows a polynomial law in which concurrent deposition and dissolution steps are combined. However, an increase of the deposition time results in a reduced content of Ce(OH){sub 3} in the layers, hence in an evolution of the colour of the deposits. Similarly, the increase of the temperature of the bath brings about significant modifications of the surface morphology, of the crystallite size and of the content of oxygen vacancies that are suspected not to confer adequate protection. In contrast, the addition of 10 g L{sup -1} of PEG to the 0.1 M cerium nitrate solutions will be shown to inhibit the development of the carbonated green rust.

  19. Cathodic electrodeposition of cerium based oxides on carbon steel from concentrated cerium nitrate. Part II: Influence of electrodeposition parameters and of the addition of PEG

    International Nuclear Information System (INIS)

    The mechanisms of formation of cerium based oxides on carbon steel by cathodic electrodeposition from relatively concentrated cerium nitrate solutions were investigated in a previous work (Part I). It was shown that some corrosion products developed on the steel upon and soon after coating, thereby suggesting the films were not protective. This work (Part II) focuses on the influence of various elaboration parameters on the composition and morphology of the deposits likely to improve the corrosion resistance of carbon steel. It will be shown that an increase of the precursor concentration increases the Ce(OH)3 content of the deposits and brings about larger crystallite sizes at low to moderate applied current densities. As a result, the formation of the carbonated green rust corrosion product is not hindered. The kinetics of formation of the film follows a polynomial law in which concurrent deposition and dissolution steps are combined. However, an increase of the deposition time results in a reduced content of Ce(OH)3 in the layers, hence in an evolution of the colour of the deposits. Similarly, the increase of the temperature of the bath brings about significant modifications of the surface morphology, of the crystallite size and of the content of oxygen vacancies that are suspected not to confer adequate protection. In contrast, the addition of 10 g L-1 of PEG to the 0.1 M cerium nitrate solutions will be shown to inhibit the development of the carbonated green rust.

  20. Vinylene carbonate and tris(trimethylsilyl) phosphite hybrid additives to improve the electrochemical performance of spinel lithium manganese oxide/graphite cells at 60 °C

    International Nuclear Information System (INIS)

    Highlights: •The combination of tris(trimethylsilyl) phosphite and vinylene carbonate improves the electrochemical performance of lithium manganese oxide/graphite cells at 60 °C. •Removal of hydrogen fluoride and water by tris(trimethylsilyl) phosphite suppresses manganese dissolution from lithium manganese oxide. -- Abstract: The organophosphorus compounds tris(trimethylsilyl) phosphite (TMSP) and vinylene carbonate (VC) have been considered for use as functional additives to improve the electrochemical performance of Li1.1Mn1.86Mg0.04O4 (LMO)/graphite full cells. Our investigation reveals that the combination of VC and TMSP as additives enhances the cycling properties and storage performance of full cells at 60 °C. The unique functions of the TMSP additive in the VC electrolyte are investigated via ex situ X-ray photoelectron spectroscopy (XPS) and 19F nuclear magnetic resonance (NMR) measurements. The TMSP additive effectively eliminates trace water and hydrogen fluoride (HF) and produces a protective film on the LMO cathode that alleviates manganese dissolution at 60 °C

  1. Low dose powdered activated carbon addition at high sludge retention times to reduce fouling in membrane bioreactors

    NARCIS (Netherlands)

    Remy, Maxime; Marel, van der Perry; Zwijnenburg, Arie; Rulkens, Wim; Temmink, Hardy

    2009-01-01

    The addition of a low concentration of PAC (0.5 g L−1 of sludge, i.e. a dose of 4 mg L−1 of wastewater), in combination with a relatively long SRT (50 days), to improve membrane filtration performance was investigated in two pilot-scale MBRs treating real municipal wastewater. Continuous filterabili

  2. Low dose powdered activated carbon addition at high sludge retention times to reduce fouling in membrane bioreactors

    NARCIS (Netherlands)

    Remy, M.J.J.; Marel, van der P.; Zwijnenburg, A.; Rulkens, W.H.; Temmink, B.G.

    2009-01-01

    The addition of a low concentration of PAC (0.5 g L-1 of sludge, i.e. a dose of 4 mg L-1 of wastewater), in combination with a relatively long SRT (50 days), to improve membrane filtration performance was investigated in two pilot-scale MBRs treating real municipal wastewater. Continuous filterabili

  3. Cyanoethylation and (methoxycarbonyl)ethylation of icosahedral ortho-carborane derivatives at carbon vertices via Michael additions

    Czech Academy of Sciences Publication Activity Database

    Plešek, Jaromír; Bačkovský, Jaroslav; Fusek, Jiří; Plzák, Zbyněk

    2001-01-01

    Roč. 66, č. 10 (2001), s. 1499-1507. ISSN 0010-0765 R&D Projects: GA ČR GA104/99/1096; GA MŠk LB98233 Institutional research plan: CEZ:AV0Z4032918 Keywords : boranes * carboranes * Michael additions Subject RIV: CA - Inorganic Chemistry Impact factor: 0.778, year: 2001

  4. Crystallization of calcium carbonate (CaCO3) in a flowing system: Influence of Cu2+ additives on induction time and crystalline phase transformation

    Science.gov (United States)

    Usmany, Y.; Putranto, W. A.; Bayuseno, A. P.; Muryanto, S.

    2016-04-01

    Scaling of calcium carbonate (CaCO3) is commonly found in piping systems in oil, gas, desalination and other chemical processes. The scale may create technical problems, leading to the reduction of heat transfer, increase of energy consumption and unscheduled equipment shutdown. This paper presents crystallization scaling experiments and evaluation of the effect of Cu2+ additives on the induction time and calcium carbonate transformation. The crystals precursors were prepared using equimolar of CaCl2 and Na2CO3 resulted in concentrations of 3000 ppm Ca2+ in the solution. The Cu2+ in amounts of 0, 1 and 10 ppm was separately added in the solution. The flow rates (20, 35, and 60 mL/min) and elevated temperatures (27, 35 and 45°C) were selected in the study. The induction time for crystallization of CaCO3 was observed by measuring the solution conductivity over time, while the phase transformation of calcium carbonate was examined by XRD method and SEM/EDX. It was found that the conductivity remained steady for a certain period reflecting to the induction time of crystal formation, and then decreased sharply afterwards,. The induction time was increased from 34 and 48 minutes in the presence of Cu additives (1 and 10 ppm), depending on the flow rates and temperature observed. In all the experiments, the Cu2+ addition leads to the reduction of mass of crystals. Apparently, the presence of Cu2+ could inhibit the CaCO3 crystallization. In the absence of Cu2+ and at elevated temperature, the crystals obtained were a mixture of vaterite and calcite. In the presence of Cu2+ and at elevated temperature, the crystals formed were aragonite and calcite. Here, the presence of Cu2+ additives might have controlled the crystal transformation of CaCO3.

  5. Influence of Residue and Nitrogen Fertilizer Additions on Carbon Mineralization in Soils with Different Texture and Cropping Histories

    OpenAIRE

    Xianni Chen; Xudong Wang; Matt Liebman; Michel Cavigelli; Michelle Wander

    2014-01-01

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double...

  6. Addition of MgO Nanoparticles to Carbon Structural Steel and the Effect on Inclusion Characteristics and Microstructure

    Science.gov (United States)

    Gao, Xiangzhou; Yang, Shufeng; Li, Jingshe; Liao, Hang; Gao, Wei; Wu, Tuo

    2016-04-01

    An innovative approach for pre-dispersing MgO nanoparticles with AlSi alloy nanoparticles was established, and the nanoparticles were dispersed well in carbon structural steel. After adding different mass fractions of MgO nanoparticles in steel, the majority of inclusions contained MgO·Al2O3 spinel and MgO-Al2O3-bearing hybrid inclusion, and these inclusions promoted acicular ferrite (AF) formation. With increasing amount of added nanoparticles, the average inclusion size increased from 0.90 to 1.50 μm and the inclusion size was considerably refined, but the ability of inclusions to induce AF was greatly declined. It was revealed that the inclusion size was the decisive factor influencing the inducing ability of inclusions for AF, which also got a solid support from the nucleation thermomechanical and dynamic analyses. When the mass fraction of MgO nanoparticles reached 0.05 pct, the proportion of AF in microstructure is relatively larger and the degree of interlocking of the AF within the microstructure was optimized. The ferrite grains also got refined and the average grain size decreased by more than 94 pct compared with that of the original steel.

  7. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment

    International Nuclear Information System (INIS)

    Highlights: → The first study to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. → The study revealed that most organics in the secondary effluent were low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by PAC-MBR process. → The study suggested that the action of biomass and the PAC is mutual and synergistic. - Abstract: The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH4+-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent.

  8. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hongjun, E-mail: hjlin@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province 321004 (China); Wang, Fangyuan; Ding, Linxian; Hong, Huachang [College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province 321004 (China); Chen, Jianrong, E-mail: cjr@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province 321004 (China); Lu, Xiaofeng [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800 (China)

    2011-09-15

    Highlights: {yields} The first study to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. {yields} The study revealed that most organics in the secondary effluent were low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by PAC-MBR process. {yields} The study suggested that the action of biomass and the PAC is mutual and synergistic. - Abstract: The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH{sub 4}{sup +}-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent.

  9. Carbon black and vapor grown carbon fibers binary conductive additive for the Li1.18Co0.15Ni0.15Mn0.52O2 electrodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Carbon black (CB) and vapor-grown carbon fibers (VGCFs) are used as conductive additives for the Li1.18Co0.15Ni0.15Mn0.52O2 electrodes for Li-ion batteries. The fibrous VGCFs can bridge the isolated Li1.18Ni0.15Co0.15Mn0.52O2 regions, thus construct an effective conductive network for electron transport. In addition, incorporation of CB and VGCFs can improve the electrochemical kinetics of the cathode material by retarding the harmful side reactions, promoting the charge transfer reactions and increasing the apparent lithium diffusion coefficient. In all electrodes under investigation, the one prepared with 3 wt.% of VGCFs and 12 wt.% of CB shows the largest discharge capacity of 252 mAh g−1 at the 0.2C rate with excellent capacity retention and rate capability. - Highlights: • CB/VGCFs binary conductive additive is used for Li-excess layered cathode electrode. • The binary conductive additive constructs a continuous network for electron transport. • The binary conductive additive improves the electrochemical kinetics of the electrode. • Improved electrochemical performance is gained using the binary conductive additive

  10. Direct carbon-carbon bond formation via reductive soft enolization: a syn-selective Mannich addition of α-iodo thioesters.

    Science.gov (United States)

    Truong, Ngoc; Sauer, Scott J; Seraphin-Hatcher, Cyndie; Coltart, Don M

    2016-08-16

    The β-amino carboxylic acid moiety is a key feature of numerous important biologically active compounds. We describe a syn-selective direct Mannich addition reaction that uses α-iodo thioesters and sulfonyl imines and produces β-amino thioesters. Enolate formation is achieved by reductive soft enolization. The products of the reaction provide straightforward access to biologically important β-lactams through a variety of known reactions. PMID:27492274

  11. Nitrogen and oxygen functionalized hollow carbon materials: The capacitive enhancement by simply incorporating novel redox additives into H2SO4 electrolyte

    Science.gov (United States)

    Nie, Yong Fu; Wang, Qian; Chen, Xiang Ying; Zhang, Zhong Jie

    2016-07-01

    In present work, we have developed a simple but effective template carbonization method for producing hollow carbon materials with high content of nitrogen and oxygen from thiocarbanilide. Among all samples, the NPC-1 exhibits high specific surface area (736 m2 g-1) and large pore volume (5.93 cm3 g-1) with high content of heteroatoms (∼11.25 at% nitrogen and ∼5.74 at% oxygen), which is conducive to the improvement of electrochemical performance. Specifically, the high specific capacitance and excellent cycling stability over 5000 cycles of the NPC-1-based electrode are achieved in 1 mol L-1 H2SO4 electrolyte. Additionally, pyrocatechol and rutin as novel redox additives that can easily cause redox-reactions have been incorporated into H2SO4 electrolyte to improve the capacitances. As a result, the NPC-1-R-0.15 and NPC-1-P-0.15 samples deliver high specific capacitances of 120.5 and 368.7 F g-1 at 2 A g-1, respectively, which are much higher than that of the NPC-1 sample (66.2 F g-1) without redox-additives at same current density. Furthermore, the large energy density of 18.9 and 11.9 Wh kg-1 of the NPC-1-based symmetric supercapacitors have been obtained in H2SO4+pyrocatechol and H2SO4+rutin electrolyte, respectively, and both samples also demonstrate excellent cyclic performance for 5000 cycles.

  12. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems

    International Nuclear Information System (INIS)

    The effects of elevated carbon dioxide (CO2) and nitrogen (N) addition on foliar N and phosphorus (P) stoichiometry were investigated in five native tree species (four non-N2 fixers and one N2 fixer) in open-top chambers in southern China from 2005 to 2009. The high foliar N:P ratios induced by high foliar N and low foliar P indicate that plants may be more limited by P than by N. The changes in foliar N:P ratios were largely determined by P dynamics rather than N under both elevated CO2 and N addition. Foliar N:P ratios in the non-N2 fixers showed some negative responses to elevated CO2, while N addition reduced foliar N:P ratios in the N2 fixer. The results suggest that N addition would facilitate the N2 fixer rather than the non-N2 fixers to regulate the stoichiometric balance under elevated CO2. - Highlights: ► Five native tree species in southern China were more limited by P than by N. ► Shifts in foliar N:P ratios were driven by P dynamic under the global change. ► N addition lowered foliar N:P ratios in the N2 fixer under elevated CO2. - N addition could facilitate the N2 fixer rather than the non-N2 fixers to regulate foliar N and P stoichiometry under elevated CO2 in subtropical forests.

  13. To overcome the appearance of the efflorescences by magnesium carbonate addition in a mass for manufacture of bricks of construction

    Science.gov (United States)

    Chemani, H.

    2011-01-01

    Following the tendency of some European countries the briquetiers develop further the aesthetic aspect of their products and, the supply of colors and, aspects of surface will be further extended. The recovery of the sustainability of facades in bricks apparent, the quality of raw materials, and their determination remain a major problem. The presence of soluble salts in the field is fairly harmful for the product terracotta because they are the cause of apparitions of efflorescences. To defeat this type of default our study is on an addition of MgCO3 a mixture of two kinds of clay. The doses MgCO3 were between (0,25-0,5-0,75-1-1,5%) of the dry mass to treat. With rates of clay yellow and, gray which are respectively (40-60%). In comparison with a previous study where the addition was BaCO3. Finished products obtained with 1% MgCO3 exhibited a better aesthetic aspect, of the qualities insulating, and a mechanical resistance significantly higher than the bricks ceramics ordinary marketed at the present time.

  14. Influence of residue and nitrogen fertilizer additions on carbon mineralization in soils with different texture and cropping histories.

    Science.gov (United States)

    Chen, Xianni; Wang, Xudong; Liebman, Matt; Cavigelli, Michel; Wander, Michelle

    2014-01-01

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs) and decay rates (ka, ks) of active and slow C pools which we compared with total particulate organic matter (POM) and occluded-POM (OPOM). The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays. Net SOC loss was greater (2.6 g kg(-1); 8.6%) from the IAsoil than the MDsoil (0.9 g kg(-1), 6.3%); fractions and coefficients suggest losses were principally from IAsoil's resistant pool. Cropping history did not alter SOC pool size or decay rates in IAsoil where rotation-based differences in OPOM-C were small. In MDsoil, use of diversified rotations and manure increased ka by 32% and ks by 46% compared to Conv; differences mirrored in POM- and OPOM-C contents. Residue addition prompted greater increases in Ca (340% vs 230%) and Cs (38% vs 21%) and decreases in ka (58% vs 9%) in IAsoil than MDsoil. Reduced losses of SOC from residue-amended MDsoil were associated with increased OPOM-C. Nitrogen addition dampened CO2-C release. Clay type and C saturation dominated the IAsoil's response to external inputs and made labile and stable fractions more vulnerable to decay. Trends in OPOM suggest aggregate protection influences C turnover in the low active MDsoil. Clay charge and OPOM-C contents were better predictors of soil C dynamics than clay or POM-C contents. PMID:25078458

  15. Influence of residue and nitrogen fertilizer additions on carbon mineralization in soils with different texture and cropping histories.

    Directory of Open Access Journals (Sweden)

    Xianni Chen

    Full Text Available To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil] comparing conventional grain systems (Conv amended with inorganic fertilizers with 3 yr (Med and longer (Long, more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs and decay rates (ka, ks of active and slow C pools which we compared with total particulate organic matter (POM and occluded-POM (OPOM. The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays. Net SOC loss was greater (2.6 g kg(-1; 8.6% from the IAsoil than the MDsoil (0.9 g kg(-1, 6.3%; fractions and coefficients suggest losses were principally from IAsoil's resistant pool. Cropping history did not alter SOC pool size or decay rates in IAsoil where rotation-based differences in OPOM-C were small. In MDsoil, use of diversified rotations and manure increased ka by 32% and ks by 46% compared to Conv; differences mirrored in POM- and OPOM-C contents. Residue addition prompted greater increases in Ca (340% vs 230% and Cs (38% vs 21% and decreases in ka (58% vs 9% in IAsoil than MDsoil. Reduced losses of SOC from residue-amended MDsoil were associated with increased OPOM-C. Nitrogen addition dampened CO2-C release. Clay type and C saturation dominated the IAsoil's response to external inputs and made labile and stable fractions more vulnerable to decay. Trends in OPOM suggest aggregate protection influences C turnover in the low active MDsoil. Clay charge and OPOM-C contents were better predictors of soil C dynamics than clay or POM-C contents.

  16. Microbial Biomass Carbon Trends in Black and Red Soils Under Single Straw Application: Effect of Straw Placement, Mineral N Addition and Tillage

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Quantifying trends in soil microbial biomass carbon (SMBC) under contrasting management conditions is important in understanding the dynamics of soil organic matter (SOM) in soils and in ensuring their sustainable use. Against such a background, a 60-day greenhouse simulation experiment was carried out to study the effects of straw placement, mineral N source, and tillage on SMBC dynamics in two contrasting soils, red soil (Ferrasol) and black soil (Acrisol). The treatments included straw addition + buried (T1);straw addition + mineral N (T2); and straw addition + tillage (T3). Straw was either buried in the soil or placed on the surface. Sampling was done every 15 days. Straw placement, addition of external mineral N sources (Urea, 46 % N) and soil type affected SMBC. SMBC levels decreased with exposure durations (15 days, 30 days, 45 days, and 60 days). Rate of SMBC fixation was more in buried straw than in surface placed straw at all sampling dates in both soils. Addition of an external N source significantly increased SMBC level. Soil pH increased in both soil types, with a greater increase in black soil than in red soil. The study could not, however, statistically account for the effect of tillage on SMBC levels because of the limited effect of our tillage method due to the artificial barrier to mechanical interference supplied by the mesh bags,although differences in absolute values were quite evident between treatments T1 and T3.``

  17. Changes in friction characteristics and microstructure of steel by ion implantation of titanium and additional carbon in various doses (II)

    International Nuclear Information System (INIS)

    It is well known that Ti and Ti+C implantation improves the tribological properties of steels. The surface implanted with Ti+C exhibits superior performance in comparison with that implanted with Ti only. In this study, the difference in the microstructure and friction properties between Ti-implanted and Ti+C-implanted steel is investigated through transmission electron microscopy (TEM). After the implantation of Ti to a dose of 5x1017ionscm-2, the steel surface transformed to the amorphous phase only. On the contrary, the surface implanted with 5x1017 Ticm-2 followed by C implantation to a dose of 4x1017ionscm-2 transformed to the amorphous phase embedded with very fine TiC precipitates. After the dry sliding tests, wear tracks were studied by TEM. In Ti-implanted specimens, local damage via the loss of the amorphous layer and oxidation were observed in the wear track. On the contrary, in Ti+C-implanted specimens, uniform wear with very fine stripes was observed. This difference in the wear mode between Ti-implanted specimens and Ti+C-implanted specimens is interpreted in terms of the strength of the implanted layer and the chemical stability of the amorphous phase made by the additional C implantation. ((orig.))

  18. Evaluation of the addition of various surfactant-suspended carbon nanotubes in MEEKC with an in situ-synthesized surfactant system.

    Science.gov (United States)

    Cao, Jun; Dun, Wenliang; Qu, Haibin

    2011-02-01

    Dispersions of single-walled carbon nanotubes (SWNTs) in various surfactant solutions have been systematically evaluated as additives in MEEKC. The compounds examined were catechins, phenolic acids, and flavonoids. Compared with zwitterionic and neutral surfactants, the addition of anionic dispersion seemed to be better at separating the three types of analytes in microemulsion system. In order to achieve low operating currents, an in situ-synthesized surfactant system based on the combination of a long-chain alkyl acid with an organic base was used in MEEKC. The optimized buffer contained 0.5% (57 mM) ethyl acetate, 0.6% (30 mM) lauric acid, 4.0% (666 mM) propanol, 50 mM Tris solution, and 4.5 mg/L the dispersion of SWNTs. Under optimized conditions, the established method was applicable to quantify complex compounds in tea samples. PMID:21254135

  19. Effects of additions of carbon nanotubes on the thermoelectric properties of Ni0.05Mo3Sb5.4Te1.6

    International Nuclear Information System (INIS)

    To prepare Ni0.05Mo3Sb5.4Te1.6, the starting materials were loaded in the stoichiometric ratio into silica tubes and then heated at 1000 K. The reaction products were mixed and divided into four equal parts. The first sample was used as a reference sample called bulk. For the remaining samples, 1%, 2% and 3% by mass of MWCNT (multi-wall carbon nanotubes) were added by ball-milling. These materials were then subjected to consolidation by hot-pressing at 850 K and 56 MPa. Their transport properties were determined and compared to study the influence of MWCNT on the transport properties of Ni0.05Mo3Sb5.4Te1.6. Scanning and transmission electron microscopy were used to study the microstructural and nanostructural features of the samples, and Raman characterization was performed to look for changes induced by ball-milling and hot-pressing of the nanotubes. Mainly due to a largely reduced thermal conductivity by 40% and a slightly reduced power factor, the figure-of-merit was improved by 25% after addition of 3 mass% of MWCNT. - Graphical abstract: Figure-of-merit of various Ni0.05Mo3Sb5.4Te1.6/CNT composites. - Highlights: • Various composites of Ni0.05Mo3Sb5.4Te1.6 with carbon nanotubes were synthesized and characterized. • In each case, the thermoelectric figure-of-merit increases rapidly with increasing temperature. • With increasing amount of carbon nanotubes, the thermal conductivity decreases more than the electrical conductivity. • The composite with 3% carbon nanotubes performs better than the bulk material by 25%

  20. Mechanical and Combustion Performance of Multi-Walled Carbon Nanotubes as an Additive to Paraffin-Based Solid Fuels for Hybrid Rockets

    Science.gov (United States)

    Larson, Daniel B.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth, K.; Koo, Joseph H.; Story, George

    2012-01-01

    Paraffin-based solid fuels for hybrid rocket motor applications are recognized as a fastburning alternative to other fuel binders such as HTPB, but efforts to further improve the burning rate and mechanical properties of paraffin are still necessary. One approach that is considered in this study is to use multi-walled carbon nanotubes (MWNT) as an additive to paraffin wax. Carbon nanotubes provide increased electrical and thermal conductivity to the solid-fuel grains to which they are added, which can improve the mass burning rate. Furthermore, the addition of ultra-fine aluminum particles to the paraffin/MWNT fuel grains can enhance regression rate of the solid fuel and the density impulse of the hybrid rocket. The multi-walled carbon nanotubes also present the possibility of greatly improving the mechanical properties (e.g., tensile strength) of the paraffin-based solid-fuel grains. For casting these solid-fuel grains, various percentages of MWNT and aluminum particles will be added to the paraffin wax. Previous work has been published about the dispersion and mixing of carbon nanotubes.1 Another manufacturing method has been used for mixing the MWNT with a phenolic resin for ablative applications, and the manufacturing and mixing processes are well-documented in the literature.2 The cost of MWNT is a small fraction of single-walled nanotubes. This is a scale-up advantage as future applications and projects will require low cost additives to maintain cost effectiveness. Testing of the solid-fuel grains will be conducted in several steps. Dog bone samples will be cast and prepared for tensile testing. The fuel samples will also be analyzed using thermogravimetric analysis and a high-resolution scanning electron microscope (SEM). The SEM will allow for examination of the solid fuel grain for uniformity and consistency. The paraffin-based fuel grains will also be tested using two hybrid rocket test motors located at the Pennsylvania State University s High Pressure

  1. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available Multi-wall carbon nanotubes (MWNTs filled polypropylene (PP nanocomposites were prepared through diluting a PP/MWNT masterbatch in a PP matrix by melt compounding with a twin screw extruder. Polypropylene grafted maleic anhydride (PP-g-MA was used to promote the carbon nanotubes dispersion. The effect of PP-g-MA addition on the rheological, mechanical and morphological properties of the nanocomposites was assessed for different MWNTs loadings. Scanning electron microscopy (SEM has shown that nanotubes are distributed reasonably uniformly. A better dispersion and good adhesion between the nanotubes and the PP matrix is caused by wrapping of PP-g-MA on MWNTs. When PP-g-MA is added, dynamic moduli and viscosity further increases compared to PP/MWNT nanocomposites. The rheological percolation threshold drops significantly. Tensile and flexural moduli and Charpy impact resistance of the nanocomposites also increases by the addition of PP-g-MA. The present study confirms that PP-g-MA is efficient to promote the dispersion of MWNTs in PP matrix and serves as an adhesive to increase their interfacial strength, hence greatly improving the rheological percolation threshold and mechanical properties of PP/MWNT nanocomposites.

  2. Alloying elements characterization in a Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-1Nd titanium alloy by carbon addition

    Institute of Scientific and Technical Information of China (English)

    Shangzhou Zhang; Huizhong Xu; Ziquan Liu; Huilu Li; Rui Yang

    2005-01-01

    The effects of carbon addition (0.01wt%-0.43wt%) on a Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-1Nd (wt%) alloy with a bimodal microstructure were investigated. Electron probe microanalysis was carried out to examine the partitioning behavior of carbon and the relation of carbon content to the distributions of Al and Mo in the primary α phase (αp) and β transformed structure (β). It was found that interstitial carbon is enriched in the αp phase and its content slightly reduces with the increase of the volume fraction of αp.The measurements of carbon content in the present alloy with an αp of 15vo1% showed that the carbon content in the αp phase increases with the increment of carbon addition until a maximum but keeps almost constant in the β phase. The addition of carbon reduces the solubility of Al and Mo in the αp phase and leads to the increment of Mo partitioning to the β phase. When the carbon content is over 0.17wt% (0.67at%), carbide precipitation occurs in the matrix and its volume fraction is related to the volume fraction of αp which can be explained in term of the difference of carbon solubility in the αp and β phases.

  3. Effects of thermo-mechanical processing and trace amount of carbon addition on tensile properties of Cu-2.5Fe-0.1P alloys

    International Nuclear Information System (INIS)

    The effects of thermo-mechanical processing, including intermediate aging treatment and/or solution heat treatment, and a trace amount of carbon (C) addition were studied on tensile behavior of Cu-2.5Fe-0.1P alloys. In this study, Cu-2.5Fe-0.1P alloy sheets without and with a carbon content of 0.05 wt.% were cast and subsequently rolled and thermo-mechanically treated following various processing routes. The introduction of intermediate aging treatment between cold rolling improved the tensile strength of Cu-2.5Fe-0.1P alloys. Solution heat treatment prior to aging was proved to be detrimental on the tensile strength, probably due to recovery and recrystallization causing the complete loss of work hardening during previous cold rolling. The present study also suggested that two-step aging is more effective in improving the strength of Cu-2.5Fe-0.1P alloys than one-step aging. The effect of C addition on improving the tensile strength of Cu-2.5Fe-0.1P alloys was real but marginal, probably due to the limited solubility of C in Cu-2.5Fe matrix. The effects of intermediate heat treatments between cold-rolling processes on tensile properties of Cu-2.5Fe-0.1P specimens with and without C addition are discussed based on optical, scanning electron microscope (SEM) and transmission electron microscope (TEM) micrographs, and SEM fractographs.

  4. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration

    International Nuclear Information System (INIS)

    The factors controlling nitrous oxide (N2O) emissions vary with different soil and environmental conditions and management practices. This study was conducted to determine the importance of soil aeration, nitrate (NO3) addition, carbon (C) additions, and C sources on gaseous nitrogen (N) losses from the denitrification of arable soils at a potato farm in Atlantic Canada. Denitrification and N2O emissions were measured using acetylene inhibition. An N2O and nitrogen gas (N2) ratio of 0.7 showed that most emissions occurred as N2O. Emissions at water-filled pore spaces (WFPs) of 0.45 m3 per m3 were negligible. N2O emissions increased with NO3 and C additions. Results suggested that soil aeration plays a dominant role in controlling the magnitude of denitrification and N2O emissions. However, soil NO3 supplies in this study did not limit the denitrification process. The study showed that N2O emissions are controlled by C availability when there is a high degree of soil disturbance and high fertilizer N inputs. The relationship between the demand and supply of terminal electron acceptors (TEAs) was used to explain the spatial distribution of the N2O emissions. Higher WFPs and lower soil NO3 concentrations resulted in higher rates of total denitrification. It was concluded that further research is needed to examine the role of overall soil and crop management in relation to C availability when developing mitigation strategies. 52 refs., 4 tabs

  5. Stimulating accumulation of nitrifying bacteria in porous carrier by addition of inorganic carbon in a continuous-flow fluidized bed wastewater treatment reactor.

    Science.gov (United States)

    Jun, B H; Tanji, Y; Unno, H

    2000-01-01

    Porous polyurethane carrier particles have been successfully applied for microbial immobilization to simultaneously remove carbonaceous and nitrogenous substances from wastewater by a fill-and-draw operation. This reactor system was extended to a continuous-flow operation mode, by which inorganic carbon (IC) was supplemented in order to stimulate the growth of autotrophic nitrifying bacteria. By addition of sodium bicarbonate, the ammonia oxidation reaction proceeded remarkably in the porous particle fluidized bed reactor, while a small increase in the nitrification was observed in a reactor with suspended microbes. Dissolved oxygen profile was obtained using an oxygen microelectrode to measure the microbial consumption of oxygen in the porous carrier. The size of ammonia-oxidizing bacterial populations in the carrier was proportional to the volume of the aerobic region of the carrier. The aerobic region decreased with the increase in sodium bicarbonate concentration, which improved the ammonia-oxidizing activity of retained nitrifiers in the carrier. The maximum ammonia oxidation rate was up to 55.6 gN/m3/h within the aerobic region of the carrier under the following feed conditions: 100 mg/l of total organic compound, 55 mg/l of ammonium concentration and 48 mg/l of inorganic carbon. PMID:16232755

  6. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    Science.gov (United States)

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same. PMID:25863578

  7. Study of structural transformations occuring in low carbon chromium-molybdenum ferritic steels: influence of small additions of vanadium and niobium

    International Nuclear Information System (INIS)

    This study has been carried out on several low carbon chromium-molybdenum ferritic steels: 2,25%0C to 13000C. In the case of alloys with high chromium concentration and additions of vanadium and niobium, the austenitic transformation is partial, and heat treating at higher temperatures results in increased delta transformation, a phenomenon which is accentuated by an important sensitivity to decarburization. Austenitic transformation during cooling leads to two types of CCT curves according to chromium content. Variations in chemical composition and austenitizing temperature significantly modify these diagrams, in particular those of the niobium stabilized steels. The morphology of the structures produced are very diverse, without important presence of residual austenite. The tempering behaviour in anisothermal and isothermal conditions was followed, and the temperature range limits within which precipitation reactions occur were determined in view of characterizing for each alloy the different types of precipitates formed and their influence on the mechanical resistance of the alloy after tempering

  8. Changes in water, carbon, and nitrogen fluxes with the addition of biochar to soils: lessons learned from laboratory and greenhouse experiments

    Science.gov (United States)

    Barnes, R. T.; Gallagher, M. E.; Masiello, C. A.; Liu, Z.; Dugan, B.; Rudgers, J. A.

