WorldWideScience

Sample records for capsid conjugates nano-sized

  1. High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents

    Energy Technology Data Exchange (ETDEWEB)

    Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.; Botta, Mauro; Francis, Matthew B.; Aime, Silvio; Raymond, Kenneth N.

    2007-08-29

    High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) there is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.

  2. Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy.

    Science.gov (United States)

    Amemiya, Yosuke; Tanaka, Tsuyoshi; Yoza, Brandon; Matsunaga, Tadashi

    2005-11-21

    A system for streptavidin detection using biotin conjugated to nano-sized bacterial magnetic particles (BMPs) has been developed. BMPs, isolated from magnetic bacteria, were used as magnetic markers for magnetic force microscopy (MFM) imaging. The magnetic signal was obtained from a single particle using MFM without application of an external magnetic field. The number of biotin conjugated BMPs (biotin-BMPs) bound to streptavidin immobilized on the glass slides increased with streptavidin concentrations up to 100 pg/ml. The minimum streptavidin detection limit using this technique is 1 pg/ml, which is 100 times more sensitive than a conventional fluorescent detection system. This is the first report using single domain nano-sized magnetic particles as magnetic markers for biosensing. This assay system can be used for immunoassay and DNA detection with high sensitivities.

  3. Modification of unsaturated polyester resins using nano-size core ...

    African Journals Online (AJOL)

    Modification of unsaturated polyester resins using nano-size core-shell particles. MO Munyati, PA Lovell. Abstract. No Abstract Available Journal of Science and Technology Special Edition 2004: 24-31. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  4. Cellular detonations in nano-sized aluminum particle gas suspensions

    Science.gov (United States)

    Khmel, TA

    2017-10-01

    Formation of cellular detonation structures in monodisperse nano-sized aluminum particle – oxygen suspensions is studied by methods of numerical simulations of two-dimensional detonation flows. The detonation combustion are described within the semi-empirical model developed earlier which takes into account transition of the regime of aluminum particle combustion from diffusion to kinetic for micro-sized and nano-sized particles. The free-molecular effects are considered in the processes of heat and velocity relaxation of the phases. The specific features of the cellular detonation of nanoparticle suspensions comparing with micron-sized suspensions are irregular cellular structures, much higher pick pressure values, and relatively larger detonation cells. This is due to high value of activation energy of reduced chemical reaction of aluminum particle combustion in kinetic regime.

  5. Nano-Sized Natural Colorants from Rocks and Soils

    Science.gov (United States)

    Ahmad, W. Y. W.; Ruznan, W. S.; Hamid, H. A.; Kadir, M. I. A.; Yusoh, M. K. M.; Ahmad, M. R.

    2010-03-01

    Colored rocks (lateritic) and soils (shales) are available in abundant all around Malaysia and they are from natural sources. The colorants will be useful if they can be transferred to substrates using dyeing, printing or brushing with acceptable fastness. First of all the rocks need to be crushed into powder form before coloration can take place. The sizes of the colorants particles obtained with coffee grinder were of 7-8 microns. They can be reduced to 3-5 micron using fluidized bed jetmill and to nano sizes with the help of planetary mono mill grinders. The experiment was conducted in both dyeing and printing of textiles using all three sizes (7-8 microns, 3-5 microns and nano sizes) of colorants on silk fabric. The colorants were applied on silk fabrics by dyeing and tie and dye techniques. In addition, the colorants can also be applied by brushing technique as in batik canting or batik block as well as silk screen printing. The evaluations of colored materials were based on the levelness of dyeing, fastness properties (washing, light and rubbing fastness) and color strength. The wash fastness testing shows that all colorants sizes have more or less the same fastness to washing but nano sized colorants produced better uniform dyes distribution (levelness of dyeing) and higher color strength.

  6. Nano sized clay detected on chalk particle surfaces

    DEFF Research Database (Denmark)

    Skovbjerg, Lone; Hassenkam, Tue; Makovicky, Emil

    2012-01-01

    adsorption takes place, are largely unknown. In this study, we have used atomic force microscopy (AFM) to show that the grain surfaces in offshore and onshore chalk are more heterogeneous than previously assumed. The particles are not simply calcite surfaces but are partially covered by clay that is only 1...... that in calcite saturated water, both the polar and the nonpolar functional groups adhere to the nano sized clay particles but not to calcite. This is fundamentally important information for the development of conceptual and chemical models to explain wettability alterations in chalk reservoirs...

  7. Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.

    Science.gov (United States)

    Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan

    2018-03-01

    Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.

  8. Luminescence properties of YAG: Nd 3 nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    Nano-sized ceramic powders with weaker aggregation of Nd3+-doped yttrium aluminum garnet (YAG:Nd3+) were synthesized via co-microemulsion and microwave heating. This method provides a limited small space in a micelle for the formation of nano-sized precursors. It also requires a very short heating time, thus ...

  9. Mn3O4 nano-sized crystals: Rapid synthesis and extension to ...

    Indian Academy of Sciences (India)

    to preparation of nanosized LiMn2O4 materials. XIAO-LING CUI ... applications such as magnetic storage media, catalysis, electrodes, ion .... of ethanol. After similar processes with the rapid prepa- ration of nano-sized Mn3O4 crystals, a black colloidal solution containing nano-sized Mn3O4 crystals and the preferred lithium ...

  10. Characterisation and Treatment of Nano-sized Particles, Colloids and Associated Polycyclic Aromatic Hydrocarbons in Stormwater

    DEFF Research Database (Denmark)

    Nielsen, Katrine

    . The associated pollutants will, if not removed in stormwater treatment facilities, be discharged into receiving surface waters, due to enhanced transportation exerted by the colloids and nano-sized particles. More stormwater than previously is separated from wastewater and drained to stormwater treatment.......Since little is known about the colloids and nano-sized particle-enhanced transportation of pollutants in stormwater, it has been difficult to determine their quantitative role in the total release of pollutants into receiving waters.Therefore the main purpose of this thesis has been to document the presence...... and size distribution of colloids and nano-sized particles in stormwater, as well as quantify the particle-enhanced transportation of polycyclic aromatic hydrocarbons (PAHs) in stormwater. Stormwater from five sites in Europe was collected to characterise the particulate matter, colloids and nano...

  11. Neuro-oncologic applications of exosomes, microvesicles, and other nano-sized extracellular particles.

    Science.gov (United States)

    Gonda, David D; Akers, Johnny C; Kim, Ryan; Kalkanis, Steven N; Hochberg, Fred H; Chen, Clark C; Carter, Bob S

    2013-04-01

    The discovery that tumor-derived proteins and nucleic acids can be detected in nano-sized vesicles in the plasma and cerebrospinal fluid of patients afflicted with brain tumors has expanded opportunities for biomarker and therapeutic discovery. Through delivery of their contents to surrounding cells, exosomes, microvesicles, and other nano-sized extracellular vesicles secreted by tumors modulate their environment to promote tumor growth and survival. In this review, we discuss the biological processes mediated by these extracellular vesicles and their applications in terms of brain tumor diagnosis, monitoring, and therapy. We review the normal physiology of these extracellular vesicles, their pertinence to tumor biology, and directions for research in this field.

  12. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    DEFF Research Database (Denmark)

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  13. Luminescence properties of YAG:Nd nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    equipment and crucible material and fabricating large sizes and high neodymium concentrations are difficult. Recent investigations have indicated that YAG:Nd3+ polycrystalline nano-sized ceramic powders are among the most promis- ing materials for solid-state lasers (Skita et al 1991; Ikesue et al 1995; Lu et al 2000a, b, ...

  14. Luminescence properties of YAG:Nd nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    Nano-sized ceramic powders with weaker aggregation of Nd3+-doped yttrium aluminum garnet. (YAG:Nd3+) ... Under excitation at 488 nm, YAG:Nd3+ nano- ..... Rabinovitch Y, Bogicevic C, Karolak F, Tétard D and Dammak H. 2008 J. Mater. Process Tech. 199 314. Sekino T and Sogabe Y 1993 Rev. Laser Eng. 21 827.

  15. Mn3O4 nano-sized crystals: Rapid synthesis and extension to ...

    Indian Academy of Sciences (India)

    of manganese ions, but also to prepare dispersed nano- sized LiMn2O4 materials with good electrochemical properties. Acknowledgements. This work was supported by the Science and Tech- nology Planning Project of Gansu Province (No. 1308RJZA259) and the Branchy Tamarisk Develop- ment Program for Young ...

  16. Characterization of nano-size heterogeneities by small-angle-scattering

    International Nuclear Information System (INIS)

    Ohnuma, Masato

    2012-01-01

    Techniques of Small-Angle Neutron and X-ray Scattering (SANS and SAXS) are overviewed from principle to applications. Importance of characterizing composition of nano-size heterogeneity is explained based on the results obtained by combination of SANS and SAXS. (author)

  17. Nano-sized aerosol classification, collection and analysis--method development using dental composite materials.

    Science.gov (United States)

    Bogdan, Axel; Buckett, Mary I; Japuntich, Daniel A

    2014-01-01

    This article presents a methodical approach for generating, collecting, and analyzing nano-size (1-100 nm) aerosol from abraded dental composite materials. Existing aerosol sampling instruments were combined with a custom-made sampling chamber to create and sample a fresh, steady-state aerosol size distribution before significant Brownian coagulation. Morphological, size, and compositional information was obtained by Transmission Electron Microscopy (TEM). To create samples sizes suitable for TEM analysis, aerosol concentrations in the test chamber had to be much higher than one would typically expect in a dental office, and therefore, these results do not represent patient or dental personnel exposures. Results show that nano-size aerosol was produced by the dental drill alone, with and without cooling water drip, prior to abrasion of dental composite. During abrasion, aerosol generation seemed independent of the percent filler load of the restorative material and the operator who generated the test aerosol. TEM investigation showed that "chunks" of filler and resin were generated in the nano-size range; however, free nano-size filler particles were not observed. The majority of observed particles consisted of oil droplets, ash, and graphitic structures.

  18. Synthesis and characterization of nano-sized CaCO3 in purified diet

    Science.gov (United States)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  19. Elaboration and Characterization of Nano-Sized AlxMoyOz/Al Thermites

    National Research Council Canada - National Science Library

    Comet, M; Spitzer, D

    2006-01-01

    ...) has been developed at the Institut franco-allemand de recherches de Saint Louis (ISL). This process consists of a new sol-gel method nano-sized mixed AlxMoyOz phases whose structure is correlated to the chemical composition...

  20. Formulation of solid nano-sized particles in a gel-forming system

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to novel formulations comprising a plurality of nano-sized solid particles and a gel-forming system, useful e.g. for imaging of the body of a mammal. Also described are kits comprising such formulations and imaging methods utilizing such formulations or kits....

  1. Synthesis of nano-sized zirconium carbide by a sol-gel route

    Energy Technology Data Exchange (ETDEWEB)

    Dolle, M.; Gosset, D.; Simeone, D. [CEA Saclay, DMN, SRMA, Lab Anal Microstruct Mat, F-91191 Gif Sur Yvette (France); Bogicevic, C.; Karolak, F.; Baldinozzi, G. [Ecole Cent Paris, CNRS, UMR 8580, Lab Struct Proprietes and Modelisat Solides, F-92295 Chatenay Malabry (France)

    2007-07-01

    Nano-sized zirconium carbide was synthesized by a new simple sol-gel method Using zirconium n-prop-oxide, acetic acid as chemical modifier, and saccharose as carbon source. When heat-treated at 900 C under flowing argon, gels transformed into intimately mixed amorphous carbon and nano-sized tetragonal ZrO{sub 2}. Further heat treatments above 1200 degrees C led to the formation of zirconium carbide with some dissolved oxygen in the lattice. Oxygen content Could be reduced by increasing the heat treatment temperature from 1400 to 1600 degrees C, which unfortunately also induced a mean crystallites size increase from 90 to 150 inn. Short heat treatments above 1600 degrees C were carried out to further purify the samples and to limit the particles growth. A compromise between purity and average crystallite's size could then be found. Powders were assessed using X-ray diffraction, thermal analysis and scanning electron microscopy. (authors)

  2. NANO-SIZED PIGMENT APPLICATIONS IN İZNİK TILES

    Directory of Open Access Journals (Sweden)

    Esin GÜNAY

    2012-12-01

    Full Text Available Traditional İznik tiles are known as “unproducable” due to its high quartz content. İznik tiles contain four different layers as “body, engobe (slip, decors and glaze” and each one has some different starting materials. Recent studies have showed that the production techniques and the particle size of pigments are important parameters in development of colours. TUBITAK MRC and İznik Foundation carried out an experimental work to improve and understand the effects of nanotechnology application to İznik tiles. High quartz content was kept as it is and pigments were applied in decorationas nano-sized pigments.İznik tiles were produced and comparison was carried out between traditional and modern İznik tiles in colour and brightness. Characterization techniques were used in order to understand andcompare the results and also the effects of nano-sized pigments to İznik tiles.

  3. Mn 3 O 4 nano-sized crystals: Rapid synthesis and extension to ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 3. Mn3O4 nano-sized crystals: Rapid synthesis and extension to preparation of nanosized LiMn2O4 materials. Xiao-Ling Cui Yong-Li Li Shi-You Li Guo-Cun Sun Jin-Xia Ma Lu Zhang Tian-Ming Li Rong-Bo Ma. Regular Articles Volume 126 Issue 3 May ...

  4. Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I

    2012-10-07

    There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese-calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups.

  5. Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I.

