WorldWideScience

Sample records for capsid protein vp1

  1. Characterization of the DNA-binding properties of the polyomavirus capsid protein VP1.

    OpenAIRE

    Moreland, R B; Montross, L; Garcea, R L

    1991-01-01

    The major capsid protein of polyomavirus, VP1, has been expression cloned in Escherichia coli, and the recombinant VP1 protein has been purified to near homogeneity (A. D. Leavitt, T. M. Roberts, and R. L. Garcea, J. Biol. Chem. 260:12803-12809, 1985). With this recombinant protein, a nitrocellulose filter transfer assay was developed for detecting DNA binding to VP1 (Southwestern assay). In optimizing conditions for this assay, dithiothreitol was found to inhibit DNA binding significantly. W...

  2. A functional nuclear localization sequence in the VP1 capsid protein of coxsackievirus B3

    International Nuclear Information System (INIS)

    The capsid proteins of some RNA viruses can translocate to the nucleus and interfere with cellular phenotypes. In this study we found that the VP1 capsid protein of coxsackievirus B3 (CVB3) was dominantly localized in the nucleus of the cells transfected with VP1-expressing plasmid. The VP1 nuclear localization also occurred in the cells infected with CVB3. Truncation analysis indicated that the VP1 nuclear localization sequence located near the C-terminal. The substitution of His220 with threonine completely abolished its translocation. The VP1 proteins of other CVB types might have the nuclear localization potential because this region was highly conserved. Moreover, the VP1 nuclear localization induced cell cycle deregulation, including a prolonged S phase and shortened G2-M phase. Besides these findings, we also found a domain between Ala72 and Phe106 that caused the VP1 truncates dotted distributed in the cytoplasm. Our results suggest a new pathogenic mechanism of CVB. - Highlights: ► The VP1 protein of coxsackievirus B3 can specifically localize in the nucleus. ► The nuclear localization signal of coxsackievirus B3 VP1 protein locates near its C-terminal. ► The VP1 nuclear localization of coxsackievirus B3 can deregulate cell cycle. ► There is a domain in the VP1 that determines it dotted distributed in the cytoplasm.

  3. A functional nuclear localization sequence in the VP1 capsid protein of coxsackievirus B3

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianying; Yu, Bohai; Lin, Lexun; Zhai, Xia; Han, Yelu; Qin, Ying; Guo, Zhiwei; Wu, Shuo; Zhong, Xiaoyan; Wang, Yan; Tong, Lei; Zhang, Fengmin; Si, Xiaoning [Department of Microbiology, Harbin Medical University, Harbin 150081 (China); Zhao, Wenran, E-mail: wenran.zhao@gmail.com [Department of Cell Biology, Harbin Medical University, Harbin 150081 (China); Zhong, Zhaohua, E-mail: zhonghmu@gmail.com [Department of Microbiology, Harbin Medical University, Harbin 150081 (China)

    2012-11-25

    The capsid proteins of some RNA viruses can translocate to the nucleus and interfere with cellular phenotypes. In this study we found that the VP1 capsid protein of coxsackievirus B3 (CVB3) was dominantly localized in the nucleus of the cells transfected with VP1-expressing plasmid. The VP1 nuclear localization also occurred in the cells infected with CVB3. Truncation analysis indicated that the VP1 nuclear localization sequence located near the C-terminal. The substitution of His220 with threonine completely abolished its translocation. The VP1 proteins of other CVB types might have the nuclear localization potential because this region was highly conserved. Moreover, the VP1 nuclear localization induced cell cycle deregulation, including a prolonged S phase and shortened G2-M phase. Besides these findings, we also found a domain between Ala72 and Phe106 that caused the VP1 truncates dotted distributed in the cytoplasm. Our results suggest a new pathogenic mechanism of CVB. - Highlights: Black-Right-Pointing-Pointer The VP1 protein of coxsackievirus B3 can specifically localize in the nucleus. Black-Right-Pointing-Pointer The nuclear localization signal of coxsackievirus B3 VP1 protein locates near its C-terminal. Black-Right-Pointing-Pointer The VP1 nuclear localization of coxsackievirus B3 can deregulate cell cycle. Black-Right-Pointing-Pointer There is a domain in the VP1 that determines it dotted distributed in the cytoplasm.

  4. Interaction between Simian Virus 40 Major Capsid Protein VP1 and Cell Surface Ganglioside GM1 Triggers Vacuole Formation

    Science.gov (United States)

    Luo, Yong; Motamedi, Nasim; Magaldi, Thomas G.; Gee, Gretchen V.; Atwood, Walter J.

    2016-01-01

    ABSTRACT Simian virus 40 (SV40), a polyomavirus that has served as an important model to understand many aspects of biology, induces dramatic cytoplasmic vacuolization late during productive infection of monkey host cells. Although this activity led to the discovery of the virus in 1960, the mechanism of vacuolization is still not known. Pentamers of the major SV40 capsid protein VP1 bind to the ganglioside GM1, which serves as the cellular receptor for the virus. In this report, we show that binding of VP1 to cell surface GM1 plays a key role in SV40 infection-induced vacuolization. We previously showed that SV40 VP1 mutants defective for GM1 binding fail to induce vacuolization, even though they replicate efficiently. Here, we show that interfering with GM1-VP1 binding by knockdown of GM1 after infection is established abrogates vacuolization by wild-type SV40. Vacuole formation during permissive infection requires efficient virus release, and conditioned medium harvested late during SV40 infection rapidly induces vacuoles in a VP1- and GM1-dependent fashion. Furthermore, vacuolization can also be induced by a nonreplicating SV40 pseudovirus in a GM1-dependent manner, and a mutation in BK pseudovirus VP1 that generates GM1 binding confers vacuole-inducing activity. Vacuolization can also be triggered by purified pentamers of wild-type SV40 VP1, but not by GM1 binding-defective pentamers or by intracellular expression of VP1. These results demonstrate that SV40 infection-induced vacuolization is caused by the binding of released progeny viruses to GM1, thereby identifying the molecular trigger for the activity that led to the discovery of SV40. PMID:27006465

  5. Expression of enterovirus 71 capsid protein VP1 in Escherichia coli and its clinical application

    Directory of Open Access Journals (Sweden)

    Mei Shi

    2013-12-01

    Full Text Available The VPl gene of enterovirus 71 (EV71 was synthesized, construct a recombinant plasmid pET15b/VP1 and expressed in E. coli BL21. The recombinant VP1 protein could specifically react with EV71-infected patient sera without the cross-reaction with serum antibodies of coxsackievirus A16 (CA16, A4, A5, B3 and B5 as well as echovirus 6. In acute and convalescent phases, IgM and IgG antibodies of 182 serum samples were detected by ELISA with recombinant VP1 protein as a coated antigen. The results showed that the sensitivity, specificity, positive predictive value (PPV and negative predictive value (NPV of IgM antibodies in serum samples for the diagnosis of EV71 infection were 90.1, 98.4, 98.8 and 88.7%, respectively; similarly, those of IgG antibodies in serum samples were 82.4, 89.1, 91.5 and 78.1%, respectively. Five of 80 samples (6.25% from CA16infected patients were detected positive by ELISA with recombinant VP1 protein in which indicated the cross reactions and 0 of 5 samples from patients infected with other enteroviruses including CA4, CA5, CB3, CB5 and echovirus 6. Therefore, the recombinant VP1 protein of EV7l may provide a theoretical reference for establishing an effective antibody screening of IgM for EV71-infected patients with clinically suspected hand, foot, and mouth disease (HFMD.

  6. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV serotype Asia1

    Directory of Open Access Journals (Sweden)

    Alam SM

    2013-08-01

    Full Text Available SM Sabbir Alam,1 Ruhul Amin,1 Mohammed Ziaur Rahman,2 M Anwar Hossain,1 Munawar Sultana11Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; 2International Centre for Diarrhoeal Disease Research, Dhaka, BangladeshAbstract: Foot and mouth disease virus (FMDV, with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different countries of South Asian regions were selected, retrieved from database, and were aligned. The structure of VP1 protein was modeled using a homology modeling approach. Several antigenic sites were identified and mapped onto the three-dimensional protein structure. Variations at these antigenic sites were analyzed by calculating the protein variability index and finding mutation combinations. The data suggested that vaccine escape mutants have derived from only few mutations at several antigenic sites. Five antigenic peptides have been identified as the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of serotype Asia1 antigenic variants were found to be circulated within the South Asian region. This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth disease by Asia1 serotypes.Keywords: protein modeling, antigenic sites, sequence variation

  7. Chlamydiaphage φCPG1 Capsid Protein Vp1 Inhibits Chlamydia trachomatis Growth via the Mitogen-Activated Protein Kinase Pathway.

    Science.gov (United States)

    Guo, Yuanli; Guo, Rui; Zhou, Quan; Sun, Changgui; Zhang, Xinmei; Liu, Yuanjun; Liu, Quanzhong

    2016-01-01

    Chlamydia trachomatis is the most common cause of curable bacterial sexually transmitted infections worldwide. Although the pathogen is well established, the pathogenic mechanisms remain unclear. Given the current challenges of antibiotic resistance and blocked processes of vaccine development, the use of a specific chlamydiaphage may be a new treatment solution. φCPG1 is a lytic phage specific for Chlamydia caviae, and shows over 90% nucleotide sequence identity with other chlamydiaphages. Vp1 is the major capsid protein of φCPG1. Purified Vp1 was previously confirmed to inhibit Chlamydia trachomatis growth. We here report the first attempt at exploring the relationship between Vp1-treated C. trachomatis and the protein and gene levels of the mitogen-activated/extracellular regulated protein kinase (MAPK/ERK) pathway by Western blotting and real-time PCR, respectively. Moreover, we evaluated the levels of pro-inflammatory cytokines interleukin (IL)-8 and IL-1 by enzyme-linked immunosorbent assay after Vp1 treatment. After 48 h of incubation, the p-ERK level of the Vp1-treated group decreased compared with that of the Chlamydia infection group. Accordingly, ERK1 and ERK2 mRNA expression levels of the Vp1-treated group also decreased compared with the Chlamydia infection group. IL-8 and IL-1 levels were also decreased after Vp1 treatment compared with the untreated group. Our results demonstrate that the inhibition effect of the chlamydiaphage φCPG1 capsid protein Vp1 on C. trachomatis is associated with the MAPK pathway, and inhibits production of the pro-inflammatory cytokines IL-8 and IL-1. The bacteriophages may provide insight into a new signaling transduction mechanism to influence their hosts, in addition to bacteriolysis. PMID:27089359

  8. Chlamydiaphage φCPG1 Capsid Protein Vp1 Inhibits Chlamydia trachomatis Growth via the Mitogen-Activated Protein Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Yuanli Guo

    2016-04-01

    Full Text Available Chlamydia trachomatis is the most common cause of curable bacterial sexually transmitted infections worldwide. Although the pathogen is well established, the pathogenic mechanisms remain unclear. Given the current challenges of antibiotic resistance and blocked processes of vaccine development, the use of a specific chlamydiaphage may be a new treatment solution. φCPG1 is a lytic phage specific for Chlamydia caviae, and shows over 90% nucleotide sequence identity with other chlamydiaphages. Vp1 is the major capsid protein of φCPG1. Purified Vp1 was previously confirmed to inhibit Chlamydia trachomatis growth. We here report the first attempt at exploring the relationship between Vp1-treated C. trachomatis and the protein and gene levels of the mitogen-activated/extracellular regulated protein kinase (MAPK/ERK pathway by Western blotting and real-time PCR, respectively. Moreover, we evaluated the levels of pro-inflammatory cytokines interleukin (IL-8 and IL-1 by enzyme-linked immunosorbent assay after Vp1 treatment. After 48 h of incubation, the p-ERK level of the Vp1-treated group decreased compared with that of the Chlamydia infection group. Accordingly, ERK1 and ERK2 mRNA expression levels of the Vp1-treated group also decreased compared with the Chlamydia infection group. IL-8 and IL-1 levels were also decreased after Vp1 treatment compared with the untreated group. Our results demonstrate that the inhibition effect of the chlamydiaphage φCPG1 capsid protein Vp1 on C. trachomatis is associated with the MAPK pathway, and inhibits production of the pro-inflammatory cytokines IL-8 and IL-1. The bacteriophages may provide insight into a new signaling transduction mechanism to influence their hosts, in addition to bacteriolysis.

  9. The use of additive and subtractive approaches to examine the nuclear localization sequence of the polyomavirus major capsid protein VP1

    Science.gov (United States)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the N-terminal (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) amino acid sequence of the polyomavirus major capsid protein VP1. The importance of this amino acid sequence for nuclear transport of VP1 protein was demonstrated by a genetic "subtractive" study using the constructs pSG5VP1 (full-length VP1) and pSG5 delta 5'VP1 (truncated VP1, lacking amino acids Ala1-Cys11). These constructs were used to transfect COS-7 cells, and expression and intracellular localization of the VP1 protein was visualized by indirect immunofluorescence. These studies revealed that the full-length VP1 was expressed and localized in the nucleus, while the truncated VP1 protein was localized in the cytoplasm and not transported to the nucleus. These findings were substantiated by an "additive" approach using FITC-labeled conjugates of synthetic peptides homologous to the NLS of VP1 cross-linked to bovine serum albumin or immunoglobulin G. Both conjugates localized in the nucleus after microinjection into the cytoplasm of 3T6 cells. The importance of individual amino acids found in the basic sequence (Lys3-Arg-Lys5) of the NLS was also investigated. This was accomplished by synthesizing three additional peptides in which lysine-3 was substituted with threonine, arginine-4 was substituted with threonine, or lysine-5 was substituted with threonine. It was found that lysine-3 was crucial for nuclear transport, since substitution of this amino acid with threonine prevented nuclear localization of the microinjected, FITC-labeled conjugate.

  10. Inhibition of Enterovirus 71 (EV-71) Infections by a Novel Antiviral Peptide Derived from EV-71 Capsid Protein VP1

    Science.gov (United States)

    Tan, Chee Wah; Chan, Yoke Fun; Sim, Kooi Mow; Tan, Eng Lee; Poh, Chit Laa

    2012-01-01

    Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC50 values ranging from 6–9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71. PMID:22563456

  11. Inhibition of enterovirus 71 (EV-71 infections by a novel antiviral peptide derived from EV-71 capsid protein VP1.

    Directory of Open Access Journals (Sweden)

    Chee Wah Tan

    Full Text Available Enterovirus 71 (EV-71 is the main causative agent of hand, foot and mouth disease (HFMD. In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50 values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.

  12. Comparison of nonphosphorylated and phosphorylated species of polyomavirus major capsid protein VP1 and identification of the major phosphorylation region.

    OpenAIRE

    Anders, D G; Consigli, R A

    1983-01-01

    The major virion protein of polyomavirus, VP1, consists of about six isoelectric species designated A through F. The minor species D, E, and F are phosphorylated and are thought to serve as viral receptors. We first wanted to distinguish whether all VP1 species are derived by post-translational modification from a common amino acid sequence or whether one or more of the species contain a region(s) of altered amino acid sequence resulting from alternate mRNA processing. We compared the VP1 spe...

  13. Blue native protein electrophoresis for studies of mouse polyomavirus morphogenesis and interactions between the major capsid protein VP1 and cellular proteins

    Czech Academy of Sciences Publication Activity Database

    Horníková, L.; Man, Petr; Forstová, J.

    2011-01-01

    Roč. 178, 1-2 (2011), s. 229-234. ISSN 0166-0934 R&D Projects: GA MŠk LC545 Institutional research plan: CEZ:AV0Z50200510 Keywords : BN-PAGE * Mouse polyomavirus * VP1 protein Subject RIV: CE - Biochemistry Impact factor: 2.011, year: 2011

  14. Human IgG Fc promotes expression, secretion and immunogenicity of enterovirus 71 VP1 protein

    Science.gov (United States)

    Xu, Juan; Zhang, Chunhua

    2016-01-01

    Abstract Enterovirus (EV71) can cause severe neurological diseases, but the underlying pathogenesis remains unclear. The capsid protein, viral protein 1 (VP1), plays a critical role in the pathogenicity of EV71. High level expression and secretion of VP1 protein are necessary for structure, function and immunogenicity in its natural conformation. In our previous studies, 5 codon-optimized VP1 DNA vaccines, including wt-VP1, tPA-VP1, VP1-d, VP1-hFc and VP1-mFc, were constructed and analyzed. They expressed VP1 protein, but the levels of secretion and immunogenicity of these VP1 constructs were significantly different (P<0.05). In this study, we further investigated the protein levels of these constructs and determined that all of these constructs expressed VP1 protein. The secretion level was increased by including a tPA leader sequence, which was further increased by fusing human IgG Fc (hFc) to VP1. VP1-hFc demonstrated the most potent immunogenicity in mice. Furthermore, hFc domain could be used to purify VP1-hFc protein for additional studies.

  15. Human IgG Fc promotes expression, secretion and immunogenicity of enterovirus 71 VP1 protein.

    Science.gov (United States)

    Xu, Juan; Zhang, Chunhua

    2016-05-01

    Enterovirus (EV71) can cause severe neurological diseases, but the underlying pathogenesis remains unclear. The capsid protein, viral protein 1 (VP1), plays a critical role in the pathogenicity of EV71. High level expression and secretion of VP1 protein are necessary for structure, function and immunogenicity in its natural conformation. In our previous studies, 5 codon-optimized VP1 DNA vaccines, including wt-VP1, tPA-VP1, VP1-d, VP1-hFc and VP1-mFc, were constructed and analyzed. They expressed VP1 protein, but the levels of secretion and immunogenicity of these VP1 constructs were significantly different (P<0.05). In this study, we further investigated the protein levels of these constructs and determined that all of these constructs expressed VP1 protein. The secretion level was increased by including a tPA leader sequence, which was further increased by fusing human IgG Fc (hFc) to VP1. VP1-hFc demonstrated the most potent immunogenicity in mice. Furthermore, hFc domain could be used to purify VP1-hFc protein for additional studies. PMID:27533931

  16. Production of a recombinant capsid protein VP1 from a newly described polyomavirus (RacPyV) for downstream use in virus characterization

    OpenAIRE

    Church, Molly E.; Dela Cruz, Florante N.; Kim, Kevin; Persiani, Michele; Woods, Leslie W.; Pesavento, Patricia A.; Kevin D. Woolard

    2016-01-01

    Here we describe the methods for production of a recombinant viral capsid protein and subsequent use in an indirect enzyme linked immunosorbent assay (ELISA), and for use in production of a rabbit polyclonal antibody. These reagents were utilized in development and optimization of an ELISA, which established the extent of exposure of free ranging raccoons to a newly described polyomavirus (RacPyV) [1]. Production of a polyclonal antibody has allowed for further characterization of RacPyV, inc...

  17. Production of a recombinant capsid protein VP1 from a newly described polyomavirus (RacPyV) for downstream use in virus characterization.

    Science.gov (United States)

    Church, Molly E; Dela Cruz, Florante N; Kim, Kevin; Persiani, Michele; Woods, Leslie W; Pesavento, Patricia A; Woolard, Kevin D

    2016-06-01

    Here we describe the methods for production of a recombinant viral capsid protein and subsequent use in an indirect enzyme linked immunosorbent assay (ELISA), and for use in production of a rabbit polyclonal antibody. These reagents were utilized in development and optimization of an ELISA, which established the extent of exposure of free ranging raccoons to a newly described polyomavirus (RacPyV) [1]. Production of a polyclonal antibody has allowed for further characterization of RacPyV, including immunohistochemistry and immunocytochemistry techniques, in order to answer questions about pathogenesis of this virus. PMID:26955649

  18. Processing of the VP1/2A Junction Is Not Necessary for Production of Foot-and-Mouth Disease Virus Empty Capsids and Infectious Viruses: Characterization of “Self-Tagged” Particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette;

    2013-01-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor, P1-2A, is cleaved by 3Cpro to generate VP0, VP3, VP1, and the peptide 2A. The capsid proteins self-assemble into empty capsid particles or viruses which do not contain 2A. In a cell culture-adapted strain of FMDV (O1 Manisa [Lindholm...... the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction...

  19. Expression of hepatitis A virus cDNA in Escherichia coli: antigenic VP1 recombinant protein.

    OpenAIRE

    Ostermayr, R; von der Helm, K; Gauss-Müller, V; Winnacker, E L; Deinhardt, F.

    1987-01-01

    The genome of hepatitis A virus (HAV) was reverse transcribed into cDNA and molecularly cloned. cDNA clones coding for the capsid protein VP1 that carries the major HAV antigen were cloned into the expression vector pUR290 and expressed in Escherichia coli. The recombinant fusion protein reacted in an immunoblot with rabbit anti-HAV serum, suggesting that it possesses HAV antigenicity.

  20. The epitope of the VP1 protein of porcine parvovirus

    OpenAIRE

    Zhang Chao-fan; Cui Shang-jin; Wang Zhao; Xie Hong-ling; Cui Yu-dong

    2010-01-01

    Abstract Porcine parvovirus (PPV) is the major causative agent in a syndrome of reproductive failure in swine. Much has been learned about the structure and function of PPV in recent years, but nothing is known about the epitopes of the structural protein VP1, which is an important antigen of PPV. In this study, the monoclonal antibody C4 against VP1 of PPV was prepared and was used to biopan a 12-mer phage peptide library three times. The selected phage clones were identified by ELISA and th...

  1. The epitope of the VP1 protein of porcine parvovirus

    Directory of Open Access Journals (Sweden)

    Zhang Chao-fan

    2010-07-01

    Full Text Available Abstract Porcine parvovirus (PPV is the major causative agent in a syndrome of reproductive failure in swine. Much has been learned about the structure and function of PPV in recent years, but nothing is known about the epitopes of the structural protein VP1, which is an important antigen of PPV. In this study, the monoclonal antibody C4 against VP1 of PPV was prepared and was used to biopan a 12-mer phage peptide library three times. The selected phage clones were identified by ELISA and then sequencing. The amino acid sequences detected by phage display were analyzed, and a mimic immuno-dominant epitope was identified. The epitope of VP1 is located in the N-terminal and contains the role amino acid sequence R-K-R. Immunization of mice indicated that the phage-displayed peptide induces antibodies against PPV. This study shows that peptide mimotopes have potential as alternatives to the complex antigens currently used for diagnosis of PPV infection or for development of vaccines.

  2. Detection of polyomavirus major capsid antigen (VP-1 in human pilomatricomas Detección del antígeno mayor de la cápside de poliomavirus (VP-1 en pilomatricomas humanos

    Directory of Open Access Journals (Sweden)

    Norberto A. Sanjuán

    2010-04-01

    Full Text Available The family Polyomaviridae is composed of small, non-enveloped, double-stranded DNA viruses widely used to study cell transformation in vitro and tumor induction in vivo. The development of pilomatricomas in mice experimentally infected with polyomavirus led us to detect the viral major capsid protein VP-1 in human pilomatricomas. This tumor, even uncommon, is one of the most frequent benign hair follicle tumors in humans and is composed of proliferating matrix cells that undergo keratinization, and form cystic neoplasms. The detection of VP-1 was performed using the peroxidase-antiperoxidase technique in paraffin-embedded slides with a specific primary serum. Adjacent slides treated with normal rabbit serum as a primary were employed as internal control. Positive and negative controls were also employed as well as slides of lesions caused by human papillomavirus to rule out any unspecific cross-reactivity. In 4 out of 10 cases polyomavirus VP-1 was clearly detected in nuclei of human pilomatricomas proliferating cells, in a patchy pattern of distribution. The controls confirmed the specificity of the immunocytochemical procedure. These results could indicate either an eventual infection of the virus in already developed tumors or alternatively, a direct involvement of polyomavirus in the pathogenesis of some pilomatricomas. The recent discovery of a new human polyomavirus associated with Merkel cell carcinomas has been a strong contribution to better understand the pathogenesis of some human uncommon skin cancers. Hopefully the results reported in this work will encourage further research on the role of polyomavirus in other human skin neoplasms.La familia Poliomaviridae está compuesta por virus oncogénicos pequeños, no envueltos, con ADN de doble cadena. En un modelo experimental murino pudimos desarrollar pilomatricomas inducidos por la inoculación de virus polioma. Eso nos llevó a estudiar la posibilidad de que otro virus polioma

  3. The structure of avian polyomavirus reveals variably sized capsids, non-conserved inter-capsomere interactions, and a possible location of the minor capsid protein VP4

    International Nuclear Information System (INIS)

    Avian polyomavirus (APV) causes a fatal, multi-organ disease among several bird species. Using cryogenic electron microscopy and other biochemical techniques, we investigated the structure of APV and compared it to that of mammalian polyomaviruses, particularly JC polyomavirus and simian virus 40. The structure of the pentameric major capsid protein (VP1) is mostly conserved; however, APV VP1 has a unique, truncated C-terminus that eliminates an intercapsomere-connecting β-hairpin observed in other polyomaviruses. We postulate that the terminal β-hairpin locks other polyomavirus capsids in a stable conformation and that absence of the hairpin leads to the observed capsid size variation in APV. Plug-like density features were observed at the base of the VP1 pentamers, consistent with the known location of minor capsid proteins VP2 and VP3. However, the plug density is more prominent in APV and may include VP4, a minor capsid protein unique to bird polyomaviruses.

  4. Enterovirus 71 viral capsid protein linear epitopes: Identification and characterization

    Directory of Open Access Journals (Sweden)

    Gao Fan

    2012-01-01

    Full Text Available Abstract Background To characterize the human humoral immune response against enterovirus 71 (EV71 infection and map human epitopes on the viral capsid proteins. Methods A series of 256 peptides spanning the capsid proteins (VP1, VP2, VP3 of BJ08 strain (genomic C4 were synthesized. An indirect enzyme-linked immunosorbent assay (ELISA was carried out to detect anti-EV71 IgM and IgG in sera of infected children in acute or recovery phase. The partially overlapped peptides contained 12 amino acids and were coated in the plate as antigen (0.1 μg/μl. Sera from rabbits immunized with inactivated BJ08 virus were also used to screen the peptide panel. Results A total of 10 human anti-EV71 IgM epitopes (vp1-14 in VP1; vp2-6, 21, 40 and 50 in VP2 and vp3-10, 12, 15, 24 and 75 in VP3 were identified in acute phase sera. In contrast, only one anti-EV71 IgG epitope in VP1 (vp1-15 was identified in sera of recovery stage. Four rabbit anti-EV71 IgG epitopes (vp1-14, 31, 54 and 71 were identified and mapped to VP1. Conclusion These data suggested that human IgM epitopes were mainly mapped to VP2 and VP3 with multi-epitope responses occurred at acute infection, while the only IgG epitope located on protein VP1 was activated in recovery phase sera. The dynamic changes of humoral immune response at different stages of infection may have public health significance in evaluation of EV71 vaccine immunogenicity and the clinical application of diagnostic reagents.

  5. Characterization of the enterovirus 71 VP1 protein as a vaccine candidate.

    Science.gov (United States)

    Zhou, Shi-Li; Ying, Xiao-Ling; Han, Xue; Sun, Xian-Xun; Jin, Qi; Yang, Fan

    2015-02-01

    Enterovirus 71 (EV71) is an important agent responsible for hand-foot-and-mouth disease (HFMD), which can cause severe neurological complications and death in children. However, there is no specific treatment for EV71 infection, and a safe and effective vaccine is needed urgently. In this study, an effective and economical method for the production of EV71-VP1 protein was developed, and the VP1 protein was evaluated in humoral and cellular immune responses as an EV71 vaccine. The results revealed that the VP1 protein induced high titers of cross-neutralizing antibodies for different EV71 subtypes, and elicited significant splenocyte proliferation. The high levels of IFN-r and IL-10 showed the VP1 protein induced a mixed Th1 and Th2 immune response. Vaccinated female mice could confer protection in their neonatal offspring. Compared with the inactivated EV71, the VP1 protein elicited similar humoral and cellular responses, but the engineered protein is safer, less expensive and can be produced more efficiently. Therefore, EV71-VP1 protein can induce effective immunologic protection against EV71 and is an ideal candidate against EV71 infection. PMID:25043151

  6. Expression and detection of the FMDV VP1 transgene and expressed structural protein in Arabidopsis thaliana

    OpenAIRE

    Pan, Li; Zhang, Yongguang; Wang, Yonglu; Lv, Jianliang; Zhou, Peng; Zhang, Zhongwang

    2011-01-01

    To explore the feasibility of developing a new type of plantderived foot-and-mouth disease virus (FMDV) oral vaccine, the plant seed-specific expression vector p7SBin438/VP1 carrying the VP1 gene of the FMDV strain O/China/99 was constructed and transformed into Agrobacterium tumefaciens strain GV3101. This strain was used for transformation of Arabidopsis thaliana via the floral-dip method. The kanamycin-resistant transgenic plants were selected, and the VP1 gene and protein expressions were...

  7. Characterization of mAbs to chicken anemia virus and epitope mapping on its viral protein, VP1.

    Science.gov (United States)

    Trinh, Dai Q; Ogawa, Haruko; Bui, Vuong N; Baatartsogt, Tugsbaatar; Kizito, Mugimba K; Yamaguchi, Shigeo; Imai, Kunitoshi

    2015-05-01

    Three (MoCAV/F2, MoCAV/F8 and MoCAV/F11) of four mouse mAbs established against the A2/76 strain of chicken anemia virus (CAV) showed neutralization activity. Immunoprecipitation showed a band at ~50 kDa in A2/76-infected cell lysates by neutralizing mAbs, corresponding to the 50 kDa capsid protein (VP1) of CAV, and the mAbs reacted with recombinant VP1 proteins expressed in Cos7 cells. MoCAV/F2 and MoCAV/F8 neutralized the 14 CAV strains tested, whereas MoCAV/F11 did not neutralize five of the strains, indicating distinct antigenic variation amongst the strains. In blocking immunofluorescence tests with the A2/76-infected cells, binding of MoCAV/F11 was not inhibited by the other mAbs. MoCAV/F2 inhibited the binding of MoCAV/F8 to the antigens and vice versa, suggesting that the two mAbs recognized the same epitope. However, mutations were found in different parts of VP1 of the escape mutants of each mAb: EsCAV/F2 (deletion of T89+A90), EsCAV/F8 (I261T) and EsCAV/F11 (E144G). Thus, the epitopes recognized by MoCAV/F2 and MoCAV/F8 seemed to be topographically close in the VP1 structure, suggesting that VP1 has at least two different neutralizing epitopes. However, MoCAV/F8 did not react with EsCAV/F2 or EsCAV/F8, suggesting that binding of MoCAV/F8 to the epitope requires coexistence of the epitope recognized by MoCAV/F2. In addition, MoCAV/F2, with a titre of 1 : 12 800 to the parent strain, neutralized EsCAV/F2 and EsCAV/F8 with low titres of 32 and 152, respectively. The similarity of the reactivity of MoCAV/F2 and MoCAV/F8 to VP1 may also suggest the existence of a single epitope recognized by these mAbs. PMID:25568186

  8. Cleavage sites within the poliovirus capsid protein precursors

    International Nuclear Information System (INIS)

    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein

  9. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Directory of Open Access Journals (Sweden)

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  10. Classic nuclear localization signals and a novel nuclear localization motif are required for nuclear transport of porcine parvovirus capsid proteins.

    OpenAIRE

    Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra; Tijssen, Peter

    2014-01-01

    Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic b...

  11. Human parvovirus B19 VP1u Protein as inflammatory mediators induces liver injury in naïve mice.

    Science.gov (United States)

    Hsu, Tsai-Ching; Chiu, Chun-Ching; Chang, Shun-Chih; Chan, Hsu-Chin; Shi, Ya-Fang; Chen, Tzy-Yen; Tzang, Bor-Show

    2016-01-01

    Human parvovirus B19 (B19V) is a human pathogen known to be associated with many non-erythroid diseases, including hepatitis. Although B19V VP1-unique region (B19-VP1u) has crucial roles in the pathogenesis of B19V infection, the influence of B19-VP1u proteins on hepatic injury is still obscure. This study investigated the effect and possible inflammatory signaling of B19-VP1u in livers from BALB/c mice that were subcutaneously inoculated with VP1u-expressing COS-7 cells. The in vivo effects of B19-VP1u were analyzed by using live animal imaging system (IVIS), Haematoxylin-Eosin staining, gel zymography, and immunoblotting after inoculation. Markedly hepatocyte disarray and lymphocyte infiltration, enhanced matrix metalloproteinase (MMP)-9 activity and increased phosphorylation of p38, ERK, IKK-α, IκB and NF-κB (p-p65) proteins were observed in livers from BALB/c mice receiving COS-7 cells expressing B19-VP1u as well as the significantly increased CRP, IL-1β and IL-6. Notably, IFN-γ and phosphorylated STAT1, but not STAT3, were also significantly increased in the livers of BALB/c mice that were subcutaneously inoculated with VP1u-expressing COS-7 cells. These findings revealed the effects of B19-VP1u on liver injury and suggested that B19-VP1u may have a role as mediators of inflammation in B19V infection. PMID:26632342

  12. Biological Effect of Muller's Ratchet: Distant Capsid Site Can Affect Picornavirus Protein Processing▿

    OpenAIRE

    Escarmís, Cristina; Perales, Celia; Domingo, Esteban

    2009-01-01

    Repeated bottleneck passages of RNA viruses result in accumulation of mutations and fitness decrease. Here, we show that clones of foot-and-mouth disease virus (FMDV) subjected to bottleneck passages, in the form of plaque-to-plaque transfers in BHK-21 cells, increased the thermosensitivity of the viral clones. By constructing infectious FMDV clones, we have identified the amino acid substitution M54I in capsid protein VP1 as one of the lesions associated with thermosensitivity. M54I affects ...

  13. Coupled adaptations affecting cleavage of the VP1/2A junction by 3C protease in foot-and-mouth disease virus infected cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Belsham, Graham

    The foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the 3C protease to produce VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210) within the VP1 protein, close to the VP1/2A cleavage site, inhibited cleavage...

  14. Sequence adaptations affecting cleavage of the VP1/2A junction by the 3C protease in foot-and-mouth disease virus-infected cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Belsham, Graham

    2014-01-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the virus-encoded 3C protease to VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210E) within the VP1 protein and close to the VP1/2A cleavage site, inhibited...

  15. GITRL as a genetic adjuvant enhances enterovirus 71 VP1 DNA vaccine immunogenicity.

    Science.gov (United States)

    Yuan, Jing; Tang, Xinyi; Yin, Kai; Tian, Jie; Rui, Ke; Ma, Jie; Mao, Chaoming; Chen, Jianguo; Lu, Liwei; Xu, Huaxi; Wang, Shengjun

    2015-05-01

    VP1 protein is the immunodominant capsid protein of enterovirus 71 (EV71) which is responsible for large outbreaks of hand, foot and mouth disease. It has been reported that glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and its ligand (GITRL) are involved in modulating both innate and adaptive immune responses. In this study, a DNA vaccine vector encoding EV71 VP1 gene and mGITRL gene (pIRES/VP1/mGITRL) was constructed. And female Balb/c mice were immunized intramuscularly with the DNA vaccine. Compared with the groups immunized with pIRES, pIRES/VP1, pIRES/mGITRL and PBS, the inoculation of pIRES/VP1/mGITRL induced a higher levels of EV71 VP1-specific antibody and specific antibody-forming cells. However, significantly higher levels of CD4(+)Th1, Th2 and CD8(+)IFN-γ(+)T cells were found in the pIRES/VP1/mGITRL group compared with control groups. Our results demonstrate that a novel DNA vaccine, expressing VP1 and mGITRL, could effectively elicit both humoral and cell-mediated immune responses against EV71 VP1 in mice. Thus, the mGITRL may be used as molecular adjuvant for EV71 DNA vaccine. PMID:25772201

  16. Pros and cons of VP1-specific maternal IgG for the protection of Enterovirus 71 infection.

    Science.gov (United States)

    Kim, Young-In; Song, Jae-Hyoung; Kwon, Bo-Eun; Kim, Ha-Neul; Seo, Min-Duk; Park, KwiSung; Lee, SangWon; Yeo, Sang-Gu; Kweon, Mi-Na; Ko, Hyun-Jeong; Chang, Sun-Young

    2015-11-27

    Enterovirus 71 (EV71) causes hand, foot, and mouth diseases and can result in severe neurological disorders when it infects the central nervous system. Thus, there is a need for the development of effective vaccines against EV71 infection. Here we report that viral capsid protein 1 (VP1), one of the main capsid proteins of EV71, efficiently elicited VP1-specific immunoglobulin G (IgG) in the serum of mice immunized with recombinant VP1. The VP1-specific IgG produced in female mice was efficiently transferred to their offspring, conferring protection against EV71 infection immediately after birth. VP1-specific antibody can neutralize EV71 infection and protect host cells. VP1-specific maternal IgG in offspring was maintained for over 6 months. However, the pre-existence of VP1-specific maternal IgG interfered with the production of VP1-specific IgG antibody secreting cells by active immunization in offspring. Therefore, although our results showed the potential for VP1-specific maternal IgG protection against EV71 in neonatal mice, other strategies must be developed to overcome the hindrance of maternal IgG in active immunization. In this study, we developed an effective and feasible animal model to evaluate the protective efficacy of humoral immunity against EV71 infection using a maternal immunity concept. PMID:26529069

  17. Identification of H-2d Restricted T Cell Epitope of Foot-and-mouth Disease Virus Structural Protein VP1

    Directory of Open Access Journals (Sweden)

    Zhang Zhong-Wang

    2011-09-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious and devastating disease affecting livestock that causes significant financial losses. Therefore, safer and more effective vaccines are required against Foot-and-mouth disease virus(FMDV. The purpose of this study is to screen and identify an H-2d restricted T cell epitope from the virus structural protein VP1, which is present with FMD. We therefore provide a method and basis for studying a specific FMDV T cell epitope. Results A codon-optimized expression method was adopted for effective expression of VP1 protein in colon bacillus. We used foot-and-mouth disease standard positive serum was used for Western blot detection of its immunogenicity. The VP1 protein was used for immunizing BALB/c mice, and spleen lymphocytes were isolated. Then, a common in vitro training stimulus was conducted for potential H-2Dd, H-2Kd and H-2Ld restricted T cell epitope on VP1 proteins that were predicted and synthesized by using a bioinformatics method. The H-2Kd restricted T cell epitope pK1 (AYHKGPFTRL and the H-2Dd restricted T cell epitope pD7 (GFIMDRFVKI were identified using lymphocyte proliferation assays and IFN-γ ELISPOT experiments. Conclusions The results of this study lay foundation for studying the FMDV immune process, vaccine development, among other things. These results also showed that, to identify viral T cell epitopes, the combined application of bioinformatics and molecular biology methods is effective.

  18. Increased expression of Matrix Metalloproteinase 9 in liver from NZB/W F1 mice received antibody against human parvovirus B19 VP1 unique region protein

    Directory of Open Access Journals (Sweden)

    Hsu Gwo-Jong

    2009-01-01

    Full Text Available Abstract Background Human parvovirus B19 infection has been postulated to the anti-phospholipid syndrome (APS in autoimmunity. However, the influence of anti-B19-VP1u antibody in autoimmune diseases is still obscure. Methods To elucidate the effect of anti-B19-VP1u antibodies in systemic lupus erythematosus (SLE, passive transfer of rabbit anti-B19-VP1u IgG was injected intravenously into NZB/W F1 mice. Results Significant reduction of platelet count and prolonged thrombocytopenia time were detected in anti-B19-VP1u IgG group as compared to other groups, whereas significant increases of anti-B19-VP1u, anti-phospholipid (APhL, and anti-double strand DNA (dsDNA antibody binding activity were detected in anti-B19-VP1u group. Additionally, significant increases of matrix metalloproteinase-9 (MMP9 activity and protein expression were detected in B19-VP1u IgG group. Notably, phosphatidylinositol 3-phosphate kinase (PI3K and phosphorylated extracellular signal-regulated kinase (ERK proteins were involved in the induction of MMP9. Conclusion These experimental results firstly demonstrated the aggravated effects of anti-B19-VP1u antibody in disease activity of SLE.

  19. Classic nuclear localization signals and a novel nuclear localization motif are required for nuclear transport of porcine parvovirus capsid proteins.

    Science.gov (United States)

    Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra; Tijssen, Peter

    2014-10-01

    Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. Importance: Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid

  20. Oral immunization with recombinant enterovirus 71 VP1 formulated with chitosan protects mice against lethal challenge

    Science.gov (United States)

    2014-01-01

    Background Enterovirus 71 (EV71) is the etiologic agent of hand-foot-and-mouth disease (HFMD) in the Asia-Pacific region, Many strategies have been applied to develop EV71 vaccines but no vaccines are currently available. Mucosal immunization of the VP1, a major immunogenic capsid protein of EV71, may be an alternative way to prevent EV71 infection. Results In this study, mucosal immunogenicity and protect function of recombinant VP1 protein (rVP1) in formulation with chitosan were tested and assessed in female ICR mouse model. The results showed that the oral immunization with rVP1 induced VP1-specific IgA antibodies in intestine, feces, vagina, and the respiratory tract and serum-specific IgG and neutralization antibodies in vaccinated mice. Splenocytes from rVP1-immunized mice induced high levels of Th1 (cytokine IFN-γ), Th2 (cytokine IL-4) and Th3 (cytokine TGF-β) type immune responses after stimulation. Moreover, rVP1-immunized mother mice conferred protection (survival rate up to 30%) on neonatal mice against a lethal challenge of 103 plaque-forming units (PFU) EV71. Conclusions These data indicated that oral immunization with rVP1 in formulation with chitosan was effective in inducing broad-spectrum immune responses and might be a promising subunit vaccine candidate for preventing EV71 infection. PMID:24885121

  1. Adaptive mutations in the JC virus protein capsid are associated with progressive multifocal leukoencephalopathy (PML.

    Directory of Open Access Journals (Sweden)

    Shamil R Sunyaev

    2009-02-01

    Full Text Available PML is a progressive and mostly fatal demyelinating disease caused by JC virus infection and destruction of infected oligodendrocytes in multiple brain foci of susceptible individuals. While JC virus is highly prevalent in the human population, PML is a rare disease that exclusively afflicts only a small percentage of immunocompromised individuals including those affected by HIV (AIDS or immunosuppressive drugs. Viral- and/or host-specific factors, and not simply immune status, must be at play to account for the very large discrepancy between viral prevalence and low disease incidence. Here, we show that several amino acids on the surface of the JC virus capsid protein VP1 display accelerated evolution in viral sequences isolated from PML patients but not in sequences isolated from healthy subjects. We provide strong evidence that at least some of these mutations are involved in binding of sialic acid, a known receptor for the JC virus. Using statistical methods of molecular evolution, we performed a comprehensive analysis of JC virus VP1 sequences isolated from 55 PML patients and 253 sequences isolated from the urine of healthy individuals and found that a subset of amino acids found exclusively among PML VP1 sequences is acquired via adaptive evolution. By modeling of the 3-D structure of the JC virus capsid, we showed that these residues are located within the sialic acid binding site, a JC virus receptor for cell infection. Finally, we go on to demonstrate the involvement of some of these sites in receptor binding by demonstrating a profound reduction in hemagglutination properties of viral-like particles made of the VP1 protein carrying these mutations. Collectively, these results suggest that a more virulent PML causing phenotype of JC virus is acquired via adaptive evolution that changes viral specificity for its cellular receptor(s.

  2. Display of VP1 on the surface of baculovirus and its immunogenicity against heterologous human enterovirus 71 strains in mice.

    Directory of Open Access Journals (Sweden)

    Tao Meng

    Full Text Available BACKGROUND: Human Enterovirus 71 (EV71 is a common cause of hand, foot and mouth disease (HFMD in young children. It is often associated with severe neurological diseases and has caused high mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no effective vaccine and antiviral agents available against EV71 infections. VP1 is one of the major immunogenic capsid protein of EV71 and plays a crucial role in viral infection. Antibodies against VP1 are important for virus neutralization. METHODOLOGY/PRINCIPAL FINDING: In the present study, infectious EV71 viruses were generated from their synthetic complementary DNA using the human RNA polymerase I reverse genetics system. Secondly, the major immunogenic capsid protein (VP1 of EV71-Fuyang (subgenogroup C4 was displayed on the surface of recombinant baculovirus Bac-Pie1-gp64-VP1 as gp64 fusion protein under a novel White Spot Syndrome Virus (WSSV immediate early ie1 promoter. Baculovirus expressed VP1 was able to maintain its structural and antigenic conformity as indicated by immunofluorescence assay and western blot analysis. Interestingly, our results with confocal microscopy revealed that VP1 was able to localize on the plasma membrane of insect cells infected with recombinant baculovirus. In addition, we demonstrated with transmission electron microscopy that baculovirus successfully acquired VP1 from the insect cell membrane via the budding process. After two immunizations in mice, Bac-Pie1-gp64-VP1 elicited neutralization antibody titer of 1∶64 against EV71 (subgenogroup C4 in an in vitro neutralization assay. Furthermore, the antisera showed high cross-neutralization activities against all 11 subgenogroup EV71 strains. CONCLUSION: Our results illustrated that Bac-Pie1-gp64-VP1 retained native epitopes of VP1 and acted as an effective EV71 vaccine candidate which would enable rapid production without any biosafety concerns.

  3. Comparing Enterovirus 71 with Coxsackievirus A16 by analyzing nucleotide sequences and antigenicity of recombinant proteins of VP1s and VP4s

    Directory of Open Access Journals (Sweden)

    Sun Yu

    2011-11-01

    Full Text Available Abstract Background Enterovirus 71 (EV71 and Coxsackievirus A16 (CA16 are two major etiological agents of Hand, Foot and Mouth Disease (HFMD. EV71 is associated with severe cases but not CA16. The mechanisms contributed to the different pathogenesis of these two viruses are unknown. VP1 and VP4 are two major structural proteins of these viruses, and should be paid close attention to. Results The sequences of vp1s from 14 EV71 and 14 CA16, and vp4s from 10 EV71 and 1 CA16 isolated in this study during 2007 to 2009 HFMD seasons were analyzed together with the corresponding sequences available in GenBank using DNAStar and MEGA 4.0. Phylogenetic analysis of complete vp1s or vp4s showed that EV71 isolated in Beijing belonged to C4 and CA16 belonged to lineage B2 (lineage C. VP1s and VP4s from 4 strains of viruses expressed in E. coli BL21 cells were used to detect IgM and IgG in human sera by Western Blot. The detection of IgM against VP1s of EV71 and CA16 showed consistent results with current infection, while none of the sera were positive against VP4s of EV71 and CA16. There was significant difference in the positive rates between EV71 VP1 and CA16 VP1 (χ2 = 5.02, P 2 = 15.30, P 2 = 26.47, P 2 = 16.78, P Conclusions EV71 and CA16 were highly diverse in the nucleotide sequences of vp1s and vp4s. The sera positive rates of VP1 and VP4 of EV71 were lower than those of CA16 respectively, which suggested a less exposure rate to EV71 than CA16 in Beijing population. Human serum antibodies detected by Western blot using VP1s and VP4s as antigen indicated that the immunological reaction to VP1 and VP4 of both EV71 and CA16 was different.

  4. Application of VP1 Protein to Develop Monoclonal Antibody against Foot-and-mouth Disease Virus Asial Type

    Institute of Scientific and Technical Information of China (English)

    Tong LIN; Jun-zheng DU; Jun-jun SHAO; Guo-zheng CONG; Shuai SONG; Shan-dian GAO; Hui-yun CHANG

    2009-01-01

    In order to develop an anti-FMDV Asial type monoclonal antibody (mAb), BABL/c mice were immunized with recombinant FMDV VP1 protein. Three mAbs, 1B8, 5E1 and 5E2, were then further optimized. The result indicated that prepared anti-FMDV Asial mAbs had no cross-reactivity with Swine vesicular disease (SVD) and FMDV O, A and C type antigen. Their titers in abdomen liquor were l:5×106, l:2×106 and l:5×l06, respectively. 1B8 was found to be of IgGi subtype, 5E1 and 5E2 belonged to IgG2b subtype. In this study, the prepared mAbs are specific for detecting FMDV type Asial, and is potentially useful for pen-side diagnosis.

  5. Assemblages of simian virus 40 capsid proteins and viral DNA visualized by electron microscopy

    International Nuclear Information System (INIS)

    SV40 assembles in the nucleus by addition of capsid proteins to the minichromosome. The VP15VP2/3 capsomer is composed of a pentamer of the major protein VP1 complexed with a monomer of a minor protein, VP2 or VP3. In the capsid, the capsomers are bound together via their flexible carboxy-terminal arms. Our previous studies suggested that the capsomers are recruited to the packaging signal ses via avid interaction with Sp1. During assembly Sp1 is displaced, allowing chromatin compaction. Here we investigated the interactions in vitro of VP15VP2/3 capsomers with the entire SV40 genome, using mutant VP1 deleted in the carboxy-arm that cannot assemble, but retains DNA-binding capacity. EM revealed that VP15VP2/3 complexes bind non-specifically at random locations around the DNA. Sp1 was absent from mature virions. The findings suggest that multiple capsomers attach simultaneously to the viral genome, increasing their local concentration, facilitating rapid, concerted assembly reaction and removal of Sp1

  6. Mechanostability of Proteins and Virus Capsids

    Science.gov (United States)

    Cieplak, Marek

    2013-03-01

    Molecular dynamics of proteins within coarse grained models have become a useful tool in studies of large scale systems. The talk will discuss two applications of such modeling. The first is a theoretical survey of proteins' resistance to constant speed stretching as performed for a set of 17134 simple and 318 multidomain proteins. The survey has uncovered new potent force clamps. They involve formation of cysteine slipknots or dragging of a cystine plug through the cystine ring and lead to characteristic forces that are significantly larger than the common shear-based clamp such as observed in titin. The second application involves studies of nanoindentation processes in virus capsids and elucidates their molecular aspects by showing deviations in behavior compared to the continuum shell model. Across the 35 capsids studied, both the collapse force and the elastic stiffness are observed to vary by a factor of 20. The changes in mechanical properties do not correlate simply with virus size or symmetry. There is a strong connection to the mean coordination number , defined as the mean number of interactions to neighboring amino acids. The Young's modulus for thin shell capsids rises roughly quadratically with - 6, where 6 is the minimum coordination for elastic stability in three dimensions. Supported by European Regional Development Fund, through Innovative Economy grant Nanobiom (POIG.01.01.02-00-008/08)

  7. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  8. Positive Selection Analysis of VP1 Genes of Worldwide Human Enterovirus 71 Viruses

    Institute of Scientific and Technical Information of China (English)

    Wei-feng SHI; Zhong ZHANG; Ai-she DUN; Yan-zhou ZHANG; Guang-fu YU; Dong-ming ZHUANG; Chao-dong ZHU

    2009-01-01

    Human enterovirus 71 viruses have been long circulating throughout the world. In this study, we performed a positive selection analysis of the VP1 genes of capsid proteins from Enterovirus 71 viruses. Our results showed that although most sites were under negative or neutral evolution, four positions of the VP1 genes were under positive selection pressure. This might account for the spread and frequent outbreaks of the viruses and the enhanced neurovirulence. In particular, position 98 might be involved in neutralizing antibodies, modulating the virus-receptor interaction and enhancing the virulence of the viruses. Moreover, both positions 145 and 241 might correlate to determine the receptor specificity. However, these positions did not display much difference in amino acid polymorphism. In addition, no position in the VP1 genes of viruses isolated from China was under positive selection.

  9. 口蹄疫病毒 VP1 蛋白在酵母中的表达及免疫原性分析%Expression of FMDV VP1 protein in Pichia pastoris and its immunological activity in mice

    Institute of Scientific and Technical Information of China (English)

    金华利; 张富春; 单文娟; 张爱莲; 李轶杰; 王宾

    2004-01-01

    目的: 利用毕赤酵母表达系统表达牛O型口蹄疫外壳蛋白 (FMDVVP1 ), 并对表达的蛋白进行免疫原性鉴定.方法: 将FMDV vp1 基因克隆到毕赤酵母Pichia pastoris 分泌性表达载体 pSuperY 中, 构建重组表达载体 pSuperY/vp1, 经测序证明vp1基因序列的正确性.将纯化的重组质粒经线性化酶切后, 用电转化法将pSuperY/vp1导入毕赤酵母菌种SMD1168H中.对表达产物用 SDS-PAGE 和Western blot 进行分析, 并用酵母表达的FMDVVP1蛋白免疫小鼠.结果: 以重组质粒pSuperY/vp1转化毕赤酵母菌后, 能表达相对分子量(Mr)为66 000 和43 000 的FMDV VP1蛋白. 动物免疫结果表明, FMDV VP1蛋白能诱导小鼠产生特异性的体液和细胞免疫应答.结论: 在毕赤酵母中成功地表达FMDV VP1 蛋白, 为研制新型FMDVVP1 的基因工程疫苗奠定了基础.

  10. Herpes Simplex Virus Capsid-Organelle Association in the Absence of the Large Tegument Protein UL36p

    OpenAIRE

    Kharkwal, Himanshu; Furgiuele, Sara Shanda; Smith, Caitlin G.; Wilson, Duncan W.

    2015-01-01

    UL36p (VP1/2) is the largest protein encoded by herpes simplex virus 1 (HSV-1) and resides in the innermost layer of the viral tegument, lying between the capsid and the envelope. UL36p performs multiple functions in the HSV life cycle, including an essential role in cytoplasmic envelopment. We earlier described the isolation of a virion-associated cytoplasmic membrane fraction from HSV-infected cells. Biochemical and ultrastructural analyses showed that the organelles in this buoyant fractio...

  11. The VP1 S154D mutation of type Asia1 foot-and-mouth disease virus enhances viral replication and pathogenicity.

    Science.gov (United States)

    Lian, Kaiqi; Yang, Fan; Zhu, Zixiang; Cao, Weijun; Jin, Ye; Liu, Huanan; Li, Dan; Zhang, Keshan; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2016-04-01

    One of the proteins encoded by the foot-and-mouth disease virus (FMDV), the VP1 protein, a capsid protein, plays an important role in integrin receptor attachment and humoral immunity-mediated host responses. The integrin receptor recognition motif and an important antigenic epitope exist within the G-H loop, which is comprised of amino acids 134-160 of the VP1 protein. FMDV strain, Asia1/HN/CHA/06, isolated from a pig, was passaged four times in suckling mice and sequenced. Sequencing analyses showed that there was a mutation of the integrin receptor recognition motif Arg-Gly-Asp/Arg-Asp-Asp (RGD/RDD, VP1 143-145) and a VP1 154 serine/Asp (VP1 S154D) mutation in the G-H loop of the VP1 protein. The influence of the RGD/RDD mutation on Asia1 FMDV disease phenotype has been previously studied. In this study, to determine the influence of the VP1 S154D mutation on FMDV Asia1 replication and pathogenicity, two recombinant FMDVs with different residues only at the VP1 154 site were rescued by reverse genetics techniques and their infectious potential in host cells and pathogenicity in pigs were compared. Our data indicates that the VP1 S154D mutation increases the replication level of FMDV Asia1/HN/CHA/06 in BHK-21, IB-RS-2, and PK-15 cells and enhances pathogenicity in pigs. Through the transient transfection-infection assay to compare integrin receptor usage of two recombinant viruses, the result shows that the VP1 S154D mutation markedly increases the ability of type Asia1 FMDV to use the integrin receptors αυβ6 and αυβ8 from pig. This study identifies a key research target for illuminating the role of residues located at G-H loop in FMDV pathogenicity. PMID:26792712

  12. Phylogenetic and structural analysis of merkel cell polyomavirus VP1 in Brazilian samples.

    Science.gov (United States)

    Baez, Camila F; Diaz, Nuria C; Venceslau, Marianna T; Luz, Flávio B; Guimarães, Maria Angelica A M; Zalis, Mariano G; Varella, Rafael B

    2016-08-01

    Our understanding of the phylogenetic and structural characteristics of the Merkel Cell Polyomavirus (MCPyV) is increasing but still scarce, especially in samples originating from South America. In order to investigate the properties of MCPyV circulating in the continent in more detail, MCPyV Viral Protein 1 (VP1) sequences from five basal cell carcinoma (BCC) and four saliva samples from Brazilian individuals were evaluated from the phylogenetic and structural standpoint, along with all complete MCPyV VP1 sequences available at Genbank database so far. The VP1 phylogenetic analysis confirmed the previously reported pattern of geographic distribution of MCPyV genotypes and the complexity of the South-American clade. The nine Brazilian samples were equally distributed in the South-American (3 saliva samples); North American/European (2 BCC and 1 saliva sample); and in the African clades (3 BCC). The classification of mutations according to the functional regions of VP1 protein revealed a differentiated pattern for South-American sequences, with higher number of mutations on the neutralizing epitope loops and lower on the region of C-terminus, responsible for capsid formation, when compared to other continents. In conclusion, the phylogenetic analysis showed that the distribution of Brazilian VP1 sequences agrees with the ethnic composition of the country, indicating that VP1 can be successfully used for MCPyV phylogenetic studies. Finally, the structural analysis suggests that some mutations could have impact on the protein folding, membrane binding or antibody escape, and therefore they should be further studied. PMID:27173789

  13. Recombinant VP1, an Akt inhibitor, suppresses progression of hepatocellular carcinoma by inducing apoptosis and modulation of CCL2 production.

    Directory of Open Access Journals (Sweden)

    Tai-An Chen

    Full Text Available BACKGROUND: The application of viral elements in tumor therapy is one facet of cancer research. Recombinant capsid protein VP1 (rVP1 of foot-and-mouth disease virus has previously been demonstrated to induce apoptosis in cancer cell lines. Here, we aim to further investigate its apoptotic mechanism and possible anti-metastatic effect in murine models of hepatocellular carcinoma (HCC, one of the most common human cancers worldwide. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with rVP1 inhibited cell proliferation in two murine HCC cell lines, BNL and Hepa1-6, with IC₅₀ values in the range of 0.1-0.2 µM. rVP1 also induced apoptosis in these cells, which was mediated by Akt deactivation and dissociation of Ku70-Bax, and resulted in conformational changes and mitochondrial translocation of Bax, leading to the activation of caspases-9, -3 and -7. Treatment with 0.025 µM rVP1, which did not affect the viability of normal hepatocytes, suppressed cell migration and invasion via attenuating CCL2 production. The production of CCL2 was modulated by Akt-dependent NF-κB activation that was decreased after rVP1 treatment. The in vivo antitumor effects of rVP1 were assessed in both subcutaneous and orthotopic mouse models of HCC in immune-competent BALB/c mice. Intratumoral delivery of rVP1 inhibited subcutaneous tumor growth as a result of increased apoptosis. Intravenous administration of rVP1 in an orthotopic HCC model suppressed tumor growth, inhibited intra-hepatic metastasis, and prolonged survival. Furthermore, a decrease in the serum level of CCL2 was observed in rVP1-treated mice. CONCLUSIONS/SIGNIFICANCE: The data presented herein suggest that, via inhibiting Akt phosphorylation, rVP1 suppresses the growth, migration, and invasion of murine HCC cells by inducing apoptosis and attenuating CCL2 production both in vitro and in vivo. Recombinant protein VP1 thus has the potential to be developed as a new therapeutic agent for HCC.

  14. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV) serotype Asia 1

    OpenAIRE

    Alam SM; Amin R; Rahman MZ; Hossain MA; Sultana M

    2013-01-01

    SM Sabbir Alam,1 Ruhul Amin,1 Mohammed Ziaur Rahman,2 M Anwar Hossain,1 Munawar Sultana11Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; 2International Centre for Diarrhoeal Disease Research, Dhaka, BangladeshAbstract: Foot and mouth disease virus (FMDV), with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities wit...

  15. Genetic Analysis of the P1 Region of Human Enterovirus 71 Strains and Expression of the 55 F StrainVP1 Protein

    Institute of Scientific and Technical Information of China (English)

    Jian-qiang Li; Jun-jie Yang; Xiu-juan Fan; Zhen-peng Sun; Yan Sun; Huan Li; Zi-xin Meng; Wei Li

    2012-01-01

    Enterovirus 71 (EV71) is a member of the Entero-virus genus of the Picornaviridae family and is the major cause of Hand,foot,and mouth disease (HFMD) in children.Different strains from Gansu were cloned and the P1 protein was sequenced and analysed.Results indicate that there are three kinds of EV71 infections prevalent in Gansu.The VP1 protein from one of these strains,55F,was expressed.The recombinant protein was expressed with high level and reacted specifically with the EV71 patient antibody,the recombinant protein was also applied to raise antiserum in rabbits and after the fourth injection a high titer of antiserum was detected by ELISA assay.These data are useful for further clarification of prevalent EV71 strains in the north of China at the molecular level and provide a basis for EV71 diagnosis.

  16. Baculovirus expression of erythrovirus V9 capsids and screening by ELISA: serologic cross-reactivity with erythrovirus B19

    DEFF Research Database (Denmark)

    Heegaard, Erik D; Qvortrup, Klaus; Christensen, Jesper

    2002-01-01

    categorize V9 as an acute B19-like infection. Sequencing, combined with PCR studies, have since demonstrated the need for specific and differentiated techniques when examining samples for possible B19 or V9 viremia. The antigenic properties of the V9 capsid proteins have not been characterized previously. To...... address this question, V9 VP1 and VP2 open reading frames were cloned and expressed in insect cells using a baculovirus vector. Large quantities of purified recombinant V9 capsid protein were produced and electron micrographs revealed self-assembly of V9 VP1/VP2 and VP2 capsids into empty icosahedral...

  17. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids

    OpenAIRE

    Li, Yen-Li; Chandrasekaran, Viswanathan; Carter, Stephen D.; Woodward, Cora L.; Christensen, Devin E; Dryden, Kelly A.; Pornillos, Owen; Yeager, Mark; Ganser-Pornillos, Barbie K.; Jensen, Grant J; Sundquist, Wesley I.

    2016-01-01

    TRIM5 proteins are restriction factors that block retroviral infections by binding viral capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal domains on TRIM5α (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate oligomerization and create avidity effects. To characterize how TRIM5 proteins recognize viral capsids, we developed met...

  18. The Critical Role Of VP1 In Forming The Necessary Cavities For Receptor-mediated Entry Of FMDV To The Host Cell.

    Science.gov (United States)

    Ashkani, Jahanshah; Rees, D J G

    2016-01-01

    The antigenic inconsistency of the foot-and-mouth disease virus (FMDV) is very broad, such that a vaccine made from one isolate will not offer protection against infection with other isolates from the same serotype. Viral particles (VPs) or surface exposed capsid proteins, VP1-VP3, of FMDV determine both the antigenicity of the virus and its receptor-mediated entry into the host cell. Therefore, modifications of these structural proteins may alter the properties of the virus. Here we show putative cavities on the FMDV-SAT1 (FMDV Southern African Territories1) capsid as possible binding sites for the receptor-mediated viral entry into the host cell. We identified three possible cavities on the FMDV capsid surface, from which the largest one (C2) is shaped in the contact regions of VP1-VP3. Our results demonstrate the significance of VP1, in the formation of FMDV-SAT1 surface cavities, which is the main component in all the identified cavities. Our findings can have profound implications in the protein engineering of FMDV in the contact region of VP1-VP3 found to be embedded in several cavities. Such information is of great significance in the context of vaccine design, as it provides the ground for future improvement of synthetic vaccines to control FMD caused by FMDV-SAT1 serotypes. PMID:27249937

  19. The Critical Role Of VP1 In Forming The Necessary Cavities For Receptor-mediated Entry Of FMDV To The Host Cell

    Science.gov (United States)

    Ashkani, Jahanshah; Rees, D. J. G.

    2016-01-01

    The antigenic inconsistency of the foot-and-mouth disease virus (FMDV) is very broad, such that a vaccine made from one isolate will not offer protection against infection with other isolates from the same serotype. Viral particles (VPs) or surface exposed capsid proteins, VP1–VP3, of FMDV determine both the antigenicity of the virus and its receptor-mediated entry into the host cell. Therefore, modifications of these structural proteins may alter the properties of the virus. Here we show putative cavities on the FMDV-SAT1 (FMDV Southern African Territories1) capsid as possible binding sites for the receptor-mediated viral entry into the host cell. We identified three possible cavities on the FMDV capsid surface, from which the largest one (C2) is shaped in the contact regions of VP1–VP3. Our results demonstrate the significance of VP1, in the formation of FMDV-SAT1 surface cavities, which is the main component in all the identified cavities. Our findings can have profound implications in the protein engineering of FMDV in the contact region of VP1–VP3 found to be embedded in several cavities. Such information is of great significance in the context of vaccine design, as it provides the ground for future improvement of synthetic vaccines to control FMD caused by FMDV-SAT1 serotypes. PMID:27249937

  20. A study of variability of capsid protein genes of Radish mosaic virus

    OpenAIRE

    Holá, Marcela

    2008-01-01

    The part of RNA2 genome segment of several isolates of Radish mosaic virus (RaMV) including capsid protein genes was sequenced. Variability of capsid protein genes among the isolates of Radish mosaic virus was studied.

  1. Antigenic properties of avian hepatitis E virus capsid protein.

    Science.gov (United States)

    Zhao, Qin; Syed, Shahid Faraz; Zhou, En-Min

    2015-10-22

    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease and hepatitis-splenomegaly syndrome in chickens, and is genetically and antigenically related to mammalian HEVs. HEV capsid protein contains immunodominant epitopes and induces a protective humoral immune response. A better understanding of the antigenic composition of this protein is critically important for the development of effective vaccine and sensitive and specific serological assays. To date, six linear antigenic domains (I-VI) have been characterized in avian HEV capsid protein and analyzed for their applications in the serological diagnosis and vaccine design. Domains I and V induce strong immune response in chickens and are common to avian, human, and swine HEVs, indicating that the shared epitopes hampering differential diagnosis of avian HEV infection. Domains III and IV are not immunodominant and elicit a weak immune response. Domain VI, located in the N-terminal region of the capsid protein, can also trigger an intense immune response, but the anti-domain VI antibodies are transient. The protection analysis showed that the truncated capsid protein containing the C-terminal 268 amino acid residues expressed by the bacterial system can provide protective immunity against avian HEV infection in chickens. However, the synthetic peptides incorporating the different linear antigenic domains (I-VI) and epitopes are non-protective. The antigenic composition of avian HEV capsid protein is altogether complex. To develop an effective vaccine and accurate serological diagnostic methods, more conformational antigenic domains or epitopes are to be characterized in detail. PMID:26340899

  2. Immunization with recombinant enterovirus 71 viral capsid protein 1 fragment stimulated antibody responses in hamsters

    Directory of Open Access Journals (Sweden)

    Ch’ng Wei-Choong

    2012-08-01

    Full Text Available Abstract Enterovirus 71 (EV71 causes severe neurological diseases resulting in high mortality in young children worldwide. Development of an effective vaccine against EV71 infection is hampered by the lack of appropriate animal models for efficacy testing of candidate vaccines. Previously, we have successfully tested the immunogenicity and protectiveness of a candidate EV71 vaccine, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP11-100 protein, in a mouse model of EV71 infection. A drawback of this system is its limited window of EV71 susceptibility period, 2 weeks after birth, leading to restricted options in the evaluation of optimal dosing regimens. To address this issue, we have assessed the NPt-VP11-100 candidate vaccine in a hamster system, which offers a 4-week susceptibility period to EV71 infection. Results obtained showed that the NPt-VP11-100 candidate vaccine stimulated excellent humoral immune response in the hamsters. Despite the high level of antibody production, they failed to neutralize EV71 viruses or protect vaccinated hamsters in viral challenge studies. Nevertheless, these findings have contributed towards a better understanding of the NPt-VP11-100 recombinant protein as a candidate vaccine in an alternative animal model system.