    2011-12-01

    The addition of biochar to agricultural soils has the potential to provide a number of ecosystem services, ranging from carbon (C) sequestration to increased soil fertility and crop production. It is estimated that 0.5 to 0.9 Pg of C yr-1 can be sequestered through the addition of biochar to soils, significantly increasing the charcoal flux to the biosphere over natural inputs from fire (0.05 to 0.20 Pg C yr-1). There remain large uncertainties about biochar mobility within the environment, making it a challenge to assess the ecosystem residence time of biochar. We conducted laboratory and greenhouse experiments to understand how soil amendment with laboratory-produced biochar changes water, C, and nitrogen (N) fluxes from soils. We used column experiments to assess how biochar amendment to three types of soils (sand, organic, clay-rich) affected hydraulic conductivity and dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) fluxes. Results varied with soil type; biochar significantly decreased the hydraulic conductivity of the sand and organic soils by a factor of 10.6 and 2.7, respectively. While not statistically significant, biochar addition increased the hydraulic conductivity of the clay-rich soil by 50% on average. The addition of biochar significantly increased the DOC fluxes from the C-poor sand and clay soils while it significantly decreased the DOC flux from the organic-rich soil. In contrast, TDN fluxes decreased with biochar additions from all soil types, though the results were not statistically significant from the clay-rich soil. These laboratory experiments suggest that changes in the hydraulic conductivity of soil due to biochar amendments could play a significant role in understanding how biochar additions to agricultural fields will change watershed C and N dynamics. We additionally conducted a 28-day greenhouse experiment with sorghum plants using a three-way factorial treatment (water availability x biochar x mycorrhizae) to

  9. Insights into mechanisms governing forest carbon response to nitrogen deposition: a model–data comparison using observed responses to nitrogen addition

    Directory of Open Access Journals (Sweden)

    R. Q. Thomas

    2013-06-01

    Full Text Available In many forest ecosystems, nitrogen (N deposition enhances plant uptake of carbon dioxide, thus reducing climate warming from fossil fuel emissions. Therefore, accurately modeling how forest carbon (C sequestration responds to N deposition is critical for understanding how future changes in N availability will influence climate. Here, we use observations of forest C response to N inputs along N deposition gradients and at five temperate forest sites with fertilization experiments to test and improve a global biogeochemical model (CLM-CN 4.0. We show that the CLM-CN plant C growth response to N deposition was smaller than observed and the modeled response to N fertilization was larger than observed. A set of modifications to the CLM-CN improved the correspondence between model predictions and observational data (1 by increasing the aboveground C storage in response to historical N deposition (1850–2004 from 14 to 34 kg C per additional kg N added through deposition and (2 by decreasing the aboveground net primary productivity response to N fertilization experiments from 91 to 57 g C m−2 yr−1. Modeled growth response to N deposition was most sensitive to altering the processes that control plant N uptake and the pathways of N loss. The response to N deposition also increased with a more closed N cycle (reduced N fixation and N gas loss and decreased when prioritizing microbial over plant uptake of soil inorganic N. The net effect of all the modifications to the CLM-CN resulted in greater retention of N deposition and a greater role of synergy between N deposition and rising atmospheric CO2 as a mechanism governing increases in temperate forest primary production over the 20th century. Overall, testing models with both the response to gradual increases in N inputs over decades (N deposition and N pulse additions of N over multiple years (N fertilization allows for greater understanding of the mechanisms governing C–N coupling.

  10. How much additional carbon can be absorbed by the Earth`s vegetation?; Wieviel zusaetzlichen Kohlenstoff kann die Vegetation der Erde binden?

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, E.D. [Bayreuth Univ. (Germany). Lehrstuhl fuer Pflanzenoekologie

    1995-12-31

    Higher carbon dioxide concentrations will affect the net primary productivity of the Earth. A certain degree of anthropogenic carbon dioxide will be absorbed by vegetation, but this is will be a transient effect, as heterotrophic respiration will be enhanced and the net ecosystem productivity (NEP) will be reduced again in consequence. In addition, periodic interferences (fire, pests, storms, land use and harvesting) will counteract another part of the NPP and NEP. The NPP can be increased by nitrogen supply, and anthropogenic N depositions can be expected for all parts of the Earth. However, growth stimulation with N has a number of serious risks, from reduced biodiversity to increasing lability of ecosystems. Insect calamities, storms, snow and fires are expected to increase the turnover rather than the NEP. In addition to these direct effects of higher carbon dioxide concentrations, there are the indirect effects of climate changes. According to what is known today, higher carbon dioxide concentrations will result in enhanced respiration and in the release of immobilized C in polar climates. Considering the worldwide population growth and the resulting changes in land use patterns, enhanced net immobilisation of C in terrestrial ecosystems should not be expected as a long-term option. Additional changes in precipitation will affect growth and agriculture on the continents, with growing continental arid regions and enhanced productivity only along the coasts. [Deutsch] Die Erhoehung der CO{sub 2}-Konzentration der Erde wirkt sich vermutlich in abgeschwaechter Form auf die Nettoprimaerproduktivitaet der Erde aus. Trotz vieler Limitierungen kann man mit einer gewissen Kompensation des anthropogenen CO{sub 2} durch die Assimilation der Pflanzenwelt rechnen. Dieser Effekt ist vermutlich aber nur voruebergehend, da sich zeitlich verzoegert die heterotrophe Atmung steigern wird und damit die Oekosystem-Produktivitaet wieder verringert. Hinzu kommen periodische

  11. Additive effects of CuSO4 and aromatic compounds on laccase production by Pleurotus sajor-caju PS-2001 using sucrose as a carbon source

    Directory of Open Access Journals (Sweden)

    F. Bettin

    2014-06-01

    Full Text Available Laccase enzymes are now commercially available, and a laccase/mediator combination is currently marketed for indigo dye bleaching in textile manufacturing; replacing traditional chemical-based processes with enzymatic technology reduces the need for effluent treatment. However, an inexpensive source of these enzymes will be needed to enable wider application of this technology. In the present work, the main objective was to increase laccase production by the mushroom Pleurotus sajor-caju strain PS-2001 grown on sucrose derived from sugar cane, one of most economical carbon sources known, by the addition of compounds that are known to affect laccase production. High laccase activities (45-62 U mL-1 were obtained with additions of syringaldazine, benzoic acid, gallic acid, and vanillin. When CuSO4 was used in conjunction with these aromatic compounds, the levels of laccase activity were further improved, reaching 58-80 U mL-1. These laccase activities indicate the potential of this strain as an enzyme producer, which has also been detected in media containing glucose, but with activity lower than that observed with sucrose.

  12. Effects of Taiwan Roselle anthocyanin treatment and single-walled carbon nanotube addition on the performance of dye-sensitized solar cells

    Science.gov (United States)

    Chou, C. S.; Tsai, P. J.; Wu, P.; Shu, G. G.; Huang, Y. H.; Chen, Y. S.

    2014-04-01

    This study investigates the relationship between the performance of a dye-sensitized solar cell (DSSC) sensitized by a natural sensitizer of Taiwan Roselle anthocyanin (TRA) and fabrication process conditions of the DSSC. A set of systematic experiments has been carried out at various soaking temperatures, soaking periods, sensitizer concentrations, pH values, and additions of single-walled carbon nanotube (SWCNT). An absorption peak (520 nm) is found for TRA, and it is close to that of the N719 dye (518 nm). At a fixed concentration of TRA and a fixed soaking period, a lower pH of the extract or a lower soaking temperature is found favorable to the formation of pigment cations, which leads to an enhanced power conversion efficiency (η) of DSSC. For instance, by applying 17.53 mg/100ml TRA at 30 for 10 h, as the pH of the extract decreases to 2.00 from 2.33 (the original pH of TRA), the η of DSSC with TiO2+SWCNT electrode increases to 0.67% from 0.11% of a traditional DSSC with TiO2 electrode. This performance improvement can be explained by the combined effect of the pH of sensitizer and the additions of SWCNT, a first investigation in DSSC using the natural sensitizer with SWCNT.

  13. Effects of Taiwan Roselle anthocyanin treatment and single-walled carbon nanotube addition on the performance of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    This study investigates the relationship between the performance of a dye-sensitized solar cell (DSSC) sensitized by a natural sensitizer of Taiwan Roselle anthocyanin (TRA) and fabrication process conditions of the DSSC. A set of systematic experiments has been carried out at various soaking temperatures, soaking periods, sensitizer concentrations, pH values, and additions of single-walled carbon nanotube (SWCNT). An absorption peak (520 nm) is found for TRA, and it is close to that of the N719 dye (518 nm). At a fixed concentration of TRA and a fixed soaking period, a lower pH of the extract or a lower soaking temperature is found favorable to the formation of pigment cations, which leads to an enhanced power conversion efficiency (η) of DSSC. For instance, by applying 17.53 mg/100ml TRA at 30 for 10 h, as the pH of the extract decreases to 2.00 from 2.33 (the original pH of TRA), the η of DSSC with TiO2+SWCNT electrode increases to 0.67% from 0.11% of a traditional DSSC with TiO2 electrode. This performance improvement can be explained by the combined effect of the pH of sensitizer and the additions of SWCNT, a first investigation in DSSC using the natural sensitizer with SWCNT.

  14. Simple additive-free method to manganese monoxide mesocrystals and their template application for the synthesis of carbon and graphitic hollow octahedrons.

    Science.gov (United States)

    Zheng, Mingtao; Liu, Yingliang; Xiao, Yong; Dong, Hanwu; Feng, Haobin; Zhang, Haoran; Lei, Bingfu

    2013-12-11

    Mesocrystals are of great importance owing to their novel hierarchical microstructures and potential applications. In the present work, a simple additive-free method has been developed for the controllable synthesis of manganese monoxide (MnO) mesocrystals, in which cheap manganese acetate (Mn(Ac)2) and ethanol were used as raw materials without involving any other expensive additives such as surfactants, polyelectrolyte, or polymers. The particle size of the resulting MnO mesocrystals is tunable in the range 400-1500 nm by simply altering the concentration of Mn(Ac)2 in ethanol. The percentage yield of the octahedral MnO mesocrystals is about 38 wt % with respect to the starting Mn(Ac)2. The selective adsorption of oligomers, which was resulted from the polymerization of ethanol, acted as an important role for the mesocrystal formation. A mechanism involving the oriented aggregation of MnO nanoparticle subunits and the subsequent ripening process was proposed. Moreover, for the first time, the as-synthesized MnO mesocrystals were employed as a novel template to fabricate functional materials with an octahedral morphology including MnO@C core/shells, carbon, and graphitic hollow octahedrons. This method shows the importance of mesocrystals not only for the field of material research but also for the application in functional materials synthesis. PMID:24274735

  15. Differential scanning calorimetry analysis of an enhanced LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cathode with single wall carbon nanotube conductive additives

    Energy Technology Data Exchange (ETDEWEB)

    Ganter, Matthew J., E-mail: mjg9074@rit.edu [Golisano Institute for Sustainability, Rochester Institute of Technology, 111 Lomb Memorial Drive, Rochester, NY 14623 (United States); DiLeo, Roberta A., E-mail: rad0468@rit.edu [Microsystems Engineering, Rochester Institute of Technology, 111 Lomb Memorial Drive, Rochester, NY 14623 (United States); Schauerman, Christopher M., E-mail: cms3176@rit.edu [Golisano Institute for Sustainability, Rochester Institute of Technology, 111 Lomb Memorial Drive, Rochester, NY 14623 (United States); Rogers, Reginald E., E-mail: rerche@rit.edu [Chemical and Biomedical Engineering, Rochester Institute of Technology, 111 Lomb Memorial Drive, Rochester, NY 14623 (United States); Raffaelle, Ryne P., E-mail: ryne.raffaelle@nrel.gov [National Renewable Energy Laboratory, Golden Colorado, CO 84041 (United States); Landi, Brian J., E-mail: bjlsps@rit.edu [Chemical and Biomedical Engineering, Rochester Institute of Technology, 111 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2011-08-30

    Highlights: {center_dot} Replaced 4 wt% carbon black conductive additives with 1 wt% single wall carbon nanotubes (SWCNTs) in cathode composite. {center_dot} Use of SWCNT additive increased conductivity of cathode composite by over an order of magnitude. {center_dot} SWCNT additive composite had triple the capacity at a 10C rate. {center_dot} SWCNT additive composite reduced exothermic energy released upon delithiation by 40%. - Abstract: The replacement of traditional conductive carbon additives with single wall carbon nanotubes (SWCNTs) in lithium metal oxide cathode composites has been shown to enhance thermal stability as well as power capability and electrode energy density. The dispersion of 1 wt% high purity laser-produced SWCNTs in a LiNi{sub 0.8}Co{sub 0.2}O{sub 2} electrode created an improved percolation network over an equivalent composite electrode using 4 wt% Super C65 carbon black; evidenced by additive connectivity in SEM images and an order of magnitude increase in electrode electrical conductivity. The cathode with 1 wt% SWCNT additives showed comparable active material capacity (185-188 mAh g{sup -1}), at a low rate, and Coulombic efficiency to the cathode composite with 4 wt% Super C65. At increased cycling rates, the cathode with SWCNT additives had higher capacity retention with more than three times the capacity at 10C (16.4 mA cm{sup -2}). The thermal stability of the electrodes was evaluated by differential scanning calorimetry after charging to 4.3 V and float charging for 12 h. A 40% reduction of the cathode exothermic energy released was measured when using 1 wt% SWCNTs as the additive. Thus, the results demonstrate that replacing traditional conductive carbon additives with a lower weight loading of SWCNTs is a simple way to improve the thermal transport, safety, power, and energy characteristics of cathode composites for lithium ion batteries.

  16. Effect of phosphorous and boron addition on microstructural evolution and Charpy impact properties of high-phosphorous-containing plain carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokmin [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Shin, Sang Yong [Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf D-40237 (Germany); Lee, Junghoon [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Chang-Hoon [Next Generation Products Research Group, Technical Research Laboratories, POSCO, Pohang 790-785 (Korea, Republic of); Lee, Sunghak, E-mail: shlee@postech.ac.kr [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2013-03-01

    Four plain carbon steels were fabricated by controlling the addition of P and B, and then isothermal heat-treatments were conducted at 550 °C and 650 °C for 3 h on these steels to make ferrite–pearlite-based or ferrite–bainite-based microstructures, respectively. B was added for controlling the reduction in toughness due to grain boundary segregation of P because B was readily distributed on grain boundaries. In the 550 °C-treated steels, bainite grains were refined by the B addition, whereas the 650 °C-treated steels did not show the grain refinement due to the B addition. According to the critical time analysis for non-equilibrium grain boundary segregation of P and B, the present isothermal treatment time of 3 h was too short for the grain boundary segregation of P, and thus the fracture occurred mostly in a cleavage mode, instead of an intergranular mode. Since this 3 h-treatment time was too long for the grain boundary segregation of B, the grain boundary segregation of B was reduced, and the precipitation of cementites was promoted. In the 550 °C-treated steels, the area fraction of intergranular fracture increased with increasing volume fraction of grain boundary cementites, as they played an important role in initiating the intergranular fracture, although the area fraction of intergranular fracture was lower than 5%. In the 650 °C-treated steels having coarse grains, however, grain boundary cementites did not work for intergranular fracture because the crack readily propagated in a cleavage mode.

  17. The Effects of Trimethylamine and Organic Matter Additions on the Stable Carbon Isotopic Composition of Methane Produced in Hypersaline Microbial Mat Environments

    Science.gov (United States)

    Kelley, C. A.; Nicholson, B. E.; Beaudoin, C. S.; Detweiler, A. M.; Bebout, B.

    2014-12-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of non-competitive substrates, such as the methylamines, methanol and dimethylsulfide. The stable carbon isotopic composition of the produced methane has suggested that the methanogens are operating under conditions of substrate limitation. We investigated substrate limitation in gypsum-hosted endoevaporite and soft mat hypersaline environments by the additions of trimethylamine, a non-competitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71 ‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. We hypothesize that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.

  18. Interacting effects of elevated temperature and additional water on plant physiology and net ecosystem carbon fluxes in a high Arctic ecosystem

    Science.gov (United States)

    Maseyk, Kadmiel; Seibt, Ulrike; Lett, Céline; Lupascu, Massimo; Czimczik, Claudia; Sullivan, Patrick; Welker, Jeff

    2013-04-01

    Arctic ecosystems are experiencing temperature increases more strongly than the global average, and increases in precipitation are also expected amongst the climate impacts on this region in the future. These changes are expected to strongly influence plant physiology and soil biogeochemistry with subsequent implications for system carbon balance. We have investigated the effects of a long-term (10 years) increase in temperature, soil water and the combination of both on a tundra ecosystem at a field manipulation experiment in NW Greenland. Leaf gas exchange, chlorophyll fluorescence, carbon (C) and nitrogen (N) content and leaf isotopic composition, and leaf morphology were measured on Salix arctica plants in treatment and control plots in June-July 2011, and continuous measurements of net plant and soil fluxes of CO2 and water were made using automatic chambers coupled to a trace gas laser analyzer. Plants in the elevated temperature (T2) treatment had the highest photosynthetic capacity in terms of net CO2 assimilation rates and photosystem II efficiencies, and lowest rates of non-photochemical energy dissipation during photosynthesis. T2 plants also had the highest leaf N content, specific leaf area (SLA) and saturation light level of photosynthesis. It appears that warming increases soil N availability, which the plants direct towards increasing photosynthetic capacity and producing larger thinner leaves. On the other hand, the plants in the plots with both elevated temperatures and additional water (T2W) had the lowest photosystem II efficiencies and the highest rates of non-photochemical energy dissipation, due more to higher levels of constitutive energy dissipation than regulated thermal quenching. Watering, both in combination with higher temperatures and alone (W treatment), also reduced leaf SLA and leaf N relative to control plots. However, net photosynthetic rates remained similar to control plants, due in part to higher stomatal conductance (W) and

  19. Synthesis, structure, and reactivity of iridium perfluorocarbene complexes: regio- and stereo-specific addition of HCl across a metal carbon double bond.

    Science.gov (United States)

    Yuan, Jian; Bourgeois, Cheryl J; Rheingold, Arnold L; Hughes, Russell P

    2015-12-01

    Reductive activation of an α-fluorine in the perfluoroalkyl complexes Cp*(L)(i)Ir-CF2RF using Mg/graphite leads to perfluorocarbene complexes Cp*(L)Ir[double bond, length as m-dash]CFRF (L = CO, PMe3; RF = CF3, C2F5, C6F5). New complexes E-Cp*(PMe3)Ir[double bond, length as m-dash]CFC2F5 and E-Cp*(CO)Ir[double bond, length as m-dash]CFC6F5 have been characterized by single crystal X-ray diffraction studies, and a comparison of metric parameters with previously reported analogues is reported. Experimental NMR and computational DFT (B3LYP/LACV3P**++) studies agree that for Ir[double bond, length as m-dash]CFRF complexes (RF = CF3, CF2CF3) the thermodynamic preference for the E or Z isomer depends on the steric requirements of ligand L; when L = CO the Z-isomer (F cis to Cp*) is preferred and for L = PMe3 the E-isomer is preferred. When reduction of the precursors is carried out in the dark the reaction is completely selective to produce E- or Z-isomers. Exposure of solutions of these compounds to ambient light results in slow conversion to a photostationary non-equilibrium mixture of E and Z isomers. In the dark, these E/Z mixtures convert thermally to their preferred E or Z equilibrium geometries in an even slower reaction. A study of the temperature dependent kinetics of this dark transformation allows ΔG(‡)298 for rotation about the Ir[double bond, length as m-dash]CFCF3 double bond to be experimentally determined as 25 kcal mol(-1); a DFT/B3LYP/LACV3P**++ calculation of this rotation barrier is in excellent agreement (27 kcal mol(-1)) with the experimental value. Reaction of HCl with toluene solutions of Cp*(L)Ir[double bond, length as m-dash]CFRF (L = CO, PMe3) or Cp*(CO)Ir[double bond, length as m-dash]C(CF3)2 at low temperature resulted in regiospecific addition of HCl across the metal carbon double bond, ultimately yielding Cp*(L)Ir(CHFRF)Cl and Cp*(CO)Ir[CH(CF3)2]Cl. Reaction of HCl with single E or Z diastereomers of Cp*(L)Ir[double bond, length as m

  20. Insights into mechanisms governing forest carbon response to nitrogen deposition: a model-data comparison using observed responses to nitrogen addition

    Directory of Open Access Journals (Sweden)

    R. Q. Thomas

    2013-01-01

    Full Text Available In many forest ecosystems, nitrogen (N deposition enhances plant uptake of carbon dioxide, thus reducing climate warming from fossil fuel emissions. Therefore, accurately modeling how forest carbon (C sequestration responds to N deposition is critical for understanding how future changes in N availability will influence climate. Here, we use observations of forest C response to N inputs along N deposition gradients and at five temperate forest sites with fertilization experiments to test and improve a~global biogeochemical model (CLM-CN 4.0. We show that the CLM-CN plant C growth response to N deposition was smaller than observed and the modeled response to N fertilization was larger than observed. A set of modifications to the CLM-CN improved the correspondence between model predictions and observational data (1 by increasing the aboveground C storage in response to historical N deposition (1850–2004 from 14 to 34 kg C per additional kg N added through deposition and (2 by decreasing the aboveground net primary productivity response to N fertilization experiments from 91 to 57 g C m−2 yr−1. Modeled growth response to N deposition was most sensitive to altering the processes that control plant N uptake and the pathways of N loss. The response to N deposition also increased with a more closed N cycle (reduced N fixation and N gas loss and decreased when prioritizing microbial over plant uptake of soil inorganic N. The net effect of all the modifications to the CLM-CN resulted in greater retention of N deposition and a greater role of synergy between N deposition and rising atmospheric CO2 as a mechanism governing increases in temperate forest primary production over the 20th century. Overall, testing models with both the response to gradual increases in N inputs over decades (N deposition and N pulse additions of N over multiple years (N fertilization allows for greater understanding of the mechanisms

  1. Optimization studies of carbon additives to negative active material for the purpose of extending the life of VRLA batteries in high-rate partial-state-of-charge operation

    Energy Technology Data Exchange (ETDEWEB)

    Boden, D.P.; Loosemore, D.V.; Spence, M.A.; Wojcinski, T.D. [Hammond Expanders Division, Hammond Group, Inc., 6544 Osborn Avenue, Hammond, IN 46320 (United States)

    2010-07-15

    The negative plates of lead-acid batteries subjected to partial-state-of-charge (PSOC) operation fail because of the development of an electrically inert film of lead sulfate on their surfaces. It has been found that carbon additives to the negative active material can significantly increase their cycle life in this type of operation. In this paper we show that various types of carbon, including graphite, carbon black eliminate the surface development of lead sulfate and that, in their presence, the lead sulfate becomes homogeneously distributed throughout the active material. Examination of active material by energy dispersive spectroscopy after extensive cycling shows that lead formed during charge of lead sulfate preferentially deposits on the carbon particles that have been embedded in the active material. Electrochemical studies have been carried out on a number of types of carbon additives having a wide range of properties. These included flake, expanded and synthetic graphite, isotropically graphitized carbon, carbon black and activated carbon. We have investigated their effect on the resistivity and surface areas of the negative active material and also on such electrochemical properties as active material utilization and cycle life. Most of the carbon additives increase the utilization of the active material and impressive increases in cycle life have been obtained with over 6000 capacity turnovers having been achieved. However, at this time, we have not been able to correlate either the type or the properties of the carbon with capacity or cycle life. Further work is needed in this area. The increases that have been achieved in cycle life provide evidence that the lead-acid battery is a viable low cost option for hybrid-electric vehicle use. (author)

  2. Optimization studies of carbon additives to negative active material for the purpose of extending the life of VRLA batteries in high-rate partial-state-of-charge operation

    Science.gov (United States)

    Boden, D. P.; Loosemore, D. V.; Spence, M. A.; Wojcinski, T. D.

    The negative plates of lead-acid batteries subjected to partial-state-of-charge (PSOC) operation fail because of the development of an electrically inert film of lead sulfate on their surfaces. It has been found that carbon additives to the negative active material can significantly increase their cycle life in this type of operation. In this paper we show that various types of carbon, including graphite, carbon black eliminate the surface development of lead sulfate and that, in their presence, the lead sulfate becomes homogeneously distributed throughout the active material. Examination of active material by energy dispersive spectroscopy after extensive cycling shows that lead formed during charge of lead sulfate preferentially deposits on the carbon particles that have been embedded in the active material. Electrochemical studies have been carried out on a number of types of carbon additives having a wide range of properties. These included flake, expanded and synthetic graphite, isotropically graphitized carbon, carbon black and activated carbon. We have investigated their effect on the resistivity and surface areas of the negative active material and also on such electrochemical properties as active material utilization and cycle life. Most of the carbon additives increase the utilization of the active material and impressive increases in cycle life have been obtained with over 6000 capacity turnovers having been achieved. However, at this time, we have not been able to correlate either the type or the properties of the carbon with capacity or cycle life. Further work is needed in this area. The increases that have been achieved in cycle life provide evidence that the lead-acid battery is a viable low cost option for hybrid-electric vehicle use.

  3. Effects of B and Cu Addition and Cooling Rate on Microstructure and Mechanical Properties in Low-Carbon, High-Strength Bainitic Steels

    Science.gov (United States)

    Sung, Hyo Kyung; Shin, Sang Yong; Hwang, Byoungchul; Lee, Chang Gil; Lee, Sunghak

    2012-10-01

    The effects of B and Cu addition and cooling rate on microstructure and mechanical properties of low-carbon, high-strength bainitic steels were investigated in this study. The steel specimens were composed mostly of bainitic ferrite, together with small amounts of acicular ferrite, granular bainite, and martensite. The yield and tensile strengths of all the specimens were higher than 1000 MPa and 1150 MPa, respectively, whereas the upper shelf energy was higher than 160 J and energy transition temperature was lower than 208 K (-65 °C) in most specimens. The slow-cooled specimens tended to have the lower strengths, higher elongation, and lower energy transition temperature than the fast-cooled specimens. The Charpy notch toughness was improved with increasing volume fraction of acicular ferrite because acicular ferrites favorably worked for Charpy notch toughness even when other low-toughness microstructures such as bainitic ferrite and martensite were mixed together. To develop high-strength bainitic steels with an excellent combination of strength and toughness, the formation of bainitic microstructures mixed with acicular ferrite was needed, and the formation of granular bainite was prevented.

  4. Segmentation and additive approach: A reliable technique to study noncovalent interactions of large molecules at the surface of single-wall carbon nanotubes.

    Science.gov (United States)

    Torres, Ana M; Scheiner, Steve; Roy, Ajit K; Garay-Tapia, Andrés M; Bustamante, John; Kar, Tapas

    2016-08-01

    This investigation explores a new protocol, named Segmentation and Additive approach (SAA), to study exohedral noncovalent functionalization of single-walled carbon nanotubes with large molecules, such as polymers and biomolecules, by segmenting the entire system into smaller units to reduce computational cost. A key criterion of the segmentation process is the preservation of the molecular structure responsible for stabilization of the entire system in smaller segments. Noncovalent interaction of linoleic acid (LA, C18 H32 O2 ), a fatty acid, at the surface of a (10,0) zigzag nanotube is considered for test purposes. Three smaller segmented models have been created from the full (10,0)-LA system and interaction energies were calculated for these models and compared with the full system at different levels of theory, namely ωB97XD, LDA. The success of this SAA is confirmed as the sum of the interaction energies is in very good agreement with the total interaction energy. Besides reducing computational cost, another merit of SAA is an estimation of the contributions from different sections of the large system to the total interaction energy which can be studied in-depth using a higher level of theory to estimate several properties of each segment. On the negative side, bulk properties, such as HOMO-LUMO (highest occupied molecular orbital - lowest occupied molecular orbital) gap, of the entire system cannot be estimated by adding results from segment models. © 2016 Wiley Periodicals, Inc. PMID:27241227

  5. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries

    Science.gov (United States)

    Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-02-01

    Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g-1 at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.

  6. Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen

    Institute of Scientific and Technical Information of China (English)

    Hezhi Liu; Xiujing Zou; Xueguang Wang; Xionggang Lu; Weizhong Ding

    2012-01-01

    The Ni-CeO2/Al2O3 catalysts with a nickel content of 15 wt% prepared via impregnating boehmite were found to be highly active and stable for methanation of carbon dioxide with hydrogen at a H2/CO2 molar ratio of 4.The effects of CeO2 content and reaction temperature on the performance of the Ni-CeO2/Al2O3 catalysts were studied in detail.The results showed that the catalytic performance was strongly dependent on the CeO2 content in Ni-CeO2/Al2O3 catalysts and that the catalysts with 2 wt% CeO2 had the highest catalytic activity among the tested ones at 350 ℃.The XRD and H2-TPR characterizations revealed that the addition of CeO2 decreased the reduction temperature by altering the interaction between Ni and Al2O3,and improved the reducibility of the catalyst.Preliminary stability test of 120 h on stream over the Ni-2CeO2/Al2O3 catalyst at 350 ℃ revealed that the catalyst was much better than the unpromoted one.

  7. NEW CATALYTIC SYSTEMS FOR THE FIXATION OF CO2 Ⅲ. INFLUENCE OF ADDITIVES AND REACTION MEDIUM ON THE COPOLYMERIZATION OF CARBON DIOXIDE-EPICHLOROHYDRIN IN THE PRESENCE OF Nd(P204)3-Al(i-Bu)3

    Institute of Scientific and Technical Information of China (English)

    CHEN Xianhai; ZHANG Yifeng; SHEN Zhiquan

    1994-01-01

    Copolymerization of carbon dioxide with epichlorohydrin was successfully carried out by using Nd (P204)3-A1 (i-Bu)3 as catalyst (P204) = (RO)2POO -, R=CH3 (CH2)3CH(C2H5)CH2-). Addition of carbonyl compounds into the catalyst decreased the carbon dioxide content of the copolymer to some extent. Compared to nonpolar solvents, ethereal and moderate polar solvents were favourable to obtaining higher carbon dioxide content copolymer. The coincidence of these results with the assumed copolymerization scheme clearly indicated that the copolymerization proceeds via coordinate anionic mechanism.

  8. Thermodynamics and Kinetics of Boron Removal from Metallurgical Grade Silicon by Addition of High Basic Potassium Carbonate to Calcium Silicate Slag

    Science.gov (United States)

    Wu, Jijun; Wang, Fanmao; Ma, Wenhui; Lei, Yun; Yang, Bin

    2016-06-01

    In this study, we investigated the thermodynamics and kinetics of boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag containing a high basic potassium carbonate. The distribution of boron between slag and silicon was theoretically derived and the distribution coefficients ( L B) of boron with different compositions of CaO, SiO2, and K2CO3 in slag reagents were determined. The maximal value of L B reached 2.08 with a high basicity slag of 40 pctCaO-40 pctSiO2-20 pctK2CO3 (Λ = 0.73). The boron removal rates from MG-Si using CaO-SiO2 and CaO-SiO2-K2CO3 slags at 1823 K (1550 °C) were investigated in an electromagnetic induction furnace. The results showed that the boron concentration in MG-Si can be reduced from 22 to 1.8 ppmw at 1823 K (1550 °C) with 20 pct K2CO3 addition to calcium silicate slag, where the removal efficiency of boron reached 91.8 pct. The mass transfer coefficient ( β S) of boron in binary 50 pctCaO-50 pctSiO2 slag was 3.16 × 10-6 m s-1 at 1823 K (1550 °C) and was 2.43 × 10-5 m s-1 in ternary 40 pctCaO-40 pctSiO2-20 pctK2CO3 slag.

  9. Priming of soil carbon decomposition in two Inner Mongolia grassland soils following sheep dung addition: a study using ¹³C natural abundance approach.