    2012-01-01

    There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups. PMID:22809849

  6. Binary mixing of micelles using Pluronics for a nano-sized drug delivery system.

    Science.gov (United States)

    Lee, Eun Seong; Oh, Young Taik; Youn, Yu Seok; Nam, Myounghwa; Park, Byungtae; Yun, Jungmin; Kim, Ji Hoon; Song, Ho-Taek; Oh, Kyung Taek

    2011-01-01

    Pluronics with different structural compositions and properties are used for several applications, including drug delivery systems. We developed a binary mixing system with two Pluronics, L121/P123, as a nano-sized drug delivery carrier. The lamellar-forming Pluronic L121 (0.1 wt%) was incorporated with Pluronic P123 to produce nano-sized dispersions (in case of 0.1 and 0.5 wt% P123) with high stability due to Pluronic P123 and high solubilization capacity due to Pluronic L121. The binary systems were spherical and less than 200-nm diameter, with high thermodynamic stability (at least 2 weeks) in aqueous solution. The CMC of the binary system was located in the middle of the CMC of each polymer. In particular, the solubilization capacity of the binary system (0.1/0.1 wt%) was higher than mono-systems of P123. The main advantage of binary systems is overcoming limitations of mono systems to allow tailored mixing of block copolymers with different physicochemical characteristics. These nano-sized systems may have potential as anticancer drug delivery systems with simple preparation method, high stability, and high loading capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Nano-Sized Fume Biogas Production from Food Waster Using Semi-Continuous Anaerobic Digester.

    Science.gov (United States)

    Park, Keum-Joo; Seo, Seong-Gyu; Kim, Eun-Sik; Islam, M N; Song, Hyung-Woon; Yoon, Hyung-Sun

    2018-02-01

    In this study, the nano-sized fume biogas production from food waste was investigated using lab scale semi-continuous stirred tank reactor (SCSTR) at 35 °C with 30d HRT and 30L working volume. The mesophilic digestion test was performed with three different feed materials (food waste) and food to microorganism (F/M) ratios (0.13, 0.34, and 0.27) in the same experiment. The results showed that the F/M ratios significantly affected the biogas production rate. The highest production rate was obtained at F/M ratio of 0.13. Nano-sized fume biogas produced in anaerobic digestion consists of 68.7% CH4, 31.2% CO2 and 30~200 nm particle. The average nano-sized fume biogas and methane production of digester were 29.96 L/Kg versus day-1 and 20.58 L/Kg versus day-1, respectively. The CH4 could be calculated as the heat energy 1.85 Kcal/Kg VS day-1. The digestion was operated without addition of chemicals or nutrients into the system.

  8. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    Science.gov (United States)

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  9. Effect of nano size 3% wt TaC particles dispersion in two different metallic matrix composites

    International Nuclear Information System (INIS)

    Gomes, U.U.; Oliveira, L.A.; Souza, C.P.; Menezes, R.C.; Furukava, M.; Torres, Y.

    2009-01-01

    This work studies the characteristics of two different metallic matrixes composites, ferritic and austenitic steels, reinforced with 3% wt nano size tantalum carbide by powder metallurgy. The starting powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of the nano sized carbide dispersion on the matrix microstructures and its consequences on the mechanical properties were identified. The preliminary results showed that the sintering were influenced by morphology and the distribution of carbide and the alloys. (author)

  10. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    Science.gov (United States)

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  11. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: a risk to human health?

    Science.gov (United States)

    Nohynek, Gerhard J; Dufour, Eric K

    2012-07-01

    Personal care products (PCP) often contain micron- or nano-sized formulation components, such as nanoemulsions or microscopic vesicles. A large number of studies suggest that such vesicles do not penetrate human skin beyond the superficial layers of the stratum corneum. Nano-sized PCP formulations may enhance or reduce skin absorption of ingredients, albeit at a limited scale. Modern sunscreens contain insoluble titanium dioxide (TiO₂) or zinc oxide (ZnO) nanoparticles (NP), which are efficient filters of UV light. A large number of studies suggest that insoluble NP do not penetrate into or through human skin. A number of in vivo toxicity tests, including in vivo intravenous studies, showed that TiO₂ and ZnO NP are non-toxic and have an excellent skin tolerance. Cytotoxicity, genotoxicity, photo-genotoxicity, general toxicity and carcinogenicity studies on TiO₂ and ZnO NP found no difference in the safety profile of micro- or nano-sized materials, all of which were found to be non-toxic. Although some published in vitro studies on insoluble nano- or micron-sized particles suggested cell uptake, oxidative cell damage or genotoxicity, these data are consistent with those from micron-sized particles and should be interpreted with caution. Data on insoluble NP, such as surgical implant-derived wear debris particles or intravenously administered magnetic resonance contrast agents suggest that toxicity of small particles is generally related to their chemistry rather than their particle size. Overall, the weight of scientific evidence suggests that insoluble NP used in sunscreens pose no or negligible risk to human health, but offer large health benefits, such as the protection of human skin against UV-induced skin ageing and cancer.

  12. Silicon-based photocells of enhanced spectral sensitivity with nano-sized graded band gap structures

    International Nuclear Information System (INIS)

    Bakhadyrkhanov, M.K.; Isamov, S.B.; Iliev, K.M. et al.

    2014-01-01

    Photoelectric properties of monocrystalline silicon with multiply charged nanoclusters are studied that generate 'silicon clusters', i.e., nano-sized graded band gap structures. Multiply charged nanoclusters of manganese atoms strongly influence the photoelectric properties of monocrystalline silicon and expand the range of spectral sensitivity up to 8 μm; the photoelectric sensitivity reaches ∼10 9 . Conditions occur for the emergence of photo-emf in such a material in the infrared region when hν< E g . The obtained experimental data expand the functional capabilities for the application of silicon with multiply charged impurity atoms. (authors)

  13. Identification and characterization of the nano-sized vesicles released by muscle cells.

    Science.gov (United States)

    Romancino, Daniele P; Paterniti, Gaetano; Campos, Yvan; De Luca, Angela; Di Felice, Valentina; d'Azzo, Alessandra; Bongiovanni, Antonella

    2013-05-02

    Several cell types secrete small membranous vesicles that contain cell-specific collections of proteins, lipids, and genetic material. The function of these vesicles is to allow cell-to-cell signaling and the horizontal transfer of their cargo molecules. Here, we demonstrate that muscle cells secrete nano-sized vesicles and that their release increases during muscle differentiation. Analysis of these nanovesicles allowed us to characterize them as exosome-like particles and to define the potential role of the multifunctional protein Alix in their biogenesis. Copyright © 2013 Federation of European Biochemical Societies. All rights reserved.

  14. Synthesis, characterization and properties of nano-sized transition metal oxides

    Science.gov (United States)

    Yin, Ming

    2005-12-01

    Chapter 1. A General introduction to the emerging field of nanomaterials is presented highlighting the category of transition metal oxides. The wide variety of structures, properties, and phenomena of transition metal oxides are stressed. Nano-sized transition metal oxides are presented as systems for fundamental and application research. Examples of individual transition metal oxides are provided. Important developments in the synthesis and characterization of nano-sized transition metal oxides that have contributed to this work are reviewed. A novel synthesis (TDMA) is developed and successfully applied to the synthesis of transition metal oxide nanocrystals. Chapter 2. The synthesis of monodisperse cubic wuestite FexO nanocrystals is presented. The influence of reaction temperature and the molar ratio of surfactant to iron precursor was investigated, in order to further understand the ability to control particle size and monodispersity. In contrast to bulk material, it is also found that the nano-sized ligand-capped wuestite FexO particles were stable at room temperature. The procedure enable the collection of highly monodisperse nanocrystals of variable and uniform diameters as a function of time. Sharp Hancock analysis indicates that the reaction proceeds by a diffusion limited mechanism. Routes to control the size of gamma-Fe2O3 nanocrystals are also presented. gamma-Fe2O3 nanocrystals from 6 nm to 12 nm in diameter with uniform size, shape, consistent crystal structure were prepared. Chapter 3. A simple reaction to prepare monodisperse MnO nanocrystals is presented. MnO nanocrystals was prepared by thermal decomposition of manganese acetate in the presence of oleic acid at high temperature and by following annealing. Particles with different sizes and shapes were obtained by controlling annealing time. The morphology of MnO nanocrystals was studied based on their crystal structure and surface energy. SQUID measurement shows ferromagnetic magnetism at low

  15. Synthesis of nano-sized β-tricalcium phosphate via wet precipitation

    Directory of Open Access Journals (Sweden)

    Bahman Mirhadi

    2011-12-01

    Full Text Available Nano-size β-tricalcium phosphate powders with average grain size of 50 nm were prepared by the wet chemical precipitation method with calcium nitrate and diammonium hydrogen phosphate as calcium and phosphorus precursors, respectively. The pH of the system was maintained at 8 and 10.8 by adding of sodium hydroxide. Filtered cake was dried at 80°C and calcined at 700°C. The dried and calcined powders were characterized using X-ray diffractrometry (XRD, Fourier transform infrared spectroscopy (FTIR, inductively coupled plasma atomic emission spectroscopy (ICPAES and scanning electron microscopy (SEM.

  16. Mechanical properties of silicone composites reinforced with micron- and nano-sized magnetic particles

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2013-06-01

    Full Text Available Silicone composites filled with different-sized nickel particles were prepared. By applying a permanent magnet, both the micron- and nano-sized particles were found to distribute along the magnetic field direction, resulting in chain-like microstructures, which improved the key mechanical properties of the resultant samples effectively, compared to the samples with randomly-distributed particles. The composites were also tested under various magnetic field strengths. The samples with aligned particles showed larger improvements in shear storage modulus than those with random particles.

  17. MD simulation analysis of resin filling into nano-sized pore formed on metal surface

    Science.gov (United States)

    Mori, Hodaka; Matubayasi, Nobuyuki

    2018-01-01

    All-atom MD simulation was conducted for the filling of epoxy resin into a nano-sized pore formed on aluminum surface. The resin species examined were polyphenol mixed with polyglycidylether of o-cresol formaldehyde novolac and their oligomers formed through ring-opening reactions. The degree of oligomerization was varied from 0.5 to 2.5 nm in terms of the radius of gyration, and the radius of the cylindrical pore was fixed at 2.5 nm. It was observed that a small resin penetrates into the pore along the wall, while larger resins move rather uniformly in the pore. The maximum density in the pore achieved with pushing was then seen to be larger when the resin is smaller. It was found that when the radius of gyration of resin is larger than half the pore radius, the resin density in the pore does not reach half the bulk density of the resin. This implies that the resin-resin interaction inhibits the filling of the nano-sized pore.

  18. A new nano-sized iron oxide particle with high sensitivity for cellular magnetic resonance imaging.

    Science.gov (United States)

    Chen, Chih-Lung; Zhang, Haosen; Ye, Qing; Hsieh, Wen-Yuan; Hitchens, T Kevin; Shen, Hsin-Hsin; Liu, Li; Wu, Yi-Jen; Foley, Lesley M; Wang, Shian-Jy; Ho, Chien

    2011-10-01

    In this study, we investigated the labeling efficiency and magnetic resonance imaging (MRI) signal sensitivity of a newly synthesized, nano-sized iron oxide particle (IOP) coated with polyethylene glycol (PEG), designed by Industrial Technology Research Institute (ITRI). Macrophages, bone-marrow-derived dendritic cells, and mesenchymal stem cells (MSCs) were isolated from rats and labeled by incubating with ITRI-IOP, along with three other iron oxide particles in different sizes and coatings as reference. These labeled cells were characterized with transmission electron microscopy (TEM), light and fluorescence microscopy, phantom MRI, and finally in vivo MRI and ex vivo magnetic resonance microscopy (MRM) of transplanted hearts in rats infused with labeled macrophages. The longitudinal (r (1)) and transverse (r (2)) relaxivities of ITRI-IOP are 22.71 and 319.2 s(-1) mM(-1), respectively. TEM and microscopic images indicate the uptake of multiple ITRI-IOP particles per cell for all cell types. ITRI-IOP provides sensitivity comparable or higher than the other three particles shown in phantom MRI. In vivo MRI and ex vivo MRM detect punctate spots of hypointensity in rejecting hearts, most likely caused by the accumulation of macrophages labeled by ITRI-IOP. ITRI-IOP, the nano-sized iron oxide particle, shows high efficiency in cell labeling, including both phagocytic and non-phagocytic cells. Furthermore, it provides excellent sensitivity in T(2)*-weighted MRI, and thus can serve as a promising contrast agent for in vivo cellular MRI.

  19. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles.

    Science.gov (United States)

    Dhanasooraj, Dhananjayan; Kumar, R Ajay; Mundayoor, Sathish

    2013-01-01

    Nano-sized hepatitis B virus core virus-like particles (HBc-VLP) are suitable for uptake by antigen-presenting cells. Mycobacterium tuberculosis antigen culture filtrate protein 10 (CFP-10) is an important vaccine candidate against tuberculosis. The purified antigen shows low immune response without adjuvant and tends to have low protective efficacy. The present study is based on the assumption that expression of these proteins on HBc nanoparticles would provide higher protection when compared to the native antigen alone. The cfp-10 gene was expressed as a fusion on the major immunodominant region of HBc-VLP, and the immune response in Balb/c mice was studied and compared to pure proteins, a mixture of antigens, and fusion protein-VLP, all without using any adjuvant. The humoral, cytokine, and splenocyte cell proliferation responses suggested that the HBc-VLP bearing CFP-10 generated an antigen-specific immune response in a Th1-dependent manner. By virtue of its self-adjuvant nature and ability to form nano-sized particles, HBc-VLPs are an excellent vaccine delivery system for use with subunit protein antigens identified in the course of recent vaccine research.

