WorldWideScience

Sample records for capture gamma rays

  1. Analytical applications of neutron capture gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Prompt gamma-rays from thermal induced nuclear reactions have been used to estimate the boron, chlorine and phosphorus contents in industrial and reference materials. A neutron capture gamma-ray spectroscopy facility for analytical purposes using 252-Cf sources has been designed and calibrated. The facility is principally designed for the measurement of the prompt gamma-ray spectra obtained due to thermal neutron capture by means of the internal target geometry. The capture spectra were recorded using a high resolution Ge(Li) system. The designed facility and the system used in this work are described in detail. A weight of 50 to 100 gm of each sample in a power or liquid form encapsulated in a polyethene container was used. Sensitivity curves using different standard concentration values of B, Cl and P, were constructed. The concentration range was from 0.005 to 30%. (orig.)

  2. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  3. Prompt gamma-ray detectors for the measurement of neutron capture cross-sections

    International Nuclear Information System (INIS)

    A review is given of current techniques for detecting prompt gamma-radiation as a means of measuring total capture cross-sections. The discussion is generally restricted to systems with low or moderate gamma-ray energy resolution. Three classes of detector are considered: (1) the total absorption type; (2) detectors with efficiency proportional to gamma-ray energy; and (3) detectors of low efficiency and known gamma-ray response. Particular attention is given to the problems of background from reactions which compete with neutron capture, and the sensitivity of capture detectors to scattered neutrons. The extraction of capture yields from observed data is briefly considered

  4. Landmine detection method combined with backscattering neutrons and capture {gamma}-rays from hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yoshiyuki, E-mail: ytaka@rri.kyoto-u.ac.j [Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Misawa, Tsuyoshi; Pyeon, Cheol Ho; Shiroya, Seiji [Research Reactor Institute, Kyoto University, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Yoshikawa, Kiyoshi [Institute of Advanced Energy, Kyoto University, Gokashou, Uji-shi, Kyoto 611-0011 (Japan)

    2011-07-15

    The usefulness of the measurements of the backscattering neutron and 2.22 MeV capture {gamma}-ray from hydrogen in the landmine detection method is described in this paper. When the soil moisture content is increased, the reaction rates of both the neutron scattering reaction and capture reaction are increased. However, the backscattering neutrons are more influenced than the capture {gamma}-rays by the soil moisture before the reaction with the detector. The facts that the backscattering neutron method is useful in the dry soil case and that the capture {gamma}-ray method is effective in well-wet soil case are confirmed by the experiments and the calculations. The landmine detection efficiency is improved in various soil moisture conditions by combining the backscattering neutron method together with the capture {gamma}-ray method. The effectiveness of the pulse mode operation was confirmed numerically.

  5. Curved crystal study of de-excitation gamma rays in /sup 184/W following neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, W.F.; Reich, C.W.; Greenwood, R.C.; Koch, C.W.

    1981-01-01

    The capture ..gamma..-ray spectrum was studied using the curved-crystal ..gamma..-ray spectrometers installed at the High Flux Reactor of the ILL in Grenoble. Approximately 150 ..gamma..-ray transitions, from approx. 85 keV to 2.33 Mev, were assigned to /sup 184/W. A partial level scheme of /sup 184/W, showing the first four excited positive-parity bands and their de-exciting ..gamma..-ray transitions as observed in this study, is shown. (WHK)

  6. Measurements of keV-neutron capture {gamma} rays of fission products. 3

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1997-03-01

    {gamma} rays from the keV-neutron capture reactions by {sup 143,145}Nd and {sup 153}Eu have been measured in a neutron energy region of 10 to 80 keV, using a large anti-Compton NaI(Tl) {gamma}-ray spectrometer and the {sup 7}Li(p,n){sup 7}Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and {gamma}-ray spectra of those nuclei are presented and discussed. (author)

  7. Neutron-capture gamma-ray analysis of coal for sulfur, iron, silicon and moisture

    International Nuclear Information System (INIS)

    Samples of coal weighing approximately 200 grams placed in a collimated beam of neutrons from the thermal column of the Ames Laboratory Research Reactor produced capture gamma-rays which could be used for the simultaneous determination of sulfur and iron. Spectra from NaI(Tl) and Ge(Li) detectors were used and interferences were located by examining spectra of the major elemental components of coal. In determining sulfur, iron is a potential source of interference when gamma-ray spectra are collected with a NaI(Tl) detector. Corrections for iron interference were made by use of a higher energy iron peak. The possibility of determining silicon in coal was investigated but this element determination was unsuccessful since capture gamma-ray spectrometry lacked the necessary sensitivity for silicon. A linear relation was found between the area of the hydrogen capture peak at 2.23 MeV and the amount of water added to coal

  8. Assembly and calibration of a new experimental apparatus for production and utilization of capture gamma rays

    International Nuclear Information System (INIS)

    A new experimental apparatus has been mounted at the tangential beam tube B H 4/12 of the IPEN IEA-R1 (2 MW) reactor, for production and utilization of capture gamma rays. In this type of experiment, monochromatic gamma radiation, with energy resolution of about 10 eV, is produced by thermal neutron capture in several materials placed near the reactor core. By changing the target material it was possible to obtain up to 30 gamma lines in the 5 to 11 MeV energy range and so, the present experimental arrangement may be considered as an excellent gamma ray source for photonuclear reactions studies in low excitation energies. (author)

  9. Analytical sensitivities and energies of thermal-neutron-capture gamma rays

    Science.gov (United States)

    Duffey, D.; El-Kady, A.; Senftle, F.E.

    1970-01-01

    A table of the analytical sensitivities of the principal lines in the thermal-neutron-capture gamma ray spectrum has been compiled for most of the elements. In addition a second table of the full-energy, single-escape, and double-escape peaks has been compiled according to energy for all significant lines above 3 MeV. Lines that contrast well with adjacent lines are noted as prominent. The tables are useful for spectral interpretation and calibration. ?? 1970.

  10. Analytical sensitivities and energies of thermal neutron capture gamma rays II

    Science.gov (United States)

    Senftle, F.E.; Moore, H.D.; Leep, D.B.; El-Kady, A.; Duffey, D.

    1971-01-01

    A table of the analytical sensitivities of the principal lines in the thermal neutron capture gamma-ray spectrum from 0 to 3 MeV has been compiled for most of the elements. A tabulation of the full-energy, single-escape, and double-escape peaks has also been made according to energy. The tables are useful for spectral interpretation and calibration. ?? 1971.

  11. Database of prompt gamma rays from slow neutron capture for elemental analysis

    International Nuclear Information System (INIS)

    The increasing importance of prompt gamma ray activation analysis (PGAA) in a broad range of applications is evident, and has been emphasized at many meetings related to this topic. Furthermore, an Advisory Group Meeting (AGM) for the Coordination of the International Network of Nuclear Structure and Decay Data Evaluators concluded that there is a need for a complete library of gamma ray and cross-section data from cold and thermal neutron capture (the AGM was held in Budapest, 14-18 October 1996); this AGM also recommended the organization of an IAEA Coordinated Research Project (CRP) on this subject. The nuclear data programmes of the IAEA arose as a consequence of the advisory reviews of the International Nuclear Data Committee (INDC). At a biennial meeting in 1997, the INDC strongly recommended that the IAEA support new measurements and update the database on the analysis of prompt gamma ray activation induced by neutrons. As a consequence of the various recommendations, a CRP, entitled Development of a Database for Prompt Gamma Ray Neutron Activation Analysis (PGAA), was initiated in 1999. Prior to this project, several consultants had defined the scope, objectives and tasks of this CRP, as approved subsequently by the IAEA. Each CRP participant assumed responsibility for the execution of specific tasks. The results of their work and of other research were discussed and approved by the participants in Research Coordination Meetings (RCMs) held in 2000, 2001 and 2003. Prompt gamma ray activation analysis is a non-destructive radioanalytical method capable of rapid or simultaneous in situ multielement analyses across the entire periodic table, from hydrogen to uranium. However, inaccurate and incomplete data have been a significant hindrance in the qualitative and quantitative analyses of complicated neutron capture gamma spectra by means of PGAA. Therefore, the main goal of the CRP was to improve the quality and quantity of the required data in order to make

  12. Photoneutron cross sections measurements in 9Be, 13C e 17O with thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Photoneutron cross sections measurements of 9Be, 13C and 17O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4π geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm3, 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  13. Self-absorption of neutron capture gamma-rays in gold samples

    International Nuclear Information System (INIS)

    The self absorption of neutron capture gamma rays in gold samples has been determined experimentally for two standard setups used in measurements of neutron capture cross sections. One makes use of an artificially collimated neutron beam and two C6D6 detectors, the other of kinematically collimated neutrons and three Moxon-Rae detectors. Correction factors for an actual measurement of a neutron capture cross section using a gold standard of 1 mm thickness up to 12% were found for the first setup while they are only 4% for the second setup. The present data allow to determine the correction in an actual measurement with an accuracy of 0.5-1%. (orig.)

  14. Concept of capture credit based on neutron-induced gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Capture credit (CapC) based on neutron-induced gamma ray spectroscopy (NIGS) is proposed to confirm the subcriticality of fuel debris in which nuclear fuel and structural materials are co-melted or mixed. By NIGS, rates of some capture reactions can be measured in relation to fission reactions. By the ratio, we can credit the negative reactivity inserted by the capture reactions. The theory of CapC is described. In order to demonstrate the benefit to take CapC for storage of the fuel debris, numerical simulations are performed for a hypothetical array of canisters in which the fuel debris is stored. A procedure of CapC based on NIGS is also proposed, which consists of several technologies: (1) NIGS, (2) simulations of a response and an efficiency of the γ ray detection, and (3) unfolding of the γ ray pulse height spectrum to obtain reaction rates. Experimental studies of NIGS have been launched in Kyoto university critical assembly facility. NIGS is firstly studied for simulated fuel debris of a few kinds of mixture of stainless steel and uranium in subcritical systems. The measured γ ray pulse height spectra and preliminary analyses indicate that CapC based on NIGS is worth to be investigated further for the efficient storage of fuel debris. (author)

  15. Tomographic image of prompt gamma ray from boron neutron capture therapy: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    The resulting neutron captures in 10B are used for radiation therapy. The occurrence point of the characteristic 478 keV prompt gamma rays agrees with the neutron capture point. If these prompt gamma rays are detected by external instruments such as a gamma camera or single photon emission computed tomography (SPECT), the therapy region can be monitored during the treatment using images. A feasibility study and analysis of a reconstructed image using many projections (128) were conducted. The optimization of the detection system and a detailed neutron generator simulation were beyond the scope of this study. The possibility of extracting a 3D BNCT-SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The quality of the prompt gamma ray SPECT image obtained from BNCT was evaluated quantitatively using three different boron uptake regions and was shown to depend on the location and size relations. The prospects for obtaining an actual BNCT-SPECT image were also estimated from the quality of the simulated image and the simulation conditions. When multi tumor regions should be treated using the BNCT method, a reasonable model to determine how many useful images can be obtained from SPECT can be provided to the BNCT facilities based on the preceding imaging research. However, because the scope of this research was limited to checking the feasibility of 3D BNCT-SPECT image reconstruction using multiple projections, along with an evaluation of the image, some simulation conditions were taken from previous studies. In the future, a simulation will be conducted that includes optimized conditions for an actual BNCT facility, along with an imaging process for motion correction in BNCT. Although an excessively long simulation time was required to obtain enough events for image reconstruction, the feasibility of acquiring a 3D BNCT-SPECT image using multiple projections was confirmed using a Monte Carlo simulation, and a quantitative image analysis was

  16. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    International Nuclear Information System (INIS)

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations

  17. Database of prompt gamma rays from slow neutron capture for elemental analysis

    International Nuclear Information System (INIS)

    The increasing importance of Prompt Gamma-ray Activation Analysis (PGAA) in a broad range of applications is evident, and has been emphasized at many meetings related to this topic (e.g., Technical Consultants' Meeting, Use of neutron beams for low- and medium-flux research reactors: radiography and materials characterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993). Furthermore, an Advisory Group Meeting (AGM) for the Coordination of the Nuclear Structure and Decay Data Evaluators Network has stated that there is a need for a complete and consistent library of cold- and thermal neutron capture gamma ray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended the organization of an IAEA CRP on the subject. The International Nuclear Data Committee (INDC) is the primary advisory body to the IAEA Nuclear Data Section on their nuclear data programs. At a biennial meeting in 1997, the INDC strongly recommended that the Nuclear Data Section support new measurements and update the database on Neutron-induced Prompt Gamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As a consequence of the various recommendations, a CRP on ''Development of a Database for Prompt Gamma-ray Neutron Activation Analysis (PGAA)'' was initiated in 1999. Prior to this project, several consultants had defined the scope, objectives and tasks, as approved subsequently by the IAEA. Each CRP participant assumed responsibility for the execution of specific tasks. The results of their and other research work were discussed and approved by the participants in research co-ordination meetings (see Summary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; and INDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method, capable of rapid or simultaneous ''in-situ'' multi-element analyses across the entire Periodic Table, from hydrogen to uranium. However, inaccurate and incomplete data were a significant hindrance in the

  18. Database of prompt gamma rays from slow neutron capture forelemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou,C.M.; Zerkin, V.

    2004-12-31

    The increasing importance of Prompt Gamma-ray ActivationAnalysis (PGAA) in a broad range of applications is evident, and has beenemphasized at many meetings related to this topic (e.g., TechnicalConsultants' Meeting, Use of neutron beams for low- andmedium-fluxresearch reactors: radiography and materialscharacterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993).Furthermore, an Advisory Group Meeting (AGM) for the Coordination of theNuclear Structure and Decay Data Evaluators Network has stated that thereis a need for a complete and consistent library of cold- and thermalneutron capture gammaray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended theorganization of an IAEA CRP on the subject. The International NuclearData Committee (INDC) is the primary advisory body to the IAEA NuclearData Section on their nuclear data programmes. At a biennial meeting in1997, the INDC strongly recommended that the Nuclear Data Section supportnew measurements andupdate the database on Neutron-induced PromptGamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As aconsequence of the various recommendations, a CRP on "Development of aDatabase for Prompt Gamma-ray Neutron Activation Analysis (PGAA)" wasinitiated in 1999. Prior to this project, several consultants had definedthe scope, objectives and tasks, as approved subsequently by the IAEA.Each CRP participant assumed responsibility for the execution of specifictasks. The results of their and other research work were discussed andapproved by the participants in research co-ordination meetings (seeSummary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; andINDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method,capable of rapid or simultaneous "in-situ" multi-element analyses acrossthe entire Periodic Table, from hydrogen to uranium. However, inaccurateand incomplete data were a significant hindrance in the qualitative andquantitative

  19. A search for double-electron capture in 74Se using coincidence/anticoincidence gamma-ray spectrometry

    CERN Document Server

    Jeskovsky, M; Kovacik, A; Povinec, P P; Puppe, P; Stanicek, J; Sykora, I; Simkovic, F; Thies, J H

    2015-01-01

    Evaluation of single, coincidence and anticoincidence gamma-ray spectrometry methods has been carried out with the aim to search for double-electron capture in 74Se. This process is unique, because there is probability for transition to the 2+ excited state in 74Ge (1204 keV), and de-excitation through two gamma-quanta cascade with energies of 595.9 keV and 608.4 keV. Long-term measurements with anticosmic shielded HPGe spectrometer and the coincidence HPGe-NaI(Tl) spectrometer did not show any evidence for the double-electron capture in 74Se. The best limit for the half-life of the double electron capture in 74Se (both for the neutrinoless and two neutrino processes) was estimated to be >1.5x10E19 years.

  20. Impact of a low-energy enhancement in the gamma-ray strength function on the radiative neutron-capture

    OpenAIRE

    Larsen, A.C.; Goriely, S.

    2012-01-01

    A low-energy enhancement of the gamma-ray strength function in several light and medium-mass nuclei has been observed recently in 3He-induced reactions. The effect of this enhancement on (n,gamma) cross-sections is investigated for stable and unstable neutron-rich Fe, Mo and Cd isotopes. Our results indicate that the radiative neutron capture cross sections may increase considerably due to the low-energy enhancement when approaching the neutron drip line. This could have non-negligible conseq...

  1. Monte Carlo assessment of soil moisture effect on high-energy thermal neutron capture gamma-ray by 14N.

    Science.gov (United States)

    Pazirandeh, Ali; Azizi, Maryam; Farhad Masoudi, S

    2006-01-01

    Among many conventional techniques, nuclear techniques have shown to be faster, more reliable, and more effective in detecting explosives. In the present work, neutrons from a 5 Ci Am-Be neutron source being in water tank are captured by elements of soil and landmine (TNT), namely (14)N, H, C, and O. The prompt capture gamma-ray spectrum taken by a NaI (Tl) scintillation detector indicates the characteristic photo peaks of the elements in soil and landmine. In the high-energy region of the gamma-ray spectrum, besides 10.829 MeV of (15)N, single escape (SE) and double escape (DE) peaks are unmistakable photo peaks, which make the detection of concealed explosive possible. The soil has the property of moderating neutrons as well as diffusing the thermal neutron flux. Among many elements in soil, silicon is more abundant and (29)Si emits 10.607 MeV prompt capture gamma-ray, which makes 10.829 MeV detection difficult. The Monte Carlo simulation was used to adjust source-target-detector distances and soil moisture content to yield the best result. Therefore, we applied MCNP4C for configuration very close to reality of a hidden landmine in soil.

  2. Thermal neutron capture gamma rays from sulfur isotopes: Experiment and theory

    Science.gov (United States)

    Raman, S.; Carlton, R. F.; Wells, J. C.; Jurney, E. T.; Lynn, J. E.

    1985-07-01

    We have carried out a systematic investigation of γ rays after thermal neutron capture by all stable sulfur isotopes (32S, 33S, 34S, and 36S). The measurements were made at the internal target facility at the Los Alamos Omega West Reactor. We detected a larger number of γ rays: ~100 in 33S, ~270 in 34S, ~60 in 35S, and ~15 in 37S. Before developing detailed level schemes, we culled and then consolidated the existing information on energies and Jπ values for levels of these nuclides. Based on the current data, we have constructed detailed decay schemes, which imply that there are significant populations of 26 excited states in 33S, 70 states in 34S, 20 states in 35S, and 7 states in 37S. By checking the intensity balance for these levels and by comparing the total intensity of primary transitions with the total intensity of secondary γ rays feeding the ground state, we have demonstrated the relative completeness of these decay schemes. For strongly populated levels, the branching ratios based on the current measurements are generally better than those available from previous measurements. In all four cases, a few primary electric dipole (E1) transitions account for a large fraction of the capture cross section for that particular nuclide. To understand and explain these transitions, we have recapitulated and further developed the theory of potential capture. Toward this end, we reviewed the theory relating off-resonance neutron capture to the optical-model capture. We studied a range of model-dependent effects (nature and magnitude of imaginary potential, surface diffuseness, etc.) on the potential capture cross section, and we have shown how experimental data may be analyzed using the expression for channel capture suitably modified by a factor that takes into account the model-dependent effects. The calculations of cross sections for most of the primary transitions in the sulfur isotopes are in good agreement with the data. Some discrepancies for weaker

  3. Uses of neutron capture gamma-rays in environmental pollution applications

    International Nuclear Information System (INIS)

    As a sensitive and accurate technique, the prompt gamma-rays neutron activation is used with success for elemental analysis. The advantages of this method over the other techniques are rapidity, usage of relatively large sample size and high reliability, beside the detection of the elements which have no gamma activity during the delayed neutron activation analysis or very short lived isotopes. Actually different techniques could be used for estimating the trace, minor and major elements of these environmental samples which are considered as complex samples. In the mean time the neutron activation analysis techniques have been improved and have become an excellent tool for elemental analysis of complex samples (Duffey et al., 1970; Senftle et al., 1971; Henkelmm and Born, 1973 ; Hassan et al., .; 1981, 1982, 1983; Clyton et al., 1983; Zaghloul et al., 1993) and the advantages of the prompt γ- ray neutron activation analysis over the other techniques put this technique in the fore front

  4. Study of 237Np photonuclear reactions near threshold, induced by gamma rays from thermal neutron capture

    International Nuclear Information System (INIS)

    The photodisintegration of 237Np has been studied using monochromatic photons produced by thermal neutron capture in several materials. The partial cross sections σ gamma, sub(f) and σ gamma, sub(n) were measured in the energy interval from 5.43 MeV to 10.83 MeV. Analysing the photofission data according to the liquid drop model, the height (E sub(f)) and the curvature ((h/2π)ω) of the simple fission barrier were determined: E sub(f) = (5.9 +- 0.2) MeV and (h/2π)ω = (0.8 +- 0.4) MeV. For the competition between photoneutron emission and fission (GAMMA sub(n) / GAMMA sub(f) a constant value was found (1.28+- 0.15) in the energy range 6.73 - 10.83 MeV. From this result the following nuclear temperatures for 237Np were extracted on bases of some models of levels density: T = 0.84 +- 0.06 MeV (Fujimoto-Yamaguchi model) and T = 0.60 +- 0.04 MeV (Constant Nuclear temperature model). (Author)

  5. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    International Nuclear Information System (INIS)

    This reaction can be applied to the therapy and diagnosis about the tumor simultaneously. After the compound labeled with the boron is accumulated at the tumor site, the alpha particle induced by the reaction between the thermal neutron and the boron induces tumor cell death. Also, the 478 keV prompt gamma ray is emitted from the same reaction point. If this single prompt photon is detected by single photon emission computed tomography (SPECT), the tomographic image of the therapy region can be monitored during the radiation treatment. However, in order to confirm the therapy region using the image during the treatment, the image needs to be provided promptly. Due to a relatively long acquisition time required to get SPECT images, both reduced number of projections and the fast image reconstruction schemes are needed to provide the images during radiation treatment. The computation time for image reconstruction using the GPU with the modified OSEM algorithm was measured and compared with the computation time using CPU. Through the results, we confirmed the feasibility of the image reconstruction for prompt gamma ray image using GPU for the BNCT. In the further study, the development of the algorithm for faster reconstruction of the prompt gamma ray image during the BNCT using the GPU computation will be conducted. Also, the analysis of the target to background level about the reconstructed image will be performed using the extracted image profile

  6. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk [College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of)

    2015-05-15

    This reaction can be applied to the therapy and diagnosis about the tumor simultaneously. After the compound labeled with the boron is accumulated at the tumor site, the alpha particle induced by the reaction between the thermal neutron and the boron induces tumor cell death. Also, the 478 keV prompt gamma ray is emitted from the same reaction point. If this single prompt photon is detected by single photon emission computed tomography (SPECT), the tomographic image of the therapy region can be monitored during the radiation treatment. However, in order to confirm the therapy region using the image during the treatment, the image needs to be provided promptly. Due to a relatively long acquisition time required to get SPECT images, both reduced number of projections and the fast image reconstruction schemes are needed to provide the images during radiation treatment. The computation time for image reconstruction using the GPU with the modified OSEM algorithm was measured and compared with the computation time using CPU. Through the results, we confirmed the feasibility of the image reconstruction for prompt gamma ray image using GPU for the BNCT. In the further study, the development of the algorithm for faster reconstruction of the prompt gamma ray image during the BNCT using the GPU computation will be conducted. Also, the analysis of the target to background level about the reconstructed image will be performed using the extracted image profile.

  7. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    Science.gov (United States)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  8. In-vivo measurement of kidney and liver cadmium by neutron capture prompt gamma-ray analysis

    International Nuclear Information System (INIS)

    A method for the determination of Cd in-vivo in human kidney and liver has been developed. The technique employs the detection of prompt gamma-rays emitted under slow neutron capture in Cd. The method allows measurement of absolute quantities of Cd in the left kidney and Cd concentration in the liver, in normal population. The limit of detection of cadmium is 2.5 mg for the left kidney and 1.5 μg/g (wet weight) for the liver, for a localized dose of 670 mrem

  9. Short gamma-ray bursts from tidal capture and collisions of compact stars in globular clusters

    CERN Document Server

    Lee, William H; van de Ven, Glenn

    2009-01-01

    A new mechanism is proposed by which short gamma-ray burst (SGRB) production can be achieved. In this new paradigm, it is supposed that the compact objects contained within a globular cluster (GC) interact through close encounters, rather than being driven together by pure gravitational wave emission in existing binaries. Here we perform a careful assessment of the relevant processes and stellar dynamics within GCs as these undergo core collapse over cosmic time. We show that such events are frequent enough in their cores to be consistent both with current observational rate demands for SGRB production and with the widening range of observed redshifts of the associated hosts. Precise modeling of the hydrodynamics allows for a detailed description of the encounter, and our calculations show that there is in principle no problem in accounting for the global energy budget of a typical SGRB. The particulars of each collision, are variable in several aspects, and can lead to interesting diversity. First, the chara...

  10. Gamma-ray methods

    International Nuclear Information System (INIS)

    Bulk analysis techniques using gamma radiation are described. The methods include gamma-ray induced reactions, selective gamma-ray scattering and methods which rely on natural radioactivity. The gamma-ray resonance scattering technique can be used for the determination of copper and nickel in bulk samples and drill cores. The application of gamma-gamma methods to iron ore analysis is outlined

  11. Measurements of gamma rays from keV-neutron resonance capture by odd-Z nuclei in the 2s-1d shell region

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki; Lee, Sam Yol; Mizuno, Satoshi; Hori, Jun-ichi [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Kitazawa, Hideo

    1998-03-01

    Measurements of gamma rays from keV-neutron resonance capture by {sup 19}F, {sup 23}Na, and {sup 27}Al, which are odd-Z nuclei in the 2s-1d shell region, were performed, using an anti-Compton HPGe spectrometer and a pulsed neutron source by the {sup 7}Li(p,n){sup 7}Be reaction. Capture gamma rays from the 27-, 49-, and 97-keV resonances of {sup 19}F, the 35- and 53-keV resonances of {sup 23}Na, and the 35-keV resonance of {sup 27}Al were observed. Some results are presented. (author)

  12. Determination of wax deposition and corrosion in pipelines by neutron back diffusion collimation and neutron capture gamma rays.

    Science.gov (United States)

    Abdul-Majid, Samir

    2013-04-01

    Wax deposition in pipelines can be very costly for plant operation in oil industry. New techniques are needed for allocation and thickness determination of wax deposits. The timely removal of wax can make large saving in operational cost. Neutron back diffusion and neutron capture gamma rays were used in this study to measure paraffin, asphalt and polyethylene deposition thicknesses inside pipes and to enable simultaneous determination of scale and pipe corrosion. It was possible to determine a thickness change of less than one mm in 2 min. It was also possible to detect localized scale from a small region of the pipe of approximately 2 cm in diameter. Although experiments were performed in lab, the system can be made portable for field applications. PMID:23410615

  13. First tests of the applicability of $\\gamma$-ray imaging for background discrimination in time-of-flight neutron capture measurements

    OpenAIRE

    Magán, D. L. Pérez; Caballero-Ontanaya, L.; Domingo-Pardo, C.; Agramunt-Ros, J.; Albiol, F.; Casanovas, A.; González, A; Guerrero, C.; Lerendegui-Marco, J.; Tarifeño-Saldivia, A.; Collaboration, the n_TOF

    2015-01-01

    In this work we explore for the first time the applicability of using $\\gamma$-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr$_3$ scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive car...

  14. Determination of the optimum-size californium-252 neutron source for borehole capture gamma-ray analysis

    Science.gov (United States)

    Senftle, F.E.; Macy, R.J.; Mikesell, J.L.

    1979-01-01

    The fast- and thermal-neutron fluence rates from a 3.7 ??g 252Cf neutron source in a simulated borehole have been measured as a function of the source-to-detector distance using air, water, coal, iron ore-concrete mix, and dry sand as borehole media. Gamma-ray intensity measurements were made for specific spectral lines at low and high energies for the same range of source-to-detector distances in the iron ore-concrete mix and in coal. Integral gamma-ray counts across the entire spectrum were also made at each source-to-detector distance. From these data, the specific neutron-damage rate, and the critical count-rate criteria, we show that in an iron ore-concrete mix (low hydrogen concentration), 252Cf neutron sources of 2-40 ??g are suitable. The source size required for optimum gamma-ray sensitivity depends on the energy of the gamma ray being measured. In a hydrogeneous medium such as coal, similar measurements were made. The results show that sources from 2 to 20 ??g are suitable to obtain the highest gamma-ray sensitivity, again depending on the energy of the gamma ray being measured. In a hydrogeneous medium, significant improvement in sensitivity can be achieved by using faster electronics; in iron ore, it cannot. ?? 1979 North-Holland Publishing Co.

  15. Planetary gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    The chemical composition of a planet can be inferred from the gamma rays escaping from its surface and can be used to study its origin and evolution. The measured intensities of certain gamma rays of specific energies can be used to determine the abundances of a number of elements. The major sources of these gamma-ray lines are the decay of natural radionuclides, reactions induced by energetic galactic-cosmic-ray particles, capture of low energy neutrons, and solar-proton-induced radioactivities. The fluxes of the more intense gamma-ray lines emitted from 30 elements were calculated using current nuclear data and existing models. The source strengths for neutron-capture reactions were modified from those previously used. The fluxes emitted from a surface of average lunar composition are reported for 288 gamma-ray lines. These theoretical fluxes have been used elsewhere to convert the data from the Apollo gamma-ray spectrometers to elemental abundances and can be used with results from future missions to map the concentrations of a number of elements over a planet's surface. Detection sensitivities for these elements are examined and applications of gamma-ray spectroscopy for future orbiters to Mars and other solar-system objects are discussed

  16. Planetary gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, R.C.

    1978-01-01

    The chemical composition of a planet can be inferred from the gamma rays escaping from its surface and can be used to study its origin and evolution. The measured intensities of certain gamma rays of specific energies can be used to determine the abundances of a number of elements. The major sources of these gamma-ray lines are the decay of natural radionuclides, reactions induced by energetic galactic-cosmic-ray particles, capture of low energy neutrons, and solar-proton-induced radioactivities. The fluxes of the more intense gamma-ray lines emitted from 30 elements were calculated using current nuclear data and existing models. The source strengths for neutron-capture reactions were modified from those previously used. The fluxes emitted from a surface of average lunar composition are reported for 288 gamma-ray lines. These theoretical fluxes have been used elsewhere to convert the data from the Apollo gamma-ray spectrometers to elemental abundances and can be used with results from future missions to map the concentrations of a number of elements over a planet's surface. Detection sensitivities for these elements are examined and applications of gamma-ray spectroscopy for future orbiters to Mars and other solar-system objects are discussed.

  17. Gamma ray internal conversion lines shift resulting from atom ionization after electron capture

    International Nuclear Information System (INIS)

    Energy differencies of four couples of transitions in γ- and conversion spectra of 152Eu and 184Re isomers are measured with high precision. γ-spectra are measured using the HGe detectors. The spectra of conversion electrons are measured using the magnetic high-resolution beta-spectrometer of the π√2 type. The comparison of energy differences of γ-rays of 963 and 970 keV transitions with the energy difference of their K-lines has revealed the effect of K-line internal conversion shift which is 20±7eV for K963 transition resolving the level from T1/2=3x10-14s 152Sm. The comparison of energy differences of 963 and 964 keV transitions has produced the shift value for K963 20±9eV. The average weighted value of these two independent measurements is 20±6eV. For conversion transitions resolving more long-lived levels (T1/2≥9x10-13s) the effect is not found. The lifetime of atoms in the ionized state is estimated

  18. A search for double-electron capture of {sup 74}Se to excited levels using coincidence/anticoincidence gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ješkovský, M. [Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Nuclear Physics and Biophysics, 84248 Bratislava (Slovakia); Frekers, D. [Institut für Kernphysik, Westfälische Wilhelms Universität, Münster (Germany); Kováčik, A. [Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Nuclear Physics and Biophysics, 84248 Bratislava (Slovakia); Povinec, P.P., E-mail: povinec@fmph.uniba.sk [Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Nuclear Physics and Biophysics, 84248 Bratislava (Slovakia); Puppe, P. [Institut für Kernphysik, Westfälische Wilhelms Universität, Münster (Germany); Staníček, J.; Sýkora, I. [Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Nuclear Physics and Biophysics, 84248 Bratislava (Slovakia); Šimkovic, F. [Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Nuclear Physics and Biophysics, 84248 Bratislava (Slovakia); Joint Institute for Nuclear Research, Dubna, Moscow Region (Russian Federation); Thies, J.H. [Institut für Kernphysik, Westfälische Wilhelms Universität, Münster (Germany)

    2015-09-21

    Evaluation of single, coincidence and anticoincidence gamma-ray spectrometry methods has been carried out with the aim to search for double-electron capture of {sup 74}Se to excited states. This process is unique, because there is probability for transition to the 2{sup +} excited state in {sup 74}Ge (1204 keV), and de-excitation through two gamma-quanta cascade with energies of 595.9 keV and 608.4 keV. Long-term measurements with an anticosmic shielded HPGe (high purity Ge) spectrometer and a coincidence HPGe–NaI(Tl) spectrometer did not show any evidence for the double-electron capture in {sup 74}Se. The best limit for the half-life of the double electron capture in {sup 74}Se (both for the neutrinoless and two neutrino processes) was estimated to be >1.5×10{sup 19} yr.

  19. Monte Carlo assessment of soil moisture effect on high-energy thermal neutron capture gamma-ray by {sup 14}N

    Energy Technology Data Exchange (ETDEWEB)

    Pazirandeh, Ali [Physics Department, University of Tehran, Tehran (Iran, Islamic Republic of) and Institute for Theoretical and Applied Physics, Tabriz (Iran, Islamic Republic of)]. E-mail: paziran@ut.ac.ir; Azizi, Maryam [Physics Department, University of Tehran, Tehran (Iran, Islamic Republic of); Institute for Theoretical and Applied Physics, Tabriz (Iran, Islamic Republic of); Farhad Masoudi, S. [Physics Department, University of Tehran, Tehran (Iran, Islamic Republic of); Institute for Theoretical and Applied Physics, Tabriz (Iran, Islamic Republic of)

    2006-01-01

    Among many conventional techniques, nuclear techniques have shown to be faster, more reliable, and more effective in detecting explosives. In the present work, neutrons from a 5 Ci Am-Be neutron source being in water tank are captured by elements of soil and landmine (TNT), namely {sup 14}N, H, C, and O. The prompt capture gamma-ray spectrum taken by a NaI (Tl) scintillation detector indicates the characteristic photo peaks of the elements in soil and landmine. In the high-energy region of the gamma-ray spectrum, besides 10.829 MeV of {sup 15}N, single escape (SE) and double escape (DE) peaks are unmistakable photo peaks, which make the detection of concealed explosive possible. The soil has the property of moderating neutrons as well as diffusing the thermal neutron flux. Among many elements in soil, silicon is more abundant and {sup 29}Si emits 10.607 MeV prompt capture gamma-ray, which makes 10.829 MeV detection difficult. The Monte Carlo simulation was used to adjust source-target-detector distances and soil moisture content to yield the best result. Therefore, we applied MCNP4C for configuration very close to reality of a hidden landmine in soil.

  20. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baramsai, Bayarbadrakh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jandel, Marian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vieira, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilhelmy, Jerry B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Becker, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Krticka, Milan [Charles Univ., Prague (Czech Republic)

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  1. Gamma-ray Astronomy

    CERN Document Server

    Hinton, Jim

    2007-01-01

    The relevance of gamma-ray astronomy to the search for the origin of the galactic and, to a lesser extent, the ultra-high-energy cosmic rays has long been recognised. The current renaissance in the TeV gamma-ray field has resulted in a wealth of new data on galactic and extragalactic particle accelerators, and almost all the new results in this field were presented at the recent International Cosmic Ray Conference (ICRC). Here I summarise the 175 papers submitted on the topic of gamma-ray astronomy to the 30th ICRC in Merida, Mexico in July 2007.

  2. U-238 neutron-capture gamma-cascade generation and transport simulation for capture-tank response (final report). Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Rosener, T.J.

    1992-05-07

    A computer analysis has been performed to evaluate the energy dependent response of a capture tank to the gamma rays emitted in the cascades of the excited U-239 nucleus. This model determines the energies of the gamma-ray cascades, the order of emission of the gamma rays in a cascade, and the gamma-ray multiplicity of the cascades using Monte Carlo techniques. A capture tank responds to the combined effect of the various gamma rays emitted in the cascade. Examined is the energy deposition in a capture tank by the cascades generated in resonant (surface) capture and off-resonant (volumetric) capture, with and without internal conversion. Off-resonant capture deposits, on the average, less energy than resonant capture, due to self-shielding of the gamma-rays in the capture sample. Internal conversion has negligible effect on the average cascade energy deposited in the capture tank. Gamma-ray cascade, Capture tank, U-238 neutron capture.

  3. Gamma-ray sources

    International Nuclear Information System (INIS)

    Results are presented from an analysis of the celestial gamma-ray fine-scale structure based on over half of the data which may ultimately be available from the COS-B satellite. A catalogue consisting of 25 gamma-ray sources measured at energies above 100 MeV is presented. (Auth.)

  4. Measurements of neutron-induced capture and fission reactions on $^{235}$ U: cross sections and ${\\alpha}$ ratios, photon strength functions and prompt ${\\gamma}$-ray from fission

    CERN Multimedia

    We propose to measure the neutron-induced capture cross section of the fissile isotope $^{235}$U using a fission tagging set-up. This new set-up has been tested successfully in 2010 and combines the n_TOF 4${\\pi}$ Total Absorption Calorimeter (TAC) with MicroMegas (MGAS) fission detectors. It has been proven that such a combination of detectors allows distinguishing with very good reliability the electromagnetic cascades from the capture reactions from dominant ${\\gamma}$-ray background coming from the fission reactions. The accurate discrimination of the fission background is the main challenge in the neutron capture cross section measurements of fissile isotopes. The main results from the measurement will be the associated capture cross section and ${\\alpha}$ ratio in the resolved (0.3-2250 eV) and unresolved (2.25-30 keV) resonance regions. According to the international benchmarks and as it is mentioned in the NEA High Priority Request List (HPRL), the 235U(n,${\\gamma}$) cross section is of utmost impo...

  5. First tests of the applicability of $\\gamma$-ray imaging for background discrimination in time-of-flight neutron capture measurements

    CERN Document Server

    Magán, D L Pérez; Domingo-Pardo, C; Agramunt-Ros, J; Albiol, F; Casanovas, A; González, A; Guerrero, C; Lerendegui-Marco, J; Tarifeño-Saldivia, A

    2015-01-01

    In this work we explore for the first time the applicability of using $\\gamma$-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr$_3$ scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a $^{197}$Au sample have been carried out at n\\_TOF, achieving an enhancement of a factor of 2 in the signal-to-background ratio when selecting only those events coming from the direction of the sample.

  6. A new gamma-ray diagnostic for energetic ion distributions - The Compton tail on the neutron capture line

    Science.gov (United States)

    Vestrand, W. Thomas

    1990-01-01

    This paper presents a new radiation diagnostic for assaying the energy spectrum and the angular distribution of energetic ions incident on thick hydrogen-rich thermal targets. This diagnostic compares the number of emergent photons in the narrow neutron capture line at 2.223 MeV to the number of Compton scattered photons that form a low-energy tail on the line. It is shown that the relative strength of the tail can be used as a measure of the hardness of the incident ion-energy spectrum. Application of this diagnostic to solar flare conditions is the main thrust of the work presented here. It is examined how the strength of the Compton tail varies with flare viewing angle and the angular distribution of the flare-accelerated particles. Application to compact X-ray binary systems is also briefly discussed.

  7. GAMMA-400 gamma-ray observatory

    CERN Document Server

    Topchiev, N P; Bonvicini, V; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bakaldin, A V; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, L; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Cumani, P; Dalkarov, O D; Dedenko, G L; De Donato, C; Dogiel, V A; Finetti, N; Gascon, D; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Martinez, M; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Paredes, J M; Pearce, M; Picozza, P; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Stozhkov, Yu I; Suchkov, S I; Taraskin, A A; Tavani, M; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Ward, J E; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The energy range of GAMMA-400 is expected to be from ~20 MeV up to TeV energies for gamma rays, up to 20 TeV for electrons + positrons, and up to 10E15 eV for cosmic-ray nuclei. For high-energy gamma rays with energy from 10 to 100 GeV, the GAMMA-400 angular resolution improves from 0.1{\\deg} to ~0.01{\\deg} and energy resolution from 3% to ~1%; the proton rejection factor is ~5x10E5. GAMMA-400 will be installed onboard the Russian space observatory.

  8. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  9. Neutron photoproduction in sup 2 sup 3 sup 2 Th and sup 2 sup 3 sup 8 U using thermal neutron capture gamma-rays in the energy range 5.61 to 10.83 MeV

    CERN Document Server

    Goncalez, O L

    1998-01-01

    Neutron photoproduction studies for sup 2 sup 3 sup 2 Th and sup 2 sup 3 sup 8 U were carried out from 5.6 to 10.8 MeV, using neutron capture gamma-rays with high resolution in energy (3 to 21 eV), produced by 30 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 2 MW research reactor. The samples (17.76 g of U sub 3 sub O sub 8 depleted to 0.349% in sup 2 sup 3 sup 5 U and 19.93 g of natural Th O sub 2) have been irradiated inside a 4 pi geometry neutron detector system sup L ong Counter sup , 520.5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (E G and G Ortec, 25 cm sup 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A methodology for unfolding the set of expe...

  10. SVOM Gamma Ray Monitor

    CERN Document Server

    Dong, Yongwei; Li, Yanguo; Zhang, Yongjie; Zhang, Shuangnan

    2009-01-01

    The Space-based multi-band astronomical Variable Object Monitor (SVOM) mission is dedicated to the detection, localization and broad-band study of Gamma-Ray Bursts (GRBs) and other high-energy transient phenomena. The Gamma Ray Monitor (GRM) onboard is designed to observe the GRBs up to 5 MeV. With this instrument one of the key GRB parameter, Epeak, can be easily measured in the hard x-ray band. It can achieve a detection rate of 100 GRBs per year which ensures the scientific output of SVOM.

  11. SVOM gamma ray monitor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The space-based multi-band astronomical Variable Object Monitor(SVOM) mission is dedicated to the detection,localization and broad-band study of gamma-ray bursts(GRBs) and other high-energy transient phenomena.The gamma ray monitor(GRM) onboard is designed to observe GRBs up to 5 MeV.With this instrument,one of the key GRB parameters,Epeak,can be easily measured in the hard X-ray band.It can achieve a detection rate of 100 GRBs per year which ensures the scientific output of SVOM.

  12. Photofission cross sections of U-233 and Pu-239 near threshold induced by gamma-rays from thermal neutron capture

    International Nuclear Information System (INIS)

    The photofission cross sections of U-233 and PU-239 have been studied using monochromatic photons produced by thermal neutron capture in several materials placed in a radial beam hole of the IEA-R1, 2 MW pool type research reactor, in the energy interval from 5.43 MeV to 9.72 MeV. The gamma flux incident on the samples were measured using a (3X3) inch. NaI(Tl) crystal. The photofission fragments were detected in MAKROFOL-KG (solid state nuclear track detector) etched 30 min. in a KOH (35%wt) solution at 600C. The efficiency of the detector was obtained using a Californium-252 calibrated source and its value was (0.4323 ± 3%). The tracks were counted by means of an automatic spark counting. Analyzing the photofission data we have observed similarities between the cross sections obtained for the two samples in comparison with other authors. A structure was also observed in the U-233 cross section near the energy of 7.23 MeW. Acoording to the liquid drop model the height of the simple fission barrier were determined: (5.6 ± 0.2) MeV and (5.7 ± 0.2) MeV for U-233 and Pu-239 respectively. The relative fissionability of the samples to U-238 were also determined in each excitation energy and showed to be energy independent: (2.12 +-0.25) for U-233, and (3.32+-0.41) for Pu-239. (author)

  13. Photonuclear reactions of U-233 and Pu-239 near threshold induced by thermal neutron capture gamma rays

    International Nuclear Information System (INIS)

    The photonuclear cross sections of U-293 and Pu-239 have been studied by using monochromatic and discrete photons, in the energy interval from 5.49 to 9.72 MeV, produced by thermal neutron capture. The gamma fluxes incident on the samples were measured using a ( 3 x 3 )'' NaI (TI) crystal. The photofission fragments were detected in Makrofol-Kg (SSNTD). A possible structure was observed in the U-233 cross sections, near 7.23 MeV. The relative fissionability of the nuclides was determined at each excitation energy and shown to be energy independent: ( 2.12 ± 0.25) for U-233 and ( 3.32 ± 0.41 ) for Pu-239. The angular distribution of photofission fragments of Pu-239 were measured at two mean excitation energies of 5.43 and 7.35 MeV. An anisotropic distribution of ( 12.2 ± 3.6 ) % was observed at 5.43 MeV. The total neutron cross sections were measured by using a long counter detector. The photoneutron cross sections were calculated by using energy dependent neutron multiplicities values, γ(E), obtained in the literature. The competition Γn/γf was also determined at each excitation energy, and shown to be energy independent: ( 0.54 ± 0.05 ) for U-233 and ( 0.44 ± 0.05 ) for Pu-239, and were correlated to the parameters Z sup(2)/A, ( Ef'-Bn'), A. According to the FUJIMOTO-YAMAGUCHI and CONSTANT NUCLEAR TEMPERATURE models, the nuclear temperatures were calculated. The total photoabsorption cross sections were also calculated as a sum of the photofission and photoneutron cross sections at each energy excitation. From these results the competition Γf/ΓA, called fission probability Pf, were obtained: ( 0.66 ± 0.02) for U-233 and ( 0.70 ± 0.02 ) for Pu-239. (author)

  14. Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  15. Gamma-Ray Bursts

    Science.gov (United States)

    Gehrels, Neil; Mészáros, Péter

    2012-08-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow.