    Directory of Open Access Journals (Sweden)

    Xiuzhi Ma

    Full Text Available To investigate the effect of sheep dung on soil carbon (C sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content. Dung was collected from sheep either fed on L. chinensis (C3 plant with δ¹³C = -26.8‰; dung δ¹³C = -26.2‰ or Cleistogenes squarrosa (C₄ plant with δ¹³C = -14.6‰; dung δ¹³C = -15.7‰. Fresh C₃ and C₄ sheep dung was mixed with the two grassland soils and incubated under controlled conditions for analysis of ¹³C-CO₂ emissions. Soil samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the δ¹³C signal in soil and dung components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had decomposed, of which 3.5% and 2.8% was sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung was emitted as CO₂. The cumulative amounts of C respired from dung treated soils during 152 days were 7-8 times higher than in the un-amended controls. In both grassland soils, ca. 60% of the evolved CO₂ originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg⁻¹ dry soil had been emitted as CO₂ for the L. chinensis and A. frigida soils, respectively. Hence, the net C losses from L. chinensis and A. frigida soils were 0.6 g and 0.9 g C kg⁻¹ soil, which was 2.6% and 7.0% of the total C in L. chinensis and A. frigida grasslands soils, respectively. Our results suggest that grazing of degraded Inner Mongolian pastures may cause a net soil C loss due to the positive priming effect, thereby accelerating soil

  10. Priming of Soil Carbon Decomposition in Two Inner Mongolia Grassland Soils following Sheep Dung Addition: A Study Using 13C Natural Abundance Approach

    Science.gov (United States)

    Ma, Xiuzhi; Ambus, Per; Wang, Shiping; Wang, Yanfen; Wang, Chengjie

    2013-01-01

    To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ13C = −26.8‰; dung δ13C = −26.2‰) or Cleistogenes squarrosa (C4 plant with δ13C = −14.6‰; dung δ13C = −15.7‰). Fresh C3 and C4 sheep dung was mixed with the two grassland soils and incubated under controlled conditions for analysis of 13C-CO2 emissions. Soil samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the δ13C signal in soil and dung components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had decomposed, of which 3.5% and 2.8% was sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung was emitted as CO2. The cumulative amounts of C respired from dung treated soils during 152 days were 7–8 times higher than in the un-amended controls. In both grassland soils, ca. 60% of the evolved CO2 originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg−1 dry soil had been emitted as CO2 for the L. chinensis and A. frigida soils, respectively. Hence, the net C losses from L. chinensis and A. frigida soils were 0.6 g and 0.9 g C kg−1 soil, which was 2.6% and 7.0% of the total C in L. chinensis and A. frigida grasslands soils, respectively. Our results suggest that grazing of degraded Inner Mongolian pastures may cause a net soil C loss due to the positive priming effect, thereby accelerating soil deterioration. PMID:24236024

  11. Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy

    International Nuclear Information System (INIS)

    Different amounts of carbon were added to a single-crystal nickel-based superalloy. The microstructural evolution of these alloys before and after high-temperature creep tests was investigated by employing scanning electron microscopy and transmission electron microscopy. Upon increasing the carbon contents, the volume fraction and diameter of the carbides increased gradually: however, the creep lives of the alloys increased slightly at first and subsequently decreased. The formation of second-phase particles, such as the nano-sized M23C6, blocky and needle-shaped μ phase, was observed in the creep samples, which was closely related to the high-temperature creep behaviors. - Highlights: • Creep behaviors of alloys with different amounts of carbon were investigated. • The creep rupture lives increased and later decreased with more carbon. • Second-phase particles were responsible for the different creep behaviors

  12. Food additives

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002435.htm Food additives To use the sharing features on this page, please enable JavaScript. Food additives are substances that become part of a food ...

  13. Palladium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to Five-, Six-, and Seven-Membered β-Substituted Cyclic Enones: Enantioselective Construction of All-Carbon Quaternary Stereocenters

    KAUST Repository

    Kikushima, Kotaro

    2011-05-11

    The first enantioselective Pd-catalyzed construction of all-carbon quaternary stereocenters via 1,4-addition of arylboronic acids to β-substituted cyclic enones is reported. Reaction of a wide range of arylboronic acids and cyclic enones using a catalyst prepared from Pd(OCOCF(3))(2) and a chiral pyridinooxazoline ligand yields enantioenriched products bearing benzylic stereocenters. Notably, this transformation is tolerant to air and moisture, providing a practical and operationally simple method of synthesizing enantioenriched all-carbon quaternary stereocenters.

  14. Additively Manufactured Propulsion System

    OpenAIRE

    Dushku, Matthew; Mueller, Paul

    2012-01-01

    New high-performance, carbon-fiber reinforced polymer material allows additive manufacturing to produce pressure vessels capable of high pressures (thousands of pounds per square inch). This advancement in turn allows integral hybrid propulsion which is revolutionary for both CubeSats and additively-manufactured spacecraft. Hybrid propulsion offers simplicity as compared to bipropellant liquid propulsion, significantly better safety compared to solid or monopropellant hydrazine propulsion, an...

  15. Changes in friction characteristics and microstructure of steel by ion implantation of titanium and additional carbon in various doses. Pt. 1

    International Nuclear Information System (INIS)

    Changes in the macroscopic tribology of Ti+Ci ion-implanted steel depending on the supplemental carbon dose were studied. Titanium ions were implanted at 5 x1017 ions cm-2 followed by carbon ions at 0, 1 x1016, 4 x1016, 1 x1017 and 4 x1017 ions cm-2, into quenched and tempered steel. The coefficient of friction and amount of wear were evaluated through a reciprocating ball-on-disc wear test, at weight loads of 0.98 N, 1.96 N, 4.9 N and 9.8 N. The maximum weight load to accomplish the reduced friction coefficient increased with increase in the dose of supplemental carbon. Scanning electron microscopy observation of the wear tracks revealed that a decrease in wear was achieved when the coefficient of friction was kept at 0.2 - 0.3, and the morphology of the wear tracks appeared to be ploughing. The maximum depth of the wear tracks was kept below 0.1 μm when the type of wear was ploughing. (orig.)

  16. Activated carbons as potentially useful non-nutritive additives to prevent the effect of fumonisin B1 on sodium bentonite activity against chronic aflatoxicosis.

    Science.gov (United States)

    Monge, María Del Pilar; Magnoli, Alejandra Paola; Bergesio, Maria Virginia; Tancredi, Nestor; Magnoli, Carina E; Chiacchiera, Stella Maris

    2016-06-01

    Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins that often co-occur in feedstuffs. The ingestion of AFB1 causes aflatoxicosis in humans and animals. Sodium bentonite (NaB), a cheap non-nutritive unselective sequestering agent incorporated in animal diets, can effectively prevent aflatoxicosis. Fumonisins are responsible for equine leukoencephalomalacia and porcine pulmonary oedema, and often have subclinical toxic effects in poultries. Fumonisin B1 and aflatoxin B1 are both strongly adsorbed in vitro on sodium bentonite. Co-adsorption studies, carried out with a weight ratio of FB1 to AFB1 that mimics the natural occurrence (200:1), showed that FB1 greatly decreases the in vitro ability of NaB to adsorb AFB1. The ability of two activated carbons to adsorb FB1 was also investigated. Both carbons showed high affinity for FB1. A complex behaviour of the FB1 adsorption isotherms with pH was observed. In vitro results suggest that under natural contamination levels of AFB1 and FB1, a mixture of activated carbon and sodium bentonite might be potentially useful for prevention of sub-acute aflatoxicosis. PMID:27159550

  17. Additivity dominance

    Directory of Open Access Journals (Sweden)

    Paul Rozin

    2009-10-01

    Full Text Available Judgments of naturalness of foods tend to be more influenced by the process history of a food, rather than its actual constituents. Two types of processing of a ``natural'' food are to add something or to remove something. We report in this study, based on a large random sample of individuals from six countries (France, Germany, Italy, Switzerland, UK and USA that additives are considered defining features of what makes a food not natural, whereas ``subtractives'' are almost never mentioned. In support of this, skim milk (with major subtraction of fat is rated as more natural than whole milk with a small amount of natural vitamin D added. It is also noted that ``additives'' is a common word, with a synonym reported by a native speaker in 17 of 18 languages, whereas ``subtractive'' is lexicalized in only 1 of the 18 languages. We consider reasons for additivity dominance, relating it to omission bias, feature positive bias, and notions of purity.

  18. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale

    OpenAIRE

    B. Koehler; M. D. Corre; Veldkamp, E.; Sueta, J. P.

    2009-01-01

    Atmospheric nitrogen (N) deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide (CO2) efflux to long-term experimental N addition (125 kg N ha−1 yr−1) in mature lowland and montane forests in Panama. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In th...

  19. Effects of Straw Return in Deep Soils with Urea Addition on the Soil Organic Carbon Fractions in a Semi-Arid Temperate Cornfield

    OpenAIRE

    Zou, Hongtao; Ye, Xuhong; Li, Jiaqi; Lu, Jia; Fan, Qingfeng; Yu, Na; Zhang, Yuling; Dang, Xiuli; Zhang, Yulong

    2016-01-01

    Returning straw to deep soil layers by using a deep-ditching-ridge-ploughing method is an innovative management practice that improves soil quality by increasing the soil organic carbon (SOC) content. However, the optimum quantity of straw return has not been determined. To solve this practical production problem, the following treatments with different amounts of corn straw were investigated: no straw return, CK; 400 kg ha-1 straw, S400; 800 kg ha-1 straw, S800; 1200 kg ha-1 straw, S1200; an...

  20. Conductive materials for proton exchange membrane fuel cell bipolar plates made from PVDF, PET and co-continuous PVDF/PET filled with carbon additives

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, L.; Mighri, F.; Deyrail, Y. [CREPEC, Center for Applied Research on Polymers and Composites, QC (Canada); Department of Chemical Engineering, Laval University, QC (Canada); Elkoun, S. [CREPEC, Center for Applied Research on Polymers and Composites, QC (Canada); Department of Mechanical Engineering, Sherbrooke University, QC (Canada)

    2010-12-15

    The aim of this work was to develop and characterise electrically conductive materials for proton exchange membrane fuel cells and bipolar plates (BPPs). These BPPs were made from highly conductive blends of polyethylene terephthalate (PET) and polyvinylidene fluoride (PVDF), as matrix phase. The conductive materials were developed from carefully formulated blends composed of conductive carbon black (CB) powder and, in some cases, graphite synthetic flakes mixed with pure PET, PVDF or with PVDF/PET systems. They were first developed by twin-screw extrusion process then compression-molded to give BPP final shape. As the developed blends have to meet properties suitable for BPP applications, they were characterised for their rheological properties, electrical through-plane resistivity (the inverse of conductivity), oxygen permeability, flexural and impact properties. Results showed that lower resistivity was obtained with PVDF/CB blends due to the higher interfacial energy between the PVDF matrix and CB and also the higher density and crystallinity of PVDF, compared to those of PET. It was also observed that the lowest resistivity values were obtained with mixing PVDF and PET at controlled compositions to ensure PVDF/PET co-continuous morphology. Also, slow cooling rates helped to attain the lowest values of through-plane resistivity for all studied blends. This behaviour was related to the higher crystallinity obtained with low cooling rates leading to smaller amorphous regions in which carbon particles are much more concentrated. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    Science.gov (United States)

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-06-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes.

  2. Enhanced salt-removal percentage in capacitive deionization with addition of ion-exchange membrane using carbon electrode synthesized with freezing thawing method

    Science.gov (United States)

    Sari, Intan Permata; Endarko

    2016-04-01

    Ion-exchange membrane technology has shown a great potential to enhance the desalting efficiency. Ion-exchange membranes are placed in front of the electrodes so that the charged ions can be selectively passed through the membrane layer and captured by the oppositely charged electrode more quickly, so as to increase the efficiency of desalination. In this research, carbon electrodes have been synthesized from an activated carbon (700 - 1400 m2/g) and polyvinyl alcohol (PVA) as a binder using freezing thawing method. A solution with 180 µS/cm NaCl was pumped to the capacitive deionization (CDI) cell using a Boyu Submersible pump (model SP-601) at a flow rate of 25 mL/min and the voltage was set at 2 V. The result showed that the CDI cell with ion-exchange membrane (MCDI) has the salt removal efficiency greater than the CDI cell without ion-exchange membrane. The salt-removal percentage of MCDI was achieved at 66.36%, meanwhile the CDI cell without ion-exchange membrane resulted in 54.4%.

  3. Additivity dominance

    OpenAIRE

    Paul Rozin; Claude Fischler; Christy Shields-Argeles

    2009-01-01

    Judgments of naturalness of foods tend to be more influenced by the process history of a food, rather than its actual constituents. Two types of processing of a ``natural'' food are to add something or to remove something. We report in this study, based on a large random sample of individuals from six countries (France, Germany, Italy, Switzerland, UK and USA) that additives are considered defining features of what makes a food not natural, whereas ``subtractives'' are almost never mentioned....

  4. Priming of soil carbon decomposition in two inner Mongolia grassland soils following sheep dung addition: A study using13C natural abundance approach

    DEFF Research Database (Denmark)

    Ma, Xiuzhi; Ambus, Per; Wang, Shiping;

    2013-01-01

    To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a...... heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ13C = -26.8‰; dung δ13C = -26.2‰) or Cleistogenes squarrosa (C4 plant with δ13C = -14.6‰; dung δ13C = -15.7‰). Fresh C3 and C4 sheep dung was mixed...

  5. Electrochemical cell studies on fluorinated natural graphite in propylene carbonate electrolyte with difluoromethyl acetate (MFA) additive for low temperature lithium battery application

    Indian Academy of Sciences (India)

    R Chandrasekaran; M Koh; Y Ozhawa; H Aaoyoma; T Nakajima

    2009-05-01

    Electrochemical cell performances of fluorinated natural graphite (abbreviated as FNG) electrode material was studied by using 1M of LiClO4- EC : DEC : PC (1 : 1 : 1 v%) electrolyte solution with and without 0.15% v/v fluorinated carboxylic ester additive difluoromethyl acetate-CHF2COOCH3 (MFA) at -10°C. The electrochemical cell performances were studied by cyclic voltammetry, galvanostatic charge-discharge and impedance analysis. The additive has proven its positive role with the electrolyte system and has shown the improved characterization over the blank electrolyte system.

  6. Effect of carbon addition on carbide morphology of single crystal Ni-based superalloy%碳对镍基单晶高温合金碳化物形貌的影响

    Institute of Scientific and Technical Information of China (English)

    余竹焕; 刘林; 张军

    2014-01-01

    Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four types of MC-type carbides, acicular, nodular, blocky, and Chinese script-type in the crystals. With an increase in carbon level, the volume fraction of carbide increased significantly while the volume fraction of eutectic decreased significantly. Furthermore, the size of carbide in high level carbon alloy became much larger.%在抽拉速率为50μm/s的条件下制备5种不同含碳量的单晶高温合金,研究碳对单晶高温合金中碳化物形貌的影响。研究发现,铸态组织中存在4种形貌的MC型碳化物,呈针状、球状、块状以及中文汉字状。随着碳含量的增加,碳化物的体积分数增大而共晶组织的体积显著减少。同时,碳化物的尺寸随着碳含量的增加亦呈增大趋势。

  7. Long-term addition of fertilizer, labile carbon, and fungicide alters the biomass of plant functional groups in a subarctic-alpine community

    DEFF Research Database (Denmark)

    Haugwitz-Hardenberg-Reventlow, M S; Michelsen, A.

    2011-01-01

    , but not of other vascular plant groups. Also, limitation of soil nutrient availability caused by labile C addition decreased the relative proportion of green shoots in evergreen shrubs, although these were expected to cope better with the nutrient limitation than the opportunistic graminoids, which......In subarctic ecosystems, plant growth is mostly limited by nutrient availability and harsh climate. Investigating how soil nutrient availability controls the plant community composition may therefore help to understand indirect effects of climate change. The study was conducted in a long-term field......, and the aboveground plant biomass was harvested 4 and 16 years after initiating the experiment. In addition, soil inorganic N and P concentration was analyzed the same years. Increased nutrient availability (NPK fertilizer) largely increased the biomass of graminoids and unexpectedly of bryophytes...

  8. Atom economical synthesis of di- and trithiocarbonates by the lithium tert-butoxide catalyzed addition of carbon disulfide to epoxides and thiiranes.

    Science.gov (United States)

    Diebler, J; Spannenberg, A; Werner, T

    2016-08-21

    Alkali metal alkoxides were studied as catalysts for the addition of CS2 to epoxides. A screening of several commercially available alkoxides revealed lithium tert-butoxide as an active and selective catalyst for this reaction. The influence of different reaction parameters as well as the substrate scope under optimized reaction conditions has been studied. Terminal and highly substituted epoxides as well as thiiranes were converted. In total 28 products were prepared and isolated in yields up to 95%. Notably, the reactions were performed under mild conditions without additional solvents. The regio- and stereoselectivity of the reaction has been studied e.g. by converting (R)-styrene and (R)-propylene oxide. Moreover, the test reaction was monitored by (13)C NMR and a plausible mechanism for the conversion of terminal and internal epoxides is given. This proposal is in agreement with the observed regio- and stereoselectivity of the reaction. PMID:27339808

  9. Effects of Straw Return in Deep Soils with Urea Addition on the Soil Organic Carbon Fractions in a Semi-Arid Temperate Cornfield.

    Directory of Open Access Journals (Sweden)

    Hongtao Zou

    Full Text Available Returning straw to deep soil layers by using a deep-ditching-ridge-ploughing method is an innovative management practice that improves soil quality by increasing the soil organic carbon (SOC content. However, the optimum quantity of straw return has not been determined. To solve this practical production problem, the following treatments with different amounts of corn straw were investigated: no straw return, CK; 400 kg ha-1 straw, S400; 800 kg ha-1 straw, S800; 1200 kg ha-1 straw, S1200; and 1600 kg ha-1 straw, S1600. After straw was returned to the soil for two years, the microbial biomass C (MBC, easily oxidized organic C (EOC, dissolved organic C (DOC and light fraction organic C (LFOC content were measured at three soil depths (0-10, 10-20, and 20-40 cm. The results showed that the combined application of 800 kg ha-1 straw significantly increased the EOC, MBC, and LFOC contents and was a suitable agricultural practice for this region. Moreover, our results demonstrated that returning straw to deep soil layers was effective for increasing the SOC content.

  10. Effects of Straw Return in Deep Soils with Urea Addition on the Soil Organic Carbon Fractions in a Semi-Arid Temperate Cornfield

    Science.gov (United States)

    Li, Jiaqi; Lu, Jia; Fan, Qingfeng; Yu, Na; Zhang, Yuling; Dang, Xiuli; Zhang, Yulong

    2016-01-01

    Returning straw to deep soil layers by using a deep-ditching-ridge-ploughing method is an innovative management practice that improves soil quality by increasing the soil organic carbon (SOC) content. However, the optimum quantity of straw return has not been determined. To solve this practical production problem, the following treatments with different amounts of corn straw were investigated: no straw return, CK; 400 kg ha-1 straw, S400; 800 kg ha-1 straw, S800; 1200 kg ha-1 straw, S1200; and 1600 kg ha-1 straw, S1600. After straw was returned to the soil for two years, the microbial biomass C (MBC), easily oxidized organic C (EOC), dissolved organic C (DOC) and light fraction organic C (LFOC) content were measured at three soil depths (0–10, 10–20, and 20–40 cm). The results showed that the combined application of 800 kg ha-1 straw significantly increased the EOC, MBC, and LFOC contents and was a suitable agricultural practice for this region. Moreover, our results demonstrated that returning straw to deep soil layers was effective for increasing the SOC content. PMID:27123594

  11. Effects of Straw Return in Deep Soils with Urea Addition on the Soil Organic Carbon Fractions in a Semi-Arid Temperate Cornfield.

    Science.gov (United States)

    Zou, Hongtao; Ye, Xuhong; Li, Jiaqi; Lu, Jia; Fan, Qingfeng; Yu, Na; Zhang, Yuling; Dang, Xiuli; Zhang, Yulong

    2016-01-01

    Returning straw to deep soil layers by using a deep-ditching-ridge-ploughing method is an innovative management practice that improves soil quality by increasing the soil organic carbon (SOC) content. However, the optimum quantity of straw return has not been determined. To solve this practical production problem, the following treatments with different amounts of corn straw were investigated: no straw return, CK; 400 kg ha-1 straw, S400; 800 kg ha-1 straw, S800; 1200 kg ha-1 straw, S1200; and 1600 kg ha-1 straw, S1600. After straw was returned to the soil for two years, the microbial biomass C (MBC), easily oxidized organic C (EOC), dissolved organic C (DOC) and light fraction organic C (LFOC) content were measured at three soil depths (0-10, 10-20, and 20-40 cm). The results showed that the combined application of 800 kg ha-1 straw significantly increased the EOC, MBC, and LFOC contents and was a suitable agricultural practice for this region. Moreover, our results demonstrated that returning straw to deep soil layers was effective for increasing the SOC content. PMID:27123594

  12. Scientific Opinion on the safety and efficacy of Lenziaren (iron, aqua carbonate hydroxyl oxo starch sucrose complex) as a feed additive for cats

    OpenAIRE

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

    2013-01-01

    The additive Lenziaren is a polynuclear Fe(III) starch/saccharose complex intended to be used in food for adult cats to reduce phosphate absorption in the gastrointestinal tract in order to prevent chronic kidney disease. The recommended minimum and maximum levels are 0.25 g and 1.0 g per cat per day, equivalent to 5 000 and 20 000 mg/kg feed, respectively. The FEEDAP Panel considers that Lenziaren is safe for adult cats at the maximum recommended dose. However, the consequences of chronic ex...

  13. Effects of H2 gas addition into process and H ion implantation on the microstructure of hydrogenated amorphous carbon films prepared by bipolar-type plasma based ion implantation

    International Nuclear Information System (INIS)

    Hydrogenated amorphous carbon films are deposited on Si(1 0 0) and SiO2 glass substrates by a bipolar-type plasma based ion implantation system. The films are prepared using toluene gas at a constant flow rate of 2 sccm. The effects of H2 gas addition during deposition on the microstructure of the films are examined by electrical conductivity measurements, Raman spectroscopy, elastic recoil detection analysis (ERDA) and optical spectroscopy. In addition, H implantation is also carried out using H2 plasma discharge. Thickness of the films is approximately 60 nm for all samples. It is found that electrical conductivity slightly increases with increasing additive H2 flow rate. However, the conductivity drastically decreases after H implantation. Raman analysis reveals that H2 gas addition slightly causes the film graphitization, but the H implantation does it amorphization. The results of ERDA show that the H concentration in the films slightly decreases with increasing H2 gas addition, but increases by H implantation. In spite of H2 gas addition, the optical band gap is not changed and kept approximately 0.7 eV. However, H implantation makes it increase up to approximately 1.0 eV

  14. Evaluation of the potential of additives as corrosion inhibitors of CA-50 carbon steel used as reinforcement in concretes; Avaliacao da potencialidade de aditivos como inibidores de corrosao do aco carbono CA-50 usado como armadura de estruturas de concreto

    Energy Technology Data Exchange (ETDEWEB)

    Mennucci, Marina Martins

    2006-07-01

    In this work, various compounds were tested to evaluate their potential capability for their use as corrosion inhibitors of carbon steel reinforcement in concretes. The additives tested were sodium benzoate, polyethylene glycol, hexamethylenetetramine, benzotriazole and yttrium carbonate. Initially, exploratory tests were carried out to select the ones to be used as corrosion inhibitors, based on the inhibit ion efficiency determined from electrochemical tests, specifically polarization tests and electrochemical impedance spectroscopy. These tests were carried out in a solution composed of 0.01 N sodium hydroxide (NaOH) and 0.05 N potassium hydroxide (KOH) to simulate the composition of the solution inside the pores in concretes. The additive that presented the most promising potential to be used as corrosion inhibitor was benzotriazole (BTA). After the elimination of some compounds and selection of the additive with higher corrosion inhibit ion efficiency in the test medium, the effect of its concentration on the corrosion inhibition efficiency was evaluated. Sodium nitrite solutions with the same concentrations as those solutions with BTA were tested for comparison reasons. Sodium nitrite is a well established corrosion inhibitor for carbon steel reinforcement in concretes but it has been related to toxic effects. The BTA was associated to higher corrosion inhibition efficiencies than that of sodium nitrite in similar concentrations. A blackish adherent film was formed on the steel surface exposed to BTA solutions during long periods of immersion in the alkaline medium. The results suggest that BTA is a potential candidate for substitution of nitrites as corrosion inhibitor of reinforcements in concrete. (author)

  15. Formation of Carbon Nanotube Based Gears: Quantum Chemistry and Molecular Mechanics Study of the Electrophilic Addition of o-Benzyne to Fullerenes, Graphene, and Nanotubes

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Considerable progress has been made in recent years in chemical functionalization of fullerene molecules. In some cases, the predominant reaction products are different from those obtained (using the same reactants) from polycyclic aromatic hydrocarbons (PAHs). One such example is the cycloaddition of o-benzyne to C60. It is well established that benzyne adds across one of the rings in naphthalene, anthracene and other PAHs forming the [2+4] cycloaddition product (benzobicyclo[2.2.2.]-octatriene with naphthalene and triptycene with anthracene). However, Hoke et al demonstrated that the only reaction path for o-benzyne with C60 leads to the [2+2] cycloaddition product in which benzyne adds across one of the interpentagonal bonds (forming a cyclobutene ring in the process). Either reaction product results in a loss of aromaticity and distortion of the PAH or fullerene substrate, and in a loss of strain in the benzyne. It is not clear, however, why different products are preferred in these cases. In the current paper, we consider the stability of benzyne-nanotube adducts and the ability of Brenner's potential energy model to describe the structure and stability of these adducts. The Brenner potential has been widely used for describing diamondoid and graphitic carbon. Recently it has also been used for molecular mechanics and molecular dynamics simulations of fullerenes and nanotubes. However, it has not been tested for the case of functionalized fullerenes (especially with highly strained geometries). We use the Brenner potential for our companion nanogear simulations and believe that it should be calibrated to insure that those simulations are physically reasonable. In the present work, Density Functional theory (DFT) calculations are used to determine the preferred geometric structures and energetics for this calibration. The DFT method is a kind of ab initio quantum chemistry method for determining the electronic structure of molecules. For a given basis set

  16. Differences in the tribological mechanisms when using non-doped, metal-doped (Ti, WC), and non-metal-doped (Si) diamond-like carbon against steel under boundary lubrication, with and without oil additives

    OpenAIRE

    Kalin, Mitjan; Vižintin, Jože

    2015-01-01

    In this paper, we report on the tribological performance and mechanisms of the boundary-lubricated contacts of steel against diamond-like carbon (DLC) coatings, i.e., steel/DLC, using the same materials, oils, additives and conditions as we have previously reported for DLC/DLC contacts. We present and compare the behaviour of two non-doped, two metal-doped (Ti, WC) and one non-metal-doped (Si) DLC coatings in contact with steel surfaces in reciprocating sliding, lubricated with a paraffinic m...

  17. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest in decadal scale

    OpenAIRE

    B. Koehler; M. D. Corre; Veldkamp, E.; Sueta, J. P.

    2009-01-01

    Atmospheric nitrogen (N) deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide CO2 efflux to long-term experimental N-addition (125 kg N ha−1 yr-1) in mature lowland and montane forests in Panamá. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In the montane fo...

  18. Scientific Opinion on the safety and efficacy of Lenziaren (iron, aqua carbonate hydroxyl oxo starch sucrose complex as a feed additive for cats

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-05-01

    Full Text Available The additive Lenziaren is a polynuclear Fe(III starch/saccharose complex intended to be used in food for adult cats to reduce phosphate absorption in the gastrointestinal tract in order to prevent chronic kidney disease. The recommended minimum and maximum levels are 0.25 g and 1.0 g per cat per day, equivalent to 5 000 and 20 000 mg/kg feed, respectively. The FEEDAP Panel considers that Lenziaren is safe for adult cats at the maximum recommended dose. However, the consequences of chronic exposure have not been investigated. The additive is not genotoxic. No adverse effects were seen in a repeat-dose toxicity study in mice. Lenziaren had no adverse effects on reproduction and development at dose levels that were not toxic to the mother. A no observed adverse effect level (NOAEL of 500 mg/kg body weight (bw per day was identified for Lenziaren on the basis of maternal toxicity (diarrhoea and reduced body weight gain, which was seen in rabbits at an oral dose of 1 000 mg/kg bw per day or greater. Similar effects were seen in rats, dogs and monkeys at higher doses in repeat-dose toxicity studies. No NOAELs were identified in these studies. Lenziaren is not regarded as an irritant to skin or eyes or as a skin sensitiser. Although some inhalation exposure is possible, it is not expected to be harmful to those exposed as a result of handling the additive. Based on the results of three in vivo efficacy studies, the FEEDAP Panel concludes that Lenziaren has the potential to be efficacious in cats at the highest recommended dose of 1 g/cat per day (equivalent to 20 000 mg/kg feed. However, the FEEDAP Panel has some reservations regarding the value of its long-term use in healthy cats. The Panel concludes that there is a need for a post-market monitoring plan.

  19. Effects of sol-gel method and lanthanum addition on catalytic performances of nickel-based catalysts for methane reforming with carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    LI Xiancai; HU Quanhong; YANG Yifeng; CHEN Juanrong; LAI Zhihua

    2008-01-01

    The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction per-formances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal.

  20. Additional heat treatment of non-porous coatings obtained on medium carbon steel substrates by electron beam cladding of a Ti-Mo-C powder composition

    Science.gov (United States)

    Mul, D. O.; Drobyaz, E. A.; Zimoglyadova, T. A.; Bataev, V. A.; Lazurenko, D. V.; Shevtsova, L. I.

    2016-04-01

    The structure and microhardness of surface layers, obtained by non-vacuum electron beam cladding of Ti-Mo-C powder mixture on a steel substrate after different types of heat treatment, were investigated. After cladding samples were heat treated in a furnace at 200...500 °C, as well as quenched at 860 ° C and then underwent high-temperature tempering. Heat treatment of cladded coatings induced tempering of martensite and precipitation of cementite particles (Fe3C). Transmission electron microscopy of the samples after heating and holding at 300 ° C revealed precipitation of nanosized cubical TiC particles. The formation of hard nanosized particles led to the surface layer microhardness growth. The highest level of microhardness (which was 1.2...1.5-fold higher in comparison with coating microhardness after heat treatment) was achieved after heating of the claded material at 300 °C and 400 °C Additional quenching of samples at 860 °C did not increase the microhardness level.

  1. Effects of additions of carbon nanotubes on the thermoelectric properties of Ni{sub 0.05}Mo{sub 3}Sb{sub 5.4}Te{sub 1.6}

    Energy Technology Data Exchange (ETDEWEB)

    Nandihalli, Nagaraj [Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Gorsse, Stéphane [Bordeaux INP, ICMCB, UPR 9048, 33600 Pessac (France); Kleinke, Holger, E-mail: kleinke@uwaterloo.ca [Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)

    2015-03-15

    To prepare Ni{sub 0.05}Mo{sub 3}Sb{sub 5.4}Te{sub 1.6}, the starting materials were loaded in the stoichiometric ratio into silica tubes and then heated at 1000 K. The reaction products were mixed and divided into four equal parts. The first sample was used as a reference sample called bulk. For the remaining samples, 1%, 2% and 3% by mass of MWCNT (multi-wall carbon nanotubes) were added by ball-milling. These materials were then subjected to consolidation by hot-pressing at 850 K and 56 MPa. Their transport properties were determined and compared to study the influence of MWCNT on the transport properties of Ni{sub 0.05}Mo{sub 3}Sb{sub 5.4}Te{sub 1.6}. Scanning and transmission electron microscopy were used to study the microstructural and nanostructural features of the samples, and Raman characterization was performed to look for changes induced by ball-milling and hot-pressing of the nanotubes. Mainly due to a largely reduced thermal conductivity by 40% and a slightly reduced power factor, the figure-of-merit was improved by 25% after addition of 3 mass% of MWCNT. - Graphical abstract: Figure-of-merit of various Ni{sub 0.05}Mo{sub 3}Sb{sub 5.4}Te{sub 1.6}/CNT composites. - Highlights: • Various composites of Ni{sub 0.05}Mo{sub 3}Sb{sub 5.4}Te{sub 1.6} with carbon nanotubes were synthesized and characterized. • In each case, the thermoelectric figure-of-merit increases rapidly with increasing temperature. • With increasing amount of carbon nanotubes, the thermal conductivity decreases more than the electrical conductivity. • The composite with 3% carbon nanotubes performs better than the bulk material by 25%.

  2. Scientific Opinion on the efficacy of Lenziaren (iron, aqua carbonate hydroxyl oxo starch sucrose complex as a feed additive for cats

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2014-07-01

    Full Text Available Lenziaren is a polynuclear Fe(III starch–saccharose complex intended to be used in food for adult cats to reduce phosphate absorption in the gastrointestinal tract in order to prevent chronic kidney disease. The recommended minimum and maximum levels are 0.25 and 1.0 g/cat per day, equivalent to 5 000 and 20 000 mg/kg complete feed, respectively. In a previous opinion, the Panel concluded that the minimum effective dose was 1 g/cat per day based on three studies which showed either a significant reduction in serum phosphorus or a reduction in urinary phosphate. Two of these studies showed an effect at 0.25 g/cat per day, while the third one only showed an effect at a level of 1 g/cat per day. The results of a new study submitted in this application showed that overall urine inorganic phosphorus concentrations significantly decreased in cats receiving Lenziaren at 0.25 g/day compared with the control group. Therefore, considering the two previous studies, which showed an effect at 0.25 g/cat per day, and the results of the new study, the FEEDAP Panel considers that Lenziaren has the potential to be efficacious in binding intestinal phosphorus at the minimum recommended dose of 0.25 g/cat per day (equivalent to 5 g/kg complete feed. On balance, the Panel considers that the sex difference seen in the new study is an anomaly, possibly owing, as the applicant suggests, to selective feed intake. However, the Panel notes that sex differences were not explored in the remaining efficacy studies. The Panel still has the reservations expressed in the previous opinion regarding the value of the long-term use of the additive in healthy cats.