  20. Possible role of nano-sized particles in chronic tonsillitis and tonsillar carcinoma: a pilot study.

    Science.gov (United States)

    Zeleník, Karol; Kukutschová, Jana; Dvořáčková, Jana; Bielniková, Hana; Peikertová, Pavlína; Cábalová, Lenka; Komínek, Pavel

    2013-02-01

    This study aimed to evaluate the palatine tonsils of patients with chronic tonsillitis and spinocellular carcinoma to determine the presence of nano-sized particles. Tonsil samples from adult patients with chronic tonsillitis and spinocellular carcinoma of the palatine tonsil were dried and analyzed using a scanning electron microscope with the X-ray microprobe of an energy-dispersive spectroscope. Demographic data and smoking histories were obtained. The principal metals found in almost all tissues analyzed were iron, chromium, nickel, aluminum, zinc, and copper. No significant difference in elemental composition was found between the group of patients with chronic tonsillitis and the group with spinocellular carcinoma of the palatine tonsil. Likewise, no significant difference was found between the group of smokers and the group of nonsmokers. The presence of various micro- and nano-sized metallic particles in human tonsils was confirmed. These particles may potentially cause an inflammatory response as well as neoplastic changes in human palatine tonsils similar to those occurring in the lungs. Further and more detailed studies addressing this issue, including studies designed to determine the chemical form of the metals detected, studies devoted to quantitative analysis, biokinetics, and to the degradation and elimination of nanoparticles are needed for a more detailed prediction of the relation between the diagnosis and the presence of specific metal nanoparticles in tonsillar tissue.

  1. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation

    International Nuclear Information System (INIS)

    Christensen, Axel Norlund; Jensen, Torben R.; Bahl, Christian R.H.; DiMasi, Elaine

    2007-01-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Moessbauer spectra, and powder X-ray diffraction using Co Kα radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe 2 O 3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe 2 O 3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition. - Graphical abstract: Nano size crystals of goethite, α-FeOOH formed from amorphous iron(III) hydroxide after 23 years, and transforms faster to α-Fe 2 O 3 upon heating

  2. Structure of Nano-sized CeO2 Materials: Combined Scattering and Spectroscopic Investigations.

    Science.gov (United States)

    Marchbank, Huw R; Clark, Adam H; Hyde, Timothy I; Playford, Helen Y; Tucker, Matthew G; Thompsett, David; Fisher, Janet M; Chapman, Karena W; Beyer, Kevin A; Monte, Manuel; Longo, Alessandro; Sankar, Gopinathan

    2016-11-04

    The structure of several nano-sized ceria, CeO 2 , systems was investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction and total pair distribution functions (PDFs) revealed that in all of the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using Reverse Monte Carlo technique revealed significant disorder around oxygen atoms in the nano-sized ceria samples in comparison to the highly crystalline NIST standard. In addition, the analysis revealed that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributable to the particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3 - and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, is attributed to differences in particle size. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nano Sized Ni/TiO2 @ NaX Zeolite with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Leila Torkian

    2016-10-01

    Full Text Available Nickel doped TiO2nano particles (1% w/w were prepared and immobilized on NaX zeolite and after characterization by X-ray diffraction and scanning electron microscopy used as photo catalyts for degradation of orange G. The X-ray diffraction patterns show that the supported TiO2 are crystallized in anatase form and the intensity of the zeolite peaks decreases with the increase of TiO2loading. Scanning electron micrographs of synthesized samples show that nano size titanium dioxide particles are accumulated on the surface of the zeolite. These materials are applied as photo catalysts for the degradation of orange G in aqueous solution by means of ultraviolet light irradiation at room temperature. The effect of solution pH, ultraviolet irradiation time and catalyst in degradation of orange G was investigated. The results show that nickel doped TiO2/NaX zeolite as a photo catalyst in degradation of orange G in acidic solution is superior to the Ni/TiO2 nano composite and also undoped nano size titanium dioxide particles.

  4. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  5. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    International Nuclear Information System (INIS)

    Jagdale, Pravin; Castellino, Micaela; Marrec, Françoise; Rodil, Sandra E.; Tagliaferro, Alberto

    2014-01-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl 3 ) in acetone (CH 3 -CO-CH 3 ). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  6. Tribological Behavior of Nano-Sized SiCp/7075 Composite Parts Formed by Semisolid Processing

    Directory of Open Access Journals (Sweden)

    Jufu Jiang

    2018-02-01

    Full Text Available The tribological behavior of the rheoformed and thixoformed nano-sized SiCp/7075 composite parts is investigated. The semisolid stirring temperature has a little influence on the friction coefficient and wear resistance of the rheoformed composite parts. As for the thixoformed composite parts, the average value of the steady-state coefficient of friction increases firstly and then decreases with increasing reheating temperature. Higher wear resistance is achieved at a reheating temperature of 580 °C. The average value of the steady-state friction coefficient of the rheoformed composite parts varies from 0.37 to 0.45 upon applied loads of from 20 to 50 N. Weight loss increases slightly upon an increase of applied load from 20 to 40 N. An applied load of 50 N leads to a significant increase of the weight loss. The wear rate decreases firstly and then increases with increasing applied load. As for the thixoformed composite part, the average value of the steady-state friction coefficient and the weight loss decreased with an increasing applied load. However, the wear rate decreases firstly with increasing applied load and then increases. As for the rheoformed composite part, the average value of the steady-state friction coefficient decreases firstly and then increases a little with increasing sliding velocity. Weight loss and wear rate show a first increase and a followed decrease with increasing sliding velocity. As for the thixoformed composite part, the average value of the steady-state friction coefficient shows a decrease with increasing sliding velocity. Weight loss and wear rate exhibit, at first, an increase, and then a decrease with increasing sliding velocity. The average friction coefficient varies from 0.4 to 0.44 with increasing volume fraction of SiC. Weight loss and wear rate decrease with increasing volume fraction of SiC. An increase in dislocation density around the nano-sized SiC particles and the mismatch of the coefficient of

  7. Mechanical properties of dental composite materials reinforced with micro and nano-size Al2O3 filler particles

    International Nuclear Information System (INIS)

    Foroutan, F.; Javadpour, J.; Khavandi, A.; Atai, M.

    2011-01-01

    Composite specimens were prepared by dispersion of various amounts of nano-sized Al 2 O 3 fillers in a monomer system containing 60 p ercent B is-GMA and 40 p ercent T EGDMA. For comparative purposes, composite samples containing micrometer size Al 2 O 3 fillers were also prepared following the same procedure. The mechanical properties of the light- cured samples were assessed by three-point flexural strength, diametral tensile strength, and microhardness tests. The results indicated a more than hundred percent increase in the flexural strength and nearly an eighty percent increase in the diametral tensile strength values in the samples containing nano-size Al 2 O 3 filler particles. It is interesting to note that, this improvement was observed at a much lower nano-size filler content. Fracture surfaces analyzed by scanning electron microscopy, indicated a brittle type of fracture in both sets of specimens.

  8. An engineered polypeptide around nano-sized manganese-calcium oxide: copying plants for water oxidation.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Sarvi, Bahram; Haghighi, Behzad

    2015-09-14

    Synthesis of new efficient catalysts inspired by Nature is a key goal in the production of clean fuel. Different compounds based on manganese oxide have been investigated in order to find their water-oxidation activity. Herein, we introduce a novel engineered polypeptide containing tyrosine around nano-sized manganese-calcium oxide, which was shown to be a highly active catalyst toward water oxidation at low overpotential (240 mV), with high turnover frequency of 1.5 × 10(-2) s(-1) at pH = 6.3 in the Mn(III)/Mn(IV) oxidation range. The compound is a novel structural and efficient functional model for the water-oxidizing complex in Photosystem II. A new proposed clever strategy used by Nature in water oxidation is also discussed. The new model of the water-oxidizing complex opens a new perspective for synthesis of efficient water-oxidation catalysts.

  9. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  10. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.

    Science.gov (United States)

    Shuai, Cijun; Huang, Wei; Feng, Pei; Gao, Chengde; Shuai, Xiong; Xiao, Tao; Deng, Youwen; Peng, Shuping; Wu, Ping

    2016-01-01

    The biological properties of porous poly (vinylidene fluoride) (PVDF) scaffolds fabricated by selective laser sintering were tailored through nano-sized 58s bioactive glass. The results showed that 58s bioactive glass distributed evenly in the PVDF matrix. There were some exposed particles on the surface which provided attachment sites for biological response. It was confirmed that the scaffolds had highly bioactivity by the formation of bone-like apatite in simulated body fluid. And the bone-like apatite became dense with the increase in 58s bioactive glass and culture time. Moreover, the scaffolds were suitable for cell adhesion and proliferation compared with the PVDF scaffolds without 58s bioactive glass. The research showed that the PVDF/58s bioactive glass scaffolds had latent application in bone tissue engineering.

  11. Synthesis and Characterization of Nano-Sized zn Powder by Electrical Explosion of Wire in Liquid

    Science.gov (United States)

    Goo, W. H.; Bac, L. H.; Park, E. J.; Kim, J. S.; Kim, J. C.; Jung, H. S.; Lee, H. D.

    Zn powder has been used for many years as anticorrosive pigments in various paints. In this work, the nano-sized Zn powder was synthesized by wire explosion method in deionised water and ethanol. The morphology of the prepared powders was observed by field emission-scanning electron microscopy (FE-SEM) and the oxidation of the powders was determined using energy-dispersive X-ray spectroscopy (EDS). The size of particles was estimated from transmission electron microscopy (TEM) and FE-SEM. Dispersion properties of the as-prepared Zn nanoparticles in ethanol were evaluated by Turbiscan lab device. It is found that Zn nanoparticle prepared in ethanol had spherical shape with average particles size ~150 nm while the one prepared in water had a mixture of hexagonal and spherical shape. Ethanol can reduce the oxidation of Zn nanoparticles in comparison with water. Stability of Zn nanoparticles dispersed in ethanol exhibited the agglomeration in the dispersion.

  12. Ferromagnetic resonance of micro- and nano-sized hexagonal ferrite powders at millimeter waves

    Science.gov (United States)

    Korolev, Konstantin A.; McCloy, John S.; Afsar, Mohammed N.

    2012-04-01

    Complex magnetic permeability and dielectric permittivity of micro- and nano-sized powdered barium (BaFe12O19) and strontium (SrFe12O19) hexaferrites have been studied in a broadband millimeter wave frequency range (30-120 GHz). Transmittance measurements have been performed using a free-space quasi-optical millimeter wave spectrometer, equipped with a set of high-power backward wave oscillators. Real and imaginary parts of dielectric permittivity for both types of micro- and nanoferrites have been calculated using analysis of recorded high-precision transmittance spectra. Frequency dependences of the magnetic permeability have been obtained from Schlömann's equation for partially magnetized ferrites. These materials show promise as tunable millimeter wave absorbers, based on their size-dependent absorption.

  13. Ferromagnetic Resonance of Micro- and Nano-sized Hexagonal Ferrite Powders at Millimeter Waves

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, Konstantin A.; McCloy, John S.; Afsar, Mohammed N.

    2012-02-22

    Complex magnetic permeability and dielectric permittivity of micro- and nano-sized powdered barium (BaFe{sub 12}O{sub 19}) and strontium (SrFe{sub 12}O{sub 19}) hexaferrites have been studied in a broadband millimeter wave frequency range (30-120 GHz). Transmittance measurements have been performed using a free space quasi-optical millimeter wave spectrometer, equipped with a set of high power backward wave oscillators. Real and imaginary parts of dielectric permittivity for both types of micro- and nanoferrites have been calculated using analysis of recorded high precision transmittance spectra. Frequency dependences of the magnetic permeability have been obtained from Schloemann's equation for partially magnetized ferrites. These materials show promise as tunable millimeter wave absorber, based on their size-dependent absorption.

  14. Detection of micro- and nano-sized biocompatible particles in the blood.

    Science.gov (United States)

    Gatti, A M; Montanari, S; Monari, E; Gambarelli, A; Capitani, F; Parisini, B

    2004-04-01

    The research deals with new scanning electron microscopic evaluations of the interface between blood and explanted temporary vena cava filters from patients affected by blood disorders. The biological tissues adherent to the filter and the small thrombi formed in vivo were detached from the metallic structure of the device, fixed, dehydrated and prepared for the histological and the electron microscopy. The analyses showed that both samples (thrombus and newly formed tissue) contained foreign, in some cases nano-sized, bodies. The chemistry of these particles was different and varied, and unusual compounds containing non-biocompatible elements like bismuth, lead, wolfram, tungsten were also detected. The interaction between these debris travelling in the blood stream and the blood itself leads to suspect that the formation of the thrombus can originate from these inorganic and inert foreign bodies that act as triggering agent of the blood coagulation.

  15. Photocatalytic Degradation of Malachite Green Using Nano-sized cerium-iron Oxide

    Directory of Open Access Journals (Sweden)

    K. L. Ameta

    2014-05-01

    Full Text Available Nano-sized cerium-iron oxide nanoparticles has been synthesized, characterized and explored as an efficient photocatalyst for the photocatalytic degradation of malachite green. The effects of different variables on degradation of dye were optimized such as the pH of the dye solution, dye concentration, amount of photocatalyst and light intensity. About 91% degradation of dye of 2×10-5 M concentration was observed after 2 hours at 8.5 pH and 600 Wm-2 light intensity. The reason for the high catalytic activity of the synthesized nanoparticles is ascribed to the high surface area which determines the active sites of the catalyst and accelerates the photocatalytic degradation.