  3. L2, the minor capsid protein of papillomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joshua W. [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Roden, Richard B.S., E-mail: roden@jhmi.edu [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Department of Oncology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21287 (United States)

    2013-10-15

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies.

  4. The Amphipathic Helix of Adenovirus Capsid Protein VI Contributes to Penton Release and Postentry Sorting

    OpenAIRE

    Martinez, Ruben; Schellenberger, Pascale; Vasishtan, Daven; Aknin, Cindy; Austin, Sisley; Dacheux, Denis; Rayne, Fabienne; Siebert, Alistair; Ruzsics, Zsolt; GRUENEWALD, Kay; Wodrich, Harald

    2014-01-01

    Nuclear delivery of the adenoviral genome requires that the capsid cross the limiting membrane of the endocytic compartment and traverse the cytosol to reach the nucleus. This endosomal escape is initiated upon internalization and involves a highly coordinated process of partial disassembly of the entering capsid to release the membrane lytic internal capsid protein VI. Using wild-type and protein VI-mutated human adenovirus serotype 5 (HAdV-C5), we show that capsid stability and membrane rup...

  5. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells.

    Directory of Open Access Journals (Sweden)

    Cong Haolong

    Full Text Available Enterovirus 71 (EV71 is one of the main causative agents of foot, hand and mouth disease. Its infection usually causes severe central nervous system diseases and complications in infected infants and young children. In the present study, we demonstrated that EV71 infection caused the rearrangement of vimentin in human astrocytoma cells. The rearranged vimentin, together with various EV71 components, formed aggresomes-like structures in the perinuclear region. Electron microscopy and viral RNA labeling indicated that the aggresomes were virus replication sites since most of the EV71 particles and the newly synthesized viral RNA were concentrated here. Further analysis revealed that the vimentin in the virus factories was serine-82 phosphorylated. More importantly, EV71 VP1 protein is responsible for the activation of calmodulin-dependent protein kinase II (CaMK-II which phosphorylated the N-terminal domain of vimentin on serine 82. Phosphorylation of vimentin and the formation of aggresomes were required for the replication of EV71 since the latter was decreased markedly after phosphorylation was blocked by KN93, a CaMK-II inhibitor. Thus, as one of the consequences of CaMK-II activation, vimentin phosphorylation and rearrangement may support virus replication by playing a structural role for the formation of the replication factories. Collectively, this study identified the replication centers of EV71 in human astrocyte cells. This may help us understand the replication mechanism and pathogenesis of EV71 in human.

  6. 利用Asia 1型口蹄疫病毒VP1蛋白的单克隆抗体建立单抗竞争ELISA方法%Establishment of Monoclonal Antibody Competitive ELISA Using Monoclonal Antibody Against VP1 Protein of Asia 1 Type Foot-and-Mouth Disease Virus

    Institute of Scientific and Technical Information of China (English)

    林彤; 邵军军; 丛国正; 独军政; 高闪电; 常惠芸; 谢庆阁

    2009-01-01

    Using the purified VP1 protein of Asia 1 type foot-and-mouth disease virus as the antigen, the purified monoclonal antibody was labeled by the sodium periodate method and the monoclonal antibody competitive ELISA was established in this study. Ten positive porcine foot-and-mouth disease serums and more than two hundreds negative serum were tested, and the results were the same as the background of samples. The sensitivity test and replicate test indicated that this method was stable and sensitive, which was suitable for monitoring Asia 1 type porcine foot-and-mouth disease virus antibody.

  7. Codon Optimization of Human Parvovirus B19 Capsid Genes Greatly Increases Their Expression in Nonpermissive Cells▿ †

    OpenAIRE

    Zhi, Ning; Wan, Zhihong; Liu, Xiaohong; Wong, Susan; Kim, Dong Joo; Young, Neal S.; Kajigaya, Sachiko

    2010-01-01

    Parvovirus B19 (B19V) is pathogenic for humans and has an extreme tropism for human erythroid progenitors. We report cell type-specific expression of the B19V capsid genes (VP1 and VP2) and greatly increased B19V capsid protein production in nonpermissive cells by codon optimization. Codon usage limitation, rather than promoter type and the 3′ untranslated region of the capsid genes, appears to be a key factor in capsid protein production in nonpermissive cells. Moreover, B19 virus-like parti...

  8. Mutational analysis of the capsid protein of Leishmania RNA virus LRV1-4.

    OpenAIRE

    Cadd, T L; MacBeth, K; Furlong, D; Patterson, J. L.

    1994-01-01

    The virion of Leishmania RNA virus is predicted to be composed of a 742-amino-acid major capsid protein and a small percentage of capsid-polymerase fusion molecules. Recently, the capsid protein alone was expressed and shown to spontaneously assemble into viruslike particles. Since the major structural protein of the virion shell self-assembles into viruslike particles when expressed in the baculovirus expression system, assembly of the virion can be studied by mutational analysis and express...

  9. Broadly neutralizing human monoclonal JC polyomavirus VP1-specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy.

    Science.gov (United States)

    Jelcic, Ivan; Combaluzier, Benoit; Jelcic, Ilijas; Faigle, Wolfgang; Senn, Luzia; Reinhart, Brenda J; Ströh, Luisa; Nitsch, Roger M; Stehle, Thilo; Sospedra, Mireia; Grimm, Jan; Martin, Roland

    2015-09-23

    In immunocompromised individuals, JC polyomavirus (JCPyV) may mutate and gain access to the central nervous system resulting in progressive multifocal leukoencephalopathy (PML), an often fatal opportunistic infection for which no treatments are currently available. Despite recent progress, the contribution of JCPyV-specific humoral immunity to controlling asymptomatic infection throughout life and to eliminating JCPyV from the brain is poorly understood. We examined antibody responses against JCPyV major capsid protein VP1 (viral protein 1) variants in the serum and cerebrospinal fluid (CSF) of healthy donors (HDs), JCPyV-positive multiple sclerosis patients treated with the anti-VLA-4 monoclonal antibody natalizumab (NAT), and patients with NAT-associated PML. Before and during PML, CSF antibody responses against JCPyV VP1 variants show "recognition holes"; however, upon immune reconstitution, CSF antibody titers rise, then recognize PML-associated JCPyV VP1 variants, and may be involved in elimination of the virus. We therefore reasoned that the memory B cell repertoire of individuals who recovered from PML could be a source for the molecular cloning of broadly neutralizing antibodies for passive immunization. We generated a series of memory B cell-derived JCPyV VP1-specific human monoclonal antibodies from HDs and a patient with NAT-associated PML-immune reconstitution inflammatory syndrome (IRIS). These antibodies exhibited diverse binding affinity, cross-reactivity with the closely related BK polyomavirus, recognition of PML-causing VP1 variants, and JCPyV neutralization. Almost all antibodies with exquisite specificity for JCPyV, neutralizing activity, recognition of all tested JCPyV PML variants, and high affinity were derived from one patient who had recovered from PML. These antibodies are promising drug candidates for the development of a treatment of PML. PMID:26400911

  10. Low levels of foot-and-mouth disease virus 3C protease expression are required to achieve optimal capsid protein expression and processing in mammalian cells

    DEFF Research Database (Denmark)

    Polacek, Charlotta; Gullberg, Maria; Li, Jiong;

    2013-01-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor (P1-2A) is processed by the virus-encoded 3C protease (3Cpro) to produce VP0, VP3, VP1 and 2A. Within the virus-encoded polyprotein, the P1-2A and 3Cpro can be expected to be produced at equivalent concentrations. However, using...... with that achieved with a single P1-2A-3C polyprotein. Expression of the FMDV 3Cpro is poorly tolerated by mammalian cells and higher levels of the 3Cpro greatly inhibit protein expression. In addition, it is demonstrated that both the intact P1-2A precursor and the processed capsid proteins can be efficiently...... detected by FMDV antigen detection assays. Furthermore, the P1-2A and the processed forms each bind to the integrin αvβ6, the major FMDV receptor. These results contribute to the development of systems which efficiently express the components of empty capsid particles and may represent the basis for safer...

  11. Revised Mimivirus major capsid protein sequence reveals intron-containing gene structure and extra domain

    Directory of Open Access Journals (Sweden)

    Suzan-Monti Marie

    2009-05-01

    Full Text Available Abstract Background Acanthamoebae polyphaga Mimivirus (APM is the largest known dsDNA virus. The viral particle has a nearly icosahedral structure with an internal capsid shell surrounded with a dense layer of fibrils. A Capsid protein sequence, D13L, was deduced from the APM L425 coding gene and was shown to be the most abundant protein found within the viral particle. However this protein remained poorly characterised until now. A revised protein sequence deposited in a database suggested an additional N-terminal stretch of 142 amino acids missing from the original deduced sequence. This result led us to investigate the L425 gene structure and the biochemical properties of the complete APM major Capsid protein. Results This study describes the full length 3430 bp Capsid coding gene and characterises the 593 amino acids long corresponding Capsid protein 1. The recombinant full length protein allowed the production of a specific monoclonal antibody able to detect the Capsid protein 1 within the viral particle. This protein appeared to be post-translationnally modified by glycosylation and phosphorylation. We proposed a secondary structure prediction of APM Capsid protein 1 compared to the Capsid protein structure of Paramecium Bursaria Chlorella Virus 1, another member of the Nucleo-Cytoplasmic Large DNA virus family. Conclusion The characterisation of the full length L425 Capsid coding gene of Acanthamoebae polyphaga Mimivirus provides new insights into the structure of the main Capsid protein. The production of a full length recombinant protein will be useful for further structural studies.

  12. Genetic analysis and homology modeling of capsid protein of norovirus GII.14.

    Science.gov (United States)

    Chan-It, Wisoot; Thongprachum, Aksara; Okitsu, Shoko; Mizuguchi, Masashi; Ushijima, Hiroshi

    2014-02-01

    In this study, a more detailed genetic characterization of the VP1 capsid protein of uncommon norovirus (NoV) GII.14 strains reported previously in Japan and China was performed using sequence analyses and homology modeling technique. The result of genetic comparison with the M7 prototype strain of GII.14 revealed that 10 amino acid mutations were observed at the same positions across the P2 and P1-2 subdomains in both Japanese and Chinese strains. By the homology modeling of the P domain, 7 out of these 10 mutations were predicted to be located on the surface-exposed P2 and P1-2 subdomains. All GII.14 strains had an altered RGD-like motif (RGT → KGT). While the Chinese strains contained 5 random amino acid changes in the S domain and the P2 subdomain, these changes were not detected in the Japanese strains. In addition, the histo-blood group antigen (HBGA)-binding interfaces remain identical to those of the previously determined GII.4 structure (VA387), suggesting the conservation of HBGA binding profile within the GII genogroup. Taken together, this report provides supportive structural data that antigenic drifts that occurred mostly in the P2 and P1-2 subdomains might be sufficient to generate new mutants, thus permitting the GII.14 virus to escape the host pre-existing immunity. These results also suggest the need for comparing the evolutionary profiles and structural models of rare NoV genotypes to an insight into NoV evolution. PMID:24009213

  13. The Evolution of Vp1 Gene in Enterovirus C Species Sub-Group That Contains Types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99

    OpenAIRE

    Smura, Teemu; Blomqvist, Soile; Vuorinen, Tytti; Ivanova, Olga; Samoilovich, Elena; Al-Hello, Haider; Savolainen-Kopra, Carita; Hovi, Tapani; Roivainen, Merja

    2014-01-01

    Genus Enterovirus (Family Picornaviridae,) consists of twelve species divided into genetically diverse types by their capsid protein VP1 coding sequences. Each enterovirus type can further be divided into intra-typic sub-clusters (genotypes). The aim of this study was to elucidate what leads to the emergence of novel enterovirus clades (types and genotypes). An evolutionary analysis was conducted for a sub-group of Enterovirus C species that contains types Coxsackievirus A21 (CVA-21), CVA-24,...

  14. Prokaryotic expression, purification and identification of structural protein VP1 of foot-and-mouth disease virus serotype A%A型口蹄疫病毒结构蛋白VP1的原核表达、纯化及鉴定

    Institute of Scientific and Technical Information of China (English)

    颜健华; 何奇松; 蒋家霞; 冯淑萍; 黄胜斌; 韦达有; 易春华; 许瑞胜; 梁晟

    2016-01-01

    [目的]通过原核表达及纯化获得A型口蹄疫病毒(FMDV)结构蛋白VP1,为建立A型FMDV的ELISA诊断方法及开发安全、高效、广谱的新型基因工程疫苗提供技术支持.[方法]以含A型FMDV VP1基因的重组质粒pMD18-T-A-VP1为模板,通过特异性引物扩增A型FMDV的VP1基因,构建表达质粒pET-32a-VP1和pGEX-6p-1-VP1,然后转入感受态细胞E.coli BL21 (DE3)中诱导表达融合蛋白.[结果]诱导表达获得的VP1融合蛋白主要以包涵体形式存在,分别经His· Bind和GST· Bind柱层析纯化,SDS-PAGE分析结果表明融合蛋白纯度较高;Western blotting检测分析发现,VP1融合蛋白能与豚鼠抗A型FMDV阳性血清发生特异性结合,但不与豚鼠抗O型和Asia1型FMDV阳性血清反应.[结论]经原核表达及纯化获得的A型FMDV VP1融合蛋白具有良好的特异性和抗原性,可用于易感动物的免疫及血清抗体筛查.

  15. Interactions of the HSV-1 UL25 Capsid Protein with Cellular Microtubule-associated Protein

    Institute of Scientific and Technical Information of China (English)

    Lei GUO; Ying ZHANG; Yan-chun CHE; Wen-juan WU; Wei-zhong LI; Li-chun WANG; Yun LIAO; Long-ding LIU; Qi-han LI

    2008-01-01

    An interaction between the HSV-1 UL25 capsid protein and cellular microtubule-associated protein was found using a yeast two-hybrid screen and β-D-galactosidase activity assays. Immunofluorescence microscopy of the UL25 protein demonstrated its co-localization with cellular microtubule-associated protein in the plasma membrane. Further investigations with deletion mutants suggest that UL25 is likely to have a function in the nucleus.

  16. The smallest capsid protein mediates binding of the essential tegument protein pp150 to stabilize DNA-containing capsids in human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Xinghong Dai

    2013-08-01

    Full Text Available Human cytomegalovirus (HCMV is a ubiquitous herpesvirus that causes birth defects in newborns and life-threatening complications in immunocompromised individuals. Among all human herpesviruses, HCMV contains a much larger dsDNA genome within a similarly-sized capsid compared to the others, and it was proposed to require pp150, a tegument protein only found in cytomegaloviruses, to stabilize its genome-containing capsid. However, little is known about how pp150 interacts with the underlying capsid. Moreover, the smallest capsid protein (SCP, while dispensable in herpes simplex virus type 1, was shown to play essential, yet undefined, role in HCMV infection. Here, by cryo electron microscopy (cryoEM, we determine three-dimensional structures of HCMV capsid (no pp150 and virion (with pp150 at sub-nanometer resolution. Comparison of these two structures reveals that each pp150 tegument density is composed of two helix bundles connected by a long central helix. Correlation between the resolved helices and sequence-based secondary structure prediction maps the tegument density to the N-terminal half of pp150. The structures also show that SCP mediates interactions between the capsid and pp150 at the upper helix bundle of pp150. Consistent with this structural observation, ribozyme inhibition of SCP expression in HCMV-infected cells impairs the formation of DNA-containing viral particles and reduces viral yield by 10,000 fold. By cryoEM reconstruction of the resulting "SCP-deficient" viral particles, we further demonstrate that SCP is required for pp150 functionally binding to the capsid. Together, our structural and biochemical results point to a mechanism whereby SCP recruits pp150 to stabilize genome-containing capsid for the production of infectious HCMV virion.

  17. The Critical Role Of VP1 In Forming The Necessary Cavities For Receptor-mediated Entry Of FMDV To The Host Cell

    OpenAIRE

    Jahanshah Ashkani; Rees, D. J. G.

    2016-01-01

    The antigenic inconsistency of the foot-and-mouth disease virus (FMDV) is very broad, such that a vaccine made from one isolate will not offer protection against infection with other isolates from the same serotype. Viral particles (VPs) or surface exposed capsid proteins, VP1–VP3, of FMDV determine both the antigenicity of the virus and its receptor-mediated entry into the host cell. Therefore, modifications of these structural proteins may alter the properties of the virus. Here we show put...

  18. Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus - Importance of dominant and subdominant epitopes for antigenicity and protection

    DEFF Research Database (Denmark)

    Frimann, Tine; Barfoed, Annette Malene; Aasted, Bent;

    2007-01-01

    The capsid of foot-and-mouth disease virus (FMDV) displays several independent B cell epitopes, which stimulate the production of neutralising antibodies. Some of these epitopes are highly variable between virus strains, but dominate the immune response. The site A on VP1 is the most prominent...

  19. Epitopes expressed in different adenovirus capsid proteins induce different levels of epitope-specific immunity.

    Science.gov (United States)

    Krause, Anja; Joh, Ju H; Hackett, Neil R; Roelvink, Peter W; Bruder, Joseph T; Wickham, Thomas J; Kovesdi, Imre; Crystal, Ronald G; Worgall, Stefan

    2006-06-01

    On the basis of the concept that the capsid proteins of adenovirus (Ad) gene transfer vectors can be genetically manipulated to enhance the immunogenicity of Ad-based vaccines, the present study compared the antiantigen immunogenicity of Ad vectors with a common epitope of the hemagglutinin (HA) protein of the influenza A virus incorporated into the outer Ad capsid protein hexon, penton base, fiber knob, or protein IX. Incorporation of the same epitope into the different capsid proteins provided insights into the correlation between epitope position and antiepitope immunity. Following immunization of three different strains of mice (C57BL/6, BALB/c, and CBA) with either an equal number of Ad particles (resulting in a different total HA copy number) or different Ad particle numbers (to achieve the same HA copy number), the highest primary (immunoglobulin M [IgM]) and secondary (IgG) anti-HA humoral and cellular CD4 gamma interferon and interleukin-4 responses against HA were always achieved with the Ad vector carrying the HA epitope in fiber knob. These observations suggest that the immune response against an epitope inserted into Ad capsid proteins is not necessarily dependent on the capsid protein number and imply that the choice of incorporation site in Ad capsid proteins in their use as vaccines needs to be compared in vivo. PMID:16699033

  20. Identification of an immunodominant epitope within the capsid protein of hepatitis C virus.

    OpenAIRE

    Nasoff, M S; Zebedee, S L; Inchauspé, G; Prince, A. M.

    1991-01-01

    We have isolated cDNA clones from the 5' end of the Hutchinson strain of hepatitis C virus. Sequences encoding various segments of the HCV structural region were fused to the gene for glutathione S-transferase and analyzed for the expression of hepatitis C virus-capsid fusion proteins. With a set of these fusion proteins, both human and chimpanzee immune responses to capsid were studied. An immunodominant epitope was located within the amino-terminal portion of capsid that is preferentially r...

  1. X-Ray Structures of Native HIV-1 Capsid Protein Reveal Conformational Variability

    OpenAIRE

    Gres, Anna T.; Kirby, Karen A.; KewalRamani, Vineet N.; Tanner, John J.; Pornillos, Owen; Sarafianos, Stefan G.

    2015-01-01

    The detailed molecular interactions between Human Immunodeficiency Virus type 1 (HIV-1) capsid protein (CA) hexamers have been elusive in the context of a native protein. We report crystal structures describing novel interactions between CA monomers related by 6-fold symmetry within a hexamer (intra-hexamer) and by 3-fold and 2-fold symmetry between neighboring hexamers (inter-hexamer). These structures help elucidate how CA builds a hexagonal lattice, the foundation of the mature capsid. Lat...

  2. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  3. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    International Nuclear Information System (INIS)

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H2O2 and GSH modulate HBV capsid assembly. • H2O2 facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H2O2 and GSH induce conformation change of Hsp90

  4. Limited cross-reactivity of mouse monoclonal antibodies against Dengue virus capsid protein among four serotypes

    Directory of Open Access Journals (Sweden)

    Noda M

    2012-11-01

    Full Text Available Megumi Noda,1 Promsin Masrinoul,1 Chaweewan Punkum,1 Chonlatip Pipattanaboon,2,3 Pongrama Ramasoota,2,4 Chayanee Setthapramote,2,3 Tadahiro Sasaki,6 Mikiko Sasayama,1 Akifumi Yamashita,1,5 Takeshi Kurosu,6 Kazuyoshi Ikuta,6 Tamaki Okabayashi11Mahidol-Osaka Center for Infectious Diseases, 2Center of Excellence for Antibody Research, 3Department of Microbiology and Immunology, 4Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; 5Graduate School of Life Science, Tohoku University, Sendai, Miyagi, 6Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, JapanBackground: Dengue illness is one of the important mosquito-borne viral diseases in tropical and subtropical regions. Four serotypes of dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4 are classified in the Flavivirus genus of the family Flaviviridae. We prepared monoclonal antibodies against DENV capsid protein from mice immunized with DENV-2 and determined the cross-reactivity with each serotype of DENV and Japanese encephalitis virus.Methods and results: To clarify the relationship between the cross-reactivity of monoclonal antibodies and the diversity of these viruses, we examined the situations of flaviviruses by analyses of phylogenetic trees. Among a total of 60 prepared monoclonal antibodies specific for DENV, five monoclonal antibodies stained the nuclei of infected cells and were found to be specific to the capsid protein. Three were specific to DENV-2, while the other two were cross-reactive with DENV-2 and DENV-4. No monoclonal antibodies were cross-reactive with all four serotypes. Phylogenetic analysis of DENV amino acid sequences of the capsid protein revealed that DENV-2 and DENV-4 were clustered in the same branch, while DENV-1 and DENV-3 were clustered in the other branch. However, these classifications of the capsid protein were different from those of the

  5. Characterization of post-translation products of herpes simplex virus gene 35 proteins binding to the surfaces of full capsids but not empty capsids

    International Nuclear Information System (INIS)

    The authors report on the properties of a genetically and immunologically related family of structural (γ) polypeptides of herpes simplex virus 1 designated as infected cell polypeptides (ICP) 35. The members of this family were identified and studied with the aid of a panel of monoclonal antibodies exemplified by H745. This monoclonal antibody reacted with six bands (ICP35a to 35f) formed by ICPs contained in either HEp-2 or Vero cell lysates electrophoretically separated in denaturing gels and transferred to nitrocell sheets. The six bands had apparent molecular weights in the range 39,000 to 50,000. Pulse-chase experiments indicate that ICP35a to 35d are cytoplasmic precursors to nuclear products. ICP35 was labeled by 32P/sub i/ added to the medium, but the extent of phosphorylation varied and may be a determinant of isoelectric properties. Iodination studies indicate that ICP35e and 35f are the predominant forms of ICP35 present on the surface of full, nuclear capsids containing DNA. None of the members of the ICP35 family were detected in empty capsids. Surface iodination labeled the major capsid protein (ICP5) of empty capsids, but not of full capsids, indicating the ICP35e of 35f coat the surface of the viral capsid and block access to sites for iodination of ICP5, the major capsid protein

  6. In vivo encapsulation of nucleic acids using an engineered nonviral protein capsid.

    Science.gov (United States)

    Lilavivat, Seth; Sardar, Debosmita; Jana, Subrata; Thomas, Geoffrey C; Woycechowsky, Kenneth J

    2012-08-15

    In Nature, protein capsids function as molecular containers for a wide variety of molecular cargoes. Such containers have great potential for applications in nanotechnology, which often require encapsulation of non-native guest molecules. Charge complementarity represents a potentially powerful strategy for engineering novel encapsulation systems. In an effort to explore the generality of this approach, we engineered a nonviral, 60-subunit capsid, lumazine synthase from Aquifex aeolicus (AaLS), to act as a container for nucleic acid. Four mutations were introduced per subunit to increase the positive charge at the inner surface of the capsid. Characterization of the mutant (AaLS-pos) revealed that the positive charges lead to the uptake of cellular RNA during production and assembly of the capsid in vivo. Surprisingly, AaLS-pos capsids were found to be enriched with RNA molecules approximately 200-350 bases in length, suggesting that this simple charge complementarity approach to RNA encapsulation leads to both high affinity and a degree of selectivity. The ability to control loading of RNA by tuning the charge at the inner surface of a protein capsid could illuminate aspects of genome recognition by viruses and pave the way for the development of improved RNA delivery systems. PMID:22827162

  7. Cooperative effect of the VP1 amino acids 98E, 145A and 169F in the productive infection of mouse cell lines by enterovirus 71 (BS strain).

    Science.gov (United States)

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Meng, Tao; Chow, Vincent Tk; Chua, Kaw Bing

    2016-01-01

    Enterovirus 71 (EV71) is a neurotrophic virus that causes hand, foot and mouth disease (HFMD) and occasional neurological infection among children. It infects primate cells but not rodent cells, primarily due to the incompatibility between the virus and the expressed form of its receptor, scavenger receptor class B member 2 (SCARB2) protein, on rodent cells (mSCARB2). We previously generated adapted strains (EV71:TLLm and EV71:TLLmv) that were shown to productively infect primate and rodent cell lines and whose genomes exhibited a multitude of non-synonymous mutations compared with the EV71:BS parental virus. In this study, we aimed to identify mutations that are necessary for productive infection of murine cells by EV71:BS. Using reverse genetics and site-directed mutagenesis, we constructed EV71 infectious clones with specific mutations that generated amino acid substitutions in the capsid VP1 and VP2 proteins. We subsequently assessed the infection induced by clone-derived viruses (CDVs) in mouse embryonic fibroblast NIH/3T3 and murine neuroblastoma Neuro-2a cell lines. We found that the CDV:BS-VP1(K98E,E145A,L169F) with three substitutions in the VP1 protein-K98E, E145A and L169F-productively infected both mouse cell lines for at least three passages of the virus in murine cells. Moreover, the virus gained the ability to utilize the mSCARB2 protein to infect murine cell lines. These results demonstrate that the three VP1 residues cooperate to effectively interact with the mSCARB2 protein on murine cells and permit the virus to infect murine cells. Gain-of-function studies similar to the present work provide valuable insight into the mutational trajectory required for EV71 to infect new host cells previously non-susceptible to infection. PMID:27329847

  8. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Juan [China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Microbiology and Immunology, Nanjing Medical University (China); Wang, Shixia [China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Medicine, University of Massachusetts Medical School (United States); Gan, Weihua [Department of Pediatrics, The Second Affiliated Hospital, Nanjing Medical University (China); Zhang, Wenhong [Department of Infectious Diseases, Huashan Hospital, Fudan University (China); Ju, Liwen [School of Public Health, Fudan University (China); Huang, Zuhu [Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University (China); China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Lu, Shan, E-mail: shan.lu@umassmed.edu [Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University (China); China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Medicine, University of Massachusetts Medical School (United States)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer EV71 is a major emerging infectious disease in many Asian countries. Black-Right-Pointing-Pointer Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. Black-Right-Pointing-Pointer Developing subunit based EV71 vaccines is significant and novel antigen design is needed. Black-Right-Pointing-Pointer DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. Black-Right-Pointing-Pointer Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.

  9. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    International Nuclear Information System (INIS)

    Highlights: ► EV71 is a major emerging infectious disease in many Asian countries. ► Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. ► Developing subunit based EV71 vaccines is significant and novel antigen design is needed. ► DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. ► Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.

  10. Evaluation of Trichodysplasia Spinulosa-Associated Polyomavirus Capsid Protein as a New Carrier for Construction of Chimeric Virus-Like Particles Harboring Foreign Epitopes

    Directory of Open Access Journals (Sweden)

    Alma Gedvilaite

    2015-07-01

    Full Text Available Recombinant virus-like particles (VLPs represent a promising tool for protein engineering. Recently, trichodysplasia spinulosa-associated polyomavirus (TSPyV viral protein 1 (VP1 was efficiently produced in yeast expression system and shown to self-assemble to VLPs. In the current study, TSPyV VP1 protein was exploited as a carrier for construction of chimeric VLPs harboring selected B and T cell-specific epitopes and evaluated in comparison to hamster polyomavirus VP1 protein. Chimeric VLPs with inserted either hepatitis B virus preS1 epitope DPAFR or a universal T cell-specific epitope AKFVAAWTLKAAA were produced in yeast Saccharomyces cerevisiae. Target epitopes were incorporated either at the HI or BC loop of the VP1 protein. The insertion sites were selected based on molecular models of TSPyV VP1 protein. The surface exposure of the insert positions was confirmed using a collection of monoclonal antibodies raised against the intact TSPyV VP1 protein. All generated chimeric proteins were capable to self-assemble to VLPs, which induced a strong immune response in mice. The chimeric VLPs also activated dendritic cells and T cells as demonstrated by analysis of cell surface markers and cytokine production profiles in spleen cell cultures. In conclusion, TSPyV VP1 protein represents a new potential carrier for construction of chimeric VLPs harboring target epitopes.

  11. In vitro assembly of polymorphic virus-like particles from the capsid protein of a nodavirus.

    Science.gov (United States)

    Bajaj, Saumya; Banerjee, Manidipa

    2016-09-01

    Viral capsid proteins are programmed to assemble into homogeneous structures in native environments; but the molecular details of these assembly pathways are seldom clearly understood. In order to define the chain of events in the construction of a minimal system, we attempted controlled assembly of the capsid protein of a small insect nodavirus, Flock House Virus (FHV). Bacterial expression of the FHV capsid protein, and subsequent in vitro assembly, generated a heterogeneous population of closed particles. We show that in spite of the altered structure, these particles are capable of membrane disruption, like native viruses, and of incorporating and delivering foreign cargo to specific locations. The unique structure and characteristics of these particles extends our understanding of nodavirus assembly. Additionally, the establishment of a bacterial production system, and methods for in vitro assembly and packaging are of considerable benefit for biotechnological applications of FHV. PMID:27289029

  12. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    International Nuclear Information System (INIS)

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization

  13. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  14. Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Muszynski, Bartosz; Organtini, Lindsey J.; Ashley, Robert E.; Hafenstein, Susan L.; Belsham, Graham J.; Polacek, Charlotta

    The foot-and-mouth disease virus (FMDV) structural protein precursor, P1-2A, is cleaved by the virus-encoded 3C protease (3Cpro) into the capsid proteins VP0, VP1 and VP3 (and 2A). In some systems, it is difficult to produce large amounts of these processed capsid proteins since 3Cpro can be toxic...... for cells. The expression level of 3Cpro activity has now been reduced relative to the P1-2A, and the effect on the yield of processed capsid proteins and their assembly into empty capsid particles within mammalian cells has been determined. Using a vaccinia-virus-based transient expression system, P1...

  15. Establishment of Indirect ELISA Diagnose Based on the VP1 Structural Protein for Detecting Specific Antibodies Against Foot-and-mouth Disease Virus in Pigs%猪FMDV的VP1结构蛋白特异性抗体间接ELISA的建立

    Institute of Scientific and Technical Information of China (English)

    陈磊; 付薇; 胡晓静; 熊毅; 潘琼; 刘棋

    2008-01-01

    以纯化的FMDV-VP1融合蛋白为抗原,建立了猪口蹄疫病毒(FMDV)VP1蛋白间接ELISA检测方法.抗原包被浓度为10μg·mL-1时,血清最佳稀释度为1:40,通过测定30份FMDV阴性血清,确定了该方法的阳性判定标准.结果表明,该方法特异性强,重复性好;对216份送检猪血清用EUSA检测,阳性检出率为31.5%,阴性检出率为68.5%,与HA符合率为96.2%,表明建立的VP1结构蛋白间接ELISA检测方法具有很好的特异性和敏感性.

  16. Human immunodeficiency virus type 1 capsid protein is a substrate of the retroviral proteinase while integrase is resistant toward proteolysis

    International Nuclear Information System (INIS)

    The capsid protein of human immunodeficiency virus type 1 was observed to undergo proteolytic cleavage in vitro when viral lysate was incubated in the presence of dithiothreitol at acidic pH. Purified HIV-1 capsid protein was also found to be a substrate of the viral proteinase in a pH-dependent manner; acidic pH (<7) was necessary for cleavage, and decreasing the pH toward 4 increased the degree of processing. Based on N-terminal sequencing of the cleavage products, the capsid protein was found to be cleaved at two sites, between residues 77 and 78 as well as between residues 189 and 190. Oligopeptides representing these cleavage sites were also cleaved at the expected peptide bonds. The presence of cyclophilin A decreased the degree of capsid protein processing. Unlike the capsid protein, integrase was found to be resistant toward proteolysis in good agreement with its presence in the preintegration complex

  17. Assembly-associated structural changes of bacteriophage T7 capsids. Detection by use of a protein-specific probe.

    OpenAIRE

    Khan, S. A.; Griess, G A; Serwer, P

    1992-01-01

    To detect changes in capsid structure that occur when a preassembled bacteriophage T7 capsid both packages and cleaves to mature-size longer (concatameric) DNA, the kinetics and thermodynamics are determined here for the binding of the protein-specific probe, 1,1'-bi(4-anilino)naphthalene-5,5'-di-sulfonic acid (bis-ANS), to bacteriophage T7, a T7 DNA deletion (8.4%) mutant, and a DNA-free T7 capsid (metrizamide low density capsid II) known to be a DNA packaging intermediate that has a permeab...

  18. Electrostatic potential of human immunodeficiency virus type 2 and rhesus macaque simian immunodeficiency virus capsid proteins

    Directory of Open Access Journals (Sweden)

    Katarzyna eBozek

    2012-06-01

    Full Text Available Human immunodeficiency virus type 2 (HIV-2 and simian immunodeficiency virus isolated from a macaque monkey (SIVmac are assumed to have originated from simian immunodeficiency virus isolated from sooty mangabey (SIVsm. Despite their close similarity in genome structure, HIV-2 and SIVmac show different sensitivities to TRIM5α, a host restriction factor against retroviruses. The replication of HIV-2 strains is potently restricted by rhesus (Rh monkey TRIM5α, while that of SIVmac strain 239 (SIVmac239 is not. Viral capsid protein is the determinant of this differential sensitivity to TRIM5α, as the HIV-2 mutant carrying SIVmac239 capsid protein evaded Rh TRIM5α-mediated restriction. However, the molecular determinants of this restriction mechanism are unknown. Electrostatic potential on the protein-binding site is one of the properties regulating protein-protein interactions. In this study, we investigated the electrostatic potential on the interaction surface of capsid protein of HIV-2 strain GH123 and SIVmac239. Although HIV-2 GH123 and SIVmac239 capsid proteins share more than 87% amino acid identity, we observed a large difference between the two molecules with the HIV-2 GH123 molecule having predominantly positive and SIVmac239 predominantly negative electrostatic potential on the surface of the loop between α-helices 4 and 5 (L4/5. As L4/5 is one of the major determinants of Rh TRIM5α sensitivity of these viruses, the present results suggest that the binding site of the Rh TRIM5α may show complementarity to the HIV-2 GH123 capsid surface charge distribution.

  19. HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358

    OpenAIRE

    Bichel, Katsiaryna; Price, Amanda J.; Schaller, Torsten; Towers, Greg J.; Freund, Stefan MV; James, Leo C.

    2013-01-01

    BACKGROUND: Lentiviruses such as HIV-1 can be distinguished from other retroviruses by the cyclophilin A-binding loop in their capsid and their ability to infect non-dividing cells. Infection of non-dividing cells requires transport through the nuclear pore but how this is mediated is unknown. RESULTS: Here we present the crystal structure of the N-terminal capsid domain of HIV-1 in complex with the cyclophilin domain of nuclear pore protein NUP358. The structure reveals that HIV-1 is positio...

  20. Novel system for analysis of interactions between HIV-1 capsid protein molecules

    Czech Academy of Sciences Publication Activity Database

    Wildová, Marcela; Pichová, Iva; Rumlová, Michaela

    Praha : JPM, 2004 - (Hunter, E.; Ruml, T.; Pichová, I.; Rumlová, M.; Sakalian, M.). s. 53 ISBN 80-86313-13-1. [The Retrovirus Assembly Meeting. 02.10.2004-06.10.2004, Praha] Keywords : capsid protein * HIV-1 Subject RIV: CE - Biochemistry

  1. Improved serodiagnosis of hepatitis C virus infection with synthetic peptide antigen from capsid protein.

    OpenAIRE

    Hosein, B; Fang, C T; Popovsky, M A; J. Ye; Zhang, M; WANG, C. Y.

    1991-01-01

    Cloning and expression of hepatitis C virus have allowed the development of immunoassays to detect hepatitis C virus infection. However, currently available recombinant fusion protein C100-3 assays, based on a nonstructural protein of the virus, are limited in sensitivity, particularly for detecting acute infection. In this report seroconversion panels showed that an assay based on synthetic peptides, derived from immunodominant regions of both capsid and nonstructural proteins, accelerated h...

  2. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    Science.gov (United States)

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle. PMID:26405031

  3. A hydrophobic domain within the small capsid protein of Kaposi's sarcoma-associated herpesvirus is required for assembly.

    Science.gov (United States)

    Capuano, Christopher M; Grzesik, Peter; Kreitler, Dale; Pryce, Erin N; Desai, Keshal V; Coombs, Gavin; McCaffery, J Michael; Desai, Prashant J

    2014-08-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction. PMID:24824860

  4. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice.

    OpenAIRE

    Mason, H S; Ball, J M; Shi, J. J.; Jiang, X.; Estes, M K; Arntzen, C J

    1996-01-01

    Alternatives to cell culture systems for production of recombinant proteins could make very safe vaccines at a lower cost. We have used genetically engineered plants for expression of candidate vaccine antigens with the goal of using the edible plant organs for economical delivery of oral vaccines. Transgenic tobacco and potato plants were created that express the capsid protein of Norwalk virus, a calicivirus that causes epidemic acute gastroenteritis in humans. The capsid protein could be e...

  5. Conversion of a dodecahedral protein capsid into pentamers via minimal point mutations.

    Science.gov (United States)

    Chen, Hsiao-Nung; Woycechowsky, Kenneth J

    2012-06-12

    Protein self-assembly relies upon the formation of stabilizing noncovalent interactions across subunit interfaces. Identifying the determinants of self-assembly is crucial for understanding structure-function relationships in symmetric protein complexes and for engineering responsive nanoscale architectures for applications in medicine and biotechnology. Lumazine synthases (LS's) comprise a protein family that forms diverse quaternary structures, including pentamers and 60-subunit dodecahedral capsids. To improve our understanding of the basis for this difference in assembly, we attempted to convert the capsid-forming LS from Aquifex aeolicus (AaLS) into pentamers through a small number of rationally designed amino acid substitutions. Our mutations targeted side chains at ionic (R40), hydrogen bonding (H41), and hydrophobic (L121 and I125) interaction sites along the interfaces between pentamers. We found that substitutions at two or three of these positions could reliably generate pentameric variants of AaLS. Biophysical characterization indicates that this quaternary structure change is not accompanied by substantial changes in secondary or tertiary structure. Interestingly, previous homology-based studies of the assembly determinants in LS's had identified only one of these four positions. The ability to control assembly state in protein capsids such as AaLS could aid efforts in the development of new systems for drug delivery, biocatalysis, or materials synthesis. PMID:22606973

  6. Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Albertha R. van Zyl

    2016-03-01

    Full Text Available Bluetongue virus (BTV causes severe disease in domestic and wild ruminants, and has recently caused several outbreaks in Europe. Current vaccines include live-attenuated and inactivated viruses; while these are effective, there is risk of reversion to virulence by mutation or reassortment with wild type viruses. Subunit or virus-like particle (VLP vaccines are safer options: VLP vaccines produced in insect cells by expression of the four BTV capsid proteins are protective against challenge; however, this is a costly production method. We investigated production of BTV VLPs in plants via Agrobacterium-mediated transient expression, an inexpensive production system very well suited to developing country use. Leaves infiltrated with recombinant pEAQ-HT vectors separately encoding the four BTV-8 capsid proteins produced more proteins than recombinant pTRA vectors. Plant expression using the pEAQ-HT vector resulted in both BTV-8 core-like particles (CLPs and VLPs; differentially controlling the concentration of infiltrated bacteria significantly influenced yield of the VLPs. In situ localisation of assembled particles was investigated by using transmission electron microscopy (TEM and it was shown that a mixed population of core-like particles (CLPs, consisting of VP3 and VP7 and VLPs were present as paracrystalline arrays in the cytoplasm of plant cells co-expressing all four capsid proteins.

  7. Functional characterization of Kaposi's sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis

    International Nuclear Information System (INIS)

    A systematic investigation of interactions amongst KSHV capsid proteins was undertaken in this study to comprehend lesser known KSHV capsid assembly mechanisms. Interestingly the interaction patterns of the KSHV small capsid protein, ORF65 suggested its plausible role in viral capsid assembly pathways. Towards further understanding this, ORF65-null recombinant mutants (BAC-Δ65 and BAC-stop65) employing a bacterial artificial chromosome (BAC) system were generated. No significant difference was found in both overall viral gene expression and lytic DNA replication between stable monolayers of 293T-BAC36 (wild-type) and 293T-BAC-ORF65-null upon induction with 12-O-tetradecanoylphorbol-13-acetate, though the latter released 30-fold fewer virions to the medium than 293T-BAC36 cells. Sedimentation profiles of capsid proteins of ORF65-null recombinant mutants were non-reflective of their organization into the KSHV capsids and were also undetectable in cytoplasmic extracts compared to noticeable levels in nuclear extracts. These observations collectively suggested the pivotal role of ORF65 in the KSHV capsid assembly processes.

  8. Thermodynamic characterization of the peptide assembly inhibitor binding to HIV-1 capsid protein

    Czech Academy of Sciences Publication Activity Database

    Kožíšek, Milan; Durčák, Jindřich; Konvalinka, Jan

    2013-01-01

    Roč. 10, Suppl. 1 (2013), S37-S37. ISSN 1742-4690. [Frontiers of Retrovirology: Complex retorviruses, retroelements and their hosts. 16.09.2013-18.09.2013, Cambridge] R&D Projects: GA ČR GA13-19561S Institutional support: RVO:61388963 Keywords : HIV -1 capsid protein * CAI Subject RIV: EE - Microbiology, Virology http://www.retrovirology.com/content/10/S1/P108

  9. Multiple roles of the capsid protein in the early steps of HIV-1 infection.

    OpenAIRE

    Fassati, A.

    2012-01-01

    The early steps of HIV-1 infection starting after virus entry into cells up to integration of its genome into host chromosomes are poorly understood. From seminal work showing that HIV-1 and oncoretroviruses follow different steps in the early stages post-entry, significant advances have been made in recent years and an important role for the HIV-1 capsid (CA) protein, the constituent of the viral core, has emerged. CA appears to orchestrate several events, such as virus uncoating, recognitio...

  10. Analysis of mouse polyomavirus mutants with lesions in the minor capsid proteins

    Czech Academy of Sciences Publication Activity Database

    Mannová, P.; Liebl, D.; Krauzewitz, N.; Fejtová, A.; Štokrová, Jitka; Palková, Z.; Griffin, B. E.; Forstová, J.

    2002-01-01

    Roč. 83, - (2002), s. 2309-2319. ISSN 0022-1317 R&D Projects: GA ČR GA204/00/0271 Grant ostatní: HHMI USA(US) 75195-540501 Institutional research plan: CEZ:AV0Z5052915; CEZ:MSM 113100003 Keywords : polyomavirus * minor capsid proteins * mutation Subject RIV: EE - Microbiology, Virology Impact factor: 3.300, year: 2002

  11. Stability of Norwalk virus capsid protein interfaces evaluated by in-silico nanoindentation

    Directory of Open Access Journals (Sweden)

    Kevin J Boyd

    2015-07-01

    Full Text Available Norwalk virus causes severe gastroenteritis for which there is currently no specific anti-viral therapy. A stage of the infection process is uncoating of the protein capsid to expose the viral genome and allow for viral replication. A mechanical characterization of the Norwalk virus may provide important information relating to the mechanism of uncoating. The mechanical strength of the Norwalk virus has previously been investigated using atomic force microscopy (AFM nanoindentation experiments. Those experiments cannot resolve specific molecular interactions, and therefore we have employed a molecular modeling approach to gain insights into the potential uncoating mechanism of the Norwalk capsid. In this study, we perform simulated nanoindentation using a coarse-grained structure based model, which provides an estimate of the spring constant in good agreement with the experimentally determined value. We further analyze the fracture mechanisms and determine weak interfaces in the capsid structure which are potential sites to inhibit uncoating by stabilization of these weak interfaces. We conclude by identifying potential target sites at the junction of a weak protein-protein interface.

  12. Expression and antigenicity characterization for truncated capsid protein of porcine circovirus type 2

    OpenAIRE

    Lou, Zhongzi; Li, Xuerui; Li, Zhiyong; Yin, Xiangping; Li, Baoyu; Lan, Xi; Yang, Bin; Zhang, Yun; Liu, Jixing

    2011-01-01

    Three pairs of specific primers were designed to amplify F2-1, F2-2, and XF2-2 truncated capsid protein genes of porcine circovirus type 2 (PCV-2). Amplified sequences were subcloned to pET-32a(+) vectors and expressed in Rosetta (DE3) Escherichia coli by induction of isopropy-β-D-thiogalactoside (IPTG). All of the fusion proteins had positive reactions to PCV-2 antiserum and His-XF2-2 showed the best reactivity. Proteins were used to immunize BALB/c mice to produce monoclonal antibodies (mAb...

  13. Specific interaction of capsid protein and importin-{alpha}/{beta} influences West Nile virus production

    Energy Technology Data Exchange (ETDEWEB)

    Bhuvanakantham, Raghavan; Chong, Mun-Keat [Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597 (Singapore); Ng, Mah-Lee, E-mail: micngml@nus.edu.sg [Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597 (Singapore)

    2009-11-06

    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-{alpha}. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-{alpha}/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-{alpha}/C protein interaction in the context of flavivirus life-cycle.

  14. Specific interaction of capsid protein and importin-α/β influences West Nile virus production

    International Nuclear Information System (INIS)

    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-α. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-α/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-α/C protein interaction in the context of flavivirus life-cycle.

  15. Outer capsid proteins induce the formation of pores in epithelial cells

    International Nuclear Information System (INIS)

    Two mechanisms of entrance in cell of the rotavirus, during the infection, were proposed: a direct entrance through the plasmatic membrane or by means of endocytosis. In the two cases, a permeabilization mechanism of the membrane (cellular or of the endocytic vesicle, respectively) should occur. It has been shown that the rotavirus induces permeabilization of liposomes and of membrane vesicles. In this work, are studied the changes of intact cells permeability, measuring the entrance of e tide bromides. Viral particles of double capsid of the RF stump produce an increase of the cells membrane MA104 permeability, while the simple capsid ones don't induce effect. This phenomenon requires the particles trypsinization, and occurs in a means where the concentration of free Ca is lower to 1 micromolar. The temporary course of the fluorescence increase is sigmoid. The latency, the speed and the width depend on the relationship of virus / cell, and it can be observed up to 100% of permeabilization in relation to the effect of digitonin. The pores induced in the membrane by the rotavirus are irreversible. The permeabilizer effect of the rotavirus on the membrane was observed in other cellular lines as Hela and HT29, but not in the L929 ones. These results suggest that one or more proteins of the external capsid are responsible s of the effect. These could be involved in the penetration process of the virus towards the cytoplasm and could be one of the restrictive factor of the cell infection by means of the virus

  16. Heat-shock protein 90 promotes nuclear transport of herpes simplex virus 1 capsid protein by interacting with acetylated tubulin.

    Science.gov (United States)

    Zhong, Meigong; Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Jin, Fujun; Ma, Kaiqi; Qiu, Xianxiu; Wang, Qiaoli; Peng, Tao; Kitazato, Kaio; Wang, Yifei

    2014-01-01

    Although it is known that inhibitors of heat shock protein 90 (Hsp90) can inhibit herpes simplex virus type 1 (HSV-1) infection, the role of Hsp90 in HSV-1 entry and the antiviral mechanisms of Hsp90 inhibitors remain unclear. In this study, we found that Hsp90 inhibitors have potent antiviral activity against standard or drug-resistant HSV-1 strains and viral gene and protein synthesis are inhibited in an early phase. More detailed studies demonstrated that Hsp90 is upregulated by virus entry and it interacts with virus. Hsp90 knockdown by siRNA or treatment with Hsp90 inhibitors significantly inhibited the nuclear transport of viral capsid protein (ICP5) at the early stage of HSV-1 infection. In contrast, overexpression of Hsp90 restored the nuclear transport that was prevented by the Hsp90 inhibitors, suggesting that Hsp90 is required for nuclear transport of viral capsid protein. Furthermore, HSV-1 infection enhanced acetylation of α-tubulin and Hsp90 interacted with the acetylated α-tubulin, which is suppressed by Hsp90 inhibition. These results demonstrate that Hsp90, by interacting with acetylated α-tubulin, plays a crucial role in viral capsid protein nuclear transport and may provide novel insight into the role of Hsp90 in HSV-1 infection and offer a promising strategy to overcome drug-resistance. PMID:24901434

  17. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    International Nuclear Information System (INIS)

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1–17 and 18–36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.

  18. Development of an ELISA based on the baculovirus-expressed capsid protein of porcine circovirus type 2 as antigen.

    Science.gov (United States)

    Liu, Changming; Ihara, Takeshi; Nunoya, Tetsuo; Ueda, Susumu

    2004-03-01

    The genome of porcine circovirus type 2 (PCV2) contains two major open reading frames, which have been shown to encode the virus capsid and replication-associated proteins. The capsid protein is a major structural protein of the virus; it can be a suitable target antigen for detecting PCV2-specific antibodies to monitor PCV2 infection. To produce the antigen, the capsid protein coding sequence was cloned into a baculovirus transfer vector, and a recombinant capsid (rC) protein of PCV2 was expressed as a combined fusion protein in frame with a C-terminal peptide of six histidines. The affinity-purified rC protein was used as coating antigen to develop an ELISA for detecting the virus-specific antibodies in swine sera. The rC protein-based ELISA (rcELISA) was evaluated by examining a panel of 49 PCV2-positive and 49 PCV2-negative swine sera. In comparative experiments of immunoperoxidase monolayer assay (IPMA) using 102 field sera, there was 89.2% coincidence between data obtained by the rcELISA and IPMA. The rcELISA achieved 88.5% specificity and 89.4% sensitivity for detection of PCV2 antibody in the field sera. The assay showed no cross-reactivity with antibodies to PCV type 1, porcine reproductive and respiratory syndrome virus and porcine parvovirus. The results suggest that the rcELISA is suitable for routine serodiagnosis and epidemiological surveys of PCV2-associated diseases. PMID:15107550

  19. The Capsid Protein of Turnip Crinkle Virus Overcomes two Separate Defense Barriers to Facilitate Viral Systemic Movement in Arabidopsis

    Science.gov (United States)

    The capsid protein (CP) of Turnip crinkle virus (TCV) is a multi-functional protein needed for virus assembly, suppression of RNA silencing-based antiviral defense, and long distance movement in infected plants. In this report, we have examined genetic requirements for the different functions of TCV...

  20. Recognition of the Different Structural Forms of the Capsid Protein Determines the Outcome following Infection with Porcine Circovirus Type 2

    OpenAIRE

    Trible, Benjamin R.; Suddith, Andrew W.; Kerrigan, Maureen A.; Cino-Ozuna, Ada G; Hesse, Richard A.; Rowland, Raymond R. R.

    2012-01-01

    Porcine circovirus type 2 (PCV2) capsid protein (CP) is the only protein necessary for the formation of the virion capsid, and recombinant CP spontaneously forms virus-like particles (VLPs). Located within a single CP subunit is an immunodominant epitope consisting of residues 169 to 180 [CP(169–180)], which is exposed on the surface of the subunit, but, in the structural context of the VLP, the epitope is buried and inaccessible to antibody. High levels of anti-CP(169–180) activity are assoc...

  1. Interaction between Bluetongue virus outer capsid protein VP2 and vimentin is necessary for virus egress

    Directory of Open Access Journals (Sweden)

    Roy Polly

    2007-01-01

    Full Text Available Abstract Background The VP2 outer capsid protein Bluetongue Virus (BTV is responsible for receptor binding, haemagglutination and eliciting host-specific immunity. However, the assembly of this outer capsid protein on the transcriptionally active viral core would block transcription of the virus. Thus assembly of the outer capsid on the core particle must be a tightly controlled process during virus maturation. Earlier studies have detected mature virus particles associated with intermediate filaments in virus infected cells but the viral determinant for this association and the effect of disrupting intermediate filaments on virus assembly and release are unknown. Results In this study it is demonstrated that BTV VP2 associates with vimentin in both virus infected cells and in the absence of other viral proteins. Further, the determinants of vimentin localisation are mapped to the N-terminus of the protein and deletions of aminio acids between residues 65 and 114 are shown to disrupt VP2-vimentin association. Site directed mutation also reveals that amino acid residues Gly 70 and Val 72 are important in the VP2-vimentin association. Mutation of these amino acids resulted in a soluble VP2 capable of forming trimeric structures similar to unmodified protein that no longer associated with vimentin. Furthermore, pharmacological disruption of intermediate filaments, either directly or indirectly through the disruption of the microtubule network, inhibited virus release from BTV infected cells. Conclusion The principal findings of the research are that the association of mature BTV particles with intermediate filaments are driven by the interaction of VP2 with vimentin and that this interaction contributes to virus egress. Furthermore, i the N-terminal 118 amino acids of VP2 are sufficient to confer vimentin interaction. ii Deletion of amino acids 65–114 or mutation of amino acids 70–72 to DVD abrogates vimentin association. iii Finally

  2. Characterization of neutralizing epitopes within the major capsid protein of human papillomavirus type 33

    Directory of Open Access Journals (Sweden)

    Sapp Martin

    2006-10-01

    Full Text Available Abstract Background Infections with papillomaviruses induce type-specific immune responses, mainly directed against the major capsid protein, L1. Based on the propensity of the L1 protein to self-assemble into virus-like particles (VLPs, type-specific vaccines have already been developed. In order to generate vaccines that target a broader spectrum of HPV types, extended knowledge of neutralizing epitopes is required. Despite the association of human papillomavirus type 33 (HPV33 with cervical carcinomas, fine mapping of neutralizing conformational epitopes on HPV33 has not been reported yet. By loop swapping between HPV33 and HPV16 capsid proteins, we have identified amino acid sequences critical for the binding of conformation-dependent type-specific neutralizing antibodies to surface-exposed hyper variable loops of HPV33 capsid protein L1. Results Reactivities of monoclonal antibodies (mAbs H33.B6, H33.E12, H33.J3 and H16.56E with HPV16:33 and HPV33:16 hybrid L1 VLPs revealed the complex structures of their conformational epitopes as well as the major residues contributing to their binding sites. Whereas the epitope of mAb H33.J3 was determined by amino acids (aa 51–58 in the BC loop of HPV33 L1, sequences of at least two hyper variable loops, DE (aa 132–140 and FGb (aa 282–291, were found to be essential for binding of H33.B6. The epitope of H33.E12 was even more complex, requiring sequences of the FGa loop (aa 260–270, in addition to loops DE and FGb. Conclusion These data demonstrate that neutralizing epitopes in HPV33 L1 are mainly located on the tip of the capsomere and that several hyper variable loops contribute to form these conformational epitopes. Knowledge of the antigenic structure of HPV is crucial for designing hybrid particles as a basis for intertypic HPV vaccines.

  3. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein.

    Science.gov (United States)

    Nawagitgul, P; Morozov, I; Bolin, S R; Harms, P A; Sorden, S D; Paul, P S

    2000-09-01

    Porcine circovirus 2 (PCV2), a single-stranded DNA virus associated with post-weaning multisystemic wasting syndrome of swine, has two potential open reading frames, ORF1 and ORF2, greater than 600 nucleotides in length. ORF1 is predicted to encode a replication-associated protein (Rep) essential for replication of viral DNA, while ORF2 contains a conserved basic amino acid sequence at the N terminus resembling that of the major structural protein of chicken anaemia virus. Thus far, the structural protein(s) of PCV2 have not been identified. In this study, a viral structural protein of 30 kDa was identified in purified PCV2 particles. ORF2 of PCV2 was cloned into a baculovirus expression vector and the gene product was expressed in insect cells. The expressed ORF2 gene product had a molecular mass of 30 kDa, similar to that detected in purified virus particles. The recombinant ORF2 protein self-assembled to form capsid-like particles when viewed by electron microscopy. Antibodies against the ORF2 protein were detected in samples of sera obtained from pigs as early as 3 weeks after experimental infection with PCV2. These results show that the major structural protein of PCV2 is encoded by ORF2 and has a molecular mass of 30 kDa. PMID:10950986

  4. Novel chimeric foot-and-mouth disease virus-like particles harboring serotype O VP1 protect guinea pigs against challenge.

    Science.gov (United States)

    Li, Haitao; Li, Zhiyong; Xie, Yinli; Qin, Xiaodong; Qi, Xingcai; Sun, Peng; Bai, Xingwen; Ma, Youji; Zhang, Zhidong

    2016-02-01

    Foot-and-mouth disease is a highly contagious, acute viral disease of cloven-hoofed animal species causing severe economic losses worldwide. Among the seven serotypes of foot-and-mouth disease virus (FMDV), serotype O is predominant, but its viral capsid is more acid sensitive than other serotypes, making it more difficult to produce empty serotype O VLPs in the low pH insect hemolymph. Therefore, a novel chimeric virus-like particle (VLP)-based candidate vaccine for serotype O FMDV was developed and characterized in the present study. The chimeric VLPs were composed of antigenic VP1 from serotype O and segments of viral capsid proteins from serotype Asia1. These VLPs elicited significantly higher FMDV-specific antibody levels in immunized mice than did the inactivated vaccine. Furthermore, the chimeric VLPs protected guinea pigs from FMDV challenge with an efficacy similar to that of the inactivated vaccine. These results suggest that chimeric VLPs have the potential for use in vaccines against serotype O FMDV infection. PMID:26790940

  5. Antivirals interacting with hepatitis B virus core protein and core mutations may misdirect capsid assembly in a similar fashion.

    Science.gov (United States)

    Hacker, Hans Jörg; Deres, Karl; Mildenberger, Maria; Schröder, Claus H

    2003-12-15

    Recently, heteroarylpyrimidines (HAP) have been identified as potent inhibitors of capsid maturation. Here we discuss the HAP mode of action comparing the aggregation phenotype of wild-type and mutant core proteins with the respective phenotype imposed by HAP or other agents interacting with core protein. Pertinent tests include core fusion protein-mediated transactivation in a two-hybrid system and capsid formation. The finding that transactivation appeared to be unaffected by HAP, or by mutations preventing assembly, is surprising and raises the question for the structure of the interacting hybrid core proteins: Are they monomers, dimers or even oligomers? A direct activity of core fusion monomers is not excluded but considered to be highly unlikely due to rapid homodimerisation. A role of core fusion dimers in transactivation would indicate distinct interactions with a differential sensitivity to HAP. Regarding significance of data gained in two-hybrid systems, caution is necessary, since the site of transactivation is the nucleus, whereas the real site of the core protein interactions during replication is the cytoplasm. Apparently, HAP leave the monomer-monomer interface of HBV core protein unaffected but prevent capsid maturation by interacting with a region known to be crucial for dimer multimerisation and formation of stable capsids. It is suggested to use antivirals as tools for the elucidation of early steps in genome replication and capsid assembly. A frame for this could be the hypothesis that the virus uses soluble core protein, namely intracellular maturation intermediates of HbeAg for a core targeted self-restriction of replication. PMID:14637185

  6. Single-site cleavage in the 5'-untranslated region of Leishmaniavirus RNA is mediated by the viral capsid protein.

    Science.gov (United States)

    MacBeth, K J; Patterson, J L

    1995-01-01

    Leishmaniavirus (LRV) is a double-stranded RNA virus that persistently infects the protozoan parasite Leishmania. LRV produces a short RNA transcript, corresponding to the 5' end of positive-sense viral RNA, both in vivo and in in vitro polymerase assays. The short transcript is generated by a single site-specific cleavage event in the 5' untranslated region of the 5.3-kb genome. This cleavage event can be reproduced in vitro with purified viral particles and a substrate RNA transcript possessing the viral cleavage site. A region of nucleotides required for cleavage was identified by analyzing the cleavage sites yielding the short transcripts of various LRV isolates. A 6-nt deletion at this cleavage site completely abolished RNA processing. In an in vitro cleavage assay, baculovirus-expressed capsid protein possessed an endonuclease activity identical to that of native virions, showing that the viral capsid protein is the RNA endonuclease. Identification of the LRV capsid protein as an RNA endonuclease is unprecedented among known viral capsid proteins. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7568059

  7. Continuum Theory of Retroviral Capsids

    Science.gov (United States)

    Nguyen, T. T.; Bruinsma, R. F.; Gelbart, W. M.

    2006-02-01

    We present a self-assembly phase diagram for the shape of retroviral capsids, based on continuum elasticity theory. The spontaneous curvature of the capsid proteins drives a weakly first-order transition from spherical to spherocylindrical shapes. The conical capsid shape which characterizes the HIV-1 retrovirus is never stable under unconstrained energy minimization. Only under conditions of fixed volume and/or fixed spanning length can the conical shape be a minimum energy structure. Our results indicate that, unlike the capsids of small viruses, retrovirus capsids are not uniquely determined by the molecular structure of the constituent proteins but depend in an essential way on physical constraints present during assembly.

  8. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    International Nuclear Information System (INIS)

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly

  9. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhang, Jun; Xia, Ning-Shao [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China); Miao, Ji, E-mail: jmiao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhao, Qinjian, E-mail: qinjian_zhao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  10. Multiple roles of the capsid protein in the early steps of HIV-1 infection.

    Science.gov (United States)

    Fassati, Ariberto

    2012-12-01

    The early steps of HIV-1 infection starting after virus entry into cells up to integration of its genome into host chromosomes are poorly understood. From seminal work showing that HIV-1 and oncoretroviruses follow different steps in the early stages post-entry, significant advances have been made in recent years and an important role for the HIV-1 capsid (CA) protein, the constituent of the viral core, has emerged. CA appears to orchestrate several events, such as virus uncoating, recognition by restriction factors and the innate immune system. It also plays a role in nuclear import and integration of HIV-1 and has become a novel target for antiretroviral drugs. Here we describe the different functions of CA and how they may be integrated into one or more coherent models that illuminate the early events in HIV-1 infection and their relations with the host cell. PMID:23041358

  11. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: A strategy for efficient display of large full-length proteins

    International Nuclear Information System (INIS)

    An in vitro binding system is described to display large full-length proteins on bacteriophage T4 capsid surface at high density. The phage T4 icosahedral capsid features 155 copies of a nonessential highly antigenic outer capsid protein, Hoc, at the center of each major capsid protein hexon. Gene fusions were engineered to express the 83-kDa protective antigen (PA) from Bacillus anthracis fused to the N-terminus of Hoc and the 130-kDa PA-Hoc protein was expressed in Escherichia coli and purified. The purified PA-Hoc was assembled in vitro on hoc - phage particles. Binding was specific, stable, and of high affinity. This defined in vitro system allowed manipulation of the copy number of displayed PA and imposed no significant limitation on the size of the displayed antigen. In contrast to in vivo display systems, the in vitro approach allows all the capsid binding sites to be occupied by the 130-kDa PA-Hoc fusion protein. The PA-T4 particles were immunogenic in mice in the absence of an adjuvant, eliciting strong PA-specific antibodies and anthrax lethal toxin neutralizing antibodies. The in vitro display on phage T4 offers a novel platform for potential construction of customized vaccines against anthrax and other infectious diseases

  12. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus.

    Science.gov (United States)

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin; Sun, Ya-Ni; Gao, Ji-Ming; Xie, Zhi-Jing; Wang, Yu; Zhu, Yan-Li; Jiang, Shi-Jin

    2013-02-01

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome. PMID:23174505

  13. Genetic Variation of the VP1 Gene of the Virulent Duck Hepatitis A Virus Type 1 (DHAV-1) Isolates in Shandong Province of China

    Institute of Scientific and Technical Information of China (English)

    Jiming Gao; Junhao Chen; Xingkui Si; Zhijing Xie; Yanli Zhu; Xingxiao Zhang; Shujing Wang; Shijin Jiang

    2012-01-01

    To investigate the relationship of the variation of virulence and the external capsid proteins of the pandemic duck hepatitis A virus type 1(DHAV-1) isolates,the virulence,cross neutralization assays and the complete sequence of the virion protein 1(VP1) gene of nine virulent DHAV-1 strains,which were isolated from infected ducklings with clinical symptoms in Shandong province of China in 2007-2008,were tested.The fifth generation duck embryo allantoic liquids of the 9 isolates were tested on 12-day-old duck embryos and on 7-day-old ducklings for the median embryonal lethal doses(ELD50s) and the median lethal doses(LD50s),respectively.The results showed that the ELD5s of embryonic duck eggs of the 9 DHAV-1 isolates were between 1.9 × 106/mL to 1.44 × 107/mL,while the LD50s were 2.39 × 105/mL to 6.15 × 106/mL.Cross-neutralization tests revealed that the 9 DHAV-1 isolates were completely neutralized by the standard serum and the hyperimmune sera against the 9 DHAV-1 isolates,respectively.Compared with other virulent,moderate virulent,attenuated vaccine and mild strains,the VP1 genes of the 9 strains shared 89.8%-99.7% similarity at the nucleotide level and 92.4%-99.6% at amino acid level with other DHAV-1 strains.There were three hypervariable regions at the C-terminus(as 158-160,180-193 and 205-219) and other variable points in VPI protein,but which didn't cause virulence of DHAV-1 change.