  3. Microstructural Evolution of Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-0.7Nd Titanium Alloy with Carbon Additions

    Institute of Scientific and Technical Information of China (English)

    Shangzhou ZHANG; Yuan GAO; Ziquan LIU; Yuyin LIU; Rui YANG

    2006-01-01

    The effect of carbon addition on microstructural evolution was studied in a near-α titanium alloy(Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-0.7Nd). It was found that flake and ribbon titanium carbides with a NaCl crystal structure formed in the as-cast alloys with carbon additions of over 0.17 wt pct. Flake carbide particles are the product of eutectic transformation and precipitate from the high-temperature β phase. The ribbon carbide particles are primary phases formed prior to the nucleation of any metallic phases. The as-cast alloys with carbide precipitation after heat-treatment atβt-30℃ followed by water quenching showed the spheroidization of α lamellae and partial dissolution of carbide particles. After annealing at βt+15℃, carbide particles are mostly distributed at the grain boundary and spheroidized through mixed grain boundary plus bulk diffusions.

  4. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest in decadal scale

    Directory of Open Access Journals (Sweden)

    B. Koehler

    2009-09-01

    Full Text Available Atmospheric nitrogen (N deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide CO2 efflux to long-term experimental N-addition (125 kg N ha−1 yr-1 in mature lowland and montane forests in Panamá. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In the montane forest, on soils with low nutrient supplying capacity and an organic layer, fine litterfall and stem-growth were N-limited. Our objectives were to 1 explore the influence of soil temperature and moisture on the dynamics of soil CO2 efflux and 2 determine the responses of soil CO2 efflux from an N-rich and N-limited forest to elevated N input. Annual soil CO2-C efflux was larger from the lowland (15.20±1.25 Mg C ha−1 than the montane forest (9.36±0.29 Mg C ha−1. In the lowland forest, soil moisture explained the largest fraction of the variance in soil CO2 efflux while soil temperature was the main explanatory variable in the montane forest. Soil CO2 efflux in the lowland forest did not differ between the control and 9–11 yr N-addition plots, suggesting that chronic N input to nutrient-rich tropical lowland forests on well-buffered soils may not change their C balance in decadal scale. In the montane forest, first year N addition did not affect soil CO2 efflux but annual CO2 efflux was reduced by 14% and 8% in the 2- and 3 yr N-addition plots, respectively, compared to the control. This reduction was caused by a decrease in soil CO2 efflux during the high stem-growth period of the year, suggesting a shift in carbon partitioning from below- to aboveground in the N-addition plots where stem diameter growth was promoted.

  5. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale

    Directory of Open Access Journals (Sweden)

    B. Koehler

    2009-12-01

    Full Text Available Atmospheric nitrogen (N deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide (CO2 efflux to long-term experimental N addition (125 kg N ha−1 yr−1 in mature lowland and montane forests in Panama. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In the montane forest, on soils with low nutrient supplying capacity and an organic layer, fine litterfall and stem-growth were N-limited. Our objectives were to 1 explore the influence of soil temperature and moisture on the dynamics of soil CO2 efflux and 2 determine the responses of soil CO2 efflux from an N-rich and N-limited forest to elevated N input. Annual soil CO2-C efflux was larger in the lowland (15.44 ± 1.02 Mg C ha−1 than in the montane forest (9.37 ± 0.28 Mg C ha−1. In the lowland forest, soil moisture explained the largest fraction of the variance in soil CO2 efflux while soil temperature was the main explanatory variable in the montane forest. Soil CO2 efflux in the lowland forest did not differ between the control and 9–11 yr N-addition plots, suggesting that chronic N input to nutrient-rich tropical lowland forests on well-buffered soils may not change their C balance on a decadal time scale. In the montane forest, first year N addition did not affect soil CO2 efflux but annual CO2 efflux was reduced by 14% and 8% in the 2nd and 3rd year N-addition plots, respectively, compared to the control. This reduction was caused by a decrease in soil CO2 efflux during the high stem-growth period of the year, suggesting a shift in carbon partitioning from below- to aboveground in the N-addition plots in which stem diameter growth was promoted.

  6. Effects of Na{sub 2}WO{sub 4} and Na{sub 2}SiO{sub 3} additives in electrolytes on microstructure and properties of PEO coatings on Q235 carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yunlong [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Jiang Zhaohua [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: Jiangzhaohua@hit.edu.cn; Yao Zhongping [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2009-07-29

    Ceramic coatings were achieved on Q235 carbon steel by plasma electrolytic oxidation in aluminate system with and without Na{sub 2}WO{sub 4} and Na{sub 2}SiO{sub 3} additives in electrolyte. Influence of Na{sub 2}WO{sub 4} and Na{sub 2}SiO{sub 3} on surface morphology, phase and elemental composition of PEO coatings were examined by means of scanning electron microscope (SEM), thin-film X-ray diffraction (TF-XRD) and energy dispersive X-ray spectroscopy (EDS). Effects of the two additives on the properties of the coatings including surface roughness, surface micro hardness and friction coefficient were studied. The results showed that W from Na{sub 2}WO{sub 4} and Si from Na{sub 2}SiO{sub 3} in electrolytes entered into the coatings. Na{sub 2}WO{sub 4} additive had no evident effect on phase composition of the coating, while Na{sub 2}SiO{sub 3} additive resulted in the coating changing from crystalline state to amorphous state and increased the content of P in the coating. Both additives reduced the surface roughness of the coatings. With Na{sub 2}WO{sub 4} or Na{sub 2}SiO{sub 3} into the electrolytes, the surface micro hardness of the coating was enhanced to 1433 and 1478, respectively, and the friction coefficients were also decreased to below 0.1.

  7. Ecosystem partitioning of 15N-glycine after long-term climate and nutrient manipulations, plant clipping and addition of labile carbon in a subarctic heath tundra

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders; Jonasson, Sven Evert

    2008-01-01

    Low temperatures and high soil moisture restrict cycling of organic matter in arctic soils, but also substrate quality, i.e. labile carbon (C) availability, exerts control on microbial activity. Plant exudation of labile C may facilitate microbial growth and enhance microbial immobilization of......, microorganisms and plants. There were few effects of long-term warming and fertilization on soil and plant pools. However, fertilization increased soil and plant N pools and increased pool dilution of the added 15N label. In all treatments, microbes immobilized a major part of the added 15N shortly after label...... addition. However, plants exerted control on the soil inorganic N concentrations and recovery of total dissolved 15N (TD15N), and likewise the microbes reduced these soil pools, but only when fed with labile C. Soil microbes in clipped plots were primarily C limited, and the findings of reduced N...

  8. High-temperature characteristics of 20MnB4 and 30MnB4 micro-addition cold upsetting steels and C45 and C70 high-carbon-steels

    Directory of Open Access Journals (Sweden)

    S. Sawicki

    2016-10-01

    Full Text Available The paper analyzes the high-temperature plasticity characteristics of 20MnB4 and 30MnB4 with micro-additives, intended for cold upsetting and high-carbon steels C45 and C70 in the “solid phase-liquid” during heating and cooling. The investigation was conducted to determine the plastic formability of the examined alloy under hot plastic working conditions. Experiments were carried out on the simulator Gleeble 3800 with the aim of determining the susceptibility of 20MnB4, 30MnB4, C45 and C70 steels to cracking at high temperature. The nil strength (NST, nil ductility (NDT and ductility recovery temperatures (DRT, and the fracture toughness factor and the BRT (brittleness temperature range have been determined.

  9. Improving the structure, magnetic properties and thermal stability of rapidly quenched TbCu{sub 7}-type SmCo{sub 6.4}Si{sub 0.3}Zr{sub 0.3} alloy by carbon addition

    Energy Technology Data Exchange (ETDEWEB)

    Feng, D.Y. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zheng, Z.G.; Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, G.Q. [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2014-08-01

    The effects of carbon addition on the structure and magnetic properties of rapidly quenched TbCu{sub 7}-type SmCo{sub 6.4}Si{sub 0.3}Zr{sub 0.3} alloy have been investigated. The alloys with a small amount of C addition (x≤0.2) showed single Sm(Co,M){sub 7} phase, while ZrC phase appeared in the alloys with x=0.3 and 0.4. With the increase of C content, the grain size decreased from approximately 850 nm for x=0.1 to approximately 300 nm for x=0.4. The coercivity H{sub c} and maximum magnetic energy product (BH){sub max} increased with the C content from x=0 to 0.2 and then decreased with excessive C addition. The optimal magnetic properties of H{sub c}=1577 kA/m, J{sub r}=0.53 T and (BH){sub max}=52.1 kJ/m{sup 3} were achieved for SmCo{sub 6.4}Si{sub 0.3}Zr{sub 0.3}C{sub 0.2} alloy with a grain size of 600–700 nm, which is close to the single domain size of TbCu{sub 7}-type Sm(Co,Zr){sub 7} alloy. Furthermore, C addition also improved the thermal stability by reducing the absolute values of temperature coefficients of remanence and coercivity.

  10. Effect of Additives on Properties of Flame Retardant LLDPE with Magnesium Carbonate/Aluminium Hydroxide Compound%助剂对氢氧化铝和碳酸镁复配阻燃LLDPE性能的影响

    Institute of Scientific and Technical Information of China (English)

    李建新; 吴洁

    2011-01-01

    将协效剂白炭黑、硼酸锌、低熔点玻璃和硅烷偶联剂、铝酸脂偶联剂分别添加到碳酸镁/氢氧化铝复配阻燃的线型低密度聚乙烯(LLDPE)体系中,考察了这些助剂对体系阻燃性能和力学性能的影响.结果表明:几种助剂对体系的氧指数影响较小;白炭黑可以明显提高体系的拉伸强度,硼酸锌对体系的断裂伸长率影响最小;对拉伸强度而言,使用铝酸脂偶联剂优于硅烷偶联剂.%Several synergistic agents and two kind of coupling agents were added into the fame-retardant LLDPE system with magnesium carbonate and aluminium hydroxide compound, and the effects of additives on the flame retardant and mechanical properties of LLDPE system were studied.The results show that several synergistic agents have slight effect on oxygen index of the system, silica can improve the tensile strength evidently, and zinc borate has little influence on the elongation at break of the system. As far as the tensille strength is concerned, aluminate coupling agent is better than silane coupling agent.

  11. Effects of nitrogen addition and precipitation change on soil methane and carbon dioxide fluxes%施氮和降水格局改变对土壤CH4和CO2通量的影响

    Institute of Scientific and Technical Information of China (English)

    李伟; 白娥; 李善龙; 孙建飞; 彭勃; 姜萍

    2013-01-01

    ,and even,converted the CH4 consumption into CH4 release.However,this inhibition effect only lasted for approximately 5 days.Nitrogen addition also affected the relationships between the CH4 flux and environmental factors (soil temperature,pH,and clay content) to some extent.The changed precipitation regime had no significant effects on the CH4 flux.Nitrogen addition decreased the CO2 flux,with an average decrement of 27.4% after 4 years continuous nitrogen addition.It was predicted that the effects of long-term continuous nitrogen addition on the CO2 flux would be increased with time,and reached the maximum after certain years of nitrogen addition.Oppositely,the effects of single time nitrogen addition would be decreased with time,and disappeared by the end of the 1-month cycle.The inhibition effect of nitrogen addition on the CO2 flux was negatively correlated with soil water filled pore space (WFPS) (P =0.022),and enhanced and extended at higher temperature.Nitrogen addition and precipitation change could possibly alter the temperature sensitivity of soil respiration.Our results indicated that the soil nitrogen in temperate forest in Changbai Mountains had not reached a threshold,and the future nitrogen deposition increase would inhibit the CO2 release and CH4 uptake.Overall,nitrogen addition would inhibit the soil carbon release.

  12. High-performance LiMn0.8Fe0.2PO4 with hybrid conductive additives based on functionalized and etched multi-walled carbon nanotubes by self-destruction during the lithiation process

    International Nuclear Information System (INIS)

    High-performance LiMn0.8Fe0.2PO4 (LMFP) was prepared with both etched and functionalized multi-walled carbon nanotubes (MWNTs) and ketjen blacks (KBs). The MWNTs functionalized with carboxylic groups exhibited better affinity toward cathode materials than did pristine nanotubes. The electrochemical performance of the LMFP cathode materials was also improved by using MWNTs shortened by vigorous mechanical mixing, compared with pristine long MWNT samples. Moreover, the use of MWNTs together with KB provided better electrochemical performance than when KBs or MWNTs were used separately. The modified LMFP (m-LMFP) had an excellent rate capability, with discharge capacities of 162 mAh g−1 at 0.1 C and 147 mAh g−1 at 1 C, the highest values reported to date for this type of electrode. The capacity retention of the m-LMFP was 94% after 50 cycles, whereas that of the pristine sample was only 82%. Transmission electron microscopy and AC impedance results confirmed that the addition of MWNTs to the cathode materials improved their networking and electrical properties. However, excessive substitution of MWNTs for KB was not favorable for maximizing electrochemical performance because of increased internal resistance. - Highlights: • A simple approach for cutting CNTs was used to prepare modified LiMn0.8Fe0.2PO4. • The CNTs can be uncapped by lithiation, without further ball milling or sonication. • The shortened CNTs seemed to be favorable for Li-ion diffusion with small resistance. • The modified LiMn0.8Fe0.2PO4 has an enhanced capacity, rate capability and cycle ability

  13. Trading forest carbon - OSU

    Science.gov (United States)

    Issues associate with trading carbon sequestered in forests are discussed. Scientific uncertainties associated with carbon measurement are discussed with respect to proposed accounting procedures. Major issues include: (1) Establishing baselines. (2) Determining additivity from f...

  14. 添加秸秆和黑炭对水稻土碳氮转化及土壤微生物代谢图谱的影响%Effects of Straw and Black Carbon Addition on C-N Transformation and Microbial Metabolism Profile in Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    王娟; 张丽君; 姚槐应

    2013-01-01

    The effects of straw and black carbon addition to paddy soil on carbon and nitrogen transformation were studied in a pot experiment. At booting and mature stages, soil C-N transformation and microbial metabolism profile were analyzed. According to the results of organic carbon, total nitrogen, ammonium concentration, both straw and black carbon addition could promote C-N transformation of paddy soil, thereby enhancing the yield of rice grain to some extent. The results of microbial metabolism identified by Microresp suggested that rising concentrations of straw and carbon had an increasing influence on microbial metabolism. The main reason behind the difference was the higher utilization of fructose, alanine, acetyl glucosamine and lysine-HCl after the soil was amended with straw and black carbon. The effect of straw addition on microbial biomass carbon and net carbon mineralization was significantly higher than that of black carbon. Conversely, black carbon had higher effects on the yield of rice grain and soil carbon sequestration.%通过向水稻土中添加秸秆和黑炭进行水稻盆栽实验(秸秆的添加量为2 g/kg和10 g/kg,黑炭的添加量为5 g/kg和25 g/kg),分别在孕穗期和成熟期取样研究土壤碳氮转化及微生物代谢剖面的变化.对土壤有机碳、全氮、铵氮等含量的测定结果显示,秸秆和黑炭均能于一定程度上促进土壤碳氮转化,提高水稻产量;Microresp方法检测的微生物代谢图谱表明,秸秆和黑炭的添加量越大,对微生物的代谢影响越大.造成这些差异的主要原因是添加秸秆和黑炭后微生物对果糖、丙氨酸、乙酰葡萄糖胺和赖氨酸盐酸盐的利用率上升.另外,秸秆对微生物碳和净碳矿化速率的影响显著高于黑炭,而黑炭对水稻产量和土壤固碳的影响更大.

  15. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  16. 13C chemical shift anisotropies for carbonate ions in cement minerals and the use of 13C, 27Al and 29Si MAS NMR in studies of Portland cement including limestone additions

    International Nuclear Information System (INIS)

    13C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed 13C MAS or 13C(1H) CP/MAS NMR spectra (9.4 T or 14.1 T) for 13C in natural abundance. The variation in the 13C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in 13C MAS NMR spectra. However, it is shown that by combining 13C MAS and 13C(1H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends 29Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in 27Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •13C chemical shift anisotropies for inorganic carbonates from 13C MAS NMR. •Narrow 13C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by 13C MAS and 13C(1H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase

  17. Carbon nanotube core graphitic shell hybrid fibers.

    Science.gov (United States)

    Hahm, Myung Gwan; Lee, Jae-Hwang; Hart, Amelia H C; Song, Sung Moo; Nam, Jaewook; Jung, Hyun Young; Hashim, Daniel Paul; Li, Bo; Narayanan, Tharangattu N; Park, Chi-Dong; Zhao, Yao; Vajtai, Robert; Kim, Yoong Ahm; Hayashi, Takuya; Ku, Bon-Cheol; Endo, Morinobu; Barrera, Enrique; Jung, Yung Joon; Thomas, Edwin L; Ajayan, Pulickel M

    2013-12-23

    A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes. PMID:24224730

  18. Carbon dioxide test as an additional clinical measure of treatment response in panic disorder O teste com dióxido de carbono como uma medida adicional na mensuração da resposta terapêutica no transtorno de pânico

    OpenAIRE

    Alexandre M Valença; Antonio Egidio Nardi; Isabella Nascimento; Walter A Zin; Márcio Versiani

    2002-01-01

    OBJECTIVE: We aim to determine if a treatment with a dose of clonazepam - 2 mg/day, for 6 weeks, blocks spontaneous panic attacks and the ones induced by the inhalation of 35% carbon dioxide (CO2) in panic disorder (PD) patients. The CO2 challenge-test may be a useful addition tool for measuring the pharmacological response during the initial phase (6 weeks) in the treatment of PD. METHOD: Eighteen PD patients drug free for a week participated in a carbon dioxide challenge test. Fourteen had ...

  19. Carbon classified?

    DEFF Research Database (Denmark)

    Lippert, Ingmar

    2012-01-01

    . Using an actor- network theory (ANT) framework, the aim is to investigate the actors who bring together the elements needed to classify their carbon emission sources and unpack the heterogeneous relations drawn on. Based on an ethnographic study of corporate agents of ecological modernisation over a...... corporations construing themselves as able and suitable to manage their emissions, and, additionally, given that the construction of carbon emissions has performative consequences, the underlying practices need to be declassified, i.e. opened for public scrutiny. Hence the paper concludes by arguing for a...

  20. Influence of expander components on the processes at the negative plates of lead-acid cells on high-rate partial-state-of-charge cycling. Part II. Effect of carbon additives on the processes of charge and discharge of negative plates

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, D.; Nikolov, P.; Rogachev, T. [Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, bl. 10, Sofia 1113 (Bulgaria)

    2010-07-15

    Lead-acid batteries operated in the high-rate partial-state-of-charge (HRPSoC) duty rapidly lose capacity on cycling, because of sulfation of the negative plates. As the battery operates from a partially discharged state, the small PbSO{sub 4} crystals dissolve and precipitate onto the bigger crystals. The latter have low solubility and hence PbSO{sub 4} accumulates progressively in the negative plates causing capacity loss. In order to suppress this process, the rate of the charge process should be increased. In a previous publication of ours we have established that reduction of Pb{sup 2+} ions to Pb may proceed on the surface of both Pb and carbon black particles. Hence, the reversibility of the charge-discharge processes improves, which leads to improved cycle life performance of the batteries in the HRPSoC mode. However, not all carbon forms accelerate the charge processes. The present paper discusses the electrochemical properties of two groups of carbon blacks: Printex and active carbons. The influence of Vaniseprse A and BaSO{sub 4} (the other two components of the expander added to the negative plates) on the reversibility of the charge-discharge processes on the negative plates is also considered. It has been established that lignosulfonates are adsorbed onto the lead surface and retard charging of the battery. BaSO{sub 4} has the opposite effect, which improves the reversibility of the processes on cycling and hence prolongs battery life in the HRPSoC duty. It has been established that the cycle life of lead-acid cells depends on the type of carbon black or active carbon added to the negative plates. When the carbon particles are of nano-sizes (<180 nm), the HRPSoC cycle life is between 10,000 and 20,000 cycles. Lignosulfonates suppress this beneficial effect of carbon black and activated carbon additives to about 10,000 cycles. Cells with active carbons have the longest cycle life when they contain also BaSO{sub 4} but no lignosulfonate. A summary of

  1. Influence of Additives on Reinforced Concrete Durability

    Directory of Open Access Journals (Sweden)

    Neverkovica Darja

    2014-12-01

    Full Text Available The article presents the results of the research on carbonation and chloride induced corrosion mechanisms in reinforced concrete structures, based on three commercially available concrete admixtures: Xypex Admix C-1000, Penetron Admix and Elkem Microsilica. Carbonation takes place due to carbon dioxide diffusion, which in the required amount is present in the air. Chlorides penetrate concrete in case of the use of deicing salt or structure exploitation in marine atmosphere. Based on the implemented research, Elkem Microsilica is the recommended additive for the use in aggressive environmental conditions. Use of Xypex Admix C-1000 and Penetron Admix have only average resistance to the aggressive environmental impact.

  2. Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich producer gas

    International Nuclear Information System (INIS)

    A plastic waste containing polyvinyl chloride was gasified in a two-stage gasifier consisting of a fluidized bed reactor and tar-cracking zone to produce a hydrogen-rich producer gas with low tar and HCl contents. In particular, this study investigated the effects of calcined Ca-based additives, especially oyster shells, and a Ni-loaded activated carbon on the chlorine and tar removal. Additionally, a ∼3 h gasification of the plastic waste was performed using a distributor with a large hole size to confirm the gasification stability. In the experiments, where 900 g activated carbon was applied, all the producer gases were free of tar. The maximum H2 content (30 vol.%) in the producer gas was obtained with 900 g of Ni-loaded activated carbon. Chlorine in the feed material was mainly distributed in char and condensate liquid. The HCl contents in the producer gases obtained with the calcined Ca-based additives including oyster shells were under 1 ppm. The ∼3 h gasification revealed that the gasification was stable in terms of tar content in producer gas and producer gas composition. - Highlights: • Ca-based additives including oyster shells were used to remove tar and HCl. • Effect of a Ni-loaded activated carbon on the tar removal is evaluated. • A ∼3 h gasification was performed with a perforated sheet distributor. • Chlorine distribution among the product fractions was provided

  3. Effect of carbon and boron additions on segregation behavior of directionally solidified nickel-base superalloys with rhenium%碳和硼对高铼含量的定向凝固镍基高温合金元素偏析行为的影响

    Institute of Scientific and Technical Information of China (English)

    胡勤; 刘林; 赵新宝; 高斯峰; 张军; 傅恒志

    2013-01-01

    The phase transformation temperature, segregation behavior of elements and as-cast microstructure were investigated in experimental nickel-base superalloys with different levels of carbon and boron. The results show that the liquidus temperature decreases gradually but the carbide solvus temperature increases obviously with increasing carbon addition. Minor boron addition to the alloy decreases the liquidus temperature, carbide solvus temperature and solidus temperature slightly. Apart from rhenium, the segregation coefficients of the elements alter insignificantly with the addition of carbon. The segregation behavior of rhenium, tungsten and tantalum become more severe with boron addition. The volume fraction and size of primary carbides increase with increasing carbon addition. The main morphology of the carbides is script-like in the alloys with carbon addition while the carbide sheets tend to be concentrated and coarse in the boron-containing alloys.%研究元素碳和硼对含铼镍基定向柱晶高温合金相转变温度、元素偏析和碳化物析出相的影响。结果表明:随着碳含量的增加,液相线温度逐步降低,而碳化物的析出温度上升。硼的添加造成合金液相线温度、碳化物析出温度和固相线温度均下降。随着碳含量的增加,铼元素的偏析先增大后减小,而其它元素的偏析程度变化并不是很大。铼、钨、钽的偏析随硼的加入而逐渐增大。合金中碳化物的形态主要为汉字体状,碳化物数量随着碳含量的增加逐渐增大。添加硼元素的合金中析出的碳化物较不含硼元素的合金中析出的碳化物更加集中和粗大。

  4. Design for Additive Manufacturing

    OpenAIRE

    Bertran Comellas, Martí

    2012-01-01

    This Thesis, Design for Additive Manufacturing, has been mainly focused on the design process and the considerations to be taken into account when designing parts for Additive Manufacturing. It starts with an introduction to Additive Manufacturing, the different technologies and processes are described to let the readers understand their operating principle, materials used and their strengths and weaknesses. The applications of Additive manufacturing are also explained in the introductory ...

  5. Carbon Farming as a Carbon Negative Technology

    Science.gov (United States)

    Anderson, C.; Laird, D.; Hayes, D. J.

    2015-12-01

    Carbon farms have a pivotal role in national and international efforts to mitigate and adapt to climate change. A carbon farm in its broadest sense is one that reduces greenhouse gas (GHG) emissions or captures and holds carbon in vegetation and soils. Their capacity to remove carbon from the air and store it safely and permanently, while providing additional human and ecosystem benefits, means they could contribute significantly to national efforts to stabilize or reduce GHGs. We examine carbon farms in the context of corn and soybean production agriculture. We illustrate, using Iowa data but with relevance across United States corn and soybean production, the potential for carbon farms to reduce human GHG emissions and sequester carbon permanently at a rate that has meaningful impact on global greenhouse gas concentration. Carbon has been viewed as a next generation cash crop in Iowa for over a decade. The carbon farm perspective, however, goes beyond carbon as cash crop to make carbon the center of an entire farm enterprise. The transformation is possible through slight adjustment crop practices mixed with advances in technology to sequester carbon through biochar. We examine carbon balance of Iowa agriculture given only the combination of slight reduction in fertilizer and sequestration by biochar. We find the following. Iowa carbon farms could turn Iowa agriculture into a carbon sink. The estimated range of GHG reduction by statewide implementation of carbon farms is 19.46 to 90.27 MMt CO2-equivalent (CO2-e), while the current agricultural CO2-e emission estimate is 35.38 MMt CO2-e. Iowa carbon farm GHG reduction would exceed Iowa GHG reduction by wind energy (8.7 MMt CO2-e) and could exceed combined reductions from wind energy and corn grain ethanol (10.7 MMt CO2-e; 19.4 MMt CO2-e combined). In fact, Iowa carbon farms alone could exceed GHG reduction from national corn grain ethanol production (39.6 MMt CO2-e). A carbon price accessible to agricultural

  6. Photoluminescence enhancement of aligned arrays of single-walled carbon nanotubes by polymer transfer† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05163k Click here for additional data file.

    Science.gov (United States)

    Schweiger, Manuel; Zakharko, Yuriy; Gannott, Florentina; Grimm, Stefan B.

    2015-01-01

    The photoluminescence of as-grown, aligned single-walled carbon nanotubes (SWNTs) on quartz is strongly quenched and barely detectable. Here we show that transferring these SWNTs to another substrate such as clean quartz or glass increases their emission efficiency by up to two orders of magnitude. By statistical analysis of large nanotube arrays we show at what point of the transfer process the emission enhancement occurs and how it depends on the receiving substrate and the employed transfer polymer. We find that hydrophobic polystyrene (PS) as the transfer polymer results in higher photoluminescence enhancement than the more hydrophilic poly(methyl methacrylate) (PMMA). Possible mechanisms for this enhancement such as strain relief, disruption of the strong interaction of SWNTs with the substrate and localized emissive states are discussed. PMID:26400227

  7. Additives in yoghurt production

    Directory of Open Access Journals (Sweden)

    Milna Tudor

    2008-02-01

    Full Text Available In yoghurt production, mainly because of sensory characteristics, different types of additives are used. Each group, and also each substance from the same group has different characteristics and properties. For that reason, for improvement of yoghurt sensory characteristics apart from addition selection, the quantity of the additive is very important. The same substance added in optimal amount improves yoghurt sensory attributes, but too small or too big addition can reduce yoghurt sensory attributes. In this paper, characteristics and properties of mostly used additives in yoghurt production are described; skimmed milk powder, whey powder, concentrated whey powder, sugars and artificial sweeteners, fruits, stabilizers, casein powder, inulin and vitamins. Also the impact of each additive on sensory and physical properties of yoghurt, syneresis and viscosity, are described, depending on used amount added in yoghurt production.

  8. Additive usage levels.

    Science.gov (United States)

    Langlais, R

    1996-01-01

    With the adoption of the European Parliament and Council Directives on sweeteners, colours and miscellaneous additives the Commission is now embarking on the project of coordinating the activities of the European Union Member States in the collection of the data that are to make up the report on food additive intake requested by the European Parliament. This presentation looks at the inventory of available sources on additive use levels and concludes that for the time being national legislation is still the best source of information considering that the directives have yet to be transposed into national legislation. Furthermore, this presentation covers the correlation of the food categories as found in the additives directives with those used by national consumption surveys and finds that in a number of instances this correlation still leaves a lot to be desired. The intake of additives via food ingestion and the intake of substances which are chemically identical to additives but which occur naturally in fruits and vegetables is found in a number of cases to be higher than the intake of additives added during the manufacture of foodstuffs. While the difficulties are recognized in contributing to the compilation of food additive intake data, industry as a whole, i.e. the food manufacturing and food additive manufacturing industries, are confident that in a concerted effort, use data on food additives by industry can be made available. Lastly, the paper points out that with the transportation of the additives directives into national legislation and the time by which the food industry will be able to make use of the new food legislative environment several years will still go by; food additives use data by the food industry will thus have to be reviewed at the beginning of the next century. PMID:8792135

  9. Vicarious Michael Addition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    C-H bond can undergo vicarious Michael addition reaction (VMA) with doubleactivated double bond in the absence of strong base and catalyst under mild conditions.Intramolecular H-bonding, electron-withdrawing inductive effect, and steric hindrance at aposition of nucleophile facilitates C-H addition over N-H addition. By using VMA, high branching multiplicity, novel branching pattern, controllable density and distribution of functional groups can be envisioned for novel dendrimer synthesis.

  10. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  11. Effect of additives on magnesium carbonate and aluminium hydroxide compound with flame-retardant polyethylene system%添加剂对阻燃聚乙烯体系性能的影响

    Institute of Scientific and Technical Information of China (English)

    李建新; 吴洁

    2011-01-01

    为提高碳酸镁/氢氧化铝复配阻燃聚乙烯体系的性能,将几种常用协效剂和两种偶联剂添加到阻燃体系中,测量其阻燃性能及力学性能.实验表明:几种添加剂对提高体系的氧指数贡献相当;白炭黑可以明显提高体系的拉伸强度,硼酸锌对体系的断裂伸长率影响最小.对于拉伸强度、使用铝酸酯偶联剂效果优于硅烷偶联剂.%To improve the property of magnesium carbonate and aluminium hydroxide compound with flame-retardant PE sys tem,several synergistic agents and two kind of eoupling agents were added into the flame-retardant PE system. The fire retard ant property and mechanical property were tested. It indicates that several synergistic agents have similar contribution to oxy gen index of the system, silica white can improve the tenslle strength evidently, and zinc borate has little influence on the e longation at break of the system. As far as the tensile strength is concerned , aluminate coupling agent is better than silane cou pling agent.

  12. Carbon sinks in temperate forests

    NARCIS (Netherlands)

    Martin, P.H.; Nabuurs, G.J.; Aubinet, M.; Karjalainen, T.; Vine, E.L.; Kinsman, J.; Heath, L.S.

    2001-01-01

    In addition to being scientifically exciting, commercially important, and environmentally essential, temperate forests have also become a key diplomatic item in international climate negotiations as potential sinks for carbon. This review presents the methods used to estimate carbon sequestration, i

  13. Additive and polynomial representations

    CERN Document Server

    Krantz, David H; Suppes, Patrick

    1971-01-01

    Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz

  14. Michael Addition Reaction of Fluorinated Nitro Compounds

    Institute of Scientific and Technical Information of China (English)

    郇凤; 胡华伟; 黄焰根; 陈庆云; 郭勇

    2012-01-01

    The Michael addition reactions of fluorinated nitro compounds with electron deficient olefins to give γ-fiuoro-γ-nitro-esters, nitriles and ketones which bear a fluorinated quaternary carbon center were reported. The reactions were promoted by TMG, affording the desired adducts in acceptable to good yields.

  15. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  16. Food Additives and Hyperkinesis

    Science.gov (United States)

    Wender, Ester H.

    1977-01-01

    The hypothesis that food additives are causally associated with hyperkinesis and learning disabilities in children is reviewed, and available data are summarized. Available from: American Medical Association 535 North Dearborn Street Chicago, Illinois 60610. (JG)

  17. Groups – Additive Notation

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-06-01

    Full Text Available We translate the articles covering group theory already available in the Mizar Mathematical Library from multiplicative into additive notation. We adapt the works of Wojciech A. Trybulec [41, 42, 43] and Artur Korniłowicz [25].

  18. Sparse Additive Models

    OpenAIRE

    Ravikumar, Pradeep; Lafferty, John; Liu, Han; Wasserman, Larry

    2007-01-01

    We present a new class of methods for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse linear modeling and additive nonparametric regression. We derive an algorithm for fitting the models that is practical and effective even when the number of covariates is larger than the sample size. SpAM is closely related to the COSSO model of Lin and Zhang (2006), but decouples smoothing and sparsity, enabling the use...