  16. Asymmetric Bioconversion of Acetophenone in Nano-Sized Emulsion Using Rhizopus oryzae.

    Science.gov (United States)

    Li, Qingzhi; Shi, Yang; He, Le; Zhao, Hui

    2016-01-01

    The fungal morphologies and pellet sizes were controlled in acetophenone reduction by Rhizopus oryzae. The acetophenone conversion and (S)-phenylethanol enantiomeric excesses (e.e.) reached the peak after 72 h of incubation when using pellets with 0.54 mm diameter, which showed an excellent performance compared with suspended mycelia, clumps, and pellets with 0.65 or 0.75 mm diameter. Furthermore, nano-sized acetophenone was used as a substrate to improve the performances of biotransformation work. The results showed that the conversion of nanometric acetophenone and (S)-phenylethanol e.e. reached the maximum (both >99%) after 32 h of incubation when using 0.54 mm diameter pellets, at least 24 h in advance of the control group. On the other hand, Tween 80 and 1, 2-propylene glycol showed low or no toxicity to cells. In conclusion, pellets and acetophenone nanoemulsions synergistically result in superior performances of acetophenone reduction.

  17. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive.

    Science.gov (United States)

    Peters, Ruud; Kramer, Evelien; Oomen, Agnes G; Rivera, Zahira E Herrera; Oegema, Gerlof; Tromp, Peter C; Fokkink, Remco; Rietveld, Anton; Marvin, Hans J P; Weigel, Stefan; Peijnenburg, Ad A C M; Bouwmeester, Hans

    2012-03-27

    The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products subjected to in vitro digestion included (i) hot water, (ii) coffee with powdered creamer, (iii) instant soup, and (iv) pancake which either contained silica as the food additive E551, or to which a form of synthetic amorphous silica or 32 nm SiO(2) particles were added. The results showed that, in the mouth stage of the digestion, nano-sized silica particles with a size range of 5-50 and 50-500 nm were present in food products containing E551 or added synthetic amorphous silica. However, during the successive gastric digestion stage, this nano-sized silica was no longer present for the food matrices coffee and instant soup, while low amounts were found for pancakes. Additional experiments showed that the absence of nano-sized silica in the gastric stage can be contributed to an effect of low pH combined with high electrolyte concentrations in the gastric digestion stage. Large silica agglomerates are formed under these conditions as determined by DLS and SEM experiments and explained theoretically by the extended DLVO theory. Importantly, in the subsequent intestinal digestion stage, the nano-sized silica particles reappeared again, even in amounts higher than in the saliva (mouth) digestion stage. These findings suggest that, upon consumption of foods containing E551, the gut epithelium is most likely exposed to nano-sized silica. © 2012 American Chemical Society

  18. Tracking T-cells in vivo with a new nano-sized MRI contrast agent.

    Science.gov (United States)

    Liu, Li; Ye, Qing; Wu, Yijen; Hsieh, Wen-Yuan; Chen, Chih-Lung; Shen, Hsin-Hsin; Wang, Shian-Jy; Zhang, Haosen; Hitchens, T Kevin; Ho, Chien

    2012-11-01

    Non-invasive in vivo tracking of T-cells by magnetic resonance imaging (MRI) can lead to a better understanding of many pathophysiological situations, including AIDS, cancer, diabetes, graft rejection. However, an efficient MRI contrast agent and a reliable technique to track non-phagocytic T-cells are needed. We report a novel superparamagnetic nano-sized iron-oxide particle, IOPC-NH2 series particles, coated with polyethylene glycol (PEG), with high transverse relaxivity (250 s(-1) mM(-1)), thus useful for MRI studies. IOPC-NH2 particles are the first reported magnetic particles that can label rat and human T-cells with over 90% efficiency, without using transfection agents, HIV-1 transactivator peptide, or electroporation. IOPC-NH2 particles do not cause any measurable effects on T-cell properties. Infiltration of IOPC-NH2-labeled T-cells can be detected in a rat model of heart-lung transplantation by in vivo MRI. IOPC-NH2 is potentially valuable contrast agents for labeling a variety of cells for basic and clinical cellular MRI studies, e.g., cellular therapy. In this study, a novel PEG coated superparamagnetic nano-sized iron-oxide particle was investigated as a T-cell labeling agent for MRI studies. The reported particles can label T-cells with over 90% efficiency, without using transfection agents, HIV-1 transactivator peptide, or electroporation, therefore may enable more convenient preclinical call labeling studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. In vitro study of nano-sized zinc doped bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-Fan; Alshemary, Ammar Z.; Akram, Muhammad [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM skudai, Johor Darul Ta' zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia, 81310 UTMJohor Bahru (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [IbnuSina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor DarulTa' zim (Malaysia)

    2013-01-15

    Surface reactivity in physiological fluid has been linked to bioactivity of a material. Past research has shown that bioactive glass containing zinc has the potential in bone regeneration field due to its enhanced bioactivity. However, results from literature are always contradictory. Therefore, in this study, surface reactivity of bioactive glass containing zinc was evaluated through the study of morphology and composition of apatite layer formed after immersion in simulated body fluid (SBF). Nano-sized bioactive glass with 5 and 10 mol% zinc were synthesized through quick alkali sol-gel method. The synthesized Zn-bioglass was characterized using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometer (EDX), X-ray diffractometer (XRD) and Fourier transform infrared spectrometer (FTIR). Samples after SBF immersion were characterized using scanning electron microscope (SEM) and EDX. Morphological study through SEM showed the formation of spherical apatite particles with Ca/P ratio closer to 1.67 on the surface of 5 mol% Zn-bioglass. Whereas, the 10 mol% Zn-bioglass samples induced the formation of flake-like structure of calcite in addition to the spherical apatite particles with much higher Ca/P ratio. Our results suggest that the higher Zn content increases the bioactivity through the formation of bone-bonding calcite as well as the spherical apatite particles. -- Highlights: Black-Right-Pointing-Pointer Nano-sized bioactive glasses were synthesized through quick alkali sol-gel method. Black-Right-Pointing-Pointer 5 and 10 mol% Zn-bioglass induced the formation of spherical particles in SBF test. Black-Right-Pointing-Pointer 10 mol% Zn-bioglass also induced the formation of flake-like structure. Black-Right-Pointing-Pointer The flake-like structure is calcium carbonate; spherical particles are apatite. Black-Right-Pointing-Pointer High Zn contents negatively influence the chemical composition of the apatite layer.

  20. Reflection characterization of nano-sized dielectric structure in Morpho butterfly wings

    Science.gov (United States)

    Zhu, Dong

    2017-10-01

    Morpho butterflies living in Central and South America are well-known for their structural-colored blue wings. The blue coloring originates from the interaction of light with nano-sized dielectric structures that are equipped on the external surface of scales covering over their wings. The high-accuracy nonstandard finite-difference time domain (NS-FDTD) method is used to investigate the reflection characterization from the nanostructures. In the NS-FDTD calculation, a computational model is built to mimic the actual tree-like multilayered structures wherever possible using the hyperbolic tangent functions. It is generally known that both multilayer interference and diffraction grating phenomena can occur when light enters the nano-sized multilayered structure. To answer the question that which phenomenon is mainly responsible for the blue coloring, the NS-FDTD calculation is performed under various incidence angles at wavelengths from 360 to 500 nm. The calculated results at one incident wavelength under different incidence angles are visualized in a two-dimensional mapping image, where horizontal and vertical axes are incidence and reflection angles, respectively. The images demonstrate a remarkable transition from a ring-like pattern at shorter wavelengths to a retro-reflection pattern at longer wavelengths. To clarify the origin of the pattern transition, the model is separated into several simpler parts and compared their mapping images with the theoretical diffraction calculations. It can be concluded that the blue coloring at longer wavelengths is mainly caused by the cooperation of multilayer interference and retro-reflection while the effect of diffraction grating is predominant at shorter wavelengths.

  1. Characterization of Nano Sized Microstructures in Fe and Ni Base ODS Alloys Using Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Han, Young-Soo; Jang, Jin-Sung; Mao, Xiaodong

    2015-01-01

    Ferritic ODS(Oxide-dispersion-strengthened) alloy is known as a primary candidate material of the cladding tubes of a sodium fast reactor (SFR) in the Generation IV research program. In ODS alloy, the major contribution to the enhanced high-temperature mechanical property comes from the existence of nano-sized oxide precipitates, which act as obstacles to the movement of dislocations. In addition for the extremely high temperature application(>950 .deg. C) of future nuclear system, Ni base ODS alloys are considered as candidate materials. Therefore the characterization of nano-sized microstructures is important for determining the mechanical properties of the material. Small angle neutron scattering (SANS) technique non-destructively probes structures in materials at the nano-meter length of scale (1 - 1000 nm) and has been a very powerful tool in a variety of scientific/engineering research areas. In this study, nano-sized microstructures were quantitatively analyzed by small angle neutron scattering. Quantitative microstructural information on nanosized oxide in ODS alloys was obtained from SANS data. The effects of the thermo mechanical treatment on the size and volume fraction of nano-sized oxides were analyzed. For 12Cr ODS alloy, the experimental A-ratio is two-times larger than the theoretical A-ratio., and this result is considered to be due to the imperfections included in YTaO 4 . For Ni base ODS alloy, the volume fraction of the mid-sized particles (- 30 nm) increases rapidly as hot extrusion temperature decreases

  2. Characterization of Nano Sized Microstructures in Fe and Ni Base ODS Alloys Using Small Angle Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young-Soo; Jang, Jin-Sung; Mao, Xiaodong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Ferritic ODS(Oxide-dispersion-strengthened) alloy is known as a primary candidate material of the cladding tubes of a sodium fast reactor (SFR) in the Generation IV research program. In ODS alloy, the major contribution to the enhanced high-temperature mechanical property comes from the existence of nano-sized oxide precipitates, which act as obstacles to the movement of dislocations. In addition for the extremely high temperature application(>950 .deg. C) of future nuclear system, Ni base ODS alloys are considered as candidate materials. Therefore the characterization of nano-sized microstructures is important for determining the mechanical properties of the material. Small angle neutron scattering (SANS) technique non-destructively probes structures in materials at the nano-meter length of scale (1 - 1000 nm) and has been a very powerful tool in a variety of scientific/engineering research areas. In this study, nano-sized microstructures were quantitatively analyzed by small angle neutron scattering. Quantitative microstructural information on nanosized oxide in ODS alloys was obtained from SANS data. The effects of the thermo mechanical treatment on the size and volume fraction of nano-sized oxides were analyzed. For 12Cr ODS alloy, the experimental A-ratio is two-times larger than the theoretical A-ratio., and this result is considered to be due to the imperfections included in YTaO{sub 4}. For Ni base ODS alloy, the volume fraction of the mid-sized particles (- 30 nm) increases rapidly as hot extrusion temperature decreases.

  3. A new approach to incorporating the effect of nano-sized dispersoids on recrystallization inhibition into Monte Carlo simulation

    NARCIS (Netherlands)

    Eivani, A. R.; Zhou, J.; Duszczyk, J.

    In this research, a new approach to incorporating the effect of nano-sized dispersoids on recrystallization was developed as a combination of physical modeling and Monte Carlo simulation. The energy stored during preceding deformation and the nucleation rate at the onset and during recrystallization

  4. Synthesis and characterization of nano-sized BaxSr1–xSO4 (0 ≤ x ...

    Indian Academy of Sciences (India)

    Administrator

    Synthesis and characterization of nano-sized BaxSr1–xSO4 (0 ≤ x ≤ 1) solid solution by a simple surfactant-free aqueous solution route. YU-FENG LI, JIA-HU OUYANG*, YU ZHOU, XUE-SONG LIANG and JI-YONG ZHONG. Institute for Advanced Ceramics, Department of Materials Science, Harbin Institute of Technology,.

  5. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive.

    NARCIS (Netherlands)

    Peters, R.; Kramer, E.; Oomen, A.G.; Rivera, Z.E.; Oegema, G.; Tromp, P.C.; Fokkink, R.; Rietveld, A.; Marvin, H.J.; Weigel, S.; Peijnenburg, A.A.; Bouwmeester, H.

    2012-01-01

    The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products

  6. Presence of Nano-Sized Silica during In Vitro Digestion of Foods Containing Silica as a Food Additive

    NARCIS (Netherlands)

    Peters, R.J.B.; Kramer, E.H.M.; Oomen, A.G.; Rivera, Z.H.; Oegema, G.; Tromp, P.C.; Fokkink, R.G.; Rietveld, A.; Marvin, H.J.P.; Weigel, S.; Peijnenburg, A.A.C.M.; Bouwmeester, H.

    2012-01-01

    The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products

  7. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive

    NARCIS (Netherlands)

    Peters, R.; Kramer, E.; Oomen, A.G.; Herrera Rivera, Z.E.; Oegema, G.; Tromp, P.C.; Fokkink, R.; Rietveld, A.; Marvin, H.J.P.; Weigel, S.; Peijnenburg, A.A.C.M.; Bouwmeester, H.

    2012-01-01

    The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products

  8. Hybrid composites of nano-sized zero valent iron and covalent organic polymers for groundwater contaminant degradation

    DEFF Research Database (Denmark)

    Mines, Paul D.; Byun, J.; Hwang, Yuhoon

    Zero valent iron is commonly used in a variety of treatment technologies (e.g. permeable reactive barriers), though recently a heavier focus has been placed on nano-sized zero valent iron (nZVI). Having superior reductive properties and large surface areas, nZVI is ideal for the degradation of ch...

  9. WC-Co COATINGS AND SINTERS MODIFIED WITH NANO-SIZED TiC MICROSTRUCTURE – QUANTITATIVE EVALUATION

    Directory of Open Access Journals (Sweden)

    Hanna Myalska

    2017-03-01

    Full Text Available The different concepts of WC-Co thermally sprayed coatings improvement may be considered and the application of nanoparticles, as the mechanical strengthening addition, is one of them. Nanostructured WC-Co coatings are characterized by higher hardness than the coatings formed from micrometric WC grains; whereas coatings with bimodal distribution of particles reveal greater wear resistance than the coatings obtained exclusively from nano-sized powders. Mixed effect of the matrix reinforcement by nanoparticles and strong fix of the micron-sized WC grains was proposed as a possible reason for enhanced wear resistance of bimodal coatings. In order to obtain a bimodal distribution of particles in the material standard WC-Co (83-17 powder was mixed with nanometric TiC powder (40-100 nm. The amount of TiC in powder mixtures was in the range from 1 to 7 wt.%. The mixtures were deposited on steel substrate using HVAF method and also hot pressed in vacuum. The microstructure of obtained coatings and sinters was quantitatively evaluated. Sinters revealed more homogenous distribution of the nano-sized TiC particles than the coatings. The addition of nano-sized TiC in the case of coatings has led to the decrease of its porosity. The agglomeration of nano-sized TiC particles in the coatings results in the decrease of material’s hardness.