  16. Gamma Ray Bursts

    CERN Document Server

    Gehrels, Neil; 10.1126/science.1216793

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day, last typically 10s of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  17. Detection efficiency for radionuclides decaying by electron capture and gamma-Ray; Calculo de la eficiencia de deteccion de nucleidos que se desintegran por captura elec- tronica y emision gamma

    Energy Technology Data Exchange (ETDEWEB)

    Grau, A.; Fernandez, A.

    1985-07-01

    In this paper, the electron capture partial counting efficiency vs the figure of merit for electron-capture and gamma-ray emitters has been computed. The radionuclides tabulated are 48{sup c}r, 54{sup M}n, 57{sup C}o 56{sup N}i, 72{sup S}e, 73{sup A}s, 85{sup S}r, 88{sup Z}r, 92{sup N}b, 103{sup P}d, 111{sup l}n, 119{sup S}b, 125{sup I}, 139{sup C}e and 152{sup D}y. It has been assumed that the liquid is a toluene based scintillator solution in standard glass vials containing 15 cm{sup 3}. (Author) 17 refs.

  18. Chemist's gamma-ray table

    International Nuclear Information System (INIS)

    An edited listing of gamma-ray information has been prepared. Prominent gamma rays originating from nuclides with half lives long enough to be seen in radiochemical experiments are included. Information is ordered by nuclide in one section and by energy in a second section. This shorter listing facilitates identification of nuclides responsible for gamma rays observed in experiments

  19. Study of p-wave gamma-ray strength functions

    International Nuclear Information System (INIS)

    Gamma-ray strength functions are important for description of the gamma emission channel in nuclear reactions. The impact of different models- Weisskopf's single particle model, Brink's standard Lorentzian and Kopecky's generalized Lorentzian for gamma ray strength functions on the calculation of neutron capture related experimental quantities such as total radiation widths Γγ cross sections and gamma-ray spectra has been studied

  20. Gamma-Ray Localization of Terrestrial Gamma-Ray Flashes

    CERN Document Server

    Marisaldi, M; Trois, A; Giuliani, A; Tavani, M; Labanti, C; Fuschino, F; Bulgarelli, A; Longo, F; Barbiellini, G; Del Monte, E; Moretti, E; Trifoglio, M; Costa, E; Caraveo, P; Cattaneo, P W; Chen, A; D'Ammando, F; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Froysland, T; Galli, M; Gianotti, F; Lapshov, I; Lazzarotto, F; Lipari, P; Mereghetti, S; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Picozza, P; Piano, G; Pilia, M; Prest, M; Pucella, G; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Striani, E; Vallazza, E; Vercellone, S; Vittorini, V; Zambra, A; Zanello, D; Antonelli, L A; Colafrancesco, S; Cutini, S; Giommi, P; Lucarelli, F; Pittori, C; Santolamazza, P; Verrecchia, F; Salotti, L; 10.1103/PhysRevLett.105.128501

    2010-01-01

    Terrestrial Gamma-Ray Flashes (TGFs) are very short bursts of high energy photons and electrons originating in Earth's atmosphere. We present here a localization study of TGFs carried out at gamma-ray energies above 20 MeV based on an innovative event selection method. We use the AGILE satellite Silicon Tracker data that for the first time have been correlated with TGFs detected by the AGILE Mini-Calorimeter. We detect 8 TGFs with gamma-ray photons of energies above 20 MeV localized by the AGILE gamma-ray imager with an accuracy of 5-10 degrees at 50 MeV. Remarkably, all TGF-associated gamma rays are compatible with a terrestrial production site closer to the sub-satellite point than 400 km. Considering that our gamma rays reach the AGILE satellite at 540 km altitude with limited scattering or attenuation, our measurements provide the first precise direct localization of TGFs from space.

  1. Applied gamma-ray spectrometry

    CERN Document Server

    Dams, R; Crouthamel, Carl E

    1970-01-01

    Applied Gamma-Ray Spectrometry covers real life application of the gamma-ray and the devices used in their experimental studies. This book is organized into 9 chapters, and starts with discussions of the various decay processes, the possible interaction mechanisms of gamma radiation with matter, and the intrinsic and extrinsic variables, which affect the observed gamma-ray and X-ray spectra. The subsequent chapters deal with the properties and fabrication of scintillation detectors, semiconductor detectors, and proportional gas counters. These chapters present some of the most widely utilized

  2. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components. ...

  3. Gamma Spectrum from Neutron Capture on Tungsten Isotopes

    International Nuclear Information System (INIS)

    An evaluation of thermal neutron capture on the stable tungsten isotopes is presented, with preliminary results for the compound systems 183,184,185,187W. The evaluation procedure compares the γ-ray cross-section data collected at the Budapest reactor, with Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process. The statistical-decay code DICEBOX was used for the Monte Carlo simulations. The evaluation yields new gamma rays in 185W and the confirmation of spins in 187W, raising the number of levels below which the level schemes are considered complete, thus increasing the number of levels that can be used in neutron data libraries.

  4. Gamma-ray Pulsar Revolution

    OpenAIRE

    Caraveo, Patrizia A.

    2013-01-01

    Isolated Neutron Stars (INSs) were the first sources identified in the field of high-energy gamma-ray astronomy. At first, in the 70s, there were only two identified sources, the Crab and Vela pulsars. However, although few in number, these objects were crucial in establishing the very concept of a gamma-ray source. Moreover, they opened up significant discovery space both in the theoretical and phenomenological fronts. The need to explain the copious gamma-ray emission of these pulsars led t...

  5. Gamma-ray-selected AGN

    Science.gov (United States)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  6. Extragalactic Gamma-Ray Astrophysics

    CERN Document Server

    CERN. Geneva

    2016-01-01

    During the last decades, various classes of radio-loud active galactic nuclei have been established as sources of high-energy radiation extending over a very broad range from soft gamma-rays (photon energies E~MeV) up to very-high-energy gamma-rays (E>100 GeV). These include blazars of different types, as well as young and evolved radio galaxies. The observed gamma-ray emission from such implies efficient particle acceleration processes taking place in highly magnetized and relativistic jets produced by supermassive black holes, processes that have yet to be identified and properly understood. In addition, nearby starforming and starburst galaxies, some of which host radio-quiet Seyfert-type nuclei, have been detected in the gamma-ray range as well. In their cases, the observed gamma-ray emission is due to non-thermal activity in the interstellar medium, possibly including also a contribution from accretion disks and nuclear outflows. Finally, the high-energy emission from clusters of galaxies remains elusive...

  7. Terrestrial gamma-ray flashes

    Energy Technology Data Exchange (ETDEWEB)

    Marisaldi, Martino, E-mail: marisaldi@iasfbo.inaf.it [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Fuschino, Fabio; Labanti, Claudio [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Tavani, Marco [INAF-IASF Roma, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Argan, Andrea [INAF, Viale del Parco Mellini 84, 00136 Roma (Italy); Del Monte, Ettore [INAF-IASF Roma, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Longo, Francesco; Barbiellini, Guido [Dipartimento di Fisica Università di Trieste and INFN Trieste, via A. Valerio 2, I-34127 Trieste (Italy); Giuliani, Andrea [INAF-IASF Milano, Via Bassini 15, I-20133 Milano (Italy); Trois, Alessio [INAF Osservatorio Astronomico di Cagliari, loc. Poggio dei Pini, strada 54, I-09012 Capoterra (Italy); Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2013-08-21

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  8. Zeptosecond $\\gamma$-ray pulses

    CERN Document Server

    Klaiber, Michael; Keitel, Christoph H

    2007-01-01

    High-order harmonic generation (HHG) in the relativistic regime is employed to obtain zeptosecond pulses of $\\gamma$-rays. The harmonics are generated from atomic systems in counterpropagating strong attosecond laser pulse trains of linear polarization. In this setup recollisions of the ionized electrons can be achieved in the highly relativistic regime via a reversal of the commonly deteriorating drift and without instability of the electron dynamics such as in a standing laser wave. As a result, coherent attosecond $\\gamma$-rays in the 10 MeV energy range as well as coherent zeptosecond $\\gamma$-ray pulses of MeV photon energy for time-resolved nuclear spectroscopy become feasible.

  9. Dark Gamma Ray Bursts

    OpenAIRE

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2016-01-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stell...

  10. Gamma rays in thunderstorms

    International Nuclear Information System (INIS)

    Not only lightning occur in thunderstorms but also luminous flashes that are emitted upwards over the clouds. These flashes have been studied for 20 years. Satellites have detected gamma flashes with an energy of 30 MeV. It was thought that these flashes resulted from collisions between cosmic particles and cloud molecules but recent results from the Italian Agile satellite question this explanation. Gamma flashes with an energy of 100 MeV have been detected which is too high an energy to be explained by collisions with cosmic particles. Another result show the existence of very strong acceleration of electrons in areas where some type of flashes are likely to happen. (A.C.)

  11. Gamma-ray Imaging Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  12. Gamma-ray burst spectra

    Science.gov (United States)

    Teegarden, B. J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events.

  13. Photoneutron cross sections measurements in {sup 9}Be, {sup 13}C e {sup 17}O with thermal neutron capture gamma-rays; Medidas das secoes de choque de fotoneutrons do {sup 9}Be, {sup 13}C e {sup 17}O com radiacao gama de captura de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Renato

    2006-07-01

    Photoneutron cross sections measurements of {sup 9}Be, {sup 13}C and {sup 17}O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4{pi} geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm{sup 3}, 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  14. Neutrinos from Gamma Ray Bursts

    CERN Document Server

    Mannheim, K

    2000-01-01

    The observed fluxes of cosmic rays and gamma rays are used to infer the maximum allowed high-energy neutrino flux allowed for Gamma Ray Bursts (GRBs), following Mannheim, Protheroe, and Rachen (2000). It is shown that if GRBs produce the ultrahigh-energy cosmic rays, they should contribute (a) at least 10% of the extragalactic gamma ray background between 3 MeV and 30 GeV, contrary to their observed energy flux which is only a minute fraction of this flux, and (b) a cumulative neutrino flux a factor of 20 below the AMANDA (Neutrino 2000) limit on isotropic neutrinos. This could have two implications, either GRBs do not produce the ultrahigh energy cosmic rays or that the GRBs are strongly beamed and emit most of their power at energies well above 100 GeV implausibly increasing the energy requirements, but consistent with the marginal detections of a few low-redshift GRBs by MILAGRITO, HEGRA-AIROBICC, and the Tibet-Array. All crucial measurements to test the models will be available in the next few years. Thes...

  15. Novae in gamma-rays

    CERN Document Server

    Hernanz, M

    2013-01-01

    Classical novae produce radioactive nuclei which are emitters of gamma-rays in the MeV range. Some examples are the lines at 478 and 1275 keV (from 7Be and 22Na) and the positron-electron annihilation emission (511 keV line and a continuum below this energy, with a cut-off at 20-30 keV). The analysis of gamma-ray spectra and light curves is a potential unique and powerful tool both to trace the corresponding isotopes and to give insights on the properties of the expanding envelope determining its transparency. Another possible origin of gamma-rays is the acceleration of particles up to very high energies, so that either neutral pions or inverse Compton processes produce gamma-rays of energies larger than 100 MeV. MeV photons during nova explosions have not been detected yet, although several attempts have been made in the last decades; on the other hand, GeV photons from novae have been detected in some particular novae, in symbiotic binaries, where the companion is a red giant with a wind, instead of a main ...

  16. Gamma ray slush hydrogen monitor

    Science.gov (United States)

    Singh, Jag J.; Shen, Chih-Peng; Sprinkle, Danny R.

    1992-01-01

    Mass attenuation for 109Cd radiation have been measured in mixtures of phases and in single phases of five chemical compounds. As anticipated, the mass attenuation coefficients are independent of the phases of the test chemicals. It is recommended that a slush hydrogen monitoring system based on low energy gamma ray attenuation be developed for utilization aboard the NASP.

  17. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Patrick Das Gupta

    2004-10-01

    After a short review of gamma ray bursts (GRBs), we discuss the physical implications of strong statistical correlations seen among some of the parameters of short duration bursts (90 < 2 s). Finally, we conclude with a brief sketch of a new unified model for long and short GRBs.

  18. GAMMA-RAY AND X-RAY EMISSION FROM GAMMA-RAY-LOUD BLAZARS

    Institute of Scientific and Technical Information of China (English)

    ZHANG XIONG; ZHAO GANG; XIE GUANG-ZHONG; ZHENG GUANG-SHENG; ZHANG LI

    2001-01-01

    We present a strong correlation of the gamma-ray (above 100 MeV) mean spectral indices aγ and X-ray (1 keV)mean spectral indices cX for 34 gamma-ray-loud blazars (16 BL Lac objects and 18 flat spectrum radio quasars). Astrong correlation is also found between the gamma-ray flux densities F-γ and X-ray flux densities Fx in the low state for 47 blazars (17 BL Lac and 30 flat spectrum radio quasars). Possible correlation on the gamma-ray emission mechanism is discussed. We suggest that the main gamma-ray radiation mechanism is probably the synchrotron process. The gamma-ray emission may be somewhat different from that of BL Lac objects and flat spectrum radio quasars.

  19. Dark Gamma Ray Bursts

    CERN Document Server

    Brdar, Vedran; Liu, Jia

    2016-01-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p-wave process than for s-wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to Standard Model particles later, the annihilation bu...

  20. X-Ray Observations of Gamma-Ray Burst Afterglows

    OpenAIRE

    Frontera, Filippo

    2004-01-01

    The discovery by the BeppoSAX satellite of X-ray afterglow emission from the gamma-ray burst which occurred on 28 February 1997 produced a revolution in our knowledge of the gamma-ray burst phenomenon. Along with the discovery of X-ray afterglows, the optical afterglows of gamma-ray bursts were discovered and the distance issue was settled, at least for long $\\gamma$-ray bursts. The 30 year mystery of the gamma-ray burst phenomenon is now on the way to solution. Here I rewiew the observationa...

  1. Cascaded Gamma Rays as a Probe of Cosmic Rays

    Science.gov (United States)

    Murase, Kohta

    2014-06-01

    Very-high-energy (VHE) and ultra-high-energy (UHE) gamma rays from extragalactic sources experience electromagnetic cascades during their propagation in intergalactic space. Recent gamma-ray data on TeV blazars and the diffuse gamma-ray background may have hints of the cascade emission, which are especially interesting if it comes from UHE cosmic rays. I show that cosmic-ray-induced cascades can be discriminated from gamma-ray-induced cascades with detailed gamma-ray spectra. I also discuss roles of structured magnetic fields, which suppress inverse-Compton pair halos/echoes but lead to guaranteed signals - synchrotron pair halos/echoes.

  2. Understanding Low Energy Gamma Emission from Fission and Capture with DANCE

    Science.gov (United States)

    Wilburn, Grey; Couture, Aaron; Mosby, Shea

    2012-10-01

    Los Alamos National Laboratory's Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 barium fluoride (BaF2) detectors in a 4π array used to study cross-section measurements from neutron capture reactions. Further, recent studies have taken advantage of DANCE to study the gamma emission from fission, which is not well characterized. Neutron capture is studied because of its relevance to nuclear astrophysics (almost all elements heavier than iron are formed via neutron capture) and nuclear energy, where neutron capture is a poison in the reactor. Gamma ray cascades following neutron capture and fission include photons with energies between 100 keV and 10 MeV. DANCE uses a ^6LiH sphere to attenuate scattered neutrons, the primary background in DANCE. Unfortunately, it also attenuates low energy gamma rays. In order to quantify this effect and validate simulations, direct measurements of low energy gammas were made with a high purity germanium (HPGe) crystal. HPGe's allow for high resolution measurements of low energy gamma rays that are not possible using the BaF2 crystals. The results and their agreement with simulations will be discussed.

  3. Airborne gamma ray spectrometer surveying

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  4. Gamma-ray performance of the GAMMA-400 detector

    CERN Document Server

    Cumani, P; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Sarkar, R; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    GAMMA-400 is a new space mission, designed as a dual experiment, capable to study both high energy gamma rays (from $\\sim$100 MeV to few TeV) and cosmic rays (electrons up to 20 TeV and nuclei up to $\\sim$10$^{15}$ eV). The full simulation framework of GAMMA-400 is based on the Geant4 toolkit. The details of the gamma-ray reconstruction pipeline in the three main instruments (Tracker, Imaging Calorimeter, Homogeneous Calorimeter) will be outlined. The performance of GAMMA-400 (PSF, effective area and sensitivity) have been obtained using this framework. The most updated results on them will be shown.

  5. Gamma-Ray Interactions for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  6. Gamma-Ray Interactions for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research.

  7. X-Ray and Gamma-Ray Radiation Detector

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed is a semiconductor radiation detector for detecting X-ray and / or gamma-ray radiation. The detector comprises a converter element for converting incident X-ray and gamma-ray photons into electron-hole pairs, at least one cathode, a plurality of detector electrodes arranged with a pitch...

  8. Gravitational microlensing of gamma-ray blazars

    DEFF Research Database (Denmark)

    F. Torres, Diego; E. Romero, Gustavo; F. Eiroa, Ernesto;

    2003-01-01

    We present a detailed study of the effects of gravitational microlensing on compact and distant $\\gamma$-ray blazars. These objects have $\\gamma$-ray emitting regions which are small enough as to be affected by microlensing effects produced by stars lying in intermediate galaxies. We analyze...... the temporal evolution of the gamma-ray magnification for sources moving in a caustic pattern field, where the combined effects of thousands of stars are taken into account using a numerical technique. We propose that some of the unidentified $\\gamma$-ray sources (particularly some of those lying at high...... galactic latitude whose gamma-ray statistical properties are very similar to detected $\\gamma$-ray blazars) are indeed the result of gravitational lensing magnification of background undetected Active Galactic Nuclei (AGNs)....

  9. Understanding Doppler Broadening of Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Rawool-Sullivan, Mohini [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sullivan, John P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  10. Modeling gamma-ray bursts

    Science.gov (United States)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  11. Gamma-ray emission from thunderstorm discharges

    International Nuclear Information System (INIS)

    Fine features of gamma-ray radiation registered during a thunderstorm at Tien-Shan Mountain Cosmic Ray Station are presented. Long duration (100-600 ms) gamma-ray bursts are found. They are for the first time identified with atmospheric discharges (lighting). Gamma-ray emission lasts all the time of the discharge and is extremely non-uniform consisting of numerous flashes. Its peak intensity in the flashes exceeds the gamma-ray background up to two orders of magnitude. Exclusively strong altitude dependence of gamma radiation is found. The observation of gamma radiation at the height 4-8 km could serve as a new important method of atmospheric discharge processes investigation. - Highlights: → Gamma-radiation bursts always accompany the electric discharges in atmosphere. → The gamma burst fill up the time of an atmospheric discharge completely. → The higher is the discharge electric field change - the higher is gamma intensity. → The temporal distribution of gamma intensity during the burst is non-uniform. → The altitude dependence of the burst gamma intensity is dramatic.

  12. Prompt gamma-ray activation analysis (PGAA)

    Energy Technology Data Exchange (ETDEWEB)

    Kern, J. [Fribourg Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The paper deals with a brief description of the principles of prompt gamma-ray activation analysis (PGAA), with the detection of gamma-rays, the PGAA project at SINQ and with the expected performances. 8 figs., 3 tabs., 10 refs.

  13. Intercomparison of gamma ray analysis software packages

    International Nuclear Information System (INIS)

    The IAEA undertook an intercomparison exercise to review available software for gamma ray spectra analysis. This document describes the methods used in the intercomparison exercise, characterizes the software packages reviewed and presents the results obtained. Only direct results are given without any recommendation for a particular software or method for gamma ray spectra analysis

  14. Handbook on Mobile Gamma-ray Spectrometry

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C

    2003-01-01

    Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing......Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing...

  15. Gamma-ray pulsars: a gold mine

    CERN Document Server

    Grenier, Isabelle A

    2015-01-01

    The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to gamma rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of gamma-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic gamma rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing gamma-ray observations and magnetospheric models in more detail.

  16. Gamma-ray detected radio galaxies

    Science.gov (United States)

    Beckmann, Volker; Soldi, Simona; De Jong, Sandra; Kretschmer, Karsten; Savchenko, Volodymyr

    2016-07-01

    So far 15 radio galaxies have been detected in the gamma-ray domain by CGRO/EGRET and Fermi/LAT, with a few detections also in the VHE range. We search for distinguishing parameters and estimate the total number of gamma-ray emitting radio galaxies that are potentially detectable by Fermi/LAT. We use Fermi/LAT data in comparison with X-ray and hard X-ray data in order to constrain basic parameters such as the total power of the inverse Compton branch and the position of its peak. We search for possible correlations between the radio, UV, X-ray, and gamma-ray domain and derive the number counts distribution. We then compare their properties with those of the radio galaxies in the 3CRR and SMS4 catalogues. The data show no correlation between the peak of the inverse Compton emission and its luminosity. For the gamma-ray detected radio galaxies the luminosities in the various bands are correlated, except for the UV band, but there is no indication of a correlation of peak frequency or luminosity with the spectral slopes in the X-ray or gamma-ray band. The comparison with other bright radio galaxies shows that the gamma-ray detected objects are among those that have the largest X-ray but rather moderate radio fluxes. Their UV and X-ray luminosities are similar, but gamma-ray detected radio galaxies are predominantly of type FR-I, while the 3CRR sample contains mainly FR-II objects. The number counts of the so far gamma-ray detected radio galaxies shows a very shallow slope, indicating that potentially a fraction of radio galaxies has been missed so far or has not been identified as such, although the predicted number of 22 ± 7 is consistent with the observed 15 objects.

  17. Gamma-ray Burst Cosmology

    CERN Document Server

    Wang, F Y; Liang, E W

    2015-01-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to $8.8\\times10^{54}$ erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it...

  18. Gamma-Ray Bursts: The End Game

    Science.gov (United States)

    Lamb, Don

    1997-11-01

    The nature of gamma-ray bursts has been one of the greatest unsolved mysteries in astrophysics for more than a quarter century. A major reason for this is that no definite counterparts to the bursts could be found at other wavelengths, despite intense efforts spanning more than two decades. Consequently, the study of gamma-ray bursts has been isolated from the rest of astronomy. Scientists studying them have had only the laws of physics and the bursts themselves to guide them in attempting to solve the burst mystery. All of this changed dramatically with the discovery earlier this year of fading X-ray and optical sources in the arcminute-sized positional error boxes of several gamma-ray bursts. For the first time, temporal, as well as spatial, coincidence could be used to associate these X-ray and optical sources with the gamma-ray bursts. As a result, the odds are great that the fading X-ray and optical sources are counterparts of the bursts, and that the study of gamma-ray bursts has finally been connected with the rest of astronomy. In this talk, we describe the dramatic new information about the nature of gamma-ray bursts that the X-ray, optical, and radio observations of the fading sources have provided, and emphasize the implications that this information has for the distance scale to the bursts.

  19. Supernova remnants and gamma-ray sources

    CERN Document Server

    Torres, D F; Dame, T M; Combi, J A; Butt, Y M; Torres, Diego F.; Romero, Gustavo E.; Dame, Thomas M.; Combi, Jorge A.; Butt, Yousaf M.

    2003-01-01

    A review of the possible relationship between $\\gamma$-ray sources and supernova remnants (SNRs) is presented. Particular emphasis is given to the analysis of the observational status of the problem of cosmic ray acceleration at SNR shock fronts. All positional coincidences between SNRs and unidentified $\\gamma$-ray sources listed in the Third EGRET Catalog at low Galactic latitudes are discussed on a case by case basis. For several coincidences of particular interest, new CO(J=1-0) and radio continuum maps are shown, and the mass content of the SNR surroundings is determined. The contribution to the $\\gamma$-ray flux observed that might come from cosmic ray particles (particularly nuclei) locally accelerated at the SNR shock fronts is evaluated. We discuss the prospects for future research in this field and remark on the possibilities for observations with forthcoming $\\gamma$-ray instruments.

  20. Neutron Capture Surrogate Reaction on 75As in Inverse Kinematics Using (d,p(gamma))

    Energy Technology Data Exchange (ETDEWEB)

    Peters, W A; Cizewski, J A; Hatarik, R; O?Malley, P D; Jones, K L; Schmitt, K; Moazen, B H; Chae, K Y; Pittman, S T; Kozub, R L; Vieira, D; Jandel, M; Wilhelmy, J B; Matei, C; Escher, J; Bardayan, D W; Pain, S D; Smith, M S

    2009-11-09

    The {sup 75}As(d,p{gamma}) reaction in inverse kinematics as a surrogate for neutron capture was performed at Oak Ridge National Laboratory using a deuterated plastic target. The intensity of the 165 keV {gamma}-ray from {sup 76}As in coincidence with ejected protons, from exciting {sup 76}As above the neutron separation energy populating a compound state, was measured. A tight geometry of four segmented germanium clover {gamma}-ray detectors together with eight ORRUBA-type silicon-strip charged-particle detectors was used to optimize geometric acceptance. The preliminary analysis of the {sup 75}As experiment, and the efficacy and future plans of the (d,p{gamma}) surrogate campaign in inverse kinematics, are discussed.

  1. Software tool for xenon gamma-ray spectrometer control

    Science.gov (United States)

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  2. High Energy Radiation from $\\gamma$ Ray Bursts

    CERN Document Server

    Dermer, C D; Dermer, Charles D.; Chiang, James

    1999-01-01

    Gamma-ray burst (GRB) engines are probed most intimately during the prompt gamma-ray luminous phase when the expanding blast wave is closest to the explosion center. Using GRBs 990123 and 940217 as guides, we briefly review observations of high-energy emission from GRBs and summarize some problems in GRB physics. \\gamma\\gamma transparency arguments imply relativistic beaming. The parameters that go into the external shock model are stated, and we show numerical simulation results of gamma-ray light curves from relativistic blast waves with different amounts of baryon loading. A distinct component due to the synchrotron self-Compton process produces significant emission at GeV and TeV energies. Predictions for spectral and temporal evolution at these energies are presented for a blast wave expanding into uniform surroundings. Observations of the slow decay of GeV-TeV radiation provide evidence for ultra-high energy cosmic ray acceleration in GRBs.

  3. Gamma spectrum following neutron capture in {sup 167}Er

    Energy Technology Data Exchange (ETDEWEB)

    Visser, D.; Khoo, T.L.; Lister, C.J. [and others

    1995-08-01

    Statistical decay from a highly excited state samples all the lower-lying states and, hence, provides a sensitive measure of the level density. Pairing has a major impact on the level density, e.g. creating a pair gap between the 0- and 2-quasiparticle configurations. Hence the shape of the statistical spectrum contains information on pairing, and can be used to provide information on the reduction of pairing with thermal excitation energy. For this reason, we measured the complete spectrum of {gamma}rays following thermal neutron capture in {sup 167}Er. The experiment was performed at the Brookhaven reactor using Compton-suppressed Ge detectors from TESSA. The spectrum, which was corrected for detector response and efficiency, reveals primary (first-step, high-energy) transitions up to nearly 8 MeV, secondary (last-step, lower-energy) transitions, as we as a continuous statistical component. Effort was expanded to identify all lines from contaminant sources and an upper limit of 5% was tentatively set for their contributions. The spectral shape of the statistical spectrum will be compared with theoretical spectra obtained from a calculation of pairing which accounts for a stepwise reduction of the pair correlations as the number of quasiparticles increases. The primary lines which decay directly to the near-yrast states will also be used to deduce the level densities.

  4. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, D; Jung, J; Suh, T [The Catholic University of Korea, College of medicine, Department of biomedical engineering (Korea, Republic of)

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  5. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    International Nuclear Information System (INIS)

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  6. Study of the thermal neutron radiative capture sup 31 P( n ,. gamma. ) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Xiantang; Shi Zongren; Zhang Ming; Li Guohua; Ding Dazhao (Institute of Atomic Energy, P. O. Box 275, Beijing (CN))

    1989-05-01

    The measurement of the {gamma}-ray spectrum of the {sup 31}P({ital n},{gamma}) reaction induced by thermal neutrons from the heavy water reactor is performed by using three crystal pair spectrometer'', Ge(Li) and HPGe detectors. 128 {gamma}-rays are identified, 24 of them are recognized as primary {gamma}-transitions. The excitation energies of 32 levels are deduced. Two possible levels of 5451.44 keV and 5021.10 keV have not been reported previously. The neutron separation energy is determined to be 7936.65(8) keV and partial cross sections are measured. The thermal neutron capture cross section of {sup 31}P is obtained to be 177(5) mb by comparison with Au({ital n}{sub th}, {gamma}) cross section standard. With the formula of the Lane-Lynn direct interaction, the partial capture cross sections of eight strong primary E1-transitions are calculated and compared with their experimental values, leading to the conclusion that the theoretical values are in coincidence with the experimental ones and the E1-transitions mainly come from 1+ capture state. The correlation analyses of the reduced strengths of E1 and M1 transitions with the spectroscopic factors of (d, p) reaction are performed and the reaction mechanisms discussed.

  7. Atmospheric Cherenkov Gamma-ray Telescopes

    CERN Document Server

    Holder, Jamie

    2015-01-01

    The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ray sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.

  8. The HAWC Gamma-Ray Observatory: Sensitivity to Steady and Transient Sources of Gamma Rays

    CERN Document Server

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01

    The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory is designed to record air showers produced by cosmic rays and gamma rays between 100 GeV and 100 TeV. Because of its large field of view and high livetime, HAWC is well-suited to measure gamma rays from extended sources, diffuse emission, and transient sources. We describe the sensitivity of HAWC to emission from the extended Cygnus region as well as other types of galactic diffuse emission; searches for flares from gamma-ray bursts and active galactic nuclei; and the first measurement of the Crab Nebula with HAWC-30.

  9. Gamma detector for use with luggage X-ray systems

    International Nuclear Information System (INIS)

    A new gamma radiation sensor has been designed for installation on several types of luggage x-ray machines and mobile x-ray vans operated by the U.S. Customs Service and the U.S. Department of State. The use of gamma detectors on x-ray machines imposed difficulties not usually encountered in the design of gamma detectors because the spectrum of scattered x-rays, which varied from machine to machine, extended to energies significantly higher than those of the low-energy isotopic emissions. In the original design, the lower level discriminator was raised above the x-ray end point energy resulting in the loss of the americium line associated with plutonium. This reduced the overall sensitivity to unshielded plutonium by a factor of approximately 100. An improved method was subsequently developed wherein collimation was utilized in conjunction with a variable counting threshold to permit accommodation of differing conditions of x-ray scattering. This design has been shown to eliminate most of the problems due to x-ray scattering while still capturing the americium emissions. The overall sensitivity has remained quite high, though varying slightly from one model of x-ray machine to another, depending upon the x-ray scattering characteristics of each model. (author)

  10. Librarian driven analysis of gamma ray spectra

    International Nuclear Information System (INIS)

    For a set of a priori given radionuclides extracted from a general nuclide data library, the authors use median estimates of the gamma-peak areas and estimates of their errors to produce a list of possible radionuclides matching gamma ray line(s). The identification of a given radionuclide is obtained by searching for a match with the energy information of a database. This procedure is performed in an interactive graphic mode by markers that superimpose, on the spectral data, the energy information and yields provided by a general gamma ray data library. This library of experimental data includes approximately 17,000 gamma ray energy lines related to 756 known gamma emitter radionuclides listed by the ICRP. (author)

  11. INTEGRAL & RXTE View of Gamma-ray Binaries

    OpenAIRE

    Jian LI; Torres, Diego F.; Zhang, Shu; WANG, JIANMIN

    2013-01-01

    Gamma-ray binaries are X-ray binaries with gamma-ray emissions. Their multi-wavelength emissions range from radio, optical, X-ray and to very high energy (TeV). X-ray emissions are crucial to understand the nature of gamma-ray binaries. INTEGRAL and RXTE have covered and monitored most of the gamma-ray binaries in hard and soft X-rays. Here we report the results of several gamma-ray binaries and possible gamma-ray binaries from INTEGRAL and RXTE.

  12. Gamma-Ray Astrophysics NSSTC Fermi GBM

    Data.gov (United States)

    National Aeronautics and Space Administration — The Fermi Gamma-Ray Burst Monitor (GBM) is not a pointed or imaging instrument. To determine fluxes for known sources, we measure the change in the count rate...

  13. Precision measurements of gamma-ray intensities

    International Nuclear Information System (INIS)

    To determine relative intensities of gamma rays in the region of 280 to 2750 keV, Ge(Li) detectors were calibrated with standard sources and cascade gamma-ray sources. Decay rates of the standard sources were determined by means of the 4πβ-γ or 4πX-γ coincidence method. Experimental conditions were improved and spectra were carefully analyzed. Relative gamma-ray intensities of 56Co, 88Y, sup(110m)Ag, 133Ba, 134Cs, 152Eu, 154Eu, 192Ir and 207Bi were determined within the accuracy of about 0.5% for strong gamma rays. Intensities per decays were obtained from the relative intensities for most of the nuclides. (author)

  14. Supernovae and gamma-ray bursts connection

    Science.gov (United States)

    Valle, Massimo Della

    2015-12-01

    I'll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ˜ 0.4% - 3%.

  15. Compton scattering gamma-ray source optimization

    Science.gov (United States)

    Hartemann, Frederic; Wu, Sheldon; Albert, Félicie; Barty, Chris

    2012-10-01

    The interaction of a bright relativistic electron beam with an intense laser pulse via Compton scattering can generate tunable gamma-rays for precision nuclear photonics applications. The properties of the gamma-ray phase space will be outlined, in relation with the 6D electron bunch and 6D laser pulse phase space, along with collimation, nonlinear effects and other sources of spectral broadening. Optimization strategies will be outlines within the context of nuclear photonics applications.

  16. Supernovae and gamma-ray bursts connection

    Energy Technology Data Exchange (ETDEWEB)

    Valle, Massimo Della [INAF-Napoli, Capodimonte Observatory, Salita Moiariello, 16, I-80131 Napoli (Italy); International Center for Relativistic Astrophysics Network, Piazzale della Repubblica 10, I-65122, Pescara (Italy)

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  17. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.;

    1998-01-01

    The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions...... likely explanation for the origin of this extragalactic high-energy gamma-ray emission is that it arises primarily from unresolved gamma-ray-emitting blazars....

  18. Study of X-rays and nuclear gamma -rays in muonic thallium

    CERN Document Server

    Backe, H; Jahnke, U; Kankeleit, E; Pearce, R M; Petitjean, C; Schellenberg, L; Schneuwly, H; Schröder, W U; Walter, H K; Zehnder, A

    1972-01-01

    Energies and intensities of muonic X-rays, nuclear gamma -rays and mu -capture gamma -rays were measured in natural muonic thallium with Ge (Li) detectors. The absolute intensities of higher mu X-rays were reproduced by a cascade calculation starting with a statistical population at n=20 including K-, L- and M-conversion. The electron screening effect was deduced from energies of higher mu X-rays. Eight prompt nuclear gamma -rays were found. This excitation explains the anomalous intensity ratios of the 2p-1s and 3d-2p fine structure components. From the nuclear gamma -rays of the first excited states were deduced: the magnetic h.f. splittings, muonic isomer shifts E2/M1 mixing ratios and the half-life in the presence of the muon in /sup 205/Tl. Evidence for a magnetic nuclear polarization was found. An isotope shift of Delta E=10.35+or-0.25 keV was measured for the 1s/sub 1/2/ state which is compared with data from optical spectroscopy. From an analysis of the time distribution of delayed gamma -rays from mu...

  19. The blazar gamma-ray luminosity function and the diffuse extragalactic gamma-ray background

    Science.gov (United States)

    Salamon, M. H.; Stecker, F. W.

    1994-01-01

    We have used the data from the new EGRET catalog on 'grazars' (blazers which are observed to be high-energy gamma-ray sources), together with radio data, to construct a new relation between radio and gamma-ray luminosity for these sources. Using this relation to construct a grazar gamma-ray luminosity function, we then calculate the contribution of unresolved grazars to the cosmic gamma-ray background radiation. We derive the energy spectrum of this background component above 100 MeV and the angular fluctuations in this background implied by our model.

  20. Cosmic gamma-ray studies at Srinagar

    International Nuclear Information System (INIS)

    Cosmic gamma ray studies being carried out at the Nuclear Research Laboratory at Srinagar and Gulmarg are described and some of the results of observation and possible conclusions are mentioned. These studies use ground base techniques which can detect short-time scale gamma ray bursts from supernovae and primordial black hole (PBH) and also high energy gamma rays from various point sources. A large area photomultiplier system is employed to detect pulses of visible fluorescence radiation which is caused by a gamma ray burst of supernovae of PBH origin. However, any signal out a large number of signals recorded at Gulmarg could not be identified as coinciding with any such event observed elsewhere. It shows that the size of the burst source cannot exceed 30 km., which is in agreement with neutron-star source models. An array using plastic scintillator detectors at the corner of a 10 metre square has been set up at Gulmarg to detect air-shower due to high energy gamma rays. Cerenkov light pulses recorded at Gulmarg have been projected on the sidereal map. A significant excess observed in the right ascension range 20 +- 3 h suggests the possible presence of a quasic-periodic source of gamma rays of energy greater than 1014 eV in the general direction of Cygnus X-3. Future programme of studies is mentioned. (K.M.)

  1. Gamma-ray pulsar studies with COMPTEL

    Science.gov (United States)

    Hermsen, W.; Kuiper, L.; Diehl, R.; Lichti, G.; Schoenfelder, V.; Strong, A. W.; Connors, A.; Ryan, J.; Bennett, K.; Busetta, M.; Carraminana, A.; Buccheri, R.; Grenier, I. A.

    1994-06-01

    Since the launch of the Compton Gamma-Ray Observatory (CGRO) the number of detected gamma-ray pulsars increased from two to six. COMPTEL, on-board CGRO and sensitive to gamma-rays with energies between approximately 0.7 and 30 MeV, detected three of these unambiguously. The classical Crab and Vela pulsars have been observed on several occasions and detailed pulse patterns and spectral parameters have been derived. The new CGRO gamma-ray pulsar PSR B1509-58 has been detected by COMPTEL at a significance level above 4 sigma, consistently in a timing and spatial analysis. A likely detection of Geminga has been obtained at an approximately 3 sigma level. This indication is found in a phase interval in which COS B data showed the presence of a new variable component, Interpeak 2, exhibiting a very soft spectrum above 50 MeV. The diversities in light-curve sphapes and spectral distributions, the apparent time variabilities, and the significant differences in the fractions of the spin-down power radiated at gamma-ray energies in this small sample of gamma-ray pulsars pose important constraints to pulsar modeling.

  2. Studies of Cosmic Rays with GeV Gamma Rays

    CERN Document Server

    Tajima, Hiroyasu; Finazzi, Stefano; Cohen-Tanugi, Johann; Chiang, James

    2007-01-01

    We describe the role of GeV gamma-ray observations with GLAST-LAT (Gamma-ray Large Area Space Telescope - Large Area Telescope) in identifying interaction sites of cosmic-ray proton (or hadrons) with interstellar medium (ISM). We expect to detect gamma rays from neutral pion decays in high-density ISM regions in the Galaxy, Large Magellanic Cloud, and other satellite galaxies. These gamma-ray sources have been detected already with EGRET (Energetic Gamma Ray Experiment Telescope) as extended sources (eg. LMC and Orion clouds) and GLAST-LAT will detect many more with a higher spatial resolution and in a wider spectral range. We have developed a novel image restoration technique based on the Richardson-Lucy algorithm optimized for GLAST-LAT observation of extended sources. Our algorithm calculates PSF (point spread function) for each event. This step is very important for GLAST-LAT and EGRET image analysis since PSF varies more than one order of magnitude from one gamma ray to another depending on its energy as...

  3. GRI: the gamma-ray imager mission

    CERN Document Server

    Knödlseder, J

    2006-01-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a...

  4. New insights from cosmic gamma rays

    Science.gov (United States)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  5. Gamma Ray Bursts in the HAWC Era

    CERN Document Server

    Mészáros, Peter; Murase, Kohta; Fox, Derek; Gao, He; Senno, Nicholas

    2015-01-01

    Gamma-Ray Bursts are the most energetic explosions in the Universe, and are among the most promising for detecting multiple non-electromagnetic signals, including cosmic rays, high energy neutrinos and gravitational waves. The multi-GeV to TeV gamma-ray range of GRB could have significant contributions from hadronic interactions, mixed with more conventional leptonic contributions. This energy range is important for probing the source physics, including overall energetics, the shock parameters and the Lorentz factor. We discuss some of the latest observational and theoretical developments in the field.

  6. Distribution of iron and titanium on the lunar surface from lunar prospector gamma ray spectra

    Science.gov (United States)

    Prettyman, T.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. approximately 140g/cm2 for inelastic scattering and approximately 50 g/cm2 for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods (e.g. Clementine Spectral Reflectance (CSR)), which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum on order to determine the contribution of individual elements.

  7. TeV Gamma-Ray Astrophysics

    CERN Document Server

    Ribó, M

    2008-01-01

    The window of TeV Gamma-Ray Astrophysics was opened less than two decades ago, when the Crab Nebula was detected for the first time. After several years of development, the technique used by imaging atmospheric Cherenkov telescopes like HESS, MAGIC or VERITAS, is now allowing to conduct sensitive observations in the TeV regime. Water Cherenkov instruments like Milagro are also providing the first results after years of integration time. Different types of extragalactic and galactic sources have been detected, showing a variety of interesting phenomena that are boosting theory in very high energy gamma-ray astrophysics. Here I review some of the most interesting results obtained up to now, making special emphasis in the field of X-ray/gamma-ray binaries.

  8. Gamma ray astronomy and the origin of galactic cosmic rays

    International Nuclear Information System (INIS)

    Diffusive shock acceleration operating at expanding supernova remnant shells is by far the most popular model for the origin of galactic cosmic rays. Despite the general consensus received by the model, an unambiguous and conclusive proof of the supernova remnant hypothesis is still missing. In this context, the recent developments in gamma ray astronomy provide us with precious insights into the problem of the origin of galactic cosmic rays, since production of gamma rays is expected both during the acceleration of cosmic rays at supernova remnant shocks and during their subsequent propagation in the interstellar medium. In particular, the recent detection of a number of supernova remnants at TeV energies nicely fits with the model, but it still does not constitute a conclusive proof of it, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma ray emission. The main goal of my research is to search for an unambiguous and conclusive observational test for proving (or disproving) the idea that supernova remnants are the sources of galactic cosmic rays with energies up to (at least) the cosmic ray knee. Our present comprehension of the mechanisms of particle acceleration at shocks and of the propagation of cosmic rays in turbulent magnetic fields encourages beliefs that such a conclusive test might come from future observations of supernova remnants and of the Galaxy in the almost unexplored domain of multi-TeV gamma rays. (author)

  9. Slow neutrons and secondary gamma ray distributions in concrete shields followed by reflecting layers

    International Nuclear Information System (INIS)

    Slow neutrons and secondary gamma ray distributions in concrete shields with and without a reflecting layer behind layer behind the concrete shield have been investigated first in case of using a bare reactor beam and then on using a B-4 C filtered beam. The total and capture secondary gamma ray coefficient (B gamma and B gammaC), the ratio of the reflected thermal neutron (gamma) the ratio of the secondary gamma rays caused by reflected neutrons to those caused transmitted neutrons (ThI gamma/FI gamma) and the effect of inserting a blocking layer (a B-4 C layer) between the concrete shield and the reflector on the suppression of the produced secondary gamma rays have been investigated. It was found that the presence of the reflector layer behind the concrete shield reflects some thermal neutrons back to the concrete shields and so it increases the number of thermal neutrons at the interface between the concrete shield and the reflector. Also the capture secondary gamma rays was increased at the interface between the two medii due to the capture of the reflected thermal neutrons in the concrete shields. It was shown that B-gamma is higher than and that Bgamma B gammaC and I gammaTh/ I gammaif for the different concrete types is higher in case of using the graphite reflector than that in using either water or paraffin reflectors. Putting a blocking layer (B4C layer) between the concrete shield and the reflector decreases the produced secondary gamma rays due to the absorption of the reflected thermal neutrons. 17 figs

  10. On the difference between gamma-ray-detected and non-gamma-ray-detected pulsars

    CERN Document Server

    Rookyard, Simon C; Johnston, Simon; Kerr, Matthew

    2016-01-01

    We compare radio profile widths of young, energetic gamma-ray-detected and non-gamma-ray-detected pulsars. We find that the latter typically have wider radio profiles, with the boundary between the two samples exhibiting a dependence on the rate of rotational energy loss. We also find that within the sample of gamma-ray-detected pulsars, radio profile width is correlated with both the separation of the main gamma-ray peaks and the presence of narrow gamma-ray components. These findings lead us to propose that these pulsars form a single population where the main factors determining gamma ray detectability are the rate of rotational energy loss and the proximity of the line of sight to the rotation axis. The expected magnetic inclination angle distribution will be different for radio pulsars with and without detectable gamma rays, naturally leading to the observed differences. Our results also suggest that the geometry of existing radio and outer-magnetosphere gamma-ray emission models are at least qualitative...

  11. Gamma-Ray Lenses for Astrophysics-and the Gamma-Ray Imager Mission GRI

    DEFF Research Database (Denmark)

    Wunderer, C. B.; Ballmoos, P. V.; Barriere, N.;

    2009-01-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are acc...

  12. The Infrared-Gamma-Ray Connection: A WISE View of the Extragalactic Gamma-Ray Sky

    CERN Document Server

    Massaro, F

    2016-01-01

    Using data from the WISE all-sky survey we discovered that the non-thermal infrared (IR) emission of blazars, the largest known population of extragalactic gamma-ray sources, has peculiar spectral properties. In this work, we confirm and strengthen our previous analyses using the latest available releases of both the WISE and the Fermi source catalogs. We also show that there is a tight correlation between the mid-IR colors and the gamma-ray spectral index of Fermi blazars. We name this correlation "the infrared--gamma-ray connection". We discuss how this connection links both the emitted powers and the spectral shapes of particles accelerated in jets arising from blazars over ten decades in energy. Based on this evidence, we argue that the infrared--gamma-ray connection is stronger than the well known radio--gamma-ray connection.