  14. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis (Florida)

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  15. Establishment of Functional B Cell Memory Against Parvovirus B19 Capsid Proteins May be Associated With Resolution of Persistent Infection

    OpenAIRE

    Corcoran, A; Crowley, B.; Dewhurst, C.; Pizer, B L; Doyle, Sean

    2006-01-01

    Parvovirus B19 (B19) infection can occur during acute lymphoblastic leukemia and persistent viral infection can occur despite intravenous immunoglobulin administration. Here, evidence is presented that resolution of persistent B19 infection in an acute lymphoblastic leukemia patient may be associated with the simultaneous strengthening of antigen-specific B cell memory against the B19 capsid protein VP2 and diminution in the memory response against the B19 non-structural protein 1 (NS1). Dete...

  16. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    OpenAIRE

    Bertagnoli, Stéphane; Gelfi, Jacqueline; Le Gall, Ghislaine; Boilletot, Eric; Vautherot, Jean-François; Rasschaert, Denis; Laurent, Sylvie; Petit, Frédérique; Boucraut-Baralon, Corine; Milon, Alain

    1996-01-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma vir...

  17. Mechanism for Coordinated RNA Packaging and Genome Replication by Rotavirus Polymerase VP1

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaohui; McDonald, Sarah M.; Tortorici, M. Alejandra; Tao, Yizhi Jane; Vasquez-Del Carpio, Rodrigo; Nibert, Max L.; Patton, John T.; Harrison, Stephen C. (Harvard-Med); (NIH); (CH-Boston)

    2009-04-08

    Rotavirus RNA-dependent RNA polymerase VP1 catalyzes RNA synthesis within a subviral particle. This activity depends on core shell protein VP2. A conserved sequence at the 3' end of plus-strand RNA templates is important for polymerase association and genome replication. We have determined the structure of VP1 at 2.9 {angstrom} resolution, as apoenzyme and in complex with RNA. The cage-like enzyme is similar to reovirus {lambda}3, with four tunnels leading to or from a central, catalytic cavity. A distinguishing characteristic of VP1 is specific recognition, by conserved features of the template-entry channel, of four bases, UGUG, in the conserved 3' sequence. Well-defined interactions with these bases position the RNA so that its 3' end overshoots the initiating register, producing a stable but catalytically inactive complex. We propose that specific 3' end recognition selects rotavirus RNA for packaging and that VP2 activates the autoinhibited VP1/RNA complex to coordinate packaging and genome replication.

  18. The Receptor-Binding Domain in the VP1u Region of Parvovirus B19.

    Science.gov (United States)

    Leisi, Remo; Di Tommaso, Chiarina; Kempf, Christoph; Ros, Carlos

    2016-03-01

    Parvovirus B19 (B19V) is known as the human pathogen causing the mild childhood disease erythema infectiosum. B19V shows an extraordinary narrow tissue tropism for erythroid progenitor cells in the bone marrow, which is determined by a highly restricted uptake. We have previously shown that the specific internalization is mediated by the interaction of the viral protein 1 unique region (VP1u) with a yet unknown cellular receptor. To locate the receptor-binding domain (RBD) within the VP1u, we analyzed the effect of truncations and mutations on the internalization capacity of the recombinant protein into UT7/Epo cells. Here we report that the N-terminal amino acids 5-80 of the VP1u are necessary and sufficient for cellular binding and internalization; thus, this N-terminal region represents the RBD required for B19V uptake. Using site-directed mutagenesis, we further identified a cluster of important amino acids playing a critical role in VP1u internalization. In silico predictions and experimental results suggest that the RBD is structured as a rigid fold of three α-helices. Finally, we found that dimerization of the VP1u leads to a considerably enhanced cellular binding and internalization. Taken together, we identified the RBD that mediates B19V uptake and mapped functional and structural motifs within this sequence. The findings reveal insights into the uptake process of B19V, which contribute to understand the pathogenesis of the infection and the neutralization of the virus by the immune system. PMID:26927158

  19. Differential expression of two isolates of beak and feather disease virus capsid protein in Escherichia coli.

    Science.gov (United States)

    Patterson, Edward I; Swarbrick, Crystall M D; Roman, Noelia; Forwood, Jade K; Raidal, Shane R

    2013-04-01

    Expression of recombinant beak and feather disease virus (BFDV) capsid-associated protein (Cap) has relied on inefficient techniques that typically produce low yields or use specialized expression systems, which greatly increase the cost and expertise required for mass production. An Escherichia coli system was used to express recombinant BFDV Cap derived from two isolates of BFDV, from a Long-billed Corella (Cacatua tenuirostris) and an Orange-bellied parrot (OBP; Neophema chrysogaster). Purification by affinity and size exclusion chromatography was optimized through an iterative process involving screening and modification of buffer constituents and pH. A buffer containing glycerol, β-mercaptoethanol, Triton X-100, and a high concentration of NaCl at pH 8 was used to increase solubility of the protein. The final concentration of the corella-isolated BFDV protein was fifteen- to twenty-fold greater than that produced in previous publications using E. coli expression systems. Immunoassays were used to confirm the specific antigenicity of recombinant Cap, verifying its validity for use in continued experimentation as a potential vaccine, a reagent in diagnostic assays, and as a concentrated sample for biological discoveries. PMID:23403150

  20. Properties of African Cassava Mosaic Virus Capsid Protein Expressed in Fission Yeast.

    Science.gov (United States)

    Hipp, Katharina; Schäfer, Benjamin; Kepp, Gabi; Jeske, Holger

    2016-01-01

    The capsid proteins (CPs) of geminiviruses combine multiple functions for packaging the single-stranded viral genome, insect transmission and shuttling between the nucleus and the cytoplasm. African cassava mosaic virus (ACMV) CP was expressed in fission yeast, and purified by SDS gel electrophoresis. After tryptic digestion of this protein, mass spectrometry covered 85% of the amino acid sequence and detected three N-terminal phosphorylation sites (threonine 12, serines 25 and 62). Differential centrifugation of cell extracts separated the CP into two fractions, the supernatant and pellet. Upon isopycnic centrifugation of the supernatant, most of the CP accumulated at densities typical for free proteins, whereas the CP in the pellet fraction showed a partial binding to nucleic acids. Size-exclusion chromatography of the supernatant CP indicated high order complexes. In DNA binding assays, supernatant CP accelerated the migration of ssDNA in agarose gels, which is a first hint for particle formation. Correspondingly, CP shifted ssDNA to the expected densities of virus particles upon isopycnic centrifugation. Nevertheless, electron microscopy did not reveal any twin particles, which are characteristic for geminiviruses. PMID:27399762

  1. Identification of a nuclear localization sequence in the polyomavirus capsid protein VP2

    Science.gov (United States)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the C-terminal (Glu307-Glu-Asp-Gly-Pro-Gln-Lys-Lys-Lys-Arg-Arg-Leu318) amino acid sequence of the polyomavirus minor capsid protein VP2. The importance of this amino acid sequence for nuclear transport of newly synthesized VP2 was demonstrated by a genetic "subtractive" study using the constructs pSG5VP2 (expressing full-length VP2) and pSG5 delta 3VP2 (expressing truncated VP2, lacking amino acids Glu307-Leu318). These constructs were transfected into COS-7 cells, and the intracellular localization of the VP2 protein was determined by indirect immunofluorescence. These studies revealed that the full-length VP2 was localized in the nucleus, while the truncated VP2 protein was localized in the cytoplasm and not transported to the nucleus. A biochemical "additive" approach was also used to determine whether this sequence could target nonnuclear proteins to the nucleus. A synthetic peptide identical to VP2 amino acids Glu307-Leu318 was cross-linked to the nonnuclear proteins bovine serum albumin (BSA) or immunoglobulin G (IgG). The conjugates were then labeled with fluorescein isothiocyanate and microinjected into the cytoplasm of NIH 3T6 cells. Both conjugates localized in the nucleus of the microinjected cells, whereas unconjugated BSA and IgG remained in the cytoplasm. Taken together, these genetic subtractive and biochemical additive approaches have identified the C-terminal sequence of polyoma-virus VP2 (containing amino acids Glu307-Leu318) as the NLS of this protein.

  2. Simulations of HIV Capsid Protein Dimerization Reveal the Effect of Chemistry and Topography on the Mechanism of Hydrophobic Protein Association

    Science.gov (United States)

    Yu, Naiyin; Hagan, Michael F.

    2012-09-01

    Recent work has shown that the hydrophobic protein surfaces in aqueous solution sit near a drying transition. The tendency for these surfaces to expel water from their vicinity leads to self assembly of macromolecular complexes. In this article we show with a realistic model for a biologically pertinent system how this phenomenon appears at the molecular level. We focus on the association of the C-terminal domain (CA-C) of the human immunodeficiency virus (HIV) capsid protein. By combining all-atom simulations with specialized sampling techniques we measure the water density distribution during the approach of two CA-C proteins as a function of separation and amino acid sequence in the interfacial region. The simulations demonstrate that CA-C protein-protein interactions sit at the edge of a dewetting transition and that this mesoscopic manifestation of the underlying liquid-vapor phase transition can be readily manipulated by biology or protein engineering to significantly affect association behavior. While the wild type protein remains wet until contact, we identify a set of in silico mutations, in which three hydrophilic amino acids are replaced with nonpolar residues, that leads to dewetting prior to association. The existence of dewetting depends on the size and relative locations of substituted residues separated by nm length scales, indicating long range cooperativity and a sensitivity to surface topography. These observations identify important details which are missing from descriptions of protein association based on buried hydrophobic surface area.

  3. Allele-specific adaptation of poliovirus VP1 B-C loop variants to mutant cell receptors.

    OpenAIRE

    Liao, S.; Racaniello, V

    1997-01-01

    Previous work has shown that three different mutations in domain 1 of the poliovirus receptor (Pvr), two in the predicted C'-C" ridge and one in the D-E loop, abolish binding of the P1/Mahoney strain. All three receptor defects could be suppressed by a mutation in the VP1 B-C loop of the viral capsid that was present in all 16 P1/Mahoney isolates adapted to the mutant receptors. To identify allele-specific mutations that enable poliovirus to utilize mutant receptors, and to understand the rol...

  4. Probing the biophysical interplay between a viral genome and its capsid

    Science.gov (United States)

    Snijder, J.; Uetrecht, C.; Rose, R. J.; Sanchez-Eugenia, R.; Marti, G. A.; Agirre, J.; Guérin, D. M. A.; Wuite, G. J. L.; Heck, A. J. R.; Roos, W. H.

    2013-06-01

    The interaction between a viral capsid and its genome governs crucial steps in the life cycle of a virus, such as assembly and genome uncoating. Tuning cargo-capsid interactions is also essential for successful design and cargo delivery in engineered viral systems. Here we investigate the interplay between cargo and capsid for the picorna-like Triatoma virus using a combined native mass spectrometry and atomic force microscopy approach. We propose a topology and assembly model in which heterotrimeric pentons that consist of five copies of structural proteins VP1, VP2 and VP3 are the free principal units of assembly. The interpenton contacts are established primarily by VP2. The dual role of the genome is first to stabilize the densely packed virion and, second, on an increase in pH to trigger uncoating by relaxing the stabilizing interactions with the capsid. Uncoating occurs through a labile intermediate state of the virion that reversibly disassembles into pentons with the concomitant release of protein VP4.

  5. Molecular variability analyses of Apple chlorotic leaf spot virus capsid protein

    Indian Academy of Sciences (India)

    T Rana; V Chandel; Y Kumar; R Ram; V Hallan; A A Zaidi

    2010-12-01

    The complete sequences of the coat protein (CP) gene of 26 isolates of Apple chlorotic leaf spot virus (ACLSV) from India were determined. The isolates were obtained from various pome (apple, pear and quince) and stone (plum, peach, apricot, almond and wild Himalayan cherry) fruit trees. Other previously characterized ACLSV isolates and Trichoviruses were used for comparative analysis. Indian ACLSV isolates among themselves and with isolates from elsewhere in the world shared 91–100% and 70–98% sequence identities at the amino acid and nucleotide levels, respectively. The highest degree of variability was observed in the middle portion with 9 amino acid substitutions in contrast to the N-terminal and C-terminal ends, which were maximally conserved with only 4 amino acid substitutions. In phylogenetic analysis no reasonable correlation between host species and/or geographic origin of the isolates was observed. Alignment with capsid protein genes of other Trichoviruses revealed the TaTao ACLSV peach isolate to be phylogenetically closest to Peach mosaic virus, Apricot pseudo chlorotic leaf spot virus and Cherry mottle leaf virus. Recombination analysis (RDP3 ver.2.6) done for all the available ACLSV complete CP sequences of the world and Indian isolates indicate no significant evidence of recombination. However, one recombination event among Indian ACLSV-CP isolates was detected. To the best of our knowledge, this is the first report of complete CP sequence variability study from India and also the first evidence of homologous recombination in ACLSV.

  6. Structure of N-linked oligosaccharides attached to chlorovirus PBCV-1 major capsid protein reveals unusual class of complex N-glycans

    OpenAIRE

    De Castro, Cristina; Molinaro, Antonio; Piacente, Francesco; Gurnon, James R.; Sturiale, Luisa; Palmigiano, Angelo; Lanzetta, Rosa; Parrilli, Michelangelo; Garozzo, Domenico; Tonetti, Michela G.; Van Etten, James L.

    2013-01-01

    The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) ...

  7. Three-dimensional structure of the M-MuLV CA protein on a lipid monolayer: a general model for retroviral capsid assembly

    OpenAIRE

    Ganser, Barbie K.; Cheng, Anchi; Sundquist, Wesley I.; Yeager, Mark

    2003-01-01

    Although retroviruses from different genera form morphologically distinct capsids, we have proposed that all of these structures are composed of similar hexameric arrays of capsid (CA) protein subunits and that their distinct morphologies reflect different distributions of pentameric declinations that allow the structures to close. Consistent with this model, CA proteins from both HIV-1 and Rous sarcoma virus (RSV) form similar hexagonal lattices. However, recent structural studies have sugge...

  8. Antibody Recognition of Porcine Circovirus Type 2 Capsid Protein Epitopes after Vaccination, Infection, and Disease▿†

    OpenAIRE

    Trible, Benjamin R.; Kerrigan, Maureen; Crossland, Nicholas; Potter, Megan; Faaberg, Kay; Hesse, Richard; Rowland, Raymond R. R.

    2011-01-01

    Open reading frame 2 (ORF2) of porcine circovirus type 2 (PCV2) codes for the 233-amino-acid capsid protein (CP). Baculovirus-based vaccines that express only ORF2 are protective against clinical disease following experimental challenge or natural infection. The goal of this study was to identify regions in CP preferentially recognized by sera from experimentally infected and vaccinated pigs and to compare these responses to those of pigs diagnosed with porcine circovirus-associated disease (...

  9. Mechanisms regulating expression of the HPV 31 L1 and L2 capsid proteins and pseudovirion entry

    Directory of Open Access Journals (Sweden)

    Hindmarsh Patrick L

    2007-02-01

    Full Text Available Abstract Human papillomaviruses (HPV infect stratified epithelia and restrict expression of late capsid genes to highly differentiated cells. In order to begin to understand the processes regulating HPV 31 infection we examined the synthesis of the HPV 31 capsid proteins, L1 and L2, using heterologous expression systems. Similar to studies in HPV 16, expression of wild type HPV 31 L1 and L2 from heterologous promoters resulted in very low levels of synthesis. In contrast, modification of the codons in the capsid genes to ones more commonly used in cellular genes resulted in high-level synthesis. Through the use of chimeric proteins that fused fragments of wild type L1 to Green Fluorescent Protein (GFP coding sequences, a short region was identified that was sufficient to inhibit high level synthesis and similar elements were detected in L2. One element was localized to the 3' end of the L1 gene while a series of elements were localized at the 3' end of the L2 coding sequences. These observations are most consistent with negative RNA regulatory elements controlling the levels of L1 and L2 synthesis that are distinct from those identified in HPV 16. Expression vectors for the codon modified HPV 31 capsid proteins were then transfected together with GFP reporter plasmids to generate HPV 31 pseudoviruses. Infection of cells with HPV 31 pseudoviruses in the presence of the inhibitors, chlorpromazine, nystatin or methyl-beta-cyclodextrin, demonstrated that HPV 31, like HPV 16, enters human and monkey cells through a clathrin-mediated pathway rather than through caveolae as previously reported. This suggests that high-risk HPV types may enter cells through common mechanisms.

  10. Detention of HPV L1 Capsid Protein and hTERC Gene in Screening of Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Huang Bin

    2013-06-01

    Full Text Available   Objective(s: To investigate the expression of human papilloma virus (HPV L1 capsid protein, and human telomerase RNA component (hTERC in cervical cancer and the role of detection of both genes in screening of cervical cancer.   Materials and Methods: A total of 309 patients were recruited and cervical exfoliated cells were collected. Immunocytochemistry was employed to detect HPV L1 capsid protein, and fluorescent in situ hybridization (FISH was performed to detect the hTERC. Results: The expression of HPV L1 capsid protein reduced with the increase of the histological grade of cervical cells and was negatively related to the grade of cervical lesions. However, the expression of hTERC increased with the increase of the histological grade and positively associated with the grade of cervical lesions. The proportion of patients with L1(-/hTERC(+ was higher in patients with histological grade of CIN2 or higher than that in those with histological grade of CIN1. The L1(+/hTERC(- and L1(-/hTERC(- were negatively related to the grade of cervical lesions. L1(-/hTERC(+ was positively associated with the grade of cervical lesions. The L1/hTERC ratio increased. The negative predictive value of both HPV L1 and hTERC was higher than that of HPV L1 or hTERC, but there was no marked difference in the screening efficacy of cervical cancer among HPV L1, hTERC and HPV L1+hTERC. Conclusion: HPV L1 capsid protein and hTERC gene may serve as markers for the early diagnosis and prediction of cervical lesions. The increase in L1/hTERC ratio reflects the progression of cervical lesions to a certain extent.

  11. Molecular Cloning and Sequence Analysis of the VP1 Gene of Porcine kobuvirus%猪嵴病毒CH441株VP1基因的克隆与序列分析

    Institute of Scientific and Technical Information of China (English)

    祝俊鹏; 杨彬; 兰喜; 柳纪省; 马小军

    2015-01-01

    The aim of the study to investigate the main structural protein of the Kobuvirus VP1 gene. According to the sequences of PKV deposited in GenBank,a pair of special primers was designed for amplifying the VP1 gene of swKoV CH441 strain by RT-PCR. The results of sequence analysis showed that the whole VP1 gene of swKoV CH441 strain consisted of 762 bp. Compared with 15 PKV strains which were deposited in GenBank,the homology of nucleotide sequences was 81. 5%~90. 2%,and the homology of deduced amino acids was 86. 6%~96. 9%. Evo-lution analysis indicated that the swKoV CH441 strain was closely related to GS-1 strains. The bioinformatics analy-sis demonstrated that the isoelectric point and molecular weight of non-structural protein VP1 were 4. 40 and 26. 978 2 kDa. The protein had no signal peptide and transmembrane domain. There were 18 phosphorylation sites including 7 Sers,6 Thrs and 5 Tyrs. Protein phosphorylation was concerned with signal transduction,so this protein may be a signaling molecule. The results provided a theoretical foundation for further research on the study of VP1 gene( protein)in the genetic variation.%为了深入研究嵴病毒(swKoV)主要结构蛋白基因 VP1,根据 GenBank中已发表的猪嵴病基因序列设计特异性引物,采用 RT-PCR方法扩增猪嵴病毒 CH441株 VP1基因,并对其进行克隆与测序分析。结果表明,swKoV CH441株的 VP1基因为762 bp,与 GenBank已发表的嵴病毒属的15株嵴病毒序列的 VP1基因相比较,swKoV CH441株的VP1基因与其他各毒株 VP1基因的核苷酸同源性为81.5%~90.2%,氨基酸同源性为86.6%~96.9%,进化分析显示,swKoV CH441株与 GS-1株之间的亲缘关系较近。生物信息学分析显示,VP1蛋白理论等电点( pI)为4.40,理论分子质量为26.9782 kDa;其序列上共发现18个磷酸化位点,分别为Ser(7)、Thr(6)和Tyr(5),而蛋白的磷酸化与信号转导有关,预测该蛋白为一重要的

  12. Baculovirus expression of beak and feather disease virus (BFDV) capsid protein capable of self-assembly and haemagglutination.

    Science.gov (United States)

    Stewart, Meredith E; Bonne, Nicolai; Shearer, Patrick; Khalesi, Bahman; Sharp, Margaret; Raidal, Shane

    2007-05-01

    Beak and feather disease virus (BFDV) is a common avian circovirus infection of wild Psittaciformes and is a recognised threat to endangered psittacine species. Currently, there is a requirement to develop BFDV antigen for diagnostic purposes and since efforts to propagate BFDV in vitro have so far been unsuccessful the entire coding region of BFDV ORF C1 was expressed in Sf9 insect cells using a baculovirus expression system. The entire coding region of BFDV ORF C1, the presumptive capsid, was expressed in Sf9 insect cells using baculovirus expression system. Electron microscopic examination of negatively stained material demonstrated that the recombinant protein self-assembled to produce virus-like particles (VLPs) thus confirming that ORF C1 is likely to be the sole determinant for capsid construction in vivo. BFDV VLPs also possessed haemagglutinating activity which provides further evidence that self-assembled BFDV VLPs retain receptor mediated biological activity and that the determinants for BFDV haemagglutination activity rely solely on the capsid protein. The recombinant protein reacted with anti-BFDV sera from naturally immune parrots and cockatoo and from chickens experimentally inoculated with native BFDV in both Western blots and haemagglutination inhibition (HI) assay. BFDV VLPs were also a suitable replacement antigen for serological detection of BFDV antibody by HI. PMID:17218022

  13. Simulations of HIV capsid protein dimerization reveal the effect of chemistry and topography on the mechanism of hydrophobic protein association

    CERN Document Server

    Yu, Naiyin

    2015-01-01

    Recent work has shown that the hydrophobic protein surfaces in aqueous solution sit near a drying transition. The tendency for these surfaces to expel water from their vicinity leads to self assembly of macromolecular complexes. In this article we show with a realistic model for a biologically pertinent system how this phenomenon appears at the molecular level. We focus on the association of the C-terminal domain (CA-C) of the human immunodeficiency virus (HIV) capsid protein. By combining all-atom simulations with specialized sampling techniques we measure the water density distribution during the approach of two CA-C proteins as a function of separation and amino acid sequence in the interfacial region. The simulations demonstrate that CA-C protein-protein interactions sit at the edge of a dewetting transition and that this mesoscopic manifestation of the underlying liquid-vapor phase transition can be readily manipulated by biology or protein engineering to significantly affect association behavior. While ...

  14. Antibody recognition of porcine circovirus type 2 capsid protein epitopes after vaccination, infection, and disease.

    Science.gov (United States)

    Trible, Benjamin R; Kerrigan, Maureen; Crossland, Nicholas; Potter, Megan; Faaberg, Kay; Hesse, Richard; Rowland, Raymond R R

    2011-05-01

    Open reading frame 2 (ORF2) of porcine circovirus type 2 (PCV2) codes for the 233-amino-acid capsid protein (CP). Baculovirus-based vaccines that express only ORF2 are protective against clinical disease following experimental challenge or natural infection. The goal of this study was to identify regions in CP preferentially recognized by sera from experimentally infected and vaccinated pigs and to compare these responses to those of pigs diagnosed with porcine circovirus-associated disease (PCVAD), including porcine multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS). The approach was to react porcine sera with CP polypeptide fragments followed by finer mapping studies using overlapping oligopeptides that covered amino acids 141 to 200. The results showed that vaccinated pigs preferentially recognized only the largest polypeptide fragment, CP(43-233). A subset of experimentally infected pigs and pigs with PDNS showed strong reactivity against a CP oligopeptide, 169-STIDYFQPNNKR-180. Alanine scanning identified Y-173, F-174, Q-175, and K-179 as important for antibody recognition. The results from this study support the notion of PCV2 modulation of immunity, including antibody responses that may represent a precursor for disease. The recognition of CP(169-180) and other polypeptides provides opportunities to devise diagnostic tests for monitoring the immunological effectiveness of vaccination. PMID:21430122

  15. A Novel Pharmacophore Model Derived from a Class of Capsid Protein Enterovirus 71 Inhibitors

    Institute of Scientific and Technical Information of China (English)

    DUAN Hong-Xia; YANG Xin-Ling; WANG Dao-Quan; NING Jun; MEI Xiang-Dong; ZHANG Jian

    2012-01-01

    Capsid protein enterovirus 71 (EV71) is one of the major viruses that cause the severe encephalitis and thus result in a high mortality in children less than 5 years of age.In an effort to discover new potent inhibitors against EV71,a novel three-dimensional pharmacophore model was developed on 24 inhibitors with different molecular structures and bioactivities.The best hypothesis (Hypo1) has a high predictive power and consists of four features,namely,one hydrophobic point (HY) and three hydrogen-bond acceptors (HA).Two key features of the best Hypo1,HY1 and HA3 match well with an important narrow hydrophobic canyon and with the surface of LYS274 in the target EV71 active site,respectively.The more versatile feature,HA1,is firstly found to be very influential on these compounds’ bioactivities,which may interact with the other side of the active site in the EV71 receptor.The application of the model is successful in predicting the activities of 30 known EV71 inhibitors with a correlation coefficient of 0.831.Furthermore,Hypo1 demonstrates a superior screening capability for retrieving inhibitors from the database with a high enrichment factor of 70.This study provides some important clues in search for more potent inhibitors against EV71 infection.

  16. Radioimmunoassay for detection of VP1 specific neutralizing antibodies of foot and mouse disease virus

    International Nuclear Information System (INIS)

    A solid-phase radioimmunoassay was developed for the detection of antibodies against a specific region of the VP1 protein of the A24 and O1 serotypes of foot and mouth disease virus. The antibody titers from the radioimmunoassay showed a positive correlation with neutralizing antibody titers determined by a mouse protection assay. The specificity of the assay resides in the peptide used as antigen. The assay is rapid, reproducible and does not require the use of whole virions. (orig.)

  17. Grass carp Ctenopharyngodon idella Fibulin-4 as a potential interacting partner for grass carp reovirus outer capsid proteins.

    Science.gov (United States)

    Yu, Fei; Wang, Hao; Liu, Weisha; Lu, Liqun

    2016-01-01

    Mammalian EGF containing fibulin-like extracellular matrix protein 2 (Fibulin-4/EFEMP2), an extracellular matrix(ECM) protein and a member of the fibulin family, is involved in elastic fiber formation, connective tissue development and some human diseases. In a yeast-two hybrid screening of host proteins interacting with outer capsid protein of grass carp reovirus (GCRV), a grass carp homologue of Fibulin-4 (designated as GcFibulin-4) is suggested to hold the potential to bind VP7, VP56 and VP55, the outer capsid protein encoded by type I, II, III GCRV, respectively. GcFibulin-4 gene of grass carp was cloned and sequenced from the cDNA library constructed for the yeast two-hybrid screening. Full-length cDNA of GcFibulin-4 contains an open reading frame (ORF) of 1323 bp encoding a putative protein of 440 amino acids. Phylogenetic analysis of GcFibulin-4 indicated that it shared a high homology with zebra fish Fibulin-4 protein. Transcriptional distribution analysis of GcFibulin-4 in various tissues of healthy grass carp showed that GcFibulin-4 was highly expressed in muscle, moderately expressed in the intestine and brain, and slightly expressed in other examined tissues; the expression pattern is consistent with tissue tropism of GCRV resulting in hemorrhage symptom in the corresponding tissues. Our results suggested that Fibulin-4 might enable free GCRV particles, the pathogen for grass carp hemorrhagic disease, to target fish tissues more efficiently by interacting with viral outer capsid proteins. PMID:26626583

  18. The evolution of Vp1 gene in enterovirus C species sub-group that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99.

    Directory of Open Access Journals (Sweden)

    Teemu Smura

    Full Text Available Genus Enterovirus (Family Picornaviridae, consists of twelve species divided into genetically diverse types by their capsid protein VP1 coding sequences. Each enterovirus type can further be divided into intra-typic sub-clusters (genotypes. The aim of this study was to elucidate what leads to the emergence of novel enterovirus clades (types and genotypes. An evolutionary analysis was conducted for a sub-group of Enterovirus C species that contains types Coxsackievirus A21 (CVA-21, CVA-24, Enterovirus C95 (EV-C95, EV-C96 and EV-C99. VP1 gene datasets were collected and analysed to infer the phylogeny, rate of evolution, nucleotide and amino acid substitution patterns and signs of selection. In VP1 coding gene, high intra-typic sequence diversities and robust grouping into distinct genotypes within each type were detected. Within each type the majority of nucleotide substitutions were synonymous and the non-synonymous substitutions tended to cluster in distinct highly polymorphic sites. Signs of positive selection were detected in some of these highly polymorphic sites, while strong negative selection was indicated in most of the codons. Despite robust clustering to intra-typic genotypes, only few genotype-specific 'signature' amino acids were detected. In contrast, when different enterovirus types were compared, there was a clear tendency towards fixation of type-specific 'signature' amino acids. The results suggest that permanent fixation of type-specific amino acids is a hallmark associated with evolution of different enterovirus types, whereas neutral evolution and/or (frequency-dependent positive selection in few highly polymorphic amino acid sites are the dominant forms of evolution when strains within an enterovirus type are compared.

  19. Synthesis and characterization of different immunogenic viral nanoconstructs from rotavirus VP6 inner capsid protein

    Directory of Open Access Journals (Sweden)

    Bugli F

    2014-05-01

    Full Text Available Francesca Bugli,1 Valeria Caprettini,2 Margherita Cacaci,1 Cecilia Martini,1 Francesco Paroni Sterbini,1 Riccardo Torelli,1 Stefano Della Longa,3 Massimiliano Papi,4 Valentina Palmieri,4 Bruno Giardina,5 Brunella Posteraro,1 Maurizio Sanguinetti,1 Alessandro Arcovito5 1Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 2Dipartimento di Fisica, Sapienza Università di Roma, Rome, 3Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell’Ambiente, Università dell’Aquila, L’Aquila, 4Istituto di Fisica, 5Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy Abstract: In order to deliver low-cost viral capsomeres from a large amount of soluble viral VP6 protein from human rotavirus, we developed and optimized a biotechnological platform in Escherichia coli. Specifically, three different expression protocols were compared, differing in their genetic constructs, ie, a simple native histidine-tagged VP6 sequence, VP6 fused to thioredoxin, and VP6 obtained with the newly described small ubiquitin-like modifier (SUMO fusion system. Our results demonstrate that the histidine-tagged protein does not escape the accumulation in the inclusion bodies, and that SUMO is largely superior to the thioredoxin-fusion tag in enhancing the expression and solubility of VP6 protein. Moreover, the VP6 protein produced according to the SUMO fusion tag displays well-known assembly properties, as observed in both transmission electron microscopy and atomic force microscopy images, giving rise to either VP6 trimers, 60 nm spherical virus-like particles, or nanotubes a few micron long. This different quaternary organization of VP6 shows a higher level of immunogenicity for the elongated structures with respect to the spheres or the protein trimers. Therefore, the expression and purification strategy presented here – providing a large amount of the viral capsid protein in the native

  20. Human cytomegalovirus capsid assembly protein precursor (pUL80.5) interacts with itself and with the major capsid protein (pUL86) through two different domains.

    OpenAIRE

    Wood, L J; Baxter, M K; Plafker, S M; Gibson, W

    1997-01-01

    We have used the yeast GAL4 two-hybrid system to examine interactions between the human cytomegalovirus (HCMV) major capsid protein (MCP, encoded by UL86) and the precursor assembly protein (pAP, encoded by UL80.5 and cleaved at its carboxyl end to yield AP) and found that (i) the pAP interacts with the MCP through residues located within the carboxy-terminal 21 amino acids of the pAP, called the carboxyl conserved domain (CCD); (ii) the pAP interacts with itself through a separate region, ca...

  1. Development of an enzyme-linked immunosorbent assay based on the murine leukemia virus p30 Capsid protein

    OpenAIRE

    Wu, Dai-Tze; Aiyer, Sriram; Villanueva, Rodrigo A.; Roth, Monica J

    2013-01-01

    Retroviral vectors derived from the murine leukemia virus (MuLV) are widely used as the starting material in the development of vectors for gene therapy and critical in answering questions relating to viral pathogenesis. The p30 capsid (CA) is the major viral core protein and an internal group antigen in MuLV. In this study, an enzyme-linked immunosorbent assay (ELISA) was developed for quantitation of MuLV infectious particles with p30 CA core antigen protein. The ELISA was...

  2. Adjuvant effect of B domain of staphyloccocal protein A displayed on the surface of hepatitis B virus capsid.

    Science.gov (United States)

    Kim, Hyun Jin; Ahn, Keum-Young; Bae, Kyung Dong; Lee, Jiyun; Sim, Sang Jun; Lee, Jeewon

    2016-02-01

    The hepatitis B virus (HBV) capsid-based recombinant particles, which display both major hydrophilic region of HBV surface antigen (HBV-MHR) and B domain of Staphylococcal protein A (SPAB ), were produced using Escherichia coli as expression host. SPAB was used as an adjuvant to elicit the immune response to HBV-MHR, and its adjuvant effect in the immunized mice was estimated with varying the position and amount of SPAB on the HBV capsid particles. Compared to the emulsified aluminum gel (alum gel) that is a currently commercialized vaccine adjuvant, SPAB caused the significantly higher level of anti-HBV immunoglobulin G (IgG) titer and seroconversion rate, and notably SPAB at the most surface-exposed position on the recombinant particle led to the highest immune response. Moreover, SPAB caused much lower ratio of IgG1 to IgG2a compared to alum gel, indicating that helper T-cell 1-mediated immune response (responsible for cytotoxic T-cell stimulation) is relatively more stimulated by SPAB , unlike alum gel that mainly stimulates helper T-cell 2-mediated immune response (responsible for B-cell stimulation). Although HBV-MHR and HBV capsid particle were used as proof-of-concept in this study, SPAB can be used as a highly effective adjuvant with other disease-specific antigens on the surface of other virus-like particles to produce various recombinant vaccines with high potency. PMID:26222886

  3. Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Muszynski, Bartosz; Organtini, Lindsey J.;

    2013-01-01

    The foot-and-mouth disease virus (FMDV) structural protein precursor, P1-2A, is cleaved by the virus-encoded 3C protease (3Cpro) into the capsid proteins VP0, VP1 and VP3 (and 2A). In some systems, it is difficult to produce large amounts of these processed capsid proteins since 3Cpro can be toxic...... (from serotypes O and A) and 3Cpro were expressed from monocistronic cDNA cassettes as P1-2A-3C, or from dicistronic cassettes with the 3Cpro expression dependent on a mutant FMDV internal ribosome entry site (IRES) (designated P1-2A-mIRES-3C). The effects of using a mutant 3Cpro with reduced catalytic....... These products self-assembled to form FMDV empty capsid particles, which have a related, but distinct, morphology (as determined by electron microscopy and reconstruction) from that determined previously by X-ray crystallography. The assembled empty capsids bind, in a divalent cation-dependent manner, to the RGD...

  4. Structure of the Triatoma virus capsid

    Energy Technology Data Exchange (ETDEWEB)

    Squires, Gaëlle; Pous, Joan [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Agirre, Jon [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rozas-Dennis, Gabriela S. [U.N.S., San Juan 670 (8000) Bahía Blanca (Argentina); U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Costabel, Marcelo D. [U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Marti, Gerardo A. [Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT, La Plata, CONICET-UNLP), Calle 2 No. 584 (1900) La Plata (Argentina); Navaza, Jorge; Bressanelli, Stéphane [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Guérin, Diego M. A., E-mail: diego.guerin@ehu.es [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rey, Felix A., E-mail: diego.guerin@ehu.es [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France)

    2013-06-01

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  5. Structure of the Triatoma virus capsid

    International Nuclear Information System (INIS)

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed

  6. Interactions of polyoma virions and VP1 capsid-like particles with cellular structures

    Czech Academy of Sciences Publication Activity Database

    Palková, Z.; Adamec, T.; Richterová, Z.; Liebl, D.; Štokrová, Jitka; Griffin, B. E.; Forstová, J.

    Chevy Chase : Howard Hughes Medical Institute, 2000. s. 56. [Meeting of International Research Scholars from Argentina , Belarus, Brazil, Canada, Chile, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Mexico, Poland, Russia, Slovakia, Ukraine, and Venezuela. 20.06.2000-23.06.2000, Chevy Chase] Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology

  7. Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX

    International Nuclear Information System (INIS)

    We used Cre/loxP recombination to swap targeting ligands present on the adenoviral capsid protein IX (pIX). A loxP-flanked sequence encoding poly-lysine (pK-binds heparan sulfate proteoglycans) was engineered onto the 3'-terminus of pIX, and the resulting fusion protein allowed for routine virus propagation. Growth of this virus on Cre-expressing cells removed the pK coding sequence, generating virus that could only infect through alternative ligands, such as a tyrosine kinase receptor A (TrkA)-binding motif engineered into the capsid fibre protein for enhanced infection of neuronal cells. We used a similar approach to swap the pK motif on pIX for a sequence encoding a single-domain antibody directed towards CD66c for targeted infection of cancer cells; Cre-mediated removal of the pK-coding sequence simultaneously placed the single-domain antibody coding sequence in frame with pIX. Thus, we have developed a simple method to propagate virus lacking native viral tropism but containing cell-specific binding ligands. - Highlights: → We describe a method to grow virus lacking native tropism but containing novel cell-binding ligands. → Cre/loxP recombination was used to modify the adenovirus genome. → A targeting ligand present on capsid protein IX was removed or replaced using recombination. → Cre-loxP was also used to 'swap' the identity of the targeting ligand present on pIX.

  8. EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR AND HUMAN PAPILLOMAVIRUS (HPV L1 CAPSID PROTEIN IN CERVICAL SQUAMOUS INTRAEPITHELIAL LESIONS

    Directory of Open Access Journals (Sweden)

    Balan Raluca

    2010-09-01

    Full Text Available We analyzed the immunohistochemical pattern of epidermal growth factor receptor (EGFR in cervical squamous intraepithelial lesions (SILs in correlation with L1 HPV capsid protein, in order to determine the relationship between EGFR expression and the infection status of human papillomavirus (HPV. The study included 40 cases, 24 LSIL (low grade SIL (CIN1, cervical intraepithelial neoplasia and 16 HSIL (high grade SIL (6 cases of CIN2 and 10 cases of CIN3. The immunoexpression of L1 HPV protein was assessed on conventional cervico-vaginal smears and EGFR was immunohistochemically evaluated on the corresponding cervical biopsies. The HPV L1 capsid protein was expressed in 45.83% of LSIL and 25% of HSIL. EGFR was overexpressed in 62,4% of HSIL (58,4% CIN2 and 41,6% CIN3 and 37,6% LSIL. The immunoexpression of L1 HPV has clinical application in the progression assessment of the cervical precancerous lesions without a correlation to the grade of the cervical SIL. EGFR is expressed by all proliferating squamous epithelial cells, thus corresponding with the grade of SIL. The evaluation of EGFR status, correlated with L1 HPV protein expression, can provide useful data of progression risk of cervical squamous intraepithelial lesions

  9. Stabilization of the beta-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity

    Czech Academy of Sciences Publication Activity Database

    Obr, M.; Hadravová, Romana; Doležal, Michal; Křížová, Ivana; Papoušková, V.; Žídek, L.; Hrabal, R.; Ruml, T.; Rumlová, Michaela

    2014-01-01

    Roč. 11, Oct 30 (2014), 94/1-94/14. ISSN 1742-4690 R&D Projects: GA ČR(CZ) GA14-15326S; GA MŠk LO1302 Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0068; Seventh Framework Programme of the European Union(XE) FP7-261863 Institutional support: RVO:61388963 Keywords : retrovirus * assembly * M-PMV * capsid protein * maturation * beta-hairpin Subject RIV: EE - Microbiology, Virology Impact factor: 4.185, year: 2014 http://www.retrovirology.com/content/11/1/94

  10. NMR structure of the N-terminal domain of capsid protein from the Mason-Pfizer monkey virus

    Czech Academy of Sciences Publication Activity Database

    Macek, Pavel; Chmelík, Josef; Křížová, Ivana; Kadeřávek, P.; Padrta, P.; Žídek, L.; Wildová, Marcela; Hadravová, Romana; Chaloupková, R.; Pichová, Iva; Ruml, T.; Rumlová, Michaela; Sklenář, V.

    2009-01-01

    Roč. 392, č. 1 (2009), s. 100-114. ISSN 0022-2836 R&D Projects: GA MŠk LC545; GA MŠk 1M0508; GA ČR GA204/09/1388; GA ČR GESCO/06/E001 Grant ostatní: GA MŠk(CZ) 1M0520; MŠk(CZ) LC06030 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50200510 Keywords : M-PMV * betaretroviruses * capsid protein * NMR structure * internal dynamics Subject RIV: CE - Biochemistry Impact factor: 3.871, year: 2009

  11. Development of Cell Lines Stably Expressing Staphylococcal Nuclease Fused to Dengue 2 Virus Capsid Protein for CTVI

    Institute of Scientific and Technical Information of China (English)

    Cheng-Feng QIN; E-De QIN

    2004-01-01

    To explore the potential application of capsid-targeted viral inactivation(CTVI)strategy in prophylactic model against dengue virus(DV)infection,here we fused a Ca2+-dependent nuclease,staphylococcal nuclease(SN),to the capsid protein of dengue 2 virus(D2C)at the carboxyl terminal,and constructed the desired expression plasmid pc/D2C-SN and control plasmids pc/D2C-SN* and pc/D2C.A mammalian cell line BHK-21 was transfected by electroporation with those plasmids and thereafter selected by 5 μg/ml blasticidin.The resistant cell clones were then expanding cultured and screened by RT-PCR and Western Blot assays.The nuclease activity of the expressed fusion protein D2C-SN was analyzed by in vitro DNA digestion assay.It was confirmed cell lines stably expressing D2C-SN and control constructs were obtained.The intracellular expressed fusion protein D2C-SN had ideal nuclease activity and no cytotoxicity on mammalian cells.Those engineered cell lines provided the experimental system for CTVI application in prophylactic model and paved the new road for combating DV infection with CTVI.

  12. Development and evaluation of an immunochromatographic strip for rapid detection of capsid protein antigen p27 of avian leukosis virus.

    Science.gov (United States)

    Qian, Kun; Liang, You-zhi; Yin, Li-ping; Shao, Hong-xia; Ye, Jian-qiang; Qin, Ai-jian

    2015-09-01

    A rapid immunochromatographic strip for detecting capsid protein antigen p27 of avian leukosis virus was successfully developed based on two high-affinity monoclonal antibodies. The test strip could detect not only 600pg purified recombinant p27 protein but also quantified avian leukosis virus as low as 70 TCID50, which has comparative sensitivity to the commercial enzyme-linked immunosorbent assay (ELISA) kit. For the evaluation of this test strip, 1100 samples consisting of cloacal swabs, meconium collected from the earliest stool of one day old chicken and virus isolates were assessed both by the strip and by the commercial ELISA kit. The agreement between these two tests was 93.91%, 93.42% and 100%, respectively. The sensitivity and specificity of the strip were also calculated by using the ELISA kit as the standard. This immunochromatographic strip provides advantages of rapid and simple detection of capsid protein antigen p27 of avian leukosis virus, which could be applied as an on-site testing assay and used for control and eradication programs of avian leukosis disease. PMID:25977186

  13. Yeast Ty retrotransposons assemble into virus-like particles whose T-numbers depend on the C-terminal length of the capsid protein.

    Science.gov (United States)

    AL-Khayat, H A; Bhella, D; Kenney, J M; Roth, J F; Kingsman, A J; Martin-Rendon, E; Saibil, H R

    1999-09-10

    The virus-like particles (VLPs) produced by the yeast Ty retrotransposons are structurally and functionally related to retroviral cores. Using cryo-electron microscopy (cryo-EM) and three-dimensional (3D) reconstruction, we have examined the structures of VLPs assembled from full-length and truncated forms of the capsid structural protein. The VLPs are highly polydisperse in their radius distribution. We have found that the length of the C-terminal region of the capsid structural protein dictates the T -number, and thus the size, of the assembled particles. Each construct studied appears to assemble into at least two or three size classes, with shorter C termini giving rise to smaller particles. This assembly property provides a model for understanding the variable assembly of retroviral core proteins. The particles are assembled from trimer-clustered units and there are holes in the capsid shells. PMID:10493857

  14. Dengue Virus Capsid Protein Binding to Hepatic Lipid Droplets (LD) Is Potassium Ion Dependent and Is Mediated by LD Surface Proteins

    OpenAIRE

    Carvalho, Filomena A.; Carneiro, Fabiana A.; Martins, Ivo C.; Assunção-Miranda, Iranaia; Faustino, André F.; Pereira, Renata M.; Bozza, Patricia T.; Castanho, Miguel A. R. B.; Mohana-Borges, Ronaldo; Poian, Andrea T. Da; Santos, Nuno C.

    2012-01-01

    Dengue virus (DENV) affects millions of people, causing more than 20,000 deaths annually. No effective treatment for the disease caused by DENV infection is currently available, partially due to the lack of knowledge on the basic aspects of the viral life cycle, including the molecular basis of the interaction between viral components and cellular compartments. Here, we characterized the properties of the interaction between the DENV capsid (C) protein and hepatic lipid droplets (LDs), which ...

  15. 人乳头瘤病毒衣壳蛋白与宫颈病变%Human Papillomavirus′ Capsid Proteins and Cervical Lesions

    Institute of Scientific and Technical Information of China (English)

    黄成琳; 张淑兰

    2014-01-01

    Cervical cancer seriously endangers women′s health,and human papillomavirus (HPV) is considered to be the primary cause. Doctors have been striving to find an effective diagnostic method for judging cervical lesions level and predicting its prognosis. HPV capsid proteins comprise the major capsid protein (L1 capsid protein) and the minor capsid protein (L2 capsid protein),and these two proteins play an important role in assembling into virus particles,trafficking HPV to the cell,and causing the host′s immune reactions. In recent years,studies have shown that the L1 capsid protein can be used to predict the progress and subsidence of cervical lesions. HPV prophylactic vaccines ,which are exploited on the basis of the L1 and L2 capsid protein,are proved to get a good preventive effect in clinical trials. This paper reviews the biological characteristics of HPV and researches progress on HPV capsid protein in cervical lesions in recent years.%宫颈癌严重危害妇女健康,人乳头瘤病毒(HPV)感染是其首要病因。临床医师一直致力于寻找一种能有效判断宫颈病变级别及预测预后的诊断方法。 HPV衣壳蛋白包括主要衣壳蛋白(L1壳蛋白)和次要衣壳蛋白(L2壳蛋白),这两种蛋白在组装成病毒颗粒、协助病毒入胞及引起机体免疫反应等多个方面发挥重要作用。近年研究表明, L1壳蛋白可用于预测宫颈病变的进展与消退。以L1及L2壳蛋白为基础研发的HPV预防性疫苗在临床试验中得到了很好的预防效果。综述HPV生物学特点及近年来有关HPV衣壳蛋白在宫颈病变的研究进展。

  16. 人乳头瘤病毒衣壳蛋白与宫颈病变%Human Papillomavirus′ Capsid Proteins and Cervical Lesions

    Institute of Scientific and Technical Information of China (English)

    黄成琳; 张淑兰

    2014-01-01

    宫颈癌严重危害妇女健康,人乳头瘤病毒(HPV)感染是其首要病因。临床医师一直致力于寻找一种能有效判断宫颈病变级别及预测预后的诊断方法。 HPV衣壳蛋白包括主要衣壳蛋白(L1壳蛋白)和次要衣壳蛋白(L2壳蛋白),这两种蛋白在组装成病毒颗粒、协助病毒入胞及引起机体免疫反应等多个方面发挥重要作用。近年研究表明, L1壳蛋白可用于预测宫颈病变的进展与消退。以L1及L2壳蛋白为基础研发的HPV预防性疫苗在临床试验中得到了很好的预防效果。综述HPV生物学特点及近年来有关HPV衣壳蛋白在宫颈病变的研究进展。%Cervical cancer seriously endangers women′s health,and human papillomavirus (HPV) is considered to be the primary cause. Doctors have been striving to find an effective diagnostic method for judging cervical lesions level and predicting its prognosis. HPV capsid proteins comprise the major capsid protein (L1 capsid protein) and the minor capsid protein (L2 capsid protein),and these two proteins play an important role in assembling into virus particles,trafficking HPV to the cell,and causing the host′s immune reactions. In recent years,studies have shown that the L1 capsid protein can be used to predict the progress and subsidence of cervical lesions. HPV prophylactic vaccines ,which are exploited on the basis of the L1 and L2 capsid protein,are proved to get a good preventive effect in clinical trials. This paper reviews the biological characteristics of HPV and researches progress on HPV capsid protein in cervical lesions in recent years.

  17. HPV L1-Capsid Protein Detection and Progression of Anal Squamous Neoplasia

    OpenAIRE

    Hernandez, Jonathan; Elahi, Abul; Siegel, Erin; Coppola, Domenico; Riggs, Bridgett; Shibata, David

    2011-01-01

    The progression of cervical intraepithelial lesions to invasive cancer is associated with corresponding reductions in human papillomavirus (HPV) L1-capsid antigen (L1) expression. We sought to determine whether a similar loss of L1 occurs during anal carcinogenesis using immunohistochemistry on paraffin-embedded sections as well as INNO-LiPA HPV Genotyping (Innogenetics, Gent, Belgium) technology to determine HPV infection status. We analyzed 31 squamous cell carcinomas (SCCs), 26 SCCs in sit...

  18. Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Jackson, Terry; Bøtner, Anette;

    2012-01-01

    The surface exposed capsid proteins, VP1, VP2 and VP3, of foot-and-mouth disease virus (FMDV) determine its antigenicity and the ability of the virus to interact with host-cell receptors. Hence, modification of these structural proteins may alter the properties of the virus. In the present study we...... compared the pathogenicity of different FMDVs in young pigs. In total 32 pigs, 7-weeks-old, were exposed to virus, either by direct inoculation or through contact with inoculated pigs, using cell culture adapted (O1K B64), chimeric (O1K/A-TUR and O1K/O-UKG) or field strain (O-UKG/34/2001) viruses. The O1K...... coding sequences are determinants of FMDV pathogenicity in pigs....

  19. High yield production of pigeon circovirus capsid protein in the E. coli by evaluating the key parameters needed for protein expression

    OpenAIRE

    Lai, Guan-Hua; Lin, Yen-Chang; Tsai, Yi-Lun; Lien, Yi-Yang; Lin, Ming-Kuem; Chen, Hsi-Jien; Chang, Wen-Te; Jason T. C. Tzen; Lee, Meng-Shiou

    2014-01-01

    Background Pigeon circovirus (PiCV) is considered to be a viral agent central to the development of young pigeon disease syndrome (YPDS). The Cap protein, a structural protein encoded by the cap (or C1) gene of PiCV, has been shown to be responsible for not only capsid assembly, but also has been used as antigen for detecting antibody when the host is infected with PiCV. The antigenic characteristics of the Cap protein potentially may allow the development of a detection kit that could be app...

  20. Specific Inhibitors of HIV Capsid Assembly Binding to the C-Terminal Domain of the Capsid Protein: Evaluation of 2-Arylquinazolines as Potential Antiviral Compounds

    Czech Academy of Sciences Publication Activity Database

    Machara, A.; Lux, V.; Kožíšek, Milan; Grantz Šašková, Klára; Štěpánek, O.; Kotora, M.; Parkan, Kamil; Pávová, Marcela; Glass, B.; Sehr, P.; Lewis, J.; Müller, B.; Kräusslich, H. G.; Konvalinka, Jan

    2016-01-01

    Roč. 59, č. 2 (2016), s. 545-558. ISSN 0022-2623 R&D Projects: GA ČR GA13-19561S EU Projects: European Commission(XE) 201095 - HIV ACE Institutional support: RVO:61388963 Keywords : HIV-1 assembly * capsid * high-throughput screening * AlphaScreen assay Subject RIV: CE - Biochemistry Impact factor: 5.447, year: 2014

  1. Tabulation as a high-resolution alternative to coarse-graining protein interactions: Initial application to virus capsid subunits

    Science.gov (United States)

    Spiriti, Justin; Zuckerman, Daniel M.

    2015-12-01

    Traditional coarse-graining based on a reduced number of interaction sites often entails a significant sacrifice of chemical accuracy. As an alternative, we present a method for simulating large systems composed of interacting macromolecules using an energy tabulation strategy previously devised for small rigid molecules or molecular fragments [S. Lettieri and D. M. Zuckerman, J. Comput. Chem. 33, 268-275 (2012); J. Spiriti and D. M. Zuckerman, J. Chem. Theory Comput. 10, 5161-5177 (2014)]. We treat proteins as rigid and construct distance and orientation-dependent tables of the interaction energy between them. Arbitrarily detailed interactions may be incorporated into the tables, but as a proof-of-principle, we tabulate a simple α-carbon Gō-like model for interactions between dimeric subunits of the hepatitis B viral capsid. This model is significantly more structurally realistic than previous models used in capsid assembly studies. We are able to increase the speed of Monte Carlo simulations by a factor of up to 6700 compared to simulations without tables, with only minimal further loss in accuracy. To obtain further enhancement of sampling, we combine tabulation with the weighted ensemble (WE) method, in which multiple parallel simulations are occasionally replicated or pruned in order to sample targeted regions of a reaction coordinate space. In the initial study reported here, WE is able to yield pathways of the final ˜25% of the assembly process.

  2. Cytomegalovirus Assembly Protein Precursor and Proteinase Precursor Contain Two Nuclear Localization Signals That Mediate Their Own Nuclear Translocation and That of the Major Capsid Protein

    OpenAIRE

    Plafker, Scott M.; Gibson, Wade

    1998-01-01

    The cytomegalovirus (CMV) assembly protein precursor (pAP) interacts with the major capsid protein (MCP), and this interaction is required for nuclear translocation of the MCP, which otherwise remains in the cytoplasm of transfected cells (L. J. Wood et al., J. Virol. 71:179–190, 1997). We have interpreted this finding to indicate that the CMV MCP lacks its own nuclear localization signal (NLS) and utilizes the pAP as an NLS-bearing escort into the nucleus. The CMV pAP amino acid sequence has...

  3. Vaccination of cats with an attenuated recombinant myxoma virus expressing feline calicivirus capsid protein.

    Science.gov (United States)

    McCabe, Victoria J; Tarpey, Ian; Spibey, Norman

    2002-06-01

    Myxoma virus, a member of the Poxviridae family (genus Leporipoxvirus) is the agent responsible for myxomatosis in the European rabbit. Recombinant myxoma viruses expressing the capsid gene of an F9 strain of feline calicivirus (FCV) were constructed from an apathogenic, laboratory attenuated, isolate of myxoma virus. The FCV capsid genes were recombined into the myxoma growth factor (MGF) locus of the myxoma genome and expressed from synthetic poxvirus promoters. Myxoma virus is unable to replicate productively in feline cells in vitro, however, cells infected with recombinant viruses do express the heterologous antigens from both late and early/late synthetic promoters. Cats immunised with myxoma-FCV recombinant virus generated high levels of serum neutralising antibody and were protected from disease on subsequent challenge with virulent FCV. Furthermore, there was no evidence of transmission of myxoma-FCV recombinant virus from vaccinated to non-vaccinated cats. These results demonstrate the potential of myxoma virus as a safe vaccine vector for use in non-lepori species and in particular the cat. PMID:12057600

  4. Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Shauna M. [Cellular and Molecular Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Zhao, Linbo [Doctoral Program in Cancer Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Bosard, Catherine [Department of Microbiology and Immunology University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Imperiale, Michael J., E-mail: imperial@umich.edu [Cellular and Molecular Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Doctoral Program in Cancer Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Department of Microbiology and Immunology University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States)

    2015-01-01

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell. - Highlights: • Polyomaviruses must deliver their genome to the nucleus to replicate. • The minor capsid proteins have a well-conserved nuclear localization signal. • Mutation of this NLS diminishes, but does not completely inhibit, infection.

  5. Comparison of classical and affinity purification techniques of Mason-Pfizer monkey virus capsid protein: The Alteration of the product by an affinity tag

    Czech Academy of Sciences Publication Activity Database

    Rumlová, Michaela; Benedíková, Jitka; Cubínková, Romana; Pichová, Iva; Ruml, Tomáš

    2001-01-01

    Roč. 23, - (2001), s. 75-83. ISSN 1046-5928 R&D Projects: GA ČR GA203/00/1005 Institutional research plan: CEZ:AV0Z4055905 Keywords : Mason-Pfizer monkey virus * capsid protein Subject RIV: CE - Biochemistry Impact factor: 1.497, year: 2001

  6. Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry

    International Nuclear Information System (INIS)

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell. - Highlights: • Polyomaviruses must deliver their genome to the nucleus to replicate. • The minor capsid proteins have a well-conserved nuclear localization signal. • Mutation of this NLS diminishes, but does not completely inhibit, infection

  7. Prognostic relevance of human papillomavirus L1 capsid protein detection within mild and moderate dysplastic lesions of the cervix uteri in combination with p16 biomarker

    DEFF Research Database (Denmark)

    Hilfrich, Ralf; Hariri, Jalil

    2008-01-01

    capsid protein antibodies (Cytoactiv screening antibody) and a monoclonal anti-p16 antibody. Fifty sections were derived from a benign group, 91 from low-grade (cervical intraepithelial neoplasia [CIN 1]) lesions and 50 from high-grade (CIN 2 and 3) lesions. RESULTS: Overall only 16.1% of the 87 L1...

  8. Recognition of the different structural forms of the capsid protein determines the outcome following infection with porcine circovirus type 2.

    Science.gov (United States)

    Trible, Benjamin R; Suddith, Andrew W; Kerrigan, Maureen A; Cino-Ozuna, Ada G; Hesse, Richard A; Rowland, Raymond R R

    2012-12-01

    Porcine circovirus type 2 (PCV2) capsid protein (CP) is the only protein necessary for the formation of the virion capsid, and recombinant CP spontaneously forms virus-like particles (VLPs). Located within a single CP subunit is an immunodominant epitope consisting of residues 169 to 180 [CP(169-180)], which is exposed on the surface of the subunit, but, in the structural context of the VLP, the epitope is buried and inaccessible to antibody. High levels of anti-CP(169-180) activity are associated with porcine circovirus-associated disease (PCVAD). The purpose of this study was to investigate the role of the immune response to monomer CP in the development of PCVAD. The approach was to immunize pigs with CP monomer, followed by challenge with PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV). To maintain the CP immunogen as a stable monomer, CP(43-233) was fused to ubiquitin (Ub-CP). Size exclusion chromatography showed that Ub-CP was present as a single 33-kDa protein. Pigs immunized with Ub-CP developed a strong antibody response to PCV2, including antibodies against CP(169-180). However, only low levels of virus neutralizing activity were detected, and viremia levels were similar to those of nonimmunized pigs. As a positive control, immunization with baculovirus-expressed CP (Bac-CP) resulted in high levels of virus neutralizing activity, small amounts of anti-CP(169-180) activity, and the absence of viremia in pigs following virus challenge. The data support the role of CP(169-180) as an immunological decoy and illustrate the importance of the structural form of the CP immunogen in determining the outcome following infection. PMID:23035215

  9. Packaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal β-hexamer structure

    International Nuclear Information System (INIS)

    The first 45 amino acid region of brome mosaic virus (BMV) capsid protein (CP) contains RNA binding and structural domains that are implicated in the assembly of infectious virions. One such important structural domain encompassing amino acids 28QPVIV32, highly conserved between BMV and cowpea chlorotic mottle virus (CCMV), exhibits a β-hexamer structure. In this study we report that alteration of the β-hexamer structure by mutating 28QPVIV32 to 28AAAAA32 had no effect either on symptom phenotype, local and systemic movement in Chenopodium quinoa and RNA profile of in vivo assembled virions. However, sensitivity to RNase and assembly phenotypes distinguished virions assembled with CP subunits having β-hexamer from those of wild type. A comparison of 3-D models obtained by cryo electron microscopy revealed overall similar structural features for wild type and mutant virions, with small but significant differences near the 3-fold axes of symmetry.

  10. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection.

    Directory of Open Access Journals (Sweden)

    Andreea Popa

    2015-02-01

    Full Text Available Trafficking of human papillomaviruses to the Golgi apparatus during virus entry requires retromer, an endosomal coat protein complex that mediates the vesicular transport of cellular transmembrane proteins from the endosome to the Golgi apparatus or the plasma membrane. Here we show that the HPV16 L2 minor capsid protein is a retromer cargo, even though L2 is not a transmembrane protein. We show that direct binding of retromer to a conserved sequence in the carboxy-terminus of L2 is required for exit of L2 from the early endosome and delivery to the trans-Golgi network during virus entry. This binding site is different from known retromer binding motifs and can be replaced by a sorting signal from a cellular retromer cargo. Thus, HPV16 is an unconventional particulate retromer cargo, and retromer binding initiates retrograde transport of viral components from the endosome to the trans-Golgi network during virus entry. We propose that the carboxy-terminal segment of L2 protein protrudes through the endosomal membrane and is accessed by retromer in the cytoplasm.

  11. Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity

    Directory of Open Access Journals (Sweden)

    Höglund Stefan

    2007-09-01

    Full Text Available Abstract Background The mature HIV-1 conical core formation proceeds through highly regulated protease cleavage of the Gag precursor, which ultimately leads to substantial rearrangements of the capsid (CAp24 molecule involving both inter- and intra-molecular contacts of the CAp24 molecules. In this aspect, Asp51 which is located in the N-terminal domain of HIV-1 CAp24 plays an important role by forming a salt-bridge with the free imino terminus Pro1 following proteolytic cleavage and liberation of the CAp24 protein from the Pr55Gag precursor. Thus, previous substitution mutation of Asp51 to alanine (D51A has shown to be lethal and that this invariable residue was found essential for tube formation in vitro, virus replication and virus capsid formation. Results We extended the above investigation by introducing three different D51 substitution mutations (D51N, D51E, and D51Q into both prokaryotic and eukaryotic expression systems and studied their effects on in vitro capsid assembly and virus infectivity. Two substitution mutations (D51E and D51N had no substantial effect on in vitro capsid assembly, yet they impaired viral infectivity and particle production. In contrast, the D51Q mutant was defective both for in vitro capsid assembly and for virus replication in cell culture. Conclusion These results show that substitutions of D51 with glutamate, glutamine, or asparagine, three amino acid residues that are structurally related to aspartate, could partially rescue both in vitro capsid assembly and intra-cellular CAp24 production but not replication of the virus in cultured cells.

  12. Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating

    Science.gov (United States)

    Valbuena, Alejandro; Mateu, Mauricio G.

    2015-09-01

    Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications in nanotechnology and nanomedicine. Unfortunately, protein assemblies are soft materials that may be too sensitive to mechanical disruption, and their intrinsic conformational dynamism may also influence their applicability. Thus, it may be critically important to characterize, understand and manipulate the mechanical features and dynamic behavior of protein assemblies in order to improve their suitability as nanomaterials. In this study, the capsid protein of the human immunodeficiency virus was induced to self-assemble as a continuous, single layered, ordered nanocoating onto an inorganic substrate. Atomic force microscopy (AFM) was used to quantify the mechanical behavior and the equilibrium dynamics (``breathing'') of this virus-based, self-assembled protein lattice in close to physiological conditions. The results uniquely provided: (i) evidence that AFM can be used to directly visualize in real time and quantify slow breathing motions leading to dynamic disorder in protein nanocoatings and viral capsid lattices; (ii) characterization of the dynamics and mechanics of a viral capsid lattice and protein-based nanocoating, including flexibility, mechanical strength and remarkable self-repair capacity after mechanical damage; (iii) proof of principle that chemical additives can modify the dynamics and mechanics of a viral capsid lattice or protein-based nanocoating, and improve their applied potential by increasing their mechanical strength and elasticity. We discuss the implications for the development of mechanically resistant and compliant biocoatings precisely organized at the nanoscale, and of novel antiviral agents acting on fundamental physical properties of viruses.Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications

  13. Cleavage of the HPV16 Minor Capsid Protein L2 during Virion Morphogenesis Ablates the Requirement for Cellular Furin during De Novo Infection

    OpenAIRE

    Linda Cruz; Jennifer Biryukov; Conway, Michael J; Craig Meyers

    2015-01-01

    Infections by high-risk human papillomaviruses (HPV) are the causative agents for the development of cervical cancer. As with other non-enveloped viruses, HPVs are taken up by the cell through endocytosis following primary attachment to the host cell. Through studies using recombinant pseudovirus particles (PsV), many host cellular proteins have been implicated in the process. The proprotein convertase furin has been demonstrated to cleave the minor capsid protein, L2, post-attachment to host...

  14. Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli

    OpenAIRE

    Cai Xuepeng; Shang Youjun; Yang Shunli; Sun Shiqi; Yin Shuanghui; Liu Xiangtao

    2010-01-01

    Abstract Background Porcine circovirus 2 (PCV2) is a serious problem to the swine industry and can lead to significant negative impacts on profitability of pork production. Syndrome associated with PCV2 is known as porcine circovirus closely associated with post-weaning multisystemic wasting syndrome (PMWS). The capsid (Cap) protein of PCV2 is a major candidate antigen for development of recombinant vaccine and serological diagnostic method. The recombinant Cap protein has the ability to self...