  10. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    International Nuclear Information System (INIS)

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  11. Ductility Enhancement of Molybdenum Phase by Nano-sized Oxide Dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bruce

    2008-07-18

    The objective of this research is to understand and to remedy the impurity effects for room-temperature ductility enhancement of molybdenum (Mo) based alloys by the inclusion of nano-sized metal oxide dispersions. This research combines theoretical, computational, and experimental efforts. The results will help to formulate systematic strategies in searching for better composed Mo-based alloys with optimal mechanical properties. For this project, majority of the research effort was directed to atomistic modeling to identify the mechanisms responsible for the oxygen embrittling and ductility enhancement based on fundamental electronic structure analysis. Through first principles molecular dynamics simulations, it was found that the embrittling impurity species were attracted to the metal oxide interface, consistent with previous experiments. Further investigation on the electronic structures reveals that the presence of embrittling species degrades the quality of the metallic chemical bonds in the hosting matrix in a number of ways, the latter providing the source of ductility. For example, the spatial flexibility of the bonds is reduced, and localization of the impurity states occurs to pin the dislocation flow. Rice’s criterion has been invoked to explain the connections of electronic structure and mechanical properties. It was also found that when impurity species become attracted to the metal oxide interface, some of the detrimental effects are alleviated, thus explaining the observed ductility enhancement effects. These understandings help to develop predictive capabilities to facilitate the design and optimization of Mo and other high temperature alloys (e.g. ODS alloys) for fossil energy materials applications. Based on the theoretical and computational studies, the experimental work includes the preparation of Mo powders mixed with candidate nano-sized metal oxides, which were then vacuum hot-pressed to make the Mo alloys. Several powder mixing methods

  12. Compound Method to Disperse CaCO3 Nanoparticles to Nano-Size in Water.

    Science.gov (United States)

    Gu, Sui; Cai, Jihua; Wang, Jijun; Yuan, Ye; Chang, Dewu; Chikhotkin, Viktor F

    2015-12-01

    The invalidation of CaCO3 nanoparticles (nCaCO3) is often caused by the fact of agglomeration and inhomogeneous dispersion which limits its application into water-based drilling muds for low permeability reservoirs such as coalbed methane reservoir and shale gas/oil reservoir. Effective methods to disperse nCaCO3 to nano-size (≤ 100 nm) in water have seldom been reported. Here we developed a compound method containing mechanical stirring, ultrasonic treatment, the use of surfactant and stabilizer to disperse nCaCO3 in water. It comprises the steps adding 2% nCaCO3, 1% sodium dodecyl sulfonate (SDS), 2% cetyltrimethyl ammonium bromide (CTAB), 2% OP-10, 3% to 4% biopolymer (XC) in water successively, stirring it at a shear rate of 6000 to 8000 r/min for 15 minutes and treating it with ultrasonic at a frequency of 28 KHz for 30 to 40 minutes. The dispersed nCaCO3 was characterized with scanning electron microscope (SEM), transmission electron microscope (TEM) and particle size distribution (PSD) tests. We found that nCaCO3 could be dispersed to below 100 nm in water and the medium value of nCaCO3 was below 50 nm. This method paved the way for the utilization of nCaCO3 in drilling fluid and completion fluid for low permeability reservoirs such as coal seams and shale gas/oil formations.

  13. Effect of Heating Duration on the Formation of Nano sized Nickel Cobaltite

    International Nuclear Information System (INIS)

    Chang, S.K.; Zulkarnain Zainal; Tan, K.B.; Nor Azah Yusof

    2011-01-01

    Herein, the formation of phases and particle size of nickel cobaltate prepared through co-precipitation are reported. X-ray diffraction analysis disclosed that single phase NiCo 2 O 4 is only stable over a short duration, for example 2 hrs≤t 3 O 4 . Besides, nanoparticles in spherical shape were observed in field emission scanning electron microscopy images. The particle sizes of NiO and Co 3 O 4 were estimated to be 42.3 nm and 54.4 nm, respectively. However, NiCo 2 O 4 possessed the smallest particle size with the value of 34.1 nm due to its stoichiometric and phase pure characteristics. This was confirmed by transmission electron microscopy analysis whereby the particle size of NiCo 2 O 4 was 9.5 nm while NiO and Co 3 O 4 were found to be 10.4 nm and 19.1 nm, respectively. These observations prove co-precipitation method is capable of forming nano sized nickel-cobalt oxide. (author)

  14. Photoluminescent nano-sized ternary and quaternary complexes of thorium(IV)

    International Nuclear Information System (INIS)

    Baranwal, B.P.; Jain, A.K.; Varma, A.; Singh, A.K.; Fatma, T.

    2011-01-01

    Some ternary and quaternary complexes of thorium(IV) with the general formula [Th(OOCCH 3 ) 2-n (SB) n (OOCC 15 H 31 ) 2 ] (HSB=Schiff bases and n=1 or 2) have been synthesized by the stepwise substitutions of acetate ions from thorium(IV) acetate, first with straight chain carboxylic acid and then with Schiff bases. The complexes are characterized by elemental analyses, spectral (electronic, infrared, 1 H NMR, FAB mass, photoluminescence and powder XRD) and TEM studies. Conductance measurements indicated non-conducting behaviour of the complexes. Structural parameters from powder XRD data for complexes 5 and 6 which indicate poorly crystalline nano-sized triclinic particles. Electronic absorption spectra of the complexes showed π → π * and n → π * charge transfer transitions. All complexes displayed fluorescence and a correlation was sought between luminescence spectra of complexes in solution at room temperature. On the basis of physico-chemical studies, coordination number 8 was assigned for thorium(IV) in the complexes. The morphology and microstructure of the complexes were examined with transmission electron microscopy (TEM) and the selected area electron diffraction (SAED). (orig.)

  15. Amplified CPEs enhancement of chorioamnion membrane mass transport by encapsulation in nano-sized PLGA particles.

    Science.gov (United States)

    Azagury, Aharon; Amar-Lewis, Eliz; Appel, Reut; Hallak, Mordechai; Kost, Joseph

    2017-08-01

    Chemical penetration enhancers (CPEs) have long been used for mass transport enhancement across membranes. Many CPEs are used in a solution or gel and could be a solvent. The use of CPEs is mainly limited due to their toxicity/irritation levels. This study presents the evaluation of encapsulated CPEs in nano-sized polymeric particles on the chorioamnion (CA) membrane mass transport. CPEs' mass encapsulated in nanoparticles was decreased by 10,000-fold. Interestingly, this approach resulted in a 6-fold increase in mass transport across the CA. This approach may also be used with other CPEs' base applications necessitating lower CPE concentration. Applying Ultrasound (US) has shown to increase the release rate of and also the mass transport across the CA membrane. It is proposed that encapsulated CPEs penetrate into the CA membrane thus prolonging their exposure, possibly extending their penetration into the CA membrane, while insonation also deepens their penetration into the CA membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Review of In Vitro Drug Release Test Methods for Nano-Sized Dosage Forms

    Directory of Open Access Journals (Sweden)

    Susan D’Souza

    2014-01-01

    Full Text Available This review summarizes the methods used to study real-time (37°C drug release from nanoparticulate drug delivery systems and establish an IVIVC. Since no compendial standards exist, drug release is currently assessed using a variety of methods including sample and separate (SS, continuous flow (CF, dialysis membrane (DM methods, and a combination thereof, as well as novel techniques like voltametry and turbidimetry. This review describes the principle of each method along with their advantages and disadvantages, including challenges with set-up and sampling. The SS method allows direct measurement of drug release with simple set-up requirements, but sampling is cumbersome. With the CF method, sampling is straightforward but the set-up is time consuming. Set-up as well as sampling is easier with the DM, but it may not be suitable for drugs that bind to the membrane. Novel methods offer the possibility of real-time drug release measurement but may be restricted to certain types of drugs. Of these methods, Level A IVIVCs have been obtained with dialysis, alone or in combination with the sample and separate technique. Future efforts should focus on developing mathematical models that describe drug release mechanisms as well as facilitate formulation development of nano-sized dosage forms.

  17. Antibacterial properties of artificial eyes containing nano-sized particle silver.

    Science.gov (United States)

    Yang, Jae Wook; Choi, Jae-won; Lee, Sul Gee; Kim, Dong Soo

    2011-03-01

    The long-term use of an artificial eyes can lead to complications. Persistent physical stimulation and foreign body contact cause secondary infections. Secondary infection is an important complication after the placement of a artificial eyes and may be difficult to control without removing the artificial eyes. Because of these complications, patients get difficulties to wear prosthesis. Furthermore artificial eyes can change the normal bacterial flora of the patient's conjunctiva. Such postoperative infections might be overcome by improving the antimicrobial properties of the prosthesis surface. The space in the mold previously occupied by wax was filled with polymethyl methacrylate (PMMA) resin containing silver at a concentration of 300-700 ppm (parts per million) and the prosthesis was then heat cured. Microorganisms were grown on the treated and control surfaces. We cultured for 24 hours, then counted the number of bacteria in resin compositions containing nano-sized silver particles and controls (Stomacher 400(®) POLY-BAG). The surface of the artificial eye containing silver grew significantly fewer Streptococcus pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli on in vitro bacterial cultures. The antimicrobial activity was 4.8-6.2 times stronger than for the controls. The numbers of bacteria decreased by 99.9% using the PMMA resin containing silver. The artificial eyes containing silver that were produced in this study have antibacterial activity, cause little eye discharge, and emit far-infrared rays and anions, all of which promote the ocular health of the person wearing the artificial eye.

  18. Nano-sized ceramic particles of hydroxyapatite calcined with an anti-sintering agent.

    Science.gov (United States)

    Okada, Masahiro; Furuzono, Tsutomu

    2007-03-01

    Nano-sized crystals of calcined hydroxyapatite (HAp) having spherical morphologies were fabricated by calcination at 800 degrees C for 1 h with an anti-sintering agent surrounding the original HAp particles and the agent was subsequently removed by washing after calcination. The original HAp particles were prepared by a modified emulsion system, and surrounded with poly(acrylic acid, calcium salt) (PAA-Ca) by utilizing a precipitation reaction between calcium hydroxide and poly(acrylic acid) adsorbed on the HAp particle surfaces in an aqueous medium. In the case of calcination without PAA-Ca, micron-sized particles consisting of sintered polycrystals were mainly observed by scanning electron microscopy, indicating the calcination-induced sintering among the crystals. On the other hand, most of the crystals calcined with the anti-sintering agent were observed as isolated particles, and the mean size of the HAp crystals was around 80 nm. This result indicates that PAA-Ca and its thermally decomposed product, CaO, surrounding the HAp crystals could protect them against calcination-induced sintering during calcination at 800 degrees C. The HAp crystals calcined with PAA-Ca showed high crystallinity, and no other calcium phosphate phases could be detected.

  19. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation

    Science.gov (United States)

    Christensen, Axel Nørlund; Jensen, Torben R.; Bahl, Christian R. H.; DiMasi, Elaine

    2007-04-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Mössbauer spectra, and powder X-ray diffraction using Co K α radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe 2O 3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe 2O 3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition.

  20. Nano Size Crystals of Geothite, alpha-FeOOH: Synthesis and Thermal Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen,A.; Jensen, T.; Bahl, C.; DiMasi, E.

    2007-01-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, {alpha}-FeOOH crystallized from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Moessbauer spectra, and powder X-ray diffraction using Co K{alpha} radiation showed that the only iron containing crystalline phase present in the recovered product was {alpha}-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of {alpha}-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of {alpha}-FeOOH transformed to {alpha}-Fe{sub 2}O{sub 3} in the temperature range 444--584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from {alpha}-Fe{sub 2}O{sub 3} to follow the decrease of intensity from {alpha}-FeOOH in agreement with the topotactic phase transition.

  1. Influence of Nano sized Silicon Oxide on the Luminescent Properties of Zn O Nanoparticles

    International Nuclear Information System (INIS)

    Shvalagin, V.; Grodziuk, G.; Kurmach, M.; Granchak, V.; Sarapulova, O.; Sherstiuk, V.

    2016-01-01

    For practical use of nano sized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of Zn O nanoparticles and obtain high-luminescent Zn O/SiO 2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nano crystals to the source solutions during the synthesis of Zn O nanoparticles. Then the quantum yield of luminescence of the obtained Zn O/SiO 2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of Zn O nano crystals on the surface of silica, which reduces the probability of separation of photo generated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of Zn O nanoparticles. This way of increasing nano-Zn O luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  2. Preparation of soft-agglomerated nano-sized ceramic powders by sol-gel combustion process

    International Nuclear Information System (INIS)

    Feng, Q.; Ma, X.H.; Yan, Q.Z.; Ge, C.C.