  13. A Search for Gamma-Ray Bursts and Pulsars, and the Application of Kalman Filters to Gamma-Ray Reconstruction

    OpenAIRE

    Jones, B B

    2002-01-01

    Part I describes the analysis of periodic and transient signals in EGRET data. A method to search for the transient flux from gamma-ray bursts independent of triggers from other gamma-ray instruments is developed. Several known gamma-ray bursts were independently detected, and there is evidence for a previously unknown gamma-ray burst candidate. Statistical methods using maximum likelihood and Bayesian inference are developed and implemented to extract periodic signals from gamma-ray sources ...

  14. Status of the Milagro Gamma Ray Observatory

    CERN Document Server

    Maryland Univ. College Park

    2001-01-01

    The Milagro Gamma Ray Observatory, located at an altitude of 8,600 feet in the Jemez Mountains of New Mexico, is the world's first large-area water Cherenkov detector capable of continuously monitoring the entire sky for sources of TeV gamma rays. It is uniquely capable of searching for transient sources of VHE gamma rays. The core of the detector is a 60m x 80m x 8m pond instrumented with 723 PMTs deployed in two layers. This part of the detector is complete and has operated continuously since Jan. 2000. Initial studies including searches for gamma-ray sources are ongoing, and preliminary results are available. The final stage of construction is under way. We are deploying 170 auxiliary "outrigger" water Cherenkov detectors in an area of 40,000 square-meters surrounding the pond, which will significantly enhance our ability to reject background and more accurately reconstruct the gamma-ray direction and energy. In addition, we are lowering the energy threshold of the detector by using custom processing to en...

  15. Stellar Photon Archaeology with Gamma-Rays

    Science.gov (United States)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  16. Gamma-Ray Astronomy from the Ground

    CERN Document Server

    Horns, D

    2016-01-01

    The observation of cosmic gamma-rays from the ground is based upon the detection of gamma-ray initiated air showers. At energies between approximately $10^{11}$ eV and $10^{13}$ eV, the imaging air Cherenkov technique is a particularly successful approach to observe gamma-ray sources with energy fluxes as low as $\\approx 10^{-13}$ erg\\,cm$^{-2}\\,$s$^{-1}$. The observations of gamma-rays in this energy band probe particle acceleration in astrophysical plasma conditions and are sensitive to high energy phenomena beyond the standard model of particle physics (e.g., self-annihilating or decaying dark matter, violation of Lorentz invariance, mixing of photons with light pseudo-scalars). The current standing of the field and its major instruments are summarised briefly by presenting selected highlights. A new generation of ground based gamma-ray instruments is currently under development. The perspectives and opportunities of these future facilities will be discussed.

  17. Neutrino and gamma-ray signatures of supernova explosions

    Science.gov (United States)

    Lu, Yu

    2007-08-01

    A supernova occurs when the core of a massive star collapses into a compact neutron star. Nearly all the gravitational binding energy of the neutron star is emitted in neutrinos. This is approximately 100 times larger than the explosion energy as measured by the total energy of the ejecta. A prevalent paradigm is that a fraction of the neutrino energy is absorbed by the material above the neutron star, thereby delivering the explosion. We test this neutrino driven supernova mechanism by analyzing the signal induced by supernova electron antineutrinos in terrestrial detectors such as SuperKamiokande. We perform detailed Monte Carlo simulations of such signals and identify the potential signatures of this mechanism by comparing the event rates and energy spectra before and after explosion. Before the neutrinos reach terrestrial detectors, a fraction of them interact with protons and nuclei in the supernova envelope. Some of these interactions result in gamma-ray emission. The gamma-rays produced in the outmost layer escape and may be detected. We calculate the time evolution for the fluxes of gamma-rays produced by neutron capture on protons and positron annihilation following the absorption of electron antineutrinos on protons. Because these gamma-rays are produced before the supernova shock arrives at the envelope, their detection can help identify the supernova before it is seen optically. In addition, they may provide a useful probe of the conditions in the surface layer of the supernova progenitor.

  18. Solution To The Gamma Ray Burst Mystery?

    CERN Document Server

    Dar, Arnon

    1996-01-01

    Photoexcitation and ionization of partially ionized heavy atoms in highly relativistic flows by interstellar photons, followed by their reemission in radiative recombination and decay, boost star-light into beamed $\\gamma$ rays along the flow direction. Repeated excitation/decay of highly relativistic baryonic ejecta from merger or accretion induced collapse of neutron stars in dense stellar regions (DSRs), like galactic cores, globular clusters and super star-clusters, can convert enough kinetic energy in such events in distant galaxies into cosmological gamma ray bursts (GRBs). The model predicts remarkably well all the main observed temporal and spectral properties of GRBs. Its success strongly suggests that GRBs are $\\gamma$ ray tomography pictures of DSRs in galaxies at cosmological distances with unprecedented resolution: A time resolution of $dt\\sim 1~ms$ in a GRB can resolve stars at a Hubble distance which are separated by only $D\\sim 10^{10}cm$. This is equivalent to the resolving power of an optica...

  19. New insights from cosmic gamma rays

    CERN Document Server

    Diehl, Roland

    2016-01-01

    The measurement of gamma rays from cosmic sources at MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from beta-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured, and complement conventional supernova observations with measurements of their prime energy sources. The diffuse radioactive afterglow of massi...

  20. Microsecond flares in gamma-ray bursts

    Science.gov (United States)

    Schaefer, Bradley E.; Cohen, Justin; Teegarden, Bonnard J.; Cline, Thomas L.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, William S.; Pendleton, Geoffrey N.; Matteson, James L.

    1993-01-01

    It has been suggested that gamma-ray burst light curves may consist of many superposed flares with a duration shorter than 30/microsec. If true, the implications for the interpretation of burst data are enormous. With the launch of the Compton Gamma-Ray Observatory, four predictions of Mitrofanov's (1989) suggestion can be tested. Our results which contradict this suggestion are (1) the photon arrival times are not correlated between independent detectors, (2) the spectral hardness and intensity does not depend on the detector area, (3) the bursts seen by detectors which measure photon positions do not see microsecond flares, and (4) burst positions deduced from detectors with different projected areas are close to the positions deduced from time-of-flight differences between separated spacecraft. We conclude, therefore, that gamma-ray bursts are not composed of microsecond flares.

  1. Solar hard X-rays and gamma-rays

    Institute of Scientific and Technical Information of China (English)

    GAN; Weiqun(甘为群); CHANG; Jin(常进); LI; Youping(李友平); LIN; Chunmei(林春梅)

    2002-01-01

    We briefly introduce our recent work on the spectral evolution of energetic protons, the beam property of accelerated electrons, the gamma-ray flare classification, the temporal features of the annihilation line, the hard X-ray delayed events, the hydrodynamic process, and the continuum emission in solar flares.

  2. Neutron Capture gamma ENDF libraries for modeling and identification of neutron sources

    International Nuclear Information System (INIS)

    There are a number of inaccuracies and data omissions with respect to gammas from neutron capture in the ENDF libraries used as field reference information and by modeling codes used in JTOT. As the use of Active Neutron interrogation methods is expanded, these shortfalls become more acute. A new, more accurate and complete evaluated experimental database of gamma rays (over 35,000 lines for 262 isotopes up to U so far) from thermal neutron capture has recently become available from the IAEA. To my knowledge, none of this new data has been installed in ENDF libraries and disseminated. I propose to upgrade libraries of 184,186W, 56Fe, 204,206,207Pb, 104Pd, and 19F the 1st year. This will involve collaboration with Richard Firestone at LBL in evaluating the data and installing it in the libraries. I will test them with the transport code MCNP5

  3. Contribution of External Gamma Rays to SPND at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. G.; Cho, D. K.; Kim, M. S.; Kang, G. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Self-Powered Neutron Detectors (SPNDs) have been widely used for monitoring the neutron flux in reactors as well as in irradiation facilities. In its simplest form, the detector operates on the basis of directly measuring the beta decay current following neutron capture. The neutron capture cross-section of {sup 103}Rh, which is used for an emitter of the SPND, is 142.13 barns for thermal neutron (0.0253 eV). After neuron capture of {sup 103}Rh, the compound nuclei of {sup 104}Rh (92.6%) and {sup 104}mRh (7.4%) are produced. The sensitivity of SPND is generally defined as. The influence of water in the irradiation basket on the external gamma rays is determined by calculations of neutron capture reaction and photon interaction rates at various irradiation positions in HANARO. Since it is not easy to correct the contribution of the external gamma rays to the current signal by measurements at the research reactor, it is advantageous to reduce materials such as water at the irradiation position.

  4. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for the Dark Matter Searches

    CERN Document Server

    Galper, A M; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Boezio, M; Bonvicini, V; Boyarchuk, K A; Fradkin, M I; Gusakov, Yu V; Kaplin, V A; Kachanov, V A; Kheymits, M D; Leonov, A A; Longo, F; Mazets, E P; Maestro, P; Marrocchesi, P; Mereminskiy, I A; Mikhailov, V V; Moiseev, A A; Mocchiutti, E; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Picozza, P; Rodin, V G; Runtso, M F; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Topchiev, N P; Vacchi, A; Vannuccini, E; Yurkin, Yu T; Zampa, N; Zverev, V G; Zirakashvili, V N

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. The GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01 deg (E{\\gamma} > 100 GeV), the energy resolution ~1% (E{\\gamma} > 10 GeV), and the proton rejection factor ~10E6. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  5. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    Science.gov (United States)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  6. Gamma-Ray Bursts: Jets and Energetics

    CERN Document Server

    Frail, D A

    2003-01-01

    The relativistic outflows from gamma-ray bursts are now thought to be narrowly collimated into jets. After correcting for this jet geometry there is a remarkable constancy of both the energy radiated by the burst and the kinetic energy carried by the outflow. Gamma-ray bursts are still the most luminous explosions in the Universe, but they release energies that are comparable to supernovae. The diversity of cosmic explosions appears to be governed by the fraction of energy that is coupled to ultra-relativistic ejecta.

  7. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    The Whipple Observatory High Resolution Camera will be used in a vigorous program of observations to search for new sources of very-high-energy gamma rays. In addition, a search for antimatter using the moon-earth system as an ion spectrometer will be begun. The first phase of GRANITE, the new 37-element 11-m camera, will be concluded with first light scheduled for September, 1991. The two cameras will operate in support of the Gamma Ray Observatory mission in the winter of 1991/2

  8. A Shotgun Model for $\\gamma$ Ray Bursts

    CERN Document Server

    Heinz, S

    1999-01-01

    We propose that gamma ray bursts (GRBs) are produced by a shower of heavy blobs running into circumstellar material at highly relativistic speeds. The gamma ray emission is produced in the shocks these bullets drive into the surrounding medium. The short term variability seen in GRBs is set by the slowing-down time of the bullets while the overall duration of the burst is set by the lifetime of the central engine. A requirement of this model is that the ambient medium be dense, consistent with a strong stellar wind. In contrast to other external shock scenarios, the efficiency of the shock can be close to unity.

  9. Gamma ray spectrometer for Lunar Scout 2

    Science.gov (United States)

    Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

    1993-01-01

    We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

  10. Nuclear Forensics using Gamma-ray Spectroscopy

    Science.gov (United States)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  11. Nuclear forensics using gamma-ray spectroscopy

    CERN Document Server

    Norman, Eric B

    2016-01-01

    Much of George Dracoulis's research career was devoted to utilizing gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the past several years, our research group has made use of both high- and low- resolution gamma ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  12. Nuclear Forensics using Gamma-ray Spectroscopy

    Directory of Open Access Journals (Sweden)

    Norman E. B.

    2016-01-01

    Full Text Available Much of George Dracoulis’s research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  13. Status of the Milagro $\\gamma$ Ray Observatory

    CERN Document Server

    Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

    2001-01-01

    The Milagro Gamma Ray Observatory is the world's first large-area water Cherenkov detector capable of continuously monitoring the sky at TeV energies. Located in northern New Mexico, Milagro will perform an all sky survey of the Northern Hemisphere at energies between ~250 GeV and 50 TeV. With a high duty cycle, large detector area (~5000 square meters), and a wide field-of-view (~1 sr), Milagro is uniquely capable of searching for transient and DC sources of high-energy gamma-ray emission. Milagro has been operating since February, 1999. The current status of the Milagro Observatory and initial results will be discussed.

  14. Supernovae and Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    M. Della Valle

    2007-01-01

    Full Text Available Se revisa el estatus observacional de la conexi on Supernova (SN/Estallido de Rayos-Gamma (GRB. Recientes (y no tan recientes observaciones de GRBs largos sugieren que una fracci on signi cativa de ellos (pero no todos est an asociados con supernovas brillantes del tipo Ib/c. Estimaciones actuales de las tasas de producci on de GRBs y SNs dan una raz on para GRB/SNe-Ibc en el rango 0:4%

  15. The HAWC Gamma-Ray Observatory: Observations of Cosmic Rays

    CERN Document Server

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01

    We describe measurements of GeV and TeV cosmic rays with the High-Altitude Water Cherenkov Gamma-Ray Observatory, or HAWC. The measurements include the observation of the shadow of the moon; the observation of small-scale and large-scale angular clustering of the TeV cosmic rays; the prospects for measurement of transient solar events with HAWC; and the observation of Forbush decreases with the HAWC engineering array and HAWC-30.

  16. GammaModeler 3-D gamma-ray imaging technology

    International Nuclear Information System (INIS)

    The 3-D GammaModelertrademark system was used to survey a portion of the facility and provide 3-D visual and radiation representation of contaminated equipment located within the facility. The 3-D GammaModelertrademark system software was used to deconvolve extended sources into a series of point sources, locate the positions of these sources in space and calculate the 30 cm. dose rates for each of these sources. Localization of the sources in three dimensions provides information on source locations interior to the visual objects and provides a better estimate of the source intensities. The three dimensional representation of the objects can be made transparent in order to visualize sources located within the objects. Positional knowledge of all the sources can be used to calculate a map of the radiation in the canyon. The use of 3-D visual and gamma ray information supports improved planning decision-making, and aids in communications with regulators and stakeholders

  17. The pulsed-neutron, capture-gamma borehole logging tool

    International Nuclear Information System (INIS)

    The report attempts to give a review of available information on the pulsed-neutron, capture-gamma tool. It starts with a discussion of the general principle of the physics of the tool. Next a review of available tool design data is given, including a special discussion of the source-detector distance. Operational data available on the tool is also considered. These reviews are followed by data on the SIGMAa2200 value of various materials relevant to petroleum technology. Finally the various approaches used to treat the measurements in order to obtain the absorption cross section of the medium are outlined. (author) 20 refs

  18. Neutron fluence rate measurement using prompt gamma rays

    International Nuclear Information System (INIS)

    A gamma ray spectrometer, with a 3'' X 3'' NaI(Tl) detector, with a moderator sphere has been utilised to measure the neutron fluence rate, with this value the H*(10) was estimated. When a neutron is captured by the hydrogen-based moderator, a 2.22 MeV prompt gamma ray is produced. In a multichannel analyser the net area under the 2.22 MeV photopeak is proportional to the total neutron fluence rate. The features of this system were determined by a Monte Carlo study that includes 3-, 5- and 10-inches diameter, water and polyethylene moderators and a 239Pu-Be source. The prompt gamma response was extended to monoenergetic neutron sources. To verify the response, a 239Pu-Be source in combination with a 10'' polyethylene sphere having a gamma-ray spectrometer with NaI(Tl) was utilised to estimate the neutron fluence rate and the H*(10). These results were compared with neutron fluence rate and H*(10) obtained using a Bonner sphere spectrometer and with the H*(10) measured using a neutron rem-meter. (authors)

  19. Skyshine spectra of gamma rays

    International Nuclear Information System (INIS)

    A study of the spectra of gamma photons back-scattered in vertical direction by infinite air above ground (skyshine) is presented. The source for these measurements is a 650 Ci Cobalt-60 point-source and the skyshine spectra are reported for distances from 150 m to 325 m from the source, measured with a 5 cm x 5 cm NaI(Tl) detector collimated with collimators of 12 mm and 20 mm diameter and 5 cm length. These continuous spectra are unfolded with Gold's iterative technique. The photon-spectra so obtained have a distinct line at 72 keV due to multiply-scattered photons. This is an energy where photoelectric and Compton cross-sections for multiply-scattered photons balance each other. The intensity of the line(I) decreases exponentially with distance (d) from the source obeying a relation of the type I = Isub(o)esup(-μd) where μ is called as ''Multiply-Scatter Coefficient'', a constant of the medium which is air in these measurements. This relationship is explained in terms of a halo around the source comprising of multiply-scattered gamma photons, Isub(0) being the intensity of these scattered photons at the location of cobalt-source. A fraction called as ''Back-scattered Fraction'', the ratio of Isub(0) to the number of original photons from the cobalt-source entering the infinite air, is also calculated. It is shown that with a properly calibrated detector system, this fraction can be used to determine the strength of a large gamma source, viz. a nuclear explosion in air, and for mineral prospecting. These conclusions are general and can be applied to any other infinite medium. Some forward-scatter (transmission) spectra of cobalt-60 source through 10 cm of Pb and 2.5 cm of Al are also reported. (auth.)

  20. Gamma Ray Bursts as Neutrino Sources

    CERN Document Server

    Mészáros, P

    2015-01-01

    Gamma-ray burst sources appear to fulfill all the conditions for being efficient cosmic ray accelerators, and being extremely compact, are also expected to produce multi-GeV to PeV neutrinos. I review the basic model predictions for the expected neutrino fluxes in classical GRBs as well as in low luminosity and choked bursts, discussing the recent IceCube observational constraints and implications from the observed diffuse neutrino flux.

  1. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Ichimiya, Tsutomu [Japan Radioisotope Association, Tokyo (Japan); Narita, Tsutomu; Kitao, Kensuke

    1998-03-01

    A quick index to {gamma}-rays and X-rays from natural radionuclides is presented. In the list, {gamma}-rays are arranged in order of increasing energy. The list also contains {gamma}-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct {gamma}-rays from interaction with the neutrons. Artificial radioactive nuclides emitting {gamma}-rays with same or near energy value as that of the natural {gamma}-rays and X-rays are also listed. In appendix, {gamma}-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in {gamma}-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  2. Search of a prompt gamma ray for chlorine analysis in a Portland cement sample

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Center for Applied Physical Sciences, King Fahd University of Petroleum and Minerals, Box 1815, Dhahran-31261 (Saudi Arabia)]. E-mail: annaqvi@kfupm.edu.sa; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran-31261 (Saudi Arabia); Kidwai, S. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran-31261 (Saudi Arabia); Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran-31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Sciences, King Fahd University of Petroleum and Minerals, Dhahran-31261 (Saudi Arabia)

    2004-11-11

    Prompt Gamma Ray analysis of chlorine contaminated Portland cement samples have been carried out using an accelerator-based Prompt Gamma ray Neutron Activation Analysis setup. The chlorine concentration was measured over a range of 0.25-4 wt% using 1.165 MeV capture {gamma}-rays from chlorine. The experimental results were compared with the results of Monte Carlo simulations and an excellent agreement was observed between the two results. Further theoretical study has shown that yield of the 1.165 MeV prompt {gamma}-rays from chlorine is not very sensitive to variation in moisture contents of the Portland sample. An order of magnitude increase in sample moisture content resulted in only 16-20% increase in yield of 1.165 MeV prompt {gamma}-rays.

  3. The new gamma-ray observatory: CTA

    Science.gov (United States)

    Carr, John

    2016-07-01

    CTA is the next generation gamma-ray observatory and will have a factor 10 better sensitivity compared to existing facilities, as well as many other superior parameters. Aspects of array layout, performance and sites are presented. The broad range of forefront science which will be studied is described.

  4. Gamma-ray emission from nova outbursts

    CERN Document Server

    Hernanz, M

    2013-01-01

    Classical novae produce radioactive nuclei which are emitters of gamma-rays in the MeV range. Some examples are the lines at 478 and 1275 keV (from 7Be and 22Na) and the positron-electron annihilation emission, with the 511 keV line and a continuum. Gamma-ray spectra and light curves are potential unique tools to trace the corresponding isotopes and to give insights on the properties of the expanding envelope. Another possible origin of gamma-rays is the acceleration of particles up to very high energies, so that either neutral pions or inverse Compton processes produce gamma-rays of energies larger than 100 MeV. MeV photons during nova explosions have not been detected yet, although several attempts have been made in the last decades; on the other hand, GeV photons from novae have been detected with the Fermi satellite in V407 Cyg, a nova in a symbiotic binary, where the companion is a red giant with a wind, instead of a main sequence star as in the cataclysmic variables hosting classical novae. Two more nov...

  5. Gamma-ray Novae: Rare or Nearby?

    CERN Document Server

    Morris, Paul J; Brown, Anthony M; Chadwick, Paula M

    2016-01-01

    Classical Novae were revealed as a surprise source of gamma-rays in Fermi LAT observations. During the first 8 years since the LAT was launched, 6 novae in total have been detected to > 5 sigma in gamma-rays, in contrast to the 69 discovered optically in the same period. We attempt to resolve this discrepancy by assuming all novae are gamma-ray emitters, and assigning peak one-day fluxes based on a flat distribution of the known emitters to a simulated population. To determine optical parameters, the spatial distribution and magnitudes of bulge and disc novae in M31 are scaled to the Milky Way, which we approximate as a disc with a 20 kpc radius and elliptical bulge with semi major axis 3 kpc and axis ratios 2:1 in the xy plane. We approximate Galactic reddening using a double exponential disc with vertical and radial scale heights of r_d = 5 kpc and z_d = 0.2 kpc, and demonstrate that even such a rudimentary model can easily reproduce the observed fraction of gamma-ray novae, implying that these apparently r...

  6. Gamma-Ray Telescope and Uncertainty Principle

    Science.gov (United States)

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  7. Primary shutter and gamma ray trap

    International Nuclear Information System (INIS)

    This paper reports on the main radiation shutter and gamma ray trap, which will be used at LNLS front-ends that has been designed. The components external to the UHV chamber have been assembled and are undergoing tests. Vacuum requirements for the chamber have been estimated

  8. Gamma-ray bursts at high redshift

    NARCIS (Netherlands)

    R.A.M.J. Wijers

    1999-01-01

    Gamma-ray bursts are much brighter than supernovae, and could therefore possibly probe the Universe to high redshift. The presently established GRB redshifts range from 0.83 to 5, and quite possibly even beyond that. Since most proposed mechanisms for GRB link them closely to deaths of massive stars

  9. Neutrino Balls and Gamma-Ray Bursts

    CERN Document Server

    Holdom, B

    1994-01-01

    We propose a mechanism by which the neutrino emission from a supernova-type explosion can be converted into a gamma-ray burst of total energy $\\sim 10^{50}$ ergs. This occurs naturally if the explosion is situated inside a ball of trapped neutrinos, which in turn may lie at a galactic core. There are possible unique signatures of this scenario.

  10. Measurements of high-energy {gamma}-rays with LaBr{sub 3}:Ce detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ciemala, M. [Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland)], E-mail: Michal.Ciemala@ifj.edu.pl; Balabanski, D. [INRNE, Bulgarian Academy of Sciences, BG-1784 Sofia (Bulgaria); Csatlos, M. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), P.O. Box 51, H-4001 Debrecen (Hungary); Daugas, J.M. [CEA, DAM, DIF, F-91297 Arpajon Cedex (France); Georgiev, G. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3-CNRS and Universite Paris-Sud, Bat 104-108, F-91405 Orsay Cedex (France); Gulyas, J. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), P.O. Box 51, H-4001 Debrecen (Hungary); Kmiecik, M. [Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Krasznahorkay, A. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), P.O. Box 51, H-4001 Debrecen (Hungary); Lalkovski, S. [Faculty of Physics, University of Sofia, BG-1164 (Bulgaria); Lefebvre-Schuhl, A. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3-CNRS and Universite Paris-Sud, Bat 104-108, F-91405 Orsay Cedex (France); Lozeva, R. [Instituut voor Kernen Stralingsfysica (IKS), Katholieke Universiteit Leuven, B-3001 Leuven (Belgium); Maj, A. [Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Vitez, A. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), P.O. Box 51, H-4001 Debrecen (Hungary)

    2009-09-01

    The full-energy peak efficiency calibration and the energy resolution measurements of the 2in.x2in.LaBr{sub 3}{gamma}-ray detector are presented for {gamma}-ray energies in the 700 keV-17.6 MeV range. Measurements were done using a combination of proton-capture nuclear reactions on {sup 27}Al, {sup 23}Na, {sup 39}K, {sup 7}Li and {sup 11}B for high-energy {gamma}-rays, and radioactive sources such as {sup 60}Co and {sup 152}Eu for the lowest energies. At high energies, two {gamma}-rays in a cascade from proton resonance capture were employed using Al, Na{sub 2}WO{sub 4}, K{sub 2}SO{sub 4} and LiBO{sub 2} targets. The obtained results were compared to the simulations performed using a GEANT4 code.

  11. Gamma-Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    CERN Document Server

    Boettcher, Markus

    2016-01-01

    The expected level of gamma-gamma absorption in the Broad Line Region (BLR) radiation field of gamma-ray loud Flat Spectrum Radio Quasars (FSRQs)is evaluated as a function of the location of the gamma-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the gamma-gamma opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to $\\gamma\\gamma$ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the gamma-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the cen...

  12. Systematic Study of Gamma-ray bright Blazars with Optical Polarization and Gamma-ray Variability

    CERN Document Server

    Itoh, Ryosuke; Fukazawa, Yasushi; Uemura, Makoto; Tanaka, Yasuyuki T; Kawabata, Koji S; Madejski, Grzegorz M; Schinzel, Frank K; Kanda, Yuka; Shiki, Kensei; Akitaya, Hiroshi; Kawabata, Miho; Moritani, Yuki; Nakaoka, Tatsuya; Ohsugi, Takashi; Sasada, Mahito; Takaki, Katsutoshi; Takata, Koji; Ui, Takahiro; Yamanaka, Masayuki; Yoshida, Michitoshi

    2016-01-01

    Blazars are highly variable active galactic nuclei which emit radiation at all wavelengths from radio to gamma-rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between Jul. 2008 and Dec. 2014 to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), thi...

  13. Gamma-Ray Bursts: A Mystery Story

    Science.gov (United States)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  14. Diagnosing ICF gamma-ray physics

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Hans W [Los Alamos National Laboratory; Kim, Y H [Los Alamos National Laboratory; Mc Evoy, A [Los Alamos National Laboratory; Young, C S [Los Alamos National Laboratory; Mack, J M [Los Alamos National Laboratory; Hoffman, N [Los Alamos National Laboratory; Wilson, D C [Los Alamos National Laboratory; Langenbrunner, J R [Los Alamos National Laboratory; Evans, S [Los Alamos National Laboratory; Sedillo, T [Los Alamos National Laboratory; Batha, S H [Los Alamos National Laboratory; Dauffy, L [LLNL; Stoeffl, W [LLNL; Malone, R [Los Alamos National Laboratory; Kaufman, M I [Los Alamos National Laboratory; Cox, B C [Los Alamos National Laboratory; Tunnel, T W [Los Alamos National Laboratory; Miller, E K [NSTEC/SB; Ali, Z A [NSREC/LIVERMORE; Horsfield, C J [AWE; Rubery, M [AWE

    2010-01-01

    Gamma rays produced in an ICF environment open up a host of physics opportunities we are just beginning to explore. A branch of the DT fusion reaction, with a branching ratio on the order of 2e-5 {gamma}/n, produces 16.7 MeV {gamma}-rays. These {gamma}-rays provide a direct measure of fusion reaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Reaction-rate history measurements, such as nuclear bang time and burn width, are fundamental quantities that will be used to optimize ignition on the National Ignition Facility (NIF). Gas Cherenkov Detectors (GCD) that convert fusion {gamma}-rays to UV/visible Cherenkov photons for collection by fast optical recording systems established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. Demonstrated absolute timing calibrations allow bang time measurements with accuracy better than 30 ps. System impulse response better than 95 ps fwhm have been made possible by the combination of low temporal dispersion GCDs, ultra-fast microchannel-plate photomultiplier tubes (PMT), and high-bandwidth Mach Zehnder fiber optic data links and digitizers, resulting in burn width measurement accuracy better than 10ps. Inherent variable energy-thresholding capability allows use of GCDs as {gamma}-ray spectrometers to explore other interesting nuclear processes. Recent measurements of the 4.44 MeV {sup 12}C(n,n{prime}) {gamma}-rays produced as 14.1 MeV DT fusion neutrons pass through plastic capsules is paving the way for a new CH ablator areal density measurement. Insertion of various neutron target materials near target chamber center (TCC) producing secondary, neutron-induced {gamma}y-rays are being used to study other nuclear interactions and as in-situ sources to calibrate detector response and DT branching ratio. NIF Gamma Reaction History (GRH) diagnostics, based on the GCD concept, are now being developed based on optimization of sensitivity, bandwidth

  15. Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

    Science.gov (United States)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern the following scientific tasks: investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons. Also the GAMMA- 400 instrument provides the possibility for protons and nuclei measurements up to knee. But the main goal for the GAMMA-400 mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. To fulfill these measurements the GAMMA-400 gamma-ray telescope possesses unique physical characteristics in comparison with previous and present experiments. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolution for gamma-rays above 10 GeV. The GAMMA-400 experiment will be installed onboard of the Navigator space platform, manufactured by the NPO Lavochkin Association. The expected orbit will be a highly elliptical orbit (with apogee 300.000 km and perigee 500 km) with 7 days orbital period. An important profit of such an orbit is the fact that the full sky coverage will always be available for gamma ray astronomy.

  16. The future of gamma-ray astronomy

    Science.gov (United States)

    Knödlseder, Jürgen

    2016-06-01

    The field of gamma-ray astronomy has experienced impressive progress over the last decade. Thanks to the advent of a new generation of imaging air Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS) and thanks to the launch of the Fermi-LAT satellite, several thousand gamma-ray sources are known today, revealing an unexpected ubiquity of particle acceleration processes in the Universe. Major scientific challenges are still ahead, such as the identification of the nature of Dark Matter, the discovery and understanding of the sources of cosmic rays, or the comprehension of the particle acceleration processes that are at work in the various objects. This paper presents some of the instruments and mission concepts that will address these challenges over the next decades. xml:lang="fr"

  17. The future of gamma-ray astronomy

    CERN Document Server

    Knödlseder, Jürgen

    2016-01-01

    The field of gamma-ray astronomy has experienced impressive progress over the last decade. Thanks to the advent of a new generation of imaging air Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS) and thanks to the launch of the Fermi-LAT satellite, several thousand gamma-ray sources are known today, revealing an unexpected ubiquity of particle acceleration processes in the Universe. Major scientific challenges are still ahead, such as the identification of the nature of Dark Matter, the discovery and understanding of the sources of cosmic rays, or the comprehension of the particle acceleration processes that are at work in the various objects. This paper presents some of the instruments and mission concepts that will address these challenges over the next decades.

  18. The Future of Gamma Ray Astrophysics

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Over the past decade, gamma ray astrophysics has entered the astrophysical mainstream. Extremely successful space-borne (GeV) and ground-based (TeV) detectors, combined with a multitude of partner telescopes, have revealed a fascinating “astroscape" of active galactic nuclei, pulsars, gamma ray bursts, supernova remnants, binary stars, star-forming galaxies, novae much more, exhibiting major pathways along which large energy releases can flow. From  a basic physics perspective, exquisitely sensitive measurements have constrained the nature of dark matter, the cosmological origin of magnetic field and the properties of black holes. These advances have motivated the development of new facilities, including HAWC, DAMPE, CTA and SVOM, which will further our understanding of the high energy universe. Topics that will receive special attention include merging neutron star binaries, clusters of galaxies, galactic cosmic rays and putative, TeV dark matter.

  19. Interstellar medium structure and content and gamma ray astronomy

    International Nuclear Information System (INIS)

    A general description of gamma-ray astronomy is presented with special emphasis on the study of diffuse gamma-ray emission. This is followed by a collection of reflections and observations on the structure and the gas and dust content of the local interstellar medium. Results of gamma-ray observations on the local interstellar medium are given. The last part is devoted to the whole of the galactic gamma-ray emission and its interpretation

  20. High Energy $\\gamma$ Rays from Ultrahigh Energy Cosmic Ray Protons in $\\gamma$ Ray Bursts

    CERN Document Server

    Böttcher, M

    1998-01-01

    It has recently been proposed that ultrahigh energy ($\\gtrsim 10^{19}$ eV) cosmic rays (UHECR) are accelerated by the blast waves associated with GRBs. We calculate the observed synchrotron radiation spectrum from protons and energetic leptons formed in the cascades initiated by photopion production, taking into account $\\gamma\\gamma$ attenuation at the source. Normalizing to the emission characteristics of GRB~970508, we predict $\\sim 10$ MeV - 100 GeV fluxes at a level which may have been observed with EGRET from bright GRBs, and could be detected with the proposed GLAST experiment or with ground-based air Cherenkov telescopes having thresholds $\\lesssim $ several hundred GeV. Besides testing the UHECR origin hypothesis, the short wavelength emission and afterglows can be used to probe the level of the diffuse intergalactic infrared radiation fields or constrain redshifts of GRB sources.

  1. Material recognition using fission gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)], E-mail: giuseppe.viesti@pd.infn.it; Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of); Fabris, D. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G.; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2009-07-21

    Material recognition is studied by measuring the transmission spectrum of {sup 252}Cf fission gamma rays in the energy range E{sub {gamma}}=0.1-5.5 MeV for 0.1-MeV-wide energy bins through a number of elementary samples. Each transmitted spectrum is compared with a library of reference spectra for different elements providing the possibility of material identification. In case of elemental samples with known thickness, this procedure allows the identification of the sample Z with uncertainty typically lower than 3 Z-units over a wide range of elements. Applications to composite materials are also reported.

  2. BL Lacertae Objects and the Extragalactic Gamma-Ray Background

    CERN Document Server

    Li, Fan

    2011-01-01

    A tight correlation between gamma-ray and radio emission is found for a sample of BL Lacertae (BL Lac) objects detected by Fermi Gamma-ray Space Telescope (Fermi) and the Energetic Gamma-Ray Experiment Telescope (EGRET). The gamma-ray emission of BL Lac objects exhibits strong variability, and the detection rate of gamma-ray BL Lac objects is low, which may be related to the gamma-ray duty cycle of BL Lac objects. We estimate the gamma-ray duty cycle ~ 0.11, for BL Lac objects detected by EGRET and Fermi. Using the empirical relation of gamma-ray emission with radio emission and the estimated gamma-ray duty cycle, we derive the gamma-ray luminosity function (LF) of BL Lac objects from their radio LF. Our derived gamma-ray LF of BL Lac objects can almost reproduce that calculated with the recently released Fermi bright active galactic nuclei (AGN) sample. We find that about 45% of the extragalactic diffuse gamma-ray background (EGRB) is contributed by BL Lac objects. Combining the estimate of the quasar contri...

  3. Shielding evaluation by laser compton scattering gamma-ray

    International Nuclear Information System (INIS)

    Laser Compton scattering gamma-ray beam was used for evaluation of gamma ray shield. The gamma source of a NewSUBARU Synchrotron Radiation Facility can generate the quasi-monochromatic gamma ray beam of 0.5-1.7 MeV by combining a carbon dioxide laser and a 0.5-1.0 GeV electron beam. This gamma-ray source has small divergence of 1/γ radian due to the relativistic effect, where γ is relativistic factor of electron. Small diameter test beam of gamma-ray of about 1 mm in diameter is possible to use at the 10 m from the gamma-ray source by combining the small divergence gamma-ray beam with small hole lead collimator. Test sample size used was 2 cm in diameter. Measured shield factor was compared with calculated value using known shield materials such as lead. (author)

  4. Gamma-ray pulsars: A gold mine

    Science.gov (United States)

    Grenier, Isabelle A.; Harding, Alice K.

    2015-08-01

    The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to γ rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of γ-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic γ rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing γ-ray observations and magnetospheric models in more detail. xml:lang="fr"

  5. Critical Test Of Gamma Ray Burst Theories

    CERN Document Server

    Dado, Shlomo

    2016-01-01

    Long and precise follow-up measurements of the X-ray afterglow (AG) of very intense gamma ray bursts (GRBs) provide a critical test of GRB afterglow theories. Here we show that the power-law decline with time of X-ray AG of GRB 130427A, the longest measured X-ray AG of an intense GRB with the Swift, Chandra and XMM Newton satellites, and of all other well measured late-time X-ray afterglow of intense GRBs, is that predicted by the cannonball (CB) model of GRBs from their measured spectral index, while it disagrees with that predicted by the widely accepted fireball (FB) models of GRBs.

  6. X-ray and gamma ray transmission densitometry

    International Nuclear Information System (INIS)

    Gamma and x-ray attenuation densitometers are systems in which measurements of the attenuation of one or several radiation beams are used to infer the density of the attenuating material. This report contains discussions of theoretical and practical aspects of densitometer design, operation, and data interpretation

  7. The Haleakala Gamma Ray Observatory

    International Nuclear Information System (INIS)

    A 10 m2 multi-mirror telescope for observing Cherenkov light signals from atmospheric cascades is now operating at Mount Haleakala, Maui, Hawaii. It differs from other atmospheric Cherenkov detectors in accepting pulses that originate from single photoelectrons, employing two sets of 18 optically independent phototubes in a logic system with nanosecond time resolution to reject ambient light from the night sky. With an angular aperture of 1.3x10-4 sr, cosmic ray showers are observed at a rate of ≅ 0.5 hz at the zenith, with nearly complete rejection of ambient light. This rate for hadronic showers implies an effective threshold near 100 GeV for electromagnetic showers. Two regions of the sky, one centered on the source and the other separated by from it by 3.60 are simultaneously monitored. Examples of observations of episodic and periodic (pulsar) sources are given. (orig.)

  8. The effect of Compton scattering on gamma-ray spectra of the 2005 January 20 flare

    Institute of Scientific and Technical Information of China (English)

    Wei Chen; Wei-Qun Gan

    2012-01-01

    Gamma-ray spectroscopy provides a wealth of information about accelerated particles in solar flares,as well as the ambient medium with which these energetic particles interact.The neutron capture line (2.223 MeV),the strongest in the solar gamma-ray spectrum,forms in the deep atmosphere.The energy of these photons can be reduced via Compton scattering.With the fully relativistic GEANT4 toolkit,we have carried out Monte Carlo simulations of the transport of a neutron capture line in solar flares,and applied them to the flare that occurred on 2005 January 20 (X7.1/2B),one of the most powerful gamma-ray flares observed by RHESSI during the 23rd solar cycle.By comparing the fitting results of different models with and without Compton scattering of the neutron capture line,we find that when including the Compton scattering for the neutron capture line,the observed gamma-ray spectrum can be reproduced by a population of accelerated particles with a very hard spectrum (s≤2.3).The Compton effect of a 2.223 MeV line on the spectra is therefore proven to be significant,which influences the time evolution of the neutron capture line flux as well.The study also suggests that the mean vertical depth for neutron capture in hydrogen for this event is about 8 g cm-2.

  9. Gamma-Ray Library and Uncertainty Analysis: Passively Emitted Gamma Rays Used in Safeguards Technology

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W

    2009-09-18

    Non-destructive gamma-ray analysis is a fundamental part of nuclear safeguards, including nuclear energy safeguards technology. Developing safeguards capabilities for nuclear energy will certainly benefit from the advanced use of gamma-ray spectroscopy as well as the ability to model various reactor scenarios. There is currently a wide variety of nuclear data that could be used in computer modeling and gamma-ray spectroscopy analysis. The data can be discrepant (with varying uncertainties), and it may difficult for a modeler or software developer to determine the best nuclear data set for a particular situation. To use gamma-ray spectroscopy to determine the relative isotopic composition of nuclear materials, the gamma-ray energies and the branching ratios or intensities of the gamma-rays emitted from the nuclides in the material must be well known. A variety of computer simulation codes will be used during the development of the nuclear energy safeguards, and, to compare the results of various codes, it will be essential to have all the {gamma}-ray libraries agree. Assessing our nuclear data needs allows us to create a prioritized list of desired measurements, and provides uncertainties for energies and especially for branching intensities. Of interest are actinides, fission products, and activation products, and most particularly mixtures of all of these radioactive isotopes, including mixtures of actinides and other products. Recent work includes the development of new detectors with increased energy resolution, and studies of gamma-rays and their lines used in simulation codes. Because new detectors are being developed, there is an increased need for well known nuclear data for radioactive isotopes of some elements. Safeguards technology should take advantage of all types of gamma-ray detectors, including new super cooled detectors, germanium detectors and cadmium zinc telluride detectors. Mixed isotopes, particularly mixed actinides found in nuclear reactor

  10. Fermi Gamma-ray Space Telescope Observations of Gamma-ray Pulsars

    CERN Document Server

    Parkinson, P M Saz

    2009-01-01

    The Large Area Telescope on the recently launched Fermi Gamma-ray Space Telescope (formerly GLAST), with its large field of view and effective area, combined with its excellent timing capabilities, is poised to revolutionize the field of gamma-ray astrophysics. The large improvement in sensitivity over EGRET is expected to result in the discovery of many new gamma-ray pulsars, which in turn should lead to fundamental advances in our understanding of pulsar physics and the role of neutron stars in the Galaxy. Almost immediately after launch, Fermi clearly detected all previously known gamma-ray pulsars and is producing high precision results on these. An extensive radio and X-ray timing campaign of known (primarily radio) pulsars is being carried out in order to facilitate the discovery of new gamma-ray pulsars. In addition, a highly efficient time-differencing technique is being used to conduct blind searches for radio-quiet pulsars, which has already resulted in new discoveries. I present some recent results...

  11. Physics of gamma-ray bursts

    Science.gov (United States)

    Lamb, D. Q.

    1984-01-01

    Attention is given to the accumulating evidence for the view that gamma-ray bursts come from strongly magnetic neutron stars, discussing the physical properties of the emission region and the radiation processes expected in strong magnetic fields, and emphasizing that the observed burst spectra require that the emission region be optically thin. This entails that the energy of the emitting plasma and/or the plasma itself be continuously replenished during a burst, and that the cooling time scale of the emitting plasma be much shorter than the observed duration of the bursts. This characteristic of the cooling time scale implies that the burst intensity and spectrum can vary on extremely short time scales, and that the burst duration must have a separate explanation. It is emphasized that synchrotron emission is favored as the gamma-ray production mechanism; it is the only mechanism capable of satisfying the optical thinness constraint while producing the observed luminosity.

  12. TeV Gamma Ray Astronomy

    CERN Document Server

    Cui, Wei

    2009-01-01

    The field of ground-based gamma ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this review, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play to advance this young but exciting field.

  13. Gamma-ray Constraints on Effective Interactions

    CERN Document Server

    Cheung, Kingman; Yuan, Tzu-Chiang

    2011-01-01

    Using an effective interaction approach to describe the interactions between the dark matter particle and the light degrees of freedom of the standard model, we calculate the gamma-ray flux due to the annihilation of the dark matter into quarks, followed by fragmentation into neutral pions which subsequently decay into photons. By comparison to the mid-latitude data released from the Fermi-LAT experiment, we obtain useful constraints on the size of the effective interactions and they are found to be comparable to those deduced from collider, gamma-ray line and anti-matter search experiments. However, the two operators induced by scalar and vector exchange among fermionic dark matter and light quarks that contribute to spin-independent cross sections are constrained more stringently by the recent XENON100 data.

  14. Stellar Photon Archaeology with Gamma-Rays

    Science.gov (United States)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  15. Real time gamma-ray signature identifier

    Science.gov (United States)

    Rowland, Mark; Gosnell, Tom B.; Ham, Cheryl; Perkins, Dwight; Wong, James

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  16. Are gamma-ray bursts cosmological?

    CERN Document Server

    Horvath, I

    2015-01-01

    Gamma-ray burst sources are distributed with a high level of isotropy, which is compatible with either a cosmological origin or an extended Galactic halo origin. The brightness distribution is another indicator used to characterize the spatial distribution in distance. In this paper the author discusses detailed fits of the BATSE gamma-ray burst peak-flux distributions with Friedmann models taking into account possible density evolution and standard candle luminosity functions. A chi-square analysis is used to estimate the goodness of the fits and the author derives the significance level of limits on the density evolution and luminosity function parameters. Cosmological models provide a good fit over a range of parameter space which is physically reasonable

  17. TeV gamma-ray astronomy

    Institute of Scientific and Technical Information of China (English)

    Wei Cui

    2009-01-01

    The field of ground-based gamma-ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this re-view, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play in advancing this young but exciting field.

  18. Environmental Effects of Gamma Ray Bursts

    International Nuclear Information System (INIS)

    Gamma rays bursts, coming from very massive stars, are the most powerful explosions in our Universe. Some authors have linked them to some of the climatic changes and consequent biological mass extinctions of the Phanerozoic eon. However, the consequences of their direct impact on primitive Earth, is today a hot topic of debate. On the other hand, it is usually assumed that they were more common in earlier stages of our galaxy. So it is important to evaluate its potential effects on terrestrial paleoenvironments. We outline some simple models to estimate their influence mainly on the primordial atmospheric chemistry of Earth and on the climate in general. To do that, we consider different scenarios where the atmospheric composition diverges substantially from the atmosphere today, and compute the evolution of principal chemical species under the intense radiational stress of a gamma ray burst. Furthermore, the possible impact on the isotopic composition, geochemistry and the biosphere are mentioned in general way

  19. Gamma Ray Bursts Observations and Theoretical Conjectures

    CERN Document Server

    Alagoz, E; Carrillo, C; Golup, G T; Grimes, M; Herrera, Mora C; Gallo, Palomino J L; López, Vega A; Wicht, J

    2008-01-01

    Gamma Ray Bursts (GRBs) are short bursts of very high energy photons which were discovered in the late 1960s. Ever since their discovery, scientists have wondered about their origin. Nowadays it is known that they originate outside the Milky Way because of their high red shift rst measured in the afterglows thanks to the Beppo-SAX satellite and ground-based observations. However, theoreticians still do not agree about the mechanism that generates the bursts, and different competing models are animatedly debated. Current GRB experiments include the Swift satellite and the Pierre Auger Observatory that could detect GRBs with an increase of the background. A forthcoming dedicated experiment is GLAST, a satellite observatory for detecting gamma rays with energies up to 300 GeV, whose launch is scheduled for early 2008.