  19. Carbon Carbon Composites: An Overview .

    OpenAIRE

    G. Rohini Devi; K. Rama Rao

    1993-01-01

    Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several indust...

  20. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  1. Additives for the Axe

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On May 1,China will begin to ban the production and use of two food additives commonly used to "bleach" flour,benzoyl peroxide and calcium peroxide.The decision was made after 10 years of wrangling between the policy makers,manufacturers,scientists and consumers.The Ministry of Health said in a statement it was applying the ban in response to consumers’ concerns about chemical substances in food,and technical improvements that had made the two additives unnecessary in flour processing.Minister of Health Chen Zhu has also said

  2. From additivity to synergism

    DEFF Research Database (Denmark)

    Ritz, Christian; Streibig, Jens Carl

    2014-01-01

    Interest in synergistic or antagonistic effects through mixture experiments has grown immensely over the past two decades, not the least within in pharmacology and toxicology. Several definitions of reference models exist; one commonly used reference model is concentration or dose addition, which...... assumes compounds, when administrated simultaneously, do not interfere with each other at the site of action. We focus on statistical modelling that allows evaluation of dose addition. We will describe several statistical approaches that are suitable for analysis mixture data where synergistic or...

  3. Estudo microestrutural de aço carbono soldado com o processo arco submerso e adições de Fe-Ti Microstructural study of carbon steel welded with the submerged arc process and additions of Fe-Ti

    Directory of Open Access Journals (Sweden)

    Aleir Fontana de Paris

    2012-03-01

    Full Text Available Os cordões de solda apresentam normalmente uma estrutura colunar grosseira, o que diminui as propriedades mecânicas do conjunto soldado. No caso da soldagem com arco submerso, o emprego de alta energia proporciona uma solda com características peculiares como a elevada taxa de fusão e consequentemente grande volume de metal fundido. Foi comprovado que a redução no tamanho e/ou modificações na forma dos cristais obtidos aumenta a tenacidade da junta soldada. Estudos realizados mostraram que a adição de titânio, até certo limite, modificaria a microestrutura obtida bem como o tamanho dos grãos solidificados. Neste trabalho, foi empregada uma liga metálica de Fe-Ti adicionada no momento de soldagem, tipo bead-on-plate, sobre aço estrutural ASTM A 36, com espessura de 10 mm. As adições de titânio variaram entre 0,48 ppm e 29,1 ppm, e a soldagem foi executada com uma energia de 1170 kJ/m. Os resultados mostraram modificações da fase ferrita acicular bem como da ferrita poligonal presentes na solda.The welds usually have a coarse columnar structure, which reduces the mechanical properties of welded assembly. In the case of submerged arc welding, the use of high-energy provides a weld with specific characteristics such as high melting rate and consequently a large volume of molten metal. It was established that the reduction in size and/or changes in the shape of the crystals obtained increases the toughness of the weld. Studies have shown that the addition of titanium to a certain limit, modify the microstructure obtained and the size of the grains solidified. In this study, we used an alloy of Fe-Ti added at the time of welding-type bead-on-plate on structural steel ASTM A 36 with a thickness of 10 mm. The additions of titanium ranged between 0.48 ppm and 29.1 ppm, and welding was performed with an energy of 1170 kJ/m The results showed changes in the phase acicular ferrite and polygonal ferrite present in the weld.

  4. Scientific Opinion on safety and efficacy of cobalt compounds (E3 as feed additives for all animal species: Cobaltous acetate tetrahydrate, basic cobaltous carbonate monohydrate and cobaltous sulphate heptahydrate, based on a dossier submitted by TREAC EEIG

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed

    2012-07-01

    Full Text Available

    Cobalt(III is a component of cobalamin. Its essentiality as trace element results from the capacity of certain animal species to synthesise cobalamin by the gastrointestinal microbiota. Feeding supplemental cobalt from the additives under application up to the maximum total content in feed set in EU is considered safe for all animal species/categories; margin of safety is around 10. Cobalt is predominantly excreted via faecal route. Absorbed cobalt follows aqueous excretion routes. About 43% of body cobalt is stored in muscle; however, kidney and liver are the edible tissues containing the highest cobalt concentrations and are most susceptible reflecting dietary cobalt concentrations. In animals with capacity to synthesise cobalamin, cobalt is also deposited in tissues as vitamin B12. Cobalt(II cations are genotoxic under in vitro and in vivo conditions, and have carcinogen, mutagen and reproduction toxicant (CMR properties. No data are available on the potential carcinogenicity of cobalt(II following oral exposure. However, oral exposure may potentially entail adverse threshold-related effects in humans. The estimated population intake of cobalt most likely includes the contribution of foodstuffs from animals fed cobalt-supplemented feedingstuffs. An increase in cobalt exposure by the use of cobalt-containing feed additives is therefore not expected. Considering the population exposure to cobalt, about 4–10 times lower than the health-based guidance value, no safety concern for the consumer is expected for threshold effects of oral cobalt. The cobalt(II compounds assessed are considered skin and eye irritants and dermal/inhalatory sensitisers. Their dust is a hazard to persons handling these substances. Exposure by inhalation must be avoided. The use of cobalt from any source at the authorised maximum content in feed does not provide a risk to the environment. The compounds assessed are available for cobalamin

  5. Sloppy Addition and Multiplication

    DEFF Research Database (Denmark)

    Nannarelli, Alberto

    Sometimes reducing the precision of a numerical processor, by introducing errors, can lead to significant performance (delay, area and power dissipation) improvements without compromising the overall quality of the processing. In this work, we show how to perform the two basic operations, addition...

  6. Model Additional Protocol

    International Nuclear Information System (INIS)

    Since the end of the cold war a series of events has changed the circumstances and requirements of the safeguards system. The discovery of a clandestine nuclear weapons program in Iraq, the continuing difficulty in verifying the initial report of Democratic People's Republic of Korea upon entry into force of their safeguards agreement, and the decision of the South African Government to give up its nuclear weapons program and join the Treaty on the Non-Proliferation of Nuclear Weapons have all played a role in an ambitious effort by IAEA Member States and the Secretariat to strengthen the safeguards system. A major milestone in this effort was reached in May 1997 when the IAEA Board of Governors approved a Model Protocol Additional to Safeguards Agreements. The Model Additional Protocol was negotiated over a period of less than a year by an open-ended committee of the Board involving some 70 Member States and two regional inspectorates. The IAEA is now in the process of negotiating additional protocols, State by State, and implementing them. These additional protocols will provide the IAEA with rights of access to information about all activities related to the use of nuclear material in States with comprehensive safeguards agreements and greatly expanded physical access for IAEA inspectors to confirm or verify this information. In conjunction with this, the IAEA is working on the integration of these measures with those provided for in comprehensive safeguards agreements, with a view to maximizing the effectiveness and efficiency, within available resources, the implementation of safeguards. Details concerning the Model Additional Protocol are given. (author)

  7. Linear quantum addition rules

    OpenAIRE

    Nathanson, Melvyn B.

    2006-01-01

    The quantum integer $[n]_q$ is the polynomial $1 + q + q^2 + ... + q^{n-1}.$ Two sequences of polynomials $\\mathcal{U} = \\{u_n(q)\\}_{n=1}^{\\infty}$ and $\\mathcal{V} = \\{v_n(q)\\}_{n=1}^{\\infty}$ define a {\\em linear addition rule} $\\oplus$ on a sequence $\\mathcal{F} = \\{f_n(q)\\}_{n=1}^{\\infty}$ by $f_m(q)\\oplus f_n(q) = u_n(q)f_m(q) + v_m(q)f_n(q).$ This is called a {\\em quantum addition rule} if $[m]_q \\oplus [n]_q = [m+n]_q$ for all positive integers $m$ and $n$. In this paper all linear qua...

  8. Additives in swine nutrition

    OpenAIRE

    Sinovec Zlatan J.; Jokić Živan; Šefer Dragan

    2002-01-01

    To attain better feed utilization, longer preservation, easier manipultion and higher production and better quality of food of animal orgin as the final goal, besides raw materials, feed mixes contain numerous pronutrients (additives), added to perform different effects, in a narrower sense, the term pronutrient implies heterogenous substances, which have no diverse effects and have to be efficient in the manner of use. Basically, all pronutrients have to reach the goal of keeping optimal ani...

  9. Additives in swine nutrition

    Directory of Open Access Journals (Sweden)

    Sinovec Zlatan J.

    2002-01-01

    Full Text Available To attain better feed utilization, longer preservation, easier manipultion and higher production and better quality of food of animal orgin as the final goal, besides raw materials, feed mixes contain numerous pronutrients (additives, added to perform different effects, in a narrower sense, the term pronutrient implies heterogenous substances, which have no diverse effects and have to be efficient in the manner of use. Basically, all pronutrients have to reach the goal of keeping optimal animal health status and to increase production of food of animal origin without adverse and negative effects. The development of biotechnology had a great part in the appearance of natural alternatives which are able to fulfil and satisfy the high demands of highly productive animals, as well as those of the consumer lobby and environmental protection movements. Growth promoters based upon physiological mechanisms and production potential of the animal have an unquestionable adventage, not only because of the lack of residues in food of animal origin; but also because of their ecological safety and decrease of envirnomental pollution by undigested materials. Demand continues to grow for "all natural", non-pharmaceutical feed additives with growth enhancing effects in food animals. Special attention is paid to minerals (anorganic and organic sources, growth stimulators (antibiotics, probiotics prebiotics, substances for better feed utilization (enzymes, acidifers adsorbents.

  10. Radioactivity: additional tables

    International Nuclear Information System (INIS)

    The following additional tables are presented to the annual report on radioactive discharges from the major establishments in the U.K.: 1) Radioactive gaseous effluent, trends in annual emissions, by site, (civil and M.O.D.) 2) Radioactive liquid effluent (radionuclides specified by authorisations), trends in annual discharges to surface and coastal waters: by site. 3) Liquid effluent (radionuclides not subject to separate limits): annual discharges to surface and coastal waters by site. 4) Isotopic composition of liquid effluent from CEGB stations, 1984. 5) Trends in the amount of radioactivity in waste dumped in the north-east Atlantic. 6) Trends in volume of waste disposed of at Drigg (by source of waste). 7) Solid waste: trends in volume disposed of and level of activity at some other disposal sites. 8) Radioactivity in samples of fish and shellfish: trends in concentrations. (UK)

  11. Additive Pattern Database Heuristics

    CERN Document Server

    Felner, A; Korf, R E; 10.1613/jair.1480

    2011-01-01

    We explore a method for computing admissible heuristic evaluation functions for search problems. It utilizes pattern databases, which are precomputed tables of the exact cost of solving various subproblems of an existing problem. Unlike standard pattern database heuristics, however, we partition our problems into disjoint subproblems, so that the costs of solving the different subproblems can be added together without overestimating the cost of solving the original problem. Previously, we showed how to statically partition the sliding-tile puzzles into disjoint groups of tiles to compute an admissible heuristic, using the same partition for each state and problem instance. Here we extend the method and show that it applies to other domains as well. We also present another method for additive heuristics which we call dynamically partitioned pattern databases. Here we partition the problem into disjoint subproblems for each state of the search dynamically. We discuss the pros and cons of each of these methods a...

  12. Perspectives on Additive Manufacturing

    Science.gov (United States)

    Bourell, David L.

    2016-07-01

    Additive manufacturing (AM) has skyrocketed in visibility commercially and in the public sector. This article describes the development of this field from early layered manufacturing approaches of photosculpture, topography, and material deposition. Certain precursors to modern AM processes are also briefly described. The growth of the field over the last 30 years is presented. Included is the standard delineation of AM technologies into seven broad categories. The economics of AM part generation is considered, and the impacts of the economics on application sectors are described. On the basis of current trends, the future outlook will include a convergence of AM fabricators, mass-produced AM fabricators, enabling of topology optimization designs, and specialization in the AM legal arena. Long-term developments with huge impact are organ printing and volume-based printing.

  13. Teardrop bladder: additional considerations

    International Nuclear Information System (INIS)

    Nine cases of teardrop bladder (TDB) seen at excretory urography are presented. In some of these patients, the iliopsoas muscles were at the upper limit of normal in size, and additional evaluation of the perivesical structures with computed tomography (CT) was necessary. CT demonstrated only hypertrophied muscles with or without perivesical fat. The psoas muscles and pelvic width were measured in 8 patients and compared with the measurements of a control group of males without TDB. Patients with TDB had large iliopsoas muscles and narrow pelves compared with the control group. The psoas muscle width/pelvic width ratio was significantly greater (p < 0.0005) in patients with TDB than in the control group, with values of 1.04 + 0.05 and 0.82 + 0.09, respectively. It is concluded that TDB is not an uncommon normal variant in black males. Both iliopsoas muscle hypertrophy and a narrow pelvis are factors that predispose a patient to TDB

  14. Synthesis of Mg{sub 2}FeH{sub 6} containing as additives transition metal and transition metal fluorides or carbon; Sintese de Mg{sub 2}FeH{sub 6} contando como aditivos metais de transicao e fluoretos de metais de transicao ou carbono

    Energy Technology Data Exchange (ETDEWEB)

    Zepon, G.; Leiva, D.R.; Botta, W.J., E-mail: guizepon@yahoo.com.b [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The Mg{sub 2}FeH{sub 6} is a promising way of storing hydrogen in solid form, composed by elements that have low cost and, at the same time, high volumetric storage density: 150 kg H{sub 2}/m{sup 3}. However, this complex hydride is not easily synthesized as a single phase material. The hydrogen sorption high temperature and slow kinetics are the major limitations for the practical application of the Mg{sub 2}FeH{sub 6} as a hydrogen storage material. Little is known about the effects of additives in Mg{sub 2}FeH{sub 6} based nanocomposites in this work were synthesized by MAE under hydrogen atmosphere nanocomposites based on Mg{sub 2}FeH{sub 6} containing additives as transition metals, transition metals fluorides of transition metals or carbon, in order to obtain information on the effects of the selected additives. To this end, we used characterization techniques such as XRD, SEM and TEM, thermal analysis by DSC and curves made in apparatus PCT.(author)

  15. The Carbon-Fluorine Additives For Welding Fluxes

    OpenAIRE

    Kryukov, R.Е.; Kozyrev, N.А.; Kozyreva, O.А.

    2016-01-01

    Is carried out the thermodynamic estimation of the probability of the flow of the processes of the removal of hydrogen from the weld with the welding in the fluorine-bearing flux in the standard states in the range of temperatures 1700 – 2200 k. In this case, as the standard states for the substances – of reagents they were selected Hg. As a result the calculations of standard energy of Gibbs and equilibrium constants of reactions it is determined, that from the reactions of the direct intera...

  16. The benefits of zinc addition to primary side coolant

    International Nuclear Information System (INIS)

    The addition of soluble zinc to simulated CANDU PHWR primary coolant substantially reduced corrosion rates and corrosion product release rates for carbon steel and stainless steel. Soluble zinc addition reduced the affinity of carbon steel for Co-60 by a factor of 3 to 5, and reduced the affinity of 410 SS for Co-60 by a factor of 60. Decontamination benefits were seen for 410 SS exposed to zinc. (authors). 9 figs., 6 refs

  17. Seeking a geochemical identifier for authigenic carbonate

    Science.gov (United States)

    Zhao, Ming-Yu; Zheng, Yong-Fei; Zhao, Yan-Yan

    2016-03-01

    Authigenic carbonate was recently invoked as a third major global carbon sink in addition to primary marine carbonate and organic carbon. Distinguishing the two carbonate sinks is fundamental to our understanding of Earth's carbon cycle and its role in regulating the evolution of atmospheric oxygen. Here, using microscale geochemical measurements of carbonates in Early Triassic strata, we show that the growth of authigenic carbonate follows a different trajectory from primary marine carbonate in a cross-plot of uranium concentration and carbon isotope composition. Thus, a combination of the two geochemical variables is able to distinguish between the two carbonate sinks. The temporal distribution of authigenic carbonates in the Early Triassic strata suggests that the increase in the extent of carbonate authigenesis acted as a negative feedback to the elevated atmospheric CO2 concentration.

  18. Evolution of Sustainable Carbon Cycling Processes in China

    Institute of Scientific and Technical Information of China (English)

    Zhuang Yahui; Zhang Hongxun; Wang Xiaoke; Fang Jinyun

    2004-01-01

    This report summarizes the surveys on carbon inventories and initiatives on sustainable carbon cycling taken by RCEES. The first part of this report deals with the concept of sustainable carbon cycling, the historical evolution of carbon cycling processes in China, carbon pool enhancement, value addition, carbon sequestration and carbon balance.The second part covers the modeling of carbon dynamics, emission inventories of various carboncontaining greenhouse gases and their potential abatement measures.

  19. Nitrogen addition to an O-1 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Rawers, J.; Uggoweitzer, P.

    1999-05-01

    A new processing technique makes nitrogen alloying possible by adding nitrogen under elevated nitrogen pressure to prealloyed Fe-C ingots during continuous casting, producing a whole new class of precipitation-free, iron-carbon-nitrogen alloys. When both carbon and nitrogen bulk concentration levels exceeded 0.5 wt%, a duplex fcc-/(bcc-bct-) Fe microstructure resulted that is iron carbide- and nitride-free. With increasing carbon and nitrogen concentrations, there was an increase in the retained fcc-Fe phase. In cooling rate studies, increasing carbon and nitrogen concentrations shifted the knee of the fcc-Fe-to-bcc-Fe phase time-temperature-transformation (T-T-T) curve to longer times. Hardness, compression strength, and wear resistance increased with increasing carbon and nitrogen concentrations and were superior to iron-carbon alloys without the nitrogen addition.

  20. 21 CFR 73.1070 - Calcium carbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color additive calcium carbonate is a fine,...

  1. Effect of conductive additives in LiFePO4 cathode for lithium-ion batteries

    OpenAIRE

    Shim, J; Guerfi, A.; Zaghib, K.; Striebel, K.A.

    2003-01-01

    The electrochemical properties of LiFePO4 cathodes with different carbon contents were studied to find out the role of carbon as conductive additive. LiFePO4 cathodes containing from 0 percent to 12 percent of conductive additive (carbon black or mixture of carbon black and graphite) were cycled at different C rates. The capacity of LiFePO4 cathode increased, as conductive additive content increased. Carbon increased the utilization of active material and the electrical conductivity of e...

  2. The Variable Transition State in Polar Additions to Pi Bonds

    Science.gov (United States)

    Weiss, Hilton M.

    2010-01-01

    A vast majority of polar additions of Bronsted acids to alkynes involve a termolecular transition state. With strong acids, considerable positive charge is developed on carbon and Markovnikov addition predominates. In less acidic solutions, however, the reaction is much slower and the transition state more closely resembles the olefinic product.…

  3. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  4. Additive Manufacturing of Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division. Polymers and Coatings

    2016-08-30

    Additive manufacturing has become a tool of choice for the development of customizable components. Developments in this technology have led to a powerful array of printers that t serve a variety of needs. However, resin development plays a crucial role in leading the technology forward. This paper addresses the development and application of printing hierarchical porous structures. Beginning with the development of a porous scaffold, which can be functionalized with a variety of materials, and concluding with customized resins for metal, ceramic, and carbon structures.

  5. Carbon black directed synthesis of ultrahigh mesoporous carbon aerogels

    OpenAIRE

    Macías, Carlos; Haro Remón, Marta; Rasines, Gloria; Parra Soto, José Bernardo; Ovín Ania, María Concepción

    2013-01-01

    [EN] A simple modification of the conventional sol–gel polymerization of resorcinol–formaldehyde mixtures allowed a facile preparation of ultrahigh mesoporous carbon gels. In the conventional synthesis the growth of the cluster polymer particles leading to the development of the porosity is controlled by the R/C ratio. In the presence of a carbon conductive additive, the polymerization of the reactants proceeded through the formation of less-branched polymer clusters resulting in carbon gels ...

  6. Catalytic carbon deposition on 3-dimensional carbon fibre supports

    OpenAIRE

    Thornton, Matthew James

    2005-01-01

    Catalytic carbon deposition reactions, using methane, ethane or synthetic natural gas (1.8 vol. % propane, 6.7 vol. % ethane and balance methane) as the carbon-containing gas feedstock with or without the addition of hydrogen, have been investigated over nickel, cobalt and iron catalysts supported on 3-dimensional carbon fibre supports, using both a horizontal tube furnace and an isothermal, isobaric induction furnace. The transition metal catalysts were prepared by impregnating 3-dimens...

  7. Method for fabricating composite carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    2001-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  8. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  9. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  10. The colloidal stabilization of carbon with carbon: carbon nanobubbles as both dispersant and glue for carbon nanotubes.

    Science.gov (United States)

    Kuzmicz, Danuta; Prescher, Simon; Polzer, Frank; Soll, Sebastian; Seitz, Christoph; Antonietti, Markus; Yuan, Jiayin

    2014-01-20

    The superior physical properties of carbon nanotubes (CNTs) have led to their broad application. Intrinsically, CNTs tend to agglomerate from hydrophobic interactions, which is highly undesirable for solution processing and device fabrication. Commonly, a stabilizer consisting of organic surfactants or polymers is used to disperse CNTs. Recently, we synthesized nitrogen-doped carbon hollow nanospheres (25-90 nm), termed carbon "nanobubbles". They bear superior dispersability in water and distinctive graphitic order. Herein, we describe the nanobubble-assisted dispersion of CNTs in aqueous solution upon sonication. This process relies on the π-π interaction between the two aromatic carbon nanostructures, which can process their carbon mixture in water into conductive filter membranes, ink, and discs. This stabilization can be extended to other aromatic carbons. In addition, the π-π interaction may create a new type of carbon p-n junction that can be used to improve charge separation. PMID:24311464

  11. ADDITIVES USED TO OBTAIN FOOD

    OpenAIRE

    Dorina Ardelean; Daniela Popa

    2012-01-01

    Use of food additives in food is determined by the growth of contemporary food needs of the world population. Additives used in food, both natural and artificial ones, contribute to: improving the organoleptic characteristics and to preserve the food longer, but we must not forget that all these additives should not be found naturally in food products. Some of these additives are not harmful and human pests in small quantities, but others may have harmful effects on health.

  12. Natural food additives: Quo vadis?

    OpenAIRE

    Carocho, Márcio; Morales, Patricia; Isabel C. F. R. Ferreira

    2015-01-01

    In a time where the public is more aware and interested with what they eat, natural additives have been gaining interest both from the food industries and the consumers. Some studies show that consumers prefer food prepared with natural additives rather than chemical ones, due to health reasons. Although quite promising, natural additives still face some drawbacks and limitations as well as conflicting information. In this manuscript, the most important natural additives are overviewed, as we...

  13. ADDITIVES USED TO OBTAIN FOOD

    Directory of Open Access Journals (Sweden)

    Dorina Ardelean

    2012-01-01

    Full Text Available Use of food additives in food is determined by the growth of contemporary food needs of the world population. Additives used in food, both natural and artificial ones, contribute to: improving the organoleptic characteristics and to preserve the food longer, but we must not forget that all these additives should not be found naturally in food products. Some of these additives are not harmful and human pests in small quantities, but others may have harmful effects on health.

  14. Influence of Additives on the Oxidative Carbonylation of Methanol to Synthesis of Dimethyl Carbonate over Copper Catalysts%添加剂对铜催化剂催化甲醇羰基合成碳酸二甲酯的影响

    Institute of Scientific and Technical Information of China (English)

    陈振松; 刘定华; 刘晓勤

    2011-01-01

    Hydrolytic and catalytic activity of copper catalyst and several additives (water absorbents and solvents) were investigated in the oxidative carbonylation of methanol to synthesis of dimethyl carbonate (DMC). The results showed that synthesis of dimethyl carbonate from methanol can be promoted a little by the introduction of the alkalescence water absorbent K2CO3 and the high boiling polar aprotic solvent N,N-dimethylacetamide. Under the reaction conditions of 100-110 ℃ of temperature, pressure of 3.5 MPa, reaction time of 4 h, CuxBrn Lm catalyst concentration of 0.15 g/mL and CuBr2 concentration of 0.075 g/mL, the methanol conversion could exceed 48.5% and the DMC selectivity was about 92.5% when the concentraion of alkalescence water absorbent K2CO3 was 0.001 g/mL and solvent N, N-dimethylacetamide was 0.3 volume ratio to methanol, which may be useful to practical production.%针对甲醇液相氧化羰基合成碳酸二甲酯工艺,探讨了几种铜催化剂水解活性和催化活性之间的关系,考察了各种添加剂(吸水剂和溶剂)对该催化体系的影响.结果表明,具有一定碱性环境的吸水剂K2CO3和高沸点强极性非质子溶剂N,N-二甲基乙酰胺对羰化反应具有一定的促进作用.在温度100~110℃、压力3.5 MPa、反应时间4 h、催化剂浓度0.15 g/mL、助催化剂浓度CuBr2为0.075 g/mL的工艺条件下,碱性吸水剂 K2CO3浓度为0.001 g/mL、溶剂N,N-二甲基乙酸胺浓度为0.3 mL/mL时,甲醇的转化率为48.5%,碳酸二甲酯的选择性可达92.5%,这对于工业应用具有一定的指导意义.

  15. Efeito da adição do melaço na relação carbono/nitrogênio no cultivo de camarão Litopenaeus vannamei na fase berçário = Effect of molasses addition on carbon/nitrogen ratio in the nursery phase of Litopenaeus vannamei shrimp culture

    Directory of Open Access Journals (Sweden)

    Ugo Lima Silva

    2009-10-01

    Full Text Available Investigou-se o efeito da adição do melaço nas relações carbono:nitrogênio (C:N sobre o desempenho zootécnico do camarão Litopenaeus vannamei, na fase berçário, quando cultivado sem renovação de água. As relações do C:N foram avaliadas nas proporções de 25:1 (25M, 15:1 (15M e o controle (0M, sem aplicação de carbono, em delineamento experimental inteiramente casualizado, com quatro repetições. Pós-larvas (PL com peso inicial de 2,5 ± 0,5 mg, foram estocadas em 12 tanques (800 L volume útil, em densidades de 6,25 PL L-1, durante 42 dias de cultivo. Ao final do cultivo, os pesos finais dos camarões dos tratamentos 25M (532,0 mg e 15M (540,0 mg foram superiores (p The effect of molasses addiction on carbon:nitrogen ratios (C:N on the performance of Litopenaeus vannamei shrimp during the nursery phase cultured without water exchange was investigated. The C:N ratios were evaluated in 25:1 (25M and 15:1 (15M proportion and a control (0M, with no carbon source addition, in a randomized experimental design with four replicates. Post-larvae (PL with initial weight of 2.5 ± 0.5 mg were stocked in 12 tanks (800 L net volume, at the density of 6.25 PL L-1 during 42 culture days. At the end of culture, the shrimps weights on 25M (532.0 mg and 15M (540.0 mg treatments were higher (p < 0.05 than the 0M (428.6 mg treatment. Shrimp survival was high in all treatments (77.9 to 90.0%, but without significant difference (p ≥ 0.05. Therefore, the 15 and 25:1 C:N ratios showed an increased growth performance of nursery phase L. vannamei post-larvae cultured without water exchange.

  16. FILLERS AND THE CARBON FOOTPRINT OF PAPERMAKING

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2010-07-01

    Full Text Available Carbon footprint reduction is a global concern. For the papermaking industry, strategically effective measures of carbon footprint reduction can include many aspects such as energy efficiency improvement, use of renewable carbon-neutral energy, practicing of sustainable forestry, and development of an integrated forest products biorefinery. Filler addition in papermaking can save substantial amounts of pulp fibers, and reduce energy consumption, which can surely contribute to reduction in paper’s carbon footprint. However, the negative effect of filler addition on paper recycling, and the energy consumption associated with the production, processing, and treatment of fillers, will contribute to the carbon footprint. On balance, it can be considered that filler addition in reasonable amounts is likely to lower the paper’s carbon footprint. Certain research work is still needed to better understand the relationship between filler addition and the carbon footprint of papermaking.

  17. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity. PMID:23901504

  18. Graphene oxide assisted hydrothermal carbonization of carbon hydrates.

    Science.gov (United States)

    Krishnan, Deepti; Raidongia, Kalyan; Shao, Jiaojing; Huang, Jiaxing

    2014-01-28

    Hydrothermal carbonization (HTC) of biomass such as glucose and cellulose typically produces micrometer-sized carbon spheres that are insulating. Adding a very small amount of Graphene oxide (GO) to glucose (e.g., 1:800 weight ratio) can significantly alter the morphology of its HTC product, resulting in more conductive carbon materials with higher degree of carbonization. At low mass loading level of GO, HTC treatment results in dispersed carbon platelets of tens of nanometers in thickness, while at high mass loading levels, free-standing carbon monoliths are obtained. Control experiments with other carbon materials such as graphite, carbon nanotubes, carbon black, and reduced GO show that only GO has significant effect in promoting HTC conversion, likely due to its good water processability, amphiphilicity, and two-dimensional structure that may help to template the initially carbonized materials. GO offers an additional advantage in that its graphene product can act as an in situ heating element to enable further carbonization of the HTC products very rapidly upon microwave irradiation. Similar effect of GO is also observed for the HTC treatment of cellulose. PMID:24298909

  19. Deciphering the roles of multiple additives in organocatalyzed Michael additions.

    Science.gov (United States)

    Günler, Z Inci; Companyó, Xavier; Alfonso, Ignacio; Burés, Jordi; Jimeno, Ciril; Pericàs, Miquel A

    2016-05-21

    The synergistic effects of multiple additives (water and acetic acid) on the asymmetric Michael addition of acetone to nitrostyrene catalyzed by primary amine-thioureas (PAT) were precisely determined. Acetic acid facilitates hydrolysis of the imine intermediates, thus leading to catalytic behavior, and minimizes the formation of the double addition side product. In contrast, water slows down the reaction but minimizes catalyst deactivation, eventually leading to higher final yields. PMID:27128165

  20. Draw out Carbon Nanotube from Liquid Carbon

    OpenAIRE

    ZHANG, SHUANG; Hoshi, Takeo; Fujiwara, Takeo

    2006-01-01

    Carbon nanotube (CNT) is expected for much more important and broader applications in the future, because of its amazing electrical and mechanical properties. However, today, the prospect is detained by the fact that the growth of CNTs cannot be well controlled. In particular, controlling the chirality of CNTs seems formidable to any existing growth method. In addition, a systematic method for a designed interconnected network has not been established yet, which is focused particularly in nan...

  1. Effects of freeze drying and silver staining on carbonization of cellulose: carbon nano-materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Young; Im, Hyun Sik [Dongguk University, Seoul (Korea, Republic of)

    2012-05-15

    We investigated the effects of sulfuric acid and silver particles on the carbonization of natural cellulose from Halocynthia. We carried out thermogravimetry and used transmission electron microscopy measurements to study the yield of carbon and the structure of the carbonized nano-fiber. We found that the addition of sulfuric acid and silver particles to the cellulose fiber enhanced the yield of carbon while keeping the original structure of the carbon nano-fiber.

  2. High-performance LiMn{sub 0.8}Fe{sub 0.2}PO{sub 4} with hybrid conductive additives based on functionalized and etched multi-walled carbon nanotubes by self-destruction during the lithiation process

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyung Cheoul, E-mail: scafos@kimm.re.kr [Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon, 305-343 (Korea, Republic of); Bang, Sungrok [Advanced Device Team, DMC R& D Center, Samsung Electronics Co., Ltd., 129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 443-742 (Korea, Republic of); Yoon, Dong-Myung [New Business Development Division, Samsung Corning Precision Materials Co., Ltd., 212 Tangjeong-Ro, Asan-Si, Chungcheongnam-Do, 336-725 (Korea, Republic of); Kong, Yongsun; Yu, Taehwan [Battery Materials R& D Center, Samsung Fine Chemicals Co., Ltd., 130 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 443-742 (Korea, Republic of)

    2015-11-15

    High-performance LiMn{sub 0.8}F{sub e0.2}PO{sub 4} (LMFP) was prepared with both etched and functionalized multi-walled carbon nanotubes (MWNTs) and ketjen blacks (KBs). The MWNTs functionalized with carboxylic groups exhibited better affinity toward cathode materials than did pristine nanotubes. The electrochemical performance of the LMFP cathode materials was also improved by using MWNTs shortened by vigorous mechanical mixing, compared with pristine long MWNT samples. Moreover, the use of MWNTs together with KB provided better electrochemical performance than when KBs or MWNTs were used separately. The modified LMFP (m-LMFP) had an excellent rate capability, with discharge capacities of 162 mAh g{sup −1} at 0.1 C and 147 mAh g{sup −1} at 1 C, the highest values reported to date for this type of electrode. The capacity retention of the m-LMFP was 94% after 50 cycles, whereas that of the pristine sample was only 82%. Transmission electron microscopy and AC impedance results confirmed that the addition of MWNTs to the cathode materials improved their networking and electrical properties. However, excessive substitution of MWNTs for KB was not favorable for maximizing electrochemical performance because of increased internal resistance. - Highlights: • A simple approach for cutting CNTs was used to prepare modified LiMn{sub 0.8}Fe{sub 0.2}PO{sub 4}. • The CNTs can be uncapped by lithiation, without further ball milling or sonication. • The shortened CNTs seemed to be favorable for Li-ion diffusion with small resistance. • The modified LiMn{sub 0.8}Fe{sub 0.2}PO{sub 4} has an enhanced capacity, rate capability and cycle ability.