    2009-01-01

    The soft-agglomerated Gd 2 BaCuO 5 (Gd211) nano-powders were synthesized by sol-gel combustion process with binary ligand and the special pretreatment on gel. The mechanism of the formation of weakly agglomerated structure was studied in detail. The results showed that network structure in gelation process was found to be a decisive factor for preventing agglomeration of colloidal particles. The removal of free water, coordinated water, and most of hydroxyl groups during pretreatment further inhibited the formation of hydrogen bonds between adjacent particles. The soft-agglomeration of the particles was confirmed by isolated particles in calcined Gd211 powders and in green compact, a narrow monomodal pore size distribution of the green compact and the low agglomeration coefficient of the calcined Gd211 powder. Extension this process to synthesis of BaCeO 3 , BaTiO 3 and Ce 0.8 Sm 0.2 O 1.9 powders, also led to weakly agglomerated nano-powders. It suggests that this method represents a powerful and facile method for the creation of doped and multi-component nano-sized ceramic powders.

  3. Spin-resolved magnetic studies of focused ion beam etched nano-sized magnetic structures

    International Nuclear Information System (INIS)

    Li Jian; Rau, Carl

    2005-01-01

    Scanning ion microscopy with polarization analysis (SIMPA) is used to study the spin-resolved surface magnetic structure of nano-sized magnetic systems. SIMPA is utilized for in situ topographic and spin-resolved magnetic domain imaging as well as for focused ion beam (FIB) etching of desired structures in magnetic or non-magnetic systems. Ultra-thin Co films are deposited on surfaces of Si(1 0 0) substrates, and ultra-thin, tri-layered, bct Fe(1 0 0)/Mn/bct Fe(1 0 0) wedged magnetic structures are deposited on fcc Pd(1 0 0) substrates. SIMPA experiments clearly show that ion-induced electrons emitted from magnetic surfaces exhibit non-zero electron spin polarization (ESP), whereas electrons emitted from non-magnetic surfaces such as Si and Pd exhibit zero ESP, which can be used to calibrate sputtering rates in situ. We report on new, spin-resolved magnetic microstructures, such as magnetic 'C' states and magnetic vortices, found at surfaces of FIB patterned magnetic elements. It is found that FIB milling has a negligible effect on surface magnetic domain and domain wall structures. It is demonstrated that SIMPA can evolve into an important and efficient tool to study magnetic domain, domain wall and other structures as well as to perform magnetic depth profiling of magnetic nano-systems to be used in ultra-high density magnetic recording and in magnetic sensors

  4. Effects of nano-sized silicon dioxide on the structures and activities of three functional proteins

    International Nuclear Information System (INIS)

    Xu Zhen; Wang Shilong; Gao Hongwen

    2010-01-01

    Nanomaterials are finding increasing use in industrial production and daily life. However, human exposure to them may cause health risks. Nano-SiO 2 was selected as a representative nanomaterial and its potential effects were investigated in terms of its interactions with cytochrome c (cyt c), deoxyribonuclease (DNase II) and hemoglobin (Hb). The interactions accorded with Langmuir isothermal adsorption; the saturation binding numbers for cyt c, DNase II and Hb were 42 ± 5, 24 ± 2 and 1.1 ± 0.1 μmol/g nano-SiO 2 particle at pH 7.4, respectively, and the corresponding stability constants were 6.15 x 105, 1.79 x 106 and 2.6 x 107 M -1 . On the basis of the binding constants and of ζ-potential fluorescence and circular dichroism (CD) measurements and scanning electronic microscopy (SEM), it was found that the three functional proteins can bridge nano-SiO 2 particles via charge attraction and hydrogen bonding and aggregate them into coralloid forms. The interactions also changed the secondary structures of the proteins and inhibited their static and dynamic activities. It may reasonably be deduced that exposure to nano-size silicon dioxide particles e.g. as drug carriers may have an unfavorable effect on human health by inactivating functional proteins.

  5. Development of Nano-sized Oxide Dispersion Strengthened (ODS) Alloy for Nuclear Application

    International Nuclear Information System (INIS)

    Kim, Sung Soo; Jang, J. S; Kim, W. G.; Kim, D. W.; Han, C. H.; Ryu, H. J.; Kim, T. K.; Yang, S. K.; Kim, M. H.

    2009-08-01

    This research report is the 1st step of a 2-year period during a 5-year project, which is the development of nano-sized oxide dispersion strengthened (ODS) alloys for nuclear application. The manufacturing variables were investigated, and a suitable manufacturing process was established in order to establish a process for an isotropic ODS alloy. A spark plasma sintering (SPS) process was newly applied to enhance sintering before the application of a hydro-isostatic process (HIP). The minimum temperature for successful SPS for mechanical alloying is identified as 1050 .deg. C. The suitable HIP temperature and the hot roll temperature after the HIP process are identified as 1250 .deg. C. The highest strength appeared in the ODS alloy with an austenitic structure containing 0.5% Y 2 O 3 , a high temperature yield strength at 700 .deg. C, and a total elongation of 416 MPa and 17 %. It appeared that the directional difference in the strength and elongation between the longitudinal and transverse directions in the test alloy manufactured by a wet process was within 5%. The ODS alloy using both SPS and the HIP showed an impact energy of 7.7J using a KLST specimen. Creep rupture tests for 9 Cr ODS alloys were carried out to identify a creep rupture time at 700 .deg. C. A stress level of over 100 MPa was applied for the accelerated creep tests. The predicted creep rupture strength using an extrapolation method at 700 .deg. C for 10,000 hours was 63 MPa. The ion irradiation experiments on the Grade 92 and MA 956 at 440 and 570 .deg. C showed that the MA 956 ODS alloy exhibited a 1/3 level of swelling and a higher number of voids at 570 .deg. C. This seemed to be due to the fact that the oxide in the ODS alloy provided the preferential annihilation site for the point defects

  6. Nano-sized emission from commercially available paints used for indoor surfaces during drying.

    Science.gov (United States)

    Jørgensen, Rikke Bramming; Hveding, Ingrid Grav; Solheim, Karoline

    2017-12-01

    Consumers worry about the presence of nano-particles in paints and the risk of exposure. As a result, the paint industry now omits marketing paints as containing nanoparticles. The industry claims that no nanoparticles are released into the indoor environment; this, however, has yet to be documented. In this study, the emission of nano-sized emission from four indoor paints was investigated. The emission was studied for both base and full-pigmented versions of the paints, which consisted of three water-borne acrylic paints and one solvent-borne alkyd paint. All experiments were performed twice in a 6.783 m 3 stainless-steel test chamber under standardized conditions (22.98 °C, 50.08% RH, air exchange rate 0.48 h -1 ). Emissions during the paint-drying period were measured using a TSI Fast Mobility Particle Sizer (FMPS) measuring the number concentration of nano-particles and the size distribution in the range 5.6-560 nm. The results from the solvent-borne paint showed the highest concentration, with a mean concentration of 3.2·10 5 particles/cm 3 and a maximum of 1.4·10 6 particles/cm 3 . This paint also had the smallest particle size distribution, with 9.31 nm particles as the most dominant particle size. The results from this study showed that the exposure to nanoparticles for the residents evaluated over a 7 or 28 day period was low and that interior paints are probably not very important when it comes to identifying products that release nano-particles into indoor environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Superior model for fault tolerance computation in designing nano-sized circuit systems

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. S. S., E-mail: narinderjit@petronas.com.my; Muthuvalu, M. S., E-mail: msmuthuvalu@gmail.com [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia); Asirvadam, V. S., E-mail: vijanth-sagayan@petronas.com.my [Electrical and Electronics Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.

  8. Nano-sized titanium dioxide toxicity in rat prostate and testis: Possible ameliorative effect of morin.

    Science.gov (United States)

    Shahin, Nancy N; Mohamed, Maha M

    2017-11-01

    This study investigated the effect of short-term oral exposure to nano-sized titanium dioxide (nTiO 2 ) on Wistar rat prostate and testis, and the associating reproductive-related alterations. The study also evaluated the potential ameliorative effect of the natural flavonoid, morin, on nTiO 2 -induced aberrations. Intragastric administration of nTiO 2 (50mg/kg/day for 1, 2 and 3weeks) increased testicular gamma-glutamyltransferase (γ-GT) activity and decreased testicular steroidogenic acute regulatory protein (StAR) and c-kit gene expression, serum testosterone level and sperm count. nTiO 2 -treated rats also exhibited prostatic and testicular altered glutathione levels, elevated TNF-α levels, up-regulated Fas, Bax and caspase-3 gene expression, down-regulated Bcl-2 gene expression and enhanced prostatic lipid peroxidation. Sperm malformation and elevated testicular acid phosphatase (ACP) activity and malondialdehyde level, serum prostatic acid phosphatase activity, prostate specific antigen (PSA), gonadotrophin and estradiol levels occurred after the 2 and 3week regimens. Morin (30mg/kg/day administered intragastrically for 5weeks) mitigated nTiO 2 -induced prostatic and testicular injury as evidenced by lowering serum PSA level, testicular γ-GT and ACP activities and TNF-α level, along with hampering both intrinsic and extrinsic apoptotic pathways. Moreover, morin alleviated prostatic lipid peroxidation, raised prostatic glutathione level, and relieved testicular reductive stress. Additionally, morin increased testicular StAR and c-kit mRNA expression, raised the sperm count, reduced sperm deformities and modified the altered hormone profile. Histopathological evaluation supported the biochemical findings. In conclusion, morin could ameliorate nTiO 2 -induced prostatic and testicular injury and the corresponding reproductive-related aberrations via redox regulatory, anti-inflammatory and anti-apoptotic mechanisms, promoting steroidogenesis and

  9. Synthesis and Characterization of Nano-Sized Hexagonal and Spherical Nanoparticles of Zinc Oxide

    Directory of Open Access Journals (Sweden)

    M. A. Moghri Moazzen

    2012-09-01

    Full Text Available ZnO plays an important role in many semiconductors technological aspects.  Here,  direct  precipitation  method  was  employed  for  the synthesis of nano-sized hexagonal ZnO particles, which is based on chemical  reactions between  raw materials used  in  the  experiment. ZnO  nanoparticles  were  synthesized  by  calcinations  of  the  ZnO precursor precipitates  at 250  ˚C  for 3hours. The particle  size  and structure of the products have been confirmed by XRD. The FT-IR study  confirms  the  presence  of  functional  groups.  Also,  the morphology  and  size  distribution  of  ZnO  nanoparticles  was analyzed by TEM images. The optical properties were investigated by UV–Visible  spectroscopy. The XRD  results  show  that  the  size of  the prepared nanoparticles  is  in  the  range  of 20–40 nm, which this value  is  in good agreement with  the TEM  results. The FT-IR spectrum clearly indicates the formation of an interfacial chemical bond between Zn and O. Also  the UV absorption depends on  the particles  size  and morphology,  so  the  optical properties  enhances with  decreasing  nanoparticles  size.  Moreover  the  direct precipitation technique is a feasible method for production of ZnO nanopowders.

  10. Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate

    Science.gov (United States)

    Lv, Weixin; Zhou, Jing; Bei, Jingjing; Zhang, Rui; Wang, Lei; Xu, Qi; Wang, Wei

    2017-01-01

    Electrochemical reduction of carbon dioxide (CO2) to formate is energetically inefficient because high overpotential is required for reduction of CO2 to formate on most traditional catalysts. In this paper, a novel nano-sized Bi-based electrocatalyst deposited on a Cu foil has been synthesized, which can be used as a cathode for electrochemical reduction of CO2 to formate with a low overpotential (0.69 V) and a high selectivity (91.3%). The electrocatalyst can show excellent catalytic performance toward reduction of CO2 which can probably be attributed to the nano-sized structure and the surface oxide layer. The energy efficiency for reduction of CO2 to formate can reach to 50% when an IrxSnyRuzO2/Ti electrode is used as anode, it is one of the highest values found in the literatures and very practicable for sustainable fuel synthesis.

  11. Molecular dynamics study on nano-sized wiredrawing: possible atomistic process and application to pearlitic steel wire

    Science.gov (United States)

    Saitoh, K.; Yoshida, K.; Oda, K.; Sato, T.; Takuma, M.; Takahashi, Y.

    2018-02-01

    The process of nano-sized wiredrawing is investigated by using molecular dynamics (MD) simulation in this study. The authors have constructed novel computation models of wiredrawing, in which a single wire of just a several nanometers in diameter is smoothly drawn through a perfectly rigid die together with lubrication mechanism and is forced to be shaped into thinner one. Interatomic potentials used in MD simulation is a conventional pairwise type useable for iron-carbon binary system (for pearlitic steel). For MD model of pearlite steel wire, it is recognized that ferrite-cementite interface effectively offers high-speed diffusion path for carbon atoms from cementite side to ferrite side (elementary mechanism of cementite decomposition). As conclusion, we showed by using atomistic simulation that nano-sized wiredrawing process is theoretically quite possible.

  12. High resolution photolithography using arrays of polystyrene and SiO2 micro- and nano-sized spherical lenses

    Science.gov (United States)

    Dvoretckaia, L. N.; Mozharov, A. M.; Mukhin, I. S.

    2017-11-01

    Photolithography mask made of close-packed array of micro- and nano-sized spherical lenses allows to obtain the ordered structures and provides highest “optical resolution/cost” ratio between all existing photolithography and laser direct writing methods. In this letter, we present results of modeling the propagation of a plane wave falling on the array of quartz (SiO2) microspherical lenses and focusing in the image reverse photoresist layer. We present here experimental results on fabrication of ordered arrays of submicron wells and columns and substrate preparation for growth of monocrystalline nanowires on metal surface using photolithography with mask of SiO2 microspheres. Such ordered nano-sized arrays of wells and columns can be used in fabrication of further growth of monocrystalline nanowires, quantum dots and production of plasmon structures.