  20. Solar gamma-ray lines and interplanetary solar protons

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimori, M.

    1985-12-01

    Solar gamma-ray lines and protons were simultaneously observed for six flares on 1 April, 4 April, 27 April, 13 May 1981, 1 February, and 6 June, 1982 by Hinotori and Himawari satellites. The time histories of gamma-ray lines and protons are analyzed. The relationship between the gamma-ray line fluences and peak proton fluxes for these flares does not reveal an apparent correlation between them. The present result implies that the protons producing gamma-ray lines in the flare region and protons observed near the earth do not always belong to the same population, and favor the downward streaming model for the gamma-ray line production.

  1. GAMMA-RAY BURSTS, NEW COSMOLOGICAL BEACONS

    Directory of Open Access Journals (Sweden)

    V. Avila-Reese

    2009-01-01

    Full Text Available Long Gamma-Ray Bursts (GRBs are the brightest electromagnetic explosions in the Universe, associated to the death of massive stars. As such, GRBs are potential tracers of the evolution of the cosmic massive star formation, metallicity, and Initial Mass Function. GRBs also proved to be appealing cosmological distance indicators. This opens a unique opportunity to constrain the cosmic expansion history up to redshifts 5-6. A brief review on both subjects is presented here.

  2. Are Gamma-Ray Bursts Standard Candles?

    OpenAIRE

    Li, Li-Xin

    2007-01-01

    By dividing a sample of 48 long-duration gamma-ray bursts (GRBs) into four groups with redshift from low to high and fitting each group with the Amati relation log Eiso = a + b log Epeak, I find that parameters a and b vary with the mean redshift of the GRBs in each group systematically and significantly. The results suggest that GRBs evolve strongly with the cosmic redshift and hence are not standard candles.

  3. Solution To The Gamma Ray Burst Mystery?

    OpenAIRE

    Shaviv, Nir J.; Dar, Arnon

    1996-01-01

    Photoexcitation and ionization of partially ionized heavy atoms in highly relativistic flows by interstellar photons, followed by their reemission in radiative recombination and decay, boost star-light into beamed $\\gamma$ rays along the flow direction. Repeated excitation/decay of highly relativistic baryonic ejecta from merger or accretion induced collapse of neutron stars in dense stellar regions (DSRs), like galactic cores, globular clusters and super star-clusters, can convert enough kin...

  4. Gamma Ray Bursts and their Optical Counterparts

    International Nuclear Information System (INIS)

    Gamma Ray Bursts (GRB) have been discovered 38 years ago and still remain one of the most intriguing puzzles of astrophysics. In this paper we remind briefly the history of GRB studies and review the current experimental evidence with the emphasis on GRB optical counterparts. At the end we introduce '' π of the Sky '' project designed to catch prompt optical emission from GRB sources. (author)

  5. Cosmological parametrization of $\\gamma$ ray burst models

    CERN Document Server

    Linder, E V

    1996-01-01

    Using three parametrizations of the gamma ray burst count data comparison is made to cosmological source models. While simple models can fit and faint end slope constraints, the addition of a logarithmic count range variable describing the curvature of the counts shows that models with no evolution or evolution power law in redshift with index less than 10 fail to satisfy simultaneously all three descriptors of the burst data. The cosmological source density that would be required for a fit is illustrated.

  6. Gamma-ray bursts - a critical review

    International Nuclear Information System (INIS)

    We present a short general introduction into the field of gamma-ray bursts (GRBs) research, summarizing the past and the present status. We give an general view of the GRBs observations to date, both in the prompt emission phase as well as in the afterglow phase, and a brief primer into the theory, mainly in the frame-work of the fireball model. (authors)

  7. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    The Whipple Observatory's atmospheric Cerenkov camera has detected TeV radiation from four galactic sources: the Crab Nebula, Cygnus X-3, Hercules X-1, and 4U0115+63. Recent simulations encourage the view that unwanted cosmic-ray background showers may be suppressed by a large factor. Emphasis in the coming year will be on determining optimum selection criteria for enhancing gamma-ray signals and in developing a prototype camera with finer angular resolution as a first step towards implementation of the HERCULES concept

  8. EXIST's Gamma-Ray Burst Sensitivity

    OpenAIRE

    Band, D. L.; Grindlay, J. E.; Hong, J.; Fishman, G.; Hartmann, D. H.; Garson III, A.; Krawczynski, H.; Barthelmy, S.; Gehrels, N.; Skinner, G.

    2007-01-01

    We use semi-analytic techniques to evaluate the burst sensitivity of designs for the EXIST hard X-ray survey mission. Applying these techniques to the mission design proposed for the Beyond Einstein program, we find that with its very large field-of-view and faint gamma-ray burst detection threshold, EXIST will detect and localize approximately two bursts per day, a large fraction of which may be at high redshift. We estimate that EXIST's maximum sensitivity will be ~4 times greater than that...

  9. Gamma Rays frim the Galactic Centre

    CERN Document Server

    Erlykin, A D

    2007-01-01

    Recent results from the HESS gamma ray telescope have shown the presence of both a diffuse, extended, flux of gamma rays above ~0.4 TeV and discrete sources in and near the Galactic Centre. Here, we put forward a possible explanation in terms of the diffusion of cosmic ray protons from a succession of supernova remnants (SNR) in the SgrA* region of the Galaxy plus a contribution from SNR in the rest of the Galactic Centre Region, to be called the Galactic Centre Ridge (GCR). Protons are favoured over electrons because the mG magnetic fields in the Region will attenuate energetic electrons severely. Prominent features are the need for 'anomalous diffusion' of the protons in the whole region and the adoption of low efficiency for SNR acceleration in the high density regions. The latter is related by us to the well-known low 'cosmic ray gradient' in the Galaxy. A corroborating feature is the close correlation of inferred cosmic ray intensity with the smoothed intensity of 5 GHZ radio radiation. We attribute this...

  10. Gamma Ray Bursts Cook Book I: Formulation

    CERN Document Server

    Ziaeepour, Houri

    2008-01-01

    Since the suggestion of relativistic shocks as the origin of gamma-ray bursts (GRBs) in early 90's, the mathematical formulation of this process has stayed at phenomenological level. One of the reasons for the slow development of theoretical works in this domain has been the simple power-law behaviour of the afterglows hours or days after the prompt gamma-ray emission. Nowadays with the launch of the Swift satellite, gamma-ray bursts can be observed in multi-wavelength from a few tens of seconds after trigger onward. These observations have leaded to the discovery of features unexplainable by the simple formulation of the shocks and emission processes used up to now. But "devil is in details" and some of these features may be explained with a more detailed formulation of phenomena and without adhoc addition of new processes. Such a formulation is the goal of this work. We present a consistent formulation of the collision between two spherical relativistic shells. The model can be applied to both internal and ...

  11. Distribution of Gamma-Ray Bursts

    Science.gov (United States)

    Diaz Rodriguez, Mariangelly; Smith, M.; Tešic, G.

    2014-01-01

    Gamma-Ray Bursts (GRBs) are known to be bright, irregular flashes of gamma rays that typically last just a few seconds, believed to be caused by stellar collapse or the merger of a pair of compact objects. Through previous work, it has been found that GRBs are distributed roughly uniformly over the entire sky, rather than being confined to the relatively narrow band of the Milky Way. Using the Python programming language, we generated a model of GRBs over cosmological distances, based on current empirical GRB distributions. The grbsim python module uses the acceptance-rejection Monte Carlo method to simulate the luminosity and redshift of a large population of GRBs, including cosmological effects such as dark energy and dark matter terms that modify the large-scale structure of space-time. The results of running grbsim are demonstrated to match the distribution of GRBs observed by the Burst Alert Telescope on NASA’s Swift satellite. The grbsim module will subsequently be used to simulate gamma ray and neutrino events for the Astrophysical Multimessenger Observatory Network.

  12. Gamma-ray astronomy with underground detectors

    CERN Document Server

    Halzen, Francis

    1995-01-01

    Underground detectors measure the directions of up-coming muons of neutrino origin. They can also observe down-going muons made by gamma rays in the Earth's atmosphere. Although gamma ray showers are muon-poor, they produce a sufficient number of muons to detect the sources observed by GeV and TeV telescopes. With a threshold higher by one hundred and a probability of muon production of about 1\\% for the shallower AMANDA and Lake Baikal detectors, these instruments can, for a typical GRO source, match the detection efficiency of a GeV satellite detector since their effective area is larger by a factor 10^4. The muons must have enough energy for accurate reconstruction of their direction. Very energetic muons on the other hand are rare because they are only produced by higher energy gamma rays whose flux is suppressed by the decreasing flux at the source and by absorption on interstellar light. We show that there is a window of opportunity for muon astronomy in the 100~GeV energy region which nicely matches th...

  13. Gamma ray tracking with the AGATA demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Birkenbach, Benedikt; Hess, Herbert; Lewandowski, Lars; Reiter, Peter; Steinbach, Tim; Schneiders, David; Vogt, Andreas [IKP, Universitaet zu Koeln (Germany); Collaboration: AGATA-Collaboration

    2014-07-01

    The performance of the AGATA demonstrator will be discussed based on data taken from a multi-nucleon transfer experiment at the AGATA PRISMA setup at LNL (INFN, Italy). A primary {sup 136}Xe beam of 1 GeV hitting a {sup 238}U target was used to produce a multitude of nuclei in the vicinity of {sup 136}Xe and corresponding reaction partners in the actinide region. The obtained results for in-beam gamma-ray spectroscopy allow for a critical assessment of the novel gamma ray tracking technique and comparison with standard procedure. High resolution spectroscopy of both reaction products after multi-nucleon transfer reaction in the presence of a high background from excited fission fragments is based on pulse-shape analysis (PSA) and gamma-ray tracking (GRT). The quality of the position information is crucial for the final energy resolution after Doppler correction. The impact of the calculated PSA libraries and the initial detector characterization for the PSA and GRT are summarized. Details of the achieved position and energy resolution, peak-to-background optimization are presented and illustrated with results from the neutron-transfer products in Xe and U-isotopes.

  14. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    Science.gov (United States)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  15. The Swift Gamma-Ray Burst Mission

    CERN Document Server

    Gehrels, N; Burrows, D N; Chincarini, G L; Cominsky, L R; Giommi, P; Hurley, K C; Marshall, F E; Mason, K O; Mészáros, P; Nousek, J A; Roming, P W A; Wells, A A; White, N E; Team, Swift Science

    2004-01-01

    The Swift mission, scheduled for launch in early 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to determine the origin of GRBs; classify GRBs and search for new types; study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and use GRBs to study the early universe out to z>10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector; a narrow-field X-ray telescope; and a narrow-field UV/optical telescope. Redshift determin...

  16. Is Calvera a Gamma-ray Pulsar?

    CERN Document Server

    Halpern, J P

    2011-01-01

    Originally selected as a neutron star (NS) candidate in the ROSAT All-Sky Survey, 1RXS J141256.0+792204 ("Calvera") was discovered to be a 59 ms X-ray pulsar in a pair of XMM-Newton observations (Zane et al. 2011). Surprisingly, their claimed detection of this pulsar in Fermi gamma-ray data requires no period derivative, severely restricting its dipole magnetic field strength, spin-down luminosity, and distance to small values. This implies that the cooling age of Calvera is much younger than its characteristic spin-down age. If so, it could be a mildly recycled pulsar, or the first "orphaned" central compact object (CCO). Here we show that the published Fermi ephemeris fails to align the pulse phases of the two X-ray observations with each other, which indicates that the Fermi detection is almost certainly spurious. Analysis of additional Fermi data also does not confirm the gamma-ray detection. This leaves the spin-down rate of Calvera less constrained, and its place among the families of NSs uncertain. It ...

  17. High-energy gamma-ray afterglows from low-luminosity gamma-ray bursts

    OpenAIRE

    He, Hao-Ning; WANG, XIANG-YU; Yu, Yun-Wei; Meszaros, Peter

    2009-01-01

    The observations of gamma-ray bursts (GRBs) such as 980425, 031203 and 060218, with luminosities much lower than those of other classic bursts, lead to the definition of a new class of GRBs -- low-luminosity GRBs. The nature of the outflow responsible for them is not clear yet. Two scenarios have been suggested: one is the conventional relativistic outflow with initial Lorentz factor of order of $\\Gamma_0\\ga 10$ and the other is a trans-relativistic outflow with $\\Gamma_0\\simeq 1-2$. Here we ...

  18. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano [Department of Physics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2012-08-20

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  19. Spectra of {gamma} rays feeding superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  20. Collimatorless imaging of gamma rays with help of gamma-ray tracking

    CERN Document Server

    Marel, J V D

    2001-01-01

    In many gamma-ray detector systems that are built for imaging purposes Compton scattered photons are suppressed as much as possible. However, the information from photons that scattered inside a detector system can be used to reconstruct the tracks of the photons with help of gamma-ray tracking. Estimates of the incident directions of the photons can be made and an image can be created. Examples of potential applications for this technique are the use as a gamma-camera in medical imaging (e.g. SPECT) or as a detector for PET. Due to the omission of collimators, much higher detection efficiencies can be achieved, reducing the doses required for an image. A gamma-ray tracking method, called backtracking, has been developed for nuclear spectroscopy. The method tracks gamma-rays originating from a point source in the center of a spherical detector system consisting of position-sensitive germanium detectors. This method can also be used as a tracking technique for imaging of an unknown source distribution. With he...

  1. Gamma rays as probes of the Universe

    Science.gov (United States)

    Horns, Dieter; Jacholkowska, Agnieszka

    2016-06-01

    The propagation of γ rays over very large distances provides new insights on the intergalactic medium and on fundamental physics. On their path to the Earth, γ rays can annihilate with diffuse infrared or optical photons of the intergalactic medium, producing e+e- pairs. The density of these photons is poorly determined by direct measurements due to significant galactic foregrounds. Studying the absorption of γ rays from extragalactic sources at different distances allows the density of low-energy diffuse photons to be measured. Gamma-ray propagation may also be affected by new phenomena predicted by extensions of the Standard Model of particle physics. Lorentz Invariance is violated in some models of Quantum Gravity, leading to an energy-dependent speed of light in vacuum. From differential time-of-flight measurements of the most distant γ-ray bursts and of flaring active galactic nuclei, lower bounds have been set on the energy scale of Quantum Gravity. Another effect that may alter γ-ray propagation is predicted by some models of String Theory, namely the mixing of the γ ray with a light fundamental boson called an "axion-like particle", which does not interact with low-energy photons. Such a mixing would make the Universe more transparent to γ rays than what would otherwise be, in a sense it decreases the amount of modification to the spectrum that comes from the extragalactic background light. The present status of the search for all these phenomena in γ-ray astronomy is reviewed. xml:lang="fr"

  2. Gamma rays and supernova explosions. [high temperature radiation measurement

    Science.gov (United States)

    Arnett, W. D.

    1977-01-01

    Thermal radiation associated with the explosion of supernovae is investigated. High temperature is required to produce copious gamma radiation of this sort. It appears that type 11 supernovae do not release much of their energy as gamma ray continuum radiation.

  3. The interplanetary gamma ray burst network

    Science.gov (United States)

    Cline, T.

    The Interplanetary Gamma-Ray Burst Network (IPN) is providing gamma-ray burst (GRB) alerts and localizations at the maximum rate anticipated before the launch of the Swift mission. The arc-minute source precision of the IPN is again permitting searches for GRB afterglows in the radio and optical regimes with delays of only hours up to 2 days. The successful addition of the Mars Odyssey mission has compensated for the loss of the asteroid mission NEAR, to reconstitute a fully long- baseline interplanetary network, with Ulysses at > 5 AU and Konus-Wind and HETE-2 near the Earth. In addition to making unassisted GRB localizations that enable a renewed supply of counterpart observations, the Mars/Ulysses/Wind IPN is confirming and reinforcing GRB source localizations with HETE-2. It has also confirmed and reinforced localizations with the BeppoSAX mission before the BeppoSAX termination in May and has detected and localized both SGRs and an unusual hard x-ray transient that is neither an SGR nor a GRB. This IPN is expected to operate until at least 2004.

  4. $\\gamma$-Ray Bursts the Four Crises

    CERN Document Server

    Tavani, M

    1998-01-01

    We discuss some open problems concerning the origin and the emission mechanism of gamma-ray bursts (GRBs) in light of recent developments. If GRBs originate at extragalactic distances, we are facing four crises: (1) an energy crisis, models have to account for more than 10^{53} ergs of energy emitted in the gamma-ray energy band; (2) a spectral crisis, emission models have to account for the surprising `smoothness' of GRB broad-band spectra, with no indication of the predicted spectral `distorsions' caused by inverse Compton scattering in large radiation energy density media, and no evidence for beaming; (3) an afterglow crisis, relativistic shock models have to explain the complexity of the afterglow behavior, the longevity of optical transients detectable up to six months after the burst, the erratic behavior of the radio emission, and the lack of evidence for substantial beaming as indicated by recent searches for GRB afterglows in the X-ray band; (4) a population crisis, from data clearly indicating that ...

  5. Very high energy gamma ray astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, R.C.; Lewis, D.A.

    1992-02-01

    The second reflector (project GRANITE) is on schedule. At present (January 1992) it and the 10 m reflector are obtaining stereoscopic views of gamma-ray air showers from the Crab Nebula which verify the expected performance of the twin reflector telescopes. With the additional improvements of the upgrade (a pending DOE proposal) the twin reflectors should reach a limiting intensity of 1% that of the Crab. The astonishing early results from the EGRET detector aboard the Compton Gamma Ray Observatory indicate that distant quasars (powered by supermassive black holes) are active at GeV energies. The Whipple instruments are poised to see if such behavior continues above 100 GeV, as well as perform sensitive observations of previously reported GeV (Geminga) and TeV (Hercules X-1, etc.) sources. In addition to observing sources and identifying their location in the sky to one arcminute, experiments are planned to search for WIMPS in the mass range 0.1 to 1 TeV, and to determine the abundance of anti-protons in the cosmic rays. The successful performance of the stereoscopic reflectors demonstrates the feasibility of the concept of arrays of Cherenkov receivers. Design studies for a much larger array (CASITA) are just beginning.

  6. The GAMMA-400 gamma-ray telescope characteristics. Angular resolution and electrons/protons separation

    CERN Document Server

    Leonov, A A; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Boyarchuk, K A; Castellini, G; Cattaneo, P W; Cumani, P; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2014-01-01

    The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be implemented by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Searching for signatures of dark matter, surveying the celestial sphere in order to study gamma-ray point and extended sources, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, studying gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measuring spectra of high-energy electrons and positrons, protons and nuclei up to the knee. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution of ~1% and angular resolution better than 0.02 deg. The methods developed to reconstru...

  7. Polarized gamma-rays with laser-Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Ohgaki, H.; Noguchi, T.; Sugiyama, S. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    Polarized gamma-rays were generated through laser-Compton backscattering (LCS) of a conventional Nd:YAG laser with electrons circulating in the electron storage ring TERAS at Electrotechnical Laboratory. We measured the energy, the energy spread, and the yield of the gamma-rays to characterize our gamma-ray source. The gamma-ray energy can be varied by changing the energy of the electrons circulating the storage ring. In our case, the energy of electrons in the storage ring were varied its energy from 200 to 750 MeV. Consequently, we observed gamma-ray energies of 1 to 10 MeV with 1064 run laser photons. Furthermore, the gamma-ray energy was extended to 20 MeV by using the 2nd harmonic of the Nd:YAG laser. This shows a good agreement with theoretical calculation. The gamma-ray energy spread was also measured to be 1% FWHM for -1 MeV gamma-rays and to be 4% FWHM for 10 MeV gamma-rays with a narrow collimator that defined the scattering cone. The gamma-ray yield was 47.2 photons/mA/W/s. This value is consistent with a rough estimation of 59.5 photons/mA/W/s derived from theory. Furthermore, we tried to use these gamma-rays for a nuclear fluorescence experiment. If we use a polarized laser beam, we can easily obtain polarized gamma-rays. Elastically scattered photons from {sup 208} Pb were clearly measured with the linearly polarized gamma-rays, and we could assign the parity of J=1 states in the nucleus. We should emphasize that the polarized gamma-ray from LCS is quit useful in this field, because we can use highly, almost completely, polarized gamma-rays. We also use the LCS gamma-rays to measure the photon absorption coefficients. In near future, we will try to generate a circular polarized gamma-ray. We also have a plan to use an FEL, because it can produce intense laser photons in the same geometric configuration as the LCS facility.

  8. The short gamma-ray burst revolution

    International Nuclear Information System (INIS)

    Swift, a dedicated gamma-ray burst (GRB) satellite with ultrarapid slewing capability, and a suite of ground-based (ESO) telescopes have recently achieved a major breakthrough: detecting the first afterglows of short-duration GRBs. The faintness of these afterglows and the diversity of old and young host galaxies lend support to the emerging 'standard model', in which they are created during the merging of two compact objects. However, the afterglow light-curve properties and possible high-redshift origin of some short bursts suggests that more than one progenitor type may be involved. (orig.)

  9. Gamma ray constraints on decaying dark matter

    DEFF Research Database (Denmark)

    Cirelli, M.; Moulin, E.; Panci, P.;

    2012-01-01

    We derive new bounds on decaying dark matter from the gamma ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range...... of dark matter masses and a variety of decay modes, excluding half-lives up to similar to 10(26) to few 10(27) seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e(+/-) spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices...

  10. Two classes of gamma-ray bursts

    CERN Document Server

    Katz, J I

    1995-01-01

    Data from the 3B Catalogue suggest that short and long GRB are the results of different classes of events, rather than different parameter values within a single class: Short bursts have harder spectra in the BATSE bands, but chiefly long bursts are detected at photon energies over 1 MeV, implying that their hard photons are radiated by a process not found in short bursts. The values of \\langle V/V_{max} \\rangle for short and long bursts differ by 4.3 \\sigma, implying different spatial distributions. Only the soft gamma-ray radiation mechanisms are the same in both classes.

  11. Optical telescope BIRT in ORIGIN for gamma ray burst observing

    DEFF Research Database (Denmark)

    Content, Robert; Sharples, Ray; Page, Mathew J.;

    2012-01-01

    The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope...

  12. A separation of electrons and protons in the GAMMA-400 gamma-ray telescope

    CERN Document Server

    Leonov, A A; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Cumani, P; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern with the following scientific goals: search for signatures of dark matter, investigation of gamma-ray point and extended sources, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the active Sun, as well as high-precision measurements of spectra of high-energy electrons and positrons, protons, and nuclei up to the knee. The main components of cosmic rays are protons and helium nuclei, whereas the part of lepton component in the total flux is ~10E-3 for high energies. In present paper, the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is investigated. The individual contribution to the proton rejection is studied for each detector system of the GAMMA-400 gamma-ray tel...

  13. Application of neutron-induced and natural gamma-ray spectrometry for evaluation of coal parameters in the laboratory and in-situ

    International Nuclear Information System (INIS)

    Experimental investigations of the three laboratory nuclear techniques (natural gamma-ray, neutron capture gamma-ray and neutron activation analysis) have been applied for quantitative determination of coal parameters. Natural gamma-ray measurements of carboniferous rocks of the Upper Silesian Coal Basin have shown that the specific activity of shale and mudstone is higher than that of bituminous coal. The determination of ash content, calorific value and carbon content by natural gamma-ray spectrometry was feasible. An elemental analysis of principal elements in coal was performed by neutron capture gamma-ray measurements. The major constituents of mineral components of coal were determined by means of neutron activation analysis. Fields experiments of the two neutron induced gamma-ray spectrometric logging methods (neutron-gamma and neutron activation) have been used for quantitative determination of coal quality parameters. 74 refs, 40 figs, 15 tabs

  14. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  15. Improved Gamma-Ray Flux Monitoring at the High Intensity Gamma-Ray Source (HIGS)

    Science.gov (United States)

    Reynolds, Robert

    2002-10-01

    An improved gamma-ray beam flux monitor has been built for use at the High Intensity Gamma-Ray Source at the Duke University Free Electron Laser Laboratories. It is important to know precisely the gamma-ray flux of this beam. It is also important to limit beam attenuation to a minimum while making an accurate flux measurement. The improvements from a more accurate gamma-ray intensity monitor will allow for more precise cross-section measurements and will be valuable to many of the experiments conducted at HIGS. The detector consists of a thin scintillator optically coupled to two photomultiplier tubes, a thin foil, and then another thin scintillator attached to two photomultiplier tubes. The front scintillator is used to veto counts from charged particles emitted upstream in the beam-line. The preliminary tests of the monitor show very promising results and after slight adjustments and calibrations, the detector will be ready to acquire accurate beam intensity measurements while contributing very little to beam attenuation.

  16. Balloon-borne gamma-ray polarimetry

    CERN Document Server

    Pearce, Mark

    2011-01-01

    The physical processes postulated to explain the high-energy emission mechanisms of compact astrophysical sources often yield polarised soft gamma rays (X-rays). PoGOLite is a balloon-borne polarimeter operating in the 25-80 keV energy band. The polarisation of incident photons is reconstructed using Compton scattering and photoelectric absorption in an array of phoswich detector cells comprising plastic and BGO scintillators, surrounded by a BGO side anticoincidence shield. The polarimeter is aligned to observation targets using a custom attitude control system. The maiden balloon flight is scheduled for summer 2011 from the Esrange Space Centre with the Crab and Cygnus X-1 as the primary observational targets.

  17. The Gamma-Ray Burst - Supernova Connection

    CERN Document Server

    Hjorth, Jens

    2011-01-01

    A preponderance of evidence links long-duration, soft-spectrum gamma-ray bursts (GRBs) with the death of massive stars. The observations of the GRB-supernova (SN) connection present the most direct evidence of this physical link. We summarize 30 GRB-SN associations and focus on five ironclad cases, highlighting the subsequent insight into the progenitors enabled by detailed observations. We also address the SN association (or lack thereof) with several sub-classes of GRBs, finding that the X-ray Flash (XRF) population is likely associated with massive stellar death whereas short-duration events likely arise from an older population not readily capable of producing a SN concurrent with a GRB. Interestingly, a minority population of seemingly long-duration, soft-spectrum GRBs show no evidence for SN-like activity; this may be a natural consequence of the range of Ni-56 production expected in stellar deaths.

  18. Gamma Rays from Top-Mediated Dark Matter Annihilations

    OpenAIRE

    Jackson, C.B.(Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA); Servant, Géraldine; Shaughnessy, Gabe; Tim M.P. Tait; Taoso, Marco

    2013-01-01

    Lines in the energy spectrum of gamma rays are a fascinating experimental signal, which are often considered "smoking gun" evidence of dark matter annihilation. The current generation of gamma ray observatories are currently closing in on parameter space of great interest in the context of dark matter which is a thermal relic. We consider theories in which the dark matter's primary connection to the Standard Model is via the top quark, realizing strong gamma ray lines consistent with a therma...

  19. Reproducibility of (n,γ) gamma ray spectrum in Pb under different ENDF/B releases

    Science.gov (United States)

    Kebwaro, J. M.; He, C. H.; Zhao, Y. L.

    2016-04-01

    Radiative capture reactions are of interest in shielding design and other fundamental research. In this study the reproducibility of (n,γ) reactions in Pb when cross-section data from different ENDF/B releases are used in the Monte-Carlo code, MCNP, was investigated. Pb was selected for this study because it is widely used in shielding applications where capture reactions are likely to occur. Four different neutron spectra were declared as source in the MCNP model which consisted of a simple spherical geometry. The gamma ray spectra due to the capture reactions were recorded at 10 cm from the center of the sphere. The results reveal that the gamma ray spectrum produced by ENDF/B-V is in reasonable agreement with that produced when ENDF/B-VI.6 is used. However the spectrum produced by ENDF/B-VII does not reveal any primary gamma rays in the higher energy region (E > 3 MeV). It is further observed that the intensities of the capture gamma rays produced when various releases are used differ by a some margin showing that the results are not reproducible. The generated spectra also vary with the spectrum of the source neutrons. The discrepancies observed among various ENDF/B releases could raise concerns to end users and need to be addressed properly during benchmarking calculations before the next release. The evaluation from ENDF to ACE format that is supplied with MCNP should also be examined because errors might have arisen during the evaluation.

  20. Re-estimation of absolute gamma ray intensities of 56Mn using k0- standardization

    Institute of Scientific and Technical Information of China (English)

    M. AHMAD; W. AHMAD; M. U. RAJPUT; A. QAYYUM

    2005-01-01

    The thermal neutron capture gamma ray facility at Pakistan Research Reactor (PARR-1) is being used for the re-estimation of various properties like capture cross-sections, resonance integral, absolute gamma intensities, etc.of different isotopes. The data for gamma ray transitions from the capture of thermal neutrons by 55Mn are not in good agreement specifically below 2 MeV. So there is a need to re-estimate its intensities with better accuracy. Analytical grade MnCl2 powder and high purity Mn metal pieces were used in this study. Standard 152Eu and 60Co radioactive sources as well as thermal neutron capture γ-rays in chlorine were chosen for efficiency calibration. The k0standardization technique was applied for these measurements to eliminate systematic errors in efficiencies. Chlorine also acted as a comparator in k0- factor calculations. The results have been tabulated for the main gamma rays from 56Mn in the low as well as in the medium energy regions. The absolute intensities are in good agreement with most of the reported values.

  1. The Space-Based Gamma-Ray Telescope GAMMA-400 and Its Scientific Goals

    CERN Document Server

    Galper, A M; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Avanesov, G A; Bergstrom, L; Bogomolov, E A; Boezio, M; Bonvicini, V; Boyarchuk, K A; Dogiel, V A; Gusakov, Yu V; Fradkin, M I; Fuglesang, Ch; Hnatyk, B I; Kachanov, V A; Kadilin, V V; Kaplin, V A; Kheymits, M D; Korepanov, V; Larsson, J; Leonov, A A; Longo, F; Maestro, P; Marrocchesi, P; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Runtso, M F; Ryde, F; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Topchiev, N P; Vacchi, A; Vannuccini, E; Vasiliev, G I; Yurkin, Yu T; Zampa, N; Zarikashvili, V N; Zverev, V G

    2013-01-01

    The design of the new space-based gamma-ray telescope GAMMA-400 is presented. GAMMA-400 is optimized for the energy 100 GeV with the best parameters: the angular resolution ~0.01 deg, the energy resolution ~1%, and the proton rejection factor ~10E6, but is able to measure gamma-ray and electron + positron fluxes in the energy range from 100 MeV to 10 TeV. GAMMA-400 is aimed to a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons + positrons, and nuclei.

  2. ICF gamma-ray reaction history diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H W; Young, C S; Mack, J M; Kim, Y H; McEvoy, A; Evans, S; Sedillo, T; Batha, S; Schmitt, M; Wilson, D C; Langenbrunner, J R [Los Alamos National Laboratory, P.O Box 1663, M/S E526, Los Alamos, NM 87545 (United States); Malone, R; Kaufman, M I; Cox, B C; Frogget, B; Tunnell, T W [National Security Technologies, Los Alamos, NM 87544 (United States); Miller, E K [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California, 93111 (United States); Ali, Z A [National Security Technologies, Livermore, CA, 94550 (United States); Stoeffl, W [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Horsfield, C J, E-mail: herrmann@lanl.go [Atomic Weapons Establishment, Aldermaston, Reading, RG7 4PR (United Kingdom)

    2010-08-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at {approx}6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 10{sup 13}-10{sup 17} neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 10{sup 16}-10{sup 20} yield range expected during the DT ignition campaign, providing higher

  3. ICF gamma-ray reaction history diagnostics

    Science.gov (United States)

    Herrmann, H. W.; Young, C. S.; Mack, J. M.; Kim, Y. H.; McEvoy, A.; Evans, S.; Sedillo, T.; Batha, S.; Schmitt, M.; Wilson, D. C.; Langenbrunner, J. R.; Malone, R.; Kaufman, M. I.; Cox, B. C.; Frogget, B.; Miller, E. K.; Ali, Z. A.; Tunnell, T. W.; Stoeffl, W.; Horsfield, C. J.; Rubery, M.

    2010-08-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013-1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016-1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the

  4. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237Np, 241Am and 242Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237Np were identified, as well as 19 of 241Am, and 127 prompt γ-rays of 242Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237Np was observed at an energy of Eγ=182.82(10) keV associated with a partial capture cross section of σγ=22.06(39) b. The most intense prompt γ-ray lines of 241Am and of 242Pu were observed at Eγ=154.72(7) keV with σγ=72.80(252) b and Eγ=287.69(8) keV with σγ=7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237Np, 241Am and 242Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was demonstrated. Compared

  5. Classifying Unidentified Gamma-ray Sources

    CERN Document Server

    Salvetti, David

    2016-01-01

    During its first 2 years of mission the Fermi-LAT instrument discovered more than 1,800 gamma-ray sources in the 100 MeV to 100 GeV range. Despite the application of advanced techniques to identify and associate the Fermi-LAT sources with counterparts at other wavelengths, about 40% of the LAT sources have no a clear identification remaining "unassociated". The purpose of my Ph.D. work has been to pursue a statistical approach to identify the nature of each Fermi-LAT unassociated source. To this aim, we implemented advanced machine learning techniques, such as logistic regression and artificial neural networks, to classify these sources on the basis of all the available gamma-ray information about location, energy spectrum and time variability. These analyses have been used for selecting targets for AGN and pulsar searches and planning multi-wavelength follow-up observations. In particular, we have focused our attention on the search of possible radio-quiet millisecond pulsar (MSP) candidates in the sample of...

  6. Radio flares from gamma-ray bursts

    CERN Document Server

    Kopac, D; Kobayashi, S; Virgili, F J; Harrison, R; Japelj, J; Guidorzi, C; Melandri, A; Gomboc, A

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks in the early afterglows of gamma-ray bursts with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parametrization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. (2007) and Melandri et al. (2010) in which the typical frequency of the reverse shock was suggested to lie at radio, rather than optical wavelengths at early times, we show that the brightest and most distinct reverse-shock radio signatures are detectable up to 0.1 -- 1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later opt...

  7. Gamma ray tests of Minimal Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cirelli, Marco [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hambye, Thomas [Service de Physique Theórique, Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels (Belgium); Panci, Paolo [Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France); Sala, Filippo; Taoso, Marco [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, Orme des Merisiers, F-91191 Gif-sur-Yvette (France)

    2015-10-12

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  8. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  9. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  10. X- and gamma-ray signatures of type Ia supernovae

    International Nuclear Information System (INIS)

    Using a Monte Carlo code, the hard X-ray continuum and gamma-ray line emissions of various theoretical models of Type Ia supernova explosions are investigated. The influence of the distributions of velocity, mass, Ni-56, and heavy elements on the spectral and temporal evolution of the radiations (ultimately derived from the positrons and gamma-ray lines of the decay chain) is described. For the first 300-400 days of the explosion, the correspondence between the parameters of an explosion model and its hard photon signatures is derived. The effect of mixing instabilities is also studied, and estimates of the future detectability of the derived hard X- and gamma-ray features are presented. It is found that OSEE on the Gamma-Ray Observatory can detect both gamma-ray lines and the hard X-ray continuum from any Type Ia supernova within 10 Mpc of earth. 52 refs

  11. Activation of wine bentonite with gamma rays

    International Nuclear Information System (INIS)

    The action of gamma rays on wine bentonite as well as influence of its adsorption and technologic qualities on the composition and stability of wines against protein darkening and precipitation has been studied. The experiments were carried out with wine bentonite produced in the firm Bentonite and irradiated with doses of 0.4, 0.6, 0.8 and 1.0 MR. White and red wines have been treated with irradiated bentonite under laboratory conditions at 1.0 g/dm3. All samples are treated at the same conditions. The flocculation rate of the sediment was determined visually. Samples have been taken 24 h later from the cleared wine layers. The following parameters have been determined: clarification, filtration rate, phenolic compounds, calcium, colour intensity, total extracted substances, etc. The volume of the sediment has been determined also. The control samples have been taken from the same unirradiated wines. The results showed better and faster clarification in on the third, the 20th and the 24th hours with using of gamma-irradiated at doses 0.8 and 1.0 MR. The sediment was the most compact and its volume - the smallest compared to the samples treated with bentonite irradiated with doses of 0.6 and 0.4 MR. This ensures a faster clarification and better filtration of treated wines. The bentonite activated with doses of 0.8 and 1.0 MR adsorbs the phenolic compounds and the complex protein-phenolic molecules better. In the same time it adsorbs less extracted substances compared to untreated bentonite and so preserves all organoleptic properties of wine. The irradiated bentonite adsorbs less the monomers of anthocyan compounds which ensures brighter natural colour of wine. The gamma-rays activation consolidates calcium in the crystal lattice of bentonite particles and in this way eliminates the formation of crystal precipitates

  12. Studying the WHIM with Gamma Ray Bursts

    CERN Document Server

    Branchini, E; Corsi, A; Martizzi, D; Amati, L; Herder, J W den; Galeazzi, M; Gendre, B; Kaastra, J; Moscardini, L; Nicastro, F; Ohashi, T; Paerels, F; Piro, L; Roncarelli, M; Takei, Y; Viel, M

    2009-01-01

    We assess the possibility to detect and characterize the physical state of the missing baryons at low redshift by analyzing the X-ray absorption spectra of the Gamma Ray Burst [GRB] afterglows, measured by a micro calorimeters-based detector with 3 eV resolution and 1000 cm2 effective area and capable of fast re-pointing, similar to that on board of the recently proposed X-ray satellites EDGE and XENIA. For this purpose we have analyzed mock absorption spectra extracted from different hydrodynamical simulations used to model the properties of the Warm Hot Intergalactic Medium [WHIM]. These models predict the correct abundance of OVI absorption lines observed in UV and satisfy current X-ray constraints. According to these models space missions like EDGE and XENIA should be able to detect about 60 WHIM absorbers per year through the OVII line. About 45 % of these have at least two more detectable lines in addition to OVII that can be used to determine the density and the temperature of the gas. Systematic error...

  13. Gamma Ray Bursts and the Fermi Gamma Ray Space Telescope: Notes to the La Plata Lectures

    CERN Document Server

    Dermer, Charles D

    2008-01-01

    Gamma-ray bursts (GRBs) are a mixed class of sources consisting of, at least, the long duration and short-hard subclasses, the X-ray flashes, and the low-luminosity GRBs. In all cases, the release of enormous amounts of energy on a short timescale makes an energetic, relativistic or mildly relativistic fireball that expands until it reaches a coasting Lorentz factor determined by the amount of baryons mixed into the fireball. Radiation is produced when the blast wave interacts with the surrounding medium at an external shock, or when shell collisions dissipate kinetic energy at internal shocks. This series of notes is organized as follows: (1) The observational situation of GRBs is summarized; (2) Progenitor models of GRBs are described; (3) An overview of the the blast-wave physics used to model leptonic emissions is given; (4) GRB physics is applied to hadronic acceleration and ultra-high energy cosmic ray production; (5) Prospects for GRB physics and gamma-ray astronomy with the Fermi Gamma-ray Space Teles...

  14. The First Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    Science.gov (United States)

    Briggs, Michael; Connaughton, Valerie; Stanbro, Matthew; Zhang, Binbin; Bhat, Narayana; Fishman, Gerald; Roberts, Oliver; Fitzpatrick, Gerard; McBreen, Shelia; Grove, Eric; Chekhtman, Alexandre

    2015-04-01

    We present summary results from the first catalog of Terrestrial Gamma-ray Flashes (TGFs) detected with the Gamma-ray Burst Monitor (GBM) on the Fermi Space Telescope. The catalog reports parameters for over 2700 TGFs. Since the launch of Fermi in 2008 the TGF detection sensitivity of GBM has been improved several times, both in the flight software and in ground analysis. Starting in 2010 July individual photons were downloaded for portions of the orbits, enabling an off-line search that found weaker and shorter TGFs. Since 2012 November 26 this telemetry mode has been extended to continuous coverage. The TGF sample is reliable, with cosmic rays rejected using data both from Fermi GBM and from the Large Area Telescope on Fermi. The online catalog include times (UTC and solar), spacecraft geographic positions, durations, count intensities and Bayesian Block durations. The catalog includes separate tables for bright TGFs detected by the flight software and for Terrestrial Electron Beams (TEBs).

  15. The Most Remote Gamma-Ray Burst

    Science.gov (United States)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few

  16. First Gamma-Ray Images of a Solar Flare

    Science.gov (United States)

    Hurford, G. J.; Schwartz, R. A.; Krucker, S.; Lin, R. P.; Smith, D. M.; Vilmer, N.

    2003-10-01

    Imaging of gamma-ray lines, produced by nuclear collisions of energetic ions with the solar atmosphere, provides the only direct indication of the spatial properties of accelerated ions near the Sun. We present the first gamma-ray images of a solar flare, obtained with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) for the X4.8 flare of 2002 July 23. Two rotating modulation collimators (with 35" and 183" resolution) were used to obtain images for the same time interval in four energy bands: the narrow deuterium line at 2.223 MeV formed by the thermalization and capture of neutrons produced in the collisions; the 3.25-6.5 MeV band that includes the prompt de-excitation lines of C and O; and the 0.3-0.5 and 0.7-1.4 MeV bands that are dominated by electron bremsstrahlung. The centroid of the 2.223 MeV image was found to be displaced by 20''+/-6'' from that of the 0.3-0.5 MeV image, implying a difference in acceleration and/or propagation between the accelerated electron and ion populations near the Sun.

  17. VHE gamma-ray observations of Markarian 501

    OpenAIRE

    Whipple Collaboration; Breslin, A. C.; Bond, I. H.; Bradbury, S. M.; J. H. Buckley(Department of Physics, Washington University, St. Louis, USA); Burdett, A. M.; Carson, M. J.; Carter-Lewis, D. A.; Catanese, M.; Cawley, M. F.; Dunlea, S.; D'Vali, M.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.

    1999-01-01

    Markarian 501, a nearby (z=0.033) X-ray selected BL Lacertae object, is a well established source of Very High Energy (VHE, E>=300 GeV) gamma rays. Dramatic variability in its gamma-ray emission on time-scales from years to as short as two hours has been detected. Multiwavelength observations have also revealed evidence that the VHE gamma-ray and hard X-ray fluxes may be correlated. Here we present results of observations made with the Whipple Collaboration's 10 m Atmospheric Cerenkov Imaging...

  18. MIRAX sensitivity for Gamma Ray Bursts

    Science.gov (United States)

    Sacahui, J. R.; Penacchioni, A. V.; Braga, J.; Castro, M. A.; D'Amico, F.

    2016-03-01

    In this work we present the detection capability of the MIRAX (Monitor e Imageador de RAios-X) experiment for Gamma-Ray Bursts (GRBs). MIRAX is an X-ray astronomy mission designed to perform a wide band hard X-ray (10-200 keV) survey of the sky, especially in the Galactic plane. With a total detection area of 169 cm2, large field of view (FoV, 20 ° × 20 °), angular resolution of 1°45‧ and good spectral and time resolution (∼8% at 60 keV, 10 μs), MIRAX will be optimized for the detection and study of transient sources, such as accreting neutron stars (NS), black holes (BH), Active Galactic Nuclei (AGNs), and both short and long GRBs. This is especially important because MIRAX is expected to operate in an epoch when probably no other hard X-ray wide-field imager will be active. We have performed detailed simulations of MIRAX GRB observations using the GEANT4 package, including the background spectrum and images of GRB sources in order to provide accurate predictions of the sensitivity for the expected GRB rate to be observed. MIRAX will be capable of detecting ∼44 GRBs per year up to redshifts of ∼4.5. The MIRAX mission will be able to contribute significantly to GRB science by detecting a large number of GRBs per year with wide band spectral response. The observations will contribute mainly to the part of GRB spectra where a thermal emission is predicted by the Fireball model. We also discuss the possibility of detecting GRB afterglows in the X-ray band with MIRAX.

  19. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    Science.gov (United States)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  20. Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    CERN Document Server

    Zhang, Bin-Bin; Castro-Tirado, Alberto J

    2016-01-01

    Gamma-ray Bursts (GRBs) are bursts of $\\gamma$-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping (DTW) method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries "memory" of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in Soft Gamma-Ray Repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, an...

  1. The Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    Science.gov (United States)

    Stanbro, M.; Briggs, M. S.; Roberts, O.; McBreen, S.; Bhat, N.; Fitzpatrick, G.

    2015-12-01

    We present results from the catalog of Terrestrial Gamma-ray Flashes (TGFs) detected with the Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. The first release, in January 2015, provided data on 2700 TGFs. Updates are extending the catalog at a rate of ~800 TGFs per year. The TGF sample is reliable, with cosmic rays rejected using data both from Fermi GBM and from the Large Area Telescope on Fermi. The online catalog include times (UTC and solar), spacecraft geographic positions, durations, count intensities and other Bayesian Block durations. The catalog includes separate tables for bright TGFs detected by the flight software and for Terrestrial Electron Beams (TEBs). In January 2016 additional data will be released online from correlating these TGFs with sferics detected by the World Wide Lightning Location Network (WWLLN). Maps of sferics in the vicinity of each TGF will be provided, as will the locations and times of sferics found to be associated with TGFs.