  3. Additive Manufacturing for Large Products

    OpenAIRE

    Leirvåg, Roar Nelissen

    2013-01-01

    This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the foundry Oshaug Metall AS. Their products consist of propellers and other large products cast in Nickel-Aluminium Bronze. This report looks at three approaches and applications for additive manufacturing at the foundry. These are additively manufactured pattern, sand mold and end metal parts. The available \\emph{State...

  4. 21 CFR 582.1191 - Calcium carbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  5. Carbon Concentration of Austenite

    Directory of Open Access Journals (Sweden)

    Z. Ławrynowicz

    2007-07-01

    Full Text Available The investigation was carried out to examine the influence of temperature and times of austempering process on the maximum extend towhich the bainite reaction can proceed and the carbon content in retained austenite. It should be noted that a small percentage change in theaustenite carbon content can have a significant effect on the subsequent austempering reaction changing the volume fraction of the phasespresent and hence, the resulting mechanical properties. Specimens were prepared from an unalloyed ductile cast iron, austenitised at 950oCfor 60 minutes and austempered by the conventional single-step austempering process at four temperatures between BS and MS, eg., 250,300, 350 and 400oC. The samples were austempered at these temperatures for 15, 30, 60, 120 and 240 minutes and finally quenched toambient temperature. Volume fractions of retained austenite and carbon concentration in the residual austenite have been observed byusing X-ray diffraction. Additionally, carbon concentration in the residual austenite was calculated using volume fraction data of austeniteand a model developed by Bhadeshia based on the McLellan and Dunn quasi-chemical thermodynamic model. The comparison ofexperimental data with the T0, T0' and Ae3' phase boundaries suggests the likely mechanism of bainite reaction in cast iron is displacive rather than diffusional. The carbon concentration in retained austenite demonstrates that at the end of bainite reaction the microstructure must consist of not only ausferrite but additionally precipitated carbides.

  6. Density measures and additive property

    OpenAIRE

    Kunisada, Ryoichi

    2015-01-01

    We deal with finitely additive measures defined on all subsets of natural numbers which extend the asymptotic density (density measures). We consider a class of density measures which are constructed from free ultrafilters on natural numbers and study a certain additivity property of such density measures.

  7. Color Addition and Subtraction Apps

    Science.gov (United States)

    Ruiz, Frances; Ruiz, Michael J.

    2015-01-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step…

  8. Additive interaction in survival analysis

    DEFF Research Database (Denmark)

    Rod, Naja Hulvej; Lange, Theis; Andersen, Ingelise;

    2012-01-01

    It is a widely held belief in public health and clinical decision-making that interventions or preventive strategies should be aimed at patients or population subgroups where most cases could potentially be prevented. To identify such subgroups, deviation from additivity of absolute effects is the...... relevant measure of interest. Multiplicative survival models, such as the Cox proportional hazards model, are often used to estimate the association between exposure and risk of disease in prospective studies. In Cox models, deviations from additivity have usually been assessed by surrogate measures of...... additive interaction derived from multiplicative models-an approach that is both counter-intuitive and sometimes invalid. This paper presents a straightforward and intuitive way of assessing deviation from additivity of effects in survival analysis by use of the additive hazards model. The model directly...

  9. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper;

    2015-01-01

    -chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... higher yields in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar...... predicts four additional four disulfide insulin analogues which could be expressed. Although the location of the additional disulfide bonds is only slightly shifted, this shift impacts both stability and activity of the resulting insulin analogues....

  10. Compilation of carbon-14 data

    International Nuclear Information System (INIS)

    A review and critical analysis was made of the original sources of carbon-14 in the graphite moderator and reflector zones of the eight Hanford production reactors, the present physical and chemical state of the carbon-14, pathways (other than direct combustion) by which the carbon-14 could be released to the biosphere, and the maximum rate at which it might be released under circumstances which idealistically favor the release. Areas of uncertainty are noted and recommendations are made for obtaining additional data in three areas: (1) release rate of carbon-14 from irradiated graphite saturated with aerated water; (2) characterization of carbon-14 deposited outside the moderator and reflector zones; and (3) corrosion/release rate of carbon-14 from irradiated steel and aluminum alloys

  11. Fragmentation in Carbon Therapy Beams

    CERN Document Server

    Charara, Y M

    2010-01-01

    The state of the art Monte Carlo code HETC-HEDS was used to simulate spallation products, secondary neutron, and secondary proton production in A-150 Tissue Equivalent Plastic phantoms to investigate fragmentation of carbon therapy beams. For a 356 MeV/Nucleon carbon ion beam, production of charged particles heavier than protons was 0.24 spallation products per incident carbon ion with atomic numbers ranging from 1 through 5 (hydrogen to boron). In addition, there were 4.73 neutrons and 2.95 protons produced per incident carbon ion. Furthermore, as the incident energy increases, the neutron production rate increases at a rate of 20% per 10 MeV/nucleon. Secondary protons were created at a rate between 2.62-2.87 per carbon ion, while spallation products were created at a rate between 0.20-0.24 per carbon ion.

  12. Adição de carbono e nitrogênio e sua relação com os estoques no solo e com o rendimento do milho em sistemas de manejo Carbon and nitrogen addition related to stocks of these elements in soil and corn yield under management systems

    Directory of Open Access Journals (Sweden)

    T. Lovato

    2004-02-01

    relaciona as taxas anuais de adição de C (A e a variação anual nos estoques de COT na camada de 0-0,175 m do solo (dC/dt, que 12,9, 8,1 e 11,5 % do C adicionado ao solo foi retido na matéria orgânica do solo em PD, PR e PC, respectivamente, o que corresponde a uma estimativa aproximada do coeficiente de humificação (k1. Analogamente, estimou-se que 49,7, 21,0 e 33,1 % da quantidade líquida de N adicionada foi retida como NT no solo em PD, PR e PC, respectivamente. A taxa de perda de COT do solo (k2, calculada para a condição dC/dt = zero, foi de 0,0166 ano-1 no solo em PD, 0,0182 ano-1 no solo em PR, e 0,0314 ano-1 no solo em PC. O plantio direto, pela diminuição da taxa de perda de matéria orgânica (k2, e os sistemas de culturas com leguminosas, pela alta adição de C fotossintetizado e de N fixado simbioticamente, são boas alternativas para recuperar os estoques de COT e NT do solo e aumentar o rendimento do milho na região subtropical do Sul do Brasil.Long-term experiments are essential for research about organic matter dynamics of soils. This paper reports results of an experiment installed in September 1985 on a Paleudult soil degraded under inadequate management for 16 years. The experiment was conducted at the Experimental Station of the Federal University of Rio Grande do Sul (Brazil in Eldorado do Sul county. Three soil tillage methods (conventional tillage-CT, reduced tillage-RT and no-tillage-NT, three crop systems (oat/corn-O/C, vetch/corn-V/C and oat + vetch/corn + cowpea-O + V/C + Cp, and two N rates applied to corn as urea (0 and 139 kg ha-1 were tested. A split-plot design arranged in randomized blocks with three replications was used with soil tillage as main plot, the cropping systems as sub-plots and nitrogen rates as sub-blocks. Carbon and nitrogen addition by crops was estimated for the experimental period of 13 years. In September 1998, the soil was sampled in six layers down to 0.30 m depth, and total organic carbon (TOC and total

  13. Porous carbons

    Indian Academy of Sciences (India)

    Satish M Manocha

    2003-02-01

    Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor adsorption capacities. On activation, these exhibit increased adsorption volumes of 0.5–0.8 cm3 /gm and surface areas of 700–1800 m2 /gm depending on activation conditions, whether physical or chemical. Former carbons possess mixed pore size distribution while chemically activated carbons predominantly possess micropores. Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with controlled microporous structure and surface area in the range of 2500 m2 /gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.

  14. High-Efficient Circuits for Ternary Addition

    Directory of Open Access Journals (Sweden)

    Reza Faghih Mirzaee

    2014-01-01

    Full Text Available New ternary adders, which are fundamental components of ternary addition, are presented in this paper. They are on the basis of a logic style which mostly generates binary signals. Therefore, static power dissipation reaches its minimum extent. Extensive different analyses are carried out to examine how efficient the new designs are. For instance, the ternary ripple adder constructed by the proposed ternary half and full adders consumes 2.33 μW less power than the one implemented by the previous adder cells. It is almost twice faster as well. Due to their unique superior characteristics for ternary circuitry, carbon nanotube field-effect transistors are used to form the novel circuits, which are entirely suitable for practical applications.

  15. Atom addition reactions in interstellar ice analogues

    CERN Document Server

    Linnartz, Harold; Fedoseev, Gleb

    2015-01-01

    This review paper summarizes the state-of-the-art in laboratory based interstellar ice chemistry. The focus is on atom addition reactions, illustrating how water, carbon dioxide and methanol can form in the solid state at astronomically relevant temperatures, and also the formation of more complex species such as hydroxylamine, an important prebiotic molecule, and glycolaldehyde, the smallest sugar, is discussed. These reactions are particularly relevant during the dark ages of star and planet formation, i.e., when the role of UV light is restricted. A quantitative characterization of such processes is only possible through dedicated laboratory studies, i.e., under full control of a large set of parameters such as temperature, atom-flux, and ice morphology. The resulting numbers, physical and chemical constants, e.g., barrier heights, reaction rates and branching ratios, provide information on the molecular processes at work and are needed as input for astrochemical models, in order to bridge the timescales t...

  16. Extraction of Additives from Polystyrene and Subsequent Analysis

    OpenAIRE

    Smith, Susan H.

    1998-01-01

    The extraction of fifteen (15) polymer additives with supercritical carbon dioxide which are used as antioxidants, uv stabilizers, process lubes, flame retardants and antistats from eight formulations of polystyrene is demonstrated and compared to traditional dissolution/precipitation extractions. The purpose of the study was twofold: 1) the development of a high performance liquid chromatography (HPLC) method(s) for the additives and 2) the determination of the viability of supercritical...

  17. Theoretical Study on the Addition Reactions of Benzaldoximes with Propene

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Michael addition reactions of Z and E benzaldoximes with propene were investigated theoretically by DFT method at B3LYP/6-31G* level. The calculation results show that both addition reactions are concerted processes accompanied by the migration of hydrogen from the atom oxygen to carbon. Both products Z and E nitrones have dipolar charge distributions and activities. Z isomer is more favorable in the reaction due to the barrier is lower.

  18. 氮素补充对高寒草甸土壤团聚体有机碳、全氮分布的影响%Effect of organic carbon and total nitrogen distribution in alpine meadow soil aggregates with different nitrogen addition level

    Institute of Scientific and Technical Information of China (English)

    刘晓东; 尹国丽; 武均; 陈建纲; 何振刚; 师尚礼

    2015-01-01

    The alpine meadow, mainly distributed in cold and high altitude region in the Qinghai-Tibetan Plateau, is a grassland ecosystem with the largest area. In the past decade, the grassland and soil ecological environments were degraded continuously, which have been paid high attention by human beings. The reasons of grassland degradation are complex, and from the view of ecology, the degradation is mainly caused by the unbalance of energy flow and material circulation in grassland ecosystem. Grazing together with other human activities, lead to soil nutrient loss with the output of grass and livestock products. Due to the insufficient supply of nutrients, the decline of soil fertility seriously affects the grass growth in pasture, leading to grassland ecosystem health deteriorating. Nitrogen (N) is the main limiting factor of soil nutrient in the alpine meadow. N addition is an important means to maintain the balance of grassland soil nutrient, which in turn can increase soil N content, and stimulate the growth and distribution of aboveground biomass and belowground root system, thereby affecting the soil structure. Soil aggregates are the basic unit of soil structure, while carbon (C) and total N are the most important factors affecting the structure of soil aggregates. Therefore, relying on N addition experiment of 3 consecutive years located in Xiahe County in eastern Qinghai-Tibet Plateau, in order to explore the effects of N addition on the changing process of soil aggregates, organic C and total N, and its impacts on soil structure, the paper attempted to seek methods for maintaining the stability of soil structure in the alpine meadow. The experiment consisted of 4 treatments with different N addition levels: CK (0), LN (50 kg/hm2), MN (100 kg/hm2) and HN (200 kg/hm2), in which the randomized block design was applied and each processing was repeated for 3 times. The result showed that LN, MN and HN treatments improved the content of≥0.25 mm soil aggregate in 0

  19. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Moilanen, A.; Norby, P.; Papadakis, K.; Posselt, D.; Sørensen, L. H.

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...

  20. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk;

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...... calcium binds silicon primarily as calcium silicates and less as potassium calcium silicates....

  1. Color Addition and Subtraction Apps

    Science.gov (United States)

    Ruiz, Frances; Ruiz, Michael J.

    2015-10-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step in understanding mathematical representations of RGB color. Finally, color addition and subtraction are presented for the X11 colors from web design to illustrate yet another real-life application of color mixing.

  2. Carbon dioxide test as an additional clinical measure of treatment response in panic disorder O teste com dióxido de carbono como uma medida adicional na mensuração da resposta terapêutica no transtorno de pânico

    Directory of Open Access Journals (Sweden)

    Alexandre M. Valença

    2002-06-01

    Full Text Available OBJECTIVE: We aim to determine if a treatment with a dose of clonazepam - 2 mg/day, for 6 weeks, blocks spontaneous panic attacks and the ones induced by the inhalation of 35% carbon dioxide (CO2 in panic disorder (PD patients. The CO2 challenge-test may be a useful addition tool for measuring the pharmacological response during the initial phase (6 weeks in the treatment of PD. METHOD: Eighteen PD patients drug free for a week participated in a carbon dioxide challenge test. Fourteen had a panic attack and were openly treated for a 6-week period with clonazepam. At the end of the 6-week period they were submitted again to the CO2 challenge test. RESULTS: After 6 weeks of treatment with clonazepam, 12 of 14 PD patients (85.7% did not have a panic attack after the CO2 challenge test. Just 2 of 14 patients (14.3% had a panic attack after the CO2 challenge test. Ten of 14 (71.4% PD patients had panic free status after clonazepam treatment. The 2 patients who had a panic attack in the sixth week, after the CO2 test, did not have panic free status after the treatment with clonazepam. CONCLUSION: The CO2-test may be a valid tool for testing and predicting the drug response.OBJETIVO: Desejamos determinar se o tratamento com clonazepam -- 2mg/dia, durante 6 semanas, bloqueia ataques de pânico espontâneos e os induzidos pela inalação de dióxido de carbono (CO2 a 35% em pacientes com transtorno de pânico (TP. O teste com CO2 talvez possa ser uma ferramenta adicional útil para medir a resposta farmacológica durante a fase inicial (6 semanas do tratamento farmacológico no TP. MÉTODO: 18 pacientes com TP sem medicamento por uma semana participaram de um teste com CO2 a 35%. 14 pacientes tiveram um ataque de pânico e foram tratados de forma aberta por um período de 6 semanas com clonazepam. Ao final das 6 semanas, os pacientes foram submetidos novamente ao teste com CO2. RESULTADOS: Após 6 semanas de tratamento com clonazepam, 12 (85,7% dos 14

  3. Solvent-free microwave-mediated Michael addition reactions

    Indian Academy of Sciences (India)

    H Surya Prakash Rao; S Jothilingam

    2005-07-01

    Facile Michael addition of active methylene compounds to ,-unsaturated carbonyl compounds takes place on the surface of potassium carbonate under microwave irradiation. Further studies on microwave-mediated Robinson annulations reveal a convenient and facile method for condensation of chalcone with methylene compounds to furnish cyclohexenones.

  4. Use of Additives in Bioremediation of Contaminated Groundwater and Soil

    Science.gov (United States)

    This chapter reviews application of additives used in bioremediation of chlorinated solvents and fuels for groundwater and soil remediation. Soluble carbon substrates are applicable to most site conditions except aquifers with very high or very low groundwater flow. Slow-release ...

  5. Prevalence of Food Additive Intolerance

    DEFF Research Database (Denmark)

    Madsen, Charlotte Bernhard

    1994-01-01

    1 The existing prevalence estimates of food additive intolerance(1-4) are being reviewed. 2 In the EEC report the estimated frequency of food additive intolerance is 0.03% to 0.15% based on data from patient groups. 3 The British population study results in a prevalence estimate of 0.026%. The...... challenged population is 81 children and adults with a history of reproducible clinical symptoms after ingestion of food additives. 4 In the Danish population study a prevalence of 1-2% is found in children age 5-16. In this study a total of 606 children mainly with atopic disease have been challenged. 5 The...... prevalence estimates vary with a factor 100. As the results vary so do the study populations. 6 If the different study populations are accounted for, a common conclusion can be drawn: Food additive intolerance is found in adults with atopic symptoms from the respiratory tract and skin. The prevalence...

  6. Prevalence of Food Additive Intolerance

    DEFF Research Database (Denmark)

    Madsen, Charlotte Bernhard

    1994-01-01

    challenged population is 81 children and adults with a history of reproducible clinical symptoms after ingestion of food additives. 4 In the Danish population study a prevalence of 1-2% is found in children age 5-16. In this study a total of 606 children mainly with atopic disease have been challenged. 5 The......1 The existing prevalence estimates of food additive intolerance(1-4) are being reviewed. 2 In the EEC report the estimated frequency of food additive intolerance is 0.03% to 0.15% based on data from patient groups. 3 The British population study results in a prevalence estimate of 0.026%. The...... prevalence estimates vary with a factor 100. As the results vary so do the study populations. 6 If the different study populations are accounted for, a common conclusion can be drawn: Food additive intolerance is found in adults with atopic symptoms from the respiratory tract and skin. The prevalence...

  7. A Review of Additive Manufacturing

    OpenAIRE

    Kaufui V. Wong; Aldo Hernandez

    2012-01-01

    Additive manufacturing processes take the information from a computer-aided design (CAD) file that is later converted to a stereolithography (STL) file. In this process, the drawing made in the CAD software is approximated by triangles and sliced containing the information of each layer that is going to be printed. There is a discussion of the relevant additive manufacturing processes and their applications. The aerospace industry employs them because of the possibility of manufacturing light...

  8. Addition on a Quantum Computer

    OpenAIRE

    Draper, Thomas G.

    2000-01-01

    A new method for computing sums on a quantum computer is introduced. This technique uses the quantum Fourier transform and reduces the number of qubits necessary for addition by removing the need for temporary carry bits. This approach also allows the addition of a classical number to a quantum superposition without encoding the classical number in the quantum register. This method also allows for massive parallelization in its execution.

  9. Análise da adulteração de méis por açúcares comerciais utilizando-se a composição isotópica de carbono Honey adulteration analysis by commercial sugars additions using the stable carbon isotope composition

    Directory of Open Access Journals (Sweden)

    Nádia F. ROSSI

    1999-05-01

    isotope composition than plants commonly used by bees as sources of nectar, it is possible to use the stable carbon isotope composition of honey to detect addition of commercial sugar cane and corn sugars. In this study we analyzed samples of C3 plants commonly used by bees, subproducts of C4 plants, and 61 samples of honey. The d13C of C3 plants values had on average of -28.9±1.1‰ (n=8, while the commercial sugars had an average value of -11.1±0.7‰ (n=3. Approximately 8% (5 samples of the 61 samples analyzed had d13C values that clearly indicated the addition of commercial sugars (adulteration. The sample number 5 had a d13C valor equal to -12.9‰, indicating that it was all made of commercial sugars. The samples numbers 13, 14, 33, and 54 had values equal to -21.0, -19.9, -21.9 and -17.6‰, respectively. These values also indicated the addition of commercial sugars. The methodology used in this study proved to be a valuable and simple complement to the conventional chemical and physical methods normally used to detect honey adulteration.

  10. Processing and Structure of Carbon Nanofiber Paper

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhao

    2009-01-01

    Full Text Available A unique concept of making nanocomposites from carbon nanofiber paper was explored in this study. The essential element of this method was to design and manufacture carbon nanofiber paper with well-controlled and optimized network structure of carbon nanofibers. In this study, carbon nanofiber paper was prepared under various processing conditions, including different types of carbon nanofibers, solvents, dispersants, and acid treatment. The morphologies of carbon nanofibers within the nanofiber paper were characterized with scanning electron microscopy (SEM. In addition, the bulk densities of carbon nanofiber papers were measured. It was found that the densities and network structures of carbon nanofiber paper correlated to the dispersion quality of carbon nanofibers within the paper, which was significantly affected by papermaking process conditions.

  11. [INVITED] Lasers in additive manufacturing

    Science.gov (United States)

    Pinkerton, Andrew J.

    2016-04-01

    Additive manufacturing is a topic of considerable ongoing interest, with forecasts predicting it to have major impact on industry in the future. This paper focusses on the current status and potential future development of the technology, with particular reference to the role of lasers within it. It begins by making clear the types and roles of lasers in the different categories of additive manufacturing. This is followed by concise reviews of the economic benefits and disadvantages of the technology, current state of the market and use of additive manufacturing in different industries. Details of these fields are referenced rather than expanded in detail. The paper continues, focusing on current indicators to the future of additive manufacturing. Barriers to its development, trends and opportunities in major industrial sectors, and wider opportunities for its development are covered. Evidence indicates that additive manufacturing may not become the dominant manufacturing technology in all industries, but represents an excellent opportunity for lasers to increase their influence in manufacturing as a whole.

  12. Soil warming, carbon-nitrogen interactions, and forest carbon budgets.

    Science.gov (United States)

    Melillo, Jerry M; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-06-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon-nitrogen interactions in atmosphere-ocean-land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374

  13. Organic Carbon--water Concentration Quotients (IIsocS and [pi]pocS): Measuring Apparent Chemical Disequilibria and Exploring the Impact of Black Carbon in Lake Michigan

    Science.gov (United States)

    When black carbon (bc) and biologically derived organic carbon (bioc) phases are present in sediments or suspended particulates, both forms of carbon act additively to sorb organic chemicals but the bc phase has more sorption capacity per unit mass. . . .

  14. Protocol for ADDITION-PRO

    DEFF Research Database (Denmark)

    Johansen, Nanna Borup; Hansen, Anne-Louise Smidt; Jensen, Troels M;

    2012-01-01

    disease and microvascular diabetic complications. We also require a better understanding of the mechanisms that underlie and drive early changes in cardiometabolic physiology. The ADDITION-PRO study was designed to address these issues among individuals at different levels of diabetes risk recruited from...... Danish primary care. METHODS/DESIGN: ADDITION-PRO is a population-based, longitudinal cohort study of individuals at high risk for diabetes. 16,136 eligible individuals were identified at high risk following participation in a stepwise screening programme in Danish general practice between 2001 and 2006...... assessment included detailed measurement of anthropometry, body composition, biochemistry, physical activity and cardiovascular risk factors including aortic stiffness and central blood pressure. All ADDITION-PRO participants are being followed for incident cardiovascular disease and death. DISCUSSION: The...

  15. Additive Manufacturing of Hybrid Circuits

    Science.gov (United States)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  16. NOx abatement through urea additives

    International Nuclear Information System (INIS)

    Compared with catalytic denitrification, the use of urea in thermic processes of selective, non-catalytic reduction (SNCR), when combined with primary measures, constitutes an inexpensive alternative way of abating NOx emissions by means of combustion processes and waste incineration plants. A natural-gas fired and also electrically heated flow reactor was used in a number of fast series to systematically determine the influences of retention time, reaction temperature, reductant (ammonia or urea), molar ratio, and additives (ethanol) on the process. Balancing the input and output nitrogenous substances served to describe the partial shift through addition of ethanol of the reaction towards incomplete reduction and greater N2O emission. (orig.)

  17. Additional protocol experience in Romania

    International Nuclear Information System (INIS)

    Full text: National Commission for Nuclear Activities Control (CNCAN) is the national regulatory body with regulation, authorization and control responsibilities. CNCAN has the right and obligation to ensure that safeguards are applied, in accordance with the terms of the safeguards agreement, on all source or special fissionable material in all peaceful nuclear activities within the State, under its jurisdiction or carried out under its control anywhere, for the exclusive purpose of verifying that such material is not diverted to nuclear weapons or other nuclear explosive devices. CNCAN has built a strong primary and secondary legislation in order to have a strong legal framework to fulfill the NPT, Safeguards Agreement and Additional Protocol requirements. In respect of the non-proliferation issues CNCAN has as a major goal to strengthen the effectiveness and to improve the efficiency of the safeguards system. Also closer co-operation between the IAEA and CNCAN as coordinator of the national system of accounting for and control of nuclear material has been developed by organizing international and national seminars on the implementation of safeguards and the additional protocol. After the entry into force of the Additional Protocol, CNCAN prepared appropriate declarations and answers to the relevant IAEA questions in order to obtain a drawn conclusion of the absence of undeclared nuclear material and nuclear activities within Romania territory. The IAEA evaluated in Romania not only the results of its nuclear material related activities under the Safeguards Agreement but also the results of its broader, more qualitative, evaluation and verification activities under the Additional Protocol. CNCAN assured that the IAEA inspectors have complementary access according to the Additional Protocol as requested in accordance with the provisions of the Safeguards Agreement and the Additional Protocol and cooperated in resolving in a timely manner, any questions or

  18. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  19. Carbon Stars

    Indian Academy of Sciences (India)

    T. Lloyd Evans

    2010-12-01

    In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  20. Adverse reactions to food additives in children with atopic symptoms

    DEFF Research Database (Denmark)

    Fuglsang, G; Madsen, G; Halken, S;

    1994-01-01

    In a multicenter study conducted at four Danish hospital pediatric departments, the parents of 472 consecutive children were informed of this project to determine the incidence of intolerance of food additives among children referred to an allergy clinic with symptoms of asthma, atopic dermatitis......, rhinitis, or urticaria. After a 2-week period on an additive-free diet, the children were challenged with the eliminated additives. The food additives investigated were coloring agents, preservatives, citric acid, and flavoring agents. Carbonated "lemonade" containing the dissolved additives was used for...... dermatitis, asthma, urticaria, gastrointestinal symptoms), and citric acid (atopic dermatitis, gastrointestinal symptoms). The incidence of intolerance of food additives was 2% (6/335), as based on the double-blind challenge, and 7% (23/335), as based on the open challenge with lemonade. Children with atopic...

  1. Adverse reactions to food additives in children with atopic symptoms

    DEFF Research Database (Denmark)

    Fuglsang, G.; Madsen, Charlotte Bernhard; Halken, S.;

    1994-01-01

    In a multicenter study conducted at four Danish hospital pediatric departments, the parents of 472 consecutive children were informed of this project to determine the incidence of intolerance of food additives among children referred to an allergy clinic with symptoms of asthma, atopic dermatitis......, rhinitis, or urticaria. After a 2-week period on an additive-free diet, the children were challenged with the eliminated additives. The food additives investigated were coloring agents, preservatives, citric acid, and flavoring agents. Carbonated ''lemonade'' containing the dissolved additives was used for...... dermatitis, asthma, urticaria, gastrointestinal symptoms), and citric acid (atopic dermatitis, gastrointestinal symptoms). The incidence of intolerance of food additives was 2% (6/335), as based on the double-blind challenge, and 7% (23/335), as based on the open challenge with lemonade. Children with atopic...

  2. Response of Dissolved Organic Matter to Warming and Nitrogen Addition

    Science.gov (United States)

    Choi, J. H.; Nguyen, H.

    2014-12-01

    Dissolved Organic Matter (DOM) is a ubiquitous mixture of soluble organic components. Since DOM is produced from the terrestrial leachate of various soil types, soil may influence the chemistry and biology of freshwater through the input of leachate and run-off. The increased temperature by climate change could dramatically change the DOM characteristics of soils through enhanced decomposition rate and losses of carbon from soil organic matter. In addition, the increase in the N-deposition affects DOM leaching from soils by changing the carbon cycling and decomposition rate of soil decay. In this study, we conducted growth chamber experiments using two types of soil (wetland and forest) under the conditions of temperature increase and N-deposition in order to investigate how warming and nitrogen addition influence the characteristics of the DOM leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 10 months of incubation, the dissolved organic carbon (DOC) concentrations decreased for almost samples in the range of 7.6 to 87.3% (ANOVA, pHumification index (HIX) showed the significant increase trends during the duration of incubation and temperature for almost the samples (ANOVA, psoil samples. During the experiment, labile DOM from the soils was consumed and transformed into resistant aromatic carbon structures and less biodegradable components via microbial processes. Both time and the temperature presented the statistically significant effects on DOM characteristics of soil samples while the N-addition exhibited the insignificant difference among the samples.

  3. Pragmatics in Court Interpreting: Additions

    DEFF Research Database (Denmark)

    Jacobsen, Bente

    2003-01-01

    Danish court interpreters are expected to follow ethical guidelines, which instruct them to deliver exact verbatim versions of source texts. However, this requirement often clashes with the reality of the interpreting situation in the courtroom. This paper presents and discusses the findings of a...... investigation regarding one kind of interpreter modification in particular: additions. The investigation was undertaken for a doctoral thesis....

  4. Matching Games with Additive Externalities

    DEFF Research Database (Denmark)

    Branzei, Simina; Michalak, Tomasz; Rahwan, Talal;

    2012-01-01

    fully expressive representations of externalities in matchings require exponential space, in this paper we propose a compact model of externalities, in which the influence of a match on each agent is computed additively. In this framework, we analyze many-to-many and one-to-one matchings under neutral...

  5. Radiation curable Michael addition compounds

    International Nuclear Information System (INIS)

    Radiation polymerizable acrylyloxy-containing reaction products are provided from Michael addition reaction of an amide containing at least two acrylate groups with a primary or secondary amine. The resulting amine adducts of the amide, which contain at least one acrylate group per molecule, possesses high cure rates in air and are useful in compositions for forming coatings. (author)

  6. Non-autoclaved aerated concrete with mineral additives

    Science.gov (United States)

    Il'ina, L. V.; Rakov, M. A.

    2016-01-01

    We investigated the effect of joint grinding of Portland cement clinker, silica and carbonate components and mineral additives to specific surface of 280 - 300 m2/kg on the properties (strength, average density and thermal conductivity) of non-autoclaved aerated concrete, and the porosity of the hardened cement paste produced from Portland cement clinker with mineral additives. The joint grinding of the Portland cement clinker with silica and carbonate components and mineral additives reduces the energy consumption of non-autoclaved aerated concrete production. The efficiency of mineral additives (diopside, wollastonite) is due to the closeness the composition, the type of chemical bonds, physical and chemical characteristics (specific enthalpy of formation, specific entropy) to anhydrous clinker minerals and their hydration products. Considering the influence of these additions on hydration of clinker minerals and formation of hardened cement paste structure, dispersed wollastonite and diopside should be used as mineral additives. The hardness and, consequently, the elastic modulus of diopside are higher than that of hardened cement paste. As a result, there is a redistribution of stresses in the hardened cement paste interporous partitions and hardening, both the partitions and aerated concrete on the whole. The mineral additives introduction allowed to obtain the non-autoclaved aerated concrete with average density 580 kg/m3, compressive strength of 3.3 MPa and thermal conductivity of 0.131 W/(m.°C).

  7. The Frontiers of Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-03

    Additive manufacturing, more commonly known as 3-D printing, has become a ubiquitous tool in science for its precise control over mechanical design. For additive manufacturing to work, a 3-D structure is split into thin 2D slices, and then different physical properties, such as photo-polymerization or melting, are used to grow the sequential layers. The level of control allows not only for devices to be made with a variety of materials: e.g. plastics, metals, and quantum dots, but to also have finely controlled structures leading to other novel properties. While 3-D printing is widely used by hobbyists for making models, it also has industrial applications in structural engineering, biological tissue scaffolding, customized electric circuitry, fuel cells, security, and more.

  8. Decontamination formulation with sorbent additive

    Science.gov (United States)

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  9. Sustainability Characterization for Additive Manufacturing

    OpenAIRE

    Mani, Mahesh; Lyons, Kevin W; Gupta, SK.

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and mater...