  15. Identification of one critical amino acid that determines a conformational neutralizing epitope in the capsid protein of porcine circovirus type 2

    Directory of Open Access Journals (Sweden)

    Liu Chang M

    2011-08-01

    Full Text Available Abstract Background Porcine circovirus type 2 (PCV2 is associated with post-weaning multisystemic wasting syndrome (PMWS in pigs. Currently, there is considerable interest in the immunology of PCV2; in particular, the immunological properties of the capsid protein. This protein is involved in PCV2 immunogenicity and is a potential target for vaccine development. In this study, we identified one critical amino acid that determines a conformational neutralizing epitope in the capsid protein of PCV2. Results One monoclonal antibody (mAb; 8E4, against the capsid protein of PCV2, was generated and characterized in this study. 8E4 reacted with the genotype PCV2a (CL, LG and JF2 strains but not PCV2b (YJ, SH and JF strains by an immunoperoxidase monolayer assay (IPMA and a capture ELISA. Furthermore, the mAb had the capacity to neutralize PCV2a (CL, LG and JF2 strains but not PCV2b (YJ, SH and JF strains. One critical amino acid that determined a conformational neutralizing epitope was identified using mAb 8E4 and PCV2 infectious clone technique. Amino acid residues 47-72 in the capsid protein of PCV2a/CL were replaced with the corresponding region of PCV2b/YJ, and the reactivity of mAb 8E4 was lost. Further experiments demonstrated that one amino acid substitution, the alanine for arginine at position 59 (A59R in the capsid protein of PCV2a (CL, LG and JF2 strains, inhibited completely the immunoreactivity of three PCV2a strains with mAb 8E4. Conclusions It is concluded that the alanine at position 59 in the capsid protein of PCV2a (CL, LG and JF2 strains is a critical amino acid, which determines one neutralizing epitope of PCV2a (CL, LG and JF2 strains. This study provides valuable information for further in-depth mapping of the conformational neutralizing epitope, understanding antigenic difference among PCV2 strains, and development of a useful vaccine for control of PCV2-associated disease.

  16. Expression of Major Capsid Protein of Cainine Parvovirus by Yeast (Pichia pastoris and Efficient Purification using Arginine in Affinity Chromatography

    Directory of Open Access Journals (Sweden)

    Ying He

    2016-06-01

    Full Text Available An immunochromatographic (IC assay was developed for rapid detection of canine parvovirus using the monoclonal antibodies (McAbs against canine parvovirus (CPV-2. To prepare the McAbs, gene encoding the VP2 protein of CPV-2a was expressed in a Pichia pastoris expression vector pPICZ-A. The recombinant VP2 was similar antigenically function to the native capsid protein as demonstrated by Western blotting using CPV- 2 polyclonal antiserum. McAbs against CPV-2 were produced by fusing myeloma cell line SP2/0 with spleen cells from Balb/C mice immunized with purified recombinant VP2 protein. By ELISA it was shown that the McAbs specifically recognized VP2 epitopes of CPV-2 but not those of other canine viruses such as Canine distemper virus (CDV or canine adenovirus (CAV. An IC assay developed with the McAbs was suitable for rapid detection of canine parvovirus. Fecal samples (120 from dogs suspected of CPV-2 infection were analyzed by both haemaglutination (HA assay and the IC assay, and 52 and 53 samples were found positive for CPV-2, respectively. Comparison between the two different assays revealed that IC assay is as sensitive as HA; the sensitivity and specificity for the IC assay is 98.6% and 98.1%, respectively.

  17. Specific in vitro cleavage of Mason-Pfizer monkey virus capsid protein: evidence for a potential role of retroviral protease in early stages of infection

    International Nuclear Information System (INIS)

    Processing of Gag polyproteins by viral protease (PR) leads to reorganization of immature retroviral particles and formation of a ribonucleoprotein core. In some retroviruses, such as HIV and RSV, cleavage of a spacer peptide separating capsid and nucleocapsid proteins is essential for the core formation. We show here that no similar spacer peptide is present in the capsid-nucleocapsid (CA-NC) region of Mason-Pfizer monkey virus (M-PMV) and that the CA protein is cleaved in vitro by the PR within the major homology region (MHR) and the NC protein in several sites at the N-terminus. The CA cleavage product was also identified shortly after penetration of M-PMV into COS cells, suggesting that the protease-catalyzed cleavage is involved in core disintegration

  18. Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species

    OpenAIRE

    McKibbin, Rowan S.; Wilkinson, Mark D; Bailey, Paul C.; Flintham, John E.; Andrew, Lucy M.; Lazzeri, Paul A.; Gale, Mike D.; Lenton, John R.; Holdsworth, Michael J.

    2002-01-01

    The maize (Zea mays) Viviparous 1 (Vp1) transcription factor has been shown previously to be a major regulator of seed development, simultaneously activating embryo maturation and repressing germination. Hexaploid bread wheat (Triticum aestivum) caryopses are characterized by relatively weak embryo dormancy and are susceptible to preharvest sprouting (PHS), a phenomenon that is phenotypically similar to the maize vp1 mutation. Analysis of Vp-1 transcript structure in wheat embryos during grai...

  19. Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Cai Xuepeng

    2010-07-01

    Full Text Available Abstract Background Porcine circovirus 2 (PCV2 is a serious problem to the swine industry and can lead to significant negative impacts on profitability of pork production. Syndrome associated with PCV2 is known as porcine circovirus closely associated with post-weaning multisystemic wasting syndrome (PMWS. The capsid (Cap protein of PCV2 is a major candidate antigen for development of recombinant vaccine and serological diagnostic method. The recombinant Cap protein has the ability to self-assemble into virus-like particles (VLPs in vitro, it is particularly opportunity to develop the PV2 VLPs vaccine in Escherichia coli,(E.coli , because where the cost of the vaccine must be weighed against the value of the vaccinated pig, when it was to extend use the VLPs vaccine of PCV2. Results In this report, a highly soluble Cap-tag protein expressed in E.coli was constructed with a p-SMK expression vector with a fusion tag of small ubiquitin-like modifiers (SUMO. The recombinant Cap was purified using Ni2+ affinity resins, whereas the tag was used to remove the SUMO protease. Simultaneously, the whole native Cap protein was able to self-assemble into VLPs in vitro when viewed under an electron microscope. The Cap-like particles had a size and shape that resembled the authentic Cap. The result could also be applied in the large-scale production of VLPs of PCV2 and could be used as a diagnostic antigen or a potential VLP vaccine against PCV2 infection in pigs. Conclusion we have, for the first time, utilized the SUMO fusion motif to successfully express the entire authentic Cap protein of PCV2 in E. coli. After the cleavage of the fusion motif, the nCap protein has the ability to self-assemble into VLPs, which can be used as as a potential vaccine to protect pigs from PCV2-infection.

  20. Simple immunoblot and immunohistochemical detection of Penaeus stylirostris densovirus using monoclonal antibodies to viral capsid protein expressed heterologously.

    Science.gov (United States)

    Sithigorngul, Paisarn; Hajimasalaeh, Warunee; Longyant, Siwaporn; Sridulyakul, Pattarin; Rukpratanporn, Sombat; Chaivisuthangkura, Parin

    2009-12-01

    Penaeus stylirostris densovirus (PstDNV), called formerly infectious hypodermal and hematopoietic necrosis virus (IHHNV), is an important shrimp pathogen which can cause mortality in the blue shrimp Penaeus (Litopenaeus) stylirostris and stunting in the whiteleg shrimp Penaeus (Litopenaeus) vannamei. Five monoclonal antibodies (MAbs) were produced against the 37kDa capsid protein 3 (CP3) of PstDNV expressed heterologously in the form of a fusion protein with glutathione-S-transferase called GST-CP3. All MAbs belonged to the IgG2b subclass and could bind to GST-CP3 at 300 pg/spot in immunodot-blot tests. They could detect CP3 in naturally infected shrimp extracts by Western blotting and dot blotting and in shrimp tissues by immunohistochemistry without cross-reactivity to extracts from uninfected shrimps or shrimps infected with several other viruses. Although dot blot assay sensitivity was approximately 1000 times lower than that of one step PCR for PstDNV, it easily detected PstDNV infections in field samples of Penaeus monodon and Penaeus vannamei. PMID:19654023

  1. The complex subcellular distribution of satellite panicum mosaic virus capsid protein reflects its multifunctional role during infection

    International Nuclear Information System (INIS)

    Satellite panicum mosaic virus (SPMV) depends on its helper Panicum mosaic virus for replication and movement in host plants. The positive-sense single-stranded genomic RNA of SPMV encodes a 17-kDa capsid protein (CP) to form 16-nm virions. We determined that SPMV CP accumulates in both cytosolic and non-cytosolic fractions, but cytosolic accumulation of SPMV CP is exclusively associated with virions. An N-terminal arginine-rich motif (N-ARM) on SPMV CP is used to bind its cognate RNA and to form virus particles. Intriguingly, virion formation is dispensable for successful systemic SPMV RNA accumulation, yet this process still depends on an intact N-ARM. In addition, a C-terminal domain on the SPMV CP is necessary for self-interaction. Biochemical fractionation and fluorescent microscopy of green fluorescent protein-tagged SPMV CP demonstrated that the non-cytosolic SPMV CP is associated with the cell wall, the nucleus and other membranous organelles. To our knowledge, this is the first report that a satellite virus CP not only accumulates exclusively as virions in the cytosol but also is directed to the nucleolus and membranes. That SPMV CP is found both in the nucleus and the cell wall suggests its involvement in viral nuclear import and cell-to-cell transport

  2. Development of an enzyme-linked immunosorbent assay based on the murine leukemia virus p30 capsid protein.

    Science.gov (United States)

    Wu, Dai-Tze; Aiyer, Sriram; Villanueva, Rodrigo A; Roth, Monica J

    2013-11-01

    Retroviral vectors derived from the murine leukemia virus (MuLV) are widely used as the starting material in the development of vectors for gene therapy and critical in answering questions relating to viral pathogenesis. The p30 capsid (CA) is the major viral core protein and an internal group antigen in MuLV. In this study, an enzyme-linked immunosorbent assay (ELISA) was developed for quantitation of MuLV infectious particles with p30 CA core antigen protein. The ELISA was developed using several goat-polyclonal serum against MuLV p30 generated by the NCI as primary antibody and a rat-monoclonal antibody to CA available from ATCC. The MuLV p30 CA antigen was standardized against recombinant MuLV p30 CA expressed from bacteria. The assay is sensitive, accurate and linear within a defined concentration range of CA. Comparison with different MuLV quantitative methods including reporter gene transfer, reverse transcriptase activity assay, and viral RNA quantitative PCR, showed this ELISA protocol to be highly quantifiable within defined ranges, which can be correlated with infectious viral titer. PMID:23810854

  3. Molecular Architecture of the Retroviral Capsid.

    Science.gov (United States)

    Perilla, Juan R; Gronenborn, Angela M

    2016-05-01

    Retroviral capsid cores are proteinaceous containers that self-assemble to encase the viral genome and a handful of proteins that promote infection. Their function is to protect and aid in the delivery of viral genes to the nucleus of the host, and, in many cases, infection pathways are influenced by capsid-cellular interactions. From a mathematical perspective, capsid cores are polyhedral cages and, as such, follow well-defined geometric rules. However, marked morphological differences in shapes exist, depending on virus type. Given the specific roles of capsid in the viral life cycle, the availability of detailed molecular structures, particularly at assembly interfaces, opens novel avenues for targeted drug development against these pathogens. Here, we summarize recent advances in the structure and understanding of retroviral capsid, with particular emphasis on assemblies and the capsid cores. PMID:27039020

  4. Specific in vitro cleavage of Mason-Pfizer monkey virus capsid protein: evidence for a potential role of retroviral protease in early stages of infection

    Czech Academy of Sciences Publication Activity Database

    Rumlová, Michaela; Ruml, T.; Pohl, J.; Pichová, Iva

    2003-01-01

    Roč. 310, - (2003), s. 310-318. ISSN 0042-6822 R&D Projects: GA ČR GA203/00/1241; GA AV ČR IAB4055202 Institutional research plan: CEZ:AV0Z4055905 Keywords : M-PMV protease * HIV-1 capsid protein * HIV-1 protease Subject RIV: CE - Biochemistry Impact factor: 3.391, year: 2003

  5. 1H, 13C, and 15N resonance assignment of the N-terminal domainof Mason-Pfizer monkey virus capsid protein, CA 1-140

    Czech Academy of Sciences Publication Activity Database

    Macek, Pavel; Žídek, L.; Rumlová, Michaela; Pichová, Iva; Sklenář, V.

    2008-01-01

    Roč. 2, č. 1 (2008), s. 43-45. ISSN 1874-2718 R&D Projects: GA MŠk LC545; GA MŠk(CZ) LC06030; GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40550506 Keywords : nmr * assignment * capsid protein Subject RIV: EE - Microbiology, Virology Impact factor: 0.015, year: 2008

  6. Generation in yeast of recombinant virus-like particles of porcine circovirus type 2 capsid protein and their use for a serologic assay and development of monoclonal antibodies

    OpenAIRE

    Nainys, Juozas; Lasickiene, Rita; Petraityte-Burneikiene, Rasa; Dabrisius, Jonas; Lelesius, Raimundas; Sereika, Vilimas; Zvirbliene, Aurelija; Sasnauskas, Kestutis; Gedvilaite, Alma

    2014-01-01

    Background Porcine circovirus type 2 (PCV2) is considered to be an important emerging pathogen associated with a number of different syndromes and diseases in pigs known as PCV2-associated diseases. It has been responsible for significant mortality among pigs and remains a serious economic problem to the swine industry worldwide leading to significant negative impacts on profitability of pork production. Results In this study we have demonstrated that PCV2 capsid (Cap) protein based virus-lik...

  7. Modified Indirect Porcine Circovirus (PCV) Type 2-Based and Recombinant Capsid Protein (ORF2)-Based Enzyme-Linked Immunosorbent Assays for Detection of Antibodies to PCV

    OpenAIRE

    Nawagitgul, Porntippa; Harms, Perry A.; Morozov, Igor; Thacker, Brad J.; Sorden, Steven D.; Lekcharoensuk, Chalermpol; Paul, Prem S.

    2002-01-01

    Postweaning multisystemic wasting syndrome of swine associated with porcine circovirus (PCV) is a recently reported and economically important disease. Simple and reliable diagnostic methods are needed for detecting antibodies to PCV type 2 (PCV2) for monitoring of PCV infection. Here, we report the development of two modified indirect enzyme-linked immunosorbent assays (ELISAs): a PCV2 ELISA based on cell-culture-propagated PCV2 and an ORF2 ELISA based on recombinant major capsid protein. PC...

  8. Immune Response to Recombinant Capsid Proteins of Adenovirus in Humans: Antifiber and Anti-Penton Base Antibodies Have a Synergistic Effect on Neutralizing Activity

    OpenAIRE

    Gahéry-Ségard, Hanne; Farace, Françoise; Godfrin, Dominique; Gaston, Jesintha; Lengagne, Renée; Tursz, Thomas; Boulanger, Pierre; Guillet, Jean-Gérard

    1998-01-01

    Replication-deficient adenovirus used in humans for gene therapy induces a strong immune response to the vector, resulting in transient recombinant protein expression and the blocking of gene transfer upon a second administration. Therefore, in this study we examined in detail the capsid-specific humoral immune response in sera of patients with lung cancer who had been given one dose of a replication-defective adenovirus. We analyzed the immune response to the three major components of the vi...

  9. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore.

    Directory of Open Access Journals (Sweden)

    Anusha Panjwani

    2014-08-01

    Full Text Available Non-enveloped viruses must deliver their viral genome across a cell membrane without the advantage of membrane fusion. The mechanisms used to achieve this remain poorly understood. Human rhinovirus, a frequent cause of the common cold, is a non-enveloped virus of the picornavirus family, which includes other significant pathogens such as poliovirus and foot-and-mouth disease virus. During picornavirus cell entry, the small myristoylated capsid protein VP4 is released from the virus, interacts with the cell membrane and is implicated in the delivery of the viral RNA genome into the cytoplasm to initiate replication. In this study, we have produced recombinant C-terminal histidine-tagged human rhinovirus VP4 and shown it can induce membrane permeability in liposome model membranes. Dextran size-exclusion studies, chemical crosslinking and electron microscopy demonstrated that VP4 forms a multimeric membrane pore, with a channel size consistent with transfer of the single-stranded RNA genome. The membrane permeability induced by recombinant VP4 was influenced by pH and was comparable to permeability induced by infectious virions. These findings present a molecular mechanism for the involvement of VP4 in cell entry and provide a model system which will facilitate exploration of VP4 as a novel antiviral target for the picornavirus family.

  10. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry.

    Science.gov (United States)

    Hartmann, Erica M; Colquhoun, David R; Schwab, Kellogg J; Halden, Rolf U

    2015-04-01

    Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences. PMID:25603302

  11. Antibody Recognition of Porcine Circovirus Type 2 Capsid Protein Epitopes after Vaccination, Infection, and Disease▿†

    Science.gov (United States)

    Trible, Benjamin R.; Kerrigan, Maureen; Crossland, Nicholas; Potter, Megan; Faaberg, Kay; Hesse, Richard; Rowland, Raymond R. R.

    2011-01-01

    Open reading frame 2 (ORF2) of porcine circovirus type 2 (PCV2) codes for the 233-amino-acid capsid protein (CP). Baculovirus-based vaccines that express only ORF2 are protective against clinical disease following experimental challenge or natural infection. The goal of this study was to identify regions in CP preferentially recognized by sera from experimentally infected and vaccinated pigs and to compare these responses to those of pigs diagnosed with porcine circovirus-associated disease (PCVAD), including porcine multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS). The approach was to react porcine sera with CP polypeptide fragments followed by finer mapping studies using overlapping oligopeptides that covered amino acids 141 to 200. The results showed that vaccinated pigs preferentially recognized only the largest polypeptide fragment, CP(43-233). A subset of experimentally infected pigs and pigs with PDNS showed strong reactivity against a CP oligopeptide, 169-STIDYFQPNNKR-180. Alanine scanning identified Y-173, F-174, Q-175, and K-179 as important for antibody recognition. The results from this study support the notion of PCV2 modulation of immunity, including antibody responses that may represent a precursor for disease. The recognition of CP(169-180) and other polypeptides provides opportunities to devise diagnostic tests for monitoring the immunological effectiveness of vaccination. PMID:21430122

  12. Construction and immunogenicity of recombinant pseudotype baculovirus expressing the capsid protein of porcine circovirus type 2 in mice.

    Science.gov (United States)

    Fan, Huiying; Pan, Yongfei; Fang, Liurong; Wang, Dang; Wang, Shengping; Jiang, Yunbo; Chen, Huanchun; Xiao, Shaobo

    2008-06-01

    Baculovirus has emerged recently as a novel and attractive gene delivery vehicle for mammalian cells. Porcine circovirus type 2 (PCV2) is known to be associated with post-weaning multisystemic wasting syndrome (PMWS), an emerging swine disease which results in tremendous economic losses. In this study, baculovirus pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) was used as a vector to express capsid (Cap) protein, the most important immunogen of PCV2, under the transcriptional control of cytomegalovirus immediate early (CMV-IE) enhancer/promoter. The resultant recombinant baculovirus (BV-G-ORF2) efficiently transduced and expressed the Cap protein in mammalian cells, as demonstrated by Western blot and flow cytometric analyses. After direct vaccination with 1x10(8) or 1x10(9)plaque forming units (PFU)/mouse of BV-G-ORF2, significant PCV2-specific ELISA antibodies, neutralizing antibodies, as well as cellular immune responses could be induced in mice. BV-G-ORF2 exhibited better immunogenicity than a DNA vaccine encoding the Cap protein, even at a dose of 1x10(8)PFU/mouse. Taken together, the improved immunogenicity of BV-G-ORF2, together with the unique advantages of pseudotype baculovirus, including easy manipulation, simple scale-up, lack of toxicity, and no pre-existing antibody against baculovirus in the hosts, indicate that pseudotype baculovirus-mediated gene delivery can be utilized as an alternative strategy to develop a new generation of vaccines against PCV2 infection. PMID:18394722

  13. High-Resolution X-Ray Structure and Functional Analysis of the Murine Norovirus 1 Capsid Protein Protruding Domain

    Energy Technology Data Exchange (ETDEWEB)

    Taube, Stefan; Rubin, John R.; Katpally, Umesh; Smith, Thomas J.; Kendall, Ann; Stuckey, Jeanne A.; Wobus, Christiane E. (Michigan); (Danforth)

    2010-07-23

    Murine noroviruses (MNV) are closely related to the human noroviruses (HuNoV), which cause the majority of nonbacterial gastroenteritis. Unlike HuNoV, MNV grow in culture and in a small-animal model that represents a tractable model to study norovirus biology. To begin a detailed investigation of molecular events that occur during norovirus binding to cells, the crystallographic structure of the murine norovirus 1 (MNV-1) capsid protein protruding (P) domain has been determined. Crystallization of the bacterially expressed protein yielded two different crystal forms (Protein Data Bank identifiers [PDB ID], 3LQ6 and 3LQE). Comparison of the structures indicated a large degree of structural mobility in loops on the surface of the P2 subdomain. Specifically, the A{prime}-B{prime} and E{prime}-F{prime} loops were found in open and closed conformations. These regions of high mobility include the known escape mutation site for the neutralizing antibody A6.2 and an attenuation mutation site, which arose after serial passaging in culture and led to a loss in lethality in STAT1{sup -/-} mice, respectively. Modeling of a Fab fragment and crystal structures of the P dimer into the cryoelectron microscopy three-dimensional (3D) image reconstruction of the A6.2/MNV-1 complex indicated that the closed conformation is most likely bound to the Fab fragment and that the antibody contact is localized to the A{prime}-B{prime} and E{prime}-F{prime} loops. Therefore, we hypothesize that these loop regions and the flexibility of the P domains play important roles during MNV-1 binding to the cell surface.

  14. Cloning and Prokaryotic Expression of VP1 Gene of Foot-and-Mouth Disease Virus (FMDV) Type O%O型口蹄疫病毒结构蛋白基因VP1的克隆与原核表达

    Institute of Scientific and Technical Information of China (English)

    付薇; 陈磊; 熊毅; 潘琼; 王常伟; 陈进喜; 胡晓静; 刘棋

    2008-01-01

    According to the complete genome of foot-and-mouth disease virus (FMDV) type O, a pair of special primers was designed to amplify VP1 gene. The VP1 gene was amplified by RT-PCR and subsequently inserted into the expression vector pGEX-6p-1 and induced by IPTG. Then SDS-PAGE showed the expressed protein was 51 kD in molecular weight. Then the product was purified by GSTrap FF columns. The product was detected through Western-blot that showed the protein has antigenicity. It provided fundamental data and materials for further investigation on diagnosis method of FMDV.

  15. Generation and characterization of potential dengue vaccine candidates based on domain III of the envelope protein and the capsid protein of the four serotypes of dengue virus.

    Science.gov (United States)

    Suzarte, Edith; Marcos, Ernesto; Gil, Lázaro; Valdés, Iris; Lazo, Laura; Ramos, Yassel; Pérez, Yusleidi; Falcón, Viviana; Romero, Yaremis; Guzmán, María G; González, Sirenia; Kourí, Juan; Guillén, Gerardo; Hermida, Lisset

    2014-07-01

    Dengue is currently one of the most important arthropod-borne diseases, causing up to 25,000 deaths annually. There is currently no vaccine to prevent dengue virus infection, which needs a tetravalent vaccine approach. In this work, we describe the cloning and expression in Escherichia coli of envelope domain III-capsid chimeric proteins (DIIIC) of the four dengue serotypes as a tetravalent dengue vaccine candidate that is potentially able to generate humoral and cellular immunity. The recombinant proteins were purified to more than 85 % purity and were recognized by anti-dengue mouse and human sera. Mass spectrometry analysis verified the identity of the proteins and the correct formation of the intracatenary disulfide bond in the domain III region. The chimeric DIIIC proteins were also serotype-specific, and in the presence of oligonucleotides, they formed aggregates that were visible by electron microscopy. These results support the future use of DIIIC recombinant chimeric proteins in preclinical studies in mice for assessing their immunogenicity and efficacy. PMID:24420159

  16. The capsid protein of beak and feather disease virus binds to the viral DNA and is responsible for transporting the replication-associated protein into the nucleus.

    Science.gov (United States)

    Heath, Livio; Williamson, Anna-Lise; Rybicki, Edward P

    2006-07-01

    Circoviruses lack an autonomous DNA polymerase and are dependent on the replication machinery of the host cell for de novo DNA synthesis. Accordingly, the viral DNA needs to cross both the plasma membrane and the nuclear envelope before replication can occur. Here we report on the subcellular distribution of the beak and feather disease virus (BFDV) capsid protein (CP) and replication-associated protein (Rep) expressed via recombinant baculoviruses in an insect cell system and test the hypothesis that the CP is responsible for transporting the viral genome, as well as Rep, across the nuclear envelope. The intracellular localization of the BFDV CP was found to be directed by three partially overlapping bipartite nuclear localization signals (NLSs) situated between residues 16 and 56 at the N terminus of the protein. Moreover, a DNA binding region was also mapped to the N terminus of the protein and falls within the region containing the three putative NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome. Interestingly, whereas Rep expressed on its own in insect cells is restricted to the cytoplasm, coexpression with CP alters the subcellular localization of Rep to the nucleus, strongly suggesting that an interaction with CP facilitates movement of Rep into the nucleus. PMID:16809327

  17. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Erica M. [Center for Environmental Security and Security Defense Systems Initiative, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287-5904 (United States); Colquhoun, David R.; Schwab, Kellogg J. [Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205 (United States); Halden, Rolf U., E-mail: halden@asu.edu [Center for Environmental Security and Security Defense Systems Initiative, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287-5904 (United States); Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205 (United States)

    2015-04-09

    Highlights: • Mass spectrometry-based methods for norovirus quantification are developed. • Absolute quantification is achieved using internal heavy isotope-labeled standards. • A single labeled peptide serves in two distinct detection strategies. • These methods are validated for food, water, and soil analysis. • MS-based detection limits are lowered by two orders of magnitude. - Abstract: Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences.

  18. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry

    International Nuclear Information System (INIS)

    Highlights: • Mass spectrometry-based methods for norovirus quantification are developed. • Absolute quantification is achieved using internal heavy isotope-labeled standards. • A single labeled peptide serves in two distinct detection strategies. • These methods are validated for food, water, and soil analysis. • MS-based detection limits are lowered by two orders of magnitude. - Abstract: Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences

  19. Construction and immunogenicity of a recombinant pseudorabies virus co-expressing porcine circovirus type 2 capsid protein and interleukin 18.

    Science.gov (United States)

    Zheng, Lan-lan; Guo, Xiao-qing; Zhu, Qian-lei; Chao, An-jun; Fu, Peng-fei; Wei, Zhan-yong; Wang, Shu-juan; Chen, Hong-ying; Cui, Bao-an

    2015-04-01

    A novel recombinant pseudorabies virus (PRV) expressing porcine circovirus type 2 (PCV2) capsid protein and IL-18 was constructed. The PCV2 open reading frame 2 (ORF2) and porcine IL-18 genes were amplified by PCR and then inserted into the PRV transfer vector (pG) to produce a recombinant plasmid (pGO18). Plasmid pGO18 was transfected into porcine kidney cell (PK15) pre-infected with PRV HB98 vaccine strain to generate a recombinant virus. The recombinant virus PRV-ORF2-IL18 was purified by green fluorescent plaque purification and the inserts were confirmed by PCR, enzyme digestion, sequencing, and Western blot. The humoral and cellular responses induced by the recombinant virus were assessed in mice. Mice (n=10) were immunized with PRV-ORF2-IL18, PRV-ORF2, PRV HB98, or inactivated PCV2. PRV-ORF2-IL18 elicited high titers of ELISA and serum neutralizing antibodies and strong cell-mediated immune responses in mice as indicated by anti-PCV2 ELISA, PRV-neutralizing assay, PCV2 specific lymphocyte proliferation assay, CD3(+), CD4(+) and CD8(+) T lymphocytes analysis, respectively. And PRV-ORF2-IL18 immunization protected mice against a lethal challenge of a virulent PRV Fa strain and significantly reduced the amount of PCV2 viremia. These results suggest an adjuvant effect of IL-18 on cellular immune responses. The recombinant virus might be an attractive candidate vaccine for preventing PCV2 and PRV infections in pigs. PMID:25701744

  20. Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shionoiri, Nozomi; Nogariya, Osamu; Tanaka, Masayoshi; Matsunaga, Tadashi; Tanaka, Tsuyoshi, E-mail: tsuyo@cc.tuat.ac.jp

    2015-02-11

    Highlights: • Feline calicivirus was inactivated electrochemically by a factor of >5 log. • The electrochemical treatment was performed at 0.9 V (vs. Ag/AgCl) for 15 min. • Electrochemical treatment caused oxidation of viral proteins. • Oxidation of viral proteins can lead to loss of viral structural integrity. - Abstract: Pathogenic viral infections are an international public health concern, and viral disinfection has received increasing attention. Electrochemical treatment has been used for treatment of water contaminated by bacteria for several decades, and although in recent years several reports have investigated viral inactivation kinetics, the mode of action of viral inactivation by electrochemical treatment remains unclear. Here, we demonstrated the inactivation of feline calicivirus (FCV), a surrogate for human noroviruses, by electrochemical treatment in a developed flow-cell equipped with a screen-printed electrode. The viral infectivity titer was reduced by over 5 orders of magnitude after 15 min of treatment at 0.9 V vs. Ag/AgCl. Proteomic study of electrochemically inactivated virus revealed oxidation of peptides located in the viral particles; oxidation was not observed in the non-treated sample. Furthermore, transmission electron microscopy revealed that viral particles in the treated sample had irregular structures. These results suggest that electrochemical treatment inactivates FCV via oxidation of peptides in the structural region, causing structural deformation of virus particles. This first report of viral protein damage through electrochemical treatment will contribute to broadening the understanding of viral inactivation mechanisms.

  1. Genetic analysis of foot-and-mouth disease virus serotype A of Indian origin and detection of positive selection and recombination in leader protease- and capsid-coding regions

    Indian Academy of Sciences (India)

    S B Nagendrakumar; M Madhanmohan; P N Rangarajan; V A Srinivasan

    2009-03-01

    The leader protease (Lpro) and capsid-coding sequences (P1) constitute approximately 3 kb of the foot-and-mouth disease virus (FMDV). We studied the phylogenetic relationship of 46 FMDV serotype A isolates of Indian origin collected during the period 1968–2005 and also eight vaccine strains using the neighbour-joining tree and Bayesian tree methods. The viruses were categorized under three major groups – Asian, Euro-South American and European. The Indian isolates formed a distinct genetic group among the Asian isolates. The Indian isolates were further classified into different genetic subgroups (< 5% divergence). Post-1995 isolates were divided into two subgroups while a few isolates which originated in the year 2005 from Andhra Pradesh formed a separate group. These isolates were closely related to the isolates of the 1970s. The FMDV isolates seem to undergo reverse mutation or convergent evolution wherein sequences identical to the ancestors are present in the isolates in circulation. The eight vaccine strains included in the study were not related to each other and belonged to different genetic groups. Recombination was detected in the Lpro region in one isolate (A IND 20/82) and in the VP1 coding 1D region in another isolate (A RAJ 21/96). Positive selection was identified at aa positions 23 in the Lpro ( < 0.05; 0.046*) and at aa 171 in the capsid protein VP1 ( < 0.01; 0.003**).

  2. Essential role of the unordered VP2 n-terminal domain of the parvovirus MVM capsid in nuclear assembly and endosomal enlargement of the virion fivefold channel for cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Martinez, Cristina; Grueso, Esther [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain); Carroll, Miles [Health Protection Agency, Centre for Emergency Preparedness and Response, Porton Down, Salisbury SP4 OJG, Wilts (United Kingdom); Rommelaere, Jean [Deutsches Krebsforschungszentrum Division F010, Im Neuenheimer Feld 242, D-69120 Heidelberg (Germany); Almendral, Jose M., E-mail: jmalmendral@cbm.uam.es [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain)

    2012-10-10

    The unordered N-termini of parvovirus capsid proteins (Nt) are translocated through a channel at the icosahedral five-fold axis to serve for virus traffick. Heterologous peptides were genetically inserted at the Nt of MVM to study their functional tolerance to manipulations. Insertion of a 5T4-single-chain antibody at VP2-Nt (2Nt) yielded chimeric capsid subunits failing to enter the nucleus. The VEGFR2-binding peptide (V1) inserted at both 2Nt and VP1-Nt efficiently assembled in virions, but V1 disrupted VP1 and VP2 entry functions. The VP2 defect correlated with restricted externalization of V1-2Nt out of the coat. The specific infectivity of MVM and wtVP-pseudotyped mosaic MVM-V1 virions, upon heating and/or partial 2Nt cleavage, demonstrated that some 2Nt domains become intracellularly translocated out of the virus shell and cleaved to initiate entry. The V1 insertion defines a VP2-driven endosomal enlargement of the channel as an essential structural rearrangement performed by the MVM virion to infect.

  3. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice

    International Nuclear Information System (INIS)

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-γ secretion and protection experiments, mediated by CD4+ and CD8+ cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  4. Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression.

    Directory of Open Access Journals (Sweden)

    Frank Powilleit

    Full Text Available A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+ memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i a heterologous model protein (GFP, (ii a per se toxic protein (K28 alpha-subunit, and (iii a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A. Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production.

  5. Effect of the HBV Capsid Assembly Inhibitor Bayer 41-4109 on the Intracellular Localization of EGFP-Core Fusion Proteins

    Directory of Open Access Journals (Sweden)

    Aris Haryanto

    2015-11-01

    Full Text Available Bayer 41-4109 is heteroarylpyrimidine (HAP which has been identified as potent of HBV capsid assemblyinhibitor. The present study was to study effect of Bayer 41-4109 treatment on the intracellular localization ofEGFP-Core fusion proteins into HepG2 cells. Three recombinant plasmids of pEGFP-Core with single, double andtriple NLS of HBV core (EGFP-Core 1C, 2C and 3C and two recombinant plasmids with single and triple NLS ofSV-40 (EGFP-Core 1 and 3 SV-40 were used in this work. After transient transfected into HepG2 cells and treatedwith Bayer 41-4109, the intracellular localization of expressed fusion proteins from all plasmid constructions weredetermined and quantified under confocal laser microscope. Results shown that Bayer 41-4109 treatment in HepG2cells inhibited the nuclear localization of EGFP-Core with single of triple HBV core NLS. As well as the constructionsof expressed fusion protein with single and triple SV-40 NLS (EGFP-Core 1 and 3 SV-40 NLS showeddecreasing the nuclear localization after treated with Bayer 41-4109, even not as strong as EGFP-Core 1C and 3CNLS. Bayer 41-4109 has been identified as a potent inhibitors of HBV replication which has multiple effects on HBVcapsid assembly. It may inhibit virus replication by inducing assembly inappropriately and by misdirectingassembly decreasing the stability of normal capsids.Keywords: HBV capsid, Bayer 41-4109, EGFP-Core fusion protein, HepG2 cell

  6. Nuclear export and import of human hepatitis B virus capsid protein and particles.

    Directory of Open Access Journals (Sweden)

    Hung-Cheng Li

    Full Text Available It remains unclear what determines the subcellular localization of hepatitis B virus (HBV core protein (HBc and particles. To address this fundamental issue, we have identified four distinct HBc localization signals in the arginine rich domain (ARD of HBc, using immunofluorescence confocal microscopy and fractionation/Western blot analysis. ARD consists of four tight clustering arginine-rich subdomains. ARD-I and ARD-III are associated with two co-dependent nuclear localization signals (NLS, while ARD-II and ARD-IV behave like two independent nuclear export signals (NES. This conclusion is based on five independent lines of experimental evidence: i Using an HBV replication system in hepatoma cells, we demonstrated in a double-blind manner that only the HBc of mutant ARD-II+IV, among a total of 15 ARD mutants, can predominantly localize to the nucleus. ii These results were confirmed using a chimera reporter system by placing mutant or wild type HBc trafficking signals in the heterologous context of SV40 large T antigen (LT. iii By a heterokaryon or homokaryon analysis, the fusion protein of SV40 LT-HBc ARD appeared to transport from nuclei of transfected donor cells to nuclei of recipient cells, suggesting the existence of an NES in HBc ARD. This putative NES is leptomycin B resistant. iv We demonstrated by co-immunoprecipitation that HBc ARD can physically interact with a cellular factor TAP/NXF1 (Tip-associated protein/nuclear export factor-1, which is known to be important for nuclear export of mRNA and proteins. Treatment with a TAP-specific siRNA strikingly shifted cytoplasmic HBc to nucleus, and led to a near 7-fold reduction of viral replication, and a near 10-fold reduction in HBsAg secretion. v HBc of mutant ARD-II+IV was accumulated predominantly in the nucleus in a mouse model by hydrodynamic delivery. In addition to the revised map of NLS, our results suggest that HBc could shuttle rapidly between nucleus and cytoplasm via a novel

  7. Magnetic Resonance Imaging Revealed Splenic Targeting of Canine Parvovirus Capsid Protein VP2

    Science.gov (United States)

    Ma, Yufei; Wang, Haiming; Yan, Dan; Wei, Yanquan; Cao, Yuhua; Yi, Peiwei; Zhang, Hailu; Deng, Zongwu; Dai, Jianwu; Liu, Xiangtao; Luo, Jianxun; Zhang, Zhijun; Sun, Shiqi; Guo, Huichen

    2016-03-01

    Canine parvovirus (CPV) is a highly contagious infectious virus, whose infectious mechanism remains unclear because of acute gastroenteritis and the lack of an efficient tool to visualize the virus in real time during virology research. In this study, we developed an iron oxide nanoparticle supported by graphene quantum dots (GQD), namely, FeGQD. In this composite material, GQD acts as a stabilizer; thus, vacancies are retained on the surface for further physical adsorption of the CPV VP2 protein. The FeGQD@VP2 nanocomposite product showed largely enhanced colloidal stability in comparison with bare FeGQD, as well as negligible toxicity both in vitro and in vivo. The composite displayed high uptake into transferrin receptor (TfR) positive cells, which are distinguishable from FeGQD or TfR negative cells. In addition, the composite developed a significant accumulation in spleen rather than in liver, where bare FeGQD or most iron oxide nanoparticles gather. As these evident targeting abilities of FeGQD@VP2 strongly suggested, the biological activity of CPV VP2 was retained in our study, and its biological functions might correspond to CPV when the rare splenic targeting ability is considered. This approach can be applied to numerous other biomedical studies that require a simple yet efficient approach to track proteins in vivo while retaining biological function and may facilitate virus-related research.

  8. Homotypic interactions of the infectious bursal disease virus proteins VP3, pVP2, VP4, and VP5: mapping of the interacting domains

    International Nuclear Information System (INIS)

    Infectious bursal disease virus (IBDV), a nonenveloped double-stranded RNA virus of chicken, encodes five proteins. Of these, the RNA-dependent RNA polymerase (VP1) is specified by the smaller genome segment, while the large segment directs synthesis of a nonstructural protein (VP5) and a structural protein precursor from which the capsid proteins pVP2 and VP3 as well as the viral protease VP4 are derived. Using the recently redefined processing sites of the precursor, we have reevaluated the homotypic interactions of the viral proteins using the yeast two-hybrid system. Except for VP1, which interacted weakly, all proteins appeared to self-associate strongly. Using a deletion mutagenesis approach, we subsequently mapped the interacting domains in these polypeptides, where possible confirming the observations made in the two-hybrid system by performing coimmunoprecipitation analyses of tagged protein constructs coexpressed in avian culture cells. The results revealed that pVP2 possesses multiple interaction domains, consistent with available structural information about this external capsid protein. VP3-VP3 interactions were mapped to the amino-terminal part of the polypeptide. Interestingly, this domain is distinct from two other interaction domains occurring in this internal capsid protein: while binding to VP1 has been mapped to the carboxy-terminal end of the protein, interaction with the genomic dsRNA segments has been suggested to occur just upstream thereof. No interaction sites could be assigned to the VP4 protein; any deletion applied abolished its self-association. Finally, one interaction domain was detected in the central, most hydrophobic region of VP5, supporting the idea that this virulence determinant may function as a membrane pore-forming protein in infected cells

  9. Molecular Identification of Enterovirus by Analyzing a Partial VP1 Genomic Region with Different Methods

    OpenAIRE

    Palacios, G.; Casas, I.; Tenorio, A.; Freire, C.

    2002-01-01

    VP1 is the most suitable region for use in the identification of enterovirus. Although VP1 sequencing methods may vary, it is necessary to agree on a common strategy of sequence analysis. Identification of a strain type may be achieved by three different approaches: pairwise sequence alignment, multiple-sequence alignment, and phylogenetic inference. Other methods are also available, but they are not simple enough to be performed at a virology laboratory. The performances of these methods wer...

  10. Structure of N-linked oligosaccharides attached to chlorovirus PBCV-1 major capsid protein reveals unusual class of complex N-glycans.

    Science.gov (United States)

    De Castro, Cristina; Molinaro, Antonio; Piacente, Francesco; Gurnon, James R; Sturiale, Luisa; Palmigiano, Angelo; Lanzetta, Rosa; Parrilli, Michelangelo; Garozzo, Domenico; Tonetti, Michela G; Van Etten, James L

    2013-08-20

    The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) the glycans are attached to the protein by a β-glucose linkage; (iii) the Asn-linked glycans are not located in a typical N-X-(T/S) consensus site; and (iv) the process probably occurs in the cytoplasm. The four glycoforms share a common core structure, and the differences are related to the nonstoichiometric presence of two monosaccharides. The most abundant glycoform consists of nine neutral monosaccharide residues, organized in a highly branched fashion. Among the most distinctive features of the glycoforms are (i) a dimethylated rhamnose as the capping residue of the main chain, (ii) a hyperbranched fucose unit, and (iii) two rhamnose residues with opposite absolute configurations. These glycoforms differ from what has been reported so far in the three domains of life. Considering that chloroviruses and other members of the family Phycodnaviridae may have a long evolutionary history, we suggest that the chlorovirus glycosylation pathway is ancient, possibly existing before the development of the endoplasmic reticulum and Golgi pathway, and involves still unexplored mechanisms. PMID:23918378

  11. [Expression of cDNA of the Gene for the Capsid Protein VP2 of German Cockroach Densovirus in the Transgenic Strain of Drosophila melanogaster].

    Science.gov (United States)

    Kozlov, E N; Martynova, E U; Roshina, N V; Karakozova, M V; Mukha, D V

    2016-04-01

    Transgenic strains of Drosophila melanogaster capable of expressing a cDNA fragment corresponding to open reading frame (ORF) of the gene for the German cockroach densonucleosis virus capsid protein VP2 (ORF VP2) in specific tissues and at a certain stage of development depending on the type of chosen driver strains (GAL-UAS system) were obtained. The ORF VP2 transcription was examined at the imago stage after crossing the obtained transgenic Drosophila with the driver line expressing the inducer protein (GAL4) under control of actin promoter (the ORF VP2 expression is induced in all tissues of the first-generation Drosophila). It was demonstrated that the greater part of transcribed foreign RNA was represented by three spliced variants in which RNA fragments either between nucleotides 137 and 353 or between nucleotides 609 and 1925 were excised; the third spliced variant was represented by RNA lacking both introns. Using the next-generation sequencing (NGS) technique, the proportion of unspliced form relative to spliced variants of the analyzed RNA was assessed. It was shown that the ratio of unspliced form to the identified spliced variants of the analyzed RNA was approximately 1:6. It is suggested that splicing of viral RNA foreign to Drosophila can be a sort of defense mechanism preventing the large-scale production of the capsid protein, potentially hazardous to the host organism. PMID:27529987

  12. Alphavirus capsid proteins self-assemble into core-like particles in insect cells: A promising platform for nanoparticle vaccine development.

    Science.gov (United States)

    Hikke, Mia C; Geertsema, Corinne; Wu, Vincen; Metz, Stefan W; van Lent, Jan W; Vlak, Just M; Pijlman, Gorben P

    2016-02-01

    The mosquito-borne chikungunya virus (CHIKV) causes arthritic diseases in humans, whereas the aquatic salmonid alphavirus (SAV) is associated with high mortality in aquaculture of salmon and trout. Using modern biotechnological approaches, promising vaccine candidates based upon highly immunogenic, enveloped virus-like particles (eVLPs) have been developed. However, the eVLP structure (core, lipid membrane, surface glycoproteins) is more complex than that of non-enveloped, protein-only VLPs, which are structurally and morphologically 'simple'. In order to develop an alternative to alphavirus eVLPs, in this paper we engineered recombinant baculovirus vectors to produce high levels of alphavirus core-like particles (CLPs) in insect cells by expression of the CHIKV and SAV capsid proteins. The CLPs localize in dense nuclear bodies within the infected cell nucleus and are purified through a rapid and scalable protocol involving cell lysis, sonication and low-speed centrifugation steps. Furthermore, an immunogenic epitope from the alphavirus E2 glycoprotein can be successfully fused to the N-terminus of the capsid protein without disrupting the CLP self-assembling properties. We propose that immunogenic epitope-tagged alphavirus CLPs produced in insect cells present a simple and perhaps more stable alternative to alphavirus eVLPs. PMID:26287127

  13. Immune Response to Recombinant Capsid Proteins of Adenovirus in Humans: Antifiber and Anti-Penton Base Antibodies Have a Synergistic Effect on Neutralizing Activity

    Science.gov (United States)

    Gahéry-Ségard, Hanne; Farace, Françoise; Godfrin, Dominique; Gaston, Jesintha; Lengagne, Renée; Tursz, Thomas; Boulanger, Pierre; Guillet, Jean-Gérard

    1998-01-01

    Replication-deficient adenovirus used in humans for gene therapy induces a strong immune response to the vector, resulting in transient recombinant protein expression and the blocking of gene transfer upon a second administration. Therefore, in this study we examined in detail the capsid-specific humoral immune response in sera of patients with lung cancer who had been given one dose of a replication-defective adenovirus. We analyzed the immune response to the three major components of the viral capsid, hexon (Hx), penton base (Pb), and fiber (Fi). A longitudinal study of the humoral response assayed on adenovirus particle-coated enzyme-linked immunosorbent assay plates showed that patients had preexisting immunity to adenovirus prior to the administration of adenovirus–β-gal. The level of the response increased in three patients after adenovirus administration and remained at a maximum after three months. One patient had a strong immune response to adenovirus prior to treatment, and this response was unaffected by adenovirus administration. Sera collected from the patients were assayed for recognition of each individual viral capsid protein to determine more precisely the molecular basis of the humoral immune response. Clear differences existed in the humoral response to the three major components of the viral capsid in serum from humans. Sequential appearance of these antibodies was observed: anti-Fi antibodies appeared first, followed by anti-Pb antibodies and then by anti-Hx antibodies. Moreover, anti-Fi antibodies preferentially recognized the native trimeric form of Fi protein, suggesting that they recognized conformational epitopes. Our results showed that sera with no neutralizing activity contained only anti-Fi antibodies. In contrast, neutralizing activity was only obtained with sera containing anti-Fi and anti-Pb antibodies. More importantly, we showed that anti-native Fi and anti-Pb antibodies had a synergistic effect on neutralization. The

  14. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.

    Science.gov (United States)

    Marreiros, Rita; Müller-Schiffmann, Andreas; Bader, Verian; Selvarajah, Suganya; Dey, Debendranath; Lingappa, Vishwanath R; Korth, Carsten

    2015-09-01

    Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation

  15. Large-scale functional purification of recombinant HIV-1 capsid.

    Directory of Open Access Journals (Sweden)

    Magdeleine Hung

    Full Text Available During human immunodeficiency virus type-1 (HIV-1 virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.

  16. Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yun; Hou, Guangjin; Suiter, Christopher L.; Ahn, Jinwoo; Byeon, In-Ja L.; Lipton, Andrew S.; Burton, Sarah D.; Hung, Ivan; Gorkov, Peter L.; Gan, Zhehong; Brey, William W.; Rice, David M.; Gronenborn, Angela M.; Polenova, Tatyana E.

    2013-11-27

    Maturation of HIV-1 virus into an infectious virion requires cleavage of the Gag polyprotein into its constituent domains and formation of a conical capsid core that encloses viral RNA and a small complement of proteins for replication. The final step of this process is the cleavage of the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into a conical capsid. The mechanism of this step, including the conformation of the SP1 peptide in CA-SP1, is under intense debate. In this report, we examine the tubular assemblies of CA and the CA-SP1 maturation intermediate using Magic Angle Spinning NMR spectroscopy. At the magnetic fields of 19.9 T and above, tubular CA and CA-SP1 assemblies yield outstanding-quality 2D and 3D MAS NMR spectra, which are amenable to resonance assignments and detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two sequence variants reveals that remarkably, the conformation of SP1 tail, of the functionally important CypA loop, and of the loop preceding helix 8 are sequence dependent and modulated by the residue variations at distal sites. These findings challenge the role of SP1 as a conformational switch in the maturation process and establish sequence-dependent conformational plasticity in CA.

  17. 猪嵴病毒VP1基因序列测定与分析%Sequenceing and analysis of VP1 gene of procine kobuvirus

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    [目的]对猪嵴病毒(PKV) VP1基因进行测序与同源性分析,确认其可能来源,为今后的生物学特性分析及仔猪腹泻防治工作提供科学依据.[方法]采用RT-PCR对GXPKV-1毒株VP1基因进行克隆,运用DNASTAR软件包中Megalign程序对测序获得的VP1基因进行核苷酸序列及其推导氨基酸序列同源性分析.[结果]GXPKV-1毒株ⅥP1基因全长762 bp,共编码254个氨基酸,与GenBank已公布的13株参考毒株VP1基因的核苷酸同源性为74.1%~85.4%,推导氨基酸同源性为81.1%~93.3%.根据VP1基因推导氨基酸序列进行系统发育进化分析,发现GXPKV-1毒株与Gansu-2012、JS1419等国内参考毒株同属于同一亚群,而与瑞士分离株Swine-S-1-2007、泰国分离株THA-2008、美国分离株H24-2012-USA及四川分离株CHN-SC-2011-02等的亲缘关系较远.[结论]猪嵴病毒GXPKV-1毒株起源于国内流行毒株的传播,在新的环境下虽然其VP1基因核苷酸发生变异,但由于同义翻译,推导氨基酸的同源性仍然较高,说明碱基突变并未引起蛋白结构的改变.

  18. Crystallization and X-ray analysis of the T = 4 particle of hepatitis B capsid protein with an N-terminal extension

    International Nuclear Information System (INIS)

    Hepatitis B virus capsids have significant potential as carriers for immunogenic peptides. The crystal structure of the T = 4 particle of hepatitis B core protein containing an N-terminal extension reveals that the fusion peptide is exposed on the exterior of the particle. Hepatitis B core (HBc) particles have been extensively exploited as carriers for foreign immunological epitopes in the development of multicomponent vaccines and diagnostic reagents. Crystals of the T = 4 HBc particle were grown in PEG 20 000, ammonium sulfate and various types of alcohols. A temperature jump from 277 or 283 to 290 K was found to enhance crystal growth. A crystal grown using MPD as a cryoprotectant diffracted X-rays to 7.7 Å resolution and data were collected to 99.6% completeness at 8.9 Å. The crystal belongs to space group P212121, with unit-cell parameters a = 352.3, b = 465.5, c = 645.0 Å. The electron-density map reveals a protrusion that is consistent with the N-terminus extending out from the surface of the capsid. The structure presented here supports the idea that N-terminal insertions can be exploited in the development of diagnostic reagents, multicomponent vaccines and delivery vehicles into mammalian cells

  19. Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability.

    Science.gov (United States)

    Maree, Francois F; Blignaut, Belinda; de Beer, Tjaart A P; Rieder, Elizabeth

    2013-01-01

    Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces. PMID:23717387

  20. Therapeutic efficacy of an oncolytic adenovirus containing RGD ligand in minor capsid protein IX and Fiber, Δ24DoubleRGD, in an ovarian cancer model

    Directory of Open Access Journals (Sweden)

    Anton V Borovjagin

    2012-02-01

    Full Text Available Ovarian cancer is the leading cause of gynecological disease death despite advances in medicine. Therefore, novel strategies are required for ovarian cancer therapy. Conditionally replicative adenoviruses (CRAds, genetically modified as anti-cancer therapeutics, are one of the most attractive candidate agents for cancer therapy. However, a paucity of coxsackie B virus and adenovirus receptor (CAR expression on the surface of ovarian cancer cells has impeded treatment of ovarian cancer using this approach.This study sought to engineer a CRAd with enhanced oncolytic ability in ovarian cancer cells, “Δ24DoubleRGD.” Δ24DoubleRGD carries an arginine-glycine-aspartate (RGD motif incorporated into both fiber and capsid protein IX (pIX and its oncolytic efficacy was evaluated in ovarian cancer. In vitro analysis of cell viability showed that infection of ovarian cancer cells with Δ24DoubleRGD leads to increased cell killing relative to the control CRAds. Data from this study suggested that not only an increase in number of RGD motifs on the CRAd capsid, but also a change in the repertoir of targeted integrins could lead to enhanced oncolytic potency of Δ24DoubleRGD in ovarian cancer cells in vitro. In an intraperitoneal model of ovarian cancer, mice injected with Δ24DoubleRGD showed, however, a similar survival rate as mice treated with control CRAds.

  1. Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability.

    Directory of Open Access Journals (Sweden)

    Francois F Maree

    Full Text Available Foot-and-mouth disease virus (FMDV initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces.

  2. A porcine circovirus-2 mutant isolated in Brazil contains low-frequency substitutions in regions of immunoprotective epitopes in the capsid protein.

    Science.gov (United States)

    Salgado, Rafael Locatelli; Vidigal, Pedro Marcus Pereira; Gonzaga, Natalia F; de Souza, Luiz F L; Polêto, Marcelo D; Onofre, Thiago Souza; Eller, Monique R; Pereira, Carlos Eduardo Real; Fietto, Juliana L R; Bressan, Gustavo C; Guedes, Roberto M C; Almeida, Márcia R; Silva Júnior, Abelardo

    2015-11-01

    Porcine circovirus-2 (PCV2) is the etiologic agent of several diseases in pigs, including multi-systemic wasting syndrome (PMWS). In this work, a new mutant PCV2b was isolated from PMWS-affected pigs on a Brazilian farm. Its genome showed high sequence similarity (>99% identity) to those from a group of emerging mutants isolated from cases of PMWS outbreaks in vaccinated pigs in China, the USA and South Korea. Here, we show that these isolates share a combination of low-frequency substitutions (single amino acid polymorphisms with a frequency of ≤25%) in the viral capsid protein, mainly in regions of immunoprotective epitopes, and an additional lysine residue at position 234. These isolates were phylogenetically grouped in the PCV2b clade, reinforcing the idea of the emergence of a new group of mutants PCV2b associated with outbreaks worldwide. The identification of these polymorphisms in the viral capsid highlights the importance of considering these isolates for the development of more-effective vaccines. PMID:26271152

  3. Comparative genetic analysis of VP4, VP1 and 3D gene regions of enterovirus 71 and coxsackievirus A16 circulating in Malaysia between 1997-2008.

    Science.gov (United States)

    Chan, Y F; Wee, K L; Chiam, C W; Khor, C S; Chan, S Y; Amalina W, M Z; Sam, I C

    2012-09-01

    Three genomic regions, VP4 capsid, VP1 capsid and 3D RNA polymerase of human enterovirus 71 (EV-71) and coxsackievirus A16 (CV-A16) were sequenced to understand the evolution of these viruses in Malaysia. A total of 42 EV-71 and 36 CV-A16 isolates from 1997- 2008 were sequenced. Despite the presence of many EV-71 subgenotypes worldwide, only subgenotypes B3, B4, B5, C1 and C2 were present in Malaysia. Importation of other subgenotypes such as C3, C4/D and C5 from other countries was infrequent. For CV-A16, the earlier subgenotype B1 was replaced by subgenotypes B2a and the recent B2c. Subgenotype B2a was present throughout the study while B2c only emerged in 2005. No genetic signatures could be attributed to viral virulence suggesting that host factors have a major role in determining the outcome of infection. Only three EV-71 B3 isolates showed non-consistent phylogeny in the 3D RNA polymerase region which indicated occurrence of recombination in EV-71. High genetic diversity was observed in the Malaysian EV-71 but Malaysian CV-A16 showed low genetic diversity in the three genomic regions sequenced. EV-71 showed strong purifying selection, but that occurred to a lesser extent in CV-A16. PMID:23018509

  4. Functional exchangeability of the nuclear localization signal (NLS of capsid protein between PCV1 and PCV2 in vitro: Implications for the role of NLS in viral replication

    Directory of Open Access Journals (Sweden)

    He Yongqiang

    2011-07-01

    Full Text Available Abstract Background Porcine circovirus type 2 (PCV2 is believed to be the primary causative agent of postweaning multisystemic wasting syndrome (PMWS. It is supposed that capsid protein of PCV may contribute to replication control via interaction between Cap and Rep in the nucleoplasm. In this study, we described the construction and in vitro characterization of NLS-exchanged PCV DNA clones based on a PMWS-associated PCV2b isolate from China to determine the role of ORF2 NLS in PCV replication. Results The PCV1, PCV2, PCV2-NLS1 and PCV1-NLS2 DNA clone were generated by ligating a copy of respective genome in tandem with a partial duplication. The PCV2-NLS1 and PCV1-NLS2 DNA clone contained a chimeric genome in which the ORF2 NLS was exchanged. The four DNA clones were all confirmed to be infectious in vitro when transfected into PK-15 cells, as PCV capsid protein were expressed in approximately 10-20% of the transfected cells. The in vitro growth characteristics of the DNA clones were then determined and compared. All the recovered progeny viruses gave rise to increasing infectious titers during passages and were genetically stable by genomic sequencing. The chimeric PCV1-NLS2 and PCV2-NLS1 viruses had the final titers of about 104.2 and 103.8 TCID50/ml, which were significantly lower than that of PCV1 and PCV2 (105.6 and 105.0 TCID50/ml, respectively. When the ORF2 NLS exchanged, the mutant PCV2 (PCV2-NLS1 still replicated less efficiently and showed lower infectious titer than did PCV1 mutant (PCV1-NLS2, which was consistent with the distinction between wild type PCV1 and PCV2. Conclusions Recovery of the chimeiric PCV1-NLS2 and PCV2-NLS1 progeny viruses indicate that the nuclear localization signal sequence of capsid protein are functionally exchangeable between PCV1 and PCV2 with respect to the role of nuclear importing and propagation. The findings also reveal that ORF2 NLS play an accessory role in the replication of PCV. However, we found

  5. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    International Nuclear Information System (INIS)

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER

  6. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Sonali; Rao, A.L.N., E-mail: arao@ucr.edu

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  7. Crystallization and preliminary crystallographic analysis of the major capsid proteins VP16 and VP17 of bacteriophage P23-77

    International Nuclear Information System (INIS)

    The major capsid proteins VP16 and VP17 of bacteriophage P23-77 have been crystallized using both recombinant and purified virus and preliminary diffraction analyses have been performed. Members of the diverse double-β-barrel lineage of viruses are identified by the conserved structure of their major coat protein. New members of this lineage have been discovered based on structural analysis and we are interested in identifying relatives that utilize unusual versions of the double-β-barrel fold. One candidate for such studies is P23-77, an icosahedral dsDNA bacteriophage that infects the extremophile Thermus thermophilus. P23-77 has two major coat proteins, namely VP16 and VP17, of a size consistent with a single-β-barrel core fold. These previously unstudied proteins have now been successfully expressed as recombinant proteins, purified and crystallized using hanging-drop and sitting-drop vapour-diffusion methods. Crystals of coat proteins VP16 and VP17 have been obtained as well as of a putative complex. In addition, virus-derived material has been crystallized. Diffraction data have been collected to beyond 3 Å resolution for five crystal types and structure determinations are in progress

  8. Cloning, expression of the major capsid protein gene from marine algae Emiliania huxleyi virus and the possible use in detection of virus infection

    Directory of Open Access Journals (Sweden)

    Jingwen Liu

    2013-09-01

    Full Text Available Here we described the cloning, bioinformatic characterization and expression in Escherichia coli of the major capsid protein (MCP from marine unicellular algae Emiliania huxleyi virus EhV-99B1 isolate. The purified recombinant MCP was used to develop a polyclonal antibody for testing viral infection. The full length open-reading frame (ORF of MCP encodes a protein of 496 amino acids with a calculated molecular mass of 55 kDa and Ip 6.34. Hydropathy analysis of MCP showed that there were 6 largely hydrophobic domains, which may be important for the interaction with the envelope protein. The conserved region of EhV strains MCP had high similarity in amino acid sequence and secondary structure which allow us to develop a specific biomarker for EhVs infection detection. The full length ORF was subcloned into expression vector pGEX-4T-3 for overexpression in E. coli as glutathione-Stransferase-L1 (GST-L1 fusion protein and the soluble recombinant protein was used to generate polyclonal antibodies in mice. The obtained antisera reacted in Western immunoblots with the same protein both in purified EhV-99B1 virions and infected host cells sample. These shows that the antiserum against recombinant EhV-MCP offers the potential to develop immunofluorescence techniques for the detection of EhVs infected cells.

  9. Role of electrostatic interactions in the assembly of empty spherical viral capsids

    CERN Document Server

    Siber, Antonio

    2007-01-01

    We examine the role of electrostatic interactions in the assembly of empty spherical viral capsids. The charges on the protein subunits that make the viral capsid mutually interact and are expected to yield electrostatic repulsion acting against the assembly of capsids. Thus, attractive protein-protein interactions of non-electrostatic origin must act to enable the capsid formation. We investigate whether the interplay of repulsive electrostatic and attractive interactions between the protein subunits can result in the formation of spherical viral capsids of a preferred radius. For this to be the case, we find that the attractive interactions must depend on the angle between the neighboring protein subunits (i.e. on the mean curvature of the viral capsid) so that a particular angle(s) is (are) preferred energywise. Our results for the electrostatic contributions to energetics of viral capsids nicely correlate with recent experimental determinations of the energetics of protein-protein contacts in Hepatitis B ...

  10. Baculovirus as a PRRSV and PCV2 bivalent vaccine vector: baculovirus virions displaying simultaneously GP5 glycoprotein of PRRSV and capsid protein of PCV2.

    Science.gov (United States)

    Xu, Xin-Gang; Wang, Zhi-Sheng; Zhang, Qi; Li, Zhao-Cai; Ding, Li; Li, Wei; Wu, Hung-Yi; Chang, Ching-Dong; Lee, Long-Huw; Tong, De-Wen; Liu, Hung-Jen

    2012-02-01

    The GP5 glycoprotein of PRRSV is the main target for inducing neutralizing antibodies and protective immunity in the natural host. The capsid (Cap) protein is the major immunogenic protein and associated with the production of PCV2-specific neutralizing antibodies. In the present study, one genetic recombinant baculovirus BacSC-Dual-GP5-Cap was constructed. This virus displays simultaneously histidine-tagged GP5 and Cap proteins with the baculovirus glycoprotein gp64 TM and CTD on the virion surface as well as the surface of the virus-infected cells. After infection, the GP5 and Cap proteins were expressed and anchored simultaneously on the plasma membrane of Sf-9 cells, as revealed by Western blot and confocal microscopy. This report demonstrated first that both GP5 and Cap proteins were displayed successfully on the viral surface, revealed by immunogold electron microscopy. Vaccination of swine with recombinant baculovirus BacSC-Dual-GP5-Cap elicited significantly higher GP5 and Cap ELISA antibody titers in swine than the control groups. Virus neutralization test also showed that serum from the BacSC-Dual-GP5-Cap treated swine had significant levels of virus neutralization titers. Lymphocyte proliferation responses could be induced in swine immunized with BacSC-Dual-GP5-Cap than the control groups. These findings demonstrate that the BacSC-Dual-GP5-Cap bivalent subunit vaccine can be a potential vaccine against PRRSV and PCV2 infections. PMID:22172969

  11. Modeling HIV-1 viral capsid nucleation by dynamical systems.

    Science.gov (United States)

    Sadre-Marandi, Farrah; Liu, Yuewu; Liu, Jiangguo; Tavener, Simon; Zou, Xiufen

    2015-12-01

    There are two stages generally recognized in the viral capsid assembly: nucleation and elongation. This paper focuses on the nucleation stage and develops mathematical models for HIV-1 viral capsid nucleation based on six-species dynamical systems. The Particle Swarm Optimization (PSO) algorithm is used for parameter fitting to estimate the association and dissociation rates from biological experiment data. Numerical simulations of capsid protein (CA) multimer concentrations demonstrate a good agreement with experimental data. Sensitivity and elasticity analysis of CA multimer concentrations with respect to the association and dissociation rates further reveals the importance of CA trimer-of- dimers in the nucleation stage of viral capsid self- assembly. PMID:26596714

  12. Imunogenicidade de proteínas do capsídeo do Cowpea severe mosaic virus (CPSMV Capsid protein immunogenicity of Cowpea severe mosaic virus (CPSMV

    Directory of Open Access Journals (Sweden)

    José Evando Aguiar Beserra Júnior

    2009-02-01

    Full Text Available A análise SDS-PAGE do Cowpea severe mosaic virus (CPSMV purificado revelou a migração de três frações protéicas estimadas em 43, 23 e 21 kDa, correspondentes às proteínas do capsídeo: denominadas proteína maior (43 kDa e menor (23 kDa; intacta e 21 kDa; clivada. As proteínas do capsídeo, na sua forma nativa, foram utilizadas na imunização de camundongos pelas vias oral e nasal, durante 10 dias consecutivos. As frações protéicas de 43 e 23 kDa, em sua forma desnaturada, foram utilizadas para imunização subcutânea. A resposta imunológica da mucosa foi avaliada pela proliferação celular das placas de Peyer de camundongos imunizados pela via oral com o CPSMV purificado. Ficou demonstrado que o CPSMV induz resposta imunológica, evidenciada pela síntese de anticorpos séricos, quando administrado na sua forma nativa pelas vias oral e nasal ou através de suas proteínas do capsídeo desnaturadas, pela via subcutânea. Não foi necessário o uso de adjuvantes, quer por via oral quer por via nasal. As frações protéicas de 43 e 23 kDa mostraram-se responsáveis pela imunogenicidade do vírus, como foi evidenciado pela síntese de anticorpos específicos detectados por ELISA. A análise da proliferação celular da placas de Peyer revelou um aumento (r=0,88 do número de leucócitos ao longo de 42 dias após a imunização. Esses resultados reforçam a possibilidade do uso do CPSMV como vetor seguro de antígenos de doenças humanas/animais pouco imunogênicos para produção de vacinas.SDS-PAGE analysis of purified Cowpea severe mosaic virus (CPSMV revealed the migration of three protein fractions of 43, 23 and 21 kDa, corresponding to the capsid protein called large protein (43 kDa and small protein (23 kDa; intact and 21 kDa; cleaved. The capsid proteins, in their native form, were used to immunize mice through oral and nasal routes for ten consecutive days. The denatured form of the 43 and 23 kDa protein fractions were

  13. Development of an IP-Free Biotechnology Platform for Constitutive Production of HPV16 L1 Capsid Protein Using the Pichia pastoris PGK1 Promoter

    Directory of Open Access Journals (Sweden)

    F. C. Mariz

    2015-01-01

    Full Text Available The human papillomavirus (HPV L1 major capsid protein, which forms the basis of the currently available vaccines against cervical cancer, self-assembles into virus-like particles (VLPs when expressed heterologously. We report the development of a biotechnology platform for HPV16 L1 protein expression based on the constitutive PGK1 promoter (PPGK1 from the methylotrophic yeast Pichia pastoris. The L1 gene was cloned under regulation of PPGK1 into pPGKΔ3 expression vector to achieve intracellular expression. In parallel, secretion of the L1 protein was obtained through the use of an alternative vector called pPGKΔ3α, in which a codon optimized α-factor signal sequence was inserted. We devised a work-flow based on the detection of the L1 protein by dot blot, colony blot, and western blot to classify the positive clones. Finally, intracellular HPV VLPs assembly was demonstrated for the first time in yeast cells. This study opens up perspectives for the establishment of an innovative platform for the production of HPV VLPs or other viral antigens for vaccination purposes, based on constitutive expression in P. pastoris.