  2. The nature of the outflow in gamma-ray bursts

    CERN Document Server

    Kumar, P; Panaitescu, A; Willingale, R; O'Brien, P; Burrows, D; Cummings, J; Gehrels, N; Holland, S; Pandey, S B; Vanden Berk, D E; Zane, S

    2007-01-01

    The Swift satellite has enabled us to follow the evolution of gamma-ray burst (GRB) fireballs from the prompt gamma-ray emission to the afterglow phase. The early x-ray and optical data obtained by telescopes aboard the Swift satellite show that the source for prompt gamma-ray emission, the emission that heralds these bursts, is short lived and that its source is distinct from that of the ensuing, long-lived afterglow. Using these data, we determine the distance of the gamma-ray source from the center of the explosion. We find this distance to be 1e15-1e16 cm for most bursts and we show that this is within a factor of ten of the radius of the shock-heated circumstellar medium (CSM) producing the x-ray photons. Furthermore, using the early gamma-ray, x-ray and optical data, we show that the prompt gamma-ray emission cannot be produced in internal shocks, nor can it be produced in the external shock; in a more general sense gamma-ray generation mechanisms based on shock physics have problems explaining the GRB ...

  3. Models of X-ray and gamma-ray emission from Seyfert galaxies

    OpenAIRE

    Svensson, Roland

    1996-01-01

    X-ray and gamma-ray observations of Seyfert 1 galaxies are briefly reviewed. Both thermal and non-thermal model for X-ray and gamma-ray emission are discussed. Particular attention is given to various disc-corona models including both homogeneous and inhomogeneous (patchy) corona models. Recent work on exact radiative transfer in such geometries are reviewed.

  4. The Supernova -- Gamma-Ray Burst Connection

    CERN Document Server

    Woosley, S E

    2006-01-01

    Observations show that at least some gamma-ray bursts (GRBs) happen simultaneously with core-collapse supernovae (SNe), thus linking by a common thread nature's two grandest explosions. We review here the growing evidence for and theoretical implications of this association, and conclude that most long-duration soft-spectrum GRBs are accompanied by massive stellar explosions (GRB-SNe). The kinetic energy and luminosity of well-studied GRB-SNe appear to be greater than those of ordinary SNe, but evidence exists, even in a limited sample, for considerable diversity. The existing sample also suggests that most of the energy in the explosion is contained in nonrelativistic ejecta (producing the supernova) rather than in the relativistic jets responsible for making the burst and its afterglow. Neither all SNe, nor even all SNe of Type Ibc produce GRBs. The degree of differential rotation in the collapsing iron core of massive stars when they die may be what makes the difference.

  5. Gamma-ray bursts and cosmology.

    Science.gov (United States)

    Lamb, D Q

    2007-05-15

    I review the current status of the use of gamma-ray bursts (GRBs) as probes of the early Universe and cosmology. I describe the promise of long GRBs as probes of the high redshift (z>4) and very high redshift (z>5) Universe, and several key scientific results that have come from observations made possible by accurate, rapid localizations of these bursts by Swift. I then estimate the fraction of long GRBs that lie at very high redshifts and discuss ways in which it may be possible to rapidly identify-and therefore study-a larger number of these bursts. Finally, I discuss the ways in which both long and short GRBs can be made 'standard candles' and used to constrain the properties of dark energy. PMID:17301023

  6. The Gamma Ray Bursts Hubble diagram

    CERN Document Server

    Capozziello, S; Dainotti, M G; De Laurentis, M; Izzo, L; Perillo, M

    2011-01-01

    Thanks to their enormous energy release, Gamma Rays Bursts (GRBs) have recently attracted a lot of interest to probe the Hubble diagram (HD) deep into the matter dominated era and hence complement Type Ia Supernovae (SNeIa). We consider here three different calibration methods based on the use of a fiducial LCDM model, on cosmographic parameters and on the local regression on SNeIa to calibrate the scaling relations proposed as an equivalent to the Phillips law to standardize GRBs finding any significant dependence. We then investigate the evolution of these parameters with the redshift to obtain any statistical improvement. Under this assumption, we then consider possible systematics effects on the HDs introduced by the calibration method, the averaging procedure and the homogeneity of the sample arguing against any significant bias.

  7. Digital Logarithmic Airborne Gamma Ray Spectrometer

    CERN Document Server

    Zeng, GuoQiang; Li, Chen; Tan, ChengJun; Ge, LiangQuan; Gu, Yi; Cheng, Feng

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energy calibration. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, effectively measuring energy from 20keV to 10MeV is possible.

  8. Hand-held high resolution gamma ray spectrometer

    International Nuclear Information System (INIS)

    A fully portable and a semi-portable high resolution gamma spectrometer are described. These instruments have the resolving capabilities that are inherent to germanium spectrometers and have the portability needed for health physics. The instruments are usable as a gamma-ray or x-ray fluorescence spectrometer

  9. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.;

    1995-01-01

    The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results o...

  10. Gamma Rays from Star Formation in Clusters of Galaxies

    CERN Document Server

    Storm, Emma; Profumo, Stefano

    2012-01-01

    Star formation in galaxies is observed to be associated with gamma-ray emission. The detection of gamma rays from star-forming galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity (Ackermann et. al. 2012). Since star formation is known to scale with total infrared (8-1000 micrometers) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study we apply the relationships between gamma-ray luminosity and radio and IR luminosities derived in Ackermann et. al. 2012 to a sample of galaxy clusters from Ackermann et. al. 2010 in order to place lower limits on the gamma-ray emission associated with sta...

  11. Wolf-Rayet stars as gamma-ray burst progenitors

    NARCIS (Netherlands)

    Langer, N.; van Marle, A. -J; Yoon, S.C.

    2010-01-01

    It became clear in the last few years that long gamma-ray bursts are associated with the endpoints of massive star evolution. They occur in star forming regions at cosmological distances (Jakobsson et al., 2005), and are associated with supernova-type energies. The collapsar model explains gamma-ray

  12. A new processing technique for airborne gamma-ray data

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    1997-01-01

    The mathematical-statistical background for at new technique for processing gamma-ray spectra is presented. The technique - Noise Adjusted Singular Value Decomposition - decomposes at set of gamma-ray spectra into a few basic spectra - the spectral components. The spectral components can be proce...

  13. The Gamma-Ray Luminosity Function of Radio Pulsars

    Science.gov (United States)

    Helfand, David J.

    1998-01-01

    This final report is a study of gamma-ray luminosity function of radio pulsars. The goal is to constrain certain parameters in order to address such diverse issues as the high energy emission mechanism in pulsars and the fraction of the Galaxy's gamma ray emission attributable to these objects.

  14. Very High Energy Gamma Ray Extension of GRO Observations

    Science.gov (United States)

    Weekes, Trevor C.

    1994-01-01

    The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

  15. Supernova sheds light on gamma-ray bursts

    CERN Multimedia

    2003-01-01

    On 29 March the HETE-II satellite detected the most violent explosion in the universe to date - an enormous burst of gamma rays. Observers across the world recorded and studied the event. It appears to prove that gamma ray bursts originate in supernovae (1 page)

  16. The University of Durham Mark 6 $\\gamma$ Ray Telescope

    CERN Document Server

    Armstrong, P; Cottle, P J; Dickinson, J E; Dickinson, M R; Dipper, N A; Hilton, S E; Hogg, W R; Holder, J; Kendall, T R; McComb, T J L; Moore, C M; Orford, K J; Rayner, S M; Roberts, I D; Roberts, M D; Robertshaw, M; Shaw, S E; Tindale, K; Tummey, S P; Turver, K E

    1997-01-01

    The design, construction and operation of the University of Durham ground-based gamma ray telescope is discussed. The telescope has been designed to detect gamma rays in the 300 GeV). The telescope was commissioned in 1995 and a description of its design and operation is presented, together with a verification of the telescope's performance

  17. A Search for Gamma-Ray Bursts and Pulsars, and the Application of Kalman Filters to Gamma-Ray Reconstruction

    CERN Document Server

    Jones, B B

    2002-01-01

    Part I describes the analysis of periodic and transient signals in EGRET data. A method to search for the transient flux from gamma-ray bursts independent of triggers from other gamma-ray instruments is developed. Several known gamma-ray bursts were independently detected, and there is evidence for a previously unknown gamma-ray burst candidate. Statistical methods using maximum likelihood and Bayesian inference are developed and implemented to extract periodic signals from gamma-ray sources in the presence of significant astrophysical background radiation. The analysis was performed on six pulsars and three pulsar candidates. The three brightest pulsars, Crab, Vela, and Geminga, were readily identified, and would have been detected independently in the EGRET data without knowledge of the pulse period. No significant pulsation was detected in the three pulsar candidates. Eighteen X-ray binaries were examined. None showed any evidence of periodicity. In addition, methods for calculating the detection threshold...

  18. A directional gamma-ray detector based on scintillator plates

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, D., E-mail: hanna@physics.mcgill.ca; Sagnières, L.; Boyle, P.J.; MacLeod, A.M.L.

    2015-10-11

    A simple device for determining the azimuthal location of a source of gamma radiation, using ideas from astrophysical gamma-ray burst detection, is described. A compact and robust detector built from eight identical modules, each comprising a plate of CsI(Tl) scintillator coupled to a photomultiplier tube, can locate a point source of gamma rays with degree-scale precision by comparing the count rates in the different modules. Sensitivity to uniform environmental background is minimal.

  19. Gamma ray analysis of multi-component material

    International Nuclear Information System (INIS)

    A method and apparatus is disclosed for analyzing a multi-component material having at least three components using gamma radiation having at least two different energies. Upon irradiation of at least a sample of material, the multi-energy gamma rays which are propagated through the sample are detected. The intensity of the detected gamma rays is measured and the amount of at least one of the components of the material is determined by solving a set of simultaneous equations. (author)

  20. Muon Detection of TeV $\\gamma$ Rays from $\\gamma$ Ray Bursts

    CERN Document Server

    Alvarez-Muñiz, J

    1999-01-01

    Because of the limited size of the satellite-borne instruments, it has not been possible to observe the flux of gamma ray bursts (GRB) beyond GeV energy. We here show that it is possible to detect the GRB radiation of TeV energy and above, by detecting the muon secondaries produced when the gamma rays shower in the Earth's atmosphere. Observation is made possible by the recent commissioning of underground detectors (AMANDA, the Lake Baikal detector and MILAGRO) which combine a low muon threshold of a few hundred GeV or less, with a large effective area of 10^3 m^2 or more. Observations will not only provide new insights in the origin and characteristics of GRB, they also provide quantitative information on the diffuse infrared background.

  1. Development of Monte Carlo code for coincidence prompt gamma-ray neutron activation analysis

    Science.gov (United States)

    Han, Xiaogang

    Prompt Gamma-Ray Neutron Activation Analysis (PGNAA) offers a non-destructive, relatively rapid on-line method for determination of elemental composition of bulk and other samples. However, PGNAA has an inherently large background. These backgrounds are primarily due to the presence of the neutron excitation source. It also includes neutron activation of the detector and the prompt gamma rays from the structure materials of PGNAA devices. These large backgrounds limit the sensitivity and accuracy of PGNAA. Since most of the prompt gamma rays from the same element are emitted in coincidence, a possible approach for further improvement is to change the traditional PGNAA measurement technique and introduce the gamma-gamma coincidence technique. It is well known that the coincidence techniques can eliminate most of the interference backgrounds and improve the signal-to-noise ratio. A new Monte Carlo code, CEARCPG has been developed at CEAR to simulate gamma-gamma coincidence spectra in PGNAA experiment. Compared to the other existing Monte Carlo code CEARPGA I and CEARPGA II, a new algorithm of sampling the prompt gamma rays produced from neutron capture reaction and neutron inelastic scattering reaction, is developed in this work. All the prompt gamma rays are taken into account by using this new algorithm. Before this work, the commonly used method is to interpolate the prompt gamma rays from the pre-calculated gamma-ray table. This technique works fine for the single spectrum. However it limits the capability to simulate the coincidence spectrum. The new algorithm samples the prompt gamma rays from the nucleus excitation scheme. The primary nuclear data library used to sample the prompt gamma rays comes from ENSDF library. Three cases are simulated and the simulated results are benchmarked with experiments. The first case is the prototype for ETI PGNAA application. This case is designed to check the capability of CEARCPG for single spectrum simulation. The second

  2. Extragalactic Gamma Ray Excess from Coma Supercluster Direction

    Indian Academy of Sciences (India)

    Pantea Davoudifar; S. Jalil Fatemi

    2011-09-01

    The origin of extragalactic diffuse gamma ray is not accurately known, especially because our suggestions are related to many models that need to be considered either to compute the galactic diffuse gamma ray intensity or to consider the contribution of other extragalactic structures while surveying a specific portion of the sky. More precise analysis of EGRET data however, makes it possible to estimate the diffuse gamma ray in Coma supercluster (i.e., Coma\\A1367 supercluster) direction with a value of ( > 30MeV) ≃ 1.9 × 10-6 cm-2 s-1, which is considered to be an upper limit for the diffuse gamma ray due to Coma supercluster. The related total intensity (on average) is calculated to be ∼ 5% of the actual diffuse extragalactic background. The calculated intensity makes it possible to estimate the origin of extragalactic diffuse gamma ray.

  3. Gamma-rays as probes of the Universe

    CERN Document Server

    Horns, Dieter

    2016-01-01

    The propagation of $\\gamma$ rays over very large distances provides new insights on the intergalactic medium and on fundamental physics. On their path to the Earth, $\\gamma$ rays can annihilate with diffuse infrared or optical photons of the intergalactic medium, producing $e^+ \\, e^-$ pairs. The density of these photons is poorly determined by direct measurements due to significant galactic foregrounds. Studying the absorption of $\\gamma$ rays from extragalactic sources at different distances allows the density of low-energy diffuse photons to be measured. Gamma-ray propagation may also be affected by new phenomena predicted by extensions of the Standard Model of particle physics. Lorentz Invariance is violated in some models of Quantum Gravity, leading to an energy-dependent speed of light in vacuum. From differential time-of-flight measurements of the most distant $\\gamma$-ray bursts and of flaring active galactic nuclei, lower bounds have been set on the energy scale of Quantum Gravity. Another effect tha...

  4. Gamma-ray Explosion in Multiple Compton Scattering Regime

    CERN Document Server

    Gong, Z; Shou, Y R; Qiao, B; Bulanov, S V; Esirkepov, T Zh; Bulanov, S S; Chen, C E; He, X T; Yan, X Q

    2016-01-01

    Gamma-ray explosion from near critical density (NCD) target irradiated by four symmetrical imploding laser pulses is numerically investigated. With peak intensities about $10^{23}$ W/cm$^2$, the laser pulses boost electron energy through direct laser acceleration, while pushing them inward with the ponderomotive force. After backscattering with counter-propagating laser, the accelerated electron will be trapped in the optical lattice or the electromagnetic standing waves (SW) created by the coherent overlapping of the laser pulses, and meanwhile emit gamma-ray photon in Multiple Compton Scattering regime, where electron acts as a medium to transfer energy from laser to gamma-ray. The energy conversion rate from laser pulses to gamma-ray can be as high as around 50\\%. It may become one of the most efficient gamma-ray sources in laboratory.

  5. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general. PMID:23630379

  6. Solar gamma-ray lines and interplanetary solar protons

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimori, M.

    1985-03-01

    Solar gamma-ray lines and protons were simultaneously observed for six flares on April 1, 4, and 27, 1981, May 13, 1981, February 1, 1982, and June 6, 1982 by the Hinotori and Himawari satellites. The flare list is presented, and the time histories of gamma-rays and protons are shown. The relationship between the gamma-ray line fluences and peak proton fluxes for these flares does not reveal an apparent correlation between them. The present results imply that the protons producing gamma-ray lines in the flare region, and protons observed near the earth, do not always belong to the same population, and favor the downward streaming model for the gamma-ray line production. 15 references.

  7. Solar gamma-ray lines and interplanetary solar protons

    Science.gov (United States)

    Yoshimori, M.

    1985-03-01

    Solar gamma-ray lines and protons were simultaneously observed for six flares on April 1, 4, and 27, 1981, May 13, 1981, February 1, 1982, and June 6, 1982 by the Hinotori and Himawari satellites. The flare list is presented, and the time histories of gamma-rays and protons are shown. The relationship between the gamma-ray line fluences and peak proton fluxes for these flares does not reveal an apparent correlation between them. The present results imply that the protons producing gamma-ray lines in the flare region, and protons observed near the earth, do not always belong to the same population, and favor the downward streaming model for the gamma-ray line production.

  8. Effect of Conversion Efficiency on Gamma-Ray Burst Energy

    Institute of Scientific and Technical Information of China (English)

    Lei Xu; Zi-Gao Dai

    2004-01-01

    Beaming effect makes it possible that gamma-ray bursts have a standard energy,but the gamma-ray energy release is sensitive to some parameters.Our attention is focused on the effect of the gamma ray conversion efficiency(ηγ),which may range between 0.01 and 0.9,and which probably has a random value for different GRBs under certain conditions.Making use of the afterglow data from the literature,we carried out a complete correction to the conical opening angle formula.Within the framework of the conical jet model,we ran a simple Monte Carlo simulation for random values of ηγ,and found that the gamma-ray energy release is narrowly clustered,whether we use a constant value of ηγ or random values for different gamma-ray bursts.

  9. Search for Sub-TeV Gamma Rays Coincident with BATSE Gamma Ray Bursts

    CERN Document Server

    Poirier, J; Gress, J; Race, D

    2003-01-01

    Project GRAND is a 100m x 100m air shower array of proportional wire chambers (PWCs). There are 64 stations each with eight 1.29 m^2 PWC planes arranged in four orthogonal pairs placed vertically above one another to geometrically measure the angles of charged secondaries. A steel plate above the bottom pair of PWCs differentiates muons (which pass undeflected through the steel) from non-penetrating particles. FLUKA Monte Carlo studies show that a TeV gamma ray striking the atmosphere at normal incidence produces 0.23 muons which reach ground level where their angles and identities are measured. Thus, paradoxically, secondary muons are used as a signature for gamma ray primaries. The data are examined for possible angular and time coincidences with eight gamma ray bursts (GRBs) detected by BATSE. Seven of the GRBs were selected because of their good acceptance by GRAND and high BATSE Fluence. The eighth GRB was added due to its possible coincident detection by Milagrito. For each of the eight candidate GRBs, ...

  10. Blueshifting may explain the gamma ray bursts

    CERN Document Server

    Krasiński, Andrzej

    2015-01-01

    It is shown that the basic observed properties of the gamma-ray bursts (GRBs) are accounted for if one assumes that the GRBs arise by blueshifting the emission radiation of hydrogen and helium generated during the last scattering epoch. The blueshift generator for a single GRB is a Lema\\^{\\i}tre -- Tolman (L--T) region with a nonconstant bang-time function $t_B(r)$ matched into a Friedmann background. Blueshift visible to the observer arises \\textit{only on radial rays} that are emitted in the L--T region. The paper presents three L--T models with different Big Bang profiles, adapted for the highest and the lowest end of the GRB frequency range. The models account for: (1) The observed frequency range of the GRBs; (2) Their limited duration; (3) The afterglows; (4) Their hypothetical collimation into narrow jets; (5) The large distances to their sources; (6) The multitude of the observed GRBs. Properties (2), (3) and (6) are accounted for only qualitatively. With a small correction of the parameters of the mo...

  11. An updated Gamma Ray Bursts Hubble diagram

    CERN Document Server

    Cardone, V F; Dainotti, M G

    2009-01-01

    Gamma ray bursts (GRBs) have recently attracted much attention as a possible way to extend the Hubble diagram to very high redshift. To this aim, the luminosity (or isotropic emitted energy) of a GRB at redshift z must be evaluated from a correlation with a distance independent quantity so that one can then solve for the luminosity distance D_L(z) and hence the distance modulus mu(z). Averaging over five different two parameters correlations and using a fiducial cosmological model to calibrate them, Schaefer (2007) has compiled a sample of 69 GRBs with measured mu(z) which has since then been widely used to constrain cosmological parameters. We update here that sample by many aspects. First, we add a recently found correlation for the X - ray afterglow and use a Bayesian inspired fitting method to calibrate the different GRBs correlations known insofar assuming a fiducial LCDM model in agreement with the recent WMAP5 data. Averaging over six correlations, we end with a new GRBs Hubble diagram comprising 83 ob...

  12. $\\gamma$-Ray Bursts and Related Phenomena

    CERN Document Server

    Piran, T

    1999-01-01

    Gamma-ray bursts (GRBs) have puzzled astronomers since their accidental discovery in the sixties. The BATSE detector on the COMPTON-GRO satellite has been detecting one burst per day for the last six years. Its findings have revolutionized our ideas about the nature of these objects. They have shown that GRBs are at cosmological distances. This idea was accepted with difficulties at first. However, the recent discovery of an x-ray afterglow by the Italian/Dutch satellite BeppoSAX led to a detection of high red-shift absorption lines in the optical afterglow of GRB970508 and to a confirmation of its cosmological origin. The simplest and practically inevitable interpretation of these observations is that GRBs result from the conversion of the kinetic energy of ultra-relativistic particles flux to radiation in an optically thin region. The "inner engine" that accelerates the particles or generates the Poynting flux is hidden from direct observations. Recent studies suggest the ``internal-external'' model: intern...

  13. The SVOM gamma-ray burst mission

    CERN Document Server

    Cordier, B; Atteia, J -L; Basa, S; Claret, A; Daigne, F; Deng, J; Dong, Y; Godet, O; Goldwurm, A; Götz, D; Han, X; Klotz, A; Lachaud, C; Osborne, J; Qiu, Y; Schanne, S; Wu, B; Wang, J; Wu, C; Xin, L; Zhang, B; Zhang, S -N

    2015-01-01

    We briefly present the science capabilities, the instruments, the operations, and the expected performance of the SVOM mission. SVOM (Space-based multiband astronomical Variable Objects Monitor) is a Chinese-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade. The SVOM mission encompasses a satellite carrying four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in X-rays, a VHF communication system enabling the fast transmission of SVOM alerts to the ground, and a ground segment including a wide angle camera and two follow-up telescopes. The pointing strategy of the satellite has been optimized to favor the detection of GRBs located in the night hemisphere. This strategy enables the study of the optical emission in the first minutes after the GRB with robotic observatories and the early spectroscopy of the optical afterglow with large telescopes to measure the redshifts. The study of GRBs in the...

  14. Gamma-Ray Bursts 2012 Conference

    Science.gov (United States)

    It is a pleasure to announce the next combined Fermi/Swift GRB conference covering recent advances in all aspects of gamma-ray burst observations and theory. This conference will be held in Munich, Germany, on 7-11 May 2012, and follows similar previous combined Fermi/Swift meetings in Huntsville (Oct. 2008) and Annapolis (Nov. 2010). Gamma-ray bursts are the most energetic explosions in the Universe and are thought to be the birth signatures of black holes. This is an exciting time in the GRB field as various missions provide a wealth of new data on this still puzzling phenomenon. The Fermi misson provides unprecedented spectral coverage over 7 decades in energy, and among others discovered new spectral components which challenge our standard picture of the prompt emission. The Swift mission continuous to swiftly monitor and locate GRBs in multiple wavebands, providing the basis for all ground-based follow-up observations towards redshift measurements and afterglow and host property investigations. AGILE, INTEGRAL, Suzaku and Konus continue to provide crucial information on GRB properties, and the MAXI mission provides an all sky X-ray monitoring of transients. There is also growing capability for follow-up observations by ground-based telescopes at basically all wavelengths. Besides the classical optical/infrared/radio observations, searches are underway for TeV emission, neutrinos and gravitational waves. Moreover, new experiments are expected to have returned first data, among others POGO on the prompt polarization properties, UFFO on very early optical emission, or ALMA on sub-millimeter properties. And last but not least, the unexpected is bringing us child-like astonishments at least once per year with a "GRB-trigger" which turns out to be not related to GRBs. Complementing all these new observational results, a huge theoretical effort is underway to understand the GRB phenomenon and keep up with the constant new puzzles coming from the data. This conference

  15. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    Science.gov (United States)

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  16. Summary of existing information on gamma-ray and X-ray attenuation coefficients of solutions

    DEFF Research Database (Denmark)

    Singh, K.; Gerward, Leif

    2002-01-01

    Accurate values of X-ray and gamma-ray attenuation coefficients of different chemicals are required in spectrometry as well as in many other scientific, engineering and medical disciplines involving photon radiation. The current state of knowledge of experimental and theoretical gamma-ray and X-r......-ray attenuation coefficients in aqueous solutions of salts is presented and exemplified by recent work. The results presented provide a basis for studying X-ray and gamma-ray photon interactions with ions in solution (hydrated ions) rather than ion compounds in solid form.......Accurate values of X-ray and gamma-ray attenuation coefficients of different chemicals are required in spectrometry as well as in many other scientific, engineering and medical disciplines involving photon radiation. The current state of knowledge of experimental and theoretical gamma-ray and X...

  17. Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra

    Energy Technology Data Exchange (ETDEWEB)

    Carraminana, Alberto [Instituto Nacional de Astrofisica, Optica y Electronica Luis Enrique Erro 1, Tonantzintla, Puebla 72840 (Mexico); Collaboration: HAWC Collaboration

    2013-06-12

    Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing early science results.

  18. Gamma ray lines from a universal extra dimension

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco; Jackson, C. B.; Shaughnessy, Gabe; Tait, Tim M.P.; Vallinotto, Alberto

    2012-03-01

    Indirect Dark Matter searches are based on the observation of secondary particles produced by the annihilation or decay of Dark Matter. Among them, gamma-rays are perhaps the most promising messengers, as they do not suffer deflection or absorption on Galactic scales, so their observation would directly reveal the position and the energy spectrum of the emitting source. Here, we study the detailed gamma-ray energy spectrum of Kaluza--Klein Dark Matter in a theory with 5 Universal Extra Dimensions. We focus in particular on the two body annihilation of Dark Matter particles into a photon and another particle, which produces monochromatic photons, resulting in a line in the energy spectrum of gamma rays. Previous calculations in the context of the five dimensional UED model have computed the line signal from annihilations into \\gamma \\gamma, but we extend these results to include \\gamma Z and \\gamma H final states. We find that these spectral lines are subdominant compared to the predicted \\gamma \\gamma signal, but they would be important as follow-up signals in the event of the observation of the \\gamma \\gamma line, in order to distinguish the 5d UED model from other theoretical scenarios.

  19. Computers in activation analysis and gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B. S.; D' Agostino, M. D.; Yule, H. P. [eds.

    1979-01-01

    Seventy-three papers are included under the following session headings: analytical and mathematical methods for data analysis; software systems for ..gamma..-ray and x-ray spectrometry; ..gamma..-ray spectra treatment, peak evaluation; least squares; IAEA intercomparison of methods for processing spectra; computer and calculator utilization in spectrometer systems; and applications in safeguards, fuel scanning, and environmental monitoring. Separate abstracts were prepared for 72 of those papers. (DLC)

  20. Science with the new generation high energy gamma- ray experiments

    CERN Document Server

    Alvarez, M; Agnetta, G; Alberdi, A; Antonelli, A; Argan, A; Assis, P; Baltz, E A; Bambi, C; Barbiellini, G; Bartko, H; Basset, M; Bastieri, D; Belli, P; Benford, G; Bergström, L; Bernabei, R; Bertone, G; Biland, A; Biondo, B; Bocchino, F; Branchini, E; Brigida, M; Bringmann, T; Brogueira, P; Bulgarelli, A; Caballero, J A; Caliandro, G A; Camarri, P; Cappella, F; Caraveo, P; Carbone, R; Carvajal, M; Casanova, S; Castro-Tirado, A J; Catalano, O; Catena, R; Celi, F; Celotti, A; Cerulli, R; Chen, A; Clay, R; Cocco, V; Conrad, J; Costa, E; Cuoco, A; Cusumano, G; Dai, C J; Dawson, B; De Lotto, B; De Paris, G; Postigo, A de Ugarte; Del Monte, E; Delgado, C; Di Ciaccio, A; Di Cocco, G; Di Falco, S; Di Persio, G; Dingus, B L; Dominguez, A; Donato, F; Donnarumma, I; Doro, M; Edsjö, J; Navas, J M Espino; Santo, M C Espirito; Evangelista, Y; Evoli, C; Fargion, D; Favuzzi, C; Feroci, M; Fiorini, M; Foggetta, L; Fornengo, N; Froysland, T; Frutti, M; Fuschino, F; Gómez, J L; Gómez, M; Gaggero, D; Galante, N; Gallardo, M I; Galli, M; García, J E; Garczarczyk, M; Gargano, F; Gaug, M; Gianotti, F; Giarrusso, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Giuliani, A; Glicenstein, J; Gonçalves, P; Grasso, D; Guerriero, M; He, H L; Incicchitti, A; Kirk, J; Kuang, H H; La Barbera, A; La Rosa, G; Labanti, C; Lamanna, G; Lapshov, I; Lazzarotto, F; Liberati, S; Liello, F; Lipari, P; Longo, F; Loparco, F; Lozano, M; De Sanctis, P G Lucentini; Ma, J M; Maccarone, M C; Maccione, L; Malvezzi, V; Mangano, A; Mariotti, M; Marisaldi, M; Martel, I; Masiero, A; Massaro, E; Mastropietro, M; Mattaini, E; Mauri, F; Mazziotta, M N; Mereghetti, S; Mineo, T; Mizobuchi, S; Moiseev, A; Moles, M; Monte, C; Montecchia, F; Morelli, E; Morselli, A; Moskalenko, I; Nozzoli, F; Ormes, J F; Peres-Torres, M A; Pacciani, L; Pellizzoni, A; Pérez-Bernal, F; Perotti, F; Picozza, P; Pieri, L; Pietroni, M; Pimenta, M; Pina, A; Pittori, C; Pontoni, C; Porrovecchio, G; Prada, F; Prest, M; Prosperi, D; Protheroe, R; Pucella, G; Quesada, J M; Quintana, J M; Quintero, J R; Rainó, S; Rapisarda, M; Rissi, M; Rodríguez, J; Rossi, E; Rowell, G; Rubini, A; Russo, F; Sanchez-Conde, M; Sacco, B; Scapin, V; Schelke, M; Segreto, A; Sellerholm, A; Sheng, X D; Smith, A; Soffitta, P; Sparvoli, R; Spinelli, P; Stamatescu, V; Stark, L S; Tavani, M; Thornton, G; Titarchuk, L G; Tomé, B; Traci, A; Trifoglio, M; Trois, A; Vallania, P; Vallazza, E; Vercellone, S; Vernetto, S; Vitale, V; Wild, N; Ye, Z P; Zambra, A; Zandanel, F; Zanello, D

    2007-01-01

    This Conference is the fifth of a series of Workshops on High Energy Gamma- ray Experiments, following the Conferences held in Perugia 2003, Bari 2004, Cividale del Friuli 2005, Elba Island 2006. This year the focus was on the use of gamma-ray to study the Dark Matter component of the Universe, the origin and propagation of Cosmic Rays, Extra Large Spatial Dimensions and Tests of Lorentz Invariance.

  1. CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin-Bin; Castro-Tirado, Alberto J. [Instituto de Astrofísica de Andalucá (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Zhang, Bing, E-mail: zhang.grb@gmail.com [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  2. Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    Science.gov (United States)

    Zhang, Bin-Bin; Zhang, Bing; Castro-Tirado, Alberto J.

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  3. Search of a prompt gamma ray for chlorine analysis in a Portland cement sample

    International Nuclear Information System (INIS)

    Prompt Gamma Ray analysis of chlorine contaminated Portland cement samples have been carried out using an accelerator-based Prompt Gamma ray Neutron Activation Analysis setup. The chlorine concentration was measured over a range of 0.25-4 wt% using 1.165 MeV capture γ-rays from chlorine. The experimental results were compared with the results of Monte Carlo simulations and an excellent agreement was observed between the two results. Further theoretical study has shown that yield of the 1.165 MeV prompt γ-rays from chlorine is not very sensitive to variation in moisture contents of the Portland sample. An order of magnitude increase in sample moisture content resulted in only 16-20% increase in yield of 1.165 MeV prompt γ-rays

  4. Evaluation of the 1077keV gamma-ray emission probability from 68Ga decay

    CERN Document Server

    Huang, X L; Chen, X J; Chen, G C

    2013-01-01

    68Ga decays to the excited states of 68Zn through the electron capture decay mode. New recommended values for the emission probability of 1077keV gamma-ray given by the ENSDF and DDEP databases all use data from absolute measurements. In 2011 Jiang Liyang deduced a new value for 1077keV gamma-ray emission probability by measuring the 69Ga(n,2n)68Ga reaction cross section. The new value is about 20% lower than values obtained from previous absolute measurements and evaluations. In this paper, the discrepancies among the measurements and evaluations are analyzed carefully and the new values are re-recommended. Our recommended value for the emission probability of 1077keV gamma-ray is 2.72+-0.16 %.

  5. Influence of gamma ray irradiation on metakaolin based sodium geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Lambertin, D., E-mail: david.lambertin@cea.fr [CEA, DEN, DTCD/SPDE/LP2C, F-30207 Bagnols-sur-Cèze (France); Boher, C. [CEA, DEN, DTCD/SPDE/LP2C, F-30207 Bagnols-sur-Cèze (France); Dannoux-Papin, A. [CEA, DEN, DTCD/SPDE/LCFI, F-30207 Bagnols-sur-Cèze (France); Galliez, K.; Rooses, A.; Frizon, F. [CEA, DEN, DTCD/SPDE/LP2C, F-30207 Bagnols-sur-Cèze (France)

    2013-11-15

    Effects of gamma irradiation on metakaolin based Na-geopolymer have been investigated by external irradiation. The experiments were carried out in a gamma irradiator with {sup 60}Co sources up to 1000 kGy. Various Na-geopolymer with three H{sub 2}O/Na{sub 2}O ratios have been studied in terms of hydrogen radiolytic yield. The results show that hydrogen production increases linearly with water content. Gamma irradiation effects on Na-geopolymer microstructure have been investigated with porosity measurements and X-ray pair distribution function analysis. A change of pore size distribution and a structural relaxation have been found after gamma ray irradiation.

  6. Influence of gamma ray irradiation on metakaolin based sodium geopolymer

    Science.gov (United States)

    Lambertin, D.; Boher, C.; Dannoux-Papin, A.; Galliez, K.; Rooses, A.; Frizon, F.

    2013-11-01

    Effects of gamma irradiation on metakaolin based Na-geopolymer have been investigated by external irradiation. The experiments were carried out in a gamma irradiator with 60Co sources up to 1000 kGy. Various Na-geopolymer with three H2O/Na2O ratios have been studied in terms of hydrogen radiolytic yield. The results show that hydrogen production increases linearly with water content. Gamma irradiation effects on Na-geopolymer microstructure have been investigated with porosity measurements and X-ray pair distribution function analysis. A change of pore size distribution and a structural relaxation have been found after gamma ray irradiation.

  7. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  8. Guidelines for radioelement mapping using gamma ray spectrometry data

    International Nuclear Information System (INIS)

    The purpose of the report is to provide an up-to-date review on the use of gamma ray spectrometry for radioelement mapping and, where appropriate, provide guidelines on the correct application of the method. It is a useful training guide for those new to the method. It gives a broad coverage of all aspects of the gamma ray method and provides a comprehensive list of references. The report gives an overview of the theoretical background to radioactivity and the gamma ray spectrometric method followed by a review of the application of the method to mapping the radiation environment. A brief outline is presented of the principles of radioactivity, the interaction of gamma rays with matter, instrumentation applied to the measurement of gamma rays, and the quantities and units in contemporary use in gamma ray spectrometry. This is followed by a review of the fundamentals of gamma ray spectrometry, and its application to ground and airborne mapping. Covered are also all aspects of the calibration and data processing procedures required for estimating the ground concentrations of the radioelements. The procedures required for the recovery of older survey data are also presented as well as an overview of data presentation and integration for mapping applications

  9. Response of AGATA Segmented HPGe Detectors to Gamma Rays up to 15.1 MeV

    CERN Document Server

    Crespi, F C L; Camera, F; Akkoyun, S; Atac, A; Bazzacco, D; Bellato, M; Benzoni, G; Blasi, N; Bortolato, D; Bottoni, S; Bracco, A; Brambilla, S; Bruyneel, B; Cerutia, S; Ciemala, M; Coelli, S; Eberth, J; Fanin, C; Farnea, E; Gadea, A; Giaz, A; Gottardo, A; Hess, H; Kmiecik, M; Leoni, S; Maj, A; Mengoni, D; Michelagnoli, C; Million, B; Montanari, D; Pellegri, L; Recchia, F; Reiter, P; Riboldi, S; Ur, C A; Vandone, V; Valiente-Dobon, J J; Wieland, O; Wiens, A

    2012-01-01

    The response of AGATA segmented HPGe detectors to gamma rays in the energy range 2-15 MeV was measured. The 15.1 MeV gamma rays were produced using the reaction d(11B,ng)12C at Ebeam = 19.1 MeV, while gamma-rays between 2 to 9 MeV were produced using an Am-Be-Fe radioactive source. The energy resolution and linearity were studied and the energy-to-pulse-height conversion resulted to be linear within 0.05%. Experimental interaction multiplicity distributions are discussed and compared with the results of Geant4 simulations. It is shown that the application of gamma-ray tracking allows a suppression of background radiation following neutron capture by Ge nuclei. Finally the Doppler correction for the 15.1 MeV gamma line, performed using the position information extracted with Pulse-shape Analysis, is discussed.

  10. An X-ray perspective on a gamma-ray mission

    DEFF Research Database (Denmark)

    Lund, Niels

    2003-01-01

    The most recent astrophysics mission of ESA is INTEGRAL, a mission dedicated to gamma-ray astronomy (Winkler et al. 2003). INTEGRAL carries two gamma-ray instruments: the imager, IBIS, and the spectrometer, SPI, and in addition an optical monitor, OMC, and an X-ray monitor, JEM-X. INTEGRAL...

  11. Spin and Parity Assignment of Neutron Resonances using Gamma-ray Multiplicity

    International Nuclear Information System (INIS)

    Decay gamma rays following neutron capture on various isotopes are collected by the Detector for Advanced Neutron Capture Experiments (DANCE) array, which is located at flight path 14 at the Lujan Neutron Scattering Center at Los Alamos National Laboratory. The high segmentation (160 detectors) and close packing of the detector array enable gamma-ray multiplicity measurements. The calorimetric properties of the DANCE array coupled with the neutron time-of-flight technique enables one to gate on a specific resonance of a given isotope in the time-of-flight spectrum and obtain the summed energy spectrum for that isotope. The singles gamma-ray spectrum for each multiplicity can be separated by their DANCE cluster multiplicity. The multiplicity distribution contains the signatures of spin and parity of the capture state. Under suitable circumstances where the difference between spins of the initial (capture) and final (ground) state is large enough, the signatures in the multiplicity distribution can be used in improving the spin assignment of the initial state. The spin assignment is applied with varying degree of success to difference isotopes and description of this application for 95Mo, 151,153Eu, and 155,157Gd is reviewed briefly.

  12. Status of space-based gamma-ray astronomy

    CERN Document Server

    Buehler, Rolf

    2015-01-01

    Gamma-ray observations give us a direct view into the most extreme environments of the universe. They help us to study astronomical particle accelerators as supernovae remnants, pulsars, active galaxies or gamma-ray bursts and help us to understand the propagation of cosmic rays through our Milky Way. This article summarizes the status of gamma-ray observations from space; it is the write-up of a rapporteur talk given at the 34th ICRC in The Hague, The Netherlands. The primary instrument used in the presented studies is the Large Area Telescope on-board the Fermi Spacecraft, which images the whole gamma-ray sky at photon energies between 20 MeV and 2 TeV. The Fermi mission is currently in its 8th year of observations. This article will review many of the exciting discoveries made in this time, focusing on the most recent ones.

  13. Gamma-rays from pulsar wind nebulae in starburst galaxies

    Science.gov (United States)

    Mannheim, Karl; Elsässer, Dominik; Tibolla, Omar

    2012-07-01

    Recently, gamma-ray emission at TeV energies has been detected from the starburst galaxies NGC253 (Acero et al., 2009) [1] and M82 (Acciari et al., 2009) [2]. It has been claimed that pion production due to cosmic rays accelerated in supernova remnants interacting with the interstellar gas is responsible for the observed gamma rays. Here, we show that the gamma-ray pulsar wind nebulae left behind by the supernovae contribute to the TeV luminosity in a major way. A single pulsar wind nebula produces about ten times the total luminosity of the Sun at energies above 1 TeV during a lifetime of 105 years. A large number of 3 × 104 pulsar wind nebulae expected in a typical starburst galaxy at a distance of 4 Mpc can readily produce the observed TeV gamma rays.

  14. Detection of gamma rays from a starburst galaxy.

    Science.gov (United States)

    Acero, F; Aharonian, F; Akhperjanian, A G; Anton, G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Bühler, R; Bulik, T; Büsching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L-M; Clapson, A C; Coignet, G; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Füssling, M; Gabici, S; Gallant, Y A; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzyński, K; Katz, U; Kaufmann, S; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Lamanna, G; Lenain, J-P; Lohse, T; Marandon, V; Martineau-Huynh, O; Marcowith, A; Masbou, J; Maurin, D; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; de Oña Wilhelmi, E; Orford, K J; Ostrowski, M; Panter, M; Paz Arribas, M; Pedaletti, G; Pelletier, G; Petrucci, P-O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, O; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Superina, G; Szostek, A; Tam, P H; Tavernet, J-P; Terrier, R; Tibolla, O; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2009-11-20

    Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of approximately 10(15) electron volts. We report the detection of gamma rays--tracers of such cosmic rays--from the starburst galaxy NGC 253 using the High Energy Stereoscopic System (H.E.S.S.) array of imaging atmospheric Cherenkov telescopes. The gamma-ray flux above 220 billion electron volts is F = (5.5 +/- 1.0(stat) +/- 2.8(sys)) x 10(-13) cm(-2) s(-1), implying a cosmic-ray density about three orders of magnitude larger than that in the center of the Milky Way. The fraction of cosmic-ray energy channeled into gamma rays in this starburst environment is five times as large as that in our Galaxy.

  15. Detection of Gamma Rays From a Starburst Galaxy

    CERN Document Server

    Acero, F

    2009-01-01

    Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of ~ 10^15 eV. We report the detection of gamma rays -- tracers of such cosmic rays -- from the starburst galaxy NGC 253 using the H.E.S.S. array of imaging atmospheric Cherenkov telescopes. The gamma-ray flux above 220 GeV is F = (5.5 +/- 1.0stat +/- 2.8sys) x 10^-13 ph. s-1 cm-2, implying a cosmic-ray density about three orders of magnitude larger than that in the center of the Milky Way. The fraction of cosmic-ray energy channeled into gamma rays in this starburst environment is 5 times larger than that in our Galaxy.

  16. Comprehensive Monitoring of Gamma-ray Bright Blazars. I. Statistical Study of Optical, X-ray, and Gamma-ray Spectral Slopes

    CERN Document Server

    Williamson, Karen E; Marscher, Alan P; Larionov, Valeri M; Smith, Paul S; Agudo, Iván; Arkharov, Arkady A; Blinov, Dmitry A; Casadio, Carolina; Efimova, Natalia V; Gómez, José L; Hagen-Thorn, Vladimir A; Joshi, Manasvita; Konstantinova, Tatiana S; Kopatskaya, Evgenia N; Larionova, Elena G; Larionova, Liudmilla V; Malmrose, Michael P; McHardy, Ian M; Molina, Sol N; Morozova, Daria A; Schmidt, Gary D; Taylor, Brian W; Troitsky, Ivan S

    2014-01-01

    We present $\\gamma$-ray, X-ray, ultraviolet, optical, and near-infrared light curves of 33 $\\gamma$-ray bright blazars over four years that we have been monitoring since 2008 August with multiple optical, ground-based telescopes and the Swift satellite, and augmented by data from the Fermi Gamma-ray Space Telescope and other publicly available data from Swift. The sample consists of 21 flat-spectrum radio quasars (FSRQs) and 12 BL Lac objects (BL Lacs). We identify quiescent and active states of the sources based on their $\\gamma$-ray behavior. We derive $\\gamma$-ray, X-ray, and optical spectral indices, $\\alpha_\\gamma$, $\\alpha_X$, and $\\alpha_o$, respectively ($F_\

  17. PoGOLite : The Polarised Gamma-ray Observer

    OpenAIRE

    Marini Bettolo, Cecilia

    2008-01-01

    PoGOLite is a balloon-borne experiment which will study polarised soft gamma-ray emission from astrophysical targets in the 25 keV – 80 keV energy range by applying well-type phoswich detector technology. Polarised gamma-rays are expected from a wide variety of sources including rotation-powered pulsars, accreting black holes and neutron stars, and jet-dominated active galaxies. Polarisation measurements provide a powerful probe of the gamma-ray emission mechanism and the distribution of magn...

  18. Fundamental Physics With Cosmic High-Energy Gamma Rays

    CERN Document Server

    De Angelis, Alessandro

    2016-01-01

    High-energy photons (above the MeV) are a powerful probe for astrophysics and for fundamental physics under extreme conditions. During the recent years, our knowledge of the high-energy gamma-ray sky has impressively progressed thanks to the advent of new detectors for cosmic gamma rays, at ground (H.E.S.S., MAGIC, VERITAS, HAWC) and in space (AGILE, Fermi). This presentation reviews the present status of the studies of fundamental physics problems with high-energy gamma rays, and discusses the expected experimental developments.

  19. Evaluation of effective dose equivalent from environmental gamma rays

    International Nuclear Information System (INIS)

    Organ doses and effective dose equivalents for environmental gamma rays were calculated using human phantoms and Monte Carlo methods accounting rigorously the environmental gamma ray fields. It was suggested that body weight is the dominant factor to determine organ doses. The weight function expressing organ doses was introduced. Using this function, the variation in organ doses due to several physical factors were investigated. A detector having gamma-ray response similar to that of human bodies has been developed using a NaI(Tl) scintillator. (author)

  20. The supernova/gamma-ray burst/jet connection

    OpenAIRE

    Hjorth, Jens,

    2013-01-01

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bi-polar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star while the 56Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper I summarise the observational status of ...