  10. Minimum Additive Waste Stabilization (MAWS)

    International Nuclear Information System (INIS)

    In the Minimum Additive Waste Stabilization(MAWS) concept, actual waste streams are utilized as additive resources for vitrification, which may contain the basic components (glass formers and fluxes) for making a suitable glass or glassy slag. If too much glass former is present, then the melt viscosity or temperature will be too high for processing; while if there is too much flux, then the durability may suffer. Therefore, there are optimum combinations of these two important classes of constituents depending on the criteria required. The challenge is to combine these resources in such a way that minimizes the use of non-waste additives yet yields a processable and durable final waste form for disposal. The benefit to this approach is that the volume of the final waste form is minimized (waste loading maximized) since little or no additives are used and vitrification itself results in volume reduction through evaporation of water, combustion of organics, and compaction of the solids into a non-porous glass. This implies a significant reduction in disposal costs due to volume reduction alone, and minimizes future risks/costs due to the long term durability and leach resistance of glass. This is accomplished by using integrated systems that are both cost-effective and produce an environmentally sound waste form for disposal. individual component technologies may include: vitrification; thermal destruction; soil washing; gas scrubbing/filtration; and, ion-exchange wastewater treatment. The particular combination of technologies will depend on the waste streams to be treated. At the heart of MAWS is vitrification technology, which incorporates all primary and secondary waste streams into a final, long-term, stabilized glass wasteform. The integrated technology approach, and view of waste streams as resources, is innovative yet practical to cost effectively treat a broad range of DOE mixed and low-level wastes

  11. An Additive Manufacturing Test Artifact

    OpenAIRE

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors meas...

  12. Metrizability of ordered additive groups

    OpenAIRE

    Liu, Chuan; Tanaka, Yoshio

    2011-01-01

    In terms of General Topology, we consider ordered additive groups having the order topology, including ordered fields. Namely, we investigate metrizability of these groups or fields, and topological properties of ordered fields in terms of Archimedes' axiom or the axiom of continuity. Also, we give a negative answer to a question in [9]. Finally, we revise the proof of [2, Theorem 2.6], and give some related results.

  13. Tweaking Synchronisation by Link Addition

    CERN Document Server

    Schultz, Paul; Eroglu, Deniz; Stemler, Thomas; Ávila, G Marcelo Ramírez; Rodrigues, Francisco A; Kurths, Jürgen

    2016-01-01

    Natural and man-made networks often possess locally tree-like sub-structures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behaviour. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either a discrete or continuous. Here our main result is that a certain amount of additional links, with the relative position in the network being cruci...

  14. ADDITIONAL STREET BERBASIS APP INVENTOR

    Directory of Open Access Journals (Sweden)

    Mohammad Adib Adhi Prabowo

    2013-05-01

    Full Text Available Abstrak Seiring dengan perkembangan sistem operasi android, telah banyak aplikasi yang memanfaatkan fasilitas GPS dan Google Map, seperti untuk mencari rute, mendapatkan peta, mencari lokasi tertentu pada sebuah tempat. Akan tetapi seringkali pengguna perangkat bergerak kesulitan ketika ingin mengetahui beberapa tempat dan lokasi tertentu karena belum ada fasilitas yang menyediakan informasi lokasi suatu tempat. Walaupun ada informasi lokasi pada peta biasanya informasi yang diberikan lokasi tempat berskala besar, misalnya lokasi tempat wisata atau stasiun kereta api. Pengembangan aplikasi untuk skala kecil ini akan memberikan informasi yang dipresentasikan pada google map. Selama ini belum ada yang memberikan sebuah informasi lokasi tempat penting yang berskala kecil. Misalnya informasi lokasi  tambal ban, lokasi warung makan, lokasi laundry, dan lokasi bengkel motor. Oleh karena itu kami mencoba untuk mengembangkan aplikasi additional street berbasis android via App Inventor dengan bantuan google maps. Aplikasi additional street ini dapat memberikan informasi letak objek pada peta serta memberikan informasi jalan menuju lokasi tersebut dan detail informasi lokasi tersebut serta lokasi dari pengguna aplikasi tersebut. Kata Kunci: additional street, android, google maps, app inventor, GPS

  15. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    OpenAIRE

    Ram Pavani; Kodithyala Vinay

    2011-01-01

    Carbon nanotubes (CNTs) are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Funct...

  16. Fire-Retardant Polymeric Additives

    Science.gov (United States)

    Williams, Martha K.; Smith, Trent M.

    2011-01-01

    Polyhydroxyamide (PHA) and polymethoxyamide (PMeOA) are fire-retardant (FR) thermoplastic polymers and have been found to be useful as an additive for imparting fire retardant properties to other compatible, thermoplastic polymers (including some elastomers). Examples of compatible flammable polymers include nylons, polyesters, and acrylics. Unlike most prior additives, PHA and PMeOA do not appreciably degrade the mechanical properties of the matrix polymer; indeed, in some cases, mechanical properties are enhanced. Also, unlike some prior additives, PHA and PMeOA do not decompose into large amounts of corrosive or toxic compounds during combustion and can be processed at elevated temperatures. PMeOA derivative formulations were synthesized and used as an FR additive in the fabrication of polyamide (PA) and polystyrene (PS) composites with notable reduction (>30 percent for PS) in peak heat release rates compared to the neat polymer as measured by a Cone Calorimeter (ASTM E1354). Synergistic effects were noted with nanosilica composites. These nanosilica composites had more than 50-percent reduction in peak heat release rates. In a typical application, a flammable thermoplastic, thermoplastic blend, or elastomer that one seeks to render flame-retardant is first dry-mixed with PHA or PMeOA or derivative thereof. The proportion of PHA or PMeOA or derivative in the mixture is typically chosen to lie between 1 and 20 weight percent. The dry blend can then be melt-extruded. The extruded polymer blend can further be extruded and/or molded into fibers, pipes, or any other of a variety of objects that may be required to be fire-retardant. The physical and chemical mechanisms which impart flame retardancy of the additive include inhibiting free-radical oxidation in the vapor phase, preventing vaporization of fuel (the polymer), and cooling through the formation of chemical bonds in either the vapor or the condensed phase. Under thermal stress, the cyclic hydroxyl/ methoxy

  17. 1-week habitation of two people in an airtight facility, CEEF with two goats and 23 crops, conducted with 89% self-sufficiency in food and without O2-addition and CO2-release - analysis of exchange of carbon and oxygen among organisms and water circulation in the CEEF -

    Science.gov (United States)

    Tako, Y.; Tsuga, S.; Tani, T.; Arai, R.; Komatsubara, O.; Shinohara, M.

    Three 1-week experiments were conducted from September to October of 2005 in which two human subjects named as eco-nauts were enclosed and worked in an airtight facility called Closed Ecosystem Experiment Facilities CEEF The test involved connecting a Plant Module PM with 23 crops including rice soybean peanut and sugar beet to an Animal Habitation Module AHM which included the eco-nauts and two Shiba-goats Although only 34 weight of the food consumed by the eco-nauts was produced by crops in the PM in the first experiment it was 81 in the second and third experiments As for feed to the goats 40 rice straw was produced in the PM in the first experiment and all of the feed rice straw soybean leaf and peanut shell was produced in the PM in the second and third experiments In all these experiments the crops produced more oxygen than the amount consumed by respiration of human and animals The oxygen build-up in the atmosphere of the PM from crop photosynthesis was separated and supplied to atmosphere of the AHM Carbon dioxide build-up in atmosphere of the AHM from respiration of eco-nauts and Shiba-goats was separated and supplied back to atmosphere of the PM Carbon in waste except for a part of that in human feces was withdrawn and not recycled for these experiments Therefore carbon dioxide from respiration compensated the demand for photosynthesis of the crops Amounts of carbon in edible and inedible parts of harvested crop biomass and amount of carbon taken by the eco-nauts and Shiba-goats were also estimated Water transpired through

  18. Carbon Management In the Post-Cap-and-Trade Carbon Economy: An Economic Model for Limiting Climate Change by Managing Anthropogenic Carbon Flux

    Science.gov (United States)

    DeGroff, F. A.

    2013-05-01

    In this paper, we discuss an economic model for comprehensive carbon management that focuses on changes in carbon flux in the biosphere due to anthropogenic activity. The two unique features of the model include: 1. A shift in emphasis from primarily carbon emissions, toward changes in carbon flux, mainly carbon extraction, and 2. A carbon price vector (CPV) to express the value of changes in carbon flux, measured in changes in carbon sequestration, or carbon residence time. The key focus with the economic model is the degree to which carbon flux changes due to anthropogenic activity. The economic model has three steps: 1. The CPV metric is used to value all forms of carbon associated with any anthropogenic activity. In this paper, the CPV used is a logarithmic chronological scale to gauge expected carbon residence (or sequestration) time. In future economic models, the CPV may be expanded to include other factors to value carbon. 2. Whenever carbon changes form (and CPV) due to anthropogenic activity, a carbon toll is assessed as determined by the change in the CPV. The standard monetary unit for carbon tolls are carbon toll units, or CTUs. The CTUs multiplied by the quantity of carbon converted (QCC) provides the total carbon toll, or CT. For example, CT = (CTU /mole carbon) x (QCC moles carbon). 3. Whenever embodied carbon (EC) attributable to a good or service moves via trade to a jurisdiction with a different CPV metric, a carbon toll (CT) is assessed representing the CPV difference between the two jurisdictions. This economic model has three clear advantages. First, the carbon pricing and cost scheme use existing and generally accepted accounting methodologies to ensure the veracity and verifiability of carbon management efforts with minimal effort and expense using standard, existing auditing protocols. Implementing this economic model will not require any new, special, unique, or additional training, tools, or systems for any entity to achieve their minimum

  19. Carbon isotope excursions in paleosol carbonate marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

    OpenAIRE

    H. A. Abels; Lauretano, V.; A. van Yperen; T. Hopman; Zachos, J.C.; L. J. Lourens; Gingerich, P. D.; G. J. Bowen

    2015-01-01

    Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically-light carbon to the exogenic atmosphere–ocean carbon pool, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can be used to constrain both the sources and amounts of carbon released during an event, as well as to correlate marine and terrestrial records with high precision. The ...

  20. Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems.

    Science.gov (United States)

    Luo, Zhongkui; Wang, Enli; Smith, Chris

    2015-10-01

    The amount of fresh carbon input into soil is experiencing substantial changes under global change. It is unclear what will be the consequences of such input changes on native soil carbon decomposition across ecosystems. By synthesizing data from 143 experimental comparisons, we show that, on average, fresh carbon input stimulates soil carbon decomposition by 14%. The response was lower in forest soils (1%) compared with soils from other ecosystems (> 24%), and higher following inputs of plant residue-like substrates (31%) compared to root exudate-like substrates (9%). The responses decrease with the baseline soil carbon decomposition rate under no additional carbon input, but increase with the fresh carbon input rate. The rates of these changes vary significantly across ecosystems and with the carbon substrates being added. These findings can be applied to provide robust estimates of soil carbon balance across ecosystems under changing aboveground and belowground inputs as consequence of climate and land management changes. PMID:26649400

  1. Additional adiabatic heating of plasma

    International Nuclear Information System (INIS)

    A theoretical possibility of a plasma additional adiabatic heating up to temperatures needed for the begin of D-T thermonuclear fusion reaction, has been found on the base of the polyenergetic conjugation expression, developed in the Thermodynamics of Accumulation Processes. TAP is a branch of the non-equilibrium thermodynamics. The thermodynamics of irreversible processes is another branch of the entire non-equilibrium thermodynamics. TAP deals with the phenomena associated with the introduction, conversion and accumulation of mass or energy or both in the affected, open or closed systems. (author) 2 refs

  2. Carbon particles

    Science.gov (United States)

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  3. High Flow Addition Curing Polyimides

    Science.gov (United States)

    Chuang, Kathy C.; Vannucci, Raymond D.; Ansari, Irfan; Cerny, Lawrence L.; Scheiman, Daniel A.

    1994-01-01

    A new series of high flow PMR-type addition curing polyimides was developed, which employed the substitution of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (BTDB) for p-phenylenediamine (p -PDA) in a PMR-IL formulation. These thermoset polyimides, designated as 12F resins, were prepared from BTDB and the dimethyl ester of 4,4'- (hexafluo- roisopropylidene) -diphthalic acid (HFDE) with either nadic ester (NE) or p-aminostyrene (PAS) as the endcaps for addition curing. The 12F prepolymers displayed lower melting temperatures in DSC analysis, and higher melt flow in rheological studies than the cor- responding PMR-11 polyimides. Long-term isothermal aging studies showed that BTDB- based 12F resins exhibited comparable thermo-oxidative stability to P-PDA based PMR-11 polyimides. The noncoplanar 2- and 2'-disubstituted biphenyldiamine (BTDB) not only lowered the melt viscosities of 12F prepolymers, but also retained reasonable thermal sta- bility of the cured resins. The 12F polyimide resin with p-aminostyrene endcaps showed the best promise for long-term, high-temperature application at 343 C (650 F).

  4. Estudo microestrutural do catalisador Ni/gama-Al2O3: efeito da adição de CeO2 na reforma do metano com dióxido de carbono Microstructural study of Ni/gamma-Al2O3 catalyst: addition effects of CeO2 on carbon dioxide reforming of methane

    Directory of Open Access Journals (Sweden)

    Antoninho Valentini

    2003-10-01

    Full Text Available The carbon dioxide reforming of methane was carried out over nickel catalysts supported on the gamma-Al2O3/CeO2 system prepared by wet impregnation. With the increase of the CeO2 weight in the catalyst, a higher stability was observed in the catalytic activity, together with an excellent resistance to carbon deposition and a better Ni dispersion. The catalysts were characterized by means of surface area measurements, TPR, H2 chemisorption, XRD, SEM, EDX, XPS and TEM. An interaction between Ni and CeO2 was observed to the Ni/CeO2 sample after activation in a H2 atmosphere above 300 ºC. Such behavior has a significantly influence on the catalytic activity.

  5. Neutron Characterization for Additive Manufacturing

    Science.gov (United States)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL

  6. CarbonSat Constellation

    Science.gov (United States)

    Sun, Wei; Tobehn, Carsten; Ernst, Robert; Bovensmann, Heinrich; Buchwitz, Michael; Burrows, John P.; Notholt, John

    1 Carbon dioxide (CO2) and methane (CH4) are the most important manmade greenhouse gases (GHGs) which are driving global climate change. Currently, the CO2 measurements from the ground observing network are still the main sources of information but due to the limited number of measurement stations the coverage is limited. In addition, CO2 monitoring and trading is often based mainly on bottom-up calculations and an independent top down verification is limited due to the lack of global measurement data with local resolution. The first CO2 and CH4 mapping from SCIAMACHY on ENVISAT shows that satellites add important missing global information. Current GHG measurement satellites (GOSAT)are limited either in spatial or temporal resolution and coverage. These systems have to collect data over a year or even longer to produce global regional fluxes products. Conse-quently global, timely, higher spatial resolution and high accuracy measurement are required for: 1. A good understanding of the CO2 and CH4 sources and sinks for reliable climate predic-tion; and 2. Independent and transparent verification of accountable sources and sinks in supporting Kyoto and upcoming protocols The CarbonSat constellation idea comes out the trade off of resolution and swath width during CarbonSat mission definition studies. In response to the urgent need to support the Kyoto and upcoming protocols, a feasibility study has been carried out. The proposed solution is a constellation of five CarbonSat satellites in 614km LTAN 13:00, which is able to provide global, daily CO2 and CH4 measurement everywhere on the Earth with high spatial resolution 2 × 2 km and low uncertainty lt;2ppm (CO2) and lt;8ppb (CH4). The unique global daily measurement capability significantly increases the number of cloud free measurements, which enables more reliable services associated with reduced uncertainty, e.g. to 0.15ppm (CO2) per month in 10km and even more timely products. The CarbonSat Constellation in

  7. Additive Manufacturing of Ultem Polymers and Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimdes Ultem 9085 and experimental Ultem 1000 filled with 10 chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties.

  8. Miscellaneous Additives and Vegetable Oils

    Science.gov (United States)

    Crawford, J.; Psaila, A.; Orszulik, S. T.

    The need for friction modifiers in lubricant formulations is described. The chemical and physical aspects of friction modification are explained, with emphasis upon the structural contribution of adsorbed vegetable oil-based substances on metal surfaces. Applications of friction modifiers are discussed. The importance of determining a lubricant's pour point is described, and the action of certain structured compounds in decreasing pour point is explained. Demulsifiers and antifoams enable lubricants to separate entrained water and air in service use and prevent them from becoming emulsions and foams with very much decreased lubricity. Corrosion inhibitors are added to lubricants to prevent the acidic products of combustion resulting from fuel combustion, air entrainment and water condensation combining to corrode the internal metal components of engines. The chemical and physical properties of various vegetable oil structures are discussed in terms of their current and potentially future use in lubricant applications, as both base oils and additives.

  9. An Additive Manufacturing Test Artifact.

    Science.gov (United States)

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039

  10. Influence of low-density polyethylene addition on coking pressure

    OpenAIRE

    Melendi, Sonia; Barriocanal, C.; R. Alvarez; M.A. Diez

    2014-01-01

    Different amounts of low-density polyethylene (LDPE) were added to a bituminous coal used to produce metallurgical coke. The effect of the plastic waste on the carbonization process and more exactly, on the coking pressure were investigated. A movable wall oven at semi-pilot scale was used for measuring coking pressure generated. It was found that coking pressure increases for low LDPE addition levels (1-3 wt.%); however higher amounts of LDPE reduce coking pressure. To explain this behavior ...

  11. Additive modelling reveals spatiotemporal PCBs trends in marine sediments

    OpenAIRE

    G. EVERAERT; De Laender, F.; Deneudt, K.; Roose, P.; Mees, J.; Goethals, P.L.M.; Janssen, C.R.

    2014-01-01

    We developed generalised additive mixed models (GAMMs) to infer spatiotemporal trends of environmental PCB concentrations from an extensive dataset (n = 1219) of PCB concentrations measured between 1991 and 2010 in sediments of the Belgian Coastal Zone (BCZ) and the Western Scheldt estuary. A GAMM with time, geographical zone, periodicity and the organic carbon - water partition coefficient as covariates explained 49% of the variability in the log transformed PCB sediment concentrations. The ...

  12. Sustainability Characterization for Additive Manufacturing.

    Science.gov (United States)

    Mani, Mahesh; Lyons, Kevin W; Gupta, S K

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts. PMID:26601038

  13. Business models for additive manufacturing

    DEFF Research Database (Denmark)

    Hadar, Ronen; Bilberg, Arne; Bogers, Marcel

    2015-01-01

    Digital fabrication — including additive manufacturing (AM), rapid prototyping and 3D printing — has the potential to revolutionize the way in which products are produced and delivered to the customer. Therefore, it challenges companies to reinvent their business model — describing the logic of c...... effectively takes over the productive activities of the manufacturer. We discuss some of the main implications for research and practice of consumer-centric business models and the changing decoupling point in consumer goods’ manufacturing supply chains....... of creating and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how a consumer goods manufacturer can organize the operations of a more open business model when moving from...... a manufacturer-centric to a consumer-centric value logic. A major shift includes a move from centralized to decentralized supply chains, where consumer goods manufacturers can implement a “hybrid” approach with a focus on localization and accessibility or develop a fully personalized model where the consumer...

  14. Failure behaviour of carbon/carbon composite under compression

    Energy Technology Data Exchange (ETDEWEB)

    Tushtev, K.; Grathwohl, G. [Universitaet Bremen, Advanced Ceramics, Bremen (Germany); Koch, D. [Deutsches Zentrum fuer Luft- und Raumfahrt, Institut fuer Bauweisen- und Konstruktionsforschung, Keramische Verbundstrukturen, Stuttgart (Germany); Horvath, J.

    2012-11-15

    In this work the properties of Carbon/Carbon-material are investigated under quasi-static compression and model-like characterized. The investigated material was produced by pyrolysis of a Carbon/Carbon - composite of bidirectionally reinforced fabric layers. For the compression tests, a device to prevent additional bending stress was made. The stress-strain behaviour of this material has been reproduced in various publications. This will be discussed on the fracture behaviour and compared the experimental results from the compression tests with the characteristics of tensile and shear tests. The different compression and tensile properties of stiffness, poisson and strength were assessed. Differences between the tensile and compression behaviour resulting from on-axis tests by micro buckling and crack closure and off-axis experiments by superimposed pressure normal stresses that lead to increased shear friction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Carbon Fiber Biocompatibility for Implants

    Science.gov (United States)

    Petersen, Richard

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration. PMID:26966555

  16. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  17. RIVERINE INORGANIC CARBON DYNAMICS: OVERVIEW AND PERSPECTIVE

    Institute of Scientific and Technical Information of China (English)

    YAO Guan-rong; GAO Quan-zhou

    2006-01-01

    Inorganic carbon, the great part of the riverine carbon exported to the ocean, plays an important role in the global carbon cycle and ultimately impacts the coupled carbon-climate system. An overview was made on both methods and results of the riverine inorganic carbon researches. In addition to routine in situ survey, measurement and calculation,the direct precipitation method and the gas evolution technique were commonly used to analyze dissolved inorganic carbon in natural water samples. Soil CO2, carbonate minerals and atmospheric CO2 incorporated into riverine inorganic carbon pool via different means, with bicarbonate ion being the dominant component. The concentration of inorganic carbon, the composition of carbon isotopes (δ13C and △14C), and their temporal or spatial variations in the streams were controlled by carbon input, output and changes of carbon biogeochemistry within the riverine system. More accurate flux estimation, better understanding of different influential processes, and quantitative determination of various inputs or outputs need to be well researched in future.

  18. FILLERS AND THE CARBON FOOTPRINT OF PAPERMAKING

    OpenAIRE

    Jing Shen; Zhanqian Song; Xueren Qian; Wenxia Liu; Fei Yang

    2010-01-01

    Carbon footprint reduction is a global concern. For the papermaking industry, strategically effective measures of carbon footprint reduction can include many aspects such as energy efficiency improvement, use of renewable carbon-neutral energy, practicing of sustainable forestry, and development of an integrated forest products biorefinery. Filler addition in papermaking can save substantial amounts of pulp fibers, and reduce energy consumption, which can surely contribute to reduction in pap...

  19. Biogeochemistry of Carbon on Disturbed Forest Landscapes

    OpenAIRE

    Amichev, Beyhan Y.

    2007-01-01

    Carbon accreditation of forest development projects is essential for sequestering atmospheric CO2 under the provisions of the Kyoto Protocol. The carbon sequestration potential of surface coal-mined lands is not well known. The purpose of this work was to determine how to measure carbon sequestration and estimate the additional amount that could be sequestered using different reforestation methods compared to the common practice of establishing grasslands. I developed a thermal oxidatio...

  20. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  1. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Factors controlling the capacity of the ocean for taking up anthropogenic C02 include carbon chemistry, distribution of alkalinity, pCO2 and total concentration of dissolved C02, sea-air pCO2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C02 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C02 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C02 fertilization is a potential candidate for such missing carbon sinks

  2. A comparison of carbon calculators

    International Nuclear Information System (INIS)

    International attention to carbon dioxide emissions is turning to an individual's contribution, or 'carbon footprint.' Calculators that estimate an individual's CO2 emissions have become more prevalent on the internet. Even with similar inputs, however, these calculators can generate varying results, often by as much as several metric tons per annum per individual activity. This paper examines the similarities and differences among ten US-based calculators. Overall, the calculators lack consistency, especially for estimates of CO2 emissions from household electricity consumption. In addition, most calculators lack information about their methods and estimates, which impedes comparison and validation. Although carbon calculators can promote public awareness of carbon emissions from individual behavior, this paper reveals the need for improved consistency and transparency in the calculators

  3. Adsorption of rare earth ions using carbonized polydopamine nano carbon shells

    Institute of Scientific and Technical Information of China (English)

    孙晓琦; LUO Huimin; Shannon M. Mahurin; LIU Rui; HOU Xisen; DAI Sheng

    2016-01-01

    Herein we reported the structure effects of carbon nano-shells prepared by the carbonization of polydopamine for the ad-sorption of rare earth elements (REEs) for the first time. Solid carbon spheres, 60 nm carbon shells and 500 nm carbon shells were prepared and evaluated for adsorption and desorption of REEs. The adsorption performance of carbon nano-shells for REEs was far superior to the solid carbon spheres. In addition, the effect of acidity on the adsorption and desorption properties was discussed. The good adsorption performance of the carbon nano-shells could be attributed to their pore structure, specific surface area, and the pres-ence of both amine and carbonyl groups from the grafted dopamine.

  4. Carbon nanotube macroelectronics

    Science.gov (United States)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  5. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  6. Lithium-Ion Electrolytes Containing Flame Retardant Additives for Increased Safety Characteristics

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Smith, Kiah A. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick Charles (Inventor)

    2014-01-01

    The invention discloses various embodiments of Li-ion electrolytes containing flame retardant additives that have delivered good performance over a wide temperature range, good cycle life characteristics, and improved safety characteristics, namely, reduced flammability. In one embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a fluorinated co-solvent, a flame retardant additive, and a lithium salt. In another embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a flame retardant additive, a solid electrolyte interface (SEI) film forming agent, and a lithium salt.

  7. Abiotic carbonate dissolution traps carbon in a semiarid desert

    Science.gov (United States)

    Fa, Keyu; Liu, Zhen; Zhang, Yuqing; Qin, Shugao; Wu, Bin; Liu, Jiabin

    2016-03-01

    It is generally considered that desert ecosystems release CO2 to the atmosphere, but recent studies in drylands have shown that the soil can absorb CO2 abiotically. However, the mechanisms and exact location of abiotic carbon absorption remain unclear. Here, we used soil sterilization, 13CO2 addition, and detection methods to trace 13C in the soil of the Mu Us Desert, northern China. After 13CO2 addition, a large amount of 13CO2 was absorbed by the sterilised soil, and 13C was found enriched both in the soil gaseous phase and dissolved inorganic carbon (DIC). Further analysis indicated that about 79.45% of the total 13C absorbed by the soil was trapped in DIC, while the amount of 13C in the soil gaseous phase accounted for only 0.22% of the total absorbed 13C. However, about 20.33% of the total absorbed 13C remained undetected. Our results suggest that carbonate dissolution might occur predominately, and the soil liquid phase might trap the majority of abiotically absorbed carbon. It is possible that the trapped carbon in the soil liquid phase leaches into the groundwater; however, further studies are required to support this hypothesis.

  8. Performance assessment of carbonation process integrated with coal fired power plant to reduce CO2 (carbon dioxide) emissions

    International Nuclear Information System (INIS)

    This paper presents a novel approach to recover energy from mineral carbonation process, one of the CCS (carbon capture and storage) technologies, to reduce its additional energy demand and reports the feasibility of integrating a carbonation process with an existing power plant for reducing CO2 (carbon dioxide) emission. A thermodynamic mass and energy flow model of the carbonation process is developed using Matlab/Simulink software for a range of carbonation temperatures using two naturally available feedstocks, namely serpentine and olivine. The CO2 emissions are reduced if a carbonation system is implemented in the power plant, though the power generation efficiency and net power output are reduced too due to the large amount of extra energy required for the grinding of feedstock and the compression of CO2. The existing power plant efficiency was found to be 36.1%. If a carbonation system is incorporated, the plant efficiency reduces to 22% and 24% using serpentine and olivine feedstocks respectively. However, a significant amount of heat energy can be recovered from exothermic reaction of carbonation and carbonated products. The power plant efficiency can be increased to 35% and 34% again, respectively, when energy from carbonation reaction and carbonated products can be recovered appropriately. - Highlights: • Mineral carbonation technology is one of the carbon capture and storage technologies. • Exothermic heat energy can be recovered from mineral carbonation process. • Mineral carbonation process is energy self-sufficient. • Thermodynamic mass and energy balance model is developed for mineral carbonation

  9. Carbon Footprints

    OpenAIRE

    Rahel Aichele; Gabriel Felbermayr

    2011-01-01

    Lässt sich der Beitrag eines Landes zum weltweiten Klimaschutz an der Veränderung seines CO2-Ausstoßes messen, wie es im Kyoto-Abkommen implizit unterstellt wird? Oder ist aufgrund der Bedeutung des internationalen Güterhandels der Carbon Footprint – der alle CO2-Emissionen erfasst, die durch die Absorption (d.h. Konsum und Investitionen) eines Landes entstehen – das bessere Maß? Die Autoren erstellen eine Datenbank mit den Footprints von 40 Ländern für den Zeitraum 1995–2007. Die deskriptive...

  10. Carbon sequestration in European croplands.

    Science.gov (United States)

    Smith, Pete; Falloon, Pete

    2005-01-01

    biological potential. As with other carbon sequestration options, potential impacts of non-CO, trace gases also need to be factored in. If carbon sequestration in croplands is to be used in helping to meet emission reduction targets for the first commitment period of the Kyoto Protocol, the changes in soil carbon must be measurable and verifiable. Changes in soil carbon can be difficult to measure over a 5-year commitment period, and this has implications for Kyoto accounting and verification. Currently, most countries can hope to achieve only a low level of verifiability during the first commitment period, whereas those with the best-developed national carbon accounting systems will be able to deliver an intermediate level of verifiability. Very stringent definitions of verifiability would require verification that would be prohibitively expensive for any country. There is considerable potential in European croplands to reduce carbon fluxes to the atmosphere and to sequester carbon iri the soil, but carbon sequestration in soil has a finite potential and is non-permanent. Given that carbon sequestration may also be difficult to measure and verify, soil carbon sequestration is a riskier long-term strategy for climate mitigation than direct reduction of carbon emissions. However, improved agricultural management often has a range of other environmental and economic benefits in addition to climate mitigation potential, and this may make attempts to improve soil carbon storage attractive as part of integrated sustainability policies. PMID:17633030

  11. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    Science.gov (United States)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  12. Surface restoration induced by lubricant additive of natural minerals

    Science.gov (United States)

    Yu, Yang; Gu, Jialin; Kang, Feiyu; Kong, Xianqing; Mo, Wei

    2007-07-01

    The effect of a new-fashioned lubricant additive is studied. The additive is prepared out of natural minerals containing flaky silicate, schungite and some other catalyzers. Applications of the additive obviously improve the surface mechanics properties of steel-steel friction pairs, and the nanohardness and the modulus of the friction surface are increased by 67 and 90%, respectively. The friction surface is especially examined with the high resolution transmission electron microscope (HRTEM), and an amorphous restoration film mostly made up of C with some Si or Si-O amorphous structure doped was found. Considering all research results about the restoration film, this study suggests the film is a sort of diamond-like carbon film (DLC film).

  13. Controls on the Time Scale of Carbonate Neutralization of Carbon Dioxide Released to the Atmosphere

    Science.gov (United States)

    Caldeira, K.; Cao, L.

    2007-12-01

    Once released to the atmosphere, carbon dioxide is removed on a range of time scales. On the time scale of years to centuries, carbon dioxide removal from the atmosphere is dominated by transport processes within the ocean. On the time scale of hundreds of thousands of years, carbon dioxide removal from the atmosphere is dominated by processes related to the weathering of silicate rocks on land. Between these time scales, carbon dioxide removal is dominated by interactions involving carbonate minerals both on land and in the sea. Net dissolution of carbonate minerals (on land or in the sea) increases ocean alkalinity to an extent that exceeds the amount of carbon addition; the result is a transfer of carbon from the atmosphere to the ocean and moderation of the effects of added carbon on ocean chemical parameters such as pH and carbonate mineral saturation. There has been some controversy over how fast equilibration with carbonate minerals can neutralize carbon acidity, with claims ranging from the extreme and untenable claim that this process is essentially instantaneous to more plausible claims that the equilibration time scale may approach 10 kyr. Even within the domain of informed discourse, estimates of the carbonate neutralization timescale can vary by an order-of-magnitude. Here, in an effort to understand the sources of the lack of consensus on this issue, we examine how various processes (e.g., ocean transport, sediment pore water diffusion, carbonate-mineral dissolution, and carbonate weathering on land) influence the time scale for carbonate neutralization of carbon dioxide releases to the atmosphere.