  14. Characterization and epitope mapping of monoclonal antibodies raised against rat hepatitis E virus capsid protein: An evaluation of their neutralizing activity in a cell culture system.

    Science.gov (United States)

    Kobayashi, Tominari; Takahashi, Masaharu; Tanggis; Mulyanto; Jirintai, Suljid; Nagashima, Shigeo; Nishizawa, Tsutomu; Okamoto, Hiroaki

    2016-07-01

    Hepatitis E virus (HEV) is the causative agent of acute hepatitis. Rat HEV is a recently discovered virus related to, but distinct from, human HEV. Since laboratory rats can be reproducibly infected with rat HEV and a cell culture system has been established for rat HEV, this virus may be used as a surrogate virus for human HEV, enabling studies on virus replication and mechanism of infection. However, monoclonal antibodies (MAbs) against rat HEV capsid (ORF2) protein are not available. In this study, 12 murine MAbs were generated against a recombinant ORF2 protein of rat HEV (rRatHEV-ORF2: amino acids 101-644) and were classified into at least six distinct groups by epitope mapping and a cross-reactivity analysis with human HEV ORF2 proteins. Two non-cross-reactive MAbs recognizing the protruding (P) domain detected both non-denatured and denatured rRatHEV-ORF2 protein and efficiently captured cell culture-produced rat HEV particles that had been treated with deoxycholate and trypsin, but not those without prior treatment. In addition, these two MAbs were able to efficiently neutralize replication of cell culture-generated rat HEV particles without lipid membranes (but not those with lipid membranes) in a cell culture system, similar to human HEV. PMID:26992654

  15. Structure of the HIV-1 Full-Length Capsid Protein in a Conformationally Trapped Unassembled State Induced by Small-Molecule Binding

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shoucheng; Betts, Laurie; Yang, Ruifeng; Shi, Haibin; Concel, Jason; Ahn, Jinwoo; Aiken, Christopher; Zhang, Peijun; Yeh, Joanne I. (Pitt); (Vanderbilt); (UNC)

    2012-11-26

    The capsid (CA) protein plays crucial roles in HIV infection and replication, essential to viral maturation. The absence of high-resolution structural data on unassembled CA hinders the development of antivirals effective in inhibiting assembly. Unlike enzymes that have targetable, functional substrate-binding sites, the CA does not have a known site that affects catalytic or other innate activity, which can be more readily targeted in drug development efforts. We report the crystal structure of the HIV-1 CA, revealing the domain organization in the context of the wild-type full-length (FL) unassembled CA. The FL CA adopts an antiparallel dimer configuration, exhibiting a domain organization sterically incompatible with capsid assembly. A small compound, generated in situ during crystallization, is bound tightly at a hinge site ('H site'), indicating that binding at this interdomain region stabilizes the ADP conformation. Electron microscopy studies on nascent crystals reveal both dimeric and hexameric lattices coexisting within a single condition, in agreement with the interconvertibility of oligomeric forms and supporting the feasibility of promoting assembly-incompetent dimeric states. Solution characterization in the presence of the H-site ligand shows predominantly unassembled dimeric CA, even under conditions that promote assembly. Our structure elucidation of the HIV-1 FL CA and characterization of a potential allosteric binding site provides three-dimensional views of an assembly-defective conformation, a state targeted in, and thus directly relevant to, inhibitor development. Based on our findings, we propose an unprecedented means of preventing CA assembly, by 'conformationally trapping' CA in assembly-incompetent conformational states induced by H-site binding.

  16. Sizing up large protein complexes by electrospray ionisation-based electrophoretic mobility and native mass spectrometry: Morphology selective binding of Fabs to hepatitis B virus capsids

    NARCIS (Netherlands)

    Bereszczak, J.Z.; Havlik, M.; Weiss, V.U.; Marchetti-Deschmann, M.; Duijn, E. van; Watts, N.R.; Wingfield, P.T.; Allmaier, G.; Steven, A.C.; Heck, A.J.R.

    2014-01-01

    The capsid of hepatitis B virus (HBV) is a major viral antigen and important diagnostic indicator. HBV capsids have prominent protrusions ('spikes') on their surface and are unique in having either T = 3 or T = 4 icosahedral symmetry. Mouse monoclonal and also human polyclonal antibodies bind either

  17. Nucleic localization of human papillomavirus minor capsid protein L2%人乳头瘤病毒次要衣壳蛋白L2核定位

    Institute of Scientific and Technical Information of China (English)

    陈卫东; 井申荣

    2012-01-01

    在人乳头瘤病毒(human papillomavirus,HPV)次要衣壳蛋白L2的N端和C端,有大量带正电荷的氨基酸残基组成核定位信号(nuclear localization signal,NLS).细胞的核结构域10 (nuclear domain 10,ND10)是细胞周期和病毒生活周期的重要调节者.L2定位到ND10的过程不仅会受到早幼粒细胞白血病蛋白(promyleocytic leukaemia protein,PML)、死亡结构域相关蛋白(death domain-associated protein,Daxx)、Sp100核抗原(Sp100 nuclear antigen)等细胞蛋白的影响,也会与L1在ND10发生相互作用.在HPV感染和组装过程中,L2的核定位信号有着重要作用.%The nuclear localization signal, NLS, which is composed of many amino acids with positive charge residue, is located in both ends of N terminus and C terminus of the human papillomavirus minor capsid protein L2. The nuclear domain 10, ND-10, which is in the cell nucleus, is an important modulator of both cell cycle and virus cyclogeny. The process of the locating of L2 to ND-10, is not only impacted by the cell proteins, such as the promyelocytic leukemia protein, death domain-associated protein Daxx, nuclear antigen Sp100, but also interacts with L1 in ND-10. The NLS of L2 plays a significant role during the HPV virus assembly course.

  18. Roles of outer capsid proteins as determinants of pathogenicity and host range restriction of avian rotaviruses in a suckling mouse model

    International Nuclear Information System (INIS)

    We previously demonstrated that a pigeon rotavirus, PO-13, but not turkey strains Ty-3 and Ty-1 and a chicken strain, Ch-1, induced diarrhea in heterologous suckling mice. In this study, it was suggested that these avirulent strains, but not PO-13, were inactivated immediately in gastrointestinal tracts of suckling mice when they were orally inoculated. To determine which viral proteins contribute to the differences between the pathogenicitiy and the inactivation of PO-13 and Ty-3 in suckling mice, six PO-13 x Ty-3 reassortant strains that had the genes of the outer capsid proteins, VP4 and VP7, derived from the opposite strain were prepared and were orally inoculated to suckling mice. A single strain that had both PO-13 VP4 and VP7 with the genetic background of Ty-3 had an intermediate virulence for suckling mice. Three strains with Ty-3 VP7, regardless of the origin of VP4, rapidly disappeared from gastrointestinal tracts of suckling mice. These results indicated that the difference between the pathogenicity of PO-13 and that of Ty-3 was mainly dependent on both their VP4 and VP7. In particular, VP7 was found to be related to the inactivation of Ty-3 in gastrointestinal tracts of suckling mice

  19. Cleavage of the HPV16 Minor Capsid Protein L2 during Virion Morphogenesis Ablates the Requirement for Cellular Furin during De Novo Infection

    Directory of Open Access Journals (Sweden)

    Linda Cruz

    2015-11-01

    Full Text Available Infections by high-risk human papillomaviruses (HPV are the causative agents for the development of cervical cancer. As with other non-enveloped viruses, HPVs are taken up by the cell through endocytosis following primary attachment to the host cell. Through studies using recombinant pseudovirus particles (PsV, many host cellular proteins have been implicated in the process. The proprotein convertase furin has been demonstrated to cleave the minor capsid protein, L2, post-attachment to host cells and is required for infectious entry by HPV16 PsV. In contrast, using biochemical inhibition by a furin inhibitor and furin-negative cells, we show that tissue-derived HPV16 native virus (NV initiates infection independent of cellular furin. We show that HPV16 L2 is cleaved during virion morphogenesis in differentiated tissue. In addition, HPV45 is also not dependent on cellular furin, but two other alpha papillomaviruses, HPV18 and HPV31, are dependent on the activity of cellular furin for infection.

  20. Development of two Trichoplusia ni larvae-derived ELISAs for the detection of antibodies against replicase and capsid proteins of porcine circovirus type 2 in domestic pigs.

    Science.gov (United States)

    Pérez-Martín, Eva; Grau-Roma, Llorenç; Argilaguet, Jordi M; Nofrarías, Miquel; Escribano, José M; Gómez-Sebastián, Silvia; Segalés, Joaquim; Rodríguez, Fernando

    2008-12-01

    The main aim of the present study was to describe new methods for the identification of antibodies against the PCV2 capsid (Cap) and replicase (Rep) proteins in pig sera. Specifically, two new indirect enzyme-linked immunosorbent assays (ELISA) were developed based on recombinant PCV2 Cap (rCap) and Rep/Rep' (rRep) proteins expressed in baculovirus and produced in Trichoplusia ni insect larvae. Both assays were validated by testing serum samples in a longitudinal study of 107 animals with different clinico-pathological features of PCV2 infection: pigs with postweaning multisystemic wasting syndrome (PMWS), wasted pigs without a diagnosis of PMWS and healthy animals. Longitudinal antibody profiles indicated that healthy animals had significantly higher anti-Cap and anti-Rep antibody levels than the rest of the animal groups at 11 weeks of age. Moreover, PMWS affected pigs could be distinguished from the rest of the pig groups by their lower anti-Rep antibody levels at 11 weeks of age and at necropsy. The results demonstrate the potential of these two ELISAs for large-scale serological studies. This study represents the first longitudinal study of the induction of anti-Cap and anti-Rep antibodies in farms affected by PMWS, from 1 week of age until the occurrence of disease. PMID:18773923

  1. Self-assembly of virus-like particles of rabbit hemorrhagic disease virus capsid protein expressed in Escherichia coli and their immunogenicity in rabbits.

    Science.gov (United States)

    Guo, Huimin; Zhu, Jie; Tan, Yonggui; Li, Chuanfeng; Chen, Zongyan; Sun, Shiqi; Liu, Guangqing

    2016-07-01

    In this study, virus-like particles (VLPs) derived from rabbit hemorrhagic disease virus (RHDV) were evaluated for the development of a vaccine against RHDV infection. The VP60 gene was cloned and inserted into a pSMK expression vector containing a small ubiquitin-like modifier (SUMO) tag that can promote the soluble expression of heterologous proteins in Escherichia coli cells. After expression and purification of His-SUMO-VP60 and cleavage of the SUMO tag, we found that the RHDV VP60 protein had self-assembled into VLPs with a similar shape and smaller size compared with authentic RHDV capsid. Next, the antigenicity and immunogenicity of the VLPs were examined. The results showed that RHDV-specific responses were clearly induced in rabbits and that all rabbits in the VLP group survived while those in the negative control group died within 72 h post-infection. These results suggest that VLP-based RHDV could be a promising RHDV vaccine candidate. PMID:27118636

  2. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential.

    Directory of Open Access Journals (Sweden)

    Philipp Kolb

    Full Text Available Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF, and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC. Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc derived capsid-like particles (CLPs to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission.

  3. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly

    Science.gov (United States)

    Grime, John M. A.; Dama, James F.; Ganser-Pornillos, Barbie K.; Woodward, Cora L.; Jensen, Grant J.; Yeager, Mark; Voth, Gregory A.

    2016-05-01

    The maturation of HIV-1 viral particles is essential for viral infectivity. During maturation, many copies of the capsid protein (CA) self-assemble into a capsid shell to enclose the viral RNA. The mechanistic details of the initiation and early stages of capsid assembly remain to be delineated. We present coarse-grained simulations of capsid assembly under various conditions, considering not only capsid lattice self-assembly but also the potential disassembly of capsid upon delivery to the cytoplasm of a target cell. The effects of CA concentration, molecular crowding, and the conformational variability of CA are described, with results indicating that capsid nucleation and growth is a multi-stage process requiring well-defined metastable intermediates. Generation of the mature capsid lattice is sensitive to local conditions, with relatively subtle changes in CA concentration and molecular crowding influencing self-assembly and the ensemble of structural morphologies.

  4. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly

    Science.gov (United States)

    Grime, John M. A.; Dama, James F.; Ganser-Pornillos, Barbie K.; Woodward, Cora L.; Jensen, Grant J.; Yeager, Mark; Voth, Gregory A.

    2016-01-01

    The maturation of HIV-1 viral particles is essential for viral infectivity. During maturation, many copies of the capsid protein (CA) self-assemble into a capsid shell to enclose the viral RNA. The mechanistic details of the initiation and early stages of capsid assembly remain to be delineated. We present coarse-grained simulations of capsid assembly under various conditions, considering not only capsid lattice self-assembly but also the potential disassembly of capsid upon delivery to the cytoplasm of a target cell. The effects of CA concentration, molecular crowding, and the conformational variability of CA are described, with results indicating that capsid nucleation and growth is a multi-stage process requiring well-defined metastable intermediates. Generation of the mature capsid lattice is sensitive to local conditions, with relatively subtle changes in CA concentration and molecular crowding influencing self-assembly and the ensemble of structural morphologies. PMID:27174390

  5. Induction of protective immune response against both PPRV and FMDV by a novel recombinant PPRV expressing FMDV VP1

    OpenAIRE

    Yin, Chunsheng; Chen, Weiye; Hu, Qianqian; Wen, Zhiyuan; Wang, Xijun; Ge, Jinying; Yin, Qianqian; Zhi, Haibing; Xia, Chun; Bu, Zhigao

    2014-01-01

    International audience Peste des petits ruminants (PPR) and foot-and-mouth disease (FMD) are both highly contagious diseases of small domestic and wild ruminants caused by the PPR virus (PPRV) and the FMD virus (FMDV). In this study, a recombinant PPRV expressing the FMDV VP1 gene (rPPRV/VP1) was generated and FMDV VP1 expression did not impair replication of the recombinant virus in vitro and immunogenicity in inducing neutralizing antibody against PPR in goats. Vaccination with one dose ...

  6. Membrane-mediated interaction between retroviral capsids

    Science.gov (United States)

    Zhang, Rui; Nguyen, Toan

    2012-02-01

    A retrovirus is an RNA virus that is replicated through a unique strategy of reverse transcription. Unlike regular enveloped viruses which are assembled inside the host cells, the assembly of retroviral capsids happens right on the cell membrane. During the assembly process, the partially formed capsids deform the membrane, giving rise to an elastic energy. When two such partial capsids approach each other, this elastic energy changes. Or in other words, the two partial capsids interact with each other via the membrane. This membrane mediated interaction between partial capsids plays an important role in the kinetics of the assembly process. In this work, this membrane mediated interaction is calculated both analytically and numerically. It is worth noting that the diferential equation determining the membrane shape in general nonlinear and cannot be solved analytically,except in the linear region of small deformations. And it is exactly the nonlinear regime that is important for the assembly kinetics of retroviruses as it provides a large energy barrier. The theory developed here is applicable to more generic cases of membrane mediated interactions between two membrane-embedded proteins.

  7. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA.

    Science.gov (United States)

    Purcell, Maureen K; Pearman-Gillman, Schuyler; Thompson, Rachel L; Gregg, Jacob L; Hart, Lucas M; Winton, James R; Emmenegger, Eveline J; Hershberger, Paul K

    2016-07-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea. PMID:27154315

  8. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA

    Science.gov (United States)

    Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.

    2016-01-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  9. Functional analysis of the N-terminal basic motif of a eukaryotic satellite RNA virus capsid protein in replication and packaging.

    Science.gov (United States)

    Sivanandam, Venkatesh; Mathews, Deborah; Garmann, Rees; Erdemci-Tandogan, Gonca; Zandi, Roya; Rao, A L N

    2016-01-01

    Efficient replication and assembly of virus particles are integral to the establishment of infection. In addition to the primary role of the capsid protein (CP) in encapsidating the RNA progeny, experimental evidence on positive sense single-stranded RNA viruses suggests that the CP also regulates RNA synthesis. Here, we demonstrate that replication of Satellite tobacco mosaic virus (STMV) is controlled by the cooperative interaction between STMV CP and the helper virus (HV) Tobacco mosaic virus (TMV) replicase. We identified that the STMV CP-HV replicase interaction requires a positively charged residue at the third position (3R) in the N-terminal 13 amino acid (aa) motif. Far-Northwestern blotting showed that STMV CP promotes binding between HV-replicase and STMV RNA. An STMV CP variant having an arginine to alanine substitution at position 3 in the N-terminal 13aa motif abolished replicase-CP binding. The N-terminal 13aa motif of the CP bearing alanine substitutions for positively charged residues located at positions 5, 7, 10 and 11 are defective in packaging full-length STMV, but can package a truncated STMV RNA lacking the 3' terminal 150 nt region. These findings provide insights into the mechanism underlying the regulation of STMV replication and packaging. PMID:27193742

  10. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle

    OpenAIRE

    Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Yang, Shun-Li; Wei, Yan-Quan; Sun, De-Hui; Yin, Shuang-Hui; Ma, Jun-Wu; Liu, Zai-Xin; Guo, Jian-Hong; Luo, Jian-Xun; Yin, Hong; Liu, Xiang-tao; Liu, Ding Xiang

    2013-01-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. The format of FMD virus-like particles (VLP) as a non-replicating particulate vaccine candidate is a promising alternative to conventional inactivated FMDV vaccines. In this study, we explored a prokaryotic system to express and assemble the FMD VLP and validated the potential of VLP as an FMDV vaccine candidate. VLP composed entirely of FMDV (Asia1/Jiangsu/China/2005) capsid proteins (VP0, VP1 ...

  11. Sequence Analysis of Segment 8 of Five Chinese Isolates of Rice Gall Dwarf Virus and Expression of a Main Outer Capsid Protein in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The rice gall dwarf disease, caused by the Rice gall dwarf virus (RGDV) is a serious disease occurring in rice in many regions of Guangdong province. As a basis to control the disease we have studied the genomic diversity of a variety of isolates from different locations. Genome segment 8(S8), encoding a main outer capsid protein (Pns8) of RGDV five isolates (BL, CH, DQ, GZ, XY) from Guangdong province was cloned and sequenced. The results revealed that all the S8 segments of the five isolates consisted of 1 578 nucleotides and had a single open reading frame (ORF) extending for 1 301 nucleotides from nucleotide 21 which encoded a polypeptide of 426 amino acids with an estimated molecular weight of 47.4 kDa. The S8 full-length sequence and the ORF sequence shared 97.3%-98.8% and 97.3%-99.1% nucleotide sequence identities within the five Chinese isolates, and shared 94.8%-95.6% and 95.0%-96.0% identities with those of the Thailand isolate respectively. The deduced amino acid sequence of Pns8 in GZ isolate was identical to that in the Thailand isolate, while the amino acid sequence variability of Pns8 within five Chinese isolates ranged from 0.5% to 2.1%. These results indicate that the S8 segment of RGDV is highly conserved in different isolates from different locations. The S8 cDNA from the XY isolate was cloned into the plasmid vector pET-28b(+) and a fused expression protein with an apparent molecular mass of 51kDa was specifically detected in an analysis of Escherichia coli Rossetta(DE3)Ⅱcells. To our knowledge, this is the first report on analysis of the RGDV segment 8 sequence and genetic comparison of different RGDV isolates and their protein expression.

  12. Assembly and Immunogenicity of Human Papillomavirus Type 16 Major Capsid Protein ( HPV16 L1 ) in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this study, a recombinant Pichia pastoris expression system was developed to express HPV16 L1 protein that was driven by a strong AOX1 promoter. HPV16L1 gene was cloned into vector pPICZαB. HPV16 L1 protein expression induced by methanol was screened by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis ( SDSPAGE) and Western blotting. The results indicate that the HPV16 L1 protein is secreted by the recombinant P. pastotis, and the purified HPV16 L1 protein can self-assemble into virus-like particles(VLPs), which show a good immunogenicity and induces high-titer antibody in mice.

  13. Effect of the DnaK chaperone on the conformational quality of JCV VP1 virus-like particles produced in Escherichia coli

    OpenAIRE

    Saccardo, Paolo; Rodríguez-Carmona, Escarlata; Villaverde Corrales, Antonio; Ferrer-Miralles, Neus

    2014-01-01

    Altres ajuts: CIBER de Bioingeniería, Biomateriales y Nanomedicina ; VI National R&D&i Plan 2008–2011 ; Iniciativa Ingenio 2010 ; Consolider Program ; CIBER Actions ; Instituto de Salud Carlos III ; European Regional Development Fund Protein nanoparticles such as virus-like particles (VLPs) can be obtained by recombinant protein production of viral capsid proteins and spontaneous self-assembling in cell factories. Contrarily to infective viral particles, VLPs lack infective viral genome wh...

  14. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Fujimoto, K. [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Nakagawa, A. [Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan); Nomoto, A. [Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021 (Japan)

    2014-10-28

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  15. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    International Nuclear Information System (INIS)

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 106 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it

  16. Detection of Foot-and-mouth Disease Virus RNA and Capsid Protein in Lymphoid Tissues of Convalescent Pigs Does Not Indicate Existence of a Carrier State.

    Science.gov (United States)

    Stenfeldt, C; Pacheco, J M; Smoliga, G R; Bishop, E; Pauszek, S J; Hartwig, E J; Rodriguez, L L; Arzt, J

    2016-04-01

    A systematic study was performed to investigate the potential of pigs to establish and maintain persistent foot-and-mouth disease virus (FMDV) infection. Infectious virus could not be recovered from sera, oral, nasal or oropharyngeal fluids obtained after resolution of clinical infection with any of five FMDV strains within serotypes A, O and Asia-1. Furthermore, there was no isolation of live virus from tissue samples harvested at 28-100 days post-infection from convalescent pigs recovered from clinical or subclinical FMD. Despite lack of detection of infectious FMDV, there was a high prevalence of FMDV RNA detection in lymph nodes draining lesion sites harvested at 35 days post-infection, with the most frequent detection recorded in popliteal lymph nodes (positive detection in 88% of samples obtained from non-vaccinated pigs). Likewise, at 35 dpi, FMDV capsid antigen was localized within follicles of draining lymph nodes, but without concurrent detection of FMDV non-structural protein. There was a marked decline in the detection of FMDV RNA and antigen in tissue samples by 60 dpi, and no antigen or viral RNA could be detected in samples obtained at 100 dpi. The data presented herein provide the most extensive investigation of FMDV persistence in pigs. The overall conclusion is that domestic pigs are unlikely to be competent long-term carriers of infectious FMDV; however, transient persistence of FMDV protein and RNA in lymphoid tissues is common following clinical or subclinical infection. PMID:24943477

  17. Comparison of Immune Responses against FMD by a DNA Vaccine Encoding the FMDV/O/IRN/2007 VP1 Gene and the Conventional Inactivated Vaccine in an Animal Model

    Institute of Scientific and Technical Information of China (English)

    Farahnaz Motamedi Sedeh; Hoorieh Soleimanjahi; AmirReza Jalilian; Homayoon Mahravani

    2012-01-01

    Foot-and-mouth disease virus (FMDV) is highly contagious and responsible for huge outbreaks among cloven hoofed animals.The aim of the present study is to evaluate a plasmid DNA immunization system that expresses the FMDV/O/IRN/2007 VP1 gene and compare it with the conventional inactivated vaccine in an animal model.The VP1 gene was sub-cloned into the unique Kpn I and BamH I cloning sites of the pcDNA3.1+ and pEGFP-N1 vectors to construct the VP1 gene cassettes.The transfected BHKT7 cells with sub-cloned pEGFP-N1-VP1 vector expressed GFP-VP1 fusion protein and displayed more green fluorescence spots than the transfected BHKT7 cells with pEGFP-N1 vector,which solely expressed the GFP protein.Six mice groups were respectively immunized by the sub-cloned pcDNA3.1+-VP1 gene cassette as the DNA vaccine,DNA vaccine and PCMV-SPORT-GMCSF vector (as molecular adjuvant) together,conventional vaccine,PBS (as negative control),pcDNA3.1+ vector (as control group) and PCMV-SPORT vector that contained the GMCSF gene (as control group).Significant neutralizing antibody responses were induced in the mice which were immunized using plasmid vectors expressing the VP1 and GMCSF genes together,the DNA vaccine alone and the conventional inactivated vaccine (P<0.05).Co-administration of DNA vaccine and GMCSF gene improved neutralizing antibody response in comparison with administration of the DNA vaccine alone,but this response was the most for the conventional vaccine group.However,induction of humeral immunity response in the conventional vaccine group was more protective than for the DNA vaccine,but T-cell proliferation and IFN-γ concentration were the most in DNA vaccine with the GMCSF gene.Therefore the group that was vaccinated by DNA vaccine with the GMCSF gene,showed protective neutralizing antibody response and the most Th1 cellular immunity.

  18. A Broadly Cross-protective Vaccine Presenting the Neighboring Epitopes within the VP1 GH Loop and VP2 EF Loop of Enterovirus 71.

    Science.gov (United States)

    Xu, Longfa; He, Delei; Yang, Lisheng; Li, Zhiqun; Ye, Xiangzhong; Yu, Hai; zhao, Huan; Li, Shuxuan; Yuan, Lunzhi; Qian, Hongliu; Que, Yuqiong; Shih, James Wai Kuo; Zhu, Hua; Li, Yimin; Cheng, Tong; Xia, Ningshao

    2015-01-01

    Human enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major etiological agents of hand, foot and mouth disease (HFMD) and are often associated with neurological complications. Currently, several vaccine types are being developed for EV71 and CA16. In this study, we constructed a bivalent chimeric virus-like particle (VLP) presenting the VP1 (aa208-222) and VP2 (aa141-155) epitopes of EV71 using hepatitis B virus core protein (HBc) as a carrier, designated HBc-E1/2. Immunization with the chimeric VLPs HBc-E1/2 induced higher IgG titers and neutralization titers against EV71 and CA16 in vitro than immunization with only one epitope incorporated into HBc. Importantly, passive immunization with the recombinant HBc-E2 particles protected neonatal mice against lethal EV71 and CA16 infections. We demonstrate that anti-VP2 (aa141-155) sera bound authentic CA16 viral particles, whereas anti-VP1 (aa208-222) sera could not. Moreover, the anti-VP2 (aa141-155) antibodies inhibited the binding of human serum to virions, which demonstrated that the VP2 epitope is immunodominant between EV71 and CA16. These results illustrated that the chimeric VLP HBc-E1/2 is a promising candidate for a broad-spectrum HFMD vaccine, and also reveals mechanisms of protection by the neighboring linear epitopes of the VP1 GH and VP2 EF loops. PMID:26243660

  19. Construction of Prophylactic Human Papillomavirus Type 16 L1 Capsid Protein Vaccine Delivered by Live Attenuated Shigella flexneri Strain sh42

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng YANG; Xin-Zhong QU; Kai WANG; Jin ZHENG; Lü-Sheng SI; Xiao-Ping DONG; Yi-Li WANG

    2005-01-01

    To express human papillomavirus (HPV) L1 capsid protein in the recombinant strain of Shigella and study the potential of a live attenuated Shigella-based HPV prophylactic vaccine in preventing HPV infection, the icsA/virG fragment of Shigella-based prokaryotic expression plasmid pHS3199 was constructed.HPV type 16 L 1 (HPV 16L 1) gene was inserted into plasmid pHS 3199 to form the pHS3199-HPV 16L1construct, and pHS3199-HPV16L1 was electroporated into a live attenuated Shigella strain sh42. Western blotting analysis showed that HPV 16L1 could be expressed stably in the recombinant strain sh42-HPV 16L1.Sereny test results were negative, which showed that the sh42-HPV16L1 lost virulence. However, the attenuated recombinant strain partially maintained the invasive property as indicated by the HeLa cell infection assay. Specific IgG, IgA antibody against HPV16L1 virus-like particles (VLPs) were detected in the sera,intestinal lavage and vaginal lavage from animals immunized by sh42-HPV 16L 1. The number of antibodysecreting cells in the spleen and draining lymph nodes were increased significantly compared with the control group. Sera from immunized animals inhibited murine hemagglutination induced by HPV16L1 VLPs, which indicated that the candidate vaccine could stimulate an efficient immune response in guinea pig's mucosal sites. This may be an effective strategy for the development of an HPV prophylactic oral vaccine.

  20. Co-expression of Ubiquitin gene and capsid protein gene enhances the potency of DNA immunization of PCV2 in mice

    Directory of Open Access Journals (Sweden)

    Zhou Yanjun

    2011-05-01

    Full Text Available Abstract A recombinant plasmid that co-expressed ubiquitin and porcine circovirus type 2 (PCV2 virus capsid protein (Cap, denoted as pc-Ub-Cap, and a plasmid encoding PCV2 virus Cap alone, denoted as pc-Cap, were transfected into 293T cells. Indirect immunofluorescence (IIF and confocal microscopy were performed to measure the cellular expression of Cap. Three groups of mice were then vaccinated once every three weeks for a total of three doses with pc-Ub-Cap, pc-Cap or the empty vector pCAGGS, followed by challenging all mice intraperitoneally with 0.5 mL 106.5 TCID50/mL PCV2. To characterize the protective immune response against PCV2 infection in mice, assays of antibody titer (including different IgG isotypes, flow cytometric analysis (FCM, lymphocyte proliferation, cytokine production and viremia were evaluated. The results showed that pc-Ub-Cap and pc-Cap were efficiently expressed in 293T cells. However, pc-Ub-Cap-vaccinated animals had a significantly higher level of Cap-specific antibody and induced a stronger Th1 type cellular immune response than did pc-Cap-vaccinated animals, suggesting that ubiquitin conjugation improved both the cellular and humoral immune responses. Additionally, viral replication in blood was lower in the pc-Ub-Cap-vaccinated group than in the pc-Cap and empty vector groups, suggesting that the protective immunity induced by pc-Ub-Cap is superior to that induced by pc-Cap.

  1. Role of Jumonji C-domain containing protein 6 (JMJD6) in infectivity of foot-and-mouth disease virus.

    Science.gov (United States)

    Lawrence, Paul; Rai, Devendra; Conderino, Joseph S; Uddowla, Sabena; Rieder, Elizabeth

    2016-05-01

    Foot-and-mouth disease virus (FMDV) utilizes four integrins (αvβ1, αvβ3, αvβ6, and αvβ8) as its primary cell receptor. During cell culture propagation, FMDV frequently adapts to use heparan sulfate (HS), and rarely utilizes an unidentified third receptor. Capsid mutations acquired by a soluble integrin resistant FMDV cause (i) adaptation to CHO-677 cells (ii) increased affinity to membrane-bound Jumonji C-domain containing protein 6 (JMJD6) (iii) induced JMJD6 re-localization from the cell surface and cytoplasm to the nucleus. Interestingly, pre-treatment of cells with N- and C-terminal JMJD6 antibodies or by simultaneous incubation of mutant virus with soluble JMJD6 (but not by treatment with HS or αvβ6) impaired virus infectivity in cultured cells. JMJD6 and mutant virus co-purified by reciprocal co-immunoprecipitation. Molecular docking predictions suggested JMJD6 C-terminus interacts with mutated VP1 capsid protein. We conclude when specific VP1 mutations are displayed, JMJD6 contributes to FMDV infectivity and may be a previously unidentified FMDV receptor. PMID:26896934

  2. [Enzyme immunoassay for detection of porcine circovirus type 2, by using the recombinant capsid protein ORF-2].

    Science.gov (United States)

    Shkaeva, M A; Bogdanova, V S; Tsibezov, V V; Gibadulin, R A; Musienko, M I; Alekseev, K P; Grebennikova, T V; Verkhovskiĭ, O A; Zaberezhnyĭ, A D; Aliper, T I

    2006-01-01

    Recombinant antigen ORF2 from porcine circovirus type 2 (PCV-2) was produced, by using the baculovirus expression system, with histidine tags to allow purification by metal-chelate affinity chromatography. The purity of the protein was verified by polyacrylamide gel electrophoresis; and its immunospecificity was confirmed by the immunoblotting test using reference PCV-2-positive and PCV-2-negative porcine sera and monoclonal antibodies. The protein was used as an antigen to develop an indirect enzyme immunoassay (EIA) of PCV-2 antibodies. EIA was shown to have a high sensitivity and specificity as compared with indirect immunofluorescence test. Porcine serum samples from 15 pig-breeding farms of the Russian Federation were studied. Seropositive samples were found in all age pig groups in all the farms, The number of seropositive animals was shown to be directly related to its age. PMID:17087066

  3. Two amino acid mutations in the capsid protein of type 2 porcine circovirus (PCV2) enhanced PCV2 replication in vitro and attenuated the virus in vivo

    OpenAIRE

    Fenaux, M.; Meng, X.J.; F Elvinger; Opriessnig, T.; Halbur, P. G.

    2004-01-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome (PMWS) in pigs. To identify potential genetic determinants for virulence and replication, we serially passaged a PCV2 isolate 120 times in PK-15 cells. The viruses harvested at virus passages 1 (VP1) and 120 (VP120) were biologically, genetically, and experimentally characterized. The PCV2 VP120 virus replicated in PK-15 cells to a titer similar to that of the PK-15 cell line-derived ...

  4. Two Amino Acid Mutations in the Capsid Protein of Type 2 Porcine Circovirus (PCV2) Enhanced PCV2 Replication In Vitro and Attenuated the Virus In Vivo

    OpenAIRE

    Fenaux, M.; Opriessnig, T.; Halbur, P. G.; F Elvinger; Meng, X.J.

    2004-01-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome (PMWS) in pigs. To identify potential genetic determinants for virulence and replication, we serially passaged a PCV2 isolate 120 times in PK-15 cells. The viruses harvested at virus passages 1 (VP1) and 120 (VP120) were biologically, genetically, and experimentally characterized. The PCV2 VP120 virus replicated in PK-15 cells to a titer similar to that of the PK-15 cell line-derived ...

  5. Kinetics versus Thermodynamics in Virus Capsid Polymorphism.

    Science.gov (United States)

    Moerman, Pepijn; van der Schoot, Paul; Kegel, Willem

    2016-07-01

    Virus coat proteins spontaneously self-assemble into empty shells in aqueous solution under the appropriate physicochemical conditions, driven by an interaction free energy per bond on the order of 2-5 times the thermal energy kBT. For this seemingly modest interaction strength, each protein building block nonetheless gains a very large binding free energy, between 10 and 20 kBT. Because of this, there is debate about whether the assembly process is reversible or irreversible. Here we discuss capsid polymorphism observed in in vitro experiments from the perspective of nucleation theory and of the thermodynamics of mass action. We specifically consider the potential contribution of a curvature free energy term to the effective interaction potential between the proteins. From these models, we propose experiments that may conclusively reveal whether virus capsid assembly into a mixture of polymorphs is a reversible or an irreversible process. PMID:27027925

  6. Construction and characterization of recombinant human adenovirus type 5 expressing foot-and-mouth disease virus capsid proteins of Indian vaccine strain, O/IND/R2/75

    Directory of Open Access Journals (Sweden)

    Ramesh Kumar

    2015-02-01

    Full Text Available Aim: Generation of recombinant human adenovirus type 5 expressing foot-and-mouth disease virus (FMDV capsid protein genes along with full-length 2B, 3B and 3Cpro and its characterization. Materials and Methods: FMD viral RNA isolation, cDNA synthesis, and polymerase chain reaction were performed to synthesize expression cassettes (P1-2AB3BCwt and P1-2AB3BCm followed by cloning in pShuttle-CMV vector. Chemically competent BJ5183-AD-1 cells were transformed with the recombinant pShuttle-CMV to produce recombinant adenoviral plasmids. HEK-293 cells were transfected with the recombinant adenoviral plasmids to generate recombinant adenoviruses (hAd5/P1-2AB3BCwt and hAd5/P1-2AB3BCm. Expression of the target proteins was analyzed by sandwich ELISA and indirect immunofluorescence assay. The recombinant adenoviruses were purified and concentrated by CsCl density gradient ultracentrifugation. Growth kinetics and thermostability of the recombinant adenoviruses were compared with that of non-recombinant replication-defective adenovirus (dAd5. Results: The recombinant adenoviruses containing capsid protein genes of the FMDV O/IND/R2/75 were generated and amplified in HEK-293 cells. The titer of the recombinant adenoviruses was approximately 108, 109.5 and 1011 TCID50/ml in supernatant media, cell lysate and CsCl purified preparation, respectively. Expression of the FMDV capsid protein was detectable in sandwich ELISA and confirmed by immunofluorescence assay. Growth kinetics of the recombinant adenoviruses did not reveal a significant difference when compared with that of dAd5. A decrement of up to 10-fold at 4°C and 21-fold at 37°C was recorded in the virus titers during 60 h incubation period and found to be statistically significant (p<0.01. Conclusion: Recombinant adenoviruses expressing capsid proteins of the FMDV O/IND/R2/75 were constructed and produced in high titers. In vitro expression of the target proteins in the adenovirus vector system was

  7. A single amino acid substitution of the human immunodeficiency virus type 1 capsid protein affects viral sensitivity to TRIM5α

    Directory of Open Access Journals (Sweden)

    Shioda Tatsuo

    2010-07-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 productively infects only humans and chimpanzees but not Old World monkeys, such as rhesus and cynomolgus (CM monkeys. To establish a monkey model of HIV-1/AIDS, several HIV-1 derivatives have been constructed. We previously reported that efficient replication of HIV-1 in CM cells was achieved after we replaced the loop between α-helices 6 and 7 (L6/7 of the capsid protein (CA with that of SIVmac239 in addition to the loop between α-helices 4 and 5 (L4/5 and vif. This virus (NL-4/5S6/7SvifS was supposed to escape from host restriction factors cyclophilin A, CM TRIM5α, and APOBEC3G. However, the replicative capability of NL-4/5S6/7SvifS in human cells was severely impaired. Results By long-term cultivation of human CEMss cells infected with NL-4/5S6/7SvifS, we succeeded in rescuing the impaired replicative capability of the virus in human cells. Sequence analysis of the CA region of the adapted virus revealed a G-to-E substitution at the 116th position of the CA (G116E. Introduction of this substitution into the molecular DNA clone of NL-4/5S6/7SvifS indeed improved the virus' replicative capability in human cells. Although the G116E substitution occurred during long-term cultivation of human cells infected with NL-4/5S6/7SvifS, the viruses with G116E unexpectedly became resistant to CM, but not human TRIM5α-mediated restriction. The 3-D model showed that position 116 is located in the 6th helix near L4/5 and L6/7 and is apparently exposed to the protein surface. The amino acid substitution at the 116th position caused a change in the structure of the protein surface because of the replacement of G (which has no side chain with E (which has a long negatively charged side chain. Conclusions We succeeded in rescuing the impaired replicative capability of NL-4/5S6/7SvifS and report a mutation that improved the replicative capability of the virus. Unexpectedly, HIV-1 with this

  8. Genome Sequence of Bluetongue Virus Type 2 from India: Evidence for Reassortment between Outer Capsid Protein Genes

    Science.gov (United States)

    Maan, Narender S.; Belaganahalli, Manjunatha N.; Kumar, Aman; Batra, Kanisht; Rao, Pavuluri Panduranga; Hemadri, Divakar; Reddy, Yella Narasimha; Putty, Kalyani; Krishnajyothi, Yadlapati; Reddy, G. Hanmanth; Singh, Karam Pal; Hegde, Nagendra R.; Nomikou, Kyriaki; Sreenivasulu, Daggupati

    2015-01-01

    Southern Indian isolate IND1994/01 of bluetongue virus serotype 2 (BTV-2), from the Orbivirus Reference Collection at the Pirbright Institute (http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/btv-2.htm#IND1994/01), was sequenced. Its genome segment 6 (Seg-6) [encoding VP5(OCP2)] is identical to that of the Indian BTV-1 isolate (IND2003/05), while Seg-5 and Seg-9 are closely related to isolates from South Africa and the United States, respectively. PMID:25858823

  9. Molecular characterization of Indian isolate of peanut mottle virus and immunodiagnosis using bacterial expressed core capsid protein

    OpenAIRE

    Soumya, K.; Yogita, M.; Prasanthi, Y.; K.Anitha; Kishor, P. B. Kavi; Jain, R. K.; Mandal, Bikash

    2014-01-01

    Peanut mottle virus (PeMoV), a seed borne potyvirus was recorded in India in 1978, however the virus was not characterized at molecular level. In the present study, an isolate of PeMoV infecting peanut in southern India was characterized based on host reactions and coat protein (CP) gene sequence, which revealed that the Indian isolate was very close to a peanut isolate reported from Israel and distinct from pea isolate reported from USA. The core region of CP gene that contained majority of ...

  10. Capsid modification strategies for detargeting adenoviral vectors.

    Science.gov (United States)

    Parker, Alan L; Bradshaw, Angela C; Alba, Raul; Nicklin, Stuart A; Baker, Andrew H

    2014-01-01

    Adenoviral vectors hold immense potential for a wide variety of gene therapy based applications; however, their efficacy and toxicity is dictated by "off target" interactions that preclude cell specific targeting to sites of disease. A number of "off target" interactions have been described in the literature that occur between the three major capsid proteins (hexon, penton, and fiber) and components of the circulatory system, including cells such as erythrocytes, white blood cells, and platelets, as well as circulatory proteins including complement proteins, coagulation factors, von Willebrand Factor, p-selectin as well as neutralizing antibodies. Thus, to improve efficacious targeting to sites of disease and limit nonspecific uptake of virus to non-target tissues, specifically the liver and the spleen, it is necessary to develop suitable strategies for genetically modifying the capsid proteins to preclude these interactions. To this end we have developed versatile systems based on homologous recombination for modification of each of the major capsid proteins, which are described herein. PMID:24132476

  11. Molecular characterization of Indian isolate of peanut mottle virus and immunodiagnosis using bacterial expressed core capsid protein.

    Science.gov (United States)

    Soumya, K; Yogita, M; Prasanthi, Y; Anitha, K; Kishor, P B Kavi; Jain, R K; Mandal, Bikash

    2014-01-01

    Peanut mottle virus (PeMoV), a seed borne potyvirus was recorded in India in 1978, however the virus was not characterized at molecular level. In the present study, an isolate of PeMoV infecting peanut in southern India was characterized based on host reactions and coat protein (CP) gene sequence, which revealed that the Indian isolate was very close to a peanut isolate reported from Israel and distinct from pea isolate reported from USA. The core region of CP gene that contained majority of the predicted epitopes was successfully expressed (1.75 mg/l) in Escherichia coli as a 22 kDa protein. A high titer polyclonal antibody (PAb) to the expressed core CP was produced, which efficiently detected PeMoV. The antiserum was useful in specific detection of PeMoV as it showed negligible cross reactivity with the other potyviruses e.g., peanut stripe virus, potato virus Y, papaya ringspot virus and onion yellow dwarf virus. The PAb was validated in ELISA using 1,169 field and greenhouse samples of peanut which showed 1.85-26.3 % incidence of PeMoV in peanut seed multiplication field during 2011-2012. This is the first report of immunodiagnosis of PeMoV with a PAb to recombinant core CP of PeMoV. PMID:25674600

  12. Oral Vaccination with the Porcine Rotavirus VP4 Outer Capsid Protein Expressed by Lactococcus lactis Induces Specific Antibody Production

    Directory of Open Access Journals (Sweden)

    Yi-jing Li

    2010-01-01

    Full Text Available The objective of this study to design a delivery system resistant to the gastrointestinal environment for oral vaccine against porcine rotavirus. Lactococcus lactis NZ9000 was transformed with segments of vP4 of the porcine rotavirus inserted into the pNZ8112 surface-expression vector, and a recombinant L. lactis expressing VP4 protein was constructed. An approximately 27 kDa VP4 protein was confirmed by SDS-PAGE , Western blot and immunostaining analysis. BALB/c mice were immunized orally with VP4-expression recombinant L. lactis and cellular, mucosal and systemic humoral immune responses were examined. Specific anti-VP4 secretory IgA and IgG were found in feces, ophthalmic and vaginal washes and in serum. The induced antibodies demonstrated neutralizing effects on porcine rotavirus infection on MA104 cells. Our findings suggest that oral immunization with VP4-expressing L. lactis induced both specific local and systemic humoral and cellular immune responses in mice.

  13. 口蹄疫病毒 VP1与3ABC 基因片段的克隆及表达%Cloning and Expression of VP1 and 3ABC Genes of Foot and Mouth Disease Virus Type O

    Institute of Scientific and Technical Information of China (English)

    索青利; 赵明秋; 琚春梅; 陈金顶; 王伟利; 陈立军

    2008-01-01

    根据GenBank中注册的O型口蹄疫病毒(FMDV) VP1和3ABC 基因序列,设计了2对引物. 采用RT-PCR方法从FMDV分离株O/HK/2001扩增得到 VP1和3ABC 基因. 经对它们的核苷酸序列测序和同源性比较,显示与14株O型FMDV参考毒株中的O/HKN/2002同源性最高(分别为98.3%和98.6%),并且在 VP1决定各种亚型FMDV免疫原性的主要抗原决定族的144、148、154和208位

  14. Identification of three new type-specific antigen epitopes in the capsid protein of porcine circovirus type 1.

    Science.gov (United States)

    Huang, Liping; Lu, Yuehua; Wei, Yanwu; Guo, Longjun; Liu, Changming

    2012-07-01

    Porcine circovirus type 1 (PCV1) has been identified as a contaminant of porcine kidney cell line (PK-15). Serological evidence and genetic studies have suggested that PCV1 is widespread in domestic pigs. In this study, monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) were generated against a recombinant PCV1 Cap protein (PCV1-Cap), which was expressed using the baculovirus system. PEPSCAN analysis was used to identify epitopes on the PCV1-Cap with mAbs and pAbs. Three linear B-cell epitopes, including residues (85)GGTNPLP(91), (162)FTPKPELDKTIDWFHPNNK(180) and (219)YVQFREFILKDPLNK(233), specific for PCV1-Cap, were finely defined. These results will facilitate future investigations into antigenic differences and differential diagnosis between PCV1 and PCV2. PMID:22437253

  15. Delivery of a Foot-and-Mouth Disease Virus Empty Capsid Subunit Antigen with Nonstructural Protein 2B Improves Protection of Swine

    Science.gov (United States)

    We have previously demonstrated that a replication-defective human adenovirus serotype 5 (Ad5) vector carrying the capsid (P1-2A) and 3C protease coding regions as well as a portion of the 2B coding region of foot-and-mouth disease virus (FMDV) (Ad5-A24) protects cattle and swine from direct inocula...

  16. Nanoindentation of virus capsids in a molecular model

    OpenAIRE

    Cieplak, Marek; Robbins, Mark O.

    2010-01-01

    A molecular-level model is used to study the mechanical response of empty cowpea chlorotic mottle virus (CCMV) and cowpea mosaic virus (CPMV) capsids. The model is based on the native structure of the proteins that consitute the capsids and is described in terms of the C-alpha atoms. Nanoindentation by a large tip is modeled as compression between parallel plates. Plots of the compressive force versus plate separation for CCMV are qualitatively consistent with continuum models and experiments...

  17. Construction and Identification of Recombinant Adenovirus Expression VP1 of Foot and Mouth Disease Virus%口蹄疫病毒VP1基因重组腺病毒的构建与鉴定

    Institute of Scientific and Technical Information of China (English)

    苏春霞; 段相国; 张艳丽; 摆茹; 陈溥言

    2009-01-01

    目的 构建表达O型口蹄疫病毒(Foot-and-Mouth disease Vims,FMDV)VP1基因的重组腺病毒并对其进行鉴定.方法 将FMDV VP1基因克隆到腺病毒的穿梭载体pAdeno Vatotr-CMV5-IRES-GFP中.得到的阳性穿梭质粒经Pme Ⅰ酶线性化后.利用电转化技术将线性化的阳性质粒与腺病毒骨架载体pAdeno Vator△E1/E3共转化大肠杆菌BJ5183感受态细胞,使其在大肠杆菌中进行同源重组.将筛选到的重组病毒质粒经Pac-Ⅰ酶线性化后暴露出包装信号,通过脂质体LipofectamineTM2000转染HEK-293A细胞后得到重组病毒.利用报告基因GFP和细胞病变检测重组病毒滴度和感染效率,通过PCR和westem-blot检测FMDV VP1基因在重组腺病毒中的表达.结果 成功构建了表达FMDV VP1基因的重组腺病毒rAd5-VP1,其滴度为1011.87个TCID50/mL.western-blot检测重组腺病毒rAd5-VP1能与FMDV阳性血清发生反应.结论 重组腺病毒rAd5-VP1能与FMDV阳性血清发生反应,PCR和westem-blot检测FMDV VP1基因在重组腺病毒中稳定表达.

  18. Use of recombinant capsid proteins in the development of a vaccine against the foot-and-mouth disease virus

    Directory of Open Access Journals (Sweden)

    Belsham GJ

    2015-02-01

    Full Text Available Graham J Belsham, Anette Bøtner National Veterinary Institute, Technical University of Denmark, Kalvehave, Denmark Abstract: Foot-and-mouth disease remains one of the world's most economically important diseases of livestock. It is caused by foot-and-mouth disease virus, a member of the picornavirus family. The virus replicates very rapidly and can be efficiently transmitted between hosts by a variety of routes. The disease has been effectively controlled in some parts of the world but remains endemic in many others, thus there is a constant risk of introduction of the disease into areas that are normally free of foot-and-mouth disease with potentially huge economic consequences. To reduce the need for large-scale culling of infected, and potentially infected, animals there has been significant effort to develop new vaccines against this disease which avoid some, or all, of the deficiencies of current vaccines. A major focus has been on the use of systems that express the structural proteins of the virus that self-assemble to generate “empty capsid” particles which share many features with the intact virus but lack the ribonucleic acid genome and are therefore non-infectious. Such particles can be “designed” to improve their stability or modify their antigenicity and can be produced without “high containment” facilities. The development and use of such improved vaccines should assist in the global efforts to control this important disease. Keywords: picornavirus, diagnostic assays, virus structure, infection, immune responses

  19. Diagnostic potential of monoclonal antibodies against the capsid protein of chikungunya virus for detection of recent infection.

    Science.gov (United States)

    Damle, R G; Jayaram, N; Kulkarni, S M; Nigade, K; Khutwad, K; Gosavi, S; Parashar, D

    2016-06-01

    Chikungunya fever is self-limiting. However, neurological and hemorrhagic complications have been seen in recent outbreaks. The clinical manifestations of this disease are similar to those of dengue virus infection, indicating the need for differential diagnosis in areas such as India, which are endemic for both viruses. The aim of the present study was to develop monoclonal antibodies (MAbs) against Chikungunya virus (CHIKV) and assess their use in MAb-based IgM capture ELISA (MAC ELISA). The ELISA detects CHIKV-specific IgM antibodies, a marker of recent infection, in a patient's serum. One IgG1 and two IgM isotype hybrids were obtained. All of the subclones derived from the IgG1 hybrid recognized the C protein of CHIKV. The anti-C MAb ClVE4/D9 was the most promising as a detector antibody in MAC ELISA (C-MAb ELISA) yielding higher positive-to-negative (P/N) ratios. When compared with the CHIKV MAC ELISA kit developed by the National Institute of Virology (NIV), Pune (NIV MAC ELISA), the sensitivity of the test was 87.01 % with 100 % specificity. The positive and negative predictive values (PPV and NPV) were 100 % and 94.47 %, respectively. In precision testing, standard deviation (SD) and coefficient of variation (% CV) values of the C-MAb ELISA were within acceptable limits. The C-MAb ELISA detected anti-CHIKV IgM in serum of patients up to five months after the onset of infection, indicating that anti-C MAbs have strong potential for use in MAC ELISA to detect recent CHIKV infection. PMID:27016930

  20. A Porcine Circovirus Type 2 (PCV2) Mutant with 234 Amino Acids in Capsid Protein Showed More Virulence In Vivo, Compared with Classical PCV2a/b Strain

    OpenAIRE

    Guo, Longjun; Fu, Yujie; Wang, Yiping; Lu, Yuehua; Wei, Yanwu; Tang, Qinghai; Fan, Peihu; Liu, Jianbo; Zhang, Long; Zhang, Feiyan; Huang, Liping; Liu, Dan; Li, Shengbin; Wu, Hongli; Liu, Changming

    2012-01-01

    Background Porcine circovirus type 2 (PCV2) is considered to be the primary causative agent of postweaning multisystemic wasting syndrome (PMWS), which has become a serious economic problem for the swine industry worldwide. The major genotypes, PCV2a and PCV2b, are highly prevalent in the pig population and are present worldwide. However, another newly emerging PCV2b genotype mutant, which has a mutation in its ORF2-encoded capsid protein, has been sporadically present in China, as well as in...

  1. An Increase in Acid Resistance of Foot-and-Mouth Disease Virus Capsid Is Mediated by a Tyrosine Replacement of the VP2 Histidine Previously Associated with VP0 Cleavage

    OpenAIRE

    Vázquez-Calvo, Ángela; Caridi, Flavia; Sobrino, Francisco; Martín-Acebes, Miguel Ángel

    2014-01-01

    The foot-and-mouth disease virus (FMDV) capsid is highly acid labile, but introduction of amino acid replacements, including an N17D change in VP1, can increase its acid resistance. Using mutant VP1 N17D as a starting point, we isolated a virus with higher acid resistance carrying an additional replacement, VP2 H145Y, in a residue highly conserved among picornaviruses, which has been proposed to be responsible for VP0 cleavage. This mutant provides an example of the multifunctionality of pico...

  2. RNA Interference Targeting VP1 Inhibits Foot-and-Mouth Disease Virus Replication in BHK-21 Cells and Suckling Mice

    OpenAIRE

    Chen, Weizao; Yan, Weiyao; Du, Qingyun; Fei, Liang; Liu, Mingqiu; Ni, Zheng; Sheng, Zutian; Zheng, Zhaoxin

    2004-01-01

    RNA interference (RNAi) is a powerful tool to silence gene expression posttranscriptionally. In this study, we evaluated the antiviral potential of small interfering RNA (siRNA) targeting VP1 of foot-and-mouth disease virus (FMDV), which is essential during the life cycle of the virus and plays a key role in virus attachment to susceptible cells. We investigated in vivo the inhibitory effect of VP1-specific siRNAs on FMDV replication in BHK-21 cells and suckling mice, a commonly used small an...

  3. RECOVIR: An application package to automatically identify some single stranded RNA viruses using capsid protein residues that uniquely distinguish among these viruses

    Directory of Open Access Journals (Sweden)

    Fox George E

    2007-10-01

    Full Text Available Abstract Background Most single stranded RNA (ssRNA viruses mutate rapidly to generate large number of strains having highly divergent capsid sequences. Accurate strain recognition in uncharacterized target capsid sequences is essential for epidemiology, diagnostics, and vaccine development. Strain recognition based on similarity scores between target sequences and sequences of homology matched reference strains is often time consuming and ambiguous. This is especially true if only partial target sequences are available or if different ssRNA virus families are jointly analyzed. In such cases, knowledge of residues that uniquely distinguish among known reference strains is critical for rapid and unambiguous strain identification. Conventional sequence comparisons are unable to identify such capsid residues due to high sequence divergence among the ssRNA virus reference strains. Consequently, automated general methods to reliably identify strains using strain distinguishing residues are not currently available. Results We present here RECOVIR ("recognize viruses", a software tool to automatically detect strains of caliciviruses and picornaviruses by comparing their capsid residues with built-in databases of residues that uniquely distinguish among known reference strains of these viruses. The databases were created by constructing partitioned phylogenetic trees of complete capsid sequences of these viruses. Strains were correctly identified for more than 300 complete and partial target sequences by comparing the database residues with the aligned residues of these sequences. It required about 5 seconds of real time to process each sequence. A Java-based user interface coupled with Perl-coded computational modules ensures high portability of the software. RECOVIR currently runs on Windows XP and Linux platforms. The software generalizes a manual method briefly outlined earlier for human caliciviruses. Conclusion This study shows implementation of

  4. A structural constraint for functional interaction between N-terminal and C-terminal domains in simian immunodeficiency virus capsid proteins

    Directory of Open Access Journals (Sweden)

    Kawada Miki

    2010-10-01

    Full Text Available Abstract Background The Gag capsid (CA is one of the most conserved proteins in highly-diversified human and simian immunodeficiency viruses (HIV and SIV. Understanding the limitations imposed on amino acid sequences in CA could provide valuable information for vaccine immunogen design or anti-HIV drug development. Here, by comparing two pathogenic SIV strains, SIVmac239 and SIVsmE543-3, we found critical amino acid residues for functional interaction between the N-terminal and the C-terminal domains in CA. Results We first examined the impact of Gag residue 205, aspartate (Gag205D in SIVmac239 and glutamate (Gag205E in SIVsmE543-3, on viral replication; due to this difference, Gag206-216 (IINEEAADWDL epitope-specific cytotoxic T lymphocytes (CTLs were previously shown to respond to SIVmac239 but not SIVsmE543-3 infection. A mutant SIVmac239, SIVmac239Gag205E, whose Gag205D is replaced with Gag205E showed lower replicative ability. Interestingly, however, SIVmac239Gag205E passaged in macaque T cell culture often resulted in selection of an additional mutation at Gag residue 340, a change from SIVmac239 valine (Gag340V to SIVsmE543-3 methionine (Gag340M, with recovery of viral fitness. Structural modeling analysis suggested possible intermolecular interaction between the Gag205 residue in the N-terminal domain and Gag340 in the C-terminal in CA hexamers. The Gag205D-to-Gag205E substitution in SIVmac239 resulted in loss of in vitro core stability, which was recovered by additional Gag340V-to-Gag340M substitution. Finally, selection of Gag205E plus Gag340M mutations, but not Gag205E alone was observed in a chronically SIVmac239-infected rhesus macaque eliciting Gag206-216-specific CTL responses. Conclusions These results present in vitro and in vivo evidence implicating the interaction between Gag residues 205 in CA NTD and 340 in CA CTD in SIV replication. Thus, this study indicates a structural constraint for functional interaction between SIV CA

  5. A commercial PCV2a-based vaccine is effective in protection from experimental challenge of PCV2 mutant with two amino acids elongation in capsid protein.

    Science.gov (United States)

    Guo, Long-Jun; Fu, Yu-Jie; Huang, Li-Ping; Wang, Yi-Ping; Wei, Yan-Wu; Wu, Hong-Li; Liu, Chang-Ming

    2015-07-17

    Current commercial PCV2 vaccines are almost based on PCV2a and have been shown to be effective in reducing PCV2a and PCV2b viremia and PCV2-associated lesions and diseases. The recent emergence of novel mutant PCV2 (mPCV2) strains and linkage of mPCV2 with cases of porcine circovirus associated disease (PCVAD) in pig herds have raised concerns over emergence of vaccine-escape mutants and reduced efficacy of PCV2a-based vaccines. The aim of this study was to determine the ability of a commercial PCV2a-based vaccine developed by our laboratory to protect conventional pigs against experimental challenge with mPCV2 at 9 weeks of age. Twenty 4-week-old pigs free of PCV2 infection were randomly divided into four treatment groups with 5 pigs each. Two groups were unvaccinated as positive and negative controls. Another two groups were vaccinated with the commercial PCV2a-based vaccine (PCV2-LG strain, China) at 4 weeks of age and identical booster immunization was conducted 3 weeks post primary immunization. At 9 weeks of age, all pigs except the negative control were challenged with a mutant PCV2b/YJ (mPCV2b/YJ) with two amino acids elongation in capsid protein. The experiment was terminated 28 days after challenge. Under the conditions of this study, vaccinated pigs were protected against PCV2 viremia and lesions whereas unvaccinated pigs were not. Moreover, mPCV2b/YJ infection was demonstrated in positive control and almost all had macroscopic or microscopic lesions consistent with PCVAD while negative control did not develop PCVAD. This study indicates that mPCV2b/YJ infection alone can trigger PCVAD development and that the commercial vaccine (PCV2-LG) is still effective in protecting conventional pigs against the emerging mPCV2b/YJ strain in China. PMID:26051516

  6. Nonlinear Finite Element Analysis of Nanoindentation of Viral Capsids

    CERN Document Server

    Gibbons, M M; Gibbons, Melissa M.; Klug, William S.

    2006-01-01

    Recent Atomic Force Microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling approach within the framework of three-dimensional nonlinear continuum elasticity. Homogeneous, isotropic, elastic, thick shell models are proposed for two capsids: the spherical Cowpea Chlorotic Mottle Virus (CCMV), and the ellipsocylindrical bacteriophage $\\phi 29$. As analyzed by the finite element method, these models enable parametric characterization of the effects of AFM tip geometry, capsid dimensions, and capsid constitutive descriptions. The generally nonlinear force response of capsids to indentation is shown to be insensitive to constitutive details, and greatly influenced by geometry. Nonlinear stiffening and softening of the force response is dependent on ...

  7. Production of polyomavirus structural protein, VP1, in yeast cells and its interaction with cell structures

    Czech Academy of Sciences Publication Activity Database

    Palková, Z.; Adamec, T.; Liebl, David; Štokrová, Jitka; Forstová, J.

    Londýn : ICRF, 1999 - (Fried, M.). s. 136 [The Imperial Cancer Research Fund 1999 Tumour Virus Meeting on Papovaviruses, Papillomavirus and Adenoviruses . 13.07.1999-18.07.1999, Cambridge] Grant ostatní: HHMI(US) 75195-540501 Subject RIV: EB - Genetics ; Molecular Biology

  8. Human Enterovirus 71 Protein Displayed on the Surface of Saccharomyces cerevisiae as an Oral Vaccine.

    Science.gov (United States)

    Zhang, Congdang; Wang, Yi; Ma, Shuzhi; Li, Leike; Chen, Liyun; Yan, Huimin; Peng, Tao

    2016-06-01

    Human enterovirus 71 (EV-A71), a major agent of hand, foot, and mouth disease, has become an important public health issue in recent years. No effective antiviral or vaccines against EV-A71 infection are currently available. EV-A71 infection intrudes bodies through the gastric mucosal surface and it is necessary to enhance mucosal immune response to protect children from these pathogens. Recently, the majority of EV-A71 vaccine candidates have been developed for parenteral immunization. However, parenteral vaccine candidates often induce poor mucosal responses. On the other hand, oral vaccines could induce effective mucosal and systemic immunity, and could be easily and safely administered. Thus, proper oral vaccines have attached more interest compared with parenteral vaccine. In this study, the major immunogenic capsid protein of EV-A71 was displayed on the surface of Saccharomyces cerevisiae. Oral immunization of mice with surface-displayed VP1 S. cerevisiae induced systemic humoral and mucosal immune responses, including virus-neutralizing titers, VP1-specific antibody, and the induction of Th1 immune responses in the spleen. Furthermore, oral immunization of mother mice with surface-displayed VP1 S. cerevisiae conferred protection to neonatal mice against the lethal EV-A71 infection. Furthermore, we observed that multiple boost immunization as well as higher immunization dosage could induce higher EV-A71-specific immune response. Our results demonstrated that surface-displayed VP1 S. cerevisiae could be used as potential oral vaccine against EV-A71 infection. PMID:27259043

  9. The Fate of HIV-1 Capsid: A Biochemical Assay for HIV-1 Uncoating

    OpenAIRE

    Yang, Yang; Luban, Jeremy; Diaz-Griffero, Felipe

    2014-01-01

    The uncoating process of HIV-1 is a poorly understood process, so the development of a reliable assay to study uncoating is critical for moving the field forward. Here we describe an uncoating assay that currently represents the state-of-the-art biochemical procedure for monitoring uncoating and core stability during infection. This assay is based on the biochemical separation of soluble capsid protein from particulate capsid cores and provides information about the fate of the capsid during ...

  10. The fate of HIV-1 capsid: a biochemical assay for HIV-1 uncoating.

    Science.gov (United States)

    Yang, Yang; Luban, Jeremy; Diaz-Griffero, Felipe

    2014-01-01

    The uncoating process of HIV-1 is a poorly understood process, so the development of a reliable assay to study uncoating is critical for moving the field forward. Here we describe an uncoating assay that currently represents the state-of-the-art biochemical procedure for monitoring uncoating and core stability during infection. This assay is based on the biochemical separation of soluble capsid protein from particulate capsid cores and provides information about the fate of the capsid during infection. PMID:24158811

  11. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    Science.gov (United States)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  12. Rhinovirus-induced VP1-specific Antibodies are Group-specific and Associated With Severity of Respiratory Symptoms

    Directory of Open Access Journals (Sweden)

    Katarzyna Niespodziana

    2015-01-01

    Interpretation: Our results demonstrate that increases of antibodies towards the VP1 N-terminus are group-specific and associated with severity of respiratory symptoms and suggest that it may be possible to develop serological tests for identifying causative RV groups.