  1. The STACEE Ground-Based Gamma-Ray Detector

    CERN Document Server

    Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

  2. Photon energy conversion efficiency in gamma-ray spectrometry.

    Science.gov (United States)

    Švec, Anton

    2016-01-01

    Photon energy conversion efficiency coefficient is presented as the ratio of total energy registered in the collected spectrum to the emitted photon energy. This parameter is calculated from the conventional gamma-ray histogram and in principle is not affected by coincidence phenomena. This feature makes it particularly useful for calibration and measurement of radionuclide samples at close geometries. It complements the number of efficiency parameters used in gamma-ray spectrometry and can partly change the view as to how the gamma-ray spectra are displayed and processed.

  3. The Multiwavelength View of Gamma-Ray Loud AGN

    Science.gov (United States)

    Venters, Tonia

    2011-01-01

    The gamma-ray sky observed by the Fermi Large Area Telescope (Fermi-LAT) encodes much information about the high-energy processes in the universe. Of the extragalactic sources sources resolved by the Fermi-LAT, blazars comprise the class of gamma-ray emitters with the largest number of identified members. Unresolved blazars are expected to contribute significantly to the diffuse extragalactic gamma-ray emission. However, blazars are also broadband emitters (from radio to TeV energies), and as such the multiwavelength study of blazars can provide insight into the high-energy processes of the universe.

  4. The STACEE-32 Ground Based Gamma-ray Detector

    CERN Document Server

    Hanna, D S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hinton, J A; Mukherjee, R; Ong, R A; Oser, S; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Williams, D A; Zweerink, J A

    2002-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.

  5. Fermi Discovery of Gamma-Ray Emission from NGC 1275

    CERN Document Server

    Abdo, A A; Aller, M F; Kellermann, K I; Kovalev, Y Y; Kovalev, Y A; Lister, M L; Pushkarev, A B

    2009-01-01

    We report the discovery of high-energy (E>100 MeV) gamma-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma ray Space Telescope. The positional center of the gamma-ray source is only ~3' away from the NGC 1275 nucleus, well within the 95% LAT error circle of ~5'.The spatial distribution of gamma-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F_gamma = (2.10+-0.23)x 10^{-7} ph (>100 MeV) cm^{-2} s^{-1} and Gamma = 2.17+-0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period.Previous EGRET observations gave an upper limit of F_gamma 100 MeV) cm^{-2} s^{-1} to the gamma-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts th...

  6. Revisiting the U-238 thermal capture cross section and gamma-raymission probabilities from Np-239 decay

    Energy Technology Data Exchange (ETDEWEB)

    Trkov, A.; Molnar, G.L.; Revay, Zs.; Mughabghab, S.F.; Firestone,R.B.; Pronyaev, V.G.; Nichols, A.L.; Moxon, M.C.

    2005-03-03

    The precise value of the thermal capture cross section of238U is uncertain, and evaluated cross sections from various sourcesdiffer by more than their assigned uncertainties. A number of theoriginal publications have been reviewed to assess the discrepant data,corrections were made for more recent standard cross sections andotherconstants, and one new measurement was analyzed. Due to the strongcorrelations in activation measurements, the gamma-ray emissionprobabilities from the beta decay of 239Np were also analyzed. As aresult of the analysis, a value of 2.683 +- 0.012 barns was derived forthe thermal capture cross section of 238U. A new evaluation of thegamma-ray emission probabilities from 239Np decay was alsoundertaken.

  7. Sensitivity of HAWC to gamma ray bursts

    Science.gov (United States)

    Taboada, Ignacio; HAWC Collaboration

    2012-12-01

    HAWC is a ground based very high-energy gamma ray detector under construction in Mexico at an altitude of 4100 m a.s.l. Higher altitude, improved design and a larger physical size used to reject CR background, make HAWC 10-20 times more sensitive than its predecessor Milagro. HAWC's large field of view, ~2sr, and over 90% duty cycle make it ideal to search for GRBs. We review the sensitivity of HAWC to GRBs with two independent data acquisition systems. We show that some of the brightest GRBs observed by Fermi LAT (e.g. GRB 090510) could result in >5 σ observation by HAWC. The observations (or limits) of GRBs by HAWC will provide information on the high-energy spectra of GRBs. The high-energy spectra will teach us about extra galactic background light, the Lorentz boost factor of the jets tha power GRBs and/or particle acceleration models of GRBs. Finally we present limits on > 10 GeV emission from GRB 111016B, recently studied with HAWC's engineering array VAMOS.

  8. The Nature of Gamma Ray Burst Supernovae

    CERN Document Server

    Cano, Zach

    2012-01-01

    Gamma Ray Bursts (GRBs) and Supernovae (SNe) are among the brightest and most energetic physical processes in the universe. It is known that core-collapse SNe arise from the gravitational collapse and subsequent explosion of massive stars (the progen- itors of nearby core-collapse SNe have been imaged and unambiguously identified). It is also believed that the progenitors of long-duration GRBs (L-GRBs) are massive stars, mainly due to the occurrence and detection of very energetic core-collapse su- pernovae that happen both temporally and spatially coincident with most L-GRBs. However many outstanding questions regarding the nature of these events exist: How massive are the progenitors? What evolutionary stage are they at when they explode? Do they exist as single stars or in binary systems (or both, and to what fractions)? The work presented in this thesis attempts to further our understanding at the types of progenitors that give rise to long-duration GRB supernovae (GRB-SNe). This work is based on optical ...

  9. Gamma ray induced mutants in Coleus

    International Nuclear Information System (INIS)

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M1V1 generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m2 area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing

  10. Gamma Ray Bursts Cook Book II: Simulation

    CERN Document Server

    Ziaeepour, Houri

    2008-01-01

    In Paper I we presented a detailed formulation of the relativistic shocks and synchrotron emission in the context of Gamma-Ray Burst (GRB) physics. To see how well this model reproduces the observed characteristics of the GRBs and their afterglows, here we present the results of some simulations based on this model. They are meant to reproduce the prompt and afterglow emission in some intervals of time during a burst. We show that this goal is achieved for both short and long GRBs and their afterglows, at least for part of the parameter space. Moreover, these results are the evidence of the physical relevance of the two phenomenological models we have suggested in Paper I for the evolution of the "active region", the synchrotron emitting region in a shock. The dynamical active region model seems to reproduce the observed characteristics of prompt emissions better than the quasi-steady model which is more suitable for afterglows. Therefore these simulations confirm the arguments presented in Paper I about the ...

  11. Nucleosynthesis in Gamma Ray Burst Accretion Disks

    CERN Document Server

    Pruet, J; Hoffman, R D; Pruet, Jason

    2003-01-01

    We follow the nuclear reactions that occur in the accretion disks of stellar mass black holes that are accreting at a very high rate, 0.01 to 1 solar masses per second, as is realized in many current models for gamma-ray bursts (GRBs). The degree of neutronization in the disk is a sensitive function of the accretion rate, black hole mass, Kerr parameter, and disk viscosity. For high accretion rates and low viscosity, material arriving at the black hole will consist predominantly of neutrons. This degree of neutronization will have important implications for the dynamics of the GRB producing jet and perhaps for the synthesis of the r-process. For lower accretion rates and high viscosity, as might be appropriate for the outer disk in the collapsar model, neutron-proton equality persists allowing the possible synthesis of 56Ni in the disk wind. 56Ni must be present to make any optically bright Type Ib supernova, and in particular those associated with GRBs.

  12. Photospheric Emission in Gamma-Ray Bursts

    CERN Document Server

    Pe'er, Asaf

    2016-01-01

    A major breakthrough in our understanding of gamma-ray bursts (GRB) prompt emission physics occurred in the last few years, with the realization that a thermal component accompanies the over-all non-thermal prompt spectra. This thermal part is important by itself, as it provides direct probe of the physics in the innermost outflow regions. It further has an indirect importance, as a source of seed photons for inverse-Compton scattering, thereby it contributes to the non-thermal part as well. In this short review, we highlight some key recent developments. Observationally, although so far it was clearly identified only in a minority of bursts, there are indirect evidence that thermal component exists in a very large fraction of GRBs, possibly close to 100%. Theoretically, the existence of thermal component have a large number of implications as a probe of underlying GRB physics. Some surprising implications include its use as a probe of the jet dynamics, geometry and magnetization.

  13. The effect of gamma rays on carrots

    International Nuclear Information System (INIS)

    The effects of several doses (5-400 Gy) of gamma rays from a 137Cs source were studied on several biological indices in carrots. Doses higher than 50 Gy reduced the wet weight of the cells in the suspension medium whereas the doses of 5 and 10 Gy affected the wet weight positively and to a lesser extent the dry weight. This may be due to higher water absorption of the irradiated cells since their number was less than that of the control. The different doses did not affect the chromosome number of the cells but reduced the cell division rates. At doses higher than 200 Gy no singel cell was recorded as dividing after two days of irradiation. A week later, however, the cells seemed to have recovered some ability for division, but with an increase of prophase stage in mitosis and also in the mitotic division abnormalities. Cells irradiation with 10 Gy caused the cells to differentiate and to form somatic embryos due to halting the effect of 2,4-D hormon. Higher doses, however, prohibited or reduced cells differentiation, probably due to higher mitotic division abnormalities. Nevertheless, it has been possible to attain mature plants from all treatments except for the 400 Gy. The low doses of 5 and 10 Gy, contrary to the higher ones, affected positively the speed of seed germination, increased the plant height, and also increased the root weight. 11 refs. (author)

  14. CdWO sub 4 scintillator as a compact gamma ray spectrometer for planetary lander missions

    CERN Document Server

    Eisen, Y; Starr, R; Trombka, J I

    2002-01-01

    The objective of this work is to develop a gamma ray spectrometer (GRS) suitable for use on planetary rover missions. The main characteristics of this detector are low weight, small volume low power and resistance to cosmic ray radiation over a long period of time. We describe a 3 cm diameter by 3 cm thick CdWO sub 4 cylindrical scintillator coupled to a PMT as a GRS for the energy region 0.662-7.64 MeV. Its spectral performance and efficiency are compared to that of a CsI(Tl) scintillator 2.5 cm diameter by 6 cm thick coupled to a 28 mmx28 mm PIN photodiode. The comparison is made experimentally using sup 1 sup 3 sup 7 Cs, sup 6 sup 0 Co, 6.13 MeV gamma rays from a sup 1 sup 3 C(alpha,gamma n)O sup 1 sup 6 * source, 7.64 MeV thermal neutron capture gamma rays emitted from iron bars using a sup 2 sup 5 sup 2 Cf neutron source, and natural radioactivity 1.46 MeV sup 4 sup 0 K and 2.61 MeV sup 2 sup 3 sup 2 Th gamma rays. We use a Monte Carlo method to calculate the total peak efficiency of these detectors and ...

  15. Gamma-Ray and Multiwavelength Emission from Blazars

    Indian Academy of Sciences (India)

    Meg Urry

    2011-03-01

    Blazars are now well understood as approaching relativistic jets aligned with the line of sight. The long-time uncertainty about the demographics of blazars is starting to become clearer: since the Fermi blazar sample includes a larger fraction of high-frequency peaked blazars (like the typical X-ray-selected blazars in, say, the Einstein Slew Survey sample) than did the higher-flux-limit EGRET blazar sample, these low-luminosity sources must be more common than their higher luminosity, low-frequency-peaked cousins. Blazar spectral energy distributions have a characteristic two-component form, with synchrotron radiation at radio through optical (UV, X-ray) frequencies and gamma-rays from X-ray through GeV (TeV) energies.Multiwavelength monitoring has suggested that gamma-ray flares can result from acceleration of electrons at shocks in the jet, and there appears to be an association between the creation of outflowing superluminal radio components in VLBI maps and the gamma-ray flares. In many cases, the gamma-ray emission is produced by inverse Compton upscattering of ambient optical-UV photons, although the contribution from energetic hadrons cannot be ruled out. The next few years of coordinated gamma-ray, X-ray, UV, optical, infrared and radio monitoring of blazars will be important for characterizing jet content, structure, and total power.

  16. The CALET Gamma-ray Burst Monitor (CGBM)

    CERN Document Server

    Yamaoka, Kazutaka; Sakamoto, Takanori; Takahashi, Ichiro; Hara, Takumi; Yamamoto, Tatsuma; Kawakubo, Yuta; Inoue, Ry ota; Terazawa, Shunsuke; Fujioka, Rie; Senuma, Kazumasa; Nakahira, Satoshi; Tomida, Hiroshi; Ueno, Shiro; Torii, Shoji; Cherry, Michael L; Ricciarini, Sergio

    2013-01-01

    The CALET Gamma-ray Burst Monitor (CGBM) is the secondary scientific instrument of the CALET mission on the International Space Station (ISS), which is scheduled for launch by H-IIB/HTV in 2014. The CGBM provides a broadband energy coverage from 7 keV to 20 MeV, and simultaneous observations with the primary instrument Calorimeter (CAL) in the GeV - TeV gamma-ray range and Advanced Star Camera (ASC) in the optical for gamma-ray bursts (GRBs) and other X-gamma-ray transients. The CGBM consists of two kinds of scintillators: two LaBr$_3$(Ce) (7 keV - 1 MeV) and one BGO (100 keV - 20 MeV) each read by a single photomultiplier. The LaBr$_3$(Ce) crystal, used in space for the first time here for celestial gamma-ray observations, enables GRB observations over a broad energy range from low energy X-ray emissions to gamma rays. The detector performance and structures have been verified using the bread-board model (BBM) via vibration and thermal vacuum tests. The CALET is currently in the development phase of the prot...

  17. Structure and content of the galaxy and galactic gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The conference included papers on ..gamma..-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included. (JFP)

  18. Airborne Gamma-ray Measurements in the Chernobyl Plume

    DEFF Research Database (Denmark)

    Grasty, R. L.; Hovgaard, Jens; Multala, J.

    1997-01-01

    On 29 April 1986, the Geological Survey of Finland (GSF) survey aircraft with a gamma ray spectrometer flew through a radioactive plume from the Chernobyl nuclear accident. The aircraft became contaminated and the gamma spectrometer measured radioactivity in the plume as well as radioactivity on ...

  19. Search of gamma-rays Bremsstrahlung mirror reflection

    International Nuclear Information System (INIS)

    Full text: Total external reflection of soft X-rays is widely used in many X-ray optic systems. At the same time in the wavelength range of gamma rays the corresponding total external reflection on macroscopic smooth surface hasn't been surely verified yet. Samarkand microtron MT-22S with 330 meter flying distance was used for a search experiment of detecting gamma-ray total external reflection. Measured slip angles (i.e. angles between incident ray and reflector surface) are negligible and don't exceed tens of micro-radian. And it is a complicated problem to get required characteristics of collimating, reflecting and detecting gamma rays. The experimental setup was described earlier. Here we report experimental results of very small-angle Bremsstrahlung scattering only in comparison with results of computer simulation by Monte-Carlo method. It is continuous energy spectrum of Bremsstrahlung gamma rays (described by Shift formula) that is the first characteristic property of the experiment. And it is air in the way of gamma rays that is the second one. Continuous energy spectrum provides a use of some range of reflector inclinations (but bounded above) that satisfy the conditions of the total reflection for a corresponding part of gamma ray beam. As for air it absorbs gamma rays on their long way to detectors lowering the ratio of searching effect to background. Horizontal belt type Bremsstrahlung beam was collimated for the experiment. So the beam's horizontal acceptance was relatively wide (∼ 34 mrad). A collimator with gap heights of 100, 50 and 20 μ limited the beam in vertical that results in beam vertical divergences of 125, 62 and 25 μrad, correspondingly. The gap height of 100 μ used for positioning procedure, and the ones of 50 and 20 μ used for measurements. No separate peak of reflected gamma rays was observed at the experiment. However when vertical profiles measured at the reflector inclinations of 0 and 40 μrad are compared one can see gamma

  20. Gamma-ray emission from individual classical novae

    CERN Document Server

    Gómez-Gomar, J; José, J; Isern, J

    1997-01-01

    Classical novae are important producers of radioactive nuclei, such as be7, n13, f18, na22 and al26. The disintegration of these nuclei produces positrons (except for be7) that through annihilation with electrons produce photons of energies 511 keV and below. Furthermore, be7 and na22 decay producing photons with energies of 478 keV and 1275 keV, respectively, well in the gamma-ray domain. Therefore, novae are potential sources of gamma-ray emission. The properties of gamma-ray spectra and gamma-ray light curves (for the continuum and for the lines at 511, 478 and 1275 keV) have been analyzed, with a special emphasis on the difference between carbon-oxygen and oxygen-neon novae. Predictions of detectability of individual novae by the future SPI spectrometer on board the INTEGRAL satellite are made.

  1. Wavelet-based techniques for the gamma-ray sky

    Science.gov (United States)

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias; Lee, Samuel K.

    2016-07-01

    We demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from dark matter annihilation and extended gamma-ray point source populations in a data-driven way.

  2. Wavelet-Based Techniques for the Gamma-Ray Sky

    CERN Document Server

    McDermott, Samuel D; Cholis, Ilias; Lee, Samuel K

    2015-01-01

    We demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from dark matter annihilation and extended gamma-ray point source populations in a data-driven way.

  3. Location and origin of gamma-rays in blazars

    CERN Document Server

    Rani, B; Hodgson, J A; Zensus, J A

    2016-01-01

    One of the most intriguing and challenging quests of current astrophysics is to understand the physical conditions and processes responsible for production of high-energy particles, and emission of \\gamma-rays. A combination of high-resolution Very Long Baseline Interferometry (VLBI) images with broadband flux variability measurements is a unique way to probe the emission mechanisms at the bases of jets. Our analysis of \\gamma-ray flux variability observed by the Fermi-LAT (Large Area Telescope) along with the parsec-scale jet kinematics suggests that the $\\gamma$-ray emission in blazar S5 0716+714 has a significant correlation with the mm-VLBI core flux and the orientation of jet outflow on parsec scales. These results indicate that the inner jet morphology has a tight connection with the observed $\\gamma$-ray flares. An overview of our current understanding on high-energy radiation processes, their origin, and location is presented here.

  4. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  5. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (1015 electron volts) electrons in a region smaller than 1.4 * 10-2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  6. Gamma-ray dosimetry measurements of the Little Boy replica

    Energy Technology Data Exchange (ETDEWEB)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  7. Radioactive beam experiments with large gamma-ray detector arrays

    CERN Document Server

    Svensson, C E; Ball, G C; Finlay, P; Garrett, P E; Grinyer, G F; Hackman, G S; Osborne, C J; Sarazin, F; Scraggs, H C; Smith, M B; Waddington, J C

    2003-01-01

    High-resolution gamma-ray spectroscopy is one of the most powerful and versatile experimental techniques in low-energy nuclear physics research. With the continuing development of hyper-pure germanium (HPGe) detector technology, including multi-crystal detectors, contact segmentation, and digital signal processing techniques, large gamma-ray detector arrays will continue to play a major role in the experimental programs at existing and future radioactive ion beam facilities. This paper provides an overview of recent progress in, and future plans for, the development of large gamma-ray spectrometers at such facilities, including the recent commissioning of the 8 pi spectrometer at ISAC-I and the proposed TRIUMF-ISAC gamma-ray escape suppressed spectrometer array for the ISAC-II facility.

  8. Gamma ray effects on flash memory cell arrays

    Directory of Open Access Journals (Sweden)

    Dolićanin Edin Ć.

    2012-01-01

    Full Text Available Information stored in flash memories is physically represented by the absence or presence of charge on electrically isolated floating gates. Interaction of gamma rays with the insulators surrounding the floating gate produces effects that degrade the properties of memory cells, possibly leading to the corruption of the stored content. The cumulative nature of these effects is expressed through the total ionizing dose deposited by the gamma rays in the insulators surrounding the floating gate. Relying on both theory and experiment, we examine how the properties of cells in commercially available flash memories affect their sensitivity to gamma rays. Memory samples from several manufacturers, currently available on the market, can be compared with respect to data retention under gamma ray exposure.

  9. The Extragalactic Gamma-ray Sky in the Fermi era

    CERN Document Server

    Massaro, F; Ferrara, E C

    2015-01-01

    The Universe is largely transparent to $\\gamma$ rays in the GeV energy range, making these high-energy photons valuable for exploring energetic processes in the cosmos. After seven years of operation, the Fermi {\\it Gamma-ray Space Telescope} has produced a wealth of information about the high-energy sky. This review focuses on extragalactic $\\gamma$-ray sources: what has been learned about the sources themselves and about how they can be used as cosmological probes. Active galactic nuclei (blazars, radio galaxies, Seyfert galaxies) and star-forming galaxies populate the extragalactic high-energy sky. Fermi observations have demonstrated that these powerful non-thermal sources display substantial diversity in energy spectra and temporal behavior. Coupled with contemporaneous multifrequency observations, the Fermi results are enabling detailed, time-dependent modeling of the energetic particle acceleration and interaction processes that produce the $\\gamma$ rays, as well as providing indirect measurements of t...

  10. Gamma-Ray Imager Polarimeter for Solar Flares Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose here to develop the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS), the next-generation instrument for high-energy solar observations. GRIPS will...

  11. Gamma-ray lines: a new window to the universe

    International Nuclear Information System (INIS)

    Line emission in the gamma-ray band, an emerging branch of astronomy based on balloon and satellite data, probes the physics of nucleosynthesis, the interstellar medium, solar flares, supernovae and neutron stars

  12. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Samit Mandal; J Gerl; H Geissel; K Hauschild; M Hellström; Z Janas; I Kojouharov; Y Kopatch; R C Lemmon; P Mayet; Z Podolyak; P H Regan; H Schaffner; C Schlegel; J Simpson; H J Wollersheim

    2001-07-01

    Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.

  13. Public List of LAT-Detected Gamma-Ray Pulsars

    Data.gov (United States)

    National Aeronautics and Space Administration — The following is a compilation of all publicly-announced gamma-ray pulsars detected using the Fermi LAT. Each of the detections has been vetted by the LAT team,...

  14. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Van Belle, P. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Howarth, P.J.A. [Birmingham Univ. (United Kingdom); Adams, J.M.; Bond, D.S. [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.

    1994-07-01

    Gamma-ray emission from plasma-impurity reactions caused by minority ICRH accelerating fuel ions to MeV energies has been measured using the JET neutron profile monitor. A successful data analysis technique has been used to isolate the RF-induced gamma-ray emission that was detected, enabling profiles of gamma-ray emission to be obtained. The 2-d gamma-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. 6 refs., 4 figs.

  15. Gamma-ray lines from dark matter decay

    International Nuclear Information System (INIS)

    No known astrophysical process can generate a monoenergetic gamma-ray with energy in the TeV range, resulting in very stringent constraints on the lifetime of dark matter particles which decay producing gamma-ray lines. We derive in this work constraints on the decay width from observations at current IACTs as well as the estimated sensitivity of the projected CTA. We also discuss the implications of these limits for two dark matter models where the dark matter particle decays at tree level producing gamma-ray lines, namely the gravitino in supersymmetric models without R-parity conservation and a vector of a hidden SU(2) gauge group. We also discuss the constraints on scenarios where the gamma-ray line is generated at the one loop level.

  16. Developments in large gamma-ray detector arrays

    CERN Document Server

    Lee, I Y; Vetter, K

    2003-01-01

    Gamma-ray spectroscopy was revolutionized with the introduction of high energy-resolution semiconductor germanium (Ge) detectors in the early 1960s. This led to the large increase in sensitivity realized by today's arrays of Compton-suppressed Ge detectors. A still larger increase in sensitivity is expected by implementing the new concept of tracking. A tracking array consists of highly segmented Ge detectors (that can cover the full 4 pi solid-angle) in which gamma rays will be identified by measuring and tracking every gamma ray interaction. This article reviews the physics motivation for such detectors and the development of the new technologies involved. The concept of tracking is explained using the example of a proposed array called gamma-ray energy tracking array (GRETA).

  17. Towards a common analysis framework for gamma-ray astronomy

    CERN Document Server

    Knödlseder, Jürgen; Deil, Christoph; Schulz, Anneli; Grondin, Marie-Hélène; Martin, Pierrick; Brau-Nogué, Sylvie

    2013-01-01

    Thanks to the success of current gamma-ray telescopes (Fermi, H.E.S.S., MAGIC, VERITAS), and in view of the prospects of planned observatories such as the Cherenkov Telescope Array (CTA) or the High-Altitude Water Cherenkov Observatory (HAWC), gamma-ray astronomy is becoming an integral part of modern astrophysical research. Analysis today relies on a large diversity of tools and software frameworks that were specifically and independently developed for each instrument. With the aim of unifying the analysis of gamma-ray data, we are currently developing GammaLib (http://sourceforge.net/projects/gammalib), a C++ library interfaced to Python that provides a framework for an instrument independent analysis of gamma-ray data. On top of GammaLib we have created ctools (http://cta.irap.omp.eu/ctools), a set of analysis executables that is being developed as one of the prototypes for the CTA high-level science analysis framework, but which is equally suited for the analysis of gamma-ray data from the existing Fermi-...

  18. Catalogue of gamma rays from radionuclides ordered by nuclide

    International Nuclear Information System (INIS)

    A catalogue of about 28500 gamma-ray energies from 2338 radionuclides is presented. The nuclides are listed in order of increasing (A,Z) of the daughter nuclide. In addition the gamma-ray intensity per 100 decays of the parent (if known) and the decay half-life are given. All data are from a computer processing of a recent ENSDF (Evaluated Nuclear Structure Data File) file. (authors)

  19. System for Gamma an X rays fluorescence spectrometric

    International Nuclear Information System (INIS)

    A system for spectrometry of gamma or fluorescence X rays is presented. It sis composed by a Si(Li) semiconductors detector, a charge sensitive preamplifier, a high voltage power supply, a spectrometric amplifier and a monolithic 1024 channels multichannel analyzers or an IBM compatible 4096 channels add - on- card multichannel analyzer. The system can be configured as a 1024 or 4096 channels gamma or fluorescent X rays spectrometer

  20. Dark matter properties implied by gamma ray interstellar emission models

    OpenAIRE

    Balázs, Csaba; Li, Tong

    2016-01-01

    We infer dark matter properties from gamma ray residuals extracted using eight different interstellar emission scenarios proposed by the Fermi-LAT Collaboration to explain the Galactic Center gamma ray excess. Adopting the most plausible simplified ansatz, we assume that the dark matter particle is a Majorana fermion interacting with standard fermions via a scalar mediator. Using this theoretical hypothesis and the Fermi residuals we calculate Bayesian evidences, including Fermi-LAT exclusion...

  1. Extragalactic Background Light and Gamma-Ray Attenuation

    OpenAIRE

    Primack, Joel R.; Dominguez, Alberto; Gilmore, Rudy C.; Somerville, Rachel S.

    2011-01-01

    Data from (non-) attenuation of gamma rays from active galactic nuclei (AGN) and gamma ray bursts (GRBs) give upper limits on the extragalactic background light (EBL) from the UV to the mid-IR that are only a little above the lower limits from observed galaxies. These upper limits now rule out some EBL models and purported observations, with improved data likely to provide even stronger constraints. We present EBL calculations both based on multiwavelength observations of thousands of galaxie...

  2. TeV gamma rays from PSR 1706-44

    CERN Document Server

    Chadwick, P M; Dipper, N A; Holder, J; Kendall, T R; McComb, T J L; Orford, K J; Osborne, J L; Rayner, S M; Roberts, I D; Shaw, S E; Turver, K E

    1998-01-01

    Observations made with the University of Durham Mark 6 atmospheric Cerenkov telescope confirm that PSR B1706-44 is a very high energy gamma-ray emitter. There is no indication from our dataset that the very high energy gamma-rays are pulsed, in contrast to the findings at 300 GeV is estimated to be (3.9 +/- 0.7 (statistical)) x 10^-11 cm^-2 s^-1.

  3. The STACEE Ground-Based Gamma-Ray Detector

    OpenAIRE

    STACEE Collaboration; Gingrich, D.M.; Boone, L. M.; Bramel, D.; Carson, J.; Covault, C. E.; Fortin, P.; Hanna, D. S.; Hinton, J. A.; Jarvis, A.; Kildea, J.; Lindner, T.; Mueller, C.; Mukherjee, R.; Ong, R. A.

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previ...

  4. Gamma-Rays and Neutrinos from Dark Matter

    OpenAIRE

    Stecker, F. W.

    1996-01-01

    High energy gamma-rays and neutrinos can be produced both by the annihilation and by the possible slow decay of dark matter particles. We discuss the fluxes and spectra of such secondaries produced by dark matter particles in the universe and their observability in competition with other astrophysical gamma-ray signals and with atmospheric neutrinos. To do this, we work within the assumption that the dark matter particles are neutralinos which are the lightest supersymmetric particles (LSPs) ...

  5. Significance of medium-energy gamma-ray astronomy in the study of cosmic rays

    Science.gov (United States)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1976-01-01

    The paper examines the medium-energy (about 10-30 MeV) galactic gamma-ray radiation from primary and secondary electrons and calculates the expected gamma-ray distribution for the specific model of Bignami et al. (1975) on the assumption that the cosmic rays are correlated with the matter on the scale of galactic arms. The energy spectrum typical of regions near the galactic center indicates a dramatic shift from a predominantly cosmic-ray nucleonic mechanism at higher energies to a cosmic-ray electron mechanism at the lower energies. This provides a most important and direct means of probing the cosmic-ray electrons as a function of galactic position by making gamma-ray observations in the few to 40 MeV energy range. Medium-energy gamma-ray astronomy is shown to be a valuable tool in galactic research.

  6. Micro-Slit Collimators for X-ray/Gamma-ray Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mikro Systems, Inc. (MSI) will advance the state-of-the-art in high resolution, high-aspect-ratio x-ray/gamma-ray collimator fabrication into the micro-slit regime...

  7. Localization of Gamma-Ray Bursts using the Fermi Gamma-Ray Burst Monitor

    CERN Document Server

    Connaughton, V; Goldstein, A; Meegan, C A; Paciesas, W S; Preece, R D; Wilson-Hodge, C A; Gibby, M H; Greiner, J; Gruber, D; Jenke, P; Kippen, R M; Pelassa, V; Xiong, S; Yu, H -F; Bhat, P N; Burgess, J M; Byrne, D; Fitzpatrick, G; Foley, S; Giles, M M; Guiriec, S; van der Horst, A J; von Kienlin, A; McBreen, S; McGlynn, S; Tierney, D; Zhang, B -B

    2014-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 Gamma-Ray Bursts (GRBs) since it began science operations in July, 2008. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network (IPN), to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1 degree, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.7 degree Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14 degrees. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y-axis better l...

  8. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Connaughton, V.; Briggs, M. S.; Burgess, J. M. [CSPAR and Physics Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Goldstein, A.; Wilson-Hodge, C. A. [Astrophysics Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Meegan, C. A.; Jenke, P.; Pelassa, V.; Xiong, S.; Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Paciesas, W. S. [Universities Space Research Association, Huntsville, AL (United States); Preece, R. D. [Department of Space Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H. [Jacobs Technology, Inc., Huntsville, AL (United States); Greiner, J.; Yu, H.-F. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Kippen, R. M. [Los Alamos National Laboratory, NM 87545 (United States); Byrne, D.; Fitzpatrick, G.; Foley, S., E-mail: valerie@nasa.gov [School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland); and others

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  9. Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor

    Science.gov (United States)

    Connaughton, V.; Briggs, M. S.; Goldstein, A.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Wilson-Hodge, C. A.; Gibby, M. H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R. M.; Pelassa, V.; Xiong, S.; Yu, H.-F.; Bhat, P. N.; Burgess, J. M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; Giles, M. M.; Guiriec, S.; van der Horst, A. J.; von Kienlin, A.; McBreen, S.; McGlynn, S.; Tierney, D.; Zhang, B.-B.

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  10. Inactivation of citrus tristeza virus by gamma ray irradiation

    International Nuclear Information System (INIS)

    The total exposure of gamma ray and the intensity of gamma ray per hour for the inactivation of citrus tristeza virus (CTV) and also the effect on citrus tissues are described. The budwoods of Morita navel orange infected with a severe seedling-yellow strain of CTV were irradiated with gamma ray from a 60Co source for 20 -- 52 hours. The buds or small tissue pieces of the irradiated budwoods were subsequently grafted onto Mexcan lime. CTV was easily inactivated by the irradiation from 10 to 18 kR for from 20 to 52 hours. The higher the total exposure, the higher the rate of inactivation. The CTV in the budwoods was almost inactivated after the irradiation with 20 kR. When the total exposure to gamma ray on budwoods was the same, CTV was more efficiently inactivated by the irradiation for long period with low intensity of gamma ray per hour than that for short period with high intensity per hour. Gamma ray irradiation was effective to eliminate CTV from citrus tissues. (Mori, K.)

  11. Spatial distribution of reflected gamma rays by Monte Carlo simulation

    International Nuclear Information System (INIS)

    In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511* MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique.

  12. Spatial distribution of reflected gamma rays by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jehouani, A. [LPTN, Departement de Physique, Faculte des Sciences Semlalia, B.P. 2390, 40000 Marrakech (Morocco)], E-mail: jehouani@ucam.ac.ma; Merzouki, A. [LPTN, Departement de Physique, Faculte des Sciences Semlalia, B.P. 2390, 40000 Marrakech (Morocco); Remote Sensing and Geomatics of the Environment Laboratory, Ottawa-Carleton Geoscience Centre, Marion Hall, 140 Louis Pasteur, Ottawa, ON, KIN 6N5 (Canada); Boutadghart, F.; Ghassoun, J. [LPTN, Departement de Physique, Faculte des Sciences Semlalia, B.P. 2390, 40000 Marrakech (Morocco)

    2007-10-15

    In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511{sup *} MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique. ].

  13. Spatial distribution of reflected gamma rays by Monte Carlo simulation

    Science.gov (United States)

    Jehouani, A.; Merzouki, A.; Boutadghart, F.; Ghassoun, J.

    2007-10-01

    In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511∗ MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinśetique à Trois dimensions, CEA Rapport, Commissariat à l'Energie Atomique. [1

  14. Physics of radio emission in gamma-ray pulsars

    Science.gov (United States)

    Petrova, S. A.

    2016-04-01

    > Propagation of radio emission in a pulsar magnetosphere is reviewed. The effects of polarization transfer, induced scattering and reprocessing to high energies are analysed with a special emphasis on the implications for the gamma-ray pulsars. The possibilities of the pulsar plasma diagnostics based on the observed radio pulse characteristics are also outlined. As an example, the plasma number density profiles obtained from the polarization data for the Vela and the gamma-ray millisecond pulsars J1446-4701, J1939+2134 and J1744-1134 are presented. The number densities derived tend to be the highest/lowest when the radio pulse leads/lags the gamma-ray peak. In the PSR J1939+2134, the plasma density profiles for the main pulse and interpulse appear to fit exactly the same curve, testifying to the origin of both radio components above the same magnetic pole and their propagation through the same plasma flow in opposite directions. The millisecond radio pulse components exhibiting flat position angle curves are suggested to result from the induced scattering of the main pulse by the same particles that generate gamma rays. This is believed to underlie the wide-sense radio/gamma-ray correlation in the millisecond pulsars. The radio quietness of young gamma-ray pulsars is attributed to resonant absorption, whereas the radio loudness to the radio beam escape through the periphery of the open field line tube.

  15. The Gamma-Ray View of the Extragalactic Background Light

    CERN Document Server

    Finke, Justin D

    2010-01-01

    The Extragalactic Background Light (EBL) from the infrared (IR) through the ultraviolet (UV) is dominated by emission from stars, either directly or through absorption and reradiation by dust. It can thus give information on the star formation history of the universe. However, it is difficult to measure directly due to foreground radiation fields from the Galaxy and solar system. Gamma-rays from extragalactic sources at cosmological distances (blazars and gamma-ray bursts) interact with EBL photons creating electron-positron pairs, absorbing the gamma-rays. Given the intrinsic gamma-ray spectrum of a source and its redshift, the EBL can in principle be measured. However, the intrinsic gamma-ray spectra of blazars and GRBs can vary considerably from source to source and the from the same source over short timescales. A maximum intrinsic spectrum can be assumed from theoretical grounds, to give upper limits on the EBL absorption from blazars at low redshift with very high energy (VHE) gamma-ray observations wit...

  16. Late Time Emission of Prompt Fission Gamma Rays

    CERN Document Server

    Talou, P; Stetcu, I; Lestone, J P; McKigney, E; Chadwick, M B

    2016-01-01

    The emission of prompt fission $\\gamma$ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and $\\gamma$-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before $\\beta$-decay, is analyzed. The time evolution of the average total $\\gamma$-ray energy, average total $\\gamma$-ray multiplicity, and fragment-specific $\\gamma$-ray spectra, is presented in the case of neutron-induced fission reactions of $^{235}$U and $^{239}$Pu, as well as spontaneous fission of $^{252}$Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission $\\gamma$ rays are predicted to be emitted between 10 nsec and 5 $\\mu$sec following fission, in the case of $^{235}$U and $^{239}$Pu $(n_{\\rm th},f)$ reactio...

  17. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  18. Gamma-ray luminosity function of gamma-ray bright AGNs

    Institute of Scientific and Technical Information of China (English)

    Debbijoy Bhattacharya; P. Sreekumar; R. Mukherjee

    2009-01-01

    Detection of γ-ray emissions from a class of active galactic nuclei (viz blazars),has been one of the important findings from the Compton Gamma-Ray Observatory (CGRO). However, their-γ-ray luminosity function has not been well determined. Few at-tempts have been made in earlier works, where BL Lacs and Flat Spectrum Radio Quasars (FSRQs) have been considered as a single source class. In this paper, we investigated the evolution and γ-ray luminosity function of FSRQs and BL Lacs separately. Our investi-gation indicates no evolution for BL Lacs, however FSRQs show significant evolution. Pure luminosity evolution is assumed for FSRQs and exponential and power law evolu-tion models are examined. Due to the small number of sources, the low luminosity end index of the luminosity function for FSRQs is constrained with an upper limit. BL Lac lu-minosity function shows no signature of break. As a consistency check, the model source distributions derived from these luminosity functions show no significant departure from the observed source distributions.

  19. Simulation experiments for gamma-ray mapping of planetary surfaces: Scattering of high-energy neutrons

    Science.gov (United States)

    Brueckner, J.; Englert, P.; Reedy, R. C.; Waenke, H.

    1986-01-01

    The concentration and distribution of certain elements in surface layers of planetary objects specify constraints on models of their origin and evolution. This information can be obtained by means of remote sensing gamma-ray spectroscopy, as planned for a number of future space missions, i.e., Mars, Moon, asteroids, and comets. To investigate the gamma-rays made by interactions of neutrons with matter, thin targets of different composition were placed between a neutron-source and a high-resolution germanium spectrometer. Gamma-rays in the range of 0.1 to 8 MeV were accumulated. In one set of experiments a 14-MeV neutron generator using the T(d,n) reaction as neutron-source was placed in a small room. Scattering in surrounding walls produced a spectrum of neutron energies from 14 MeV down to thermal. This complex neutron-source induced mainly neutron-capture lines and only a few scattering lines. As a result of the set-up, there was a considerable background of discrete lines from surrounding materials. A similar situation exists under planetary exploration conditions: gamma-rays are induced in the planetary surface as well as in the spacecraft. To investigate the contribution of neutrons with higher energies, an experiment for the measurement of prompt gamma radiation was set up at the end of a beam-line of an isochronous cyclotron.

  20. Lag-luminosity relation in gamma-ray burst X-ray flares

    CERN Document Server

    Margutti, R

    2010-01-01

    In strict analogy to prompt pulses, X-ray flares observed by Swift-XRT in long Gamma-Ray Bursts define a lag-luminosity relation: L_p,iso \\propto t_lag^{-0.95+/-0.23}. The lag-luminosity is proven to be a fundamental law extending 5 decades in time and 5 in energy. This is direct evidence that GRB X-ray flares and prompt gamma-ray pulses are produced by the same mechanism.

  1. Compton scattering in terrestrial gamma-ray flashes detected with the Fermi gamma-ray burst monitor

    CERN Document Server

    Fitzpatrick, Gerard; McBreen, Sheila; Briggs, Michael S; Foley, Suzanne; Tierney, David; Chaplin, Vandiver L; Connaughton, Valerie; Stanbro, Matthew; Xiong, Shaolin; Dwyer, Joseph; Fishman, Gerald J; Roberts, Oliver J; von Kienlin, Andreas

    2015-01-01

    Terrestrial gamma-ray flashes (TGFs) are short intense flashes of gamma rays associated with lightning activity in thunderstorms. Using Monte Carlo simulations of the relativistic runaway electron avalanche (RREA) process, theoretical predictions for the temporal and spectral evolution of TGFs are compared to observations made with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Assuming a single source altitude of 15 km, a comparison of simulations to data is performed for a range of empirically chosen source electron variation time scales. The data exhibit a clear softening with increased source distance, in qualitative agreement with theoretical predictions. The simulated spectra follow this trend in the data, but tend to underestimate the observed hardness. Such a discrepancy may imply that the basic RREA model is not sufficient. Alternatively, a TGF beam that is tilted with respect to the zenith could produce an evolution with source distance that is compatible with the da...

  2. A fast Monte Carlo program for pulsed-neutron capture-gamma tools

    Energy Technology Data Exchange (ETDEWEB)

    Hovgaard, J.

    1992-02-01

    A fast model for the pulsed-neutron capture-gamma tool has been developed. It is believed that the program produce valid results even though some approximation have been introduced. A correct {gamma} photon transport simulation, which is under preparation, has for instance not yet been included. Simulations performed so far has shown that the model, with respect to computing time and accuracy, fully lives up to expectations with respect to computing time and accuracy. (au).

  3. A fast Monte Carlo program for pulsed-neutron capture-gamma tools

    Energy Technology Data Exchange (ETDEWEB)

    Hovgaard, J.

    1992-02-01

    A fast model for the pulsed-neutron capture-gamma tool has been developed. It is believed that the program produce valid results even though some approximation have been introduced. A correct [gamma] photon transport simulation, which is under preparation, has for instance not yet been included. Simulations performed so far has shown that the model, with respect to computing time and accuracy, fully lives up to expectations with respect to computing time and accuracy. (au).

  4. VHE $\\gamma$-ray observations of Markarian 501

    CERN Document Server

    Breslin, A C; Bradbury, S M; Buckley, J H; Burdett, A M; Carson, M J; Carter-Lewis, D A; Catanese, M; Cawley, M F; Dunlea, S; D'Vali, M; Fegan, D J; Fegan, S J; Finley, J P; Gaidos, J A; Hall, T A; Hillas, A M; Horan, D; Kildea, J; Knapp, J; Krennrich, F; Le Bohec, S; Lessard, R W; Masterson, C; McKernan, B; Quinn, J; Rose, H J; Samuelson, F W; Sembroski, G H; Vasilev, V; Weekes, T C

    1999-01-01

    Markarian 501, a nearby (z=0.033) X-ray selected BL Lacertae object, is a well established source of Very High Energy (VHE, E>=300 GeV) gamma rays. Dramatic variability in its gamma-ray emission on time-scales from years to as short as two hours has been detected. Multiwavelength observations have also revealed evidence that the VHE gamma-ray and hard X-ray fluxes may be correlated. Here we present results of observations made with the Whipple Collaboration's 10 m Atmospheric Cerenkov Imaging Telescope during 1999 and discuss them in the context of observations made on Markarian 501 during the period from 1996-1998.

  5. A new type gamma-ray spectrum monitoring system

    CERN Document Server

    Cheng Bo; Zhou Jian Bin; Zhang Zhi Ming; Tong Yun Fu

    2002-01-01

    This new radiation monitoring system can be used to monitor the radiation of building materials and the radiation of atmosphere, to explore and evaluate rock for building in the field, and this system can be used to monitor the gamma irradiation near the nuclear establishments in the average situation and in the serious situation of the radiation incident have happened. The control core of this monitoring system is SCM-AT89C52, and gamma-ray sensing head consists of scintillator phi 50 mm x 50 mm NaI(Tl) and PMT GDB44. This system can be used to measure the whole gamma-ray spectrum of 256 channels

  6. X Ray Precursors in SGRs: Precessing Gamma Jet Tails

    OpenAIRE

    Fargion, Daniele

    2001-01-01

    Weak isolated X-ray precursor events before the main Gamma Ray Burst, GRB, and also rare Soft Gamma Repeaters, SGR, events are in complete disagreement with any Fireball, or Magnetar, one-shoot explosive scenarios. Fireball model in last two years has been deeply modified into a fountain beamed Jet exploding and interacting on external shells to explain GRB fine time structure. On the contrary earlier we proposed a unified scenario for both GRBs-SGRs where a precessing Gamma Jet (of different...

  7. Gamma-ray shielding properties of some travertines in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Iskender; Guenoglu, Kadir [Suleyman Demirel University, Faculty of Arts and Sciences, Department of Physics, Isparta (Turkey)

    2012-09-06

    The radiation is an essential phenomenon in daily life. There are various amounts of radioactivite substances in the underground and the earth was irradiated by this substances. Humans are exposed to various kind of radiation from these sources. The travertines are usually used as a coating material in buildings. In this study, the photon attenuation coefficients of some travertines have been measured using a gamma spectroscopy with NaI(Tl) detector. The measurements have been performed using {sup 60}Co source which gives 1173 and 1332 keV energies gamma rays and {sup 137}Cs source which gives 662 keV energy gamma rays and the results will be discussed.

  8. The {sup 17}F(p,{gamma}){sup 18}Ne direct capture cross section

    Energy Technology Data Exchange (ETDEWEB)

    Blackmon, J.C.; Bardayan, D.W.; Brune, C.R.; Champagne, A.E.; Crespo, R.; Davinson, T.; Fernandes, J.C.; Gagliardi, C.A.; Greife, U.; Gross, C.J.; Hausladen, P.A.; Iliadis, C.; Jewett, C.C.; Kozub, R.L.; Lewis, T.A.; Liang, F.; Moazen, B.H.; Mukhamedzhanov, A.M.; Nesaraja, C.D.; Nunes, F.M.; Parker, P.D.; Radford, D.C.; Sahin, L.; Scott, J.P.; Shapira, D.; Smith, M.S.; Thomas, J.S.; Trache, L.; Tribble, R.E.; Woods, P.J.; Yu, C.-H

    2003-05-05

    The {sup 17}F(p,{gamma}){sup 18}Ne direct capture cross section is important for understanding nucleosynthesis in novae. We have measured cross sections for the proton-transfer reaction {sup 14}N({sup 17}F, {sup 18}Ne){sup 13}C in order to determine asymptotic normalization coefficients for the {sup 17}F+p system and hence the {sup 17}F(p,{gamma}){sup 18}Ne direct capture cross section. The technique and preliminary results are presented.