  14. Dolomite addition effects on the thermal expansion of ceramic tiles

    International Nuclear Information System (INIS)

    The thermal expansion of ceramic tiles is of greater importance in engineering applications because the ceramics are relatively brittle and cannot tolerate large internal strain imposed by thermal expansion. When ceramic bodies are produced for glazed ties the compatibility of this property of the components should be considered to avoid damage in the final products. Carbonates are an important constituent of ceramic wall-title bodies and its presence in formulations and the reactions that occur between them and other components modify body properties. The influence in expansivity by additions of calcium magnesium carbonate in a composition of wall tile bodies has been investigated. The relative content of mineralogical components was determined by X-ray diffraction and thermal expansion by dilatometric measurements. The results was indicated that with the effect of calcium-magnesium phases and porosity on thermal expansion of wall tile bodies. (author)

  15. Carbon Nanomembranes.

    Science.gov (United States)

    Turchanin, Andrey; Gölzhäuser, Armin

    2016-08-01

    Carbon nanomembranes (CNMs) are synthetic 2D carbon sheets with tailored physical or chemical properties. These depend on the structure, molecular composition, and surroundings on either side. Due to their molecular thickness, they can be regarded as "interfaces without bulk" separating regions of different gaseous, liquid, or solid components and controlling the materials exchange between them. Here, a universal scheme for the fabrication of 1 nm-thick, mechanically stable, functional CNMs is presented. CNMs can be further modified, for example perforated by ion bombardment or chemically functionalized by the binding of other molecules onto the surfaces. The underlying physical and chemical mechanisms are described, and examples are presented for the engineering of complex surface architectures, e.g., nanopatterns of proteins, fluorescent dyes, or polymer brushes. A simple transfer procedure allows CNMs to be placed on various support structures, which makes them available for diverse applications: supports for electron and X-ray microscopy, nanolithography, nanosieves, Janus nanomembranes, polymer carpets, complex layered structures, functionalization of graphene, novel nanoelectronic and nanomechanical devices. To close, the potential of CNMs in filtration and sensorics is discussed. Based on tests for the separation of gas molecules, it is argued that ballistic membranes may play a prominent role in future efforts of materials separation. PMID:27281234

  16. Digital carbonate rock physics

    Science.gov (United States)

    Saenger, Erik H.; Vialle, Stephanie; Lebedev, Maxim; Uribe, David; Osorno, Maria; Duda, Mandy; Steeb, Holger

    2016-08-01

    Modern estimation of rock properties combines imaging with advanced numerical simulations, an approach known as digital rock physics (DRP). In this paper we suggest a specific segmentation procedure of X-ray micro-computed tomography data with two different resolutions in the µm range for two sets of carbonate rock samples. These carbonates were already characterized in detail in a previous laboratory study which we complement with nanoindentation experiments (for local elastic properties). In a first step a non-local mean filter is applied to the raw image data. We then apply different thresholds to identify pores and solid phases. Because of a non-neglectable amount of unresolved microporosity (micritic phase) we also define intermediate threshold values for distinct phases. Based on this segmentation we determine porosity-dependent values for effective P- and S-wave velocities as well as for the intrinsic permeability. For effective velocities we confirm an observed two-phase trend reported in another study using a different carbonate data set. As an upscaling approach we use this two-phase trend as an effective medium approach to estimate the porosity-dependent elastic properties of the micritic phase for the low-resolution images. The porosity measured in the laboratory is then used to predict the effective rock properties from the observed trends for a comparison with experimental data. The two-phase trend can be regarded as an upper bound for elastic properties; the use of the two-phase trend for low-resolution images led to a good estimate for a lower bound of effective elastic properties. Anisotropy is observed for some of the considered subvolumes, but seems to be insignificant for the analysed rocks at the DRP scale. Because of the complexity of carbonates we suggest using DRP as a complementary tool for rock characterization in addition to classical experimental methods.

  17. Developing a Carbon Observing System

    Science.gov (United States)

    Moore, B., III

    2015-12-01

    There is a clear need to better understand and predict future climate change, so that science can more confidently inform climate policy, including adaptation planning and future mitigation strategies. Understanding carbon cycle feedbacks, and the relationship between emissions (fossil and land use) and the resulting atmospheric carbon dioxide (CO2) and methane (CH4) concentrations in a changing climate has been recognized as an important goal by the IPCC. The existing surface greenhouse gas observing networks provide accurate and precise measurements of background values, but they are not configured to target the extended, complex and dynamic regions of the carbon budget. Space Agencies around the globe are committed to CO2 and CH4 observations: GOSAT-1/2, OCO-2/3, MERLin, TanSat, and CarbonSat. In addition to these Low Earth Orbit (LEO) missions, a new mission in Geostationary Orbit (GEO), geoCARB, which would provide mapping-like measurements of carbon dioxide, methane, and carbon monoxide concentrations over major land areas, has been recently proposed to the NASA Venture Program. These pioneering missions do not provide the spatial/temporal coverage to answer the key carbon-climate questions at process relevant scales nor do they address the distribution and quantification of anthropogenic sources at urban scales. They do demonstrate, however, that a well-planned future system of system integrating space-based LEO and GEO missions with extensive in situ observations could provide the accuracy, spatial resolution, and coverage needed to address critical open issues in the carbon-climate system. Dr. Diana Wickland devoted enormous energy in developing a comprehensive apprioach to understand the global carbon cycle; she understood well that an integrated, coordinated, international approach is needed. This shines through in her recent contribution in co-chairing the team that produced the "CEOS Strategy for Carbon Observations from Space." A NASA-funded community

  18. Emission Inventories of Carbon-containing Greenhouse Gases in and Technological Measures for Their Abatement

    Institute of Scientific and Technical Information of China (English)

    Zhuang Yahui; Zhang Hongxun; Wang Xiaoke; Li Changsheng

    2004-01-01

    The report summarizes surveys on carbon inventories and initiatives on sustainable carbon cycling taken by the Research Center for EcoEnvironmental Sciences, where the authors work/worked. The first part of the report, which appeared in the preceding issue of this journal, deals with the concept of sustainable carbon cycling, the historic evolution of carbon cycling processes in China, carbon pool enhancement, value addition,carbon sequestration and carbon balance. This very paper, as the second part of the report, covers the results of carbon dynamics modeling, emission inventories of various carbon-containing greenhouse gases and their potential abatement measures.

  19. Overview of Food Ingredients, Additives and Colors

    Science.gov (United States)

    ... foods with reduced fat content. What Is a Food Additive? In its broadest sense, a food additive is ... is the role of modern technology in producing food additives? A. Many new techniques are being researched that ...

  20. Evaluation of bioremediation systems utilizing stable carbon isotope analysis

    International Nuclear Information System (INIS)

    Carbon, whether in an organic or inorganic form, is composed primarily of two stable isotopes, carbon-12 and carbon-13. The ratio of carbon-12 to carbon-13 is approximately 99:1. The stable carbon isotope ratios of most natural carbon materials of biological interest range from approximately 0 to -110 per mil (per-thousand) versus the PDB standard. Utilizing stable carbon isotope analysis, it is often possible to determine the source(s) of the liberated carbon dioxide, thereby confirming successful mineralization of the targeted carbon compound(s) and, if the carbon dioxide results from multiple carbon compounds, in what ratio the carbon compounds are mineralized. Basic stable isotope 'theory' recommended sampling procedures and analysis protocols are reviewed. A case study involving fuel oil presented on the application of stable carbon isotope analysis for the monitoring and evaluation of in situ bioremediation. At the site, where a field bioventing study was being conducted, multiple potential sources of carbon dioxide production existed. Additional potential applications of stable carbon isotope analysis for bioremediation evaluation and monitoring are discussed

  1. Trading forest carbon

    Science.gov (United States)

    The nature of carbon in forests is discussed from the perspective of carbon trading. Carbon inventories, specifically in the area of land use and forestry are reviewed for the Pacific Northwest. Carbon turnover in forests is discussed as it relates to carbon sequestration. Scient...

  2. The optimization of the estimation of carbon-14 in urine

    International Nuclear Information System (INIS)

    The urinalysis method for carbon-14 currently used by the bioassay laboratory of the Dosimetric Research Branch at CRNL has been tested and optimized for both sensitivity and efficiency. Urine is first treated with an enzyme that catalyses the hydrolysis of urea, the major carbon-containing component of urine; carbon dioxide is then liberated by the measured addition of excess acid and collected in 2-aminoethanol. The aminoethanol can be directly counted by the addition of a liquid scintillation cocktail. This method can be used to measure both the specific activity, (Bq/g-carbon) or the total activity of carbon-14 released from the urine sample

  3. Nanostructural activated carbons for hydrogen storage

    Science.gov (United States)

    Li, Suoding

    adsorption in activated carbons synthesized from PEEK and poly(ether imide) blends, poly(phenylene oxide), polybenzimidazole and lignin show similar trends. In addition, W( H2) progressively increases as surface area increases for the carbons with similar average pore diameters. Keywords. carbon, activated carbon, poly(ether ether ketone), poly(ether imide), poly(phenylene oxide), polybenzimidazole, lignin, gas adsorption, hydrogen storage

  4. The carbon is down the hole

    International Nuclear Information System (INIS)

    Each year, about 7.1 billions of tons of carbon are released by human activities and industries, from which 5.5 come from the combustion of fossil fuels and 1.6 is a direct consequence of deforestation. However, less than half of this carbon is kept by the atmosphere in its CO2 form and contributes to the anthropic greenhouse effect. The rest is necessarily absorbed by carbon sinks, some of them located in the oceans and responsible for the disappearing of about 2 billions of tons of carbon, and the others probably located in the continental biosphere and in particular in the vegetal biomass and the organic matter of soils. This additional storage is probably located in the northern hemisphere between 30 deg. N and 60 deg. N. The distinction between the continental and oceanic sinks is made according to the concentration ratios of carbon 12 and carbon 13 isotopes. (J.S.)

  5. Catalytic Hydrogenolysis of 5-Carbon Sugar Alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Zacher, Alan H.; Frye, John G.; Werpy, Todd A.; Miller, Dennis J.

    2005-01-01

    PNNL, in cooperation with the USDOE and CRADA partners, National Corn Growers Association and Archer Daniels Midland, has developed a new class of catalysts based on Nickel and Rhenium with very effective performance for highly selective, high conversion hydrogenolysis of five–carbon sugar alcohols to useful glycols. The Ni-Re catalyst appears to exhibit preferential hydrogenolysis of the carbon-carbon bonds of secondary carbons over primary carbons of the 5-carbon sugar alcohols tested. In addition, the catalyst has demonstrated significant and unique primary C-O bond hydrogenolysis activity in its ability to convert glycerol into 1,2- propylene glycol, which is then stable in the presence of this class of catalysts. The rhenium containing catalysts are found to have higher activity and better selectivity to desired glycols than previously reported catalysts. A continuous flow reactor lifetime test of over 1500 hours also demonstrated the requisite high stability for an industrially attractive process.

  6. Mechanisms of carbon aging and their effects on the retention of organic iodides by carbon

    International Nuclear Information System (INIS)

    The activated carbon used to treat the off-gas from the Savannah River Plant production reactor building was studied to determine the chemical changes occuring in this carbon during its service life. The carbon is a coconut-shell charcoal impregnated with 1% triethylenediamine (TEDA) and 2% KI. It was known that during its 30-month service life the carbon becomes more acidic and less effective for retaining iodine in organic form. The study showed that the most important change occurring in the carbon is the reaction of KI to give other chemical forms of iodine. The results suggest that the carbon reacts with KI to form organic compounds, but small amounts of oxidized iodine may also be present. The TEDA impregnant is lost from the carbon very quickly, and has no importance after a few months. Mathematical analysis of the carbon performance data show that they are consistent with the reaction of iodide impregnant with impurities in the air flowing through the carbon bed. Additional mathematical analysis, based on electron microscopic observation of the carbon particles, indicates that the external surfaces of the carbon are mainly responsible for their effectiveness in retaining iodine. Consequently, the condition of the impregnants on a relatively small fraction of the carbon surface can have a large effect on its performance. (author)

  7. Efeito da adição do melaço na relação carbono/nitrogênio no cultivo de camarão Litopenaeus vannamei na fase berçário - DOI: 10.4025/actascibiolsci.v31i4.4496 Effect of molasses addition on carbon/nitrogen ratio in the nursery phase of Litopenaeus vannamei shrimp culture - DOI: 10.4025/actascibiolsci.v31i4.4496

    Directory of Open Access Journals (Sweden)

    Diogo Bessa Neves Spanghero

    2009-08-01

    Full Text Available Investigou-se o efeito da adição do melaço nas relações carbono:nitrogênio (C:N sobre o desempenho zootécnico do camarão Litopenaeus vannamei, na fase berçário, quando cultivado sem renovação de água. As relações do C:N foram avaliadas nas proporções de 25:1 (25M, 15:1 (15M e o controle (0M, sem aplicação de carbono, em delineamento experimental inteiramente casualizado, com quatro repetições. Pós-larvas (PL com peso inicial de 2,5 ± 0,5 mg, foram estocadas em 12 tanques (800 L volume útil, em densidades de 6,25 PL L-1, durante 42 dias de cultivo. Ao final do cultivo, os pesos finais dos camarões dos tratamentos 25M (532,0 mg e 15M (540,0 mg foram superiores (p L. vannamei cultivadas na fase berçário sem renovação de águaThe effect of molasses addiction on carbon:nitrogen ratios (C:N on the performance of Litopenaeus vannamei shrimp during the nursery phase cultured without water exchange was investigated. The C:N ratios were evaluated in 25:1 (25M and 15:1 (15M proportion and a control (0M, with no carbon source addition, in a randomized experimental design with four replicates. Post-larvae (PL with initial weight of 2.5 ± 0.5 mg were stocked in 12 tanks (800 L net volume, at the density of 6.25 PL L-1 during 42 culture days. At the end of culture, the shrimps weights on 25M (532.0 mg and 15M (540.0 mg treatments were higher (p L. vannamei post-larvae cultured without water exchange.

  8. Atmospheric dust additions as a soil formation factor

    International Nuclear Information System (INIS)

    The Mediterranean area is distinguished by a least four features that determine the nature of its soils. These are its climate, its mountains, the addition of exogenous dust and ongoing anthropogenic effects. We here present three cases in which the influence of atmospheric dust additions can be detected in the soils of representative circum-Saharan contexts the Canary Islands, Betic intramontane depressions, and the Sierra Bermeja peridotite massif (Malaga). The unique position of the Canary Islands determines important rates of dust deposit, largely depending on position on the relief. the nature of the dust contrasts with the rocky substratum of the islands, and the marine and volcanic context can also affect the nature of the deposits. The numerous, extensive intramontane basins of the Betic Cordilleras act as large captors of atmospheric dust, with rates similar to those found in the Canary archipelago. The carbonate content of these exogenous additions represents a significant components that should be taken into account when establishing the carbonate accumulation regime in these soils. (Author) 13 refs.

  9. Solid-state Synthesis of Carbon-nanostructures

    Institute of Scientific and Technical Information of China (English)

    R.Wilhelm; A.Winkel; D.Jain

    2007-01-01

    1 Results In addition to single wall and multiwall carbon nanotubes[1], several structures,which are more or less related to fullerenes,including carbon nanohorns[2a], carbon nanospheres[2b] and onion like carbon structures[2c] have been reported.A new simple straight forward method to access some of these structures is the solid-state pyrolysis of different organometallic complexes in a sealed vessel,which led so far to carbon nanotubes[3a,b], carbon nanocables[3c] and onions[3d].

  10. Preparation of hollow spherical carbon nanocages

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.-K.; Kang, H. Y.; Hong, C.-I; Huang, C.-H.; Chang, F.-C.; Wang, H. Paul, E-mail: wanghp@mail.ncku.edu.tw [National Cheng Kung University, Department of Environmental Engineering, Taiwan (China)

    2012-12-15

    This study presents a new and simple method for the synthesis of hollow carbon spheres possessing nanocage sizes of 7.1, 14, and 20 nm in diameter. The core-shell (i.e., Cu-C) nanoparticles prepared by carbonization of the Cu{sup 2+}-cyclodextrin (CD) complexes at 573 K for 2 h was etched with HCl (6N) to yield the hollow carbon spheres. The carbon-shell of the hollow carbon nanospheres, which consisted of mainly diamond-like and graphite carbons, is not perturbed during etching. In addition to the nanocages, the hollow carbon nanospheres also possess micropores with an opening of 0.45 nm, allowing small molecules to diffuse in and out through the carbon-shell. Many elements (such as Zn{sup 2+} or Cu{sup 2+}) can therefore be filled into the nanocages of the hollow carbon nanospheres. With these unique properties, for instance, designable active species such as Cu and ZnO encapsulated in the carbon-shell can act as Cu-ZnO-C yolk-shell nanoreactors which are found very effective in the catalytic decomposition of methanol.

  11. Transparent Films from CO2 -Based Polyunsaturated Poly(ether carbonate)s: A Novel Synthesis Strategy and Fast Curing.

    Science.gov (United States)

    Subhani, Muhammad Afzal; Köhler, Burkhard; Gürtler, Christoph; Leitner, Walter; Müller, Thomas E

    2016-04-25

    Transparent films were prepared by cross-linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2 , propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron-acceptor and electron-donor groups enables particularly facile UV- or redox-initiated free-radical curing. The resulting materials are transparent and highly interesting for coating applications. PMID:27028458

  12. Modified carbon black materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  13. Carbon Monoxide Poisoning

    Science.gov (United States)

    ... Recommend on Facebook Tweet Share Compartir What is Carbon Monoxide? Carbon monoxide, or “CO,” is an odorless, colorless gas that can kill you. Carbon monoxide detector Where is CO found? CO is ...

  14. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  15. Carbon Monoxide (CO)

    Science.gov (United States)

    ... IAQ) » Carbon Monoxide's Impact on Indoor Air Quality Carbon Monoxide's Impact on Indoor Air Quality On this ... length of exposure. Top of Page Sources of Carbon Monoxide Sources of CO include: unvented kerosene and ...

  16. Single-walled carbon nanotube incorporated novel three phase carbon/epoxy composite with enhanced properties.

    Science.gov (United States)

    Rana, Sohel; Alagirusamy, Ramasamy; Joshi, Mangala

    2011-08-01

    In the present work, single-walled carbon nanotubes were dispersed within the matrix of carbon fabric reinforced epoxy composites in order to develop novel three phase carbon/epoxy/single-walled carbon nanotube composites. A combination of ultrasonication and high speed mechanical stirring at 2000 rpm was used to uniformly disperse carbon nanotubes in the epoxy resin. The state of carbon nanotube dispersion in the epoxy resin and within the nanocomposites was characterized with the help of optical microscopy and atomic force microscopy. Pure carbon/epoxy and three phase composites were characterized for mechanical properties (tensile and compressive) as well as for thermal and electrical conductivity. Fracture surfaces of composites after tensile test were also studied in order to investigate the effect of dispersed carbon nanotubes on the failure behavior of composites. Dispersion of only 0.1 wt% nanotubes in the matrix led to improvements of 95% in Young's modulus, 31% in tensile strength, 76% in compressive modulus and 41% in compressive strength of carbon/epoxy composites. In addition to that, electrical and thermal conductivity also improved significantly with addition of carbon nanotubes. PMID:22103118

  17. Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System

    Science.gov (United States)

    West, Tristram O.; Brown, Molly E.; Duren, Riley M.; Ogle, Stephen M.; Moss, Richard H.

    2013-01-01

    Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify capabilities of a carbon monitoring system and the system components needed to develop the capabilities. Capabilities that enable the effective application of a carbon monitoring system for monitoring and management purposes may include: reconciling carbon stocks and fluxes, developing consistency across spatial and temporal scales, tracking horizontal movement of carbon, attribution of emissions to originating sources, cross-sectoral accounting, uncertainty quantification, redundancy and policy relevance. Focused research is needed to integrate these capabilities for sustained estimates of carbon stocks and fluxes. Additionally, if monitoring is intended to inform management decisions, management priorities should be considered prior to development of a monitoring system.

  18. Carbon and oxide nanostructures. Synthesis, characterisation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Noorhana [Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia). Dept. of Fundamental and Applied Sciences

    2010-07-01

    This volume covers all aspects of carbon and oxide based nanostructured materials. The topics include synthesis, characterization and application of carbon-based namely carbon nanotubes, carbon nanofibres, fullerenes, carbon filled composites etc. In addition, metal oxides namely, ZnO, TiO2, Fe2O3, ferrites, garnets etc., for various applications like sensors, solar cells, transformers, antennas, catalysts, batteries, lubricants, are presented. The book also includes the modeling of oxide and carbon based nanomaterials. The book covers the topics: - Synthesis, characterization and application of carbon nanotubes, carbon nanofibres, fullerenes - Synthesis, characterization and application of oxide based nanomaterials. - Nanostructured magnetic and electric materials and their applications. - Nanostructured materials for petro-chemical industry. - Oxide and carbon based thin films for electronics and sustainable energy. - Theory, calculations and modeling of nanostructured materials. (orig.)

  19. Integral Ring Carbon-Carbon Piston

    Science.gov (United States)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  20. Carbon dioxide sequestration by mineral carbonation

    OpenAIRE

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonate...

  1. Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

    OpenAIRE

    Abels, Hemmo A.; Lauretano, Vittoria; van Yperen, Anna E.; Hopman, Tarek; Zachos, James C.; Lourens, Lucas J.; Gingerich, Philip D.; Gabriel J Bowen

    2016-01-01

    Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically light carbon to the exogenic atmosphere–ocean carbon system, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can be used to constrain both the sources and amounts of carbon released during an event and also to correlate marine and terrestrial records with high precision. The Paleocene–Eocene ...

  2. Development of tubular hybrid direct carbon fuel cell and pyrolysis of biomass for production of carbon fuel

    OpenAIRE

    Bonaccorso, Alfredo Damiano

    2013-01-01

    This study involved two avenues of investigation: a new concept of Direct Carbon Fuel Cell (DCFC) and the production of carbon from biomass. The new concept of DCFC merges a solid oxide electrolyte and a molten carbonate electrolyte called the “hybrid direct carbon fuel cell” using tubular geometry. The tubular cell was chosen for several reasons, such as sealing process, reduction of stress during the sintering process and reduction of the final size of the stack. In addition, it makes th...

  3. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  4. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  5. Carbon Nanotube (CNT) and Carbon Fiber Reinforced SiC Optical Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M Cubed has developed and patented technology to make carbon fiber reinforced SiC composites and components. In addition, the feasibility of doubling the toughness...

  6. Controlling carbon emissions in China

    International Nuclear Information System (INIS)

    We examine the use of carbon taxes to reduce emissions of CO2 in China. To do so, we develop a dynamic computable general equilibrium (CGE) model of the Chinese economy. In addition to accounting for the effects of population growth, capital accumulation, technological change, and changing patterns of demand, we also incorporate into our model elements of the dual nature of China's economy where both plan and market institutions exist side by side. We conduct simulations in which carbon emissions are reduced by 5, 10, and 15 per cent from our baseline. After initial declines, in all of our simulations GDP and consumption rapidly exceed baseline levels as the revenue neutral carbon tax serves to transfer income from consumers to producers and then into increased investment. Although subject to a number of caveats, we find potential for what is in some sense a double dividend, a decrease in emissions for CO2 and a long run increase in GDP and consumption. (Author)

  7. Synthesis of Fine Chemicals by the Conjugate Addition of Nitroalkanes to Electrophilic Alkenes

    Institute of Scientific and Technical Information of China (English)

    R. Ballini; G. Bosica; D. Fiorini; A. Palmieri

    2005-01-01

    @@ 1Introduction It is well known the ability of primary and secondary nitroalkanes to generate carbanions (under basic conditions) strongly stabilized by the electron-withdrawing effect of the nitro group[1-4]. Thus, the main use of nitroalkanes is devoted to the generation of new carbon-carbon bonds through two principal approaches (Scheme 1): (i) reaction with carbonyl derivatives (nitroaldol-Henry-reaction), and (ii) Michael addition to electron poor alkenes.

  8. Dielectric constants of binary mixtures of propylene carbonate with dimethyl carbonate and ethylene carbonate from molecular dynamics simulation: comparison between non-polarizable and polarizable force fields

    Science.gov (United States)

    Lee, Sanghun; Park, Sung Soo

    2013-01-01

    Using non-polarizable and polarizable molecular dynamics simulations, binary mixtures of propylene carbonate + dimethyl carbonate and propylene carbonate + ethylene carbonate with various compositions were investigated. The polarizable model produces more reasonable estimation of dielectric constants than the non-polarizable model; however, combining the electronic continuum model with the non-polarizable MD improves the comparison between the two models. Fair agreement was found between the results from these simulations and available experimental data. In addition, for a better understanding of the mixing behaviour, the excess dielectric constants over the entire composition were calculated. By comparison of the two mixtures in various mole fractions, distinctive mixing behaviours of propylene carbonate + dimethyl carbonate (poorly symmetric mixture) and propylene carbonate + ethylene carbonate (highly symmetric mixture) were observed.

  9. Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based Electrolytes by the Addition of Fumed Silica

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Hamenu; Ko, Jangmyoun [Hanbat National Univ., Daejeon (Korea, Republic of); Lee, Younggi; Kim, Kwangman [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of); Cho, Wonil [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-06-15

    The corrosion property of aluminum by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is investigated in liquid and gel electrolytes consisting of ethylene carbonate/propylene carbonate/ethylmethyl carbonate/diethyl carbonate (20:5:55:20, vol %) with vinylene carbonate (2 wt %) and fluoroethylene carbonate (5 wt %) using conductivity measurement, cyclic voltammetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. All corrosion behaviors are attenuated remarkably by using three gel electrolytes containing 3 wt % of hydrophilic and hydrophobic fumed silica. The addition of silica particles contributes to the increase in the ionic conductivity of the electrolyte, indicating temporarily formed physical crosslinking among the silica particles to produce a gel state. Cyclic voltammetry also gives lower anodic current responses at higher potentials for repeating cycles, confirming further corrosion attenuation or electrochemical stability. In addition, the degree of corrosion attenuation can be affected mainly by the electrolytic constituents, not by the hydrophilicity or hydrophobicity of silica particles.

  10. Effects of additives on thermal stability of Li ion cells

    Science.gov (United States)

    Doughty, Daniel H.; Roth, E. Peter; Crafts, Chris C.; Nagasubramanian, G.; Henriksen, Gary; Amine, Khalil

    Li ion cells are being developed for high-power applications in hybrid electric vehicles, because these cells offer superior combination of power and energy density over current cell chemistries. Cells using this chemistry are proposed for battery systems in both internal combustion engine and fuel cell-powered hybrid electric vehicles. However, the safety of these cells needs to be understood and improved for eventual widespread commercial applications. The thermal-abuse response of Li ion cells has been improved by the incorporation of more stable anode carbons and electrolyte additives. Electrolyte solutions containing vinyl ethylene carbonate (VEC), triphenyl phosphate (TPP), tris(trifluoroethyl)phosphate (TFP) as well as some proprietary flame-retardant additives were evaluated. Test cells in the 18,650 configuration were built at Sandia National Laboratories using new stable electrode materials and electrolyte additives. A special test fixture was designed to allow determination of self-generated cell heating during a thermal ramp profile. The flammability of vented gas and expelled electrolyte was studied using a novel arrangement of a spark generator placed near the cell to ignite vent gas if a flammable gas mixture was present. Flammability of vent gas was somewhat reduced by the presence of certain additives. Accelerating rate calorimetry (ARC) was also used to characterize 18,650-size test cell heat and gas generation. Gas composition was analyzed by gas chromatography (GC) and was found to consist of CO 2, H 2, CO, methane, ethane, ethylene and small amounts of C1-C4 organic molecules.

  11. Lanthanum additions and the toughness of ultra-high strength steels and the determination of appropriate lanthanum additions

    International Nuclear Information System (INIS)

    Studies of commercial heats of AF1410 steel suggest that under appropriate conditions additions of rare-earth elements can significantly enhance fracture toughness. This improvement in toughness is not due to an extremely low inclusion volume fraction but is apparently due to the formation of larger and more widely spaced inclusions. The purpose of this work is to discuss our experience in using rare-earth additions to laboratory scale vacuum induction melted and subsequently vacuum arc remelted heats of ultra-high strength steels to achieve inclusion distributions similar to those observed in commercial heats modified with lanthanum additions. The results indicate that lanthanum additions of 0.015 wt.% to low sulfur steels which have been well deoxidized using carbon-vacuum deoxidation can result in lanthanum rich inclusions which are similar in size, volume fraction and spacing to those obtained in commercially produced heats of ultra-high strength steel to which lanthanum has been added. The heat of steel to which lanthanum additions of 0.015 wt.% were made had significantly higher toughness than did the heat of the same steel in which the sulfur had been gettered as small and closely spaced particles of MnS and which had an inclusion volume fraction similar to that of the heat modified by the addition of 0.015 wt.% lanthanum. This improvement in toughness was attributed to an increase in inclusion spacing. An addition of 0.06 wt.% lanthanum was excessive. Such an addition of lanthanum resulted in a huge volume fraction of large cuboidal inclusions which primarily contain lanthanum and oxygen and which are extremely detrimental to toughness

  12. Carbon-14 in tree rings

    International Nuclear Information System (INIS)

    In order to investigate how reliably the carbon 14 content of tree rings reflects that of atmospheric carbon dioxide, two types of determinations were carried out: (1) carbon 14 determinations in annual rings from the beginning of this century until 1974 and (2) carbon 14 determinations in synchronous wood from the North American bristlecone pine and from European oak trees, dendrochronologically dated to have grown in the third and fourth century B.C. The first series of measurements showed that bomb-produced radiocarbon was incorporated in wood at a time when it was converted from sapwood to heartwood, whenever radiocarbon from bomb testing was present in the atmosphere. The second series showed that wood more than 2000 years old and grown on two different continents at different altitudes had, within the limits of experimental error, the same radiocarbon content. This work and other experimental evidence, obtained in part by other laboratories, show that tree rings reflect the average radiocarbon content of global atmospheric carbon dioxide accurately within several parts per mil. In rare cases, deviations of up to 10 parts per thousand may be possible. This means that a typical single radiocarbon date for wood or charcoal possesses an intrinsic uncertainty (viz., an estimated ''one-sigma error'' in addition to all the other errors) of the order of +-50 years. This intrinsic uncertainty is independent of the absolute age of the sample. More accurate dates can, in principle, be obtained by the so-called method of ''wiggle matching.''

  13. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  14. A flexible additive multiplicative hazard model

    DEFF Research Database (Denmark)

    Martinussen, Torben; Scheike, Thomas H.

    2002-01-01

    Aalen's additive model; Counting process; Cox regression; Hazard model; Proportional excess harzard model; Time-varying effect......Aalen's additive model; Counting process; Cox regression; Hazard model; Proportional excess harzard model; Time-varying effect...

  15. Interfacial Studies of Sized Carbon Fiber

    International Nuclear Information System (INIS)

    This study was performed to investigate the influence of sizing treatment on carbon fiber in respect of interfacial adhesion in composite materials, Epolam registered 2025. Fortafil unsized carbon fiber was used to performed the experiment. The fiber was commercially surface treated and it was a polyacrylonitrile based carbon fiber with 3000 filament per strand. Epicure registered 3370 was used as basic sizing chemical and dissolved in two types of solvent, ethanol and acetone for the comparison purpose. The single pull out test has been used to determine the influence of sizing on carbon fiber. The morphology of carbon fiber was observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The apparent interfacial strength IFSS values determined by pull out test for the Epicure registered 3370/ethanol sized carbon fiber pointed to a good interfacial behaviour compared to the Epicure registered 3370/acetone sized carbon fiber. The Epicure registered 3370/ethanol sizing agent was found to be effective in promoting adhesion because of the chemical reactions between the sizing and Epolam registered 2025 during the curing process. From this work, it showed that sized carbon fiber using Epicure registered 3370 with addition of ethanol give higher mechanical properties of carbon fiber in terms of shear strength and also provided a good adhesion between fiber and matrix compared to the sizing chemical that contain acetone as a solvent.

  16. The Philosophical Consideration about Food Additives

    OpenAIRE

    Baoyu Ma

    2015-01-01

    This study mainly analyzes the essential features of food additives technology from the angle of philosophy, explaining the essential characteristics of food additives technology. As for the attitude towards the application of food additives, it is influenced by the public's gender, age, educational level, occupation and monthly expenditure for buying non-staple food and other variables, thus, the attitude towards food additives and green food, as well as the attitude towards using artificial...

  17. Mutagenicity of carbon nanomaterials

    DEFF Research Database (Denmark)

    Wallin, Håkan; Jacobsen, Nicklas Raun; White, Paul A;

    2011-01-01

    Carbon nanomaterials such carbon nanotubes, graphene and fullerenes are some the most promising nanomaterials. Although carbon nanomaterials have been reported to possess genotoxic potential, it is imperitive to analyse the data on the genotoxicity of carbon nanomaterials in vivo and in vitro and...

  18. 76 FR 60809 - Procurement List; Additions

    Science.gov (United States)

    2011-09-30

    ... . SUPPLEMENTARY INFORMATION: Additions On 7/1/2011 (76 FR 38641-38642) and 8/5/2011 (76 FR 47565-47566), the... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to the Procurement List. SUMMARY:...

  19. 77 FR 41377 - Procurement List; Additions

    Science.gov (United States)

    2012-07-13

    ... . SUPPLEMENTARY INFORMATION: Additions On 5/11/2012 (77 FR 27737-27738) and 5/18/2012 (77 FR 29596), the Committee... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to the Procurement List. SUMMARY:...

  20. 78 FR 9386 - Procurement List; Addition

    Science.gov (United States)

    2013-02-08

    ... INFORMATION: Addition On 11/30/2012 (77 FR 71400-71401), the Committee for Purchase From People Who Are Blind... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Addition AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Addition to the Procurement List. SUMMARY: This...