  13. WC-Co COATINGS AND SINTERS MODIFIED WITH NANO-SIZED TiC MICROSTRUCTURE – QUANTITATIVE EVALUATION

    OpenAIRE

    Hanna Myalska; Bartłomiej Dybowski; Grzegorz Moskal

    2017-01-01

    The different concepts of WC-Co thermally sprayed coatings improvement may be considered and the application of nanoparticles, as the mechanical strengthening addition, is one of them. Nanostructured WC-Co coatings are characterized by higher hardness than the coatings formed from micrometric WC grains; whereas coatings with bimodal distribution of particles reveal greater wear resistance than the coatings obtained exclusively from nano-sized powders. Mixed effect of the matrix reinforcement ...

  14. Characteristics of nano-sized yttria powder synthesized by a polyvinyl alcohol solution route at low temperature.

    Science.gov (United States)

    Lee, Sang-Jin; Jung, Choong-Hwan

    2012-01-01

    Nano-sized yttria (Y2O3) powders were successfully synthesized at a low temperature of 400 degrees C by a simple polymer solution route. PVA polymer, as an organic carrier, contributed to an atom-scale homogeneous precursor gel and it resulted in fully crystallized, nano-sized yttria powder with high specific surface area through the low temperature calcination. In this process, the content of PVA, calcination temperature and heating time affected the microstructure and crystallization behavior of the powders. The development of crystalline phase and the final particle size were strongly dependant on the oxidation reaction from the polymer burn-out step and the PVA content. In this paper, the PVA solution technique for the fabrication of nano-sized yttria powders is introduced. The effects of PVA content and holding time on the powder morphology and powder specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, SEM, TEM and nitrogen gas adsorption. The yttria powder synthesized from the PVA content of 3:1 ratio and calcined at 400 degrees C had a crystallite size of about 20 nm or less with a high surface areas of 93.95-120.76 m2 g(-1).

  15. Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO{sub 2} to formate

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Weixin; Zhou, Jing; Bei, Jingjing [School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China); Zhang, Rui, E-mail: zhangrui@ycit.cn [School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China); Wang, Lei [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin, 150080 (China); Xu, Qi [School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China); Wang, Wei, E-mail: wangw@ycit.edu.cn [School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China)

    2017-01-30

    Highlights: • Bi/Cu electrode was prepared by depositing nano-sized Bi catalyst on Cu foil. • The Bi/Cu electrode can reduce CO{sub 2} to formate with a low overpotential. • The energy efficiency for reduction of CO{sub 2} to formate can reach to 50%. • A Tafel slope of 128 mV decade{sup −1} was observed for producing formate. - Abstract: Electrochemical reduction of carbon dioxide (CO{sub 2}) to formate is energetically inefficient because high overpotential is required for reduction of CO{sub 2} to formate on most traditional catalysts. In this paper, a novel nano-sized Bi-based electrocatalyst deposited on a Cu foil has been synthesized, which can be used as a cathode for electrochemical reduction of CO{sub 2} to formate with a low overpotential (0.69 V) and a high selectivity (91.3%). The electrocatalyst can show excellent catalytic performance toward reduction of CO{sub 2} which can probably be attributed to the nano-sized structure and the surface oxide layer. The energy efficiency for reduction of CO{sub 2} to formate can reach to 50% when an Ir{sub x}Sn{sub y}Ru{sub z}O{sub 2}/Ti electrode is used as anode, it is one of the highest values found in the literatures and very practicable for sustainable fuel synthesis.

  16. Characterization of nano-sized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young-Soo; Mao, Xiaodong; Jang, Jinsung; Kim, Tae-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-04-01

    The ferritic ODS steel was manufactured by hot isostatic pressing and heat treatment. The nano-sized microstructures such as yttrium oxides and Cr oxides were quantitatively analyzed by small-angle neutron scattering (SANS). The effects of the fabrication conditions on the nano-sized microstructure were investigated in relation to the quantitative analysis results obtained by SANS. The ratio between magnetic and nuclear scattering components was calculated, and the characteristics of the nano-sized yttrium oxides are discussed based on the SANS analysis results. (orig.)

  17. Characterization of nano-sized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering

    International Nuclear Information System (INIS)

    Han, Young-Soo; Mao, Xiaodong; Jang, Jinsung; Kim, Tae-Kyu

    2015-01-01

    The ferritic ODS steel was manufactured by hot isostatic pressing and heat treatment. The nano-sized microstructures such as yttrium oxides and Cr oxides were quantitatively analyzed by small-angle neutron scattering (SANS). The effects of the fabrication conditions on the nano-sized microstructure were investigated in relation to the quantitative analysis results obtained by SANS. The ratio between magnetic and nuclear scattering components was calculated, and the characteristics of the nano-sized yttrium oxides are discussed based on the SANS analysis results. (orig.)

  18. HIV Capsid Assembly, Mechanism, and Structure.

    Science.gov (United States)

    Chen, Bo

    2016-05-10

    The HIV genome materials are encaged by a proteinaceous shell called the capsid, constructed from ∼1000-1500 copies of the capsid proteins. Because its stability and integrity are critical to the normal life cycle and infectivity of the virus, the HIV capsid is a promising antiviral drug target. In this paper, we review the studies shaping our understanding of the structure and dynamics of the capsid proteins and various forms of their assemblies, as well as the assembly mechanism.

  19. Constant pressure-controlled extrusion method for the preparation of Nano-sized lipid vesicles.

    Science.gov (United States)

    Morton, Leslie A; Saludes, Jonel P; Yin, Hang

    2012-06-22

    , with commercial polystyrene (PS) beads used as a calibration standard. A near linear correlation was observed between the employed pore sizes and the experimentally determined liposomes, indicating high fidelity of our pressure-controlled liposome preparation method. Further, we have shown that this lipid vesicle preparation method is generally applicable, independent of various liposome sizes. Lastly, we have also demonstrated in a time course study that these prepared liposomes were stable for up to 16 hours. A representative nano-sized liposome preparation protocol is demonstrated below.

  20. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles.

    Science.gov (United States)

    Lucarelli, Marilena; Gatti, Antonietta M; Savarino, Graziana; Quattroni, Paola; Martinelli, Lucia; Monari, Emanuela; Boraschi, Diana

    2004-01-01

    Nano-sized particles of ceramic and metallic materials are generated by high-tech industrial activities, and can be generated from worn-out replacement and prosthetic implants. The interaction with the human body of such nanoparticles has been investigated, with a particular emphasis on innate defence mechanisms. Human macrophages (PMA-differentiated myelomonocytic U-937 cells) were exposed in vitro to non-toxic concentrations of TiO(2), SiO(2), ZrO(2), or Co nanoparticles, and their inflammatory response (expression of TLR receptors and co-receptors, and cytokine production) was examined. Expression of TLR receptors was generally unaffected by exposure to the different nanoparticles, except for some notable cases. Exposure to nanoparticles of ZrO(2) (and to a lesser extent TiO(2)), upregulated expression of viral TLR receptors TLR3 and TLR7. Expression of TLR10 was also increased by TiO(2) and ZrO(2) nanoparticles. On the other hand, TLR9 expression was decreased by SiO(2) nano-particles, and expression of the co-receptor CD14 was inhibited by Co nanoparticles. Basal and LPS-induced production of cytokines IL-1beta, TNF-alpha, and IL-1Ra was examined in macrophages exposed to nanoparticles. SiO(2) nanoparticles strongly biased naive macrophages towards inflammation (M1 polarisation), by selectively inducing production of inflammatory cytokines IL-1beta and TNF-alpha. SiO(2) nanoparticles also significantly amplified the inflammatory phenotype of LPS-polarised M1 macrophages. Other ceramic nanoparticles had little influence on cytokine production, either in resting macrophages, or in LPS-activated cells. Generally, Co nanoparticles had an overall pro-inflammatory effect on naive macrophages, by reducing anti-inflammatory IL-1Ra and inducing inflammatory TNF-alpha. However, Co nanoparticles reduced production of IL-1beta and IL-1Ra, but not TNF-alpha, in LPS-polarised M1 macrophages. Thus, exposure to different nanoparticles can modulate, in different ways, the

  1. Development of nano-sized oxide dispersion strengthened (ODS) alloy for nuclear application

    International Nuclear Information System (INIS)

    Kim, Sung Soo; Jang, J. S.; Kim, W. G.; Kim, D. W.; Han, C. H.; Ryu, H. J.; Kim, T. K.; Yang, S. K.; Kim, M. H.

    2012-04-01

    This report is the activities of a 5 year project, including the 1st step for a 2-year period, and 2nd step for a 3-year period, which is the development of nano-sized oxide dispersion strengthened (ODS) alloys for nuclear application. The manufacturing variables were investigated in the ist step, and a suitable manufacturing process was established for an isotropic ODS alloy. The ODS alloy using both SPS and the HIP showed an impact energy of 7.7J using a KLST specimen. The predicted creep rupture strength of Fe-9Cr ODS using an extrapolation method at 700 .deg. C for 10,000 hours was 63 MPa. The creep-rupture strength of Fe-12Cr ODS steel at 104 hours 88 MPa which is higher than that of Fe-9Cr ODS by 25 MPa at 700. The YS at 700 .deg. C of Fe-12Cr-2Nb-1.1W-0.3Y2O3 showed over 300 MPa, which is 50% higher than that of Fe-12Cr-1.1W-0.3Y2O3. The tensile strength of Fe-12Cr-2Nb-1.1W-0.3Y2O3 is higher at all temperature. The fact that the YS of 2Nb alloy is higher at above 600.deg.C means that the addition of Nb may improve the creep resistance. The ion irradiation experiments on the Grade 92 and MA 956 at 440 and 570 .deg. C showed that the MA 956 ODS alloy exhibited a 1/3 level of swelling and a higher number of voids at 570 .deg. C. The reduction reaction of 2C+O2 ↑ 2CO is effective in removing certain forms of Cr oxide, as the enthalpy of CO formation is greater than that of Cr oxide at above 1050 .deg. C. Results of creep specimens by HRPD show that the creep damage is closely related to the (110) variation. The critical stress for the (110) lattice variation seems to be 90 MPa at 700 .deg. C. A trial cladding tube with a dimension of 10 mm in diameter, 1 mm in thickness, and 800 mm in length was finished by the 6th process. The high-temperature properties of the cladding tube were evaluated

  2. Phagocytosis of nano-sized titanium dioxide triggers changes in protein acetylation.

    Science.gov (United States)

    Sund, Jukka; Palomäki, Jaana; Ahonen, Niina; Savolainen, Kai; Alenius, Harri; Puustinen, Anne

    2014-08-28

    Nano-sized titanium dioxide (nTiO2) is one of the most produced engineered nanomaterials and therefore carries a high risk for workplace exposure. In several nanosafety studies, exposure to nTiO2 has been shown to trigger inflammation in mice lung and to cause oxidative stress. Here, cytoplasmic proteome changes in human monocyte derived macrophages were investigated with two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry to evaluate the adverse cellular effects after exposure to different types of TiO2 nanoparticles (NPs). Both studied TiO2 NPs (rutile TiO2 with or without silica coating) evoked similar proteome alterations. The identified proteins were linked to metabolic homeostasis, cytoskeleton remodeling and oxidative stress. The abundances of chloride intracellular channel protein 1 and cathepsin D changed only after exposure to nTiO2 as compared to a coarse particle analog. Enrichment analysis revealed that 70% of the proteins with changed intensities contained known acetylation sites, and it was possible to confirm a significant induction of cytoplasmic protein acetylation after nTiO2 exposure. The course of the events during phagocytosis could account for the observed membrane maintenance, metabolic and cytoskeletal protein expression changes. Lysine acetylation of cytoplasmic proteins in macrophages is emerging as a major cell regulation mechanism after nTiO2 exposure. While the amount of nanosafety research conducted in recent years has been constantly increasing, proteomics has not yet been utilized widely in this field. In addition, reversible protein post-translational modifications (PTMs) such as acetylation and phosphorylation have not been investigated in-depth in nanomaterial exposed cells. Proteome changes observed in nanomaterial exposed macrophages revealed active phagocytosis of the particles and provided new insights into underlying mechanisms of biological responses to nTiO2 exposures. Moreover, reversible

  3. Twenty-eight-day repeated inhalation toxicity study of nano-sized lanthanum oxide in male sprague-dawley rats.

    Science.gov (United States)

    Shin, Seo-Ho; Lim, Cheol-Hong; Kim, Yong-Soon; Lee, Yong-Hoon; Kim, Sung-Hwan; Kim, Jong-Choon

    2017-04-01

    Although the use of lanthanum has increased in field of high-tech industry worldwide, potential adverse effects to human health and to the environment are largely unknown. The present study aimed to investigate the potential toxicity of nano-sized lanthanum oxide (La 2 O 3 ) following repeated inhalation exposure in male Sprague-Dawley rats. Male rats were exposed nose-only to nano-sized La 2 O 3 for 28 days (5 days/week) at doses of 0, 0.5, 2.5, and 10 mg/m 3 . In the experimental period, we evaluated treatment-related changes including clinical signs, body weight, hematology, serum biochemistry, necropsy findings, organ weight, and histopathology findings. We also analyzed lanthanum distribution in the major organs and in the blood, bronchoalveolar lavage fluids (BALF), and oxidative stress in lung tissues. Lanthanum level was highest in lung tissues and showed a dose-dependent relation. Alveolar proteinosis was observed in all treatment groups and was accompanied by an increase in lung weight; moreover, lung inflammation was observed in the 2.5 mg/m 3 and higher dose groups and was accompanied by an increase in white blood cells. In the BALF, total cell counts including macrophages and neutrophils, lactate dehydrogenase, albumin, nitric oxide, and tumor necrosis factor-alpha increased significantly in all treatment groups. Furthermore, these changes tended to deteriorate in the 10 mg/m 3 group at the end of the recovery period. In the present experimental conditions, we found that the lowest-observed-adverse-effect level of nano-sized La 2 O 3 was 0.5 mg/m 3 in male rats, and the target organ was the lung. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1226-1240, 2017. © 2016 Wiley Periodicals, Inc.