  13. Analysis on genomic characteristics of enterovirus 71 types of VP1 gene in Henan of 2010%河南省2010年肠道病毒71型VP1基因特征分析

    Institute of Scientific and Technical Information of China (English)

    卫海燕; 黄学勇; 许玉玲; 马宏; 陈豪敏; 许汴利

    2012-01-01

    OBJECTIVE To reveal the genomic characteristics of enterovirus 71 strains of VP1 gene from Hand-Foot-Mouth Disease, and analyze their molecular epidemiology. METHODS A total of 840 clinical specimens were collected and isolated, and 34 enterovirus among 71 types of VP1 gene were analyzed by bioinformatics software. RESULTS The VP1 of 34 isolated specimens was gained by sequencing. The nucleotide similarities of VP1 gene were at the range of 96.3% to 100%. Phylogenetic analysis based on VP1 regions revealed that the Henan enterovirus 71 in 2010 belonged to C4a in subgenotype C4, and no difference was found between the severe and mild illness. Cluster C4a enterovirus 71 was also found in henan and other seven provinces during 2003-2009. CONCLUSION 71 isolated strains of enterovirus in Henan of 2008 belong to C4a in the C4 subgenotype, which is in line with the predominant virus circulating in mainland China since 2004.%目的 对河南省2010年手足口病监测标本进行病原分离及VP1基因测序,了解分离病毒的基因特征及分子流行病学特点.方法 将2010年收集的手足口病患者粪便标本和肛拭子标本840份进行病毒分离鉴定并对34株病毒分离株测定肠道病毒71型VP1全序,利用生物信息学软件对序列分析,构建序列系统进化树.结果 测序获得34株来自河南省11个地市的VP1全长序列,分离株间的VP1区核苷酸相似性为96.3%~100%,系统进化分析显示属于C4基因型的C4a亚群,所有分离株均处于同一进化分支,轻重症间无明显差别.在2003~2009年的河南省和其他7省亦发现有C4a亚群存在.结论 2010年河南EV71分离株为C4基因型的C4a亚群,河南省2008年以来的分离株与2004年以来的中国大陆优势株流行趋势完全一致.

  14. Analysis of the mechanical properties of wild type and hyperstable mutants of the HIV-1 capsid

    OpenAIRE

    Ramalho, Ruben; Rankovic, Sanela; Zhou, Jing; Aiken, Christopher; Rousso, Itay

    2016-01-01

    Background The human immunodeficiency virus (HIV-1) capsid is a self-assembled protein shell that contains the viral genome. During the stages between viral entry into a host cell and nuclear import of the viral DNA, the capsid dissociates in a process known as uncoating, which leads to the release of the viral genetic material. Mutations that alter the stability of the capsid affect the uncoating rate and impair HIV-1 infectivity. Results To gain further insight into the role of capsid stabi...

  15. Small-Molecule Inhibition of Human Immunodeficiency Virus Type 1 Infection by Virus Capsid Destabilization▿

    OpenAIRE

    Shi, Jiong; Zhou, Jing; Shah, Vaibhav B.; Aiken, Christopher; Whitby, Kevin

    2010-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection is dependent on the proper disassembly of the viral capsid, or “uncoating,” in target cells. The HIV-1 capsid consists of a conical multimeric complex of the viral capsid protein (CA) arranged in a hexagonal lattice. Mutations in CA that destabilize the viral capsid result in impaired infection owing to defects in reverse transcription in target cells. We describe here the mechanism of action of a small molecule HIV-1 inhibitor, PF-3450074...

  16. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, Marielle [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Thelen, Nicolas; Thiry, Marc [University of Liege (ULg), GIGA-Neurosciences, Laboratory of Cellular and Tissular Biology, Liege (Belgium); Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Di Valentin, Emmanuel [University of Liege (ULg), GIGA-Viral Vectors Platform, Liege (Belgium); Bontems, Sébastien [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Sadzot-Delvaux, Catherine, E-mail: csadzot@ulg.ac.be [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium)

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  17. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    International Nuclear Information System (INIS)

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures

  18. In-depth proteomic analysis of Varroa destructor: Detection of DWV-complex, ABPV, VdMLV and honeybee proteins in the mite.

    Science.gov (United States)

    Erban, Tomas; Harant, Karel; Hubalek, Martin; Vitamvas, Pavel; Kamler, Martin; Poltronieri, Palmiro; Tyl, Jan; Markovic, Martin; Titera, Dalibor

    2015-01-01

    We investigated pathogens in the parasitic honeybee mite Varroa destructor using nanoLC-MS/MS (TripleTOF) and 2D-E-MS/MS proteomics approaches supplemented with affinity-chromatography to concentrate trace target proteins. Peptides were detected from the currently uncharacterized Varroa destructor Macula-like virus (VdMLV), the deformed wing virus (DWV)-complex and the acute bee paralysis virus (ABPV). Peptide alignments revealed detection of complete structural DWV-complex block VP2-VP1-VP3, VDV-1 helicase and single-amino-acid substitution A/K/Q in VP1, the ABPV structural block VP1-VP4-VP2-VP3 including uncleaved VP4/VP2, and VdMLV coat protein. Isoforms of viral structural proteins of highest abundance were localized via 2D-E. The presence of all types of capsid/coat proteins of a particular virus suggested the presence of virions in Varroa. Also, matches between the MWs of viral structural proteins on 2D-E and their theoretical MWs indicated that viruses were not digested. The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding. Hemolymph feeding also resulted in the detection of a variety of honeybee proteins. The advantages of MS-based proteomics for pathogen detection, false-positive pathogen detection, virus replication, posttranslational modifications, and the presence of honeybee proteins in Varroa are discussed. PMID:26358842

  19. Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus

    DEFF Research Database (Denmark)

    Bøtner, Anette; Kakker, Naresh K.; Barbezange, Cyril;

    2011-01-01

    Chimeric foot-and-mouth disease viruses (FMDVs) have been generated from plasmids containing full-length FMDV cDNAs and characterized. The parental virus cDNA was derived from the cell-culture-adapted O1Kaufbeuren B64 (O1K B64) strain. Chimeric viruses, containing capsid coding sequences derived...... region within the O1K B64 strain that inhibits replication in cattle. These chimeric infectious cDNA plasmids provide a basis for the analysis of FMDV pathogenicity and characterization of receptor utilization in vivo....

  20. Detection of phosphorylated forms of Moloney murine leukemia virus major capsid protein p30 by immunoprecipitation and two-dimensional gel electrophoresis.

    OpenAIRE

    Ikuta, K.; Luftig, R B

    1988-01-01

    We detected phosphorylation of the major Moloney murine leukemia virus (M-MuLV) capsid polypeptide, p30, by using 32Pi-labeled virions. This was observed both on two-dimensional polyacrylamide gels directly or on one-dimensional gels of viral lysates that had been immunoprecipitated with monospecific goat anti-p30 serum. The phosphorylation event had been difficult to detect because pp12 the major virion phosphoprotein incorporates almost all of the 32P label added to infected cells (Y. Yoshi...

  1. VP1 of serotype C foot-and-mouth disease viruses: long-term conservation of sequences.

    OpenAIRE

    Piccone, M. E.; Kaplan, G; Giavedoni, L; Domingo, E; Palma, E L

    1988-01-01

    The nucleotide sequences of the VP1-coding regions of several isolates of serotype C3 foot-and-mouth disease virus (FMDV) were determined. The deduced amino acid sequences were compared with those of serotype C1 FMDV. The results provide evidence for two different lineages of FMDV C3 and document the potential for both long-term conservation and rapid evolution of FMDV.

  2. The tripartite capsid gene of Salmonella phage Gifsy-2 yields a capsid assembly pathway engaging features from HK97 and λ

    International Nuclear Information System (INIS)

    Phage Gifsy-2, a lambdoid phage infecting Salmonella, has an unusually large composite gene coding for its major capsid protein (mcp) at the C-terminal end, a ClpP-like protease at the N-terminus, and a ∼ 200 residue central domain of unknown function but which may have a scaffolding role. This combination of functions on a single coding region is more extensive than those observed in other phages such as HK97 (scaffold-capsid fusion) and λ (protease-scaffold fusion). To study the structural phenotype of the unique Gifsy-2 capsid gene, we have purified Gifsy-2 particles and visualized capsids and procapsids by cryoelectron microscopy, determining structures to resolutions up to 12 A. The capsids have lambdoid T = 7 geometry and are well modeled with the atomic structures of HK97 mcp and phage λ gpD decoration protein. Thus, the unique Gifsy-2 capsid protein gene yields a capsid maturation pathway engaging features from both phages HK97 and λ.

  3. Mx oligomer: a novel capsid pattern sensor?

    Science.gov (United States)

    Kong, Jia; Ma, Min; He, Shuangyi; Qin, Xiaohong

    2016-08-01

    Myxovirus resistance proteins represent a family of interferon-induced restriction factors of the innate and adaptive immune system. Human MxB acts as a novel restriction factor with antiviral activity against a range of HIV-1 and other retroviruses mainly by inhibiting the uncoating process after reverse transcription but prior to integration. Based on published data and conservation analysis, we propose a novel hypothesis, in which MxB dimers form higher order oligomers that restrict retroviral replication by binding to the viral capsid. Insights into the mechanistic basis of structural and functional characteristics of MxB will greatly advance our understanding of MxB. PMID:27492442

  4. A型口蹄疫病毒结构蛋白VP1的原核表达、纯化及鉴定

    Institute of Scientific and Technical Information of China (English)

    颜健华[1; 何奇松[1; 蒋家霞[1; 冯淑萍[1; 黄胜斌[1; 韦达有[2; 易春华[2; 许瑞胜[3; 梁晟[1; 熊毅[1

    2016-01-01

    【目的】通过原核表达及纯化获得A型口蹄疫病毒(FMDV)结构蛋白VP1,为建立A型FMDV的ELISA诊断方法及开发安全、高效、广谱的新型基因工程疫苗提供技术支持。【方法】以含A型FMDV VP1基因的重组质粒p MD18-T-A-VP1为模板,通过特异性引物扩增A型FMDV的VP1基因,构建表达质粒p ET-32a-VP1和p GEX-6p-1-VP1,然后转入感受态细胞E.coli BL21(DE3)中诱导表达融合蛋白。【结果】诱导表达获得的VP1融合蛋白主要以包涵体形式存在,分别经His·Bind和GST·Bind柱层析纯化,SDS-PAGE分析结果表明融合蛋白纯度较高;Western blotting检测分析发现,VP1融合蛋白能与豚鼠抗A型FMDV阳性血清发生特异性结合,但不与豚鼠抗O型和Asia1型FMDV阳性血清反应。【结论】经原核表达及纯化获得的A型FMDV VP1融合蛋白具有良好的特异性和抗原性,可用于易感动物的免疫及血清抗体筛查。

  5. Baculovirus expression of the N-terminus of porcine heat shock protein Gp96 improves the immunogenicity of recombinant PCV2 capsid protein.

    Science.gov (United States)

    Zhu, Xuejiao; Liu, Jie; Bai, Juan; Liu, Panrao; Zhang, Tingjie; Jiang, Ping; Wang, Xianwei

    2016-04-01

    Porcine circovirus type 2 (PCV2) causes significant economic losses to the swine industry worldwide. Heat shock proteins (Hsps) can be used as modulators to enhance both innate and adaptive immune responses. In the present study, recombinant baculoviruses expressing the PCV2Cap protein and the N-terminal 22-370 amino acids of porcine Gp96 (Gp96N), Hsp90, and Hsp70 (rBac-cap/Gp96N, rBac-cap/Hsp90 and rBac-cap/Hsp70, respectively) were constructed and the immune responses were examined in mice and piglets. The mouse experiments showed that rBac-cap/Gp96N increased the titers of specific anti-PCV2 neutralizing antibodies, proliferative responses of peripheral blood mononuclear cells (PBMCs) and IFN-γ levels compared to rBac-cap/Hsp90, rBac-cap/Hsp70, or rBac-cap. The pig experiments showed that the levels of anti-PCV2 antibody, proliferative responses of PBMCs, and IFN-γ in the rBac-cap/Gp96N groups were increased compared to those in rBac-cap group. There were no clear clinical signs of infection following PCV2 challenge in pigs inoculated with recombinant rBac-cap/Gp96N and rBac-cap, and the relative daily weight gains were higher than those in the challenge control (CC) group. The pathological lesions, extent of viremia, and viral loads of the vaccinated groups were milder than those in the CC group. Meanwhile, the extent of viremia and viral load present in the rBac-cap/Gp96N group were significantly lower than those in the rBac-cap group. These results indicated that porcine Gp96N effectively increased the humoral and cell-mediated immune responses of PCV2Cap. Gp96N presents an attractive adjuvant or immunotargeting strategy to enhance the protective efficacy of PCV2 subunit vaccines in swine. PMID:26826323

  6. A Simple Model for Immature Retrovirus Capsid Assembly

    Science.gov (United States)

    Paquay, Stefan; van der Schoot, Paul; Dragnea, Bogdan

    In this talk I will present simulations of a simple model for capsomeres in immature virus capsids, consisting of only point particles with a tunable range of attraction constrained to a spherical surface. We find that, at sufficiently low density, a short interaction range is sufficient for the suppression of five-fold defects in the packing and causes instead larger tears and scars in the capsid. These findings agree both qualitatively and quantitatively with experiments on immature retrovirus capsids, implying that the structure of the retroviral protein lattice can, for a large part, be explained simply by the effective interaction between the capsomeres. We thank the HFSP for funding under Grant RGP0017/2012.

  7. 福建地区2株猪嵴病毒 VP1基因的克隆及遗传进化分析%Cloning of Porcine Kobuvirus VP1 in Fujian province and Phylogenetic analysis

    Institute of Scientific and Technical Information of China (English)

    张永军; 胡永浩

    2016-01-01

    [目的]调查猪嵴病毒在福建地区腹泻猪群中的流行和变异情况。[方法]根据 GenBank 中登陆的猪嵴病毒(porcine kobuvirus, PKoV)结构蛋白 VP1基因序列设计特异性引物,采用 RT -PCR 方法从某猪场采集腹泻小肠样品中扩增猪嵴病毒 VP1基因,将扩增后的目的片段克隆后进行序列测定。应用生物信息学软件,将获得的2株猪嵴病毒 VP1和 GenBank 的猪嵴病毒株 VP1基因序列进行对比分析。[结果]猪嵴病毒 CH /FJNP/12L/2015与匈牙利株 K -30-HU /2008/HUN(GQ249161)的核苷酸同源性最高,为88.1%,氨基酸同源性为95.3%。 CH /FJNP/12W1/2015与越南株714441/CAOLANH -VH /2012-2-21(KT266058)的核苷酸同源性最高,为88.2%,氨基酸同源性为96.1%,同源重组分析显示,2株毒株均无明显同源重组发生。[结论]频繁的畜禽国际贸易,以及如今便捷的现代化交通工具,人们生活提供方便的同时,也加速了猪嵴病毒毒性的传播。%Objective] The current situation of the epidemic and genetic variation of the porcine Kobuvirus (PKV) in diarrhea pigs in Fujian province were investigated.[Method] The special primer was designed according to the sequence of PKV deposited in GenBank.The VP1 gene of PKV in intestinal samples collected from pig -raising farm was amplified with RT -PCR method, and then, the amplified target frag-ment was cloned and sequenced.The sequences of two PKV strains were analyzed and compared by means of bioinformatics software.[Re-sults] The results showed that there was high nucleotide homology between VP1 gene of CH /FJNP/12L /2015and K -30 -HU /2008 /HUN, which was 88.1%; amino acid homology, 95.3%.The homology in the nucleotide and amino acid of CH /FJNP/12W1 /2015 with 714441 /CAOLANH -VH /2012 -2 -21 was 88.2% and 96.1%, respectively.The two isolates had no obvious homologus recombination occurred with other strains

  8. The NTD-CTD intersubunit interface plays a critical role in assembly and stabilization of the HIV-1 capsid

    OpenAIRE

    Yufenyuy, Ernest L; Aiken, Christopher

    2013-01-01

    Background Lentiviruses exhibit a cone-shaped capsid composed of subunits of the viral CA protein. The intrinsic stability of the capsid is critical for HIV-1 infection, since both stabilizing and destabilizing mutations compromise viral infectivity. Structural studies have identified three intersubunit interfaces in the HIV-1 capsid, two of which have been previously studied by mutational analysis. In this present study we analyzed the role of a third interface, that which is formed between ...

  9. 河南地区猪嵴病毒分子检测和VP1基因遗传进化分析%Detection and phylogenetic analysis of porcine Kobuvirus VP1 in Henan province

    Institute of Scientific and Technical Information of China (English)

    姬郭彪; 赵军; 周峰; 魏亚鹏; 常洪涛; 郑逢梅; 王川庆

    2014-01-01

    猪嵴病-毒(PKV)为新发现的小RNA病毒科嵴病毒属的一个待定种.为调查PKV在河南地区猪群中的感染和流行情况,本研究采集2010年~2012年河南地区84个种猪场150份猪腹泻粪便样品和23份无腹泻症状猪的粪便样品(猪场有腹泻史),采用RT-PCR方法对PKV的VP1基因进行检测.结果显示,检测样品中PKV总阳性率为82.1%(142/173),猪场PKV总阳性率为82.1%(69/84),表明河南地区各种猪群普遍存在PKV感染.其中发病猪群的PKV总阳性率为80.0%(120/150),临床健康猪群的PKV总阳性率为95.7%(22/23),两者无明显差异.此外,对8个阳性样品中VP1基因进行测序比对,结果显示与中国其它地区的PKV VP1基因的核苷酸同源性为80.7%~99.9%,推导的氨基酸序列同源性为83.9 %~99.6%.遗传进化分析显示所有已知的PKV株构成4个分支,河南的8个PKV的VP1序列分别位于其中的3个分支中.

  10. 抗O型口蹄疫病毒VP1单克隆抗体的制备与鉴定

    Institute of Scientific and Technical Information of China (English)

    胡大利; 张培因; 尹晓光; 卫红飞; 王丽颖; 于永利

    2006-01-01

    目的: 制备抗O型口蹄疫病毒(FMDV)衣壳蛋白VP1的单克隆抗体(mAb)并进行特性鉴定.方法: 以自行构建表达的O型FMDV-VP1表位重组蛋白(VP1epi)为抗原免疫BALB/c小鼠, 按常规方法进行细胞融合.采用有限稀释法和间接ELISA法克隆和筛选阳性杂交瘤细胞株, 用Western blot、间接ELISA和斑点免疫测定法对mAb的特异性进行鉴定.结果: 成功地获得1 株分泌抗VP1epi重组蛋白mAb的杂交瘤细胞株"C7", 其分泌的mAb为IgG1亚类, 能特异性地识别VP1epi重组蛋白, 其腹水效价可达1∶ 12 800.斑点免疫测定法显示, 该mAb能很好地识别灭活的FMDV.结论: VP1epi重组蛋白可代替FMDV制备抗天然FMDV-VP1的mAb.抗O型FMDV-VP1 mAb的成功制备, 为进一步研究开发新型FMDV的检测方法奠定了基础.

  11. Second-site suppressors of HIV-1 capsid mutations: restoration of intracellular activities without correction of intrinsic capsid stability defects

    Directory of Open Access Journals (Sweden)

    Yang Ruifeng

    2012-04-01

    Full Text Available Abstract Background Disassembly of the viral capsid following penetration into the cytoplasm, or uncoating, is a poorly understood stage of retrovirus infection. Based on previous studies of HIV-1 CA mutants exhibiting altered capsid stability, we concluded that formation of a capsid of optimal intrinsic stability is crucial for HIV-1 infection. Results To further examine the connection between HIV-1 capsid stability and infectivity, we isolated second-site suppressors of HIV-1 mutants exhibiting unstable (P38A or hyperstable (E45A capsids. We identified the respective suppressor mutations, T216I and R132T, which restored virus replication in a human T cell line and markedly enhanced the fitness of the original mutants as revealed in single-cycle infection assays. Analysis of the corresponding purified N-terminal domain CA proteins by NMR spectroscopy demonstrated that the E45A and R132T mutations induced structural changes that are localized to the regions of the mutations, while the P38A mutation resulted in changes extending to neighboring regions in space. Unexpectedly, neither suppressor mutation corrected the intrinsic viral capsid stability defect associated with the respective original mutation. Nonetheless, the R132T mutation rescued the selective infectivity impairment exhibited by the E45A mutant in aphidicolin-arrested cells, and the double mutant regained sensitivity to the small molecule inhibitor PF74. The T216I mutation rescued the impaired ability of the P38A mutant virus to abrogate restriction by TRIMCyp and TRIM5α. Conclusions The second-site suppressor mutations in CA that we have identified rescue virus infection without correcting the intrinsic capsid stability defects associated with the P38A and E45A mutations. The suppressors also restored wild type virus function in several cell-based assays. We propose that while proper HIV-1 uncoating in target cells is dependent on the intrinsic stability of the viral capsid, the

  12. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    International Nuclear Information System (INIS)

    Highlights: → All three capsid proteins can be expressed in insect cells in baculovirus expression system. → All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. → The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.

  13. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo [College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Wang, Junwei, E-mail: jwwang@neau.edu.cn [College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China)

    2011-05-27

    Highlights: {yields} All three capsid proteins can be expressed in insect cells in baculovirus expression system. {yields} All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. {yields} The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.

  14. Protection against Foot-and-Mouth Disease Virus in Guinea Pigs via Oral Administration of Recombinant Lactobacillus plantarum Expressing VP1.

    Directory of Open Access Journals (Sweden)

    Miao Wang

    Full Text Available Mucosal vaccination is an effective strategy for generating antigen-specific immune responses against mucosal infections of foot-and-mouth disease virus (FMDV. In this study, Lactobacillus plantarum strains NC8 and WCFS1 were used as oral delivery vehicles containing a pSIP411-VP1 recombinant plasmid to initiate mucosal and systemic immune responses in guinea pigs. Guinea pigs were orally vaccinated (three doses with NC8-pSIP411, NC8-pSIP411-VP1, WCFS1-pSIP411, WCFS1-pSIP411-VP1 or milk. Animals immunized with NC8-pSIP411-VP1 and WCFS1-pSIP411-VP1 developed high levels of antigen-specific serum IgG, IgA, IgM, mucosal secretory IgA (sIgA and neutralizing antibodies, and revealed stronger cell-mediated immune responses and enhanced protection against FMDV challenge compared with control groups. The recombinant pSIP411-VP1 effectively improved immunoprotection against FMDV in guinea pigs.

  15. Marker vaccine potential of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion.

    Science.gov (United States)

    Fowler, V L; Knowles, N J; Paton, D J; Barnett, P V

    2010-04-26

    Previous work in cattle and pigs demonstrated that protection against foot-and-mouth disease (FMD) could be achieved following vaccination with chimeric foot-and-mouth disease virus (FMDV) vaccines, in which the VP1 G-H loop had been substituted with that from another serotype. This indicated that the VP1 G-H loop may not be essential for the protection of natural hosts against FMDV. If this could be substantiated there would be potential to develop FMD marker vaccines, characterised by the absence of this region. Here, we investigate the serological responses to vaccination with a virus with a partial VP1 G-H loop deletion in order to determine the likelihood of achieving protection and the potential of this virus as a marker vaccine. Inactivated, oil adjuvanted, vaccines, consisting of chemically inactivated virus with or without a partially deleted VP1 G-H loop, were used to immunise cattle. Serum was collected on days 0, 7, 14 and 21 and antibody titres calculated using the virus neutralisation test (VNT) to estimate the likelihood of protection. We predict a good likelihood that cattle vaccinated with a vaccine characterised by a partial VP1 G-H loop would be protected against challenge with the same virus containing the VP1 G-H loop. We also present evidence on the potential of such a construct to act as a marker vaccine, when used in conjunction with a novel serological test. PMID:20199761

  16. Serological detection and analysis of anti-VP1 responses against various enteroviruses (EV) (EV-A, EV-B and EV-C) in Chinese individuals.

    Science.gov (United States)

    Gao, Caixia; Ding, Yingying; Zhou, Peng; Feng, Jiaojiao; Qian, Baohua; Lin, Ziyu; Wang, Lili; Wang, Jinhong; Zhao, Chunyan; Li, Xiangyu; Cao, Mingmei; Peng, Heng; Rui, Bing; Pan, Wei

    2016-01-01

    The overall serological prevalence of EV infections based on ELISA remains unknown. In the present study, the antibody responses against VP1 of the EV-A species (enterovirus 71 (EV71), Coxsackievirus A16 (CA16), Coxsackievirus A5 (CA5) and Coxsackievirus A6 (CA6)), of the EV-B species (Coxsackievirus B3 (CB3)), and of the EV-C species (Poliovirus 1 (PV1)) were detected and analyzed by a NEIBM (novel evolved immunoglobulin-binding molecule)-based ELISA in Shanghai blood donors. The serological prevalence of anti-CB3 VP1 antibodies was demonstrated to show the highest level, with anti-PV1 VP1 antibodies at the second highest level, and anti-CA5, CA6, CA16 and EV71 VP1 antibodies at a comparatively low level. All reactions were significantly correlated at different levels, which were approximately proportional to their sequence similarities. Antibody responses against EV71 VP1 showed obvious differences with responses against other EV-A viruses. Obvious differences in antibody responses between August 2013 and May 2014 were revealed. These findings are the first to describe the detailed information of the serological prevalence of human antibody responses against the VP1 of EV-A, B and C viruses, and could be helpful for understanding of the ubiquity of EV infections and for identifying an effective approach for seroepidemiological surveillance based on ELISA. PMID:26917423

  17. Mutation in the loop C-terminal to the cyclophilin A binding site of HIV-1 capsid protein disrupts proper virus assembly and infectivity

    Directory of Open Access Journals (Sweden)

    Höglund Anders

    2007-03-01

    Full Text Available Abstract We have studied the effects associated with two single amino acid substitution mutations in HIV-1 capsid (CA, the E98A and E187G. Both amino acids are well conserved among all major HIV-1 subtypes. HIV-1 infectivity is critically dependent on proper CA cone formation and mutations in CA are lethal when they inhibit CA assembly by destabilizing the intra and/or inter molecular CA contacts, which ultimately abrogate viral replication. Glu98, which is located on a surface of a flexible cyclophilin A binding loop is not involved in any intra-molecular contacts with other CA residues. In contrast, Glu187 has extensive intra-molecular contacts with eight other CA residues. Additionally, Glu187 has been shown to form a salt-bridge with Arg18 of another N-terminal CA monomer in a N-C dimer. However, despite proper virus release, glycoprotein incorporation and Gag processing, electron microscopy analysis revealed that, in contrast to the E187G mutant, only the E98A particles had aberrant core morphology that resulted in loss of infectivity.

  18. Structure of the capsid of Kilham rat virus from small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wobbe, C.R.; Mitra, S.; Ramakrishnan, V.

    1984-12-18

    The structure of empty capsids of Kilham rat virus, an autonomous parvovirus with icosahedral symmetry, was investigated by small-angle neutron scattering. From the forward scatter, the molecular weight was determined to be 4.0 x 10(6), and from the Guinier region, the radius of gyration was found to be 105 A in D2O and 104 A in H/sub 2/O. On the basis of the capsid molecular weight and the molecular weights and relative abundances of the capsid proteins, the authors propose that the capsid has a triangulation number of 1. Extended scattering curves and mathematical modeling revealed that the capsid consists of two shells of protein, the inner shell extending from 58 to 91 A in D2O and from 50 to 91 A in H/sub 2/O and containing 11% of the capsid scattering mass, and the outer shell extending to 121 A in H/sub 2/O and D2O. The inner shell appears to have a higher content of basic amino acids than the outer shell, based on its lower scattering density in D2O than in H/sub 2/O. The authors propose that all three capsid proteins contribute to the inner shell and that this basic region serves DNA binding and partial charge neutralization functions.

  19. Compensatory Substitutions in the HIV-1 Capsid Reduce the Fitness Cost Associated with Resistance to a Capsid-Targeting Small-Molecule Inhibitor

    OpenAIRE

    Shi, Jiong; Zhou, Jing; Halambage, Upul D.; Shah, Vaibhav B.; Burse, Mallori J.; Wu, Hua; Blair, Wade S.; Butler, Scott L.; Aiken, Christopher

    2014-01-01

    The HIV-1 capsid plays multiple roles in infection and is an emerging therapeutic target. The small-molecule HIV-1 inhibitor PF-3450074 (PF74) blocks HIV-1 at an early postentry stage by binding the viral capsid and interfering with its function. Selection for resistance resulted in accumulation of five amino acid changes in the viral CA protein, which collectively reduced binding of the compound to HIV-1 particles. In the present study, we dissected the individual and combinatorial contribut...

  20. TRIM5α Disrupts the Structure of Assembled HIV-1 Capsid Complexes In Vitro▿

    OpenAIRE

    Black, Lesa R.; Aiken, Christopher

    2010-01-01

    The host restriction factor TRIM5α provides intrinsic defense against retroviral infections in mammalian cells. TRIM5α blocks infection by targeting the viral capsid after entry but prior to completion of reverse transcription, but whether this interaction directly alters the structure of the viral capsid is unknown. A previous study reported that rhesus macaque TRIM5α protein stably associates with cylindrical complexes formed by assembly of recombinant HIV-1 CA-NC protein in vitro and that ...

  1. A Beta-Herpesvirus with Fluorescent Capsids to Study Transport in Living Cells

    OpenAIRE

    Jens B Bosse; Rudolf Bauerfeind; Leonhard Popilka; Lisa Marcinowski; Martina Taeglich; Christophe Jung; Hannah Striebinger; Jens von Einem; Ulrike Gaul; Paul Walther; Koszinowski, Ulrich H.; Zsolt Ruzsics

    2012-01-01

    Fluorescent tagging of viral particles by genetic means enables the study of virus dynamics in living cells. However, the study of beta-herpesvirus entry and morphogenesis by this method is currently limited. This is due to the lack of replication competent, capsid-tagged fluorescent viruses. Here, we report on viable recombinant MCMVs carrying ectopic insertions of the small capsid protein (SCP) fused to fluorescent proteins (FPs). The FPs were inserted into an internal position which allowe...

  2. Detection of phosphorylated forms of moloney murine leukemia virus major capsid protein p30 by immunoprecipitation and two-dimensional gel electrophoresis

    International Nuclear Information System (INIS)

    The authors detected phosphorylation of the major Moloney murine leukemia virus (M-MuLV) capsid polypeptide, p30, by using 32P/sub i/-labeled virions. This was observed both on two-dimensional polyacrylamide gels directly or on one-dimensional gels of viral lysates that had been immunoprecipitated with monospecific goat anti-p30 serum. The phosphorylation event had been difficult to detect because pp12 the major virion phosphoprotein incorporates almost all of the 32P label added to infected cells. When immunoprecipitates from M-MuLV lysates labeled with 32P/sub i/ were compared with those labeled with [35S]methionine, it was calculated that the degree of phosphorylation at the p30 domain of Pr65/sup gag/ was only 0.22 to 0.54% relative to phosphorylation at the p12 domain. Two-dimensional gel electrophoresis of the 32P-labeled p30 immunoprecipitates showed that there were three phosphorylated p30 forms with isoelectric points (pIs) of 5.7, 5.8, and 6.0. These forms were generally more acidic than the [35S] methionine-labeled p30 forms, which had pIs of 6.0, 6.1, 6.3 (the major constituent with > 80% of the label), and 6.6. The predominant phosphoamino acid of the major phosphorylated p30 form (pI 5.8) was phosphoserine. Further, tryptic peptide analysis of this p30 form showed that only one peptide was predominantly phosphorylated. Based on a comparison of specific labeling of p30 tryptic peptides with [14C]sesrine, [35S]methionine, and 32P/sub i/, we tentatively assigned the phosphorylation site to a 2.4-kilodalton NH2-terminal peptide containing triple tandem serines spanning the region from amino acids 4 to 24

  3. Detection of phosphorylated forms of moloney murine leukemia virus major capsid protein p30 by immunoprecipitation and two-dimensional gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, K.; Luftig, R.B.

    1988-01-01

    The authors detected phosphorylation of the major Moloney murine leukemia virus (M-MuLV) capsid polypeptide, p30, by using /sup 32/P/sub i/-labeled virions. This was observed both on two-dimensional polyacrylamide gels directly or on one-dimensional gels of viral lysates that had been immunoprecipitated with monospecific goat anti-p30 serum. The phosphorylation event had been difficult to detect because pp12 the major virion phosphoprotein incorporates almost all of the /sup 32/P label added to infected cells. When immunoprecipitates from M-MuLV lysates labeled with /sup 32/P/sub i/ were compared with those labeled with (/sup 35/S)methionine, it was calculated that the degree of phosphorylation at the p30 domain of Pr65/sup gag/ was only 0.22 to 0.54% relative to phosphorylation at the p12 domain. Two-dimensional gel electrophoresis of the /sup 32/P-labeled p30 immunoprecipitates showed that there were three phosphorylated p30 forms with isoelectric points (pIs) of 5.7, 5.8, and 6.0. These forms were generally more acidic than the (/sup 35/S) methionine-labeled p30 forms, which had pIs of 6.0, 6.1, 6.3 (the major constituent with > 80% of the label), and 6.6. The predominant phosphoamino acid of the major phosphorylated p30 form (pI 5.8) was phosphoserine. Further, tryptic peptide analysis of this p30 form showed that only one peptide was predominantly phosphorylated. Based on a comparison of specific labeling of p30 tryptic peptides with (/sup 14/C)sesrine, (/sup 35/S)methionine, and /sup 32/P/sub i/, we tentatively assigned the phosphorylation site to a 2.4-kilodalton NH/sub 2/-terminal peptide containing triple tandem serines spanning the region from amino acids 4 to 24.

  4. Characterization of the in vitro HIV-1 Capsid Assembly Pathway

    OpenAIRE

    Barklis, Eric; Alfadhli, Ayna; McQuaw, Carolyn; Yalamuri, Suraj; Still, Amelia; Barklis, Robin Lid; Kukull, Ben; López, Claudia S.

    2009-01-01

    During morphogenesis of mature HIV-1 cores, the viral capsid (CA) proteins assemble conical or tubular shells around the viral ribonucleoprotein complexes. This assembly step is mimicked in vitro through reactions in which CA proteins oligomerize to form long tubes, and this process can be modeled as consisting of a slow nucleation period followed by a rapid phase of tube growth. We have developed a novel fluorescence microscopy approach to monitor in vitro assembly reactions and have employe...

  5. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    International Nuclear Information System (INIS)

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations

  6. An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yan, E-mail: yzheng15@students.kgi.edu; Kielian, Margaret, E-mail: margaret.kielian@einstein.yu.edu

    2015-10-15

    Alphaviruses have a nucleocapsid core composed of the RNA genome surrounded by an icosahedral lattice of capsid protein. An insertion after position 186 in the capsid protein produced a strongly temperature-sensitive growth phenotype. Even when the structural proteins were synthesized at the permissive temperature (28 °C), subsequent incubation of the cells at the non-permissive temperature (37 °C) dramatically decreased mutant capsid protein stability and particle assembly. Electron microscopy confirmed the presence of cytoplasmic nucleocapsids in mutant-infected cells cultured at the permissive temperature, but these nucleocapsids were not stable to sucrose gradient separation. In contrast, nucleocapsids isolated from mutant virus particles had similar stability to that of wildtype virus. Our data support a model in which cytoplasmic nucleocapsids go through a maturation step during packaging into virus particles. The insertion site lies in the interface between capsid proteins in the assembled nucleocapsid, suggesting the region where such a stabilizing transition occurs. - Highlights: • We characterize an alphavirus capsid insertion mutation. • These capsid mutants are highly temperature sensitive for growth. • The insertion affects nucleocapsid stability. • Results suggest that the nucleocapsid is stabilized during virus budding.

  7. VP1 crystal structure-guided exploration and optimization of 4,5-dimethoxybenzene-based inhibitors of rhinovirus 14 infection.

    Science.gov (United States)

    Da Costa, Laurène; Roche, Manon; Scheers, Els; Coluccia, Antonio; Neyts, Johan; Terme, Thierry; Leyssen, Pieter; Silvestri, Romano; Vanelle, Patrice

    2016-06-10

    Human rhinoviruses (HRV) are the predominant cause of common colds and flu-like illnesses, but are also responsible for virus-induced exacerbations of asthma and chronic obstructive pulmonary disease. However, to date, no drug has been approved yet for clinical use. In this study, we present the results of the structure-based lead optimization of a class of new small-molecule inhibitors that we previously reported to bind into the pocket beneath the canyon of the VP1 protein. A small series of analogues that we designed based on the available structure and interaction data were synthesized and evaluated for their potency to inhibit the replication of HRV serotype 14. 2-(4,5-Dimethoxy-2-nitrophenyl)-1-(4-(pyridin-4-yl)phenyl)ethanol (3v) was found to be a potent inhibitor exhibiting micromolar activity (EC50 = 3.4 ± 1.0 μM) with a toxicity for HeLa cells that was significantly lower than that of our previous hit (LPCRW_0005, CC50 = 104.0 ± 22.2 μM; 3v, CC50 > 263 μM). PMID:27049678

  8. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor

    OpenAIRE

    Stremlau, Matthew; Perron, Michel; Lee, Mark; Li, Yuan; Song, Byeongwoon; Javanbakht, Hassan; Diaz-Griffero, Felipe; Anderson, Donovan J.; Sundquist, Wesley I.; Sodroski, Joseph

    2006-01-01

    The host restriction factor TRIM5α mediates species-specific, early blocks to retrovirus infection; susceptibility to these blocks is determined by viral capsid sequences. Here we demonstrate that TRIM5α variants from Old World monkeys specifically associate with the HIV type 1 (HIV-1) capsid and that this interaction depends on the TRIM5α B30.2 domain. Human and New World monkey TRIM5α proteins associated less efficiently with the HIV-1 capsid, accounting for the lack of restriction in cells...

  9. Identification of Capsid Mutations That Alter the Rate of HIV-1 Uncoating in Infected Cells

    OpenAIRE

    Hulme, Amy E.; Kelley, Z; Okocha, Eneniziaogochukwu A.; Hope, Thomas J.

    2014-01-01

    After viral fusion with the cell membrane, the conical capsid of HIV-1 disassembles by a process called uncoating. We recently utilized the cyclosporine (CsA) washout assay, in which TRIM-CypA-mediated restriction of viral replication is used to detect the state of the viral capsid, to study the kinetics of uncoating in HIV-1-infected cells. Here we have extended this analysis to examine the effects of p24 capsid protein (p24CA) mutations and cellular environment on the kinetics of uncoating ...

  10. Quantitative Proteomic Analysis of Escherichia coli Heat-Labile Toxin B Subunit (LTB) with Enterovirus 71 (EV71) Subunit VP1.

    Science.gov (United States)

    Liu, Lin; Ma, Yongping; Zhou, Huicong; Wu, Mingjun

    2016-01-01

    The nontoxic heat-labile toxin (LT) B subunit (LTB) was used as mucosal adjuvant experimentally. However, the mechanism of LTB adjuvant was still unclear. The LTB and enterovirus 71 (EV71) VP1 subunit (EVP1) were constructed in pET32 and expressed in E. coli BL21, respectively. The immunogenicity of purified EVP1 and the adjuvanticity of LTB were evaluated via intranasal immunization EVP1 plus LTB in Balb/c mice. In order to elucidate the proteome change triggered by the adjuvant of LTB, the proteomic profiles of LTB, EVP1, and LTB plus EVP1 were quantitatively analyzed by iTRAQ-LC-MS/MS (isobaric tags for relative and absolute quantitation; liquid chromatography-tandem mass spectrometry) in murine macrophage RAW264.7. The proteomic data were analyzed by bioinformatics and validated by western blot analysis. The predicted protein interactions were confirmed using LTB pull-down and the LTB processing pathway was validated by confocal microscopy. The results showed that LTB significantly boosted EVP1 specific systematic and mucosal antibodies. A total of 3666 differential proteins were identified in the three groups. Pathway enrichment of proteomic data predicted that LTB upregulated the specific and dominant MAPK (mitogen-activated protein kinase) signaling pathway and the protein processing in endoplasmic reticulum (PPER) pathway, whereas LTB or EVP1 did not significantly upregulate these two signaling pathways. Confocal microscopy and LTB pull-down assays confirmed that the LTB adjuvant was endocytosed and processed through endocytosis (ENS)-lysosomal-endoplasmic reticulum (ER) system. PMID:27618897

  11. Molecular evolution of the capsid gene in human norovirus genogroup II

    Science.gov (United States)

    Kobayashi, Miho; Matsushima, Yuki; Motoya, Takumi; Sakon, Naomi; Shigemoto, Naoki; Okamoto-Nakagawa, Reiko; Nishimura, Koichi; Yamashita, Yasutaka; Kuroda, Makoto; Saruki, Nobuhiro; Ryo, Akihide; Saraya, Takeshi; Morita, Yukio; Shirabe, Komei; Ishikawa, Mariko; Takahashi, Tomoko; Shinomiya, Hiroto; Okabe, Nobuhiko; Nagasawa, Koo; Suzuki, Yoshiyuki; Katayama, Kazuhiko; Kimura, Hirokazu

    2016-01-01

    Capsid protein of norovirus genogroup II (GII) plays crucial roles in host infection. Although studies on capsid gene evolution have been conducted for a few genotypes of norovirus, the molecular evolution of norovirus GII is not well understood. Here we report the molecular evolution of all GII genotypes, using various bioinformatics techniques. The time-scaled phylogenetic tree showed that the present GII strains diverged from GIV around 1630CE at a high evolutionary rate (around 10−3 substitutions/site/year), resulting in three lineages. The GII capsid gene had large pairwise distances (maximum > 0.39). The effective population sizes of the present GII strains were large (>102) for about 400 years. Positive (20) and negative (over 450) selection sites were estimated. Moreover, some linear and conformational B-cell epitopes were found in the deduced GII capsid protein. These results suggested that norovirus GII strains rapidly evolved with high divergence and adaptation to humans. PMID:27384324

  12. The Chikungunya Virus Capsid Protein Contains Linear B Cell Epitopes in the N- and C-Terminal Regions that are Dependent on an Intact C-Terminus for Antibody Recognition

    Directory of Open Access Journals (Sweden)

    Lucas Y. H. Goh

    2015-06-01

    Full Text Available Chikungunya virus (CHIKV is an arthropod-borne agent that causes severe arthritic disease in humans and is considered a serious health threat in areas where competent mosquito vectors are prevalent. CHIKV has recently been responsible for several millions of cases of disease, involving over 40 countries. The recent re-emergence of CHIKV and its potential threat to human health has stimulated interest in better understanding of the biology and pathogenesis of the virus, and requirement for improved treatment, prevention and control measures. In this study, we mapped the binding sites of a panel of eleven monoclonal antibodies (mAbs previously generated towards the capsid protein (CP of CHIKV. Using N- and C-terminally truncated recombinant forms of the CHIKV CP, two putative binding regions, between residues 1–35 and 140–210, were identified. Competitive binding also revealed that five of the CP-specific mAbs recognized a series of overlapping epitopes in the latter domain. We also identified a smaller, N-terminally truncated product of native CP that may represent an alternative translation product of the CHIKV 26S RNA and have potential functional significance during CHIKV replication. Our data also provides evidence that the C-terminus of CP is required for authentic antigenic structure of CP. This study shows that these anti-CP mAbs will be valuable research tools for further investigating the structure and function of the CHIKV CP.

  13. Role of the Capsid Helix 4-5 Loop in Equine Infectious Anemia Virus Infection

    OpenAIRE

    Bollman, Brooke Ann

    2012-01-01

    The lentiviral capsid core, which encapsulates the viral RNA genome, is delivered into the target cell cytoplasm during the viral entry process. In the cytoplasm, the conical core undergoes morphological changes, which are termed uncoating. Proper uncoating has been shown to be critical for the infectivity of the lentivirus HIV-1. In addition, the HIV-1 capsid protein is critical for the process of nuclear import of the preintegration complex (PIC). The lentivirus equine infectious anemia...

  14. Genetic Analysis of the VP1 Region of Human Enterovirus 71 Strains Isolated in Fuyang, China, During 2008

    Institute of Scientific and Technical Information of China (English)

    Shao-hui MA; Jian-sheng LIU; Jing-jing WANG; Hai-jing SHI; Hui-juan YANG; Jun-ying CHEN; Long-ding LIU; Qi-han LI

    2009-01-01

    Enterovirus 71 (EV71) is a common cause of Hand, foot, and mouth disease (HFMD) and may also cause severe neurological diseases, such as encephalitis and poliomyelitis-like paralysis. To examine the genetic diversity of EV71, we determined and analyzed the complete VP1 sequences (891 nucleotides) from nine EV71 strains isolated in Fuyang, China. We found that nine EV71 strains isolated were over 98% homologous at the nucleotide level and 93%-100% homologous to members of the C4 subgenogroup. At the amino acid level, these Fuyang strains were 99% -100% homologous to one another, 97%-100% homologous to members of the C4 subgenogroup, and the histidine(H) at amino acid position 22 was conserved among the Fuyang strains. The results indicate that Fuyang isolates belong to genotype C4, and an H at position 22 appears to be a marker for the Fuyang strains.

  15. Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating

    OpenAIRE

    Valbuena, Alberto; Mateu, Mauricio G.

    2015-01-01

    Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications in nanotechnology and nanomedicine. Unfortunately, protein assemblies are soft materials that may be too sensitive to mechanical disruption, and their intrinsic conformational dynamism may also influence their applicability. Thus, it may be critically important to characterize, understand and manipulate the mechanical features and dynamic behavior...

  16. Assembly of recombinant Israeli Acute Paralysis Virus capsids.

    Directory of Open Access Journals (Sweden)

    Junyuan Ren

    Full Text Available The dicistrovirus Israeli Acute Paralysis Virus (IAPV has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.

  17. O型口蹄疫病毒VP1嵌合基因的构建及原核表达

    Institute of Scientific and Technical Information of China (English)

    郑敏; 金宁一; 鲁会军; 韩松; 金扩世; 李昌

    2006-01-01

    对O型口蹄疫病毒(FMDV)抗原位点的研究表明,结构蛋白VP1~VP4均参与抗原位点的形成。但发挥主要作用的是VP1,该基因位于FMDV基因组的2977~3615位核苷酸,编码213个氨基酸。结构蛋白VP1功能区内包含FMDV的主要抗原位点,能诱导感染动物产生中和性抗体。它暴露于病毒颗粒的表面,易发生变异。在FMD研究中倍受关注。本

  18. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6

    Science.gov (United States)

    Bhattacharya, Akash; Alam, Steven L.; Fricke, Thomas; Zadrozny, Kaneil; Sedzicki, Jaroslaw; Taylor, Alexander B.; Demeler, Borries; Pornillos, Owen; Ganser-Pornillos, Barbie K.; Diaz-Griffero, Felipe; Ivanov, Dmitri N.; Yeager, Mark

    2014-01-01

    Upon infection of susceptible cells by HIV-1, the conical capsid formed by ∼250 hexamers and 12 pentamers of the CA protein is delivered to the cytoplasm. The capsid shields the RNA genome and proteins required for reverse transcription. In addition, the surface of the capsid mediates numerous host–virus interactions, which either promote infection or enable viral restriction by innate immune responses. In the intact capsid, there is an intermolecular interface between the N-terminal domain (NTD) of one subunit and the C-terminal domain (CTD) of the adjacent subunit within the same hexameric ring. The NTD–CTD interface is critical for capsid assembly, both as an architectural element of the CA hexamer and pentamer and as a mechanistic element for generating lattice curvature. Here we report biochemical experiments showing that PF-3450074 (PF74), a drug that inhibits HIV-1 infection, as well as host proteins cleavage and polyadenylation specific factor 6 (CPSF6) and nucleoporin 153 kDa (NUP153), bind to the CA hexamer with at least 10-fold higher affinities compared with nonassembled CA or isolated CA domains. The crystal structure of PF74 in complex with the CA hexamer reveals that PF74 binds in a preformed pocket encompassing the NTD–CTD interface, suggesting that the principal inhibitory target of PF74 is the assembled capsid. Likewise, CPSF6 binds in the same pocket. Given that the NTD–CTD interface is a specific molecular signature of assembled hexamers in the capsid, binding of NUP153 at this site suggests that key features of capsid architecture remain intact upon delivery of the preintegration complex to the nucleus. PMID:25518861

  19. Extreme genetic fragility of the HIV-1 capsid

    OpenAIRE

    Rihn, S.J.; Wilson, S. J.; Loman, N. J.; Alim, M.; Bakker, S.E.; Bhella, D.; Gifford, R.J.; Rixon, F J; Bieniasz, P D

    2013-01-01

    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pres...

  20. Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface

    Science.gov (United States)

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  1. Solution structure of N-terminal domain of Mason-Pfizer monkey virus capsid protein and its intramolecular interactions essential for a core assembly and virus infectivity

    Czech Academy of Sciences Publication Activity Database

    Wildová, Marcela; Macek, P.; Křížová, Ivana; Hadravová, Romana; Žídek, L.; Ruml, T.; Hunter, E.; Sklenář, V.; Pichová, Iva; Rumlová, Michaela

    New York : Cold Spring Harbor, 2008. s. 285-285. [ Retrovirus es. 19.05.2008-24.05.2008, New Yorjk] R&D Projects: GA ČR GESCO/06/E001 Institutional research plan: CEZ:AV0Z40550506 Keywords : caspid protein * structure * retrovirus * M-PMV Subject RIV: CC - Organic Chemistry

  2. The effect of point mutations within the N-terminal domain of Mason-Pfizer monkey virus capsid protein on virus core assembly and infectivity

    Czech Academy of Sciences Publication Activity Database

    Wildová, Marcela; Hadravová, Romana; Štokrová, Jitka; Křížová, Ivana; Ruml, Tomáš; Hunter, E.; Pichová, Iva; Rumlová, Michaela

    2008-01-01

    Roč. 380, č. 1 (2008), s. 157-163. ISSN 0042-6822 R&D Projects: GA MŠk 1M0508; GA ČR GESCO/06/E001; GA AV ČR KAN200200651 Grant ostatní: GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z40550506 Keywords : caspid protein * assembly * M-PMV Subject RIV: CE - Biochemistry Impact factor: 3.539, year: 2008

  3. Serotype identification and VP1 coding sequence analysis of foot-and-mouth disease virus from outbreaks in Eastern and Northern Uganda in 2008/9

    DEFF Research Database (Denmark)

    Kasambula, L.; Belsham, Graham; Siegismund, H. R.;

    2012-01-01

    regions, and the presence of FMDV RNA in these samples was determined using a standard diagnostic RT-PCR assay. From the total of 27 positive samples, the VP1 coding region was amplified and sequenced. Each of these sequences showed >99% identity to each other, and just five distinct sequences were...

  4. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.).

    Science.gov (United States)

    Wu, Guo-Qiang; Feng, Rui-Jun; Wang, Suo-Min; Wang, Chun-Mei; Bao, Ai-Ke; Wei, Li; Yuan, Hui-Jun

    2015-01-01

    Salinity is one of the major abiotic stresses that limit the growth and productivity of sugar beet (Beta vulgaris L.). To improve sugar beet's salinity tolerance, the ZxNHX and ZxVP1-1 genes encoding tonoplast Na(+)/H(+) antiporter and H(+)-PPase from xerophyte Zygophyllum xanthoxylum were co-expressed by Agrobacterium tumefaciens-mediated transformation. It is showed here that co-expression of ZxNHX and ZxVP1-1 confers enhanced salinity tolerance to the transformed sugar beet plants compared with the wild-type (WT) plants. The chimeric plants grew well in the presence of high salinity (400 mM NaCl), whereas WT plants displayed chlorosis and died within 8 days. Compared to WT plants, the chimeric plants co-expressing ZxNHX and ZxVP1-1 accumulated more proline, Na(+) and K(+) in their leaves and petioles when exposed to high salinity, which caused lower solute potential, retained more water and thus subjected to lesser cell membrane damage. Interestingly, the chimeric plants accumulated higher sucrose, glucose and fructose contents in their storage roots than WT plants in the absence or presence of high salinity. Our results suggested that co-expression of ZxNHX and ZxVP1-1 improved the osmoregulatory capacity in chimeric sugar beet through increased compartmentalization of ions into the vacuoles by enhancing the activity of proton pumps and thus mitigated Na(+)-toxicity for plants. PMID:26284097

  5. Nanoindentation of virus capsids in a molecular model

    Science.gov (United States)

    Cieplak, Marek; Robbins, Mark O.

    2010-01-01

    A molecular-level model is used to study the mechanical response of empty cowpea chlorotic mottle virus (CCMV) and cowpea mosaic virus (CPMV) capsids. The model is based on the native structure of the proteins that constitute the capsids and is described in terms of the Cα atoms. Nanoindentation by a large tip is modeled as compression between parallel plates. Plots of the compressive force versus plate separation for CCMV are qualitatively consistent with continuum models and experiments, showing an elastic region followed by an irreversible drop in force. The mechanical response of CPMV has not been studied, but the molecular model predicts an order of magnitude higher stiffness and a much shorter elastic region than for CCMV. These large changes result from small structural changes that increase the number of bonds by only 30% and would be difficult to capture in continuum models. Direct comparison of local deformations in continuum and molecular models of CCMV shows that the molecular model undergoes a gradual symmetry breaking rotation and accommodates more strain near the walls than the continuum model. The irreversible drop in force at small separations is associated with rupturing nearly all of the bonds between capsid proteins in the molecular model, while a buckling transition is observed in continuum models.

  6. Compensatory Substitutions in the HIV-1 Capsid Reduce the Fitness Cost Associated with Resistance to a Capsid-Targeting Small-Molecule Inhibitor

    Science.gov (United States)

    Shi, Jiong; Zhou, Jing; Halambage, Upul D.; Shah, Vaibhav B.; Burse, Mallori J.; Wu, Hua; Blair, Wade S.; Butler, Scott L.

    2014-01-01

    ABSTRACT The HIV-1 capsid plays multiple roles in infection and is an emerging therapeutic target. The small-molecule HIV-1 inhibitor PF-3450074 (PF74) blocks HIV-1 at an early postentry stage by binding the viral capsid and interfering with its function. Selection for resistance resulted in accumulation of five amino acid changes in the viral CA protein, which collectively reduced binding of the compound to HIV-1 particles. In the present study, we dissected the individual and combinatorial contributions of each of the five substitutions Q67H, K70R, H87P, T107N, and L111I to PF74 resistance, PF74 binding, and HIV-1 infectivity. Q67H, K70R, and T107N each conferred low-level resistance to PF74 and collectively conferred strong resistance. The substitutions K70R and L111I impaired HIV-1 infectivity, which was partially restored by the other substitutions at positions 67 and 107. PF74 binding to HIV-1 particles was reduced by the Q67H, K70R, and T107N substitutions, consistent with the location of these positions in the inhibitor-binding pocket. Replication of the 5Mut virus was markedly impaired in cultured macrophages, reminiscent of the previously reported N74D CA mutant. 5Mut substitutions also reduced the binding of the host protein CPSF6 to assembled CA complexes in vitro and permitted infection of cells expressing the inhibitory protein CPSF6-358. Our results demonstrate that strong resistance to PF74 requires accumulation of multiple substitutions in CA to inhibit PF74 binding and compensate for fitness impairments associated with some of the sequence changes. IMPORTANCE The HIV-1 capsid is an emerging drug target, and several small-molecule compounds have been reported to inhibit HIV-1 infection by targeting the capsid. Here we show that resistance to the capsid-targeting inhibitor PF74 requires multiple amino acid substitutions in the binding pocket of the CA protein. Three changes in CA were necessary to inhibit binding of PF74 while maintaining viral

  7. Cyclophilin A interacts with diverse lentiviral capsids

    Directory of Open Access Journals (Sweden)

    Emerman Michael

    2006-10-01

    Full Text Available Abstract Background The capsid (CA protein of HIV-1 binds with high affinity to the host protein cyclophilin A (CypA. This binding positively affects some early stage of the viral life-cycle because prevention of binding either by drugs that occupy that active site of cyclophilin A, by mutation in HIV-1 CA, or RNAi that knocks down intracellular CypA level diminishes viral infectivity. The closely related lentivirus, SIVcpz also binds CypA, but it was thought that this interaction was limited to the HIV-1/SIVcpz lineage because other retroviruses failed to interact with CypA in a yeast two-hybrid assay. Results We find that diverse lentiviruses, FIV and SIVagmTAN also bind to CypA. Mutagenesis of FIV CA showed that an amino acid that is in a homologous position to the proline at amino acid 90 of HIV-1 CA is essential for FIV interactions with CypA. Conclusion These results demonstrate that CypA binding to lentiviruses is more widespread than previously thought and suggest that this interaction is evolutionarily important for lentiviral infection.

  8. Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization.

    Science.gov (United States)

    Shi, Jiong; Zhou, Jing; Shah, Vaibhav B; Aiken, Christopher; Whitby, Kevin

    2011-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection is dependent on the proper disassembly of the viral capsid, or "uncoating," in target cells. The HIV-1 capsid consists of a conical multimeric complex of the viral capsid protein (CA) arranged in a hexagonal lattice. Mutations in CA that destabilize the viral capsid result in impaired infection owing to defects in reverse transcription in target cells. We describe here the mechanism of action of a small molecule HIV-1 inhibitor, PF-3450074 (PF74), which targets CA. PF74 acts at an early stage of HIV-1 infection and inhibits reverse transcription in target cells. We show that PF74 binds specifically to HIV-1 particles, and substitutions in CA that confer resistance to the compound prevent binding. A single point mutation in CA that stabilizes the HIV-1 core also conferred strong resistance to the virus without inhibiting compound binding. Treatment of HIV-1 particles or purified cores with PF74 destabilized the viral capsid in vitro. Furthermore, the compound induced the rapid dissolution of the HIV-1 capsid in target cells. PF74 antiviral activity was promoted by binding of the host protein cyclophilin A to the HIV-1 capsid, and PF74 and cyclosporine exhibited mutual antagonism. Our data suggest that PF74 triggers premature HIV-1 uncoating in target cells, thereby mimicking the activity of the retrovirus restriction factor TRIM5α. This study highlights uncoating as a step in the HIV-1 life cycle that is susceptible to small molecule intervention. PMID:20962083

  9. Small-Molecule Inhibition of Human Immunodeficiency Virus Type 1 Infection by Virus Capsid Destabilization▿

    Science.gov (United States)

    Shi, Jiong; Zhou, Jing; Shah, Vaibhav B.; Aiken, Christopher; Whitby, Kevin

    2011-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection is dependent on the proper disassembly of the viral capsid, or “uncoating,” in target cells. The HIV-1 capsid consists of a conical multimeric complex of the viral capsid protein (CA) arranged in a hexagonal lattice. Mutations in CA that destabilize the viral capsid result in impaired infection owing to defects in reverse transcription in target cells. We describe here the mechanism of action of a small molecule HIV-1 inhibitor, PF-3450074 (PF74), which targets CA. PF74 acts at an early stage of HIV-1 infection and inhibits reverse transcription in target cells. We show that PF74 binds specifically to HIV-1 particles, and substitutions in CA that confer resistance to the compound prevent binding. A single point mutation in CA that stabilizes the HIV-1 core also conferred strong resistance to the virus without inhibiting compound binding. Treatment of HIV-1 particles or purified cores with PF74 destabilized the viral capsid in vitro. Furthermore, the compound induced the rapid dissolution of the HIV-1 capsid in target cells. PF74 antiviral activity was promoted by binding of the host protein cyclophilin A to the HIV-1 capsid, and PF74 and cyclosporine exhibited mutual antagonism. Our data suggest that PF74 triggers premature HIV-1 uncoating in target cells, thereby mimicking the activity of the retrovirus restriction factor TRIM5α. This study highlights uncoating as a step in the HIV-1 life cycle that is susceptible to small molecule intervention. PMID:20962083

  10. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6

    OpenAIRE

    Bhattacharya, Akash; Alam, Steven L; Fricke, Thomas; Zadrozny, Kaneil; Sedzicki, Jaroslaw; Taylor, Alexander B.; Demeler, Borries; Pornillos, Owen; Ganser-Pornillos, Barbie K.; Diaz-Griffero, Felipe; Dmitri N Ivanov; Yeager, Mark

    2014-01-01

    Events that occur between entry of the HIV-1 capsid into the cytoplasm of the target cell and the delivery of the viral genetic material into the nucleus constitute some of the less well understood processes in the viral life cycle. We demonstrated that PF74, a small-molecule inhibitor of HIV-1, and the host proteins CPSF6 and NUP153 bind to a preformed pocket within the CA protein hexamers that exist within the assembled capsid. Our results suggest that key features of the CA hexameric latti...

  11. African horse sickness virus serotype 4 antigens, VP1-1, VP2-2, VP4, VP7 and NS3, induce cytotoxic T cell responses in vitro.

    Science.gov (United States)

    Faber, F E; van Kleef, M; Tshilwane, S I; Pretorius, A

    2016-07-15

    It was shown in a previous study that proliferating CD8+ T cells could be detected in immune horse peripheral blood mononuclear cells (PBMC) when stimulated with African horse sickness virus serotype 4 (AHSV4). In this study the cytotoxicity of CD8+ T cells were tested by using the fluorescent antigen-transfected target cells-cytotoxic T lymphocytes (FATT-CTL) assay, for both the virus and its individual proteins expressed in Escherichia coli. This CTL assay measures the killing of viral protein expressing cells. AHSV proteins were successfully expressed in E. coli using the pET102/D-TOPO expression vector and the effector cells were stimulated with these recombinant proteins or with live viable virulent AHSV4. The AHSV genes were amplified and cloned into the pIRES-hrGFP II (pGFPempty) vector and these plasmid vectors encoding antigen-green fluorescent protein (GFP) fusion proteins were used to nucleofect PBMC, the target cells. The elimination of antigen-GFP expressing cells by CTL was quantified by flowcytometry. VP1-1, VP2-2, VP4, VP7 and NS3, antigen-specific CD8+ T cells resulted in cell lysis suggesting that CTL may play a role in the immune response induced against the AHSV4 vaccine strain. PMID:27063332

  12. A porcine circovirus type 2 (PCV2 mutant with 234 amino acids in capsid protein showed more virulence in vivo, compared with classical PCV2a/b strain.

    Directory of Open Access Journals (Sweden)

    Longjun Guo

    Full Text Available BACKGROUND: Porcine circovirus type 2 (PCV2 is considered to be the primary causative agent of postweaning multisystemic wasting syndrome (PMWS, which has become a serious economic problem for the swine industry worldwide. The major genotypes, PCV2a and PCV2b, are highly prevalent in the pig population and are present worldwide. However, another newly emerging PCV2b genotype mutant, which has a mutation in its ORF2-encoded capsid protein, has been sporadically present in China, as well as in other countries. It is therefore important to determine the relative virulence of the newly emerging PCV2b genotype mutant, compared with the existing PCV2a and PCV2b genotypes, and to investigate whether the newly emerging mutant virus induces more severe illness. METHODOLOGY/PRINCIPAL FINDINGS: Twenty healthy, 30-day-old, commercial piglets served as controls or were challenged with PCV2a, PCV2b and the newly emerging mutant virus. A series of indexes representing different parameters were adopted to evaluate virulence, including clinical signs, serological detection, viral load and distribution, changes in immune cell subsets in the peripheral blood, and evaluation of pathological lesions. The newly emerging PCV2 mutant demonstrated more severe signs compatible with PMWS, characterized by wasting, coughing, dyspnea, diarrhea, rough hair-coat and depression. Moreover, the pathological lesions and viremia, as well as the viral loads in lymph nodes, tonsils and spleen, were significantly more severe (P<0.05 for piglets challenged with the newly emerging mutant compared with those in the groups challenged with PCV2a and PCV2b. In addition, a significantly lower average daily weight gain (P<0.05 was recorded in the group challenged with the newly emerging PCV2 mutant than in the groups challenged with the prevailing PCV2a and PCV2b. CONCLUSIONS: This is believed to be the first report to confirm the enhanced virulence of the newly emerging PCV2 mutant in vivo.

  13. Genetic diversity of the VP1/VP2 gene of canine parvovirus type 2b amplified from clinical specimens in Brazil Diversidade genética no gene VP1/VP2 do parvovirus canino tipo 2b amplificado de material clínico no Brasil

    OpenAIRE

    Cesar A. D. Pereira; Edison Luiz Durigon

    2000-01-01

    We evaluated the genetic diversity in the VP1/VP2 gene of CPV type 2b isolates from symptomatic dogs in Brazil. A total of 21 isolates collected from 1990 through 1995 previously typed as CPV2b by PCR assay were studied. Overall we found a high degree of similarity among sequences from different CPV clinical isolates collected. Genetic analysis of this selected region gave no indication of a specific Brazilian parvovirus lineage.Neste estudo foi avaliada a diversidade genética no gene VP1/VP2...

  14. Radiation-chemical stability of anionites and the safety of sorption processes in nitric acid media. Communication IV. Thermogravimetric studies of VP-1AP anionite in nitrate form

    International Nuclear Information System (INIS)

    Thermogravimetric analysis of VP-1AP anionite samples in sulfate and nitrate forms was carried out. For nitrate form one endothermal and two exothermal effects at ∼100, 160-180 and 200-220 deg C respectively were detected. It was ascertained that at temperatures of 130-230 deg C processes of oxidizing destruction of the sorbent matrix occur involving nitrate-ions, while in the range of 180-190 deg C an abrupt loss of mass takes place. Gamma-irradiation by dose of 5 MGy affects greatly the thermal stability of the anionite and the process can be considered one-stage operation with reaction initiated at 110 deg C. It is shown that preliminary thermal treatment and external irradiation of the anionite, especially in the presence of destruction products, increase essentially the probability of thermal explosion of VP-1AP anionite in nitrate form

  15. Prediction of stability changes upon mutation in an icosahedral capsid.

    Science.gov (United States)

    Hickman, Samuel J; Ross, James F; Paci, Emanuele

    2015-09-01

    Identifying the contributions to thermodynamic stability of capsids is of fundamental and practical importance. Here we use simulation to assess how mutations affect the stability of lumazine synthase from the hyperthermophile Aquifex aeolicus, a T = 1 icosahedral capsid; in the simulations the icosahedral symmetry of the capsid is preserved by simulating a single pentamer and imposing crystal symmetry, in effect simulating an infinite cubic lattice of icosahedral capsids. The stability is assessed by estimating the free energy of association using an empirical method previously proposed to identify biological units in crystal structures. We investigate the effect on capsid formation of seven mutations, for which it has been experimentally assessed whether they disrupt capsid formation or not. With one exception, our approach predicts the effect of the mutations on the capsid stability. The method allows the identification of interaction networks, which drive capsid assembly, and highlights the plasticity of the interfaces between subunits in the capsid. PMID:26178267

  16. Genetic diversity of the VP1/VP2 gene of canine parvovirus type 2b amplified from clinical specimens in Brazil

    OpenAIRE

    Pereira Cesar A. D.; Durigon Edison Luiz

    2000-01-01

    We evaluated the genetic diversity in the VP1/VP2 gene of CPV type 2b isolates from symptomatic dogs in Brazil. A total of 21 isolates collected from 1990 through 1995 previously typed as CPV2b by PCR assay were studied. Overall we found a high degree of similarity among sequences from different CPV clinical isolates collected. Genetic analysis of this selected region gave no indication of a specific Brazilian parvovirus lineage.