  9. Centaurus X-3 A Source of High Energy $\\gamma$ Rays

    CERN Document Server

    Chadwick, P M; Dipper, N A; Kendall, T R; McComb, T J L; Orford, K J; Osborne, J L; Rayner, S M; Roberts, I D; Shaw, S E; Turver, K E

    1998-01-01

    Centaurus X-3 is a well-studied high-mass accreting X-ray binary and a variable source of high energy gamma rays with energies from 100 MeV to 1 TeV. Previous results have suggested that the origin of the gamma rays is not the immediate vicinity of the neutron star but is sited in the accretion disc, perhaps in an accretion wake. The Durham Mark 6 gamma ray telescope has been used to measure the gamma ray flux from Centaurus X-3 with much higher sensitivity than previous ground-based measurements. The flux above ~ 400 GeV was measured to be (2 +/- 0.3) x 10^-11 cm^-2 s^-1 and appears constant over a period of 2 - 3 months. In 10 hours of observations there is no evidence for periodicity in the detected gamma rays at the X-ray spin period either from a site in the region of the neutron star, or from any other potential site in the orbit.

  10. Gamma-ray shielding design and performance test of WASTEF

    International Nuclear Information System (INIS)

    The Waste Safety Testing Facility (WASTEF) was planned in 1978 to test the safety performance of HLW vitrified forms under the simulated conditions of long term storage and disposal, and completed in August 1981. The designed feature of the facility is to treat the vitrified forms contain actual high-level wastes of 5 x 104 Ci in maximum with 5 units of concrete shilded hot cells (3 units : Bate-Gamma cells, 2 units : Alpha-Gamma cells) and one units of Alpha-Gamma lead shielded cell, and to store radioactivity of 106 Ci in maximum. The safety performance of this facility is fundamentally maintained with confinement of radioactivity and shielding of the radiation. This report describes the method of gamma-ray shielding design, evaluation of the shielding test performed by using sealded gamma-ray sources(Co-60). (author)

  11. Response of human lymphocytes to low gamma ray doses

    International Nuclear Information System (INIS)

    Radiation and non-radiation workers lymphocytes were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp25, Hsp60, Hsp70 and Hsp90; from these, only Hsp70 protein was detected before and after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 70.5 mGy gamma-ray dose, radiation worker's lymphocytes expressed more Hsp70 protein, than non-radiation workers' lymphocytes, indicating a larger tolerance to gamma rays (gamma tolerance), due to an adaptation process developed by their labor condition (Au)

  12. Calibration and control modules for gamma-ray borehole loggers

    International Nuclear Information System (INIS)

    A calibration pad for quantitative evaluation of gamma-ray logs, developed and constructed by CNEA is described. The facility is composed of a set of mineralized modules with which it is intended to reproduce the natural variable conditions found in boreholes drilled for uranium mineral exploration, such as the ore concentration, rock's density and porosity, water content, etc. The facility is able to operate under different radiometric models, as follow: 1) gross-count gamma-ray models; 2) gamma-spectrometer models; 3) neutronic-fission models, and 4) models for determination of magnetic susceptibility, density, neutron-neutron, etc. The gathered information allows the adequate quantitative radiometric evaluation of the ore bodies crossed by exploration holes, and also allows the correlation of gamma-ray logs obtained by different logger-equipments. The paper includes the description of the project development and the standards established for the facility's operation. (M.E.L.)

  13. Experiment Signal for Gamma-Ray Research of the Sun

    Science.gov (United States)

    Galper, Arkady; Arkhangelskaja, Irene; Arkhangelsky, Andrey; Shustov, Alexander; Ulin, Sergey; Novikov, Alexander; Grachev, Viktor; Uteshev, Ziyaetdin; Petrenko, Denis; Vlasik, Konstantin; Krivova, Kira; Dmitrenko, Valery; Chernysheva, Irina

    Description as well as physical and technical characteristics of Scientific Instrument (SI) “Signal” are presented. This equipment will be installed onboard the spacecraft (SC) “Interhelioprobe” for researching the Sun and Heliosphere at close distance. “Signal” will be developed for study cosmic gamma-rays. It consists of Xenon Gamma-Spectrometer (XeGS), the anticoincidence scintillation system and the digital electronic module. XeGS is based on cylindrical pulse ionization chamber with Frisch grid filled with high pressure xenon. Anticoincidence system will be made of polystyrene organic scintillator and silicon photomultipliers. Digital electronic module provides analyzing and data processing, collecting measured gamma-ray spectra and communication with onboard systems of SC “Interhelioprobe”. Main “Signal” scientific tasks are: begin{itemize} Research of X-ray and gamma emission in lines and continuum in energy range 30 keV - 5 MeV; begin{itemize} Study of gamma-ray bursts with Galactic and Metagalactic origin; begin{itemize} Analysis of gamma-ray lines near the Earth and Venus; begin{itemize} Charged particle fluxes registration along the spacecraft trajectory.

  14. On the Physics Connecting Cosmic Rays and Gamma Rays: Towards Determining the Interstellar Cosmic Ray Spectrum

    CERN Document Server

    Dermer, C D; Murphy, R J; Strong, A W; Loparco, F; Mazziotta, M N; Orlando, E; Kamae, T; Tibaldo, L; Cohen-Tanugi, J; Ackermann, M; Mizuno, T; Stecker, F W

    2013-01-01

    Secondary nuclear production physics is receiving increased attention given the high-quality measurements of the gamma-ray emissivity of local interstellar gas between ~50 MeV and ~40 GeV, obtained with the Large Area Telescope on board the Fermi space observatory. More than 90% of the gas-related emissivity above 1 GeV is attributed to gamma-rays from the decay of neutral pions formed in collisions between cosmic rays and interstellar matter, with lepton-induced processes becoming increasingly important below 1 GeV. The elementary kinematics of neutral pion production and decay are re-examined in light of two physics questions: does isobaric production follow a scaling behavior? and what is the minimum proton kinetic energy needed to make a gamma-ray of a certain energy formed through intermediate pi0 production? The emissivity spectrum will allow the interstellar cosmic-ray spectrum to be determined reliably, providing a reference for origin and propagation studies as well as input to solar modulation model...

  15. X-ray and gamma-ray astronomy. [origins of extraterrestrial radiation sources

    Science.gov (United States)

    1975-01-01

    Accomplishments in the fields of X-ray and gamma ray astronomy are discussed. Data obtained from IMP and OGO satellites are analyzed to determine the sources of interplanetary radiation bursts. The energy spectrum of cosmic gamma ray bursts as observed by IMP-6 is described. The application of cooling blackbody techniques as a method for examining cosmic gamma ray bursts is reported. The experimental results and theoretical interpretation of high energy diffuse gamma rays are investigated. The structure of the SAS-2 satellite is depicted and the accomplishments are examined. Other sources of gamma radiation to include galactic fermi, Cygnus X-1, supernovae, and the planet Jupiter are proposed. Data obtained from the Pioneer 10 space probe are presented in graph form.

  16. X-ray variability of GeV gamma-ray emitting radio galaxy NGC 1275

    CERN Document Server

    Fukazawa, Yasushi; Tanaka, Yasuyuki; Itoh, Ryosuke; Nagai, Hiroshi

    2016-01-01

    We analyzed Suzaku/XIS data of 2006--2015 observations of a gamma-ray emitting radio galaxy NGC 1275, and brightening of the nucleus in the X-ray band was found in 2013--2015, correlating with GeV Gamma-ray brightening. This is the first evidence of variability with correlation between GeV gamma-ray and X-ray for NGC 1275. We also analyzed Swift/XRT data of NGC 1275, and found that X-ray was flaring by a factor of $\\sim$5 in several days in 2006, 2010, and 2013. The X-ray spectrum during the flare was featureless and somewhat steeper with a photon index of $\\sim$2 against $\\sim$1.7 in the normal state, indicating that a synchrotron component became brighter. A large Xray to GeV gamma-ray flux ratio in the flare could be explained by the shock-in-jet scenario. On the other hand, a long-term gradual brightening of radio, X-ray, and GeV gamma-ray with a larger gamma-ray amplitude could be origin of other than internal shocks, and then we discuss some possibilities.

  17. Gamma-ray Astronomy: Implications for Fundamental Physics

    CERN Document Server

    Rico, Javier

    2011-01-01

    Gamma-ray Astronomy studies cosmic accelerators through their electromagnetic radiation in the energy range between ~100 MeV and ~100 TeV. The present most sensitive observations in this energy band are performed, from space, by the Large Area Telescope onboard the Fermi satellite and, from Earth, by the Imaging Air Cherenkov Telescopes MAGIC, H.E.S.S. and VERITAS. These instruments have revolutionized the field of Gamma-ray Astronomy, discovering different populations of gamma-ray emitters and studying in detail the non-thermal astrophysical processes producing this high-energy radiation. The scientific objectives of these observatories include also questions of fundamental physics. With gamma-ray instruments we study the origin of Galactic cosmic rays, testing the hypothesis or whether they are mainly produced in supernova explosions. Also, we obtain the most sensitive measurement of the cosmic electron-positron spectrum between 20 GeV and 5 TeV. By observing the gamma-ray emission from sources at cosmologi...

  18. Observations of cosmic gamma ray bursts with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.; Castro-Tirado, A. J.

    1995-01-01

    19 Cosmic Gamma-Ray Bursts were detected by the WATCH wide field X-ray monitor during the 11 months flight of EURECA. The identification of the bursts were complicated by a high frequency of background of events caused by high energy cosmic ray interactions in the detector and by low energy......, trapped particle streams. These background events may simulate the count rate increases characteristic of cosmic gamma bursts. For 12 of the detected events, their true cosmic nature have been confirmed through consistent localizations of the burst sources based on several independent WATCH data sets...

  19. The Gamma-ray Albedo of the Moon

    OpenAIRE

    Moskalenko, Igor V.; Porter, Troy A.

    2007-01-01

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the a...

  20. Ultrahigh Energy Cosmic Rays, The Diffuse High Energy Gamma Ray Background and Anti-protons

    OpenAIRE

    Eichler, David; Idan, Raz; Gavish, Eyal

    2016-01-01

    Theories for the origin of ultrahigh energy cosmic rays (UHECR) may imply a significant diffuse background in secondary $\\gamma$-rays from the pair cascads the UHECR initiate when interacting with background light. It is shown that, because the spectrum of these secondary $\\gamma$-rays is softer than the measured diffuse $\\gamma$-ray background in the 10-1000 GeV range, the addition of a hard component from the decay of TeV dark matter particles, subject to the implied constraints on its para...

  1. CALET Upper Limits on X-ray and Gamma-ray Counterparts of GW 151226

    OpenAIRE

    Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y; Bagliesi, M.G.; Bigongiari, G.; Binns, W. R.; Bonechi, S.; Bongi, M.; Brog, P.; J. H. Buckley(Department of Physics, Washington University, St. Louis, USA); Cannady, N.; G. Castellini(INFN Firenze); Checchia, C.; Cherry, M. L.

    2016-01-01

    We present upper limits in the hard X-ray and gamma-ray bands at the time of the LIGO gravitational-wave event GW 151226 derived from the CALorimetric Electron Telescope (CALET) observation. The main instrument of CALET, CALorimeter (CAL), observes gamma-rays from ~1 GeV up to 10 TeV with a field of view of ~2 sr. The CALET gamma-ray burst monitor (CGBM) views ~3 sr and ~2pi sr of the sky in the 7 keV - 1 MeV and the 40 keV - 20 MeV bands, respectively, by using two different scintillator-bas...

  2. Fluxes of diffuse gamma rays and neutrinos from cosmic-ray interactions with circumgalactic gas

    CERN Document Server

    Kalashev, Oleg

    2016-01-01

    The Milky Way is surrounded by a gravitationally bound gas corona extending up to the Galaxy's virial radius. Interactions of cosmic-ray particles with this gas give rise to energetic secondary gamma rays and neutrinos. We present a quantitative analysis of the neutrino and gamma-ray fluxes from the corona of the Milky Way together with a combined contribution of coronae of other galaxies. The high-energy neutrino flux is insufficient to explain the IceCube results, while the contribution to the FERMI-LAT diffuse gamma-ray flux is not negligible.

  3. Expected gamma ray emission spectra from the lunar surface as a function of chemical composition.

    Science.gov (United States)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th, and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines are calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions are those of Reedy and Arnold (1972) and Lingenfelter et al. (1972). The areal resolution of the experiment is calculated to be around 70-140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method is described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  4. Expected gamma-ray emission spectra from the lunar surface as a function of chemical composition

    Science.gov (United States)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines were calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions were those of Reedy and Arnold and Lingenfelter. The areal resolution of the experiment was calculated to be around 70 to 140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method was described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  5. Monte Carlo simulations of plutonium gamma-ray spectra

    International Nuclear Information System (INIS)

    Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum

  6. Energy Content in Flares From Gamma Ray Spectroscopy

    Science.gov (United States)

    Murphy, R. J.; Kozlovsky, B.; Share, G. H.

    2001-12-01

    How the energy content of energetic particles is shared between electrons and ions is a fundamental consideration for understanding the acceleration processes in solar flares. The accelerated electron spectrum greater than about 30 keV can be deduced from measurements of the hard X-ray bremsstrahlung spectrum. The accelerated ion spectrum from a few MeV/nucleon to about 70 MeV/nucleon can be deduced from ratios of measured gamma-ray lines. The recent application of these methods to combined HXRBS and GRS SMM gamma-ray data from 19 strong gamma-ray line flares indicated aproximate equipartition of the energy between electrons and ions. The techniques used for these determinations will be discussed with emphasis on the ion spectral determination. A new extended study of more than 135 SMM flares will also be discussed.

  7. X-ray suppression in gamma-ray bursts through resonant Compton scattering

    Science.gov (United States)

    Brainerd, J. J.

    1992-01-01

    An X-ray that scatters with an electron in the first Landau level of a strong magnetic field is converted into a gamma ray. This process has a resonant cross section at X-ray energies and is therefore highly likely to occur even when the first Landau level is sparsely populated. Converted X-rays are cyclotron absorbed, maintaining the equilibrium between the cyclotron photon density and the population of the first Landau level. By suppressing a neutron star's black body emission, this mechanism can produce a gamma-ray burst with a low X-ray flux.

  8. Gamma-ray fluxes in Oklo natural reactors

    CERN Document Server

    Gould, C R; Sonzogni, A A; 10.1103/PhysRevC.86.054602

    2012-01-01

    Uncertainty in the operating temperatures of Oklo reactor zones impacts the precision of bounds derived for time variation of the fine structure constant $\\alpha$. Improved $^{176}$Lu/$^{175}$Lu thermometry has been discussed but its usefulness may be complicated by photo excitation of the isomeric state $^{176m}$Lu by $^{176}$Lu($\\gamma,\\gamma^\\prime $) fluorescence. We calculate prompt, delayed and equilibrium $\\gamma$-ray fluxes due to fission of $^{235}$U in pulsed mode operation of Oklo zone RZ10. We use Monte Carlo modeling to calculate the prompt flux. We use improved data libraries to estimate delayed and equilibrium spectra and fluxes. We find $\\gamma$-ray fluxes as a function of energy and derive values for the coefficients $\\lambda_{\\gamma,\\gamma^\\prime}$ that describe burn-up of $^{176}$Lu through the isomeric $^{176m}$Lu state. The contribution of the ($\\gamma,\\gamma^\\prime $) channel to the $^{176}$Lu/$^{175}$Lu isotopic ratio is negligible in comparison to the neutron burn-up channels. Lutetium...

  9. Fermi Discovery of Gamma-Ray Emission from NGC 1275

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Asano, K.; /Tokyo Inst. Tech.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /SISSA, Trieste /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /ASDC, Frascati /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2009-05-15

    We report the discovery of high-energy (E > 100 MeV) {gamma}-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the {gamma}-ray source is only {approx}3{prime} away from the NGC 1275 nucleus, well within the 95% LAT error circle of {approx}5{prime}. The spatial distribution of {gamma}-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F{sub {gamma}} = (2.10 {+-} 0.23) x 10{sup -7} ph (>100 MeV) cm{sup -2} s{sup -1} and {Gamma} = 2.17 {+-} 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F{sub {gamma}} < 3.72 x 10{sup -8} ph (>100 MeV) cm{sup -2} s{sup -1} to the {gamma}-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

  10. Gamma-ray intensities of 239Pu

    International Nuclear Information System (INIS)

    Relative intensities of 239Pu γ-rays were precisely measured with a Ge(Li) detector which was accurately calibrated and corrections were made for self-absorption of γ-rays. Accuracies of 1-2% were obtained for strong γrays. Detector efficiences were calibrated with a standard source of 133Ba and γ-ray sources of 152Eu, 154Eu and 182Ta. Intensities per decay were determined by the measured γ-ray intensities, weight and isotopic abundance of plutonium in the source. (author)

  11. Cosmic ray composition measurements and cosmic ray background free gamma-ray observations with Cherenkov telescopes

    CERN Document Server

    Neronov, A; Vovk, Ie; Mirzoyan, R

    2016-01-01

    Muon component of extensive air showers (EAS) initiated by cosmic ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic ray background in gamma-ray observations. This technique provides a possibility for up to two orders of magnitude improvement of sensitivity for gamma-ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an or...

  12. X-ray observations and the search for Fermi-LAT gamma-ray pulsars

    OpenAIRE

    Saz Parkinson, PM; Belfiore, A.; Caraveo, P.; De Luca, A; Marelli, M.

    2013-01-01

    The Large Area Telescope (LAT) on Fermi has detected ~150 gamma-ray pulsars, about a third of which were discovered in blind searches of the $\\gamma$-ray data. Because the angular resolution of the LAT is relatively poor and blind searches for pulsars (especially millisecond pulsars, MSPs) are very sensitive to an error in the position, one must typically scan large numbers of locations. Identifying plausible X-ray counterparts of a putative pulsar drastically reduces the number of trials, th...

  13. New Fermi-LAT event reconstruction reveals more high-energy gamma rays from Gamma-ray bursts

    CERN Document Server

    Atwood, W B; Bregeon, J; Bruel, P; Chekhtman, A; Cohen-Tanugi, J; Drlica-Wagner, A; Granot, J; Longo, F; Omodei, N; Pesce-Rollins, M; Razzaque, S; Rochester, L S; Sgro, C; Tinivella, M; Usher, T L; Zimmer, S

    2013-01-01

    Based on the experience gained during the four and a half years of the mission, the Fermi -LAT collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright Gamma-Ray Bursts (GRBs), where the signal to noise ratio is large enough that loose selection cuts are sufficient to identify gamma- rays associated with the source. Using the new event reconstruction, we have re-analyzed ten GRBs previously detected by the LAT for which an x-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma-ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy (147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstructio...

  14. The Agile Alert System For Gamma-Ray Transients

    CERN Document Server

    Bulgarelli, A; Gianotti, F; Tavani, M; Parmiggiani, N; Fioretti, V; Chen, A W; Vercellone, S; Pittori, C; Verrecchia, F; Lucarelli, F; Santolamazza, P; Fanari, G; Giommi, P; Beneventano, D; Argan, A; Trois, A; Scalise, E; Longo, F; Pellizzoni, A; Pucella, G; Colafrancesco, S; Conforti, V; Tempesta, P; Cerone, M; Sabatini, P; Annoni, G; Valentini, G; Salotti, L

    2014-01-01

    In recent years, a new generation of space missions offered great opportunities of discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) onboard the AGILE space mission. The AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many gamma-ray transients of galactic and extragalactic origins. This work presents the AGILE innovative approach to fast gamma-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe: (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for gamma-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically ...

  15. Fermi Reveals New Light on Novae in Gamma rays

    CERN Document Server

    Cheung, C C; Shore, S N; Grove, J E; Leising, M

    2016-01-01

    Novae are now firmly established as a high-energy (>100 MeV) gamma-ray source class by the Fermi Large Area Telescope (LAT). In symbiotic binary systems such as V407 Cyg 2010, there is a firm theoretical framework for the production of shock-accelerated particles in the nova ejecta from interactions with the dense wind of the red giant companion. Yet, the high-energy gamma-ray emission detected in classical novae involving less evolved stellar companions cannot be explained in the same way and could instead be produced in internal shocks in the ejecta. We summarize the Fermi-LAT gamma-ray observations of novae, highlighting the main properties that will guide further studies. Additionally, we report on the soft gamma-ray (~0.1 MeV) continuum detection of the oxygen-neon type classical nova V382 Vel 1999 with the OSSE detector aboard the Compton Gamma Ray Observatory in light of its Fermi-era analog, V959 Mon 2012.

  16. Physics and astrophysics with gamma-ray telescopes

    CERN Document Server

    Vandenbroucke, J

    2010-01-01

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At $\\sim$TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At $\\sim$GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possi...

  17. Gammapy - A Python package for {\\gamma}-ray astronomy

    CERN Document Server

    Donath, Axel; Arribas, Manuel P; King, Johannes; Owen, Ellis; Terrier, Régis; Reichardt, Ignasi; Harris, Jon; Bühler, Rolf; Klepser, Stefan

    2015-01-01

    In the past decade imaging atmospheric Cherenkov telescope arrays such as H.E.S.S., MAGIC, VERITAS, as well as the Fermi-LAT space telescope have provided us with detailed images and spectra of the {\\gamma}-ray universe for the first time. Currently the {\\gamma}-ray community is preparing to build the next-generation Cherenkov Telecope Array (CTA), which will be operated as an open observatory. Gammapy (available at https://github.com/gammapy/gammapy under the open-source BSD li- cense) is a new in-development Astropy affiliated package for high-level analysis and simulation of astronomical {\\gamma}-ray data. It is built on the scientific Python stack (Numpy, Scipy, matplotlib and scikit-image) and makes use of other open-source astronomy packages such as Astropy, Sherpa and Naima to provide a flexible set of tools for {\\gamma}-ray astronomers. We present an overview of the current Gammapy features and example analyses on real as well as simulated {\\gamma}-ray datasets. We would like Gammapy to become a commu...

  18. Dark matter annihilation via Higgs and gamma-ray channels

    Science.gov (United States)

    Chan, Man Ho

    2016-09-01

    Recent studies show that the GeV gamma-ray excess signal from the Milky Way center can be best explained by ˜ 40 GeV dark matter annihilating via bbar{b} channel. However, the recent observations of the nearby Milky Way dwarf spheroidal satellite galaxies by Fermi-LAT and the radio observations of the Milky Way center and the M31 galaxy tend to rule out this proposal. In this article, we discuss the possibility of the dark matter interpretation of the GeV gamma-ray excess by proposing 130 GeV dark matter annihilating via both Higgs and gamma-ray channels. Recent analyses show that dark matter annihilating via Higgs channel can satisfactorily explain the Milky Way GeV gamma-ray excess observed. We show that this model can satisfy the upper limits of the gamma-ray constraint of the Milky Way dwarf spheroidal satellite galaxies and the constraint from the radio observations of the M31 galaxy.

  19. TL detectors for gamma ray dose measurements in criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka

    2007-01-01

    Determination of gamma ray dose in mixed neutron+gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Bosković Institute (RBI), Croatia, JoZef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed. PMID:17369267

  20. On the connection between radio and gamma rays

    Directory of Open Access Journals (Sweden)

    Orienti M.

    2013-12-01

    Full Text Available Relativistic jets are one of the most powerful manifestations of the release of energy produced around supermassive black holes at the centre of active galactic nuclei (AGN. Their emission is observed across the entire electromagnetic spectrum, from the radio band to gamma rays. Despite decades of efforts, many aspects of the physics of relativistic jets remain elusive. In particular, the location and the mechanisms responsible for the high-energy emission and the connection of the variability at different wavelengths are among the greatest challenges in the study of AGN. From the comparison of the radio and gamma-ray light curves of gamma-ray flaring objects, there is evidence that some flares, either in radio or in gamma rays, have not an obvious connection at the other extreme of the electromagnetic spectrum, like in the case of the Narrow-Line Seyfert 1 SBS 0846+513. An intriguing aspect pointed out by high resolution radio observations is the change of the polarization properties close in time with some high energy flares. In particular, in PKS 1510–089 and 3C 454.3 a rotation of almost 90 degrees has been observed after strong gamma-ray flares. The swing of the polarization angle may be related either to the propagation of a shock along the jet that orders the magnetic field, or a change of the opacity regime.

  1. HYPERACCRETING BLACK HOLE AS GAMMA-RAY BURST CENTRAL ENGINE. I. BARYON LOADING IN GAMMA-RAY BURST JETS

    International Nuclear Information System (INIS)

    A hyperaccreting stellar-mass black hole has been long speculated as the best candidate for the central engine of gamma-ray bursts (GRBs). Recent rich observations of GRBs by space missions such as Swift and Fermi pose new constraints on GRB central engine models. In this paper, we study the baryon-loading processes of a GRB jet launched from a black hole central engine. We consider a relativistic jet powered by ν ν-bar -annihilation or by the Blandford-Znajek (BZ) mechanism. We consider baryon loading from a neutrino-driven wind launched from a neutrino-cooling-dominated accretion flow. For a magnetically dominated BZ jet, we consider neutron drifting from the magnetic wall surrounding the jet and subsequent positron capture and proton-neutron inelastic collisions. The minimum baryon loads in both types of jet are calculated. We find that in both cases a more luminous jet tends to be more baryon poor. A neutrino-driven ''fireball'' is typically ''dirtier'' than a magnetically dominated jet, while a magnetically dominated jet can be much cleaner. Both models have the right scaling to interpret the empirical Γ-Liso relation discovered recently. Since some neutrino-driven jets have too much baryon loading as compared with the data, we suggest that at least a good fraction of GRBs should have a magnetically dominated central engine.

  2. Neutron and Gamma Ray Pulse Shape Discrimination with Polyvinyltoluene

    Energy Technology Data Exchange (ETDEWEB)

    Lintereur, Azaree T.; Ely, James H.; Stave, Jean A.; McDonald, Benjamin S.

    2012-03-01

    The goal of this was research effort was to test the ability of two poly vinyltoluene research samples to produce recordable, distinguishable signals in response to gamma rays and neutrons. Pulse shape discrimination was performed to identify if the signal was generated by a gamma ray or a neutron. A standard figure of merit for pulse shape discrimination was used to quantify the gamma-neutron pulse separation. Measurements were made with gamma and neutron sources with and without shielding. The best figure of merit obtained was 1.77; this figure of merit was achieved with the first sample in response to an un-moderated 252Cf source shielded with 5.08 cm of lead.

  3. Comparison of the radiobiological effects of Boron neutron capture therapy (BNCT) and conventional Gamma Radiation

    International Nuclear Information System (INIS)

    BNCT is an experimental radiotherapeutic modality that uses the capacity of the isotope 10B to capture thermal neutrons leading to the production of 4He and 7Li, particles with high linear energy transfer (LET). The aim was to evaluate and compare in vitro the mechanisms of response to the radiation arising of BNCT and conventional gamma therapy. We measured the survival cell fraction as a function of the total physical dose and analyzed the expression of p27/Kip1 and p53 by Western blotting in cells of colon cancer (ARO81-1). Exponentially growing cells were distributed into the following groups: 1) BPA (10 ppm 10B) + neutrons; 2) BOPP (10 ppm 10B) + neutrons; 3) neutrons alone; 4) gamma-rays. A control group without irradiation for each treatment was added. The cells were irradiated in the thermal neutron beam of the RA-3 (flux= 7.5 109 n/cm2 sec) or with 60Co (1Gy/min) during different times in order to obtain total physical dose between 1-5 Gy (±10 %). A decrease in the survival fraction as a function of the physical dose was observed for all the treatments. We also observed that neutrons and neutrons + BOPP did not differ significantly and that BPA was the more effective compound. Protein extracts of irradiated cells (3Gy) were isolated to 24 h and 48 h post radiation exposure. The irradiation with neutrons in presence of 10BPA or 10BOPP produced an increase of p53 at 24 h maintain until 48 h. On the contrary, in the groups irradiated with neutrons alone or gamma the peak was observed at 48 hr. The level of expression of p27/Kip1 showed a reduction of this protein in all the groups irradiated with neutrons (neutrons alone or neutrons plus boron compound), being more marked at 24 h. These preliminary results suggest different radiobiological response for high and low let radiation. Future studies will permit establish the role of cell cycle in the tumor radio sensibility to BNCT. (author)

  4. Gamma Ray Imaging for Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    B.F. Philips; R.A. Kroeger: J.D. Kurfess: W.N. Johnson; E.A. Wulf; E. I. Novikova

    2004-11-12

    This program is the development of germanium strip detectors for environmental remediation. It is a collaboration between the Naval Research Laboratory and Lawrence Berkeley National Lab. The goal is to develop detectors that are simultaneously capable of excellent spectroscopy and imaging of gamma radiation.

  5. Photodisintegrated gamma rays and neutrinos from heavy nuclei in the gamma-ray burst jet of GRB 130427A

    CERN Document Server

    Joshi, Jagdish C; Moharana, Reetanjali

    2015-01-01

    Detection of $\\sim$ 0.1-70 GeV prompt $\\gamma$-ray emission from the exceptionally bright gamma-ray burst (GRB) 130427A by the ${\\it Fermi}$-Large Area Telescope provides an opportunity to explore the physical processes of GeV $\\gamma$-ray emission from the GRB jets. In this work we discuss interactions of Iron and Oxygen nuclei with observed keV-MeV photons in the jet of GRB 130427A in order to explain an additional, hard spectral component observed during 11.5-33 second after trigger. The photodisintegration time scale for Iron nuclei is comparable to or shorter than this duration. We find that $\\gamma$ rays resulting from the Iron nuclei disintegration can account for the hard power-law component of the spectra in the $\\sim$ 1-70 GeV range, before the $\\gamma\\gamma \\to e^\\pm$ pair production with low-energy photons severely attenuates emission of higher energy photons. Electron antineutrinos from the secondary neutron decay, on the other hand, can be emitted with energies up to $\\sim$ 2 TeV. The flux of th...

  6. Evaluation of prompt gamma-ray data and nuclear structure of niobium-94 with statistical model calculations

    Science.gov (United States)

    Turkoglu, Danyal

    Precise knowledge of prompt gamma-ray intensities following neutron capture is critical for elemental and isotopic analyses, homeland security, modeling nuclear reactors, etc. A recently-developed database of prompt gamma-ray production cross sections and nuclear structure information in the form of a decay scheme, called the Evaluated Gamma-ray Activation File (EGAF), is under revision. Statistical model calculations are useful for checking the consistency of the decay scheme, providing insight on its completeness and accuracy. Furthermore, these statistical model calculations are necessary to estimate the contribution of continuum gamma-rays, which cannot be experimentally resolved due to the high density of excited states in medium- and heavy-mass nuclei. Decay-scheme improvements in EGAF lead to improvements to other databases (Evaluated Nuclear Structure Data File, Reference Input Parameter Library) that are ultimately used in nuclear-reaction models to generate the Evaluated Nuclear Data File (ENDF). Gamma-ray transitions following neutron capture in 93Nb have been studied at the cold-neutron beam facility at the Budapest Research Reactor. Measurements have been performed using a coaxial HPGe detector with Compton suppression. Partial gamma-ray production capture cross sections at a neutron velocity of 2200 m/s have been deduced relative to that of the 255.9-keV transition after cold-neutron capture by 93Nb. With the measurement of a niobium chloride target, this partial cross section was internally standardized to the cross section for the 1951-keV transition after cold-neutron capture by 35Cl. The resulting (0.1377 +/- 0.0018) barn (b) partial cross section produced a calibration factor that was 23% lower than previously measured for the EGAF database. The thermal-neutron cross sections were deduced for the 93Nb(n,gamma ) 94mNb and 93Nb(n,gamma) 94gNb reactions by summing the experimentally-measured partial gamma-ray production cross sections associated

  7. Recent YOHKOH solar gamma-ray observations

    Science.gov (United States)

    Yoshimori, M.; Suga, K.; Nakayama, S.; Ogawa, H.; Share, G. H.; Murphy, R. J.

    2001-08-01

    Yohkoh observed two γ-ray flares in 2000, a X5.7 flare at 10:20 UT on 14 July and a X2.3 flare at 15:08 UT on November 24, with the hard X/γ-ray spectrometers and hard X-ray imager. The two flares emitted several nuclear γ-ray lines and hard X-ray images indicate two sources which are located at both footpoints of the magnetic loop. At the beginning of the peak phase of the July 14 flare, the temporal evolution of the hard X-ray sources suggests that a change in the magnetic loop structure from high-shearing to low-shearing states is associated with magnetic reconnection. Particle accleration is discussed based on the Yohkoh spectroscopic and imaging data.

  8. Nucleonic gamma-ray production in Pulsar Wind Nebulae

    CERN Document Server

    Horns, D; Hoffmann, A I D; Santangelo, A

    2006-01-01

    Observations of the inner radian of the Galactic disk at very high energy (VHE) gamma-rays have revealed at least 16 new sources. Besides shell type super-nova remnants, pulsar wind nebulae (PWN) appear to be a dominant source population in the catalogue of VHE gamma-ray sources. Except for the Crab nebula, the newly discovered PWN are resolved at VHE gamma-rays to be spatially extended (5-20 pc). Currently, at least 3 middle aged ($t>10$ kyrs) PWN (Vela X, G18.0-0.7, and G313.3+0.6 in the ``Kookaburra'' region) and 1 young PWN MSH 15-5{\\it2} ($t=1.55$ kyrs) have been identified to be VHE emitting PWN (sometimes called ``TeV Plerions''). Two more candidate ``TeV Plerions'' have been identifed and have been reported at this conference [1]. In this contribution, the gamma-ray emission from Vela X is explained by a nucleonic component in the pulsar wind. The measured broad band spectral energy distribution is compared with the expected X-ray emission from primary and secondary electrons. The observed X-ray emiss...

  9. TeV Gamma-Rays from Old Supernova Remnants

    CERN Document Server

    Yamazaki, R; Bamba, A; Yoshida, T; Tsuribe, T; Takahara, F; Yamazaki, Ryo; Kohri, Kazunori; Bamba, Aya; Yoshida, Tatsuo; Tsuribe, Toru; Takahara, Fumio

    2006-01-01

    We study the emission from an old supernova remnant (SNR) with an age of around 10^5 yrs and that from a giant molecular cloud (GMC) encountered by the SNR. When the SNR age is around 10^5 yrs, hadron acceleration is efficient enough to emit TeV gamma-rays both at the shock of the SNR and that in the GMC. The maximum energy of primarily accelerated electrons is so small that TeV gamma-rays and X-rays are dominated by hadronic processes, pi^0-decay and synchrotron radiation from secondary electrons, respectively. However, if the SNR is older than several 10^5 yrs, there are few high-energy particles emitting TeV gamma-rays because of the energy loss effect and/or the wave damping effect occurring at low-velocity isothermal shocks. It is found that the ratio of TeV gamma-ray (1-10 TeV) to X-ray (2-10 keV) energy flux can be more than ~10^2. Such a source showing large flux ratio may be a possible origin of recently discovered unidentified TeV sources.

  10. Gamma ray imager on the DIII-D tokamak.

    Science.gov (United States)

    Pace, D C; Cooper, C M; Taussig, D; Eidietis, N W; Hollmann, E M; Riso, V; Van Zeeland, M A; Watkins, M

    2016-04-01

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1-60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons. PMID:27131674

  11. IMMUNE TOLERANCE INDUCED BY GAMMA-RAY IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    练燕; 王延江; 粟永萍; 冉新泽; 艾国平; 刘晓宏; 郭朝华; 程天民

    2003-01-01

    Objective: To detect the existence of immune tolerance induced by gamma-ray irradiation. Methods: Peritoneal cells were harvested from mice subjected to 5 Gy 60Co gamma-ray total body irradiation at 3d, 7d, 15d and 30d, then their counts, morphological changes and IL-12 gene expression were investigated. Results: After irradiation, the peritoneal cells were sharply reduced, the cell morphology shifted from round-like to polymorphic and fusiform with some processes, expression of IL-12 p35 was seriously suppressed, while that of IL-12 p40 greatly enhanced. Conclusion: Our data highly suggest that the gamma-ray irradiation could potentially induce dendritic cell (DC) commitment and immune tolerance.

  12. Miniature gamma-ray camera for tumor localization

    International Nuclear Information System (INIS)

    The overall goal of this LDRD project was to develop technology for a miniature gamma-ray camera for use in nuclear medicine. The camera will meet a need of the medical community for an improved means to image radio-pharmaceuticals in the body. In addition, this technology-with only slight modifications-should prove useful in applications requiring the monitoring and verification of special nuclear materials (SNMs). Utilization of the good energy resolution of mercuric iodide and cadmium zinc telluride detectors provides a means for rejecting scattered gamma-rays and improving the isotopic selectivity in gamma-ray images. The first year of this project involved fabrication and testing of a monolithic mercuric iodide and cadmium zinc telluride detector arrays and appropriate collimators/apertures. The second year of the program involved integration of the front-end detector module, pulse processing electronics, computer, software, and display

  13. Albedo calculation for single scattering gamma-rays, (2)

    International Nuclear Information System (INIS)

    The analytical formulae of number albedo and energy albedo for single scattering gamma-rays were given in the form of F2 function, under the assumption that cross-section, energy and attenuation coefficient of backscattered gamma-rays were constant for scattering angles. The results calculated with the analytical formula agreed with those of numerical integration within +-20% error. The more simplified formula was also presented here with a correcting term. This formula is practically useful in estimating albedo of single scattering gamma-rays with in an accuracy of 10% for most materials of a finite thickness in the incident energy ranges of 0.05 to 3 MeV. (auth.)

  14. Commissioning of a Compton-Scattering-Based Gamma Ray Source

    Science.gov (United States)

    Gibson, David; Albert, Felicie; Anderson, Scott; Hartemann, Fred; Messerly, Mike; Shverdin, Miro; McNabb, Dennis; Siders, Craig; Barty, Chris

    2009-11-01

    Recently a Compton-scattering based gamma-ray source, in which a high-intensity laser scatters off a high-brightness electron beam and emerges as a narrow-band gamma-ray beam, has been commissioned at Lawrence Livermore National Laboratory. Operating at energies from 0.1 to 0.9 MeV, the source produces fluxes upwards of 10^6 photons/sec with a brightness of 10^ 15 photons/s/mm^2/mrad^2/0.1% BW. Presented here is a discussion of the design and performance of the laser and electron subsystems that are used to drive the source, and an overview of the parameters of the generated gamma-ray beam.

  15. Pulser injection with subsequent removal for gamma-ray spectrometry

    Science.gov (United States)

    Hartwell, Jack K.; Goodwin, Scott G.; Johnson, Larry O.; Killian, E. Wayne

    1990-01-01

    An improved system for gamma-ray spectroscopy characterized by an interface module that controls the injection of electronic pulses as well as separation logic that enables storage of pulser events in a region of the spectrum of a multichannel analyzer distinct from the region reserved for storage of gamma-ray events. The module accomplishes this by tagging pulser events (high or low) injected into the amplification circuitry, adding an offset to the events so identified at the time the events are at the output of the analog to digital converter, and storing such events in the upper portion of the spectrum stored in the multichannel analyzer. The module can be adapted for use with existing gamma-ray spectroscopy equipment to provide for automatic analyses of radioisotopes.

  16. Application of Maximum Entropy Deconvolution to ${\\gamma}$-ray Skymaps

    CERN Document Server

    Raab, Susanne

    2015-01-01

    Skymaps measured with imaging atmospheric Cherenkov telescopes (IACTs) represent the real source distribution convolved with the point spread function of the observing instrument. Current IACTs have an angular resolution in the order of 0.1$^\\circ$ which is rather large for the study of morphological structures and for comparing the morphology in $\\gamma$-rays to measurements in other wavelengths where the instruments have better angular resolutions. Serendipitously it is possible to approximate the underlying true source distribution by applying a deconvolution algorithm to the observed skymap, thus effectively improving the instruments angular resolution. From the multitude of existing deconvolution algorithms several are already used in astronomy, but in the special case of $\\gamma$-ray astronomy most of these algorithms are challenged due to the high noise level within the measured data. One promising algorithm for the application to $\\gamma$-ray data is the Maximum Entropy Algorithm. The advantages of th...

  17. Low-resolution gamma-ray measurements of process holdup

    International Nuclear Information System (INIS)

    Nuclear facilities worldwide have deposits of nuclear material remaining in processing equipment. Nuclear facilities need portable, automated tools based on gamma-ray spectroscopy to perform plant wide in situ assays of special nuclear materials (SNM) deposited in processing equipment. These tools have requirements to (1) acquire and manage several hundred spectra in an hour; (2) produce prompt and reliable quantitative analyses; (3) be self-powered, easily carried, and operated by one use; (4) accommodate varying degrees of user expertise; (5) correct for the effects of equipment variables; (6) tolerate facility variables such as temperature and equipment accessibility; and (7) accommodate the geometry of each measurement. this paper describes a new system for in-situ measurements consisting of a compact gamma-ray detector, a self-contained portable gamma-ray spectroscopy instrument, and a palm-size programmable control and data storage unit

  18. Exploring Particle Acceleration in Gamma-Ray Binaries

    CERN Document Server

    Bosch-Ramon, V

    2011-01-01

    Binary systems can be powerful sources of non-thermal emission from radio to gamma rays. When the latter are detected, then these objects are known as gamma-ray binaries. In this work, we explore, in the context of gamma-ray binaries, different acceleration processes to estimate their efficiency: Fermi I, Fermi II, shear acceleration, the converter mechanism, and magnetic reconnection. We find that Fermi I acceleration in a mildly relativistic shock can provide, although marginally, the multi-10 TeV particles required to explain observations. Shear acceleration may be a complementary mechanism, giving particles the final boost to reach such a high energies. Fermi II acceleration may be too slow to account for the observed very high energy photons, but may be suitable to explain extended low-energy emission. The converter mechanism seems to require rather high Lorentz factors but cannot be discarded a priori. Standard relativistic shock acceleration requires a highly turbulent, weakly magnetized downstream med...

  19. Human lymphocytes response to low gamma-ray doses

    International Nuclear Information System (INIS)

    Radiation and non-radiation workers lymphocytes were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp25, Hsp60, Hsp70 and Hsp90; from these, only Hsp70 protein was detected before and after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 70.5 μGy gamma-ray dose, radiation worker's lymphocytes expressed more Hsp70 protein, than non radiation workers' lymphocytes, indicating a larger tolerance to gamma rays (gammatolerance), due to an adaptation process developed by his labor condition

  20. TANAMI: Milliarcsecond Resolution Observations of Extragalactic Gamma-ray Sources

    CERN Document Server

    Ojha, Roopesh; Böck, M; Booth, R; Dutka, M S; Edwards, P G; Fey, A L; Fuhrmann, L; Gaume, R A; Hase, H; Horiuchi, S; Jauncey, D L; Johnston, K J; Katz, U; Lister, M; Lovell, J E J; Müller, C; Plötz, C; Quick, J F H; Ros, E; Taylor, G B; Thompson, D J; Tingay, S J; Tosti, G; Tzioumis, A K; Wilms, J; Zensus, J A

    2010-01-01

    The TANAMI (Tracking AGN with Austral Milliarcsecond Interferometry) and associated programs provide comprehensive radio monitoring of extragalactic gamma-ray sources south of declination -30 degrees. Joint quasi-simultaneous observations between the Fermi Gamma-ray Space Telescope and ground based observatories allow us to discriminate between competing theoretical blazar emission models. High resolution VLBI observations are the only way to spatially resolve the sub-parsec level emission regions where the high-energy radiation originates. The gap from radio to gamma-ray energies is spanned with near simultaneous data from the Swift satellite and ground based optical observatories. We present early results from the TANAMI program in the context of this panchromatic suite of observations.

  1. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    Science.gov (United States)

    Jalali, Majid; Mohammadi, Ali

    2008-05-01

    The compounds Na 2B 4O 7, H 3BO 3, CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.

  2. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    International Nuclear Information System (INIS)

    The compounds Na2B4O7, H3BO3, CdCl2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H3BO3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds

  3. Terrestrial implications of cosmological gamma-ray burst models

    CERN Document Server

    Thorsett, S E

    1995-01-01

    The observation by the BATSE instrument on the Compton Gamma Ray Observatory that gamma-ray bursts (GRBs) are distributed isotropically around the Earth but nonuniformly in distance has led to the widespread conclusion that GRBs are most likely to be at cosmological distances, making them the most luminous sources known in the Universe. If bursts arise from events that occur in normal galaxies, such as neutron star binary inspirals, then they will also occur in our Galaxy about every hundred thousand to million years. The gamma-ray flux at the Earth due to a Galactic GRB would far exceed that from even the largest solar flares. The absorption of this radiation in the atmosphere would substantially increase the stratospheric nitric oxide concentration through photodissociation of N_2, greatly reducing the ozone concentration for several years through NO_x catalysis, with important biospheric effects due to increased solar ultraviolet flux. A nearby GRB may also leave traces in anomalous radionuclide abundances...

  4. COMPACT, TUNABLE COMPTON SCATTERING GAMMA-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, F V; Albert, F; Anderson, G G; Anderson, S G; Bayramian, A J; Betts, S M; Chu, T S; Cross, R R; Ebbers, C A; Fisher, S E; Gibson, D J; Ladran, A S; Marsh, R A; Messerly, M J; O' Neill, K L; Semenov, V A; Shverdin, M Y; Siders, C W; McNabb, D P; Barty, C J; Vlieks, A E; Jongewaard, E N; Tantawi, S G; Raubenheimer, T O

    2009-08-20

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development at LLNL. High-brightness, relativistic electron bunches produced by the linac interact with a Joule-class, 10 ps laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. The source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented.