  17. Genetic diversity of the VP1/VP2 gene of canine parvovirus type 2b amplified from clinical specimens in Brazil

    Directory of Open Access Journals (Sweden)

    Pereira Cesar A. D.

    2000-01-01

    Full Text Available We evaluated the genetic diversity in the VP1/VP2 gene of CPV type 2b isolates from symptomatic dogs in Brazil. A total of 21 isolates collected from 1990 through 1995 previously typed as CPV2b by PCR assay were studied. Overall we found a high degree of similarity among sequences from different CPV clinical isolates collected. Genetic analysis of this selected region gave no indication of a specific Brazilian parvovirus lineage.

  18. Expression of the gene encoding transcription factor PaVP1 differs in Picea abies embryogenic lines depending on their ability to develop somatic embryos

    Czech Academy of Sciences Publication Activity Database

    Fischerová, Lucie; Fischer, L.; Vondráková, Zuzana; Vágner, Martin

    2008-01-01

    Roč. 27, č. 3 (2008), s. 435-441. ISSN 0721-7714 R&D Projects: GA MŠk LN00A081; GA MŠk(CZ) LC06034; GA AV ČR KJB6038402 Institutional research plan: CEZ:AV0Z50380511 Keywords : ABI3/VP1 transcription factor * Alternative splicing * Anatomy Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.946, year: 2008

  19. Enhancing immune responses of EV71 VP1 DNA vaccine by co-inoculating plasmid IL-12 or GM-CSF expressing vector in mice.

    Science.gov (United States)

    Peng, X; Fang, X; Li, J; Kong, L; Li, B; Ding, X

    2016-01-01

    Enterovirus 71 (EV71) is a major causative viral agent for large outbreaks of hand, foot, and mouth disease in children and infants, yet there is no vaccine or effective antiviral treatment for severe EV71 infection. The immunogenicity of EV71 VP1 DNA vaccine and the immunoregulatory activity of interleukin-12 (IL-12) or granulocyte-monocyte colony stimulating factor (GM-CSF) were investigated. DNA vaccine plasmids, pcDNA-VP1, pcDNA-IL-12 and pcDNA-GM-CSF were constructed and inoculated into BALB/c mice with or without pcDNA-IL-12 or pcDNA-GM-CSF by intramuscular injection. Cellular and humoral immune responses were assessed by indirect ELISA, lymphocyte proliferation assays, cytokine release assay and FACS. The VP1 DNA vaccine had good immunogenicity and can induce specific humoral and cellular immunity in BALB/c mice, while IL-2 or GM-CSF plays an immunoadjuvant role and enhances specific immune responses. This study provides a frame of reference for the design of DNA vaccines against EV71. PMID:27188732

  20. Breaking a virus: Identifying molecular level failure modes of a viral capsid by multiscale modeling

    Science.gov (United States)

    Krishnamani, V.; Globisch, C.; Peter, C.; Deserno, M.

    2016-07-01

    We use coarse-grained (CG) simulations to study the deformation of empty Cowpea Chlorotic Mottle Virus (CCMV) capsids under uniaxial compression, from the initial elastic response up to capsid breakage. Our CG model is based on the MARTINI force field and has been amended by a stabilizing elastic network, acting only within individual proteins, that was tuned to capture the fluctuation spectrum of capsid protein dimers, obtained from all atom simulations. We have previously shown that this model predicts force-compression curves that match AFM indentation experiments on empty CCMV capsids. Here we investigate details of the actual breaking events when the CCMV capsid finally fails. We present a symmetry classification of all relevant protein contacts and show that they differ significantly in terms of stability. Specifically, we show that interfaces which break readily are precisely those which are believed to form last during assembly, even though some of them might share the same contacts as other non-breaking interfaces. In particular, the interfaces that form pentamers of dimers never break, while the virtually identical interfaces within hexamers of dimers readily do. Since these units differ in the large-scale geometry and, most noticeably, the cone-angle at the center of the 5- or 6-fold vertex, we propose that the hexameric unit fails because it is pre-stressed. This not only suggests that hexamers of dimers form less frequently during the early stages of assembly; it also offers a natural explanation for the well-known β-barrel motif at the hexameric center as a post-aggregation stabilization mechanism. Finally, we identify those amino acid contacts within all key protein interfaces that are most persistent during compressive deformation of the capsid, thereby providing potential targets for mutation studies aiming to elucidate the key contacts upon which overall stability rests.

  1. Cloning and Sequence Analysis of VP1,VP2 and NS1 Genes of Feline Panleukopenia Virus Isolated from Tiger%虎源猫泛白细胞减少症病毒VP1、VP2和NS1基因的克隆与序列分析

    Institute of Scientific and Technical Information of China (English)

    于亚丽; 华育平; 曾祥伟; 田丽红; 夏咸柱; 刘丹

    2009-01-01

    根据Genbank上发表的猫泛白细胞减少症基因序列数据,设计了3对引物,并采用PCR方法对从东北虎粪便中分离出的FPV-HLJ的结构蛋白VP1、VP2和非结构蛋白NS1基因进行了扩增,将各片段克隆至pMD18-T载体,经PCR鉴定后进行了序列测定和分析.结果显示:FPV-HLJ与GenBank上公布的FPV、CPV和MEV毒株相比,核苷酸序列同源率VP1为98.8%~99.8%,VP2 为98.1%~99.4%,NS1为98.6%~99.7%.VP1氨基酸同源率为97.6%~99.2%,VP2、NS1氨基酸同源率与其核苷酸同源率相同.并且VP1、VP2和NS1上分别有 4、3和9处氨基酸发生变异.

  2. Characterization of the in vitro HIV-1 capsid assembly pathway.

    Science.gov (United States)

    Barklis, Eric; Alfadhli, Ayna; McQuaw, Carolyn; Yalamuri, Suraj; Still, Amelia; Barklis, Robin Lid; Kukull, Ben; López, Claudia S

    2009-03-27

    During the morphogenesis of mature human immunodeficiency virus-1 cores, viral capsid proteins assemble conical or tubular shells around viral ribonucleoprotein complexes. This assembly step is mimicked in vitro through reactions in which capsid proteins oligomerize to form long tubes, and this process can be modeled as consisting of a slow nucleation period, followed by a rapid phase of tube growth. We have developed a novel fluorescence microscopy approach to monitor in vitro assembly reactions and have employed it, along with electron microscopy analysis, to characterize the assembly process. Our results indicate that temperature, salt concentration, and pH changes have differential effects on tube nucleation and growth steps. We also demonstrate that assembly can be unidirectional or bidirectional, that growth can be capped, and that proteins can assemble onto the surfaces of tubes, yielding multiwalled or nested structures. Finally, experiments show that a peptide inhibitor of in vitro assembly also can dismantle preexisting tubes, suggesting that such reagents may possess antiviral effects against both viral assembly and uncoating. Our investigations help establish a basis for understanding the mechanism of mature human immunodeficiency virus-1 core assembly and avenues for antiviral inhibition. PMID:19356593

  3. A molecular thermodynamic model for the stability of hepatitis B capsids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jehoon; Wu, Jianzhong, E-mail: jwu@engr.ucr.edu [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States)

    2014-06-21

    Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.

  4. X-Ray Structures of the Hexameric Building Block of the HIV Capsid

    Energy Technology Data Exchange (ETDEWEB)

    Pornillos, Owen; Ganser-Pornillos, Barbie K.; Kelly, Brian N.; Hua, Yuanzi; Whitby, Frank G.; Stout, C. David; Sundquist, Wesley I.; Hill, Christopher P.; Yeager, Mark; (Scripps); (Utah)

    2009-09-11

    The mature capsids of HIV and other retroviruses organize and package the viral genome and its associated enzymes for delivery into host cells. The HIV capsid is a fullerene cone: a variably curved, closed shell composed of approximately 250 hexamers and exactly 12 pentamers of the viral CA protein. We devised methods for isolating soluble, assembly-competent CA hexamers and derived four crystallographically independent models that define the structure of this capsid assembly unit at atomic resolution. A ring of six CA N-terminal domains form an apparently rigid core, surrounded by an outer ring of C-terminal domains. Mobility of the outer ring appears to be an underlying mechanism for generating the variably curved lattice in authentic capsids. Hexamer-stabilizing interfaces are highly hydrated, and this property may be key to the formation of quasi-equivalent interactions within hexamers and pentamers. The structures also clarify the molecular basis for capsid assembly inhibition and should facilitate structure-based drug design strategies.

  5. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site

    Science.gov (United States)

    Liu, Chuang; Perilla, Juan R.; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A.; Zhao, Gongpu; Bedwell, Gregory J.; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M.; Prevelige, Peter E.; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun

    2016-03-01

    The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.

  6. Contribution of MxB Oligomerization to HIV-1 Capsid Binding and Restriction

    OpenAIRE

    Buffone, Cindy; Schulte, Bianca; OPP, Silvana; Diaz-Griffero, Felipe

    2015-01-01

    The alpha interferon (IFN-α)-inducible restriction factor myxovirus B (MxB) blocks HIV-1 infection after reverse transcription but prior to integration. MxB binds to the HIV-1 core, which is composed of capsid protein, and this interaction leads to inhibition of the uncoating process of HIV-1. Previous studies suggested that HIV-1 restriction by MxB requires binding to capsid. This work tests the hypothesis that MxB oligomerization is important for the ability of MxB to bind to the HIV-1 core...

  7. Rhesus TRIM5α Disrupts the HIV-1 Capsid at the Inter­Hexamer Interfaces

    OpenAIRE

    Zhao, Gongpu; Ke, Danxia; Vu, Thomas; Ahn, Jinwoo; Shah, Vaibhav B.; Yang, Ruifeng; Aiken, Christopher; Charlton, Lisa M.; Gronenborn, Angela M.; Zhang, Peijun

    2011-01-01

    TRIM proteins play important roles in the innate immune defense against retroviral infection, including human immunodeficiency virus type-1 (HIV-1). Rhesus macaque TRIM5α (TRIM5αrh) targets the HIV-1 capsid and blocks infection at an early post-entry stage, prior to reverse transcription. Studies have shown that binding of TRIM5α to the assembled capsid is essential for restriction and requires the coiled-coil and B30.2/SPRY domains, but the molecular mechanism of restriction is not fully und...

  8. Group theory of icosahedral virus capsid vibrations: a top-down approach.

    Science.gov (United States)

    Peeters, Kasper; Taormina, Anne

    2009-02-21

    We explore the use of a top-down approach to analyse the dynamics of icosahedral virus capsids and complement the information obtained from bottom-up studies of viral vibrations available in the literature. A normal mode analysis based on protein association energies is used to study the frequency spectrum, in which we reveal a universal plateau of low-frequency modes shared by a large class of Caspar-Klug capsids. These modes break icosahedral symmetry and are potentially relevant to the genome release mechanism. We comment on the role of viral tiling theory in such dynamical considerations. PMID:19014954

  9. Nanoindentation of 35 Virus Capsids in a Molecular Model: Relating Mechanical Properties to Structure

    OpenAIRE

    Cieplak, Marek; Robbins, Mark O.

    2013-01-01

    A coarse-grained model is used to study the mechanical response of 35 virus capsids of symmetries T = 1, T = 2, T = 3, pseudo T = 3, T = 4, and T = 7. The model is based on the native structure of the proteins that constitute the capsids and is described in terms of the C atoms associated with each amino acid. The number of these atoms ranges between 8 460 (for SPMV – satellite panicum mosaic virus) and 135 780 (for NBV – nudaureli virus). Nanoindentation by a broad AFM tip is modeled as comp...

  10. Simultaneous Visualization of Parental and Progeny Viruses by a Capsid-Specific HaloTag Labeling Strategy.

    Science.gov (United States)

    Liu, An-An; Zhang, Zhenfeng; Sun, En-Ze; Zheng, Zhenhua; Zhang, Zhi-Ling; Hu, Qinxue; Wang, Hanzhong; Pang, Dai-Wen

    2016-01-26

    Real-time, long-term, single-particle tracking (SPT) provides us an opportunity to explore the fate of individual viruses toward understanding the mechanisms underlying virus infection, which in turn could lead to the development of therapeutics against viral diseases. However, the research focusing on the virus assembly and egress by SPT remains a challenge because established labeling strategies could neither specifically label progeny viruses nor make them distinguishable from the parental viruses. Herein, we have established a temporally controllable capsid-specific HaloTag labeling strategy based on reverse genetic technology. VP26, the smallest pseudorabies virus (PrV) capsid protein, was fused with HaloTag protein and labeled with the HaloTag ligand during virus replication. The labeled replication-competent recombinant PrV harvested from medium can be applied directly in SPT experiments without further modification. Thus, virus infectivity, which is critical for the visualization and analysis of viral motion, is retained to the largest extent. Moreover, progeny viruses can be distinguished from parental viruses using diverse HaloTag ligands. Consequently, the entire course of virus infection and replication can be visualized continuously, including virus attachment and capsid entry, transportation of capsids to the nucleus along microtubules, docking of capsids on the nucleus, endonuclear assembly of progeny capsids, and the egress of progeny viruses. In combination with SPT, the established strategy represents a versatile means to reveal the mechanisms and dynamic global picture of the life cycle of a virus. PMID:26720596

  11. Dynamic pathways for viral capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, Michael F.; Chandler, David

    2006-02-09

    We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss the relationship between these mechanisms and experimental evaluations of capsid assembly processes.

  12. Mapping and modeling of a strain-specific epitope in the Norwalk virus capsid inner shell.

    Science.gov (United States)

    Parra, Gabriel I; Sosnovtsev, Stanislav V; Abente, Eugenio J; Sandoval-Jaime, Carlos; Bok, Karin; Dolan, Michael A; Green, Kim Y

    2016-05-01

    Noroviruses are diverse positive-strand RNA viruses associated with acute gastroenteritis. Cross-reactive epitopes have been mapped primarily to conserved sequences in the capsid VP1 Shell (S) domain, and strain-specific epitopes to the highly variable Protruding (P) domain. In this work, we investigated a strain-specific linear epitope defined by MAb NV10 that was raised against prototype (Genogroup I.1) strain Norwalk virus (NV). Using peptide scanning and mutagenesis, the epitope was mapped to amino acids 21-32 (LVPEVNASDPLA) of the NV S domain, and its specificity was verified by epitope transfer and reactivity with a recombinant MAb NV10 single-chain variable fragment (scFv). Comparative structural modeling of the NV10 strain-specific and the broadly cross-reactive TV20 epitopes identified two internal non-overlapping sites in the NV shell, corresponding to variable and conserved amino acid sequences among strains, respectively. The S domain, like the P domain, contains strain-specific epitopes that contribute to the antigenic diversity among the noroviruses. PMID:26971245

  13. Second-site suppressors of HIV-1 capsid mutations: restoration of intracellular activities without correction of intrinsic capsid stability defects

    OpenAIRE

    Yang Ruifeng; Shi Jiong; Byeon In-Ja L; Ahn Jinwoo; Sheehan Jonathan H; Meiler Jens; Gronenborn Angela M; Aiken Christopher

    2012-01-01

    Abstract Background Disassembly of the viral capsid following penetration into the cytoplasm, or uncoating, is a poorly understood stage of retrovirus infection. Based on previous studies of HIV-1 CA mutants exhibiting altered capsid stability, we concluded that formation of a capsid of optimal intrinsic stability is crucial for HIV-1 infection. Results To further examine the connection between HIV-1 capsid stability and infectivity, we isolated second-site suppressors of HIV-1 mutants exhibi...

  14. Complexation of uranyl ions. III. Investigation of the sorption of uranium of the VP-1Ap anion exchanger from carbonate media by x-ray spectrometric microanalysis

    International Nuclear Information System (INIS)

    The spatial distribution of uranium in granules of the VP-1Ap anion exchanger during heightened sorption from carbonate media has been investigated by x-ray spectroscopic microanalysis. Variation of the form of the concentration profile as a function of the extent of sorption from a uniform profile across the diameter, then to a meniscus-shaped profile, and finally to a smoothed profile with an increase in the coefficient of nonuniformity of the distribution of uranium in the granules from 0.026 to 0.045 has been established

  15. Virus Capsids as Targeted Nanoscale Delivery Vessels of Photoactive Compounds for Site-Specific Photodynamic Therapy

    Science.gov (United States)

    Cohen, Brian A.

    The research presented in this work details the use of a viral capsid as an addressable delivery vessel of photoactive compounds for use in photodynamic therapy. Photodynamic therapy is a treatment that involves the interaction of light with a photosensitizing molecule to create singlet oxygen, a reactive oxygen species. Overproduction of singlet oxygen in cells can cause oxidative damage leading to cytotoxicity and eventually cell death. Challenges with the current generation of FDA-approved photosensitizers for photodynamic therapy primarily stem from their lack of tissue specificity. This work describes the packaging of photoactive cationic porphyrins inside the MS2 bacteriophage capsid, followed by external modification of the capsid with cancer cell-targeting G-quadruplex DNA aptamers to generate a tumor-specific photosensitizing agent. First, a cationic porphyrin is loaded into the capsids via nucleotide-driven packaging, a process that involves charge interaction between the porphyrin and the RNA inside the capsid. Results show that over 250 porphyrin molecules associate with the RNA within each MS2 capsid. Removal of RNA from the capsid severely inhibits the packaging of the cationic porphyrins. Porphyrin-virus constructs were then shown to photogenerate singlet oxygen, and cytotoxicity in non-targeted photodynamic treatment experiments. Next, each porphyrin-loaded capsid is externally modified with approximately 60 targeting DNA aptamers by employing a heterobifunctional crosslinking agent. The targeting aptamer is known to bind the protein nucleolin, a ubiquitous protein that is overexpressed on the cell surface by many cancer cell types. MCF-7 human breast carcinoma cells and MCF-10A human mammary epithelial cells were selected as an in vitro model for breast cancer and normal tissue, respectively. Fluorescently tagged virus-aptamer constructs are shown to selectively target MCF-7 cells versus MCF-10A cells. Finally, results are shown in which porphyrin

  16. Microplate-based assay for identifying small molecules that bind a specific intersubunit interface within the assembled HIV-1 capsid.

    Science.gov (United States)

    Halambage, Upul D; Wong, Jason P; Melancon, Bruce J; Lindsley, Craig W; Aiken, Christopher

    2015-09-01

    Despite the availability of >30 effective drugs for managing HIV-1 infection, no current therapy is curative, and long-term management is challenging owing to the emergence and spread of drug-resistant mutants. Identification of drugs against novel HIV-1 targets would expand the current treatment options and help to control resistance. The highly conserved HIV-1 capsid protein represents an attractive target because of its multiple roles in replication of the virus. However, the low antiviral potencies of the reported HIV-1 capsid-targeting inhibitors render them unattractive for therapeutic development. To facilitate the identification of more-potent HIV-1 capsid inhibitors, we developed a scintillation proximity assay to screen for small molecules that target a biologically active and specific intersubunit interface in the HIV-1 capsid. The assay, which is based on competitive displacement of a known capsid-binding small-molecule inhibitor, exhibited a signal-to-noise ratio of >9 and a Z factor of >0.8. In a pilot screen of a chemical library containing 2,400 druglike compounds, we obtained a hit rate of 1.8%. This assay has properties that are suitable for screening large compound libraries to identify novel HIV-1 capsid ligands with antiviral activity. PMID:26077250

  17. Sequences analysis of the VP1 and VP2 coding-region genes of human bocavirus circulating in Beijing%北京地区新近报道的人Boca病毒VP1、VP2蛋白编码区基因序列分析

    Institute of Scientific and Technical Information of China (English)

    赵林清; 钱渊; 朱汝南; 邓洁; 王芳; Li Yan

    2006-01-01

    目的 了解北京地区新近报道的人Boca病毒(human bocavirus,HBoV)主要结构蛋白编码区基因的特征.方法 选择已经过初步研究证明为HBoV NP1基因检测为阳性的2份临床标本BJ3064、BJ3722,应用针对HBoV VP1蛋白编码区基因的PCR引物进行扩增,对所获得的PCR扩增产物直接进行核苷酸序列测定.将所测到的序列与GenBank中的基因序列进行比较分析和种系进化分析.结果 从标本BJ3064及BJ3722中扩增得到HBoV VP1蛋白编码区全基因的PCB扩增产物为2016 bp,编码671个氨基酸.VP2蛋白是在不改变开放性读码框架(ORF)的情况下,由VP1蛋白编码区内起始合成,并与VP1终止于同一终止密码子,长度为1629 bp,编码542个氨基酸.与HBoV原型株ST1、ST2株相比较,BJ3064、BJ3722的VP1及VP2蛋白无论是核苷酸水平还是氨基酸水平的同源性均超过98%,但与同属细小病毒的BPV及MVC相应位置的序列相比较,同源性较低,其中核苷酸序列同源性低于60%,而氨基酸序列同源性低于50%.VP1及VP2蛋白的编码区基因进化分析显示,BJ3064、BJ3722与ST2之间进化关系较ST1更密切.在BJ3064、BJ3722的VP1蛋白中,也存在类似于MVC的保守性磷酸酯酶A2特异性位点的活性基序(HDXXY)及Ca2+结合位点.结论 已得到HBoV的结构蛋白VP1和VP2的全基因,将为儿科急性呼吸道感染中该病毒的病原作用、地位及其在各年龄组人群中的血清学特征的深入研究打下坚实的基础.

  18. Physical Ingredients Controlling Stability and Structural Selection of Empty Viral Capsids.

    Science.gov (United States)

    Aznar, María; Reguera, David

    2016-07-01

    One of the crucial steps in the viral replication cycle is the self-assembly of its protein shell. Typically, each native virus adopts a unique architecture, but the coat proteins of many viruses have the capability to self-assemble in vitro into different structures by changing the assembly conditions. However, the mechanisms determining which of the possible capsid shapes and structures is selected by a virus are still not well-known. We present a coarse-grained model to analyze and understand the physical mechanisms controlling the size and structure selection in the assembly of empty viral capsids. Using this model and Monte Carlo simulations, we have characterized the phase diagram and stability of T = 1,3,4,7 and snub cube shells. In addition, we have studied the tolerance of different shells to changes in physical parameters related to ambient conditions, identifying possible strategies to induce misassembly or failure. Finally, we discuss the factors that select the shape of a capsid as spherical, faceted, elongated, or decapsidated. Our model sheds important light on the ingredients that control the assembly and stability of viral shells. This knowledge is essential to get capsids with well-defined size and structure that could be used for promising applications in medicine or bionanotechnology. PMID:27114062

  19. Characteristics of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion in experimentally infected cattle

    DEFF Research Database (Denmark)

    Fowler, Veronica; Bashiruddin, John B.; Belsham, Graham;

    2014-01-01

    Previous work in cattle illustrated the protective efficacy and negative marker potential of a A serotype foot-and-mouth disease virus (FMDV) vaccine prepared from a virus lacking a significant portion of the VP1 G-H loop (termed A(−)). Since this deletion also includes the arginine-glycine-aspar......Previous work in cattle illustrated the protective efficacy and negative marker potential of a A serotype foot-and-mouth disease virus (FMDV) vaccine prepared from a virus lacking a significant portion of the VP1 G-H loop (termed A(−)). Since this deletion also includes the arginine...... detection by ELISA and qRT-PCR. Following needle inoculation with the A(−) virus, naïve cattle developed typical clinical signs of FMDV infection, diagnostic assays also provided positive serological and virological results. However, the contact cattle did not develop clinical signs or generate serological...... or virological markers indicative of FMDV infection even when the cattle were subsequently needle inoculated with 105 TCID50 A(−) FMDV delivered IDL following three days of direct contact exposure. The results suggest that the A(−) virus is not attentuated in cattle when inoculated IDL. This virus could...

  20. Biological function of Foot-and-mouth disease virus non-structural proteins and non-coding elements.

    Science.gov (United States)

    Gao, Yuan; Sun, Shi-Qi; Guo, Hui-Chen

    2016-01-01

    Foot-and-mouth disease virus (FMDV) represses host translation machinery, blocks protein secretion, and cleaves cellular proteins associated with signal transduction and the innate immune response to infection. Non-structural proteins (NSPs) and non-coding elements (NCEs) of FMDV play a critical role in these biological processes. The FMDV virion consists of capsid and nucleic acid. The virus genome is a positive single stranded RNA and encodes a single long open reading frame (ORF) flanked by a long structured 5'-untranslated region (5'-UTR) and a short 3'-UTR. The ORF is translated into a polypeptide chain and processed into four structural proteins (VP1, VP2, VP3, and VP4), 10 NSPs (L(pro), 2A, 2B, 2C, 3A, 3B1-3, 3C(pro), and 3D(pol)), and some cleavage intermediates. In the past decade, an increasing number of studies have begun to focus on the molecular pathogenesis of FMDV NSPs and NCEs. This review collected recent research progress on the biological functions of these NSPs and NCEs on the replication and host cellular regulation of FMDV to understand the molecular mechanism of host-FMDV interactions and provide perspectives for antiviral strategy and development of novel vaccines. PMID:27334704

  1. Rhesus TRIM5α Disrupts the HIV-1 Capsid at the Inter­Hexamer Interfaces

    Science.gov (United States)

    Zhao, Gongpu; Ke, Danxia; Vu, Thomas; Ahn, Jinwoo; Shah, Vaibhav B.; Yang, Ruifeng; Aiken, Christopher; Charlton, Lisa M.; Gronenborn, Angela M.; Zhang, Peijun

    2011-01-01

    TRIM proteins play important roles in the innate immune defense against retroviral infection, including human immunodeficiency virus type-1 (HIV-1). Rhesus macaque TRIM5α (TRIM5αrh) targets the HIV-1 capsid and blocks infection at an early post-entry stage, prior to reverse transcription. Studies have shown that binding of TRIM5α to the assembled capsid is essential for restriction and requires the coiled-coil and B30.2/SPRY domains, but the molecular mechanism of restriction is not fully understood. In this study, we investigated, by cryoEM combined with mutagenesis and chemical cross-linking, the direct interactions between HIV-1 capsid protein (CA) assemblies and purified TRIM5αrh containing coiled-coil and SPRY domains (CC-SPRYrh). Concentration-dependent binding of CC-SPRYrh to CA assemblies was observed, while under equivalent conditions the human protein did not bind. Importantly, CC-SPRYrh, but not its human counterpart, disrupted CA tubes in a non-random fashion, releasing fragments of protofilaments consisting of CA hexamers without dissociation into monomers. Furthermore, such structural destruction was prevented by inter-hexamer crosslinking using P207C/T216C mutant CA with disulfide bonds at the CTD-CTD trimer interface of capsid assemblies, but not by intra-hexamer crosslinking via A14C/E45C at the NTD-NTD interface. The same disruption effect by TRIM5αrh on the inter-hexamer interfaces also occurred with purified intact HIV-1 cores. These results provide insights concerning how TRIM5α disrupts the virion core and demonstrate that structural damage of the viral capsid by TRIM5α is likely one of the important components of the mechanism of TRIM5α-mediated HIV-1 restriction. PMID:21455494

  2. Nanoindentation of 35 virus capsids in a molecular model: relating mechanical properties to structure.

    Science.gov (United States)

    Cieplak, Marek; Robbins, Mark O

    2013-01-01

    A coarse-grained model is used to study the mechanical response of 35 virus capsids of symmetries T = 1, T = 2, T = 3, pseudo T = 3, T = 4, and T = 7. The model is based on the native structure of the proteins that constitute the capsids and is described in terms of the C[Formula: see text] atoms associated with each amino acid. The number of these atoms ranges between 8 460 (for SPMV - satellite panicum mosaic virus) and 135 780 (for NBV - nudaureli virus). Nanoindentation by a broad AFM tip is modeled as compression between two planes: either both flat or one flat and one curved. Plots of the compressive force versus plate separation show a variety of behaviors, but in each case there is an elastic region which extends to a characteristic force [Formula: see text]. Crossing [Formula: see text] results in a drop in the force and irreversible damage. Across the 35 capsids studied, both [Formula: see text] and the elastic stiffness are observed to vary by a factor of 20. The changes in mechanical properties do not correlate simply with virus size or symmetry. There is a strong connection to the mean coordination number [Formula: see text], defined as the mean number of interactions to neighboring amino acids. The Young's modulus for thin shell capsids rises roughly quadratically with [Formula: see text], where 6 is the minimum coordination for elastic stability in three dimensions. PMID:23785395

  3. CryoEM analysis of capsid assembly and structural changes upon interactions with a host restriction factor, TRIM5α.

    Science.gov (United States)

    Zhao, Gongpu; Zhang, Peijun

    2014-01-01

    After virus fusion with a target cell, the viral core is released into the host cell cytoplasm and undergoes a controlled disassembly process, termed uncoating, before or as reverse transcription takes place. The cellular protein TRIM5α is a host cell restriction factor that blocks HIV-1 infection in rhesus macaque cells by targeting the viral capsid and inducing premature uncoating. The molecular mechanism of the interaction between capsid and TRIM5α remains unclear. Here, we describe an approach that utilizes cryo-electron microscopy (cryoEM) to examine the structural changes exerted on HIV-1 capsid (CA) assembly by TRIM5α binding. The TRIM5α interaction sites on CA assembly were further dissected by combining cryoEM with pair-wise cysteine mutations that crosslink CA either within a CA hexamer or between CA hexamers. Based on the structural information from cryoEM and crosslinking results from in vitro CA assemblies and purified intact HIV-1 cores, we demonstrate that direct binding of TRIM5α CC-SPRY domains to the viral capsid results in disruption and fragmentation of the surface lattice of HIV-1 capsid, specifically at inter-hexamer interfaces. The method described here can be easily adopted to study other important interactions in multi-protein complexes. PMID:24158810

  4. Phosphorylation Status of the Parvovirus Minute Virus of Mice Particle: Mapping and Biological Relevance of the Major Phosphorylation Sites

    OpenAIRE

    Maroto, Beatriz; Ramírez, Juan C.; Almendral, José M.

    2000-01-01

    The core of the VP-1 and VP-2 proteins forming the T=1 icosahedral capsid of the prototype strain of the parvovirus minute virus of mice (MVMp) share amino acids sequence and a common three-dimensional structure; however, the roles of these polypeptides in the virus infection cycle differ. To gain insights into this paradox, the nature, distribution, and biological significance of MVMp particle phosphorylation was investigated. The VP-1 and VP-2 proteins isolated from purified empty capsids a...

  5. Capsid-like Arrays in Crystals of Chimpanzee Adenovirus Hexon

    International Nuclear Information System (INIS)

    The major coat protein, hexon, from a chimpanzee adenovirus (AdC68) is of interest as a target for vaccine vector modification. AdC68 hexon has been crystallized in the orthorhombic space group C222 with unit cell dimensions of a = 90.8 Angstroms, b = 433.0 Angstroms, c = 159.3 Angstroms, and one trimer (3 x 104,942 Da) in the asymmetric unit. The crystals diffract to 2.1 Angstroms resolution. Initial studies reveal that the molecular arrangement is quite unlike that in hexon crystals for human adenovirus. In the AdC68 crystals, hexon trimers are parallel and pack closely in two-dimensional continuous arrays similar to those formed on electron microscope grids. The AdC68 crystals are the first in which adenovirus hexon has molecular interactions that mimic those used in constructing the viral capsid

  6. Human Retroviruses: Methods and Protocols: CryoEM Analysis of HIV-1 Capsid Assembly and Structural Consequences of TRIM5α Binding

    OpenAIRE

    Zhao, Gongpu; Zhang, Peijun

    2014-01-01

    After virus fusion with a target cell, the viral core is released into the host cell cytoplasm and undergoes a controlled disassembly process, termed uncoating, before or as reverse transcription takes place. The cellular protein TRIM5α is a host cell restriction factor that blocks HIV-1 infection in rhesus macaque cells by targeting the viral capsid and inducing premature uncoating. The molecular mechanism of the interaction between capsid and TRIM5α remains unclear. Here, we describe an app...

  7. Radiation-chemical stability of anionites and the safety of sorption processes in nitric acid media. Communication III. Radiation-chemical stability of VP-1AP anionite

    International Nuclear Information System (INIS)

    Change in physicochemical properties of VP-1AP anionite in HNO3 solutions during heating up to 100 deg C under external γ-radiation up to absorbed dose value of 5 MGy was studied. It is shown that during the anionite thermal treatment with increase in HNO3 concentration and temperature ionizing radiation gives rise to reduction of full exchange capacity and strong-base group capacity. Swelling factors change noticeably only for treatment in solutions of 12 mol/l HNO3, reaching the maximum value of 4.1. Meanwhile, specific surface of the sorbent decreases from 15.7 to 1.2 m2/g. Effect of ionizing radiation involves a certain increase in the irradiated anionite surface, reaching 18 m2/g

  8. Genetic characterization of VP1 gene of seven Sacbrood virus isolated from three provinces in northern China during the years 2008-2012.

    Science.gov (United States)

    Mingxiao, Ma; Yanna, Yin; Xiaoli, Xu; Lin, Zhang; Yongfei, Li; Zhidong, Luan

    2013-09-01

    The genetic diversity of seven northern China isolated Sacbrood virus strains (SBV) has been analyzed, and hypervariable regions of the VP1 gene of 7 SBV were sequenced and characterized, in order to obtain epidemiological and immunological information, and to suggest typing criteria for SBV. Sequence analysis of hypervariable regions of the VP1 gene in the genome of these isolates revealed a sequence homology of 91.0-99.3% among all seven local SBV isolates from Apis cerana from China, with a similarity of 93.3-100.0% in deduced amino acid sequences. These local isolates shared 87.4-92.8% sequence homology with six SBV reference strains in GenBank (including two SBV reference strains from Apis cerana from China), which represents a 91.8-97.6% similarity in deduced amino acid sequences. Genetic analysis also showed that five SBV strains from Apis cerana from China had a 13-amino-acid deletion at amino acid positions 287-299, and two SBV strains infecting the Korean honeybee had a 17-amino-acid deletion at amino acid positions 284-300 in comparison with other SBV. Phylogenetic analysis revealed two major groups (AC genotype SBV infecting Apis cerana and AM genotype SBV infecting Apis mellifera). The AC genotype could be further divided into subgroups. Based on the results of phylogenetic analysis, a similarity scan of SBV nucleotide sequences was carried out by using Simplot software and results in similar results. Our results suggest possible typing criteria for SBV based on the phylogenetic tree and sequence homology, and also that the virus has host specificity and regional variations. PMID:23722004

  9. TRIM5alpha disrupts the structure of assembled HIV-1 capsid complexes in vitro.

    Science.gov (United States)

    Black, Lesa R; Aiken, Christopher

    2010-07-01

    The host restriction factor TRIM5alpha provides intrinsic defense against retroviral infections in mammalian cells. TRIM5alpha blocks infection by targeting the viral capsid after entry but prior to completion of reverse transcription, but whether this interaction directly alters the structure of the viral capsid is unknown. A previous study reported that rhesus macaque TRIM5alpha protein stably associates with cylindrical complexes formed by assembly of recombinant HIV-1 CA-NC protein in vitro and that restriction leads to accelerated HIV-1 uncoating in target cells. To gain further insight into the mechanism of TRIM5alpha-dependent restriction, we examined the structural effects of TRIM5 proteins on preassembled CA-NC complexes by electron microscopy. Incubation of assembled complexes with lysate of cells expressing the restrictive rhesus TRIM5alpha protein resulted in marked disruption of the normal cylindrical structure of the complexes. In contrast, incubation with lysate of control cells or cells expressing comparable levels of the nonrestrictive human TRIM5alpha protein had little effect on the complexes. Incubation with lysate of cells expressing the TRIMCyp restriction factor also disrupted the cylinders. The effect of TRIMCyp was prevented by the addition of cyclosporine, which inhibits binding of TRIMCyp to the HIV-1 capsid. Thus, disruption of CA-NC cylinders by TRIM5alpha and TRIMCyp was correlated with the specificity of restriction. Collectively, these results suggest that TRIM5alpha-dependent restriction of HIV-1 infection results from structural perturbation of the viral capsid leading to aberrant HIV-1 uncoating in target cells. PMID:20410272

  10. Phosphorylation of human immunodeficiency virus type 1 capsid protein at serine 16, required for peptidyl-prolyl isomerase-dependent uncoating, is mediated by virion-incorporated extracellular signal-regulated kinase 2.

    Science.gov (United States)

    Dochi, Takeo; Nakano, Takashi; Inoue, Mutsumi; Takamune, Nobutoki; Shoji, Shozo; Sano, Kouichi; Misumi, Shogo

    2014-05-01

    We reported previously that Pin1 facilitates human immunodeficiency virus type 1 (HIV-1) uncoating by interacting with the capsid core through the phosphorylated Ser(16)-Pro(17) motif. However, the specific kinase responsible for Ser(16) phosphorylation has remained unknown. Here, we showed that virion-associated extracellular signal-regulated kinase 2 (ERK2) phosphorylates Ser(16). The characterization of immature virions produced by exposing chronically HIV-1LAV-1-infected CEM/LAV-1 cells to 10 µM saquinavir indicated that Ser(16) is phosphorylated after the initiation of Pr55(Gag) processing. Furthermore, a mass spectrometry-based in vitro kinase assay demonstrated that ERK2 specifically phosphorylated the Ser(16) residue in the Ser(16)-Pro(17) motif-containing substrate. The treatment of CEM/LAV-1 cells with the ERK2 inhibitor sc-222229 decreased the Ser(16) phosphorylation level inside virions, and virus partially defective in Ser(16) phosphorylation showed impaired reverse transcription and attenuated replication owing to attenuated Pin1-dependent uncoating. Furthermore, the suppression of ERK2 expression by RNA interference in CEM/LAV-1 cells resulted in suppressed ERK2 packaging inside virions and decreased the Ser(16) phosphorylation level inside virions. Interestingly, the ERK2-packaging-defective virus showed impaired reverse transcription and attenuated HIV-1 replication. Taken together, these findings provide insights into the as-yet-obscure processes in Pin1-dependent HIV-1 uncoating. PMID:24509437

  11. Theory of morphological transformation of viral capsid shells during maturation process

    CERN Document Server

    Konevtsova, O V; Rochal, S B

    2015-01-01

    In the frame of the Landau-Ginzburg formalism we propose a minimal phenomenological model for a morphological transformation in viral capsid shells. The transformation takes place during virus maturation process which renders virus infectious. The theory is illustrated on the example of the HK97 bacteriophage and viruses with similar morphological changes in the protective protein shell. The transformation is shown to be a structural phase transition driven by two order parameters. The first order parameter describes the isotropic expansion of the protein shell while the second one is responsible for the shape symmetry breaking and the resulting shell faceting. The group theory analysis and the resulting thermodynamic model make it possible to choose the parameter which discriminates between the icosahedral shell faceting often observed in viral capsids and the dodecahedral one observed in viruses of the Parvovirus family. Calculated phase diagram illustrates the discontinuous character of the virus morpholog...

  12. Functional constraints on HIV-1 capsid: their impacts on the viral immune escape potency

    OpenAIRE

    TaichiroTakemura

    2012-01-01

    In mature HIV-1 particles, viral capsid (CA) proteins form the conical core structure that encapsidates two copies of the viral RNA genome. After fusion of the viral envelope and cellular membranes, the CA core enters into the cytoplasm of the target cells. CA proteins then interact with a variety of viral other protein as well as host factors, which may either support or inhibit replication of the virus. Recent studies have revealed that CA proteins are important not only for the uncoating s...

  13. The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion.

    Directory of Open Access Journals (Sweden)

    Shu-Fan Chou

    2015-10-01

    Full Text Available The Endosomal Sorting Complex Required for Transport (ESCRT is an important cellular machinery for the sorting and trafficking of ubiquitinated cargos. It is also known that ESCRT is required for the egress of a number of viruses. To investigate the relationship between ESCRT and hepatitis B virus (HBV, we conducted an siRNA screening of ESCRT components for their potential effect on HBV replication and virion release. We identified a number of ESCRT factors required for HBV replication, and focused our study here on HGS (HRS, hepatocyte growth factor-regulated tyrosine kinase substrate in the ESCRT-0 complex. Aberrant levels of HGS suppressed HBV transcription, replication and virion secretion. Hydrodynamic delivery of HGS in a mouse model significantly suppressed viral replication in the liver and virion secretion in the serum. Surprisingly, overexpression of HGS stimulated the release of HBV naked capsids, irrespective of their viral RNA, DNA, or empty contents. Mutant core protein (HBc 1-147 containing no arginine-rich domain (ARD failed to secrete empty virions with or without HGS. In contrast, empty naked capsids of HBc 1-147 could still be promoted for secretion by HGS. HGS exerted a strong positive effect on the secretion of naked capsids, at the expense of a reduced level of virions. The association between HGS and HBc appears to be ubiquitin-independent. Furthermore, HBc is preferentially co-localized with HGS near the cell periphery, instead of near the punctate endosomes in the cytoplasm. In summary, our work demonstrated the importance of an optimum level of HGS in HBV propagation. In addition to an effect on HBV transcription, HGS can diminish the pool size of intracellular nucleocapsids with ongoing genome maturation, probably in part by promoting the secretion of naked capsids. The secretion routes of HBV virions and naked capsids can be clearly distinguished based on the pleiotropic effect of HGS involved in the ESCRT-0 complex.

  14. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2011-02-01

    Full Text Available Abstract Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D. As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might

  15. Role of TRIM5α RING domain E3 ubiquitin ligase activity in capsid disassembly, reverse transcription blockade, and restriction of simian immunodeficiency virus.

    Science.gov (United States)

    Kim, Jonghwa; Tipper, Christopher; Sodroski, Joseph

    2011-08-01

    The mammalian tripartite motif protein, TRIM5α, recognizes retroviral capsids entering the cytoplasm and blocks virus infection. Depending on the particular TRIM5α protein and retrovirus, complete disruption of the TRIM5α RING domain decreases virus-restricting activity to various degrees. TRIM5α exhibits RING domain-dependent E3 ubiquitin ligase activity, but the specific role of this activity in viral restriction is unknown. We created a panel of African green monkey TRIM5α (TRIM5α(AGM)) mutants, many of which are specifically altered in RING domain E3 ubiquitin ligase function, and characterized the phenotypes of these mutants with respect to restriction of simian and human immunodeficiency viruses (SIV(mac) and HIV-1, respectively). TRIM5α(AGM) ubiquitin ligase activity was essential for both the accelerated disassembly of SIV(mac) capsids and the disruption of reverse transcription. The levels of SIV(mac) particulate capsids in the cytosol of target cells expressing the TRIM5α variants strongly correlated with the levels of viral late reverse transcripts. RING-mediated ubiquitylation and B30.2(SPRY) domain-determined capsid binding independently contributed to the potency of SIV(mac) restriction by TRIM5α(AGM). In contrast, TRIM5α proteins attenuated in RING ubiquitin ligase function still accelerated HIV-1 capsid disassembly, inhibited reverse transcription, and blocked infection. Replacement of the helix-4/5 loop in the SIV(mac) capsid with the corresponding region of the HIV-1 capsid diminished the dependence of restriction on TRIM5α RING function. Thus, ubiquitylation mediated by the RING domain of TRIM5α(AGM) is essential for blocking SIV(mac) infection at the stage of capsid uncoating. PMID:21680520

  16. Development and Evaluation of an Enzyme-Linked Immunosorbent Assay for Dengue Capsid

    OpenAIRE

    Selvarajah, Suganya; Chatterji, Udayan; Kuhn, Richard; Kinney, Richard; Vasudevan, Subhash G.; Gallay, Philippe

    2012-01-01

    The astonishing speed with which Dengue has spread across the world and the severity of its infection make Dengue a prime threat to human life worldwide. Unfortunately, to date there are no effective vaccines or treatments against Dengue. Since only a few assays permit rapid and sensitive detection of Dengue, we developed a specific antigen capture enzyme-linked immunosorbent assay (ELISA) for the abundant structural Dengue-2 capsid protein. We showed that the ELISA allows rapid and sensitive...

  17. Efficient production of foot-and-mouth disease virus empty capsids in insect cells following down regulation of 3C protease activity

    DEFF Research Database (Denmark)

    Porta, Claudine; Xu, Xiaodong; Loureiro, Silvia;

    2013-01-01

    Foot-and-mouth disease virus (FMDV) is a significant economically and distributed globally pathogen of Artiodactyla. Current vaccines are chemically inactivated whole virus particles that require large-scale virus growth in strict bio-containment with the associated risks of accidental release...... precursor P1-2A by the action of the virus-encoded 3C protease. To date recombinant empty capsid assembly has been limited by poor expression levels, restricting the development of empty capsids as a viable vaccine. Here expression of the FMDV structural protein precursor P1-2A in insect cells is shown...... assembled into empty capsids. Expression was independent of the insect host cell background and leads to capsids that are recognised as authentic by a range of anti-FMDV bovine sera suggesting their feasibility as an alternate vaccine....

  18. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 angstrom resolution

    Czech Academy of Sciences Publication Activity Database

    Schur, F. K. M.; Hagen, W. J. H.; Rumlová, Michaela; Ruml, T.; Müller, B.; Kräusslich, H. G.; Briggs, J. A. G.

    2015-01-01

    Roč. 517, č. 7535 (2015), s. 505-508. ISSN 0028-0836 R&D Projects: GA ČR(CZ) GA14-15326S Institutional support: RVO:61388963 Keywords : retrovirus * HIV * M-PMV * capsid protein * CA * assembly * immature particles Subject RIV: CE - Biochemistry Impact factor: 41.456, year: 2014

  19. Nonstructural protein (NS1) of human parvovirus B19 stimulates host innate immunity and blunts the exogenous type I interferon signaling in vitro.

    Science.gov (United States)

    Wu, Jianqin; Chen, Xu; Ye, Haiyan; Yao, Min; Li, Shilin; Chen, Limin

    2016-08-15

    B19 virus is a non-enveloped DNA virus and belongs to the family of parvoviridae. There are two large open reading frames (ORFs), nonstructural protein (NS1) and two capsid proteins (VP1 and VP2). Host innate immune responses form the first line of defense against many pathogen invasion. How B19 virus, especially its encoded viral proteins interacts with host innate immune system remains unknown. In this study we aim to investigate the effect of NS1 on the host innate immune response and exogenous type I IFN signaling. Here we found that the type I IFN can be stimulated by NS1. Interestingly, NS1 also plays an important role in inhibiting the exogenous type I IFN signaling at p-STAT1, ISRE and ISGs levels. We concluded that NS1 may play pivotal role in evading the host immune surveillance. Our data shed novel light on the pathogenesis of B19 viral infection and virus evasion strategies. PMID:27270128

  20. A novel universal neutralizing monoclonal antibody against enterovirus 71 that targets the highly conserved "knob" region of VP3 protein.

    Directory of Open Access Journals (Sweden)

    Tanja K Kiener

    Full Text Available Hand, foot and mouth disease caused by enterovirus 71(EV71 leads to the majority of neurological complications and death in young children. While putative inactivated vaccines are only now undergoing clinical trials, no specific treatment options exist yet. Ideally, EV71 specific intravenous immunoglobulins could be developed for targeted treatment of severe cases. To date, only a single universally neutralizing monoclonal antibody against a conserved linear epitope of VP1 has been identified. Other enteroviruses have been shown to possess major conformational neutralizing epitopes on both the VP2 and VP3 capsid proteins. Hence, we attempted to isolate such neutralizing antibodies against conformational epitopes for their potential in the treatment of infection as well as differential diagnosis and vaccine optimization. Here we describe a universal neutralizing monoclonal antibody that recognizes a conserved conformational epitope of EV71 which was mapped using escape mutants. Eight escape mutants from different subgenogroups (A, B2, B4, C2, C4 were rescued; they harbored three essential mutations either at amino acid positions 59, 62 or 67 of the VP3 protein which are all situated in the "knob" region. The escape mutant phenotype could be mimicked by incorporating these mutations into reverse genetically engineered viruses showing that P59L, A62D, A62P and E67D abolish both monoclonal antibody binding and neutralization activity. This is the first conformational neutralization epitope mapped on VP3 for EV71.

  1. Studies towards the Sex Pheromone of the Green Capsid Bug

    NARCIS (Netherlands)

    Drijfhout, F.P.

    2001-01-01

    The green capsid bug, Lygocoris pabulinus (L.) (Heteroptera: Miridae) is a serious pest in fruit orchards, which is difficult to control. Because it is difficult to determine the actual population density, fruit growers apply insecticides against the green capsid bug on regular times to reduce the r

  2. Analysis of the VP1 Coding Nucleotide Sequence of YNAs1.1 Isolate of Foot-and-Mouth Disease Virus Type Asia1%亚洲一型口蹄疫病毒YNAs1.1株结构蛋白VP1基因的核苷酸序列分析

    Institute of Scientific and Technical Information of China (English)

    张震宇; 杨永钦; 张青; 李乐; 严维耀; 蒋文俊; 信爱国; 郑兆鑫

    2001-01-01

    提取BHK21细胞增殖的亚洲一型口蹄疫病毒(foot-and-mouth disease virus Ser otype Asia1)强毒株YNAs1.1的RNA,用一对引物P7,P13经反转录 (RT)-PCR法扩增了约674 bp的DNA片段.克隆目的基因后,采用双脱氧DNA链末端终止法测得了YNAs1.1的VP1基因36~633核苷酸序列.分析表明,病毒VP1基因的核苷酸序列与以色列以及印度已报道的Asia1型FMDV的同源性分别为82.11%与88.07%,对应的氨基酸序列同源性为87.94%与93.47%.该序列在GeneBank登陆号为AF241566.

  3. 重组牛O型口蹄疫病毒VP1表位疫苗的构建、表达、纯化及免疫活性研究%Construction, expression and purification of the recombinant VP1 epitope vaccine for foot and mouth disease virus bovine O type and investigation on its immunological activity

    Institute of Scientific and Technical Information of China (English)

    杨光; 金香兰; 房明丽; 张培因; 张永胜; 王华; 王丽颖; 于永利

    2009-01-01

    为构建重组牛O型口蹄疫病毒(FMDV)VP1表位疫苗,并对其免疫学活性进行研究.利用计算机模拟构象的方法筛选出牛O型FMDV VP1表位六聚体重组蛋白的最佳表位组合形式,通过PCR及基因克隆等方法构建含编码该重组蛋白基因的质粒,大肠杆菌BL21(DE3)中诱导表达,镍亲和层析法纯化.通过间接ELISA方法初步检测该蛋白免疫豚鼠血清中的抗FMDV抗体水平;再用活病毒FMDV进行细胞中和实验和乳鼠保护实验以检测豚鼠血清中具有保护性的抗FMDV中和性抗体的滴度.结果:构建了一种编码牛O型口蹄疫病毒VPl表位六聚体重组蛋白的质粒,经诱导表达并纯化后得到重组蛋白,命名为"MIP10".ELISA检测结果显示,MIP10蛋白免疫的豚鼠血清中含有高水平的抗牛O型FMDV抗体.细胞中和实验和乳鼠保护实验结果显示,MIP10蛋白免疫的豚鼠血清中含有针对牛O型FMDV的保护性抗体.重组牛O型VI蹄疫病毒VP1表位疫苗MIP10能够在动物体内诱导产生具有保护性的抗牛O型FMDV中和性抗体,有望开发成预防牛O型FMDV感染的新型疫苗.

  4. Detection and characterization of agarose-binding, capsid-like particles produced during assembly of a bacteriophage T7 procapsid.

    OpenAIRE

    Serwer, P; Watson, R H; Hayes, S J

    1982-01-01

    It has previously been shown that: (i) during infection of its host, the DNA bacteriophage T7 assembles a DNA-free procapsid (capsid I), a capsid with an envelope differing physically and chemically from the capsid of the mature bacteriophage, and (ii) capsid I converts to a capsid (capsid II) with a bacteriophage-like envelope as it packages DNA. Lysates of phage T7-infected Escherichia coli contained a particle (AG particle) which copurified with capsid II during buoyant density sedimentati...

  5. A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a "Single-Cycle" Alphavirus Vector and Empty Capsid Particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette;

    2016-01-01

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can successfully control this disease, however, current vaccines are imperfect. They are made using chemically inactivated FMD virus (FMDV) that is produced...... in large-scale mammalian cell culture under high containment conditions. Here, we have expressed the FMDV capsid protein precursor (P1-2A) of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro) using a "single cycle" packaged alphavirus self-replicating RNA based on Semliki Forest virus (SFV). When...... the FMDV P1-2A was expressed with 3Cpro then processing of the FMDV capsid precursor protein is observed within cells and the proteins assemble into empty capsid particles. The products interact with anti-FMDV antibodies in an ELISA and bind to the integrin αvβ6 (a cellular receptor for FMDV). In cattle...

  6. 牛源A型口蹄疫病毒结构蛋白VP1基因的克隆与序列分析%Cloning and sequence analysis of VP1 gene of foot-and-mouth disease virus type A from bovine

    Institute of Scientific and Technical Information of China (English)

    裴仉福; 张永光; 王永录; 潘丽; 王宝琴; 刘庆军; 吕建亮; 刘力宽; 胡永浩

    2004-01-01

    提取2株 A型口蹄疫病毒FMDV-L1和FMDV-L2的RNA,用1对通用引物经RT-PCR扩增出2株病毒VP1基因的DNA片段,将扩增的VP1编码序列克隆到质粒载体pGEM-T Easy中,转入大肠埃希氏菌JM109,得到大量携带目的基因的质粒;经过重组质粒的鉴定、测序获得其核苷酸序列;利用序列分析软件及系统发生树绘制软件对FMDV-L1和FMDV-L2以及作为参考毒株的A22/India/17/77进行序列分析.结果表明,核酸序列中的变异多发区要多于氨基酸序列,氨基酸序列最明显的变异发生在构成FMDV抗原位点1的βG-βH环内,其中毒株FMDV-L1和FMDV-L2 RGD序列中的精氨酸(R)发生了变异,分别变成了亮氨酸(L)和谷氨酰胺(Q).

  7. Study on Stability of Capsid Protein of Porcine Circovirus Type 2 in vitro%猪圆环病毒2型重组Cap蛋白体外稳定性研究

    Institute of Scientific and Technical Information of China (English)

    刘肖; 金前跃; 郭军庆; 王寅彪; 张腾; 李鹏; 陈丽颖; 张改平

    2015-01-01

    The present study was aimed to obtain the optimal storage of the Cap protein of porcine circo-virus type 2 ( PCV2 ) . Double antibody sandwich ELISA method was established to determine the bioacti-vity of Cap protein treated under different storage conditions. The results showed that the bioactivity of Cap protein remained stable when storaged under 25 ℃,and temperature shifts would have a significant impact on the bioactivity of Cap protein. Protein stabilizer helped remaining the immunoreactivity of Cap protein. Accordingly,further modification or assembly of Cap protein into virus-like particles should be performed under 25 ℃, and avoid rapid changes in temperature with the addition of protein stabilizer.%为筛选猪圆环病毒2型( PCV2) Cap蛋白在体外的稳定性条件,采用建立的PCV2双抗夹心ELISA方法,对Cap蛋白在不同贮藏条件下的抗原活性进行了检测。结果表明,Cap蛋白在25℃以下贮存时,其活性保持稳定;贮存时温度变化对蛋白质稳定性影响较大;在甘氨酸和甘油2种蛋白保护剂存在条件下,蛋白质活性稳定性增强。表明,Cap蛋白的体外贮存、改造及病毒样颗粒组装应在25℃以下进行,尽量避免温度剧烈变化,同时添加蛋白质保护剂有利于蛋白质的体外稳定。

  8. Coupling of antibodies via protein Z on modified polyoma virus-like particles

    OpenAIRE

    Gleiter, Stefan; Lilie, Hauke

    2001-01-01

    Therapeutic application of virus-based delivery systems often implies a change of the tropism of these vectors. This can be achieved by insertion of polypeptides (e.g., antibody fragments) in viral coat proteins. Such fusion proteins have only been used in viral vectors so far and, as part of a virus, they have not been available for a detailed biophysical characterization. We analyzed a fusion protein called VP1-Z, which is based on the polyoma virus coat protein VP1 and protein Z. Protein Z...

  9. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution

    Science.gov (United States)

    Schur, Florian K. M.; Hagen, Wim J. H.; Rumlová, Michaela; Ruml, Tomáš; Müller, Barbara; Kräusslich, Hans-Georg; Briggs, John A. G.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.

  10. Sequences derived from the highly antigenic VP1 region 140 to 160 of foot-and-mouth disease virus do not prime for a bovine T-cell response against intact virus.

    OpenAIRE

    van Lierop, M J; Wagenaar, J P; Van Noort, J M; Hensen, E J

    1995-01-01

    Although VP1 region 140 to 160 of foot-and-mouth disease virus (FMDV) is able to elicit neutralizing antibody in cattle, the protection against virus challenge that is conferred by peptide immunization is often poor. Here, we show that bovine T cells primed with peptides derived from this region generally show no reactivity to intact FMDV. In contrast, T-cell epitope VP4[20-34] is able to prime for a virus-specific response.

  11. Immunogenicity of Two FMDV Nonameric Peptides Encapsulated in Liposomes in Mice and the Protective Efficacy in Guinea Pigs

    OpenAIRE

    Feng-Shan Gao; Lei Feng; Qiang Zhang; Ruo-qian Yan; Yun-Gang Li; Xin-sheng Li

    2013-01-01

    It has been predicted that nonameric peptides I (VP1(26-34), RRQHTDVSF), II (VP1(157-165), RTLPTSFNY) and III (VP1(45-53), KEQVNVLDL) from the VP1 capsid protein of the foot-and-mouth disease virus (FMDV) are T cell epitopes. To investigate whether these peptides have immunological activity, BALB/c mice were immunized with peptide I, II or III conjugated with immunostimulating complexes (ISCOMs). A cytotoxic T lymphocyte assay was used to evaluate the cytotoxic activity induced by peptides al...

  12. Establishment of the Hybridoma Cell Lines of Monoclonal Antibody against Capsid Protein of Jaagsiekte Sheep Retrovirus%绵羊肺腺瘤病毒衣壳蛋白杂交瘤细胞系的建立

    Institute of Scientific and Technical Information of China (English)

    斯日古楞; 么宏强; 马学恩

    2013-01-01

    为了制备特异性的抗绵羊肺腺瘤病毒(jaagsiekte sheep retrovirus,JSRV)内蒙株衣壳蛋白(CA)的单克隆抗体(McAb)杂交瘤细胞系,以原核表达CA蛋白为抗原,免疫BALB/c小鼠,经4次免疫后,取脾细胞与SP2/0骨髓瘤细胞经杂交瘤技术进行融合,同时以表达蛋白作为包被抗原进行特异性ELISA检测,共筛选到6株阳性杂交瘤细胞株.经过3次亚克隆后,最终得到了5株能稳定分泌抗体的单细胞克隆株;再利用CA真核表达蛋白以间接免疫荧光法,对此5株杂交瘤细胞进行进一步的特异性鉴定.结果显示,有3株具有特异性强荧光反应,也能检测到目的基因的表达产物.本试验获得了3株稳定分泌抗JSRV-NM株CA蛋白McAb的杂交瘤细胞系,为建立检测病原的特异性诊断方法、分析JSRV-NM株CA蛋白的功能及鉴定B细胞抗原表位等奠定基础.%In order to obtain the monoclonal antibody (McAb) against CA protein of JSRV-NM strain, BALB/c mice were immunized with purified CA fusion protein expressed in E. coli. Myeloma cells SP2/0 were fused with the splenocytes of the fore times immunized mice by hybridomas technique, and six specific antibody-producing hybridomas were screened by indirect ELISA with CA fusion protein. Five hybridomas cells of them could product McAb steadily after 3 cycles of cloning, and three McAbs of them showed positive reaction to the CA protein expressed in eukaryotic cells by indirect immunefluorescence tests and western blotting analysis. The results indicated that we had obtained three hybridomas cells which could product specific McAb against CA protein of JSRV-NM strain steadily. The McAb against CA protein of JSRV-NM strain developed would be useful as a basis of diagnosis and epitope identification.

  13. Reverse Genetics for Fusogenic Bat-Borne Orthoreovirus Associated with Acute Respiratory Tract Infections in Humans: Role of Outer Capsid Protein σC in Viral Replication and Pathogenesis.

    Science.gov (United States)

    Kawagishi, Takahiro; Kanai, Yuta; Tani, Hideki; Shimojima, Masayuki; Saijo, Masayuki; Matsuura, Yoshiharu; Kobayashi, Takeshi

    2016-02-01

    Nelson Bay orthoreoviruses (NBVs) are members of the fusogenic orthoreoviruses and possess 10-segmented double-stranded RNA genomes. NBV was first isolated from a fruit bat in Australia more than 40 years ago, but it was not associated with any disease. However, several NBV strains have been recently identified as causative agents for respiratory tract infections in humans. Isolation of these pathogenic bat reoviruses from patients suggests that NBVs have evolved to propagate in humans in the form of zoonosis. To date, no strategy has been developed to rescue infectious viruses from cloned cDNA for any member of the fusogenic orthoreoviruses. In this study, we report the development of a plasmid-based reverse genetics system free of helper viruses and independent of any selection for NBV isolated from humans with acute respiratory infection. cDNAs corresponding to each of the 10 full-length RNA gene segments of NBV were cotransfected into culture cells expressing T7 RNA polymerase, and viable NBV was isolated using a plaque assay. The growth kinetics and cell-to-cell fusion activity of recombinant strains, rescued using the reverse genetics system, were indistinguishable from those of native strains. We used the reverse genetics system to generate viruses deficient in the cell attachment protein σC to define the biological function of this protein in the viral life cycle. Our results with σC-deficient viruses demonstrated that σC is dispensable for cell attachment in several cell lines, including murine fibroblast L929 cells but not in human lung epithelial A549 cells, and plays a critical role in viral pathogenesis. We also used the system to rescue a virus that expresses a yellow fluorescent protein. The reverse genetics system developed in this study can be applied to study the propagation and pathogenesis of pathogenic NBVs and in the generation of recombinant NBVs for future vaccines and therapeutics. PMID:26901882

  14. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1

    International Nuclear Information System (INIS)

    In owl monkeys, a retrotransposition event replaced the gene encoding the retroviral restriction factor TRIM5α with one encoding TRIMCyp, a fusion between the RING, B-box 2 and coiled-coil domains of TRIM5 and cyclophilin A. TRIMCyp restricts human immunodeficiency virus (HIV-1) infection by a mechanism dependent on the interaction of the cyclophilin A moiety and the HIV-1 capsid protein. Here, we show that infection by retroviruses other than HIV-1 can be restricted by TRIMCyp, providing an explanation for the evolutionary retention of the TRIMCyp gene in owl monkey lineages. The TRIMCyp-mediated block to HIV-1 infection occurs before the earliest step of reverse transcription. TRIMCyp-mediated restriction involves at least two functions: (1) capsid binding, which occurs most efficiently for trimeric TRIMCyp proteins that retain the coiled-coil and cyclophilin A domains, and (2) an effector function that depends upon the B-box 2 domain

  15. Novel inhibitor binding site discovery on HIV-1 capsid N-terminal domain by NMR and X-ray crystallography.

    Science.gov (United States)

    Goudreau, Nathalie; Lemke, Christopher T; Faucher, Anne-Marie; Grand-Maître, Chantal; Goulet, Sylvie; Lacoste, Jean-Eric; Rancourt, Jean; Malenfant, Eric; Mercier, Jean-François; Titolo, Steve; Mason, Stephen W

    2013-05-17

    The HIV-1 capsid (CA) protein, a domain of Gag, which participates in formation of both the mature and immature capsid, represents a potential target for anti-viral drug development. Characterization of hits obtained via high-throughput screening of an in vitro capsid assembly assay led to multiple compounds having this potential. We previously presented the characterization of two inhibitor series that bind the N-terminal domain of the capsid (CA(NTD)), at a site located at the bottom of its helical bundle, often referred to as the CAP-1 binding site. In this work we characterize a novel series of benzimidazole hits. Initial optimization of this series led to compounds with improved in vitro assembly and anti-viral activity. Using NMR spectroscopy we found that this series binds to a unique site on CA(NTD), located at the apex of the helical bundle, well removed from previously characterized binding sites for CA inhibitors. 2D (1)H-(15)N HSQC and (19)F NMR showed that binding of the benzimidazoles to this distinct site does not affect the binding of either cyclophilin A (CypA) to the CypA-binding loop or a benzodiazepine-based CA assembly inhibitor to the CAP-1 site. Unfortunately, while compounds of this series achieved promising in vitro assembly and anti-viral effects, they also were found to be quite sensitive to a number of naturally occurring CA(NTD) polymorphisms observed among clinical isolates. Despite the negative impact of this finding for drug development, the discovery of multiple inhibitor binding sites on CA(NTD) shows that capsid assembly is much more complex than previously realized. PMID:23496828

  16. Extreme genetic fragility of the HIV-1 capsid.

    Science.gov (United States)

    Rihn, Suzannah J; Wilson, Sam J; Loman, Nick J; Alim, Mudathir; Bakker, Saskia E; Bhella, David; Gifford, Robert J; Rixon, Frazer J; Bieniasz, Paul D

    2013-01-01

    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

  17. Evolution of foot-and-mouth disease virus serotype A capsid coding (P1) region on a timescale of three decades in an endemic context.

    Science.gov (United States)

    Das, Biswajit; Mohapatra, Jajati K; Pande, Veena; Subramaniam, Saravanan; Sanyal, Aniket

    2016-07-01

    Three decades-long (1977-2013) evolutionary trend of the capsid coding (P1) region of foot-and-mouth disease virus (FMDV) serotype A isolated in India was analysed. The exclusive presence of genotype 18 since 2001 and the dominance of the VP3(59)-deletion group of genotype 18 was evident in the recent years. Clade 18c was found to be currently the only active one among the three clades (18a, 18b and 18c) identified in the deletion group. The rate of evolution of the Indian isolates at the capsid region was found to be 4.96×10(-3)substitutions/site/year. The timescale analysis predicted the most recent common ancestor to have existed during 1962 for Indian FMDV serotype A and around 1998 for the deletion group. The evolutionary pattern of serotype A in India appears to be homogeneous as no spatial or temporal structure was observed. Bayesian skyline plots indicate a sharp decline in the effective number of infections after 2008, which might be a result of mass vaccination or inherent loss of virus fitness. Analyses of variability at 38 known antigenically critical positions in a countrywide longitudinal data set suggested that the substitutions neither followed any specific trend nor remained fixed for a long period since frequent reversions and convergence was noticed. A maximum of 6 different amino acid residues was seen in the gene pool at any antigenically critical site over the decades, suggesting a limited combination of residues being responsible for the observed antigenic variation. Evidence of positive selection at some of the antigenically critical residues and the structurally proximal positions suggest a possible role of pre-existing immunity in the host population in driving evolution. The VP1 C-terminus neither revealed variability nor positive selection, suggesting the possibility that this stretch does not contribute to the antigenic variation and adaptation under immune selection. PMID:27020544

  18. Viable adenovirus vaccine prototypes: High-level production of a papillomavirus capsid antigen from the major late transcriptional unit

    OpenAIRE

    Berg, Michael; DiFatta, Julie; Hoiczyk, Egbert; Schlegel, Richard; Ketner, Gary

    2005-01-01

    Safe, effective, orally delivered, live adenovirus vaccines have been in use for three decades. Recombinant derivatives of the live adenovirus vaccines may prove an economical alternative to current vaccines for a variety of diseases. To explore that possibility, we constructed a series of recombinants that express the major capsid protein (L1) of canine oral papillomavirus (COPV), a model for mucosal human papillomavirus (HPV) infection. Vaccination with virus-like particles (VLPs) composed ...

  19. Discovery of dual inhibitors targeting both HIV-1 capsid and human cyclophilin A to inhibit the assembly and uncoating of the viral capsid.

    Science.gov (United States)

    Li, Jiebo; Tan, Zhiwu; Tang, Shixing; Hewlett, Indira; Pang, Ruifang; He, Meizi; He, Shanshan; Tian, Baohe; Chen, Kan; Yang, Ming

    2009-04-15

    HIV-1 assembly and disassembly (uncoating) processes are critical for the HIV-1 replication. HIV-1 capsid (CA) and human cyclophilin A (CypA) play essential roles in these processes. We designed and synthesized a series of thiourea compounds as HIV-1 assembly and disassembly dual inhibitors targeting both HIV-1 CA protein and human CypA. The SIV-induced syncytium antiviral evaluation indicated that all of the inhibitors displayed antiviral activities in SIV-infected CEM cells at the concentration of 0.6-15.8 microM for 50% of maximum effective rate. Their abilities to bind CA and CypA were determined by ultraviolet spectroscopic analysis, fluorescence binding affinity and PPIase inhibition assay. Assembly studies in vitro demonstrated that the compounds could potently disrupt CA assembly with a dose-dependent manner. All of these molecules could bind CypA with binding affinities (Kd values) of 51.0-512.8 microM. Fifteen of the CypA binding compounds showed potent PPIase inhibitory activities (IC(50) valuesHIV-1 Protease or to HIV-1 Integrase in the enzyme assays. These results suggested that 15 compounds could block HIV-1 replication by inhibiting the PPIase activity of CypA to interfere with capsid disassembly and disrupting CA assembly. PMID:19328002

  20. Roles of HIV-1 capsid in viral replication and immune evasion.

    Science.gov (United States)

    Le Sage, Valerie; Mouland, Andrew J; Valiente-Echeverría, Fernando

    2014-11-26

    The primary roles of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein are to encapsidate and protect the viral RNA genome. It is becoming increasing apparent that HIV-1 CA is a multifunctional protein that acts early during infection to coordinate uncoating, reverse transcription, nuclear import of the pre-integration complex and integration of double stranded viral DNA into the host genome. Additionally, numerous recent studies indicate that CA is playing a crucial function in HIV-1 immune evasion. Here we summarize the current knowledge on HIV-1 CA and its interactions with the host cell to promote infection. The fact that CA engages in a number of different protein-protein interactions with the host makes it an interesting target for the development of new potent antiviral agents. PMID:25036886

  1. The dynamics of polymer ejection from a capsid

    CERN Document Server

    Linna, R P; Kaski, K

    2013-01-01

    The polymer ejection from a capsid is an interesting biological phenomenon with relevance to modern biotechnology. Here we study the capsid ejection using Langevin dynamics and show it to be a highly out-of-equilibrium process that shares many common features with the much studied driven polymer translocation through a wall or a membrane dividing free space. We find the escape times to scale with polymer length, $\\tau \\sim N^\\alpha$. The scaling exponent varies with the initial monomer density $\\rho$ inside the capsid. For very low densities $\\rho \\le 0.002$ the polymer is only weakly confined by the capsid, and scaling with $\\alpha = 1.35$ that is very close to the one in polymer translocation was obtained. At intermediate densities we find perfect scaling with $\\alpha = 1.22$ and 1.24 for $\\rho = 0.01$ and 0.02, respectively. For $\\rho \\gtrapprox 0.25$ we find the polymers to be completely confined by the capsid and the perfect scaling be broken. Based on our measurement of short-ranged transitions, the cap...

  2. Intracellular self-assembly based multi-labeling of key viral components: Envelope, capsid and nucleic acids.

    Science.gov (United States)

    Wen, Li; Lin, Yi; Zhang, Zhi-Ling; Lu, Wen; Lv, Cheng; Chen, Zhi-Liang; Wang, Han-Zhong; Pang, Dai-Wen

    2016-08-01

    Envelope, capsid and nucleic acids are key viral components that are all involved in crucial events during virus infection. Thus simultaneous labeling of these key components is an indispensable prerequisite for monitoring comprehensive virus infection process and dissecting virus infection mechanism. Baculovirus was genetically tagged with biotin on its envelope protein GP64 and enhanced green fluorescent protein (EGFP) on its capsid protein VP39. Spodoptera frugiperda 9 (Sf9) cells were infected by the recombinant baculovirus and subsequently fed with streptavidin-conjugated quantum dots (SA-QDs) and cell-permeable nucleic acids dye SYTO 82. Just by genetic engineering and virus propagation, multi-labeling of envelope, capsid and nucleic acids was spontaneously accomplished during virus inherent self-assembly process, significantly simplifying the labeling process while maintaining virus infectivity. Intracellular dissociation and transportation of all the key viral components, which was barely reported previously, was real-time monitored based on the multi-labeling approach, offering opportunities for deeply understanding virus infection and developing anti-virus treatment. PMID:27209260

  3. Crystallization, high-resolution data collection and preliminary crystallographic analysis of Aura virus capsid protease and its complex with dioxane

    International Nuclear Information System (INIS)

    A 17 kDa capsid protease domain from Aura virus was purified, crystallized together with its complex with dioxane and characterized by the X-ray diffraction method. The C-terminal protease domain of capsid protein from Aura virus expressed in a bacterial expression system has been purified to homogeneity and crystallized. Crystals suitable for X-ray diffraction analysis were obtained by the vapour-diffusion method using 0.1 M bis-tris and polyethylene glycol monomethyl ether 2000. Crystals of the C-terminal protease domain of capsid protein in complex with dioxane were also produced and crystal data were obtained. Both crystals belonged to space group C2, with unit-cell parameters a = 79.6, b = 35.2, c = 49.5 Å. High-resolution data sets were collected to a resolution of 1.81 Å for the native protein and 1.98 Å for the complex. Preliminary crystallographic studies suggested the presence of a single molecule in the crystallographic asymmetric unit, with a solvent content of 38.5%

  4. Predicting antigenic sites on the foot-and-mouth disease virus capsid of the South African Territories (SAT) types using virus neutralization data

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV) outer capsid proteins 1B, 1C and 1D contribute to the virus serotype distribution and antigenic variants that exist within each of the seven serotypes. This study presents a phylogenetic, genetic and antigenic analysis of the South African Territories (SAT) seroty...

  5. Construction of recombinant adenovirus co-expressing FMDV serotype O capsid and GFP proteins%共表达O型FMDV衣壳蛋白和绿色荧光蛋白重组腺病毒的构建

    Institute of Scientific and Technical Information of China (English)

    刘蒙蒙; 杨德成; 周国辉; 梁特; 于力

    2012-01-01

    To generate the recombinant adenovirus expressing GFP and P12A3C gene of serotype O foot and mouth disease virus (FMDV), the foreign fusion gene was constructed by insertion of EGFP gene between PI and 3C genes with a linker sequence encoding selfprocessing peptide 2A derived from the FMDV. The recombinant adenovirus expressing the P12A3C of FMDV and GFP proteins was generated and identified by PCR, fluorescence assay, western blot. The one-step growth curve indicated that the recombinant adenovirus had no difference with the parental adenovirus. To the best of our knowledge, this report was the first description of the recombinant human adenovirus serotype 5 co-expressing P12A3C of FMDV and GFP proteins, which might be used as an attractive way to improve the FMDV vaccine delivered by adenovirus vector.%为构建表达O型口蹄疫病毒(FMDV)的P12A3C基因及GFP基因的重组腺病毒rAdV-P12aEGFP2a3C,本研究以FMDV的2A基因序列为Linker,将报告基因EGFP插入FMDV的P12A与3C之间.重组腺病毒感染HEK-293细胞后可以观察到绿色荧光,表明EGFP蛋白获得表达.应用FMDV的VP2单克隆抗体4B2对重组病毒感染细胞进行western blot检测,反应条带与FMDV衣壳蛋白VP0和VP3的分子量大小相符,表明FMDV的完整衣壳蛋白和3C蛋白酶也均获得表达,而且EGFP的插入并未影响P1蛋白的表达和3C蛋白酶对P1的正确切割.重组腺病毒的生长特性分析表明,EGFP的插入也未影响该重组腺病毒的增殖特性.上述研究结果显示,表达FMDV衣壳蛋白P12A3C的重组腺病毒可以作为载体,以2A蛋白作为Linker表达一个小分子蛋白,为改进以腺病毒为载体的口蹄疫基因工程疫苗提供了新思路.

  6. Modelling the self-assembly of virus capsids

    International Nuclear Information System (INIS)

    We use computer simulations to study a model, first proposed by Wales (2005 Phil. Trans. R. Soc. A 363 357), for the reversible and monodisperse self-assembly of simple icosahedral virus capsid structures. The success and efficiency of assembly as a function of thermodynamic and geometric factors can be qualitatively related to the potential energy landscape structure of the assembling system. Even though the model is strongly coarse-grained, it exhibits a number of features also observed in experiments, such as sigmoidal assembly dynamics, hysteresis in capsid formation and numerous kinetic traps. We also investigate the effect of macromolecular crowding on the assembly dynamics. Crowding agents generally reduce capsid yields at optimal conditions for non-crowded assembly, but may increase yields for parameter regimes away from the optimum. Finally, we generalize the model to a larger triangulation number T = 3, and observe assembly dynamics more complex than that seen for the original T = 1 model.

  7. A self-encoded capsid derivative restricts Ty1 retrotransposition in Saccharomyces.

    Science.gov (United States)

    Garfinkel, David J; Tucker, Jessica M; Saha, Agniva; Nishida, Yuri; Pachulska-Wieczorek, Katarzyna; Błaszczyk, Leszek; Purzycka, Katarzyna J

    2016-05-01

    Retrotransposons and retroviral insertions have molded the genomes of many eukaryotes. Since retroelements transpose via an RNA intermediate, the additive nature of the replication cycle can result in massive increases in copy number if left unchecked. Host organisms have countered with several defense systems, including domestication of retroelement genes that now act as restriction factors to minimize propagation. We discovered a novel truncated form of the Saccharomyces Ty1 retrotransposon capsid protein, dubbed p22 that inhibits virus-like particle (VLP) assembly and function. The p22 restriction factor expands the repertoire of defense proteins targeting the capsid and highlights a novel host-parasite strategy. Instead of inhibiting all transposition by domesticating the restriction gene as a distinct locus, Ty1 and budding yeast may have coevolved a relationship that allows high levels of transposition when Ty1 copy numbers are low and progressively less transposition as copy numbers rise. Here, we offer a perspective on p22 restriction, including its mode of expression, effect on VLP functions, interactions with its target, properties as a nucleic acid chaperone, similarities to other restriction factors, and future directions. PMID:26650614

  8. Modification of a loop sequence between α-helices 6 and 7 of virus capsid (CA protein in a human immunodeficiency virus type 1 (HIV-1 derivative that has simian immunodeficiency virus (SIVmac239 vif and CA α-helices 4 and 5 loop improves replication in cynomolgus monkey cells

    Directory of Open Access Journals (Sweden)

    Adachi Akio

    2009-08-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 productively infects only humans and chimpanzees but not cynomolgus or rhesus monkeys while simian immunodeficiency virus isolated from macaque (SIVmac readily establishes infection in those monkeys. Several HIV-1 and SIVmac chimeric viruses have been constructed in order to develop an animal model for HIV-1 infection. Construction of an HIV-1 derivative which contains sequences of a SIVmac239 loop between α-helices 4 and 5 (L4/5 of capsid protein (CA and the entire SIVmac239 vif gene was previously reported. Although this chimeric virus could grow in cynomolgus monkey cells, it did so much more slowly than did SIVmac. It was also reported that intrinsic TRIM5α restricts the post-entry step of HIV-1 replication in rhesus and cynomolgus monkey cells, and we previously demonstrated that a single amino acid in a loop between α-helices 6 and 7 (L6/7 of HIV type 2 (HIV-2 CA determines the susceptibility of HIV-2 to cynomolgus monkey TRIM5α. Results In the study presented here, we replaced L6/7 of HIV-1 CA in addition to L4/5 and vif with the corresponding segments of SIVmac. The resultant HIV-1 derivatives showed enhanced replication capability in established T cell lines as well as in CD8+ cell-depleted primary peripheral blood mononuclear cells from cynomolgus monkey. Compared with the wild type HIV-1 particles, the viral particles produced from a chimeric HIV-1 genome with those two SIVmac loops were less able to saturate the intrinsic restriction in rhesus monkey cells. Conclusion We have succeeded in making the replication of simian-tropic HIV-1 in cynomolgus monkey cells more efficient by introducing into HIV-1 the L6/7 CA loop from SIVmac. It would be of interest to determine whether HIV-1 derivatives with SIVmac CA L4/5 and L6/7 can establish infection of cynomolgus monkeys in vivo.

  9. The backbone model of the Arabis mosaic virus reveals new insights into functional domains of Nepovirus capsid.

    Science.gov (United States)

    Lai-Kee-Him, Joséphine; Schellenberger, Pascale; Dumas, Christian; Richard, Eric; Trapani, Stefano; Komar, Véronique; Demangeat, Gerard; Ritzenthaler, Christophe; Bron, Patrick

    2013-04-01

    Arabis mosaic virus (ArMV) and Grapevine fanleaf virus (GFLV) are two picorna-like viruses from the genus Nepovirus, consisting in a bipartite RNA genome encapsidated into a 30 nm icosahedral viral particle formed by 60 copies of a single capsid protein (CP). They are responsible for a severe degeneration of grapevines that occurs in most vineyards worldwide. Although sharing a high level of sequence identity between their CP, ArMV is transmitted exclusively by the ectoparasitic nematode Xiphinema diversicaudatum whereas GFLV is specifically transmitted by the nematode X. index. The structural determinants involved in the transmission specificity of both viruses map solely to their respective CP. Recently, reverse genetic and crystallographic studies on GFLV revealed that a positively charged pocket in the CP B domain located at the virus surface may be responsible for vector specificity. To go further into delineating the coat protein determinants involved in transmission specificity, we determined the 6.5 Å resolution cryo-electron microscopy structure of ArMV and used homology modeling and flexible fitting approaches to build its pseudo-atomic structure. This study allowed us to resolve ArMV CP architecture and delineate connections between ArMV capsid shell and its RNA. Comparison of ArMV and GFLV CPs reveals structural differences in the B domain pocket, thus strengthening the hypothesis of a key role of this region in the viral transmission specificity and identifies new potential functional domains of Nepovirus capsid. PMID:23376736

  10. Structural determination of importin alpha in complex with beak and feather disease virus capsid nuclear localization signal

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Edward I. [Charles Sturt University, School of Animal and Veterinary Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); Dombrovski, Andrew K. [Charles Sturt University, School of Biomedical Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); Swarbrick, Crystall M.D. [Charles Sturt University, School of Biomedical Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); Raidal, Shane R. [Charles Sturt University, School of Animal and Veterinary Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); Forwood, Jade K., E-mail: jforwood@csu.edu.au [Charles Sturt University, School of Biomedical Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Boorooma St., Wagga Wagga, New South Wales 2678 (Australia)

    2013-09-06

    Highlights: •Circovirus capsid proteins contain large nuclear localization signals (NLS). •A method of nuclear import has not been elucidated. •Beak and feather disease virus (BFDV) capsid NLS was crystallized with importin α. •The structure showed BFDV NLS binding to the major site of importin α. •Result shows implications for mechanism of nuclear transport for all circoviruses. -- Abstract: Circoviruses represent a rapidly increasing genus of viruses that infect a variety of vertebrates. Replication requires shuttling viral molecules into the host cell nucleus, a process facilitated by capsid-associated protein (Cap). Whilst a nuclear localization signal (NLS) has been shown to mediate nuclear translocation, the mode of nuclear transport remains to be elucidated. To better understand this process, beak and feather disease virus (BFDV) Cap NLS was crystallized with nuclear import receptor importin-α (Impα). Diffraction yielded structural data to 2.9 Å resolution, and the binding site on both Impα and BFDV Cap NLS were well resolved. The binding mechanism for the major site is likely conserved across circoviruses as supported by the similarity of NLSs in circovirus Caps. This finding illuminates a crucial step for infection of host cells by this viral family, and provides a platform for rational drug design against the binding interface.

  11. HIV-1 capsid is involved in post-nuclear entry steps

    OpenAIRE

    Chen, N-Y; Zhou, L.; Gane, P.J.; Opp, S.; Ball, N. J.; Nicastro, G.; Zufferey, M.; Buffone, C.; Luban, J.; Selwood, D; Diaz-Griffero, F.; Taylor, I.; Fassati, A.

    2016-01-01

    Background HIV-1 capsid influences viral uncoating and nuclear import. Some capsid is detected in the nucleus but it is unclear if it has any function. We reported that the antibiotic Coumermycin-A1 (C-A1) inhibits HIV-1 integration and that a capsid mutation confers resistance to C-A1, suggesting that capsid might affect post-nuclear entry steps. Results Here we report that C-A1 inhibits HIV-1 integration in a capsid-dependent way. Using molecular docking, we identify an extended binding poc...

  12. BKV agnoprotein interacts with α-soluble N-ethylmaleimide-sensitive fusion attachment protein, and negatively influences transport of VSVG-EGFP.

    Directory of Open Access Journals (Sweden)

    Mona Johannessen

    Full Text Available BACKGROUND: The human polyomavirus BK (BKV infects humans worldwide and establishes a persistent infection in the kidney. The BK virus genome encodes three regulatory proteins, large and small tumor-antigen and the agnoprotein, as well as the capsid proteins VP1 to VP3. Agnoprotein is conserved among BKV, JC virus (JCV and SV40, and agnoprotein-deficient mutants reveal reduced viral propagation. Studies with JCV and SV40 indicate that their agnoproteins may be involved in transcription, replication and/or nuclear and cellular release of the virus. However, the exact function(s of agnoprotein of BK virus remains elusive. PRINCIPAL FINDINGS: As a strategy of exploring the functions of BKV agnoprotein, we decided to look for cellular interaction partners for the viral protein. Several partners were identified by yeast two-hybrid assay, among them α-SNAP which is involved in disassembly of vesicles during secretion. BKV agnoprotein and α-SNAP were found to partially co-localize in cells, and a complex consisting of agnoprotein and α-SNAP could be co-immunoprecipitated from cells ectopically expressing the proteins as well as from BKV-transfected cells. The N-terminal part of the agnoprotein was sufficient for the interaction with α-SNAP. Finally, we could show that BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter suggesting that agnoprotein may modulate exocytosis. CONCLUSIONS: We have identified the first cellular interaction partner for BKV agnoprotein. The most N-terminal part of BKV agnoprotein is involved in the interaction with α-SNAP. Presence of BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter.

  13. Molecular recognition in the human immunodeficiency virus capsid and antiviral design.

    Science.gov (United States)

    Bocanegra, Rebeca; Rodríguez-Huete, Alicia; Fuertes, Miguel Ángel; Del Álamo, Marta; Mateu, Mauricio G

    2012-11-01

    Many compounds able to interfere with HIV-1 infection have been identified; some 25 of them have been approved for clinical use. Current anti-HIV-1 therapy involves the use of drug cocktails, which reduces the probability of virus escape. However, many issues remain, including drug toxicity and the emergence of drug-resistant mutant viruses, even in treated patients. Therefore, there is a constant need for the development of new anti-HIV-1 agents targeting other molecules in the viral cycle. The capsid protein CA plays a key role in many molecular recognition events during HIV-1 morphogenesis and uncoating, and is eliciting increased interest as a promising target for antiviral intervention. This article provides a structure-based, integrated review on the CA-binding small molecules and peptides identified to date, and their effects on virus capsid assembly and stability, with emphasis on recent results not previously reviewed. As a complement, we present novel experimental results on the development and proof-of-concept application of a combinatorial approach to study molecular recognition in CA and its inhibition by peptide compounds. PMID:22728445

  14. Functional constraints on HIV-1 capsid: their impacts on the viral immune escape potency

    Directory of Open Access Journals (Sweden)

    TaichiroTakemura

    2012-10-01

    Full Text Available In mature HIV-1 particles, viral capsid (CA proteins form the conical core structure that encapsidates two copies of the viral RNA genome. After fusion of the viral envelope and cellular membranes, the CA core enters into the cytoplasm of the target cells. CA proteins then interact with a variety of viral other protein as well as host factors, which may either support or inhibit replication of the virus. Recent studies have revealed that CA proteins are important not only for the uncoating step but also for the later nuclear import step. Identification of proteins that interact with CA to fulfill these functions is, therefore, important for understanding the unknown HIV-1 replication machinery. CA proteins can also be targets of the host immune response. Notably, some HLA-restricted cytotoxic T-lymphocyte (CTL responses that recognize CA functional regions can greatly contribute to delay in AIDS progression. The multi-functionality of the CA protein may limit the flexible virus evolution and reduce the possibility of an escape mutant arising. The presence of many functional regions in CA protein may make it a potential target for effective therapies.

  15. Functional constraints on HIV-1 capsid: their impacts on the viral immune escape potency.

    Science.gov (United States)

    Takemura, Taichiro; Murakami, Tsutomu

    2012-01-01

    In mature HIV-1 particles, viral capsid (CA) proteins form the conical core structure that encapsidates two copies of the viral RNA genome. After fusion of the viral envelope and cellular membranes, the CA core enters into the cytoplasm of the target cells. CA proteins then interact with a variety of viral other protein as well as host factors, which may either support or inhibit replication of the virus. Recent studies have revealed that CA proteins are important not only for the uncoating step but also for the later nuclear import step. Identification of proteins that interact with CA to fulfill these functions is, therefore, important for understanding the unknown HIV-1 replication machinery. CA proteins can also be targets of the host immune response. Notably, some HLA-restricted cytotoxic T-lymphocyte (CTL) responses that recognize CA functional regions can greatly contribute to delay in AIDS progression. The multi-functionality of the CA protein may limit the flexible virus evolution and reduce the possibility of an escape mutant arising. The presence of many functional regions in CA protein may make it a potential target for effective therapies. PMID:23087682

  16. Construction of Recombinant Baculovirus Surface-Displayed the Capsid Protein of Porcine Circovirus Type 2%表面展示猪圆环病毒2型衣壳蛋白的重组杆状病毒的构建

    Institute of Scientific and Technical Information of China (English)

    程晓亮; 林文耀; 叶煜; 陈筱薇; 严常燕; 廖明; 樊惠英

    2011-01-01

    利用PCR方法扩增猪圆环病毒2型核定位信号区缺失的Cap蛋白基因,将其亚克隆入杆状病毒表面展示质粒pBACsurf-1的gp64信号肽和gp64成熟蛋白之间.将此融合片段亚克隆到质粒pcDNA3.1(+),获得重组质粒pcDNA3.1-gp64-dCap.然后将含有CMV启动子,gp64及dCap的基因片段克隆到杆状病毒转移质粒pFastBac-V,得到重组质粒pFastBac-dCap-V.然后将此转化DH10Bac感受态细胞,获得的重组穿梭质粒Bacmid-dCap-V,经脂质体转染St9细胞,获得重组杆状病毒Ac-dCap-V.该重组病毒感染Sf9细胞后可以产生典型的细胞病变,转导哺乳动物细胞后经间接免疫荧光试验证明,该重组杆状病毒成功转导哺乳动物细胞并表达dCap蛋白.%The open capsid(Cap)protein gene without nuclear localization signal (NLS) of porcine circo-virus 2(PCV2)was amplified by PCR and sub-cloned into pBACsurf-1 between the upstream gp64 signal sequence and downstresm gp64 mature domain. The fusion gene containing dCap and gp64 was inserted into pcDNA3.1 ( + ) to construct the recombinant plasmid pcDNA3. L-gp64-dCap. A fragment of the CMV promoter-gp64-dCap fusion gene cassette was excised from pcDNA3. L-gp64-dCap and inserted into the baculovirus transfer vector pFastBac-V to construct the recombinant plasmid pFastBac-dCap-V. It was followed by the transformation of plasmid into Escherichia coli DHlOBac competent cells to obtain the recombinant shuttle vector Bacmid-dCap-V. Eventually, the recombinant Bacmid was transfected into Sf9 cells to produce the recombinant baculovirus Ac-dCap-V using the LipofectamineTM 2000. The Sf9 cells produced cytopathic after infection of recombinant baculoviruses Ac-dCap-V. Indirect immunofluoresent assay demonstrated that the Ac-dCap-V efficiently transducted the mammalian cells in vitro and the dCap protein was expressed successfully.

  17. Recombinant Outer Capsid Glycoprotein (VP7 of Rotavirus Expressed in Insect Cells Induces Neutralizing Antibodies in Rabbits

    Directory of Open Access Journals (Sweden)

    H Keyvani

    2012-04-01

    Full Text Available Background:Rotaviruses cause diarrhea in infants and young children worldwide. Rotavirus outer capsid protein, VP7 is major neutralizing antigen that is important component of subunit vaccine to prevent rotavirus infection.Many efforts have been done to produce recombinant VP7 that maintain native characteristics.We used baculovirus expression system to produce rotavirus VP7 protein and to study its immunogenicity. Methods: Simian rotavirus SA11 full-length VP7 ORF was cloned into a cloning plasmid and then the cloned gene was inserted into the linear DNA of baculovirus Autographa californica Nuclear Polyhedrosis Virus (AcNPV downstream of the polyhedrin promoter by in vitro recombination reactions. The expressed VP7 in the insect cells was recognized by rabbit hyperimmune serum raised against SA11 rotavirus by Immunofluorescence and western blotting assays. Rabbits were immunized subcutaneously by cell extracts expressing VP7 protein. Results: Reactivity with anti-rotavirus antibody suggested that expressed VP7 protein had native antigenic determinants.Injection of recombinant VP7 in rabbits elicited the production of serum antibodies,which were able to recognize VP7 protein from SA11 rotavirus by Western blotting test and neutralized SA11 rotavirus in cell culture.Conclusion: Recombinant outer capsid glycoprotein (VP7 of rotavirus expressed in insect cells induces neutralizing antibodies in rabbits and may be a candidate of rotavirus vaccine.

  18. Useful scars: Physics of the capsids of archaeal viruses

    Science.gov (United States)

    Perotti, L. E.; Dharmavaram, S.; Klug, W. S.; Marian, J.; Rudnick, J.; Bruinsma, R. F.

    2016-07-01

    We propose a physical model for the capsids of tailed archaeal viruses as viscoelastic membranes under tension. The fluidity is generated by thermal motion of scarlike structures that are an intrinsic feature of the ground state of large particle arrays covering surfaces with nonzero Gauss curvature. The tension is generated by a combination of the osmotic pressure of the enclosed genome and an extension force generated by filamentous structure formation that drives the formation of the tails. In continuum theory, the capsid has the shape of a surface of constant mean curvature: an unduloid. Particle arrays covering unduloids are shown to exhibit pronounced subdiffusive and diffusive single-particle transport at temperatures that are well below the melting temperature of defect-free particle arrays on a surface with zero Gauss curvature.

  19. Nucleotide sequence and corresponding amino acid sequence of the gene for the major antigen of foot and mouth disease virus.

    OpenAIRE

    Kurz, C; Forss, S; Küpper, H; K Strohmaier; Schaller, H

    1981-01-01

    A segment of 1160 nucleotides of the FMDV genome has been sequenced using three overlapping fragments of cloned cDNA from FMDV strain O1K. This sequence contains the coding sequence for the viral capsid protein VP1 as shown by its homology to known and newly determined amino acid sequences from this man antigenic polypeptide of the FMDV virion. The structural gene for VP1 comprises 639 nucleotides which specify a sequence of 213 amino acids for the VP1 protein. The coding sequence is not flan...

  20. Experimental test of connector rotation during DNA packaging into bacteriophage phi29 capsids.

    Directory of Open Access Journals (Sweden)

    Thorsten Hugel

    2007-03-01

    Full Text Available The bacteriophage phi29 generates large forces to compact its double-stranded DNA genome into a protein capsid by means of a portal motor complex. Several mechanical models for the generation of these high forces by the motor complex predict coupling of DNA translocation to rotation of the head-tail connector dodecamer. Putative connector rotation is investigated here by combining the methods of single-molecule force spectroscopy with polarization-sensitive single-molecule fluorescence. In our experiment, we observe motor function in several packaging complexes in parallel using video microscopy of bead position in a magnetic trap. At the same time, we follow the orientation of single fluorophores attached to the portal motor connector. From our data, we can exclude connector rotation with greater than 99% probability and therefore answer a long-standing mechanistic question.

  1. Contribution of PDZD8 to Stabilization of the Human Immunodeficiency Virus Type 1 Capsid

    OpenAIRE

    Guth, Charles Alexander; Sodroski, Joseph

    2014-01-01

    Following human immunodeficiency virus type 1 (HIV-1) entry into the host cell, the viral capsid gradually disassembles in a process called uncoating. A proper rate of uncoating is important for reverse transcription of the HIV-1 genome. Host restriction factors such as TRIM5α and TRIMCyp bind retroviral capsids and cause premature disassembly, leading to blocks in reverse transcription. Other host factors, such as cyclophilin A, stabilize the HIV-1 capsid and are required for efficient infec...

  2. Contribution of PDZD8 to Stabilization of the Human Immunodeficiency Virus (HIV-1) Capsid

    OpenAIRE

    Guth, Charles Alexander

    2013-01-01

    Following human immunodeficiency virus (HIV-1) entry into the host cell, the viral capsid gradually disassembles in a process called uncoating. A proper rate of uncoating is important for reverse transcription of the HIV-1 genome. Host restriction factors such as TRIM5alpha; and TRIMCyp bind retroviral capsids and cause premature disassembly, leading to blocks in reverse transcription. Other host factors, such as cyclophilin A, stabilize the HIV-1 capsid and are required for efficient infe...

  3. Facilitating the use of alternative capsid control methods towards sustainable production of organic cocoa in Ghana

    OpenAIRE

    Ayenor, G.K.; Huis, van, A.; Obeng-Ofori, D.; Padi, B.; Röling, N.G.

    2007-01-01

    Cocoa (Theobroma cacao L.) is an important foreign exchange earner for Ghana. However, production is constrained by a high incidence of pests and diseases. Based on farmers' needs, this study focused on the control of capsids, mainly Sahlbergella singularis Haglund and Distantiella theobroma (Distant) (both Hemiptera: Miridae). Annual crop loss caused by capsids is estimated at 25¿30%. To control capsids, formal research recommends application of synthetic insecticides four times between Augu...

  4. Three-dimensional structure determination of capsid of Aedes albopicus C6/36 cell densovirus

    Institute of Scientific and Technical Information of China (English)

    CHENG; Lingpeng; CHEN; Senxiong; Jenifer; M.Brannan; Joa

    2004-01-01

    The three-dimensional structure of capsid of Aedes albopictus C6/36 densovirus was determined to 14-(A) resolution by electron cryomicroscopy and computer reconstruction. The triangulation number of the capsid is 1. There are 12 holes in each triangular face and a spike on each 5-fold vertex. The validity of the capsid and nucleic acid densities in the reconstructions was discussed.

  5. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2016-04-01

    Full Text Available African swine fever virus (ASFV is a nucleocytoplasmic large DNA virus (NCLDV that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  6. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Science.gov (United States)

    Hernáez, Bruno; Guerra, Milagros; Salas, María L; Andrés, Germán

    2016-04-01

    African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs. PMID:27110717

  7. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes

    Science.gov (United States)

    Hernáez, Bruno; Guerra, Milagros; Salas, María L.

    2016-01-01

    African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs. PMID:27110717

  8. Immunogenicity of empty capsids of porcine circovius type 2 produced in insect cells.

    Science.gov (United States)

    Fan, H; Ju, C; Tong, T; Huang, H; Lv, J; Chen, H

    2007-05-01

    Porcine circovirus type 2 (PCV2), a single-stranded DNA virus, is associated with postweaning multisystemic wasting syndrome (PMWS). ORF2 protein (capsid) of PCV2 was recently demonstrated to be a major immunogenable to induce protection in pigs with a prime-boost protocol. In this study, the ORF2 gene of PCV2 was expressed in insect cells. The product self-assembled into particles that were structurally and antigenically indistinguishable from regular PCV2 capsids. To evaluated the immunogenicity of these virus-like particles, PCV2-free piglets were vaccinated with the crude lysate from recombinant baculovirus (Ac.ORF2)-infected insect cells, at doses of 0.1 ml (10(6) cells), 0.5 mL (5 x 10(6) cells) or 1.0 ml (10(7) cells). The immune response was monitored by an indirect enzyme-linked immunosorbent assay (ELISA) for PCV2 antibody and lymphocyte proliferation assay. The ELISA results indicated that primary immune response was elicited with 0.5 ml or 1.0 ml of crude lysate from Ac.ORF2. After boost immunization, relatively higher levels of PCV2 antibody were elicited in 0.5-ml or 1.0-ml vaccinated groups, compared to the 0.1-ml group. In addition, higher PCV2 specific lymphocyte proliferation response was developed in piglets vaccinated with 0.5 ml or 1.0 ml of crude lysate, especially in those vaccinated with with 1.0 ml of crude lysate. Thus, the expressed ORF2 protein has significant potential as a subunit vaccine against PCV2 infection. PMID:17225085

  9. Foot-and-Mouth Disease Virus Forms a Highly Stable, EDTA-Resistant Complex with Its Principal Receptor, Integrin αvβ6: Implications for Infectiousness▿

    OpenAIRE

    DiCara, Danielle; Burman, Alison; Clark, Stuart; Berryman, Stephen; Howard, Mark J.; Hart, Ian R.; Marshall, John F; Jackson, Terry

    2007-01-01

    The initial stage of foot-and-mouth disease virus (FMDV) infection is virus binding to cell surface integrins via the RGD motif in the GH loop of the VP1 capsid protein. As for all ligand/integrin interactions, the initial contact between FMDV and its integrin receptors is cation dependent and hence inhibited by EDTA. We have investigated this binding process with RGD-containing peptides derived from the VP1 capsid protein of FMDV and discovered that, upon binding, some of these peptides form...

  10. Targeted Delivery of VP1 Antigen of Foot-and-mouth Disease Virus to M Cells Enhances the Antigen-specific Systemic and Mucosal Immune Response

    OpenAIRE

    Kim, Sae-Hae; Lee, Ha-Yan; Jang, Yong-Suk

    2013-01-01

    Application of vaccine materials through oral mucosal route confers great economical advantage in animal farming industry due to much less vaccination cost compared with that of injection-based vaccination. In particular, oral administration of recombinant protein antigen against foot-and-mouth disease virus (FMDV) is an ideal strategy because it is safe from FMDV transmission during vaccine production and can induce antigen-specific immune response in mucosal compartments, where FMDV infecti...

  11. Adenovirus Capsid-Based Anti-Cocaine Vaccine Prevents Cocaine from Binding to the Nonhuman Primate CNS Dopamine Transporter

    OpenAIRE

    Maoz, Anat; Hicks, Martin J.; Vallabhjosula, Shankar; Synan, Michael; Kothari, Paresh J; Dyke, Jonathan P.; Ballon, Douglas J.; KaMinSky, Stephen M.; De, Bishnu P.; Rosenberg, Jonathan B; Martinez, Diana; Koob, George F.; Kim D. Janda; Crystal, Ronald G.

    2013-01-01

    Cocaine addiction is a major problem for which there is no approved pharmacotherapy. We have developed a vaccine to cocaine (dAd5GNE), based on the cocaine analog GNE linked to the capsid proteins of a serotype 5 adenovirus, designed to evoke anti-cocaine antibodies that sequester cocaine in the blood, preventing access to the CNS. To assess the efficacy of dAd5GNE in a large animal model, positron emission tomography (PET) and the radiotracer [11C]PE2I were used to measure cocaine occupancy ...

  12. Inhibiting Early-Stage Events in HIV-1 Replication by Small-Molecule Targeting of the HIV-1 Capsid

    OpenAIRE

    Kortagere, Sandhya; Madani, Navid; Mankowski, Marie K.; Schön, Arne; Zentner, Isaac; Swaminathan, Gokul; Princiotto, Amy; Anthony, Kevin; Oza, Apara; Sierra, Luz-Jeannette; Passic, Shendra R.; Wang, Xiaozhao; Jones, David M; Stavale, Eric; Fred C. Krebs

    2012-01-01

    The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of virl replication and has emerged as a novel drug target. We report hybrid structure-based virtual screening to identify small molecules with the potential to interact with the N-terminal domain (NTD) of HIV-1 CA and disrupt early, preintegration steps of the HIV-1 replication cycle. The small molecule 4,4′-[dibenzo[b,d]furan-2,8-diylbis(5-phenyl-1H-imidazole-4,2-diyl)]dibenzoic acid (CK026), which had anti-HI...

  13. A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a "Single-Cycle" Alphavirus Vector and Empty Capsid Particles

    OpenAIRE

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette; McInerney, Gerald M.; Burman, Alison; Jackson, Terry; Polacek, Charlotta; Belsham, Graham

    2016-01-01

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can successfully control this disease, however, current vaccines are imperfect. They are made using chemically inactivated FMD virus (FMDV) that is produced in large-scale mammalian cell culture under high containment conditions. Here, we have expressed the FMDV capsid protein precursor (P1-2A) of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro...

  14. A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a “Single-Cycle” Alphavirus Vector and Empty Capsid Particles

    Science.gov (United States)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette; McInerney, Gerald M.; Burman, Alison; Jackson, Terry; Polacek, Charlotta

    2016-01-01

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can successfully control this disease, however, current vaccines are imperfect. They are made using chemically inactivated FMD virus (FMDV) that is produced in large-scale mammalian cell culture under high containment conditions. Here, we have expressed the FMDV capsid protein precursor (P1-2A) of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro) using a “single cycle” packaged alphavirus self-replicating RNA based on Semliki Forest virus (SFV). When the FMDV P1-2A was expressed with 3Cpro then processing of the FMDV capsid precursor protein is observed within cells and the proteins assemble into empty capsid particles. The products interact with anti-FMDV antibodies in an ELISA and bind to the integrin αvβ6 (a cellular receptor for FMDV). In cattle vaccinated with these rSFV-FMDV vectors alone, anti-FMDV antibodies were elicited but the immune response was insufficient to give protection against FMDV challenge. However, the prior vaccination with these vectors resulted in a much stronger immune response against FMDV post-challenge and the viremia observed was decreased in level and duration. In subsequent experiments, cattle were sequentially vaccinated with a rSFV-FMDV followed by recombinant FMDV empty capsid particles, or vice versa, prior to challenge. Animals given a primary vaccination with the rSFV-FMDV vector and then boosted with FMDV empty capsids showed a strong anti-FMDV antibody response prior to challenge, they were protected against disease and no FMDV RNA was detected in their sera post-challenge. Initial inoculation with empty capsids followed by the rSFV-FMDV was much less effective at combating the FMDV challenge and a large post-challenge boost to the level of anti-FMDV antibodies was observed. This prime-boost system, using reagents that can be generated outside of high

  15. A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a "Single-Cycle" Alphavirus Vector and Empty Capsid Particles.

    Science.gov (United States)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette; McInerney, Gerald M; Burman, Alison; Jackson, Terry; Polacek, Charlotta; Belsham, Graham J

    2016-01-01

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can successfully control this disease, however, current vaccines are imperfect. They are made using chemically inactivated FMD virus (FMDV) that is produced in large-scale mammalian cell culture under high containment conditions. Here, we have expressed the FMDV capsid protein precursor (P1-2A) of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro) using a "single cycle" packaged alphavirus self-replicating RNA based on Semliki Forest virus (SFV). When the FMDV P1-2A was expressed with 3Cpro then processing of the FMDV capsid precursor protein is observed within cells and the proteins assemble into empty capsid particles. The products interact with anti-FMDV antibodies in an ELISA and bind to the integrin αvβ6 (a cellular receptor for FMDV). In cattle vaccinated with these rSFV-FMDV vectors alone, anti-FMDV antibodies were elicited but the immune response was insufficient to give protection against FMDV challenge. However, the prior vaccination with these vectors resulted in a much stronger immune response against FMDV post-challenge and the viremia observed was decreased in level and duration. In subsequent experiments, cattle were sequentially vaccinated with a rSFV-FMDV followed by recombinant FMDV empty capsid particles, or vice versa, prior to challenge. Animals given a primary vaccination with the rSFV-FMDV vector and then boosted with FMDV empty capsids showed a strong anti-FMDV antibody response prior to challenge, they were protected against disease and no FMDV RNA was detected in their sera post-challenge. Initial inoculation with empty capsids followed by the rSFV-FMDV was much less effective at combating the FMDV challenge and a large post-challenge boost to the level of anti-FMDV antibodies was observed. This prime-boost system, using reagents that can be generated outside of high-containment facilities

  16. Functional assessment and structural basis of antibody binding to human papillomavirus capsid.

    Science.gov (United States)

    Zhang, Xiao; Li, Shaowei; Modis, Yorgo; Li, Zhihai; Zhang, Jun; Xia, Ningshao; Zhao, Qinjian

    2016-03-01

    Persistent high-risk human papillomavirus (HPV) infection is linked to cervical cancer. Two prophylactic virus-like particle (VLP)-based vaccines have been marketed globally for nearly a decade. Here, we review the HPV pseudovirion (PsV)-based assays for the functional assessment of the HPV neutralizing antibodies and the structural basis for these clinically relevant epitopes. The PsV-based neutralization assay was developed to evaluate the efficacy of neutralization antibodies in sera elicited by vaccination or natural infection or to assess the functional characteristics of monoclonal antibodies. Different antibody binding modes were observed when an antibody was complexed with virions, PsVs or VLPs. The neutralizing epitopes are localized on surface loops of the L1 capsid protein, at various locations on the capsomere. Different neutralization antibodies exert their neutralizing function via different mechanisms. Some antibodies neutralize the virions by inducing conformational changes in the viral capsid, which can result in concealing the binding site for a cellular receptor like 1A1D-2 against dengue virus, or inducing premature genome release like E18 against enterovirus 71. Higher-resolution details on the epitope composition of HPV neutralizing antibodies would shed light on the structural basis of the highly efficacious vaccines and aid the design of next generation vaccines. In-depth understanding of epitope composition would ensure the development of function-indicating assays for the comparability exercise to support process improvement or process scale up. Elucidation of the structural elements of the type-specific epitopes would enable rational design of cross-type neutralization via epitope re-engineering or epitope grafting in hybrid VLPs. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26676802

  17. Human papillomavirus in anogenital cancer, with special reference to the viral capsid

    OpenAIRE

    Heino, Pirkko

    1996-01-01

    HUMAN PAPILLOMAVIRUS IN ANOGENITAL CANCER, WITH SPECIAL REFERENCE TO THE VIRAL CAPSID b y Pirkko HeinoInfection with the oncogenic types of Human Papillomavirus (HPV), particularlyHPV type 16, is the major cause of anogenital dysplasias, which are precursorlesions of anogenital cancers. Studies of the HPV capsid are of interest, since HPVcapsids are attractive...

  18. HepG2细胞内HPV DNA物理状态及表达L1蛋白%The physical states of HPV DNA and expression of human papillomavirus late capsid protein 1 in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    杜义江; 肖长义; 郑军; 胡敏

    2015-01-01

    Objective To find out the physical state of the human papillomavirus ( HPV) genome in hepatoma cell line HepG2 cells and the regulation of HPV late capsid protein 1 ( L1) expression and to explore the nature of the cytoryctes in HepG2 cells.Methods E2 and E6 in HPV18 were detected by PCR to evaluate the physical state of HPV18 genome .HepG2 L1 expression was detected by ELISA , light microscropy and electron microscrope immu-nohistochemistry assays , Western blot assay using HPV L 1 mice monoclonal antibody .L1 mRNA in HepG2 cells was detected by reverse transcriptional PCR ( RT-PCR) .Results PCR assay displayed that HPV DNA was inte-grated with HepG2 genome.ELISA assay showed that HPV L1 was present in lysate of HepG2 cells.Light micros-cropy demonstrated strong positive reaction in HepG2 cells.In microscopy, in the cytoplasm of partial HepG2 cells, there were lumpish cytorrhyctes materials which consists of very small and uniform particles and these parti -cles were marked by HPV L1 antibody labeled by colloidal gold .Western blot analysis showed a band at 56 ku dis-trict and it was L1 specific strap which demonstrated HPV 18 L1 was present in HepG2 cells.RT-PCR assay demon-strated the presence of L1 mRNA in HepG2 cells.Conclusions HepG2 cells are HPV18-positive HPV DNA ge-nome is integrated with HepG2 cells.HepG2 cells can express L1.The cytorrhyctes in HepG2 cells are composed of HPV18 L1 indicating that L1 can be expressed in HepG2.%目的:了解人肝癌细胞系HepG2细胞内人乳头瘤病毒( HPV)基因组的物理状态,胞质内包涵体物质的性质以及晚期衣壳蛋白1(L1)表达。方法用PCR对细胞内HPV18型E2和E6基因进行扩增,判断HPV18基因组的物理状态;用ELISA、光镜和电镜的免疫组化、Western blot 等方法,以多价HPV L1小鼠单克隆抗体做探针,检测HepG2细胞内L1蛋白表达;用反转录PCR检测细胞内L1 mRNA表达。结果 HepG2细胞内HPV DNA基因组呈整合状

  19. Development of a foot-and-mouth disease virus serotype A empty capsid subunit vaccine using silkworm (Bombyx mori pupae.

    Directory of Open Access Journals (Sweden)

    Zhiyong Li

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of cloven-hoofed animals that inflicts severe economic losses in the livestock industry. In 2009, FMDV serotype A caused outbreaks of FMD in cattle in China. Although an inactivated virus vaccine has proven effective to control FMD, its use may lead to new disease outbreaks due to a possible incomplete inactivation of the virus during the manufacturing process. Here, we expressed the P1-2A and the 3C coding regions of a serotype A FMDV field isolate in silkworm pupae (Bombyx mori and evaluated the immunogenicity of the expression products. Four of five cattle vaccinated with these proteins developed high titers of FMDV-specific antibody and were completely protected against virulent homologous virus challenge with 10,000 50% bovine infectious doses (BID(50. Furthermore, the 50% bovine protective dose (PD(50 test was performed to assess the bovine potency of the empty capsid subunit vaccine and was shown to achieve 4.33 PD(50 per dose. These data provide evidence that silkworm pupae can be used to express immunogenic FMDV proteins. This strategy might be used to develop a new generation of empty capsid subunit vaccines against a variety of diseases.

  20. The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid.

    Science.gov (United States)

    Matreyek, Kenneth A; Engelman, Alan

    2011-08-01

    Lentiviruses likely infect nondividing cells by commandeering host nuclear transport factors to facilitate the passage of their preintegration complexes (PICs) through nuclear pore complexes (NPCs) within nuclear envelopes. Genome-wide small interfering RNA screens previously identified karyopherin β transportin-3 (TNPO3) and NPC component nucleoporin 153 (NUP153) as being important for infection by human immunodeficiency virus type 1 (HIV-1). The knockdown of either protein significantly inhibited HIV-1 infectivity, while infection by the gammaretrovirus Moloney murine leukemia virus (MLV) was unaffected. Here, we establish that primate lentiviruses are particularly sensitive to NUP153 knockdown and investigate HIV-1-encoded elements that contribute to this dependency. Mutants lacking functional Vpr or the central DNA flap remained sensitive to NUP153 depletion, while MLV/HIV-1 chimera viruses carrying MLV matrix, capsid, or integrase became less sensitive when the latter two elements were substituted. Two capsid missense mutant viruses, N74D and P90A, were largely insensitive to NUP153 depletion, as was wild-type HIV-1 when cyclophilin A was depleted simultaneously or when infection was conducted in the presence of cyclosporine A. The codepletion of NUP153 and TNPO3 yielded synergistic effects that outweighed those calculated based on individual knockdowns, indicating potential interdependent roles for these factors during HIV-1 infection. Quantitative PCR revealed normal levels of late reverse transcripts, a moderate reduction of 2-long terminal repeat (2-LTR) circles, and a relatively large reduction in integrated proviruses upon NUP153 knockdown. These results suggest that capsid, likely by the qualities of its uncoating, determines whether HIV-1 requires cellular NUP153 for PIC nuclear import. PMID:21593146

  1. Utilizing the antigen capsid-incorporation strategy for the development of adenovirus serotype 5-vectored vaccine approaches.

    Science.gov (United States)

    Gu, Linlin; Farrow, Anitra L; Krendelchtchikov, Alexandre; Matthews, Qiana L

    2015-01-01

    Adenovirus serotype 5 (Ad5) has been extensively modified with traditional transgene methods for the vaccine development. The reduced efficacies of these traditionally modified Ad5 vectors in clinical trials could be primarily correlated with Ad5 pre-existing immunity (PEI) among the majority of the population. To promote Ad5-vectored vaccine development by solving the concern of Ad5 PEI, the innovative Antigen Capsid-Incorporation strategy has been employed. By merit of this strategy, Ad5-vectored we first constructed the hexon shuttle plasmid HVR1-KWAS-HVR5-His6/pH5S by subcloning the hypervariable region (HVR) 1 of hexon into a previously constructed shuttle plasmid HVR5-His6/pH5S, which had His6 tag incorporated into the HVR5. This HVR1 DNA fragment containing a HIV epitope ELDKWAS was synthesized. HVR1-KWAS-HVR5-His6/pH5S was then linearized and co-transformed with linearized backbone plasmid pAd5/∆H5 (GL) , for homologous recombination. This recombined plasmid pAd5/H5-HVR1-KWAS-HVR5-His6 was transfected into cells to generate the viral vector Ad5/H5-HVR1-KWAS-HVR5-His6. This vector was validated to have qualitative fitness indicated by viral physical titer (VP/ml), infectious titer (IP/ml) and corresponding VP/IP ratio. Both the HIV epitope and His6 tag were surface-exposed on the Ad5 capsid, and retained epitope-specific antigenicity of their own. A neutralization assay indicated the ability of this divalent vector to circumvent neutralization by Ad5-positive sera in vitro. Mice immunization demonstrated the generation of robust humoral immunity specific to the HIV epitope and His6. This proof-of-principle study suggested that the protocol associated with the Antigen Capsid-Incorporation strategy could be feasibly utilized for the generation of Ad5-vectored vaccines by modifying different capsid proteins. This protocol could even be further modified for the generation of rare-serotype adenovirus-vectored vaccines. PMID:25993057

  2. Role of dynamic capsomere supply for viral capsid self-assembly

    International Nuclear Information System (INIS)

    Many viruses rely on the self-assembly of their capsids to protect and transport their genomic material. For many viral systems, in particular for human viruses like hepatitis B, adeno or human immunodeficiency virus, that lead to persistent infections, capsomeres are continuously produced in the cytoplasm of the host cell while completed capsids exit the cell for a new round of infection. Here we use coarse-grained Brownian dynamics simulations of a generic patchy particle model to elucidate the role of the dynamic supply of capsomeres for the reversible self-assembly of empty T1 icosahedral virus capsids. We find that for high rates of capsomere influx only a narrow range of bond strengths exists for which a steady state of continuous capsid production is possible. For bond strengths smaller and larger than this optimal value, the reaction volume becomes crowded by small and large intermediates, respectively. For lower rates of capsomere influx a broader range of bond strengths exists for which a steady state of continuous capsid production is established, although now the production rate of capsids is smaller. Thus our simulations suggest that the importance of an optimal bond strength for viral capsid assembly typical for in vitro conditions can be reduced by the dynamic influx of capsomeres in a cellular environment. (paper)

  3. Immobilization and One-Dimensional Arrangement of Virus Capsids with Nanoscale Precision Using DNA Origami

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, Nicholas [Univ. of California, Berkeley, CA (United States); Liu, Minghui [Arizona State Univ., Tempe, AZ (United States); Tong, Gary J [Univ. of California, Berkeley, CA (United States); Li, Zhe [Arizona State Univ., Tempe, AZ (United States); Liu, Yan [Arizona State Univ., Tempe, AZ (United States); Yan, Hao [Arizona State Univ., Tempe, AZ (United States); Francis, Matthew B [Univ. of California, Berkeley, CA (United States)

    2010-06-24

    DNA origami was used as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. To do this, we first modified the interior surface of bacteriophage MS2 capsids with fluorescent dyes as a model cargo. An unnatural amino acid on the external surface was then coupled to DNA strands that were complementary to those extending from origami tiles. Two different geometries of DNA tiles (rectangular and triangular) were used. The capsids associated with tiles of both geometries with virtually 100% efficiency under mild annealing conditions, and the location of capsid immobilization on the tile could be controlled by the position of the probe strands. The rectangular tiles and capsids could then be arranged into one-dimensional arrays by adding DNA strands linking the corners of the tiles. The resulting structures consisted of multiple capsids with even spacing (~100 nm). We also used a second set of tiles that had probe strands at both ends, resulting in a one-dimensional array of alternating capsids and tiles. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multicomponent systems from biological scaffolds using the power of rationally engineered DNA nanostructures.

  4. O型口蹄疫病毒衣壳蛋白在昆虫细胞中的表达及其抗原性鉴定%Expression and Identification of Capsid Protein of Foot-and-mouth Disease Virus Type O in Insect Cells

    Institute of Scientific and Technical Information of China (English)

    解银丽; 马琪; 李志勇

    2015-01-01

    为构建并表达O型口蹄疫病毒(Foot-and-mouth disease virus,FMDV)的空衣壳蛋白的重组杆状病毒并鉴定其抗原性.以质粒pMD19-P12A3C为模板,扩增出编码O型FMDV衣壳蛋白前体P12A及其蛋白酶3C的P12A3C基因,插入至杆状病毒转移载体pFast-BacDual PH启动子下,构建出重组转移载体pFastBacDual-P12A3C,并转化DH10BacTM大肠杆菌感受态细胞,构建重组转座子Bacmid-P12A3C,将其转染Sf9细胞,获得表达O型FMDV衣壳蛋白的重组杆状病毒rBac-P12A3C.增殖重组杆状病毒然后用其感染Sf9细胞,最后通过间接免疫荧光检测外源蛋白的表达.结果表明,表达产物能够被O型FMDV VP1多克隆抗体识别,并具有良好的反应原性,表明表达O型FMDV衣壳蛋白的重组杆状病毒rBac-P12A3C构建成功.该研究为进一步研究O型FMDV空表壳的体外组装提供前期实验材料,并为后期研制出口蹄疫的基因工程亚单位疫苗奠定基础.

  5. Enhanced mucosal immune responses induced by a combined candidate mucosal vaccine based on Hepatitis A virus and Hepatitis E virus structural proteins linked to tuftsin.

    Directory of Open Access Journals (Sweden)

    Yan Gao

    Full Text Available Hepatitis A virus (HAV and Hepatitis E virus (HEV are the most common causes of infectious hepatitis. These viruses are spread largely by the fecal-oral route and lead to clinically important disease in developing countries. To evaluate the potential of targeting hepatitis A and E infection simultaneously, a combined mucosal candidate vaccine was developed with the partial open reading frame 2 (ORF2 sequence (aa 368-607 of HEV (HE-ORF2 and partial virus protein 1 (VP1 sequence (aa 1-198 of HAV (HA-VP1, which included the viral neutralization epitopes. Tuftsin is an immunostimulatory peptide which can enhance the immunogenicity of a protein by targeting it to macrophages and dendritic cells. Here, we developed a novel combined protein vaccine by conjugating tuftsin to HE-ORF2 and HA-VP1 and used synthetic CpG oligodeoxynucleotides (ODNs as the adjuvant. Subsequent experiments in BALB/c mice demonstrated that tuftsin enhanced the serum-specific IgG and IgA antibodies against HEV and HAV at the intestinal, vaginal and pulmonary interface when delivered intranasally. Moreover, mice from the intranasally immunized tuftsin group (HE-ORF2-tuftsin + HA-VP1-tuftsin + CpG showed higher levels of IFN-γ-secreting splenocytes (Th1 response and ratio of CD4+/CD8+ T cells than those of the no-tuftsin group (HE-ORF2 + HA-VP1 + CpG. Thus, the tuftsin group generated stronger humoral and cellular immune responses compared with the no-tuftsin group. Moreover, enhanced responses to the combined protein vaccine were obtained by intranasal immunization compared with intramuscular injection. By integrating HE-ORF2, HA-VP1 and tuftsin in a vaccine, this study validated an important concept for further development of a combined mucosal vaccine against hepatitis A and E infection.

  6. Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication.

    Science.gov (United States)

    Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J; Valente, Susana T

    2016-04-01

    The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. PMID:26810656

  7. Role of TRIM5α RING Domain E3 Ubiquitin Ligase Activity in Capsid Disassembly, Reverse Transcription Blockade, and Restriction of Simian Immunodeficiency Virus▿†

    OpenAIRE

    Kim, Jonghwa; Tipper, Christopher; Sodroski, Joseph

    2011-01-01

    The mammalian tripartite motif protein, TRIM5α, recognizes retroviral capsids entering the cytoplasm and blocks virus infection. Depending on the particular TRIM5α protein and retrovirus, complete disruption of the TRIM5α RING domain decreases virus-restricting activity to various degrees. TRIM5α exhibits RING domain-dependent E3 ubiquitin ligase activity, but the specific role of this activity in viral restriction is unknown. We created a panel of African green monkey TRIM5α (TRIM5αAGM) muta...

  8. On the geometry of regular icosahedral capsids containing disymmetrons

    CERN Document Server

    Ang, Kai-Siang

    2016-01-01

    Icosahedral virus capsids are composed of symmetrons, organized arrangements of capsomers. There are three types of symmetrons: disymmetrons, trisymmetrons, and pentasymmetrons, which have different shapes and are centered on the icosahedral 2-fold, 3-fold and 5-fold axes of symmetry, respectively. In 2010 [Sinkovits & Baker] gave a classification of all possible ways of building an icosahedral structure solely from trisymmetrons and pentasymmetrons, which requires the triangulation number T to be odd. In the present paper we incorporate disymmetrons to obtain a geometric classification of icosahedral viruses formed by regular penta-, tri-, and disymmetrons. For every class of solutions, we further provide formulas for symmetron sizes and parity restrictions on h, k, and T numbers. We also present several methods in which invariants may be used to classify a given configuration.

  9. Transient gene expression in serum-free suspension-growing mammalian cells for the production of foot-and-mouth disease virus empty capsids.

    Directory of Open Access Journals (Sweden)

    Ana Clara Mignaqui

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of cloven-hoofed animals. It produces severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV. The use of empty capsids as a subunit vaccine has been reported to be a promising candidate because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. In this report, we explored transient gene expression (TGE in serum-free suspension-growing mammalian cells for the production of FMDV recombinant empty capsids as a subunit vaccine. The recombinant proteins produced, assembled into empty capsids and induced protective immune response against viral challenge in mice. Furthermore, they were recognized by anti-FMDV bovine sera. By using this technology, we were able to achieve expression levels that are compatible with the development of a vaccine. Thus, TGE of mammalian cells is an easy to perform, scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.

  10. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    International Nuclear Information System (INIS)

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8

  11. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  12. Simian Virus 40 depends on ER protein folding and quality control factors for entry into host cells

    DEFF Research Database (Denmark)

    Schelhaas, Mario; Malmström, Johan; Pelkmans, Lucas; Haugstetter, Johannes; Ellgaard, Lars; Grünewald, Kay; Helenius, Ari

    2007-01-01

    12 of 72 VP1 pentamers. Cryo-electron tomography indicated that loss of interchain disulfides coupled with calcium depletion induces selective dissociation of the 12 vertex pentamers, a step likely to mimic uncoating of the virus in the cytosol. Thus, the virus utilizes the protein folding machinery...

  13. Molecular characterization of SAT 2 foot-and-mouth disease virus from post-outbreak slaughtered animals: implications for disease control in Uganda

    DEFF Research Database (Denmark)

    Balinda, Sheila N; Belsham, Graham; Masembe, Charles;

    2010-01-01

    . Part of the coding region for the capsid protein VP1 was amplified and sequenced. All samples were identified as belonging to the SAT 2 serotype. The implications for FMD control of both virus introductions into Uganda and the presence of carrier animals following outbreaks are discussed....

  14. Novel Substituted Heteroaromatic Piperazine and Piperidine Derivatives as Inhibitors of Human Enterovirus 71 and Coxsackievirus A16

    OpenAIRE

    Xian Zhang; Hongliang Wang; Yuhuan Li; Ruiyuan Cao; Wu Zhong; Zhibing Zheng; Gang Wang; Junhai Xiao; Song Li

    2013-01-01

    A series of substituted heteroaromatic piperazine and piperidine derivatives were found through virtual screening based on the structure of human enterovirus 71 capsid protein VP1. The preliminary biological evaluation revealed that compounds 8e and 9e have potent activity against EV71 and Coxsackievirus A16 with low cytotoxicity.

  15. Novel Substituted Heteroaromatic Piperazine and Piperidine Derivatives as Inhibitors of Human Enterovirus 71 and Coxsackievirus A16

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2013-04-01

    Full Text Available A series of substituted heteroaromatic piperazine and piperidine derivatives were found through virtual screening based on the structure of human enterovirus 71 capsid protein VP1. The preliminary biological evaluation revealed that compounds 8e and 9e have potent activity against EV71 and Coxsackievirus A16 with low cytotoxicity.

  16. Pt, Co-Pt and Fe-Pt alloy nanoclusters encapsulated in virus capsids

    Science.gov (United States)

    Okuda, M.; Eloi, J.-C.; Jones, S. E. Ward; Verwegen, M.; Cornelissen, J. J. L. M.; Schwarzacher, W.

    2016-03-01

    Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl4]- by NaBH4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co-Pt and Fe-Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid.

  17. Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion.

    Science.gov (United States)

    Bosse, Jens B; Hogue, Ian B; Feric, Marina; Thiberge, Stephan Y; Sodeik, Beate; Brangwynne, Clifford P; Enquist, Lynn W

    2015-10-20

    The nuclear chromatin structure confines the movement of large macromolecular complexes to interchromatin corrals. Herpesvirus capsids of approximately 125 nm assemble in the nucleoplasm and must reach the nuclear membranes for egress. Previous studies concluded that nuclear herpesvirus capsid motility is active, directed, and based on nuclear filamentous actin, suggesting that large nuclear complexes need metabolic energy to escape nuclear entrapment. However, this hypothesis has recently been challenged. Commonly used microscopy techniques do not allow the imaging of rapid nuclear particle motility with sufficient spatiotemporal resolution. Here, we use a rotating, oblique light sheet, which we dubbed a ring-sheet, to image and track viral capsids with high temporal and spatial resolution. We do not find any evidence for directed transport. Instead, infection with different herpesviruses induced an enlargement of interchromatin domains and allowed particles to diffuse unrestricted over longer distances, thereby facilitating nuclear egress for a larger fraction of capsids. PMID:26438852

  18. Trapping of Hepatitis B Virus capsid assembly intermediates by phenylpropenamide assembly accelerators

    OpenAIRE

    Katen, Sarah P.; Chirapu, Srinivas Reddy; Finn, M.G.; Zlotnick, Adam

    2010-01-01

    Understanding the biological self-assembly process of virus capsids is key to understanding the viral life cycle, as well as serving as a platform for the design of assembly-based antiviral drugs. Here we identify and characterize the phenylpropenamide family of small molecules, known to have antiviral activity in vivo, as assembly effectors of the Hepatitis B Virus (HBV) capsid. We have found two representative phenylpropenamides to be assembly accelerators, increasing the rate of assembly w...

  19. Charge configurations in viral proteins.

    OpenAIRE

    Karlin, S; Brendel, V

    1988-01-01

    The spatial distribution of the charged residues of a protein is of interest with respect to potential electrostatic interactions. We have examined the proteins of a large number of representative eukaryotic and prokaryotic viruses for the occurrence of significant clusters, runs, and periodic patterns of charge. Clusters and runs of positive charge are prominent in many capsid and core proteins, whereas surface (glyco)proteins frequently contain a negative charge cluster. Significant charge ...

  20. HIV capsid is a tractable target for small molecule therapeutic intervention.

    Science.gov (United States)

    Blair, Wade S; Pickford, Chris; Irving, Stephen L; Brown, David G; Anderson, Marie; Bazin, Richard; Cao, Joan; Ciaramella, Giuseppe; Isaacson, Jason; Jackson, Lynn; Hunt, Rachael; Kjerrstrom, Anne; Nieman, James A; Patick, Amy K; Perros, Manos; Scott, Andrew D; Whitby, Kevin; Wu, Hua; Butler, Scott L

    2010-01-01

    Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy. PMID:21170360