  5. High-energy gamma-ray sources of cosmological origin

    Science.gov (United States)

    Brun, Pierre; Cohen-Tanugi, Johann

    2016-06-01

    The current generation of instruments in gamma-ray astrophysics launched a new era in the search for a dark matter signal in the high-energy sky. Such searches are said indirect, in the sense that the presence of a dark matter particle is inferred from the detection of products of its pair-annihilation or decay. They have recently started to probe the natural domain of existence for weakly interacting massive particles (WIMPs), the favorite dark matter candidates today. In this article, we review the basic framework for indirect searches and we present a status of current limits obtained with gamma-ray observations. We also devote a section to another possible class of cosmological gamma-ray sources, primordial black holes, also considered as a potential constituent of dark matter. xml:lang="fr"

  6. Investigation of Cosmic-Ray Sources with Gamma-Ray Initiated Showers

    CERN Document Server

    Uryson, A V

    2015-01-01

    A new method of investigating ultra-high energy cosmic ray sources is suggested. The method is based on analysis of gamma-ray emission that is generated in extragalactic space when ultra-high energy cosmic particles interact with cosmic background. We have found that intensity of the gamma-ray emission depends on characteristics of cosmic ray sources, specifically on their remoteness and initial particle energy spectra. In the Earth atmosphere cosmic rays initiate air showers, therefore selecting quanta-initiated showers (and excluding those from the galactic plane, gamma-ray sources, etc.) we can obtain above mentioned source characteristics. We derive that the number of quanta-initiated showers is 0 or ~3x1000 depending on source parameters, typical statistics of showers registered at 10^14 eV being of ~10^8. The difference is large enough to use this method for studying ultra-high energy cosmic ray sources.

  7. RoboPol: The optical polarization of gamma-ray--loud and gamma-ray--quiet blazars

    CERN Document Server

    Angelakis, E; Blinov, D; Pavlidou, V; Kiehlmann, S; Myserlis, I; Boettcher, M; Mao, P; Panopoulou, G V; Liodakis, I; King, O G; Balokovic, M; Kus, A; Kylafis, N; Mahabal, A; Marecki, A; Paleologou, E; Papadakis, I; Papamastorakis, I; Pazderski, E; Pearson, T J; Prabhudesai, S; Ramaprakash, A N; Readhead, A C S; Reig, P; Tassis, K; Urry, M; Zensus, J A

    2016-01-01

    We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma- ray--loud and gamma-ray--quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray--loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray--quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3{\\sigma} level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band lu- minosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high synchrotron- peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray--quiet sources show similar median polarization fr...

  8. RoboPol: The optical polarization of gamma-ray-loud and gamma-ray-quiet blazars

    Science.gov (United States)

    Angelakis, E.; Hovatta, T.; Blinov, D.; Pavlidou, V.; Kiehlmann, S.; Myserlis, I.; Böttcher, M.; Mao, P.; Panopoulou, G. V.; Liodakis, I.; King, O. G.; Baloković, M.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Paleologou, E.; Papadakis, I.; Papamastorakis, I.; Pazderski, E.; Pearson, T. J.; Prabhudesai, S.; Ramaprakash, A. N.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Urry, M.; Zensus, J. A.

    2016-09-01

    We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPolobserving season. We investigate whether gamma-ray-loud and gamma-ray-quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray-loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray-quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3σ level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band luminosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high synchrotron-peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray-quiet sources show similar median polarization fractions although they are all low synchrotron-peaked. We also find that the randomness of the polarization angle depends on the synchrotron peak frequency. For high synchrotron-peaked sources it tends to concentrate around preferred directions while for low synchrotron-peaked sources it is more variable and less likely to have a preferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.

  9. U and Pu Gamma-Ray Measurements of Spent Fuel Using a Gamma-Ray Mirror Band-Pass Filter

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [ORNL; Alameda, J.B. [Lawrence Livermore National Laboratory (LLNL); Brejnholt, N.F. [Lawrence Livermore National Laboratory (LLNL); Decker, T.A. [Lawrence Livermore National Laboratory (LLNL); Descalle, M.A. [Lawrence Livermore National Laboratory (LLNL); Fernandez-Perea, M. [Lawrence Livermore National Laboratory (LLNL); Hill, R.M. [Lawrence Livermore National Laboratory (LLNL); Kisner, R.A. [Oak Ridge National Laboratory (ORNL); Melin, A.M. [Oak Ridge National Laboratory (ORNL); Patton, B.W. [Lawrence Livermore National Laboratory (LLNL); Ruz, J. [Lawrence Livermore National Laboratory (LLNL); Soufli, R. [Lawrence Livermore National Laboratory (LLNL); Pivovaroff, M.J. [Lawrence Livermore National Laboratory (LLNL)

    2014-01-01

    Abstract. We report on the use of grazing incidence gamma-ray mirrors to serve as a narrow band-pass filter for advanced non-destructive analysis (NDA) of spent nuclear fuel. The purpose of the mirrors is to limit the radiation reaching a HPGe detector to narrow spectral bands around characteristic emission lines from fissile isotopes in the fuel. This overcomes the normal rate issues when performing gamma-ray NDA measurements. In a proof-of-concept experiment, a set of simple flat gamma-ray mirrors were used to directly observe the atomic florescence lines from U and Pu from spent fuel pins with the detector located in a shirt-sleeve environment. The mirrors, consisting of highly polished silicon substrates deposited with WC/SiC multilayer coatings, successfully deflected the lines of interest while the intense primary radiation beam from the fuel was blocked by a lead beam stop. The gamma-ray multilayer coatings that make the mirrors work at the gamma-ray energies used here (~ 100 keV) have been experimentally tested at energies as high as 645 keV, indicating that direct observation of nuclear emission lines from 239Pu should be possible with an appropriately designed optic and shielding configuration.

  10. Gamma-ray signatures of cosmic ray acceleration, propagation, and confinement in the era of CTA

    CERN Document Server

    Acero, F; Casanova, S; de Cea, E; Wilhelmi, E de Ona; Gabici, S; Gallant, Y; Hadasch, D; Marcowith, A; Pedaletti, G; Reimer, O; Renaud, M; Torres, D F; Volpe, F

    2012-01-01

    Galactic cosmic rays are commonly believed to be accelerated at supernova remnants via diffusive shock acceleration. Despite the popularity of this idea, a conclusive proof for its validity is still missing. Gamma-ray astronomy provides us with a powerful tool to tackle this problem, because gamma rays are produced during cosmic ray interactions with the ambient gas. The detection of gamma rays from several supernova remnants is encouraging, but still does not constitute a proof of the scenario, the main problem being the difficulty in disentangling the hadronic and leptonic contributions to the emission. Once released by their sources, cosmic rays diffuse in the interstellar medium, and finally escape from the Galaxy. The diffuse gamma-ray emission from the Galactic disk, as well as the gamma-ray emission detected from a few galaxies is largely due to the interactions of cosmic rays in the interstellar medium. On much larger scales, cosmic rays are also expected to permeate the intracluster medium, since the...

  11. On the bizarre gamma-ray spectrum of SS 433

    Science.gov (United States)

    Helfer, H. L.; Savedoff, M. P.

    1984-01-01

    Lamb et al. (1983) have announced the discovery of a pair of gamma-ray lines interpretable as emission of the 1.368 MeV line of Mg-24 in the two oppositely directed relativistic jets of SS 433. The mass loss rate related to the Mg-24 and the kinetic energy flux of the Mg-24 are considered. In the present investigation, it is shown that the mass loss flux must be well in excess of 0.00001 solar mass per yr, while the abundance of the gamma-emitting nucleus is extremely high. Attention is given to the calculation of the gamma-ray production efficiency factor, the size of the emitting region, reaction processes, and X-ray luminosity. It is concluded that for plasma beam models, there must be a substantial overabundance, by a factor of 100 to approximately 1000, of the gamma-line producing nucleus. The association of the gamma-ray lines with Mg-24 is reasonable but not secure.

  12. An optimum analysis sequence for environmental gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre, F.; Rios M, C.; Ruvalcaba A, M. G.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J. L., E-mail: fta777@hotmail.co [Universidad Autonoma de Zacatecas, Centro Regional de Estudis Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-10-15

    This work aims to obtain an optimum analysis sequence for environmental gamma-ray spectroscopy by means of Genie 2000 (Canberra). Twenty different analysis sequences were customized using different peak area percentages and different algorithms for: 1) peak finding, and 2) peak area determination, and with or without the use of a library -based on evaluated nuclear data- of common gamma-ray emitters in environmental samples. The use of an optimum analysis sequence with certified nuclear information avoids the problems originated by the significant variations in out-of-date nuclear parameters of commercial software libraries. Interference-free gamma ray energies with absolute emission probabilities greater than 3.75% were included in the customized library. The gamma-ray spectroscopy system (based on a Ge Re-3522 Canberra detector) was calibrated both in energy and shape by means of the IAEA-2002 reference spectra for software intercomparison. To test the performance of the analysis sequences, the IAEA-2002 reference spectrum was used. The z-score and the reduced {chi}{sup 2} criteria were used to determine the optimum analysis sequence. The results show an appreciable variation in the peak area determinations and their corresponding uncertainties. Particularly, the combination of second derivative peak locate with simple peak area integration algorithms provides the greater accuracy. Lower accuracy comes from the combination of library directed peak locate algorithm and Genie's Gamma-M peak area determination. (Author)

  13. Gamma, x-ray reduction system. Volume I: gamma

    International Nuclear Information System (INIS)

    The starting premises for this data reduction system were (a) the individual researcher needs all the accuracy that can be achieved but he has neither the time nor the inclination to learn how to achieve it, and (b) if the data reduction system is to be centralized the people operating it will want to minimize conversation with the computer. This is a working system. All spectral data are stored on Data General 4234 discs after background normalization and strip. Storage is initiated from magnetic tapes loaded by detached pulse height analyzers or directly from Scorpio pulse height analyzers. The only restrictions placed on the individual researchers are that the pulse height analyzer energy scale be set up consistently, that a recovery standard be run at least once every day of use, and the total acquisition system be calibrated to its range of use. In many instances, and if desirable, the latter is provided as a service. At the time of writing this gamma data reduction system is actively being used to calculate net peak areas, activities with or without time correction, activations analysis results, counting precisions, and dynamic limits of detection for the spectral data output of 17 detached pulse height analyzers. To all modes of data reduction are applied background subtraction, random summing correction, detector recovery factor correction, peak interfernce correction (second-order product interference for activation analysis), geometry function correction, acquisition time decay corrections, external and internal sorber correction. All of this is accomplished and a customer report typed in a readable format after a halfline of noninteractive instruction

  14. Optical constants in the hard x-ray/soft gamma-ray range

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Brejnholt, Nicolai; Romaine, S.;

    2008-01-01

    Future astrophysics missions operating in the hard X-ray/Soft Gamma ray range is slated to carry novel focusing telescopes based on the use of depth graded multilayer reflectors. Current design studies show that, at the foreseen focal lengths, it should be feasible to focus X-rays at energies as...

  15. Gamma-ray Bursts: Progresses at Purple Mountain Observatory

    Institute of Scientific and Technical Information of China (English)

    WEI Daming; FAN Yizhong

    2011-01-01

    A gamma-ray burst (GRB) is an extremely luminous flash of gamma rays that occurs as the result of an explosion, and is thought to be associated with the formation of a black hole. Most GRBs are billions of light years away from Earth, implying that the explosions are both extremely energetic (a typical burst releases as much energy in a few seconds as the Sun will in its entire 10-billion-year lifetime) and extremely rare (a few per galaxy per million years). Researches on GRBs have attracted wide attention. For experts on accretion disks,

  16. SWEPP Gamma-Ray Spectrometer System software design description

    International Nuclear Information System (INIS)

    To assist in the characterization of the radiological contents of contract-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP), the SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory. The SGRS system software controls turntable and detector system activities. In addition to determining the concentrations of gamma-ray-emitting radionuclides, this software also calculates attenuation-corrected isotopic mass ratios of-specific interest. This document describes the software design for the data acquisition and analysis software associated with the SGRS system

  17. Gamma-Ray Bursts as Sources of Strong Magnetic Fields

    CERN Document Server

    Granot, Jonathan; Bromberg, Omer; Racusin, Judith L; Daigne, Frédéric

    2015-01-01

    Gamma-Ray Bursts (GRBs) are the strongest explosions in the Universe, which due to their extreme character likely involve some of the strongest magnetic fields in nature. This review discusses the possible roles of magnetic fields in GRBs, from their central engines, through the launching, acceleration and collimation of their ultra-relativistic jets, to the dissipation and particle acceleration that power their $\\gamma$-ray emission, and the powerful blast wave they drive into the surrounding medium that generates their long-lived afterglow emission. An emphasis is put on particular areas in which there have been interesting developments in recent years.

  18. Varying Faces of Photospheric Emission in Gamma-Ray Bursts

    CERN Document Server

    Axelsson, M

    2015-01-01

    Among the more than 1000 gamma-ray bursts observed by the Fermi Gamma-ray Space Telescope, a large fraction show narrow and hard spectra inconsistent with non-thermal emission, signifying optically thick emission from the photosphere. However, only a few of these bursts have spectra consistent with a pure Planck function. We will discuss the observational features of photospheric emission in these GRBs as well as in the ones showing multi-component spectra. We interpret the observations in light of models of subphotospheric dissipation, geometrical broadening and multi-zone emission, and show what we can learn about the dissipation mechanism and properties of GRB jets.

  19. Gammapy - A Python package for {\\gamma}-ray astronomy

    OpenAIRE

    Donath, Axel; Deil, Christoph; Arribas, Manuel Paz; King, Johannes; Owen, Ellis; Terrier, Régis; Reichardt, Ignasi; Harris, Jon; Bühler, Rolf; Klepser, Stefan

    2015-01-01

    In the past decade imaging atmospheric Cherenkov telescope arrays such as H.E.S.S., MAGIC, VERITAS, as well as the Fermi-LAT space telescope have provided us with detailed images and spectra of the gamma-ray universe for the first time. Currently the gamma-ray community is preparing to build the next-generation Cherenkov Telecope Array (CTA), which will be operated as an open observatory. Gammapy (available at https://github.com/gammapy/gammapy under the open-source BSD license) is a new in-d...

  20. Imaging Very High Energy Gamma-Ray Telescopes

    OpenAIRE

    Voelk, Heinrich J.; Bernloehr, Konrad

    2008-01-01

    The technique of gamma-ray astronomy at very high energies (VHE: > 100 GeV) with ground-based imaging atmospheric Cherenkov telescopes is described, the H.E.S.S. array in Namibia serving as example. Mainly a discussion of the physical principles of the atmospheric Cherenkov technique is given, emphasizing its rapid development during the last decade. The present status is illustrated by two examples: the spectral and morphological characterization in VHE gamma-rays of a shell-type supernova r...

  1. A Monte Carlo simulation to study a design of a gamma-ray detector for neutron resonance densitometry

    Science.gov (United States)

    Tsuchiya, H.; Harada, H.; Koizumi, M.; Kitatani, F.; Takamine, J.; Kureta, M.; Iimura, H.

    2013-11-01

    Neutron resonance densitometry (NRD) has been proposed to quantify nuclear materials in melted fuel (MF) that will be removed from the Fukushima Daiichi nuclear power plant. The problem is complex due to the expected presence of strong neutron absorbing impurities such as 10B and high radiation field that is mainly caused by 137Cs. To identify the impurities under the high radiation field, NRD is based on a combination of neutron resonance transmission analysis (NRTA) and neutron resonance capture analysis (NRCA). We investigated with Geant4 the performance of a gamma-ray detector for NRCA in NRD. The gamma-ray detector has a well shape, consisting of cylindrical and tube type LaBr3 scintillators. We show how it measures 478 keV gamma rays derived from 10B(n, αγ) reaction in MF under a high 137Cs-radiation environment. It was found that the gamma-ray detector was able to well suppress the Compton edge of 662-keV gamma rays of 137Cs and had a high peak-to-Compton continuum ratio, by using the tube type scintillator as a back-catcher detector. Then, we demonstrate that with this ability, detection of 478-keV gamma rays from 10B is accomplished in realistic measuring time.

  2. COMPTEL $\\gamma$-ray study of the Crab nebula

    CERN Document Server

    Van der Meulen, R D; Bennett, K; Hermsen, W; Kuiper, L; Much, R P; Ryan, J; Schönfelder, V; Strong, A

    1997-01-01

    We report on a study of the gamma-ray continuum emission from the Crab supernova nebula and on a search for nuclear de-excitation gamma-ray lines. Crab is the brightest continuum source in the 1-10 MeV gamma-ray sky, and its continuum radiation is most likely of synchrotron origin. It is a likely source of cosmic rays through shock acceleration and thus a potential candidate for gamma-ray line emission from nuclear interactions. Five years of COMPTEL observations enable a fine spectral binning to investigate the behaviour of the 0.75-30 MeV emission in detail and to search for nuclear de-excitation lines on top of the continuum. The nebular spectrum shows a break at the edge of the COMPTEL energy range and connects well to the EGRET spectrum, probably reflecting electron energy losses in the synchrotron emission scenario. Such a smooth continuum model alone may not be sufficient to explain the observations. A weak bump in the spectrum at 1-2 MeV may be present. No significant evidence for distinct line emissi...

  3. A Revised Analysis of Gamma Ray Bursts' prompt efficiencies

    CERN Document Server

    Beniamini, Paz; Piran, Tsvi

    2016-01-01

    The prompt Gamma-Ray Bursts' (GRBs) efficiency is an important clue on the emission mechanism producing the $\\gamma$-rays. Previous estimates of the kinetic energy of the blast waves, based on the X-ray afterglow luminosity $L_X$, suggested that this efficiency is large, with values above 90\\% in some cases. This poses a problem to emission mechanisms and in particular to the internal shocks model. These estimates are based, however, on the assumption that the X-ray emitting electrons are fast cooling and that their Inverse Compton (IC) losses are negligible. The observed correlations between $L_X$ (and hence the blast wave energy) and $E_{\\gamma\\rm ,iso}$, the isotropic equivalent energy in the prompt emission, has been considered as observational evidence supporting this analysis. It is reasonable that the prompt gamma-ray energy and the blast wave kinetic energy are correlated and the observed correlation corroborates, therefore, the notion $L_X$ is indeed a valid proxy for the latter. Recent findings sugg...

  4. PANGU: A High Resolution Gamma-ray Space Telescope

    CERN Document Server

    Wu, Xin; Bravar, Alessandro; Chang, Jin; Fan, Yizhong; Pohl, Martin; Walter, Roland

    2014-01-01

    We describe the instrument concept of a high angular resolution telescope dedicated to the sub-GeV (from $\\gtrsim$10 MeV to $\\gtrsim$1 GeV) gamma-ray photon detection. This mission, named PANGU (PAir-productioN Gamma-ray Unit), has been suggested as a candidate for the joint small mission between the European Space Agency (ESA) and the Chinese Academy of Science (CAS). A wide range of topics of both astronomy and fundamental physics can be attacked with PANGU, covering Galactic and extragalactic cosmic-ray physics, extreme physics of a variety of extended (e.g. supernova remnants, galaxies, galaxy clusters) and compact (e.g. black holes, pulsars, gamma-ray bursts) objects, solar and terrestrial gamma-ray phenomena, and searching for dark matter decay and/or annihilation signature etc. The unprecedented point spread function can be achieved with a pair-production telescope with a large number of thin active tracking layers to precisely reconstruct the pair-produced electron and positron tracks. Scintillating f...

  5. Time-of-flight discrimination between gamma-rays and neutrons by neural networks

    OpenAIRE

    Akkoyun, Serkan

    2012-01-01

    In gamma-ray spectroscopy, a number of neutrons are emitted from the nuclei together with the gamma-rays and these neutrons influence gamma-ray spectra. An obvious method of separating between neutrons and gamma-rays is based on the time-of-flight (tof) technique. This work aims obtaining tof distributions of gamma-rays and neutrons by using feed-forward artificial neural network (ANN). It was shown that, ANN can correctly classify gamma-ray and neutron events. Testing of trained networks on ...

  6. Nondestructive assay of Pu in spent fuel using nuclear resonance fluorescence with monochromatic gamma-rays

    International Nuclear Information System (INIS)

    We have proposed a nondestructive assay for Pu-239 in spent fuel assembly using nuclear resonance fluorescence with energy tunable monochromatic gamma-rays generated by Compton scattering of laser photons and high energy electrons. To demonstrate this method, we carried out nuclear experiments using available laser Compton scattering gamma-rays. We measured NRF gamma-rays of Pb-208 concealed in an iron box with a thickness of 15 mm using LCS gamma-rays at National Institute of Advanced Industrial Science and Technology. We also measured NRF gamma-rays of U-238 using LCS gamma-rays at Duke University. (author)

  7. A common stochastic process rules gamma-ray burst prompt emission and X-ray flares

    CERN Document Server

    Guidorzi, C; Frontera, F; Margutti, R; Baldeschi, A; Amati, L

    2015-01-01

    Prompt gamma-ray and early X-ray afterglow emission in gamma-ray bursts (GRBs) are characterized by a bursty behavior and are often interspersed with long quiescent times. There is compelling evidence that X-ray flares are linked to prompt gamma-rays. However, the physical mechanism that leads to the complex temporal distribution of gamma-ray pulses and X-ray flares is not understood. Here we show that the waiting time distribution (WTD) of pulses and flares exhibits a power-law tail extending over 4 decades with index ~2 and can be the manifestation of a common time-dependent Poisson process. This result is robust and is obtained on different catalogs. Surprisingly, GRBs with many (>=8) gamma-ray pulses are very unlikely to be accompanied by X-ray flares after the end of the prompt emission (3.1 sigma Gaussian confidence). These results are consistent with a simple interpretation: an hyperaccreting disk breaks up into one or a few groups of fragments, each of which is independently accreted with the same pro...

  8. ESA's Integral detects closest cosmic gamma-ray burst

    Science.gov (United States)

    2004-08-01

    5 August 2004 A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed... Gamma ray burst model hi-res Size hi-res: 22 KB Credits: CXC/M. Weiss Artist impression of a low-energy gamma-ray burst This illustration describes a model for a gamma-ray burst, like the one detected by Integral on 3 December 2003 (GRB 031203). A jet of high-energy particles from a rapidly rotating black hole interacts with surrounding matter. Observations with Integral on 3 December 2003 and data on its afterglow, collected afterwards with XMM-Newton, Chandra and the Very Large Array telescope, show that GRB 031203 radiated only a fraction of the energy of normal gamma-ray bursts. Like supernovae, gamma-ray bursts are thought to be produced by the collapse of the core of a massive star. However, while the process leading to supernovae is relatively well understood, astronomers still do not know what happens when a core collapses to form a black hole. The discovery of 'under-energetic' gamma-ray bursts, like GRB 031203, should provide valuable clues as to links between supernovae, black holes and gamma-ray bursts. Lo-res JPG (22 Kb) Hi-res TIFF (5800 Kb) Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs

  9. New possibilities for improving the accuracy of parameter calculations for cascade gamma-ray decay of heavy nuclei

    CERN Document Server

    Sukhovoj, A M; Khitrov, V A

    2001-01-01

    The level density and radiative strength functions which accurately reproduce the experimental intensity of two- step cascades after thermal neutron capture and the total radiative widths of the compound states were applied to calculate the total gamma-ray spectra from the (n,gamma) reaction. In some cases, analysis showed far better agreement with experiment and gave insight into possible ways in which these parameters need to be corrected for further improvement of calculation accuracy for the cascade gamma-decay of heavy nuclei.

  10. The new prompt gamma-ray activation facility at the Paul Scherrer Institute, Switzerland

    CERN Document Server

    Crittin, M; Schenker, J L

    2000-01-01

    Since October 1997, a new Prompt Gamma-ray Activation (PGA) facility at the neutron spallation source SINQ of the Paul Scherrer Institute (PSI) in Villigen, Switzerland, is operational. The detection system includes a Compton-suppression spectrometer and a pair spectrometer. An interesting feature of this PGA facility is the capillary-based neutron focusing optics which permits scanning of samples and nuclear spectroscopy of isotopes having small capture cross sections. During the beam periods 1997 and 1998, measurements were undertaken to characterize the PGA facility (gamma-ray background, efficiencies of the two spectrometers, analytical sensitivities and detection limits for several elements, performances of the neutron lens). Elemental analyses of standards were also performed.

  11. Performance analysis of gamma-ray-irradiated color complementary metal oxide semiconductor digital image sensors

    International Nuclear Information System (INIS)

    The performance parameters of dark output images captured from color complementary metal oxide semiconductor (CMOS) digital image sensors before and after gamma-ray irradiation were studied. The changes of red, green and blue color parameters of dark output images with different gamma-ray doses and exposure times were analyzed with our computer software. The effect of irradiation on the response of blue color was significantly affected at a lower dose. The dark current density of the sensors increases by three orders at > 60 krad compared to that of unirradiated sensors. The maximum and minimum analog output voltages all increase with irradiation doses, and are almost the same at > 120 krad. The signal to noise ratio is 48 dB before irradiation and 35 dB after irradiation of 180 krad. The antiradiation threshold for these sensors is about 100 krad. The primary explanation for the changes and the degradation of device performance parameters is presented. (author)

  12. Transparency measurements using a gamma-ray imager

    International Nuclear Information System (INIS)

    One of the issues encountered by the United States and Russia as they strive to reduce their respective nuclear stockpiles is the ability to identify and verify the location of weapons components throughout the demolition process. The inherent difficulty in this task arises from the classified nature of components which are involved. During inspections, a balance must be drawn between revealing sufficient information to ascertain the authenticity of a part and not revealing critical (classified) design information. The use of a collimated inorganic scintillator detector scanned across a part's storage container to provide both size and isotope information is one possible technique. Both techniques may be performed without visual inspection of the actual object, and with predetermined spatial and energy resolutions. The time required for such inspections can be significantly decreased through the use of gamma-ray imaging. The Gamma-Ray Imaging Spectrometer (GRJS) which is described elsewhere in these proceedings allows one to obtain an image in the light of gamma-rays emitted by SNM. It is based on the same inorganic scintillator technology as conventional gamma-radiation detectors, and combines the scan and isotope identification in a single step. Further, the gamma-ray image may be formed form the light of particular line emissions verifying, not only that SNM is present, but also that its spatial dimensions correspond to those expected. In a simple demonstration, the authors positioned a plutonium disk inside a standard weapons component storage container. An inspection of this vessel undertaken using the scan method required a full morning. The results of a measurement on the same sample obtained with one of the four GRIS detectors in ca. 1/2 an hour provides the same information. That a distributed Pu object is in the container can be easily verified form the combined false-color gamma-ray/video images and by comparison of the face and edge views obtained

  13. VHE Gamma-rays from Galactic X-ray Binary Systems

    CERN Document Server

    Paredes, J M

    2008-01-01

    The detection of TeV gamma-rays from LS 5039 and the binary pulsar PSR B1259-63 by HESS, and from LS I +61 303 and the stellar-mass black hole Cygnus X-1 by MAGIC, provides a clear evidence of very efficient acceleration of particles to multi-TeV energies in X-ray binaries. These observations demonstrate the richness of non-thermal phenomena in compact galactic objects containing relativistic outflows or winds produced near black holes and neutron stars. I review here some of the main observational results on very high energy (VHE) gamma-ray emission from X-ray binaries, as well as some of the proposed scenarios to explain the production of VHE gamma-rays. I put special emphasis on the flare TeV emission, suggesting that the flaring activity might be a common phenomena in X-ray binaries.

  14. Low energy proton capture study of the 14N(p, gamma)15O reaction

    Science.gov (United States)

    Daigle, Stephen Michael

    The 14N(p,gamma)15O reaction regulates the rate of energy production for stars slightly more massive than the sun throughout stable hydrogen burning on the main sequence. The 14N(p,gamma)15O reaction rate also determines the luminosity for all stars after leaving the main sequence when their cores have exhausted hydrogen fuel, and later when they become red giant stars. The significant role that this reaction plays in stellar evolution has far-reaching consequences, from neutrino production in our Sun, to age estimates of globular clusters in our Galaxy. The weak cross section and inherent coincidence summing in the 15O gamma-ray decay scheme make a precision measurement of the astrophysical S-factor especially challenging, particularly for the ground-state transition. The present study, performed in the Laboratory for Experimental Nuclear Astrophysics (LENA), was aimed at measuring the ground-state transition at low energy by utilizing a new 24-element, position-sensitive, NaI(Tl) detector array. Because the array is highly segmented, the 14N( p,gamma)15O S-factor was evaluated for transitions to the ground, 5.18, 6.18, and 6.79 MeV states without the need for coincidence summing corrections. Additionally, the position-sensitivity of the detector was exploited to measure the angular correlation of the two-photon cascades. Software cuts were made to the data in order to identify single and coincident gamma-ray events and a fraction fit analysis technique was used to extract the characteristic 15O peaks from the composite gamma-ray spectrum. The results from the current work demonstrated a new approach to measuring weak nuclear cross sections near astrophysically relevant energies that, with refinements, has broader applications in gamma-ray spectroscopy.

  15. Gamma ray constraints on flavor violating asymmetric dark matter

    DEFF Research Database (Denmark)

    Masina, I.; Panci, P.; Sannino, F.

    2012-01-01

    We show how cosmic gamma rays can be used to constrain models of asymmetric Dark Matter decaying into lepton pairs by violating flavor. First of all we require the models to explain the anomalies in the charged cosmic rays measured by PAMELA, Fermi and H.E.S.S.; performing combined fits we...... determine the allowed values of the Dark Matter mass and lifetime. For these models, we then determine the constraints coming from the measurement of the isotropic gamma-ray background by Fermi for a complete set of lepton flavor violating primary modes and over a range of DM masses from 100 GeV to 10 Te......V. We find that the Fermi constraints rule out the flavor violating asymmetric Dark Matter interpretation of the charged cosmic ray anomalies....

  16. Fermi Solar Flare X-Ray and Gamma-Ray Observations

    Data.gov (United States)

    National Aeronautics and Space Administration — The Fermi Gamma-ray Space Telescope was launched in June 2008 to explore high-energy phenomena in the Universe. This GI program is targeted specifically at Fermi...

  17. Neutron Capture Cross Sections and Gamma Emission Spectra from Neutron Capture on 234,236,238U Measured with DANCE

    Science.gov (United States)

    Ullmann, J. L.; Mosby, S.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C.-Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2014-05-01

    A new measurement of the 238U(n, γ) cross section using a thin 48 mg/cm2 target was made using the DANCE detector at LANSCE over the energy range from 10 eV to 500 keV. The results confirm earlier measurements. Measurements of the gamma-ray emission spectra were also made for 238U(n, γ) as well as 234,236U(n, γ). These measurements help to constrain the radiative strength function used in the cross-section calculations.

  18. Computational techniques in gamma-ray skyshine analysis

    International Nuclear Information System (INIS)

    Two computer codes were developed to analyze gamma-ray skyshine, the scattering of gamma photons by air molecules. A review of previous gamma-ray skyshine studies discusses several Monte Carlo codes, programs using a single-scatter model, and the MicroSkyshine program for microcomputers. A benchmark gamma-ray skyshine experiment performed at Kansas State University is also described. A single-scatter numerical model was presented which traces photons from the source to their first scatter, then applies a buildup factor along a direct path from the scattering point to a detector. The FORTRAN code SKY, developed with this model before the present study, was modified to use Gauss quadrature, recent photon attenuation data and a more accurate buildup approximation. The resulting code, SILOGP, computes response from a point photon source on the axis of a silo, with and without concrete shielding over the opening. Another program, WALLGP, was developed using the same model to compute response from a point gamma source behind a perfectly absorbing wall, with and without shielding overhead. 29 refs., 48 figs., 13 tabs

  19. PANGU: A High Resolution Gamma-Ray Space Telescope

    Science.gov (United States)

    Su, Meng

    2014-08-01

    We propose a high angular resolution telescope dedicated to the sub-GeV gamma-ray astronomy as a candidate for the CAS-ESA joint small mission. This mission, called PANGU (PAir-productioN Gamma-ray Unit), will open up a unique window of electromagnetic spectrum that has never been explored with great precision. A wide range of topics of both astronomy and fundamental physics can be attacked with a telescope that has an angular resolution about one order of magnitude better than the currently operating Fermi Gamma-ray Space Telescope (Fermi) in the sub-GeV range, covering galactic and extragalactic cosmic-ray physics, extreme physics of a variety of extended (e.g. supernova remnants, galaxies, galaxy clusters) and compact (e.g. black holes, pulsars, gamma-ray bursts) objects, solar and terrestrial gamma-ray phenomena, and searching for Dark Matter (DM) decay and/or annihilation signature etc. The unprecedented resolution can be achieved with a pair-production telescope that, instead of the high-Z converter commonly used, relies on a large number of thin active tracking layers to increase the photon conversion probability, and to precisely reconstruct the pair-produced electron and positron tracks. Scintillating fibers or thin silicon micro-strip detectors are suitable technology for such a tracker. The energy measurement is achieved by measuring the momentum of the electrons and positrons through a magnetic field. The innovated spectrometer approach provides superior photon conversion identification and photon pointing resolution, and is particular suitable in the sub-GeV range, where the opening angle between the electron and positron is relatively large. The level of tracking precision makes it possible to measure the polarization of gamma rays, which would open up a new frontier in gamma-ray astronomy. The sub-GeV full sky survey by PANGU would provides crucial link with GeV to TeV maps from current/future missions including Fermi, DAMPE, HERD, and CTA.

  20. Gamma-Ray Astronomy with ARGO-YBJ

    CERN Document Server

    Di Sciascio, G

    2011-01-01

    ARGO-YBJ is a full coverage air shower array located at the YangBaJing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm^2) recording data with a duty cycle $\\geq$85% and an energy threshold of a few hundred GeV. In this paper the latest results in Gamma-Ray Astronomy are summarized.

  1. A simple technique for gamma ray and cosmic ray spectroscopy using plastic scintillator

    Science.gov (United States)

    Nandan, Akhilesh P.; Rudra, Sharmili; Neog, Himangshu; Biswas, S.; Mahapatra, S.; Mohanty, B.; Samal, P. K.

    2016-07-01

    A new and simple technique has been developed using plastic scintillator detectors for gamma ray and cosmic ray spectroscopy without single channel analyzer (SCA) or multichannel analyzer (MCA). In these experiments only a leading edge discriminator (LED) and NIM scalers have been used. Energy calibration of gamma spectra in plastic scintillators has been done using Co60 and Cs137 sources. The details of the experimental technique, analysis procedure and experimental results have been presented in this paper.

  2. A simple technique for gamma ray and cosmic ray spectroscopy using plastic scintillator

    CERN Document Server

    Nandan, Akhilesh P; Neog, Himangshu; Bhuyan, M R; Biswas, S; Mahapatra, S; Mohanty, B; Mohanty, Rudranarayan; Rout, Subasha; Sahu, P K; Sahu, S; Sakthivel, V A; Samal, P K

    2014-01-01

    A new and simple technique has been developed using plastic scintillator detectors for gamma ray and cosmic ray spectroscopy without single channel analyzer (SCA) or multichannel analyzer (MCA). In these experiments only a leading edge discriminator (LED) and NIM scalers have been used. Energy calibration of gamma spectra in plastic scintillators has been done using Co60 and Cs137 sources. The details experimental technique, analysis procedure and experimental results has been presented in this article.

  3. A possible origin of gamma rays from the Fermi Bubbles

    CERN Document Server

    Thoudam, Satyendra

    2014-01-01

    One of the most exciting discoveries of recent years is a pair of gigantic gamma-ray emission regions, the so-called Fermi bubbles, above and below the Galactic center. The bubbles, discovered by the Fermi space telescope, extend up to $\\sim 50^\\circ$ in Galactic latitude and are $\\sim 40^\\circ$ wide in Galactic longitude. The gamma-ray emission is also found to correlate with radio, microwave and X-rays emission. The origin of the bubbles and the associated non-thermal emissions are still not clearly understood. Possible explanations for the non-thermal emission include cosmic-ray injection from the Galactic center by high speed Galactic winds/jets, acceleration by multiple shocks or plasma turbulence present inside the bubbles, and acceleration by strong shock waves associated with the expansion of the bubbles. In this paper, I will discuss the possibility that the gamma-ray emission is produced by the injection of Galactic cosmic-rays mainly protons during their diffusive propagation through the Galaxy. Th...

  4. Gamma-ray streaming in bent ducts and voids

    Energy Technology Data Exchange (ETDEWEB)

    Bourdet, L.; Nimal, J.C.; Vergnaud, T.

    1983-05-01

    We have developed an analytical method to calculate gamma-ray streaming through straight ducts and a numerical method to study the gamma propagation in bends or in annular clearances. The whole set allows a rigorous treatment of gamma streaming through bent ducts. In the same time a Monte Carlo method allows to study any form of geometry, by using sophisticated biasing techniques. All these developments are made with a simplified albedo. An easy to use code is also proposed to calculate very general albedos and a code to calculate the dose rate due to reflection in a room. Gamma dose rate albedos are determined for all elements and the energy range which concerns fission reactors.

  5. Next Generation Gamma Ray Diagnostics for the National Ignition Facility

    Science.gov (United States)

    Herrmann, Hans; Kim, Y. H.; McEvoy, A. M.; Zylstra, A. B.; Young, C. S.; Lopez, F. E.; Griego, J. R.; Fatherley, V. E.; Oertel, J. A.; Jorgenson, H. J.; Barlow, D. B.; Stoeffl, W.; Church, J. A.; Hernandez, J. E.; Carpenter, A.; Rubery, M. S.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Malone, R. M.; Moy, K.; Hares, J. D.; Milnes, J.

    Fusion reaction history and ablator areal density measurements based on gamma ray detection are an essential part of Inertial Confinement Fusion (ICF) experiments on the National Ignition Facility (NIF). Capability improvements are being implemented in sensitivity, temporal and spectral response relative to the existing Gamma Reaction History diagnostic (GRH-6m). The ``Super'' Gas Cherenkov Detector (GCD) will provide 200x more sensitivity, reduce the effective temporal resolution from 100 to 10 ps, and lower the energy threshold from 2.9 to 1.8 MeV, relative to GRH-6m. The Gamma-to-Electron Magnetic Spectrometer (GEMS) - a Compton spectrometer intended to provide true gamma energy resolution (<=5%) for isolation of specific lines such as t(d, γ) , D(n, γ) , 12C(n,n' γ) and energetic charged particle nuclear reactions indicative of ablator/fuel mix

  6. Biasing techniques for gamma rays going around efficient shields

    Energy Technology Data Exchange (ETDEWEB)

    Ghassoun, J.; Jehouani, A. [Nuclear Physics and Techniques Laboratory, Faculty of Sciences Semlalia, Marrakech (Morocco); Ueki, K. [Nuclear Technology Division, Ship Research Institute, Ministry of Transport, Mitaka, Tokyo (Japan)

    2000-03-01

    This paper describes a method based on a combination of the exponential transformation, the angular biasing and the region of imposed collision. This combination can be employed in Multigroup Monte Carlo radiation transport calculations particularly in deep penetration problems for complex geometry. To test the effectiveness of this method, we have applied it to a practical case concerning the evaluation of gamma rays, which skirt a region of perfect shield within a graphite medium and contribute to a finite detector, place behind the perfect shield. An isotropic punctual and mono-energetic gamma source is placed at the other side of the shield. The current obtained for our multigroup Monte Carlo program agrees with MCNP4B code with a high figure of Merit. The gamma ray cross section used was collapsed to 75 groups from ENDF/B-VI library. (author)

  7. Biasing techniques for gamma rays going around efficient shields

    International Nuclear Information System (INIS)

    This paper describes a method based on a combination of the exponential transformation, the angular biasing and the region of imposed collision. This combination can be employed in Multigroup Monte Carlo radiation transport calculations particularly in deep penetration problems for complex geometry. To test the effectiveness of this method, we have applied it to a practical case concerning the evaluation of gamma rays, which skirt a region of perfect shield within a graphite medium and contribute to a finite detector, place behind the perfect shield. An isotropic punctual and mono-energetic gamma source is placed at the other side of the shield. The current obtained for our multigroup Monte Carlo program agrees with MCNP4B code with a high figure of Merit. The gamma ray cross section used was collapsed to 75 groups from ENDF/B-VI library. (author)

  8. Detector calibration for in-situ gamma ray spectrometry

    CERN Document Server

    Balea, G

    2002-01-01

    The power in the technique of in-situ spectrometry lies in the fact that a detector placed on ground measures gamma radiation from sources situated over an area of several hundred square meters. The 'field of view' for the detector would be larger for high energy radiation sources and for sources closer to the soil surface. In contrast, a soil sample would represent an area of a few tens of hundreds of square centimeters. In practice, an effective characterization of a site would involve in-situ gamma ray spectrometry in conjunction with soil sampling. As part of an overall program, in-situ gamma ray spectrometry provides a means to assess the degree of contamination in areas during the course of operations in the field, thus guiding the investigator on where to collect samples. It can also substantially reduce the number of samples need to be collected and subsequently analyzed. (author)

  9. Determination of soil parameters by gamma-ray transmission

    International Nuclear Information System (INIS)

    Gamma-ray transmission methods have been used accurately for the study of the properties of a porous medium such as soil. In this study, different soil parameters are determined by using gamma-ray transmission method. To this end, the soil samples were collected from various regions of Turkey and a NaI (Tl) detector measured the attenuation of strongly collimated monoenergetic gamma beam through soil samples. The mass attenuation coefficients of dry soil samples were calculated from the transmission measurements for different photon energies. Furthermore, the soil samples were irrigated by adding known quantities of water and the soil-water properties were examined. The local water saturation and porosity were estimated from the transmission measurements for each soil sample

  10. Metamaterials for novel X- or gamma-ray detector designs

    CERN Document Server

    Lecoq, P

    2009-01-01

    In the majority of X and gamma ray conversion detector heads there is generally a trade-off between the spatial and the energy resolution, as a good spatial resolution requires a high segmentation whereas a good energy resolution is obtained in a large enough detector volume to contain all the cascade interactions generated by the incoming particle. The quest for better spatial resolution in all three dimensions for the majority of applications (High-energy physics and particle detectors, Spectrometry of low energy gamma-quanta, Medical imaging, Homeland security, Space applications) may lead to a huge increase of the number of readout channels, with all the associated problems of connectivity, detector integration and heat dissipation. This paper explores the potential of recent progress in the field of crystallogenesis, quantum dots and photonics crystals towards a new concept of X- and gamma-ray detector based on metamaterials to simultaneously record with high precision the maximum of information of the c...

  11. The STACEE Ground-Based Gamma-ray Observatory

    Science.gov (United States)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  12. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xilu; Fields, Brian D. [Department of Astronomy, MC-221, 1002 W. Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  13. Radiobiological studies using gamma and x rays.

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R.; Lin, Yong; Wilder, Julie; Hutt, Julie A.; Padilla, Mabel T.; Gott, Katherine M.

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  14. Approximate methods in gamma-ray skyshine calculations

    International Nuclear Information System (INIS)

    An approximate computational method for gamma-ray skyshine calculations is described. The method is suitable for a source collimated uniformly about the vertical and accounts for uniform overhead concrete shielding above the source. Results of calculations are compared to measurements as well as results of other calculations

  15. (Very)-High-Energy Gamma-Ray Astrophysics: the Future

    CERN Document Server

    De Angelis, Alesandro

    2016-01-01

    Several projects planned or proposed can significantly expand our knowledge of the high-energy Universe in gamma rays. Construction of the Cherenkov telescope array CTA is started, and other detectors are planned which will use the reconstruction of extensive air showers. This report explores the near future, and possible evolutions in a longer term.

  16. Airborne Gamma-Ray Survey in Latvia 1995/96

    DEFF Research Database (Denmark)

    Bargholz, Kim

    1998-01-01

    Based on Airborne Gamma-Ray Spectrometry measurements performed with the Danish AGS equipment in 1995 and 1996 maps of the natural radioactivity have been produdced for selected areas in Latvia. The calibration of the quipment have been improved by comparisons with soil sample measurements....

  17. The submillimetre properties of gamma-ray burst host galaxies

    NARCIS (Netherlands)

    N.R. Tanvir; V.E. Barnard; A.W. Blain; A.S. Fruchter; C. Kouveliotou; P. Natarajan; E. Ramirez-Ruiz; E. Rol; I.A. Smith; R.P.J. Tilanus; R.A.M.J. Wijers

    2004-01-01

    Long-duration gamma-ray bursts (GRBs) accompany the deaths of some massive stars and hence, because massive stars are short-lived, are a tracer of star formation activity. Given that GRBs are bright enough to be seen to very high redshifts and detected even in dusty environments, they should therefo

  18. Gamma rays spotlight a dark horse for dark matter

    CERN Multimedia

    Seife, C

    2004-01-01

    "Do mysterious gamma rays emanating from the center of the galaxy hold the secret to the missing matter in the universe? A team of physicists suggests that they might. The controversial finding also shows how little is known about most of the mass in the cosmos"(1/2 page)

  19. Rossi Prize Lecture: Gamma Ray Bursts: Origins and Consequences

    Science.gov (United States)

    Meszaros, P.

    2000-12-01

    Some of the major stepping stones towards uncovering the mystery of gamma ray bursts will be discussed. This is an unfinished process, new observations being expected in the near future. I will review the current observational status, and discuss the present theoretical understanding of GRB, as well as the possible impact of future missions and experiments.

  20. Application of prompt gamma-ray activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Park, Kwang Won; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Ryel [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    This technical report is written for the promotion to utilization of prompt gamma-ray activation analysis facility to be installed in HANARO reactor. It is described for a practical aspects including experiment and equipments, methodology, current status of the research and development and its applications. 102 refs., 32 figs., 25 tabs. (Author)