  4. Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers.

    Science.gov (United States)

    Monsé, Christian; Hagemeyer, Olaf; Raulf, Monika; Jettkant, Birger; van Kampen, Vera; Kendzia, Benjamin; Gering, Vitali; Kappert, Günther; Weiss, Tobias; Ulrich, Nadin; Marek, Eike-Maximilian; Bünger, Jürgen; Brüning, Thomas; Merget, Rolf

    2018-02-12

    Inhalation of high concentrations of zinc oxide particles (ZnO) may cause metal fume fever. In an earlier human inhalation study, no effects were observed after exposure to ZnO concentrations of 0.5 mg/m 3 . Further data from experimental studies with pure ZnO in the concentration range between 0.5 and 2.5 mg/m 3 are not available. It was the aim of this experimental study to establish the concentration-response relationship of pure nano-sized ZnO particles. Sixteen healthy subjects were exposed to filtered air and ZnO particles (0.5, 1.0 and 2.0 mg/m 3 ) for 4 h on 4 different days, including 2 h of cycling with a low workload. The effects were assessed before, immediately after, and about 24 h after each exposure. Effect parameters were symptoms, body temperature, inflammatory markers and clotting factors in blood, and lung function. Concentration-dependent increases in symptoms, body temperature, acute phase proteins and neutrophils in blood were detected after ZnO inhalation. Significant effects were detected with ZnO concentrations of 1.0 mg/m 3 or higher, with the most sensitive parameters being inflammatory markers in blood. A concentration-response relationship with nano-sized ZnO particles in a low concentration range was demonstrated. Systemic inflammatory effects of inhaled nano-sized ZnO particles were observed at concentrations well below the occpational exposure limit for ZnO in many countries. It is recommended to reassess the exposure limit for ZnO at workplaces.

  5. Novel processing of bioglass ceramics from silicone resins containing micro- and nano-sized oxide particle fillers.

    Science.gov (United States)

    Fiocco, L; Bernardo, E; Colombo, P; Cacciotti, I; Bianco, A; Bellucci, D; Sola, A; Cannillo, V

    2014-08-01

    Highly porous scaffolds with composition similar to those of 45S5 and 58S bioglasses were successfully produced by an innovative processing method based on preceramic polymers containing micro- and nano-sized fillers. Silica from the decomposition of the silicone resins reacted with the oxides deriving from the fillers, yielding glass ceramic components after heating at 1000°C. Despite the limited mechanical strength, the obtained samples possessed suitable porous architecture and promising biocompatibility and bioactivity characteristics, as testified by preliminary in vitro tests. © 2013 Wiley Periodicals, Inc.

  6. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil-water systems.

    Science.gov (United States)

    Zhang, Yaxian; Li, Hua; Gong, Libo; Dong, Guowen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao

    2017-07-01

    The purpose of this study is to investigate the effects of nano-sized or submicro Fe 2 O 3 /Fe 3 O 4 on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized Fe 2 O 3 /Fe 3 O 4 on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized Fe 2 O 3 (317.1±2.1mg/L) and Fe 3 O 4 (324.0±22.2mg/L) within 21days, which were approximately 2-fold of Cr(VI) concentration released from blank control assays (117.1±5.6mg/L). Furthermore, the results of denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing indicated a greater variety of microbes within the microbial community in amendments with nano-sized Fe 2 O 3 /Fe 3 O 4 than the control assays. Especially, Proteobacteria occupied a predominant status on the phylum level within the indigenous microbial communities from chromium-contaminated soils. Besides, some partial decrease of soluble Cr(VI) in abiotic nano-sized Fe 2 O 3 /Fe 3 O 4 amendments was responsible for the adsorption of nano-sized Fe 2 O 3 /Fe 3 O 4 to soluble Cr(VI). Hence, the presence of nano-sized Fe 2 O 3 /Fe 3 O 4 could largely facilitate the mobilization and biotransformation of Cr(VI) from flooding soils by adsorption and bio-mediated processes. Copyright © 2017. Published by Elsevier B.V.

  7. Hydrothermal synthesis and electrochemical properties of nano-sized Co-Sn alloy anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    He Jianchao; Zhao Hailei; Wang Jing; Wang Jie; Chen Jingbo

    2010-01-01

    Research highlights: → Nano-sized Co-Sn alloys were synthesized by hydrothermal route. → Li 2 O and CoSn can buffer the large volume change associated with lithiation of Sn. → A two-step reaction mechanism of CoSn 2 alloy during cycling was confirmed. - Abstract: Nano-sized Co-Sn alloys with a certain amount of Sn oxides used as potential anode materials for lithium ion batteries were synthesized by hydrothermal route. The effects of hydrothermal conditions and post annealing on the phase compositions and the electrochemical properties of synthesized powders were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) with energy dispersive spectra (EDS) analysis and galvanostatic cycling tests. Prolonging the dwelling time at the same hydrothermal temperature can increase the content of Sn oxides, which will lead to a high initial irreversible capacity loss but a better cycling stability owing to the buffer effect of irreversible product Li 2 O. Heat-treatment can increase the crystallinity and cause the presence of a certain amount of inert CoSn component, which both have positive impact on the cycling stability of Co-Sn electrode. By comparison with the lithiation/delithiation processes of metal Sn, a two-step mechanism of CoSn 2 alloy during cycling was confirmed.

  8. A reversible adsorption-desorption interface of DNA based on nano-sized zirconia and its application.

    Science.gov (United States)

    Liu, Shou-Qing; Xu, Jing-Juan; Chen, Hong-Yuan

    2004-08-01

    It is essential for the information storage in DNA-based bio-chips to construct a reversible exchange interface of DNA. Here, a highly reproducible and reversible adsorption-desorption interface of DNA based on the nano-sized zirconia in different pH solution was successfully fabricated. The results showed that DNA can be adsorbed onto the nano-sized zirconia from its solution, and can desorb from the nanoparticles in 0.10 M KOH solution. When the matrix with nanoparticles returns to the DNA solution again, DNA can be re-adsorbed onto them as initial state. Moreover, the interaction of DNA with non-electroactive molecules, 2,2'-bipyridine, has been studied by electrochemistry method in the aid of probe Co(phen)(3)(3+). The experiments showed that when 2,2'-bipyridine was added into the test solution, the voltammetric peak currents of Co(phen)(3)(3+) decreased; and the decrease value of peak current against the concentration of 2,2'-bipyridine has a good Langmuir relationship, by which the equilibrium constant of interaction between 2,2'-bipyridine and DNA was estimated to be 1.57 x 10(4)M(-1).

  9. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization.

    Science.gov (United States)

    Tsai, Ping-Szu; Yang, Yu-Min; Lee, Yuh-Lang

    2007-11-21

    The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 µm/50 nm, 1.0 µm/50 nm, and 0.5 µm/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer of 50 nm particles was deposited over one to five sublayers of larger micro-sized particles, with hierarchical surface roughness and superhydrophobicity, were successfully fabricated. Furthermore, the present 'two-scale' (micro- and nano-sized particles) approach is superior to the previous 'one-scale' (micro-sized particles) approach in that both higher advancing contact angle and lower contact angle hysteresis can be realized. Experimental results revealed that the superhydrophobicity exhibited by as-fabricated particulate films with different sublayer particle diameters increases in the order of 0.5 µm>1.0 µm>1.5 µm. However, no clear trend between sublayer number and surface superhydrophobicity could be discerned. An explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.

  10. Fabrication of nano-sized magnetic tunnel junctions using lift-off process assisted by atomic force probe tip.

    Science.gov (United States)

    Jung, Ku Youl; Min, Byoung-Chul; Ahn, Chiyui; Choi, Gyung-Min; Shin, Il-Jae; Park, Seung-Young; Rhie, Kungwon; Shin, Kyung-Ho

    2013-09-01

    We present a fabrication method for nano-scale magnetic tunnel junctions (MTJs), employing e-beam lithography and lift-off process assisted by the probe tip of atomic force microscope (AFM). It is challenging to fabricate nano-sized MTJs on small substrates because it is difficult to use chemical mechanical planarization (CMP) process. The AFM-assisted lift-off process enables us to fabricate nano-sized MTJs on small substrates (12.5 mm x 12.5 mm) without CMP process. The e-beam patterning has been done using bi-layer resist, the poly methyl methacrylate (PMMA)/ hydrogen silsesquioxane (HSQ). The PMMA/HSQ resist patterns are used for both the etch mask for ion milling and the self-aligned mask for top contact formation after passivation. The self-aligned mask buried inside a passivation oxide layer, is readily lifted-off by the force exerted by the probe tip. The nano-MTJs (160 nm x 90 nm) fabricated by this method show clear current-induced magnetization switching with a reasonable TMR and critical switching current density.

  11. Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time

    Science.gov (United States)

    Purwaningsih, S. Y.; Pratapa, S.; Triwikantoro, Darminto

    2016-02-01

    Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinement of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.

  12. Propagation of electro-kinetic waves in magnetized GaN semiconductor with nano-sized ion colloids

    International Nuclear Information System (INIS)

    Saxena, Ajay; Sharma, Giriraj; Jat, K. L.; Rishi, M. P.

    2015-01-01

    Based on hydrodynamic model of multi-component plasma, an analytical study on propagation of longitudinal electro-kinetic (LEK) waves in wurtzite and zincblende structures of GaN is carried out. Nano-sized ion colloids (NICs) are embedded in the sample by the technique of ion-implantation. The implanted NICs are considered massive by an order as compared to the host lattice points and do not participate in Based LEK perturbations. Though, the NICs are continuously bombarded by the electrons as well as the holes yet, the former acquires a net negative charge owing to relatively higher mobility of electrons and consequently results into depletion of electron density in the medium. It i s found that the presence of charged NICs significantly modifies the dispersion and amplification characteristics of LEK waves in magnetized GaN semiconductor plasma and their role becomes increasingly effective as the fraction of charge on them increases

  13. A novel nano-sized bionic function interface for enhancing the ability of red blood cells to carry oxygen

    International Nuclear Information System (INIS)

    Wang, Y.-H.; Guo, J.-W.; Gu, H.-Y.

    2010-01-01

    A nano-sized bionic function interface was prepared by immobilizing red blood cells onto a silver electrode, which was modified with cysteamine and colloidal gold. Scanning electron microscopy and electrochemical impedance spectroscopy were used to characterize its surface. Cyclic voltammograms in phosphate buffer solution of pH 7.0 exhibited a pair of redox peaks for oxygen at -378 and -207 mV, respectively. The reduction peak currents at -378 mV were linearly proportional to the oxygen concentration in the range from 12.6 μM to 1.39 mM. Cyclic voltammetry also indicated that the functional surface enhanced the ability of red blood cells to transport oxygen. (author)

  14. Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Haghighi, Behzad; Tomo, Tatsuya; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2015-02-01

    "Back to Nature" is a promising way to solve the problems that we face today, such as air pollution and shortage of energy supply based on conventional fossil fuels. A Mn cluster inside photosystem II catalyzes light-induced water-splitting leading to the generation of protons, electrons and oxygen in photosynthetic organisms, and has been considered as a good model for the synthesis of new artificial water-oxidizing catalysts. Herein, we surveyed the structural and functional details of this cluster and its surrounding environment. Then, we review the mechanistic findings concerning the cluster and compare this biological catalyst with nano-sized Mn oxides, which are among the best artificial Mn-based water-oxidizing catalysts. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Adhesion of nano-sized particles to the surface of bacteria: mechanistic study with the extended DLVO theory.

    Science.gov (United States)

    Hwang, Geelsu; Ahn, Ik-Sung; Mhin, Byung Jin; Kim, Ju-Young

    2012-09-01

    Due to the increasing production and application of nanoparticles, their release into the environment would be inevitable, which requires a better understanding of their fate in the environment. When considering their toxic behavior or biodegradation as their fate, their adhesion to the cell surface must be the first step to be thoroughly studied. In this study, nano-sized polymeric particles of urethane acrylate with various hydrophobicity and ionic properties were synthesized as model nanoparticles, and their adhesion to Pseudomonas putida strains was monitored. The higher hydrophobicity and positive charge density on the particle surface exhibited the larger adhesion to the bacteria, whereas negative charge density on the particle hindered their adhesion to the bacteria, albeit high hydrophobicity of particle. These observations were successfully explained with the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Cluster Study of Anion Specificity in Solutions: From Molecular-Like Species to Nano-Sized Droplets

    Science.gov (United States)

    Wang, Xue-Bin

    2015-03-01

    In this talk, I will present our cluster approach using size-selected, low-temperature photoelectron spectroscopy and ab initio calculations to study a variety of complex anion solvation across the Hofmeister series. Pronounced anion specific effects and rich solute-solvent, solvent-solvent interactions have been discovered en-route to solvation evolution from molecular-like species to nano-sized droplets. We found significant solute anisotropy effects in preferably selecting solvent network to align solute permanent dipole with the solvent electric field in hydrated neutral clusters. Thermodynamic advantage of organic acids in facilitating formation of bisulfate ion clusters, an important issue related to atmospheric chemistry and aerosol particle formation will also be discussed. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences.

  17. [Investigation on damage of bovine serum albumin (BSA) catalyzed by nano-sized silicon dioxide (SiO2) under ultrasonic irradiation using spectral methods].

    Science.gov (United States)

    Wang, Jun; Ding, Na; Zhang, Zhao-hong; Guo, Ying; Wang, Shi-xian; Xu, Rui; Zhang, Xiang-dong

    2009-04-01

    The damage of bovine serum albumin (BSA) molecules under ultrasonic irradiation in the presence of nano-sized silicon dioxide (SiO2) particles was studied by UV-Vis and fluorescence spectra. In addition, the influences of ultrasonic irradiation time, nano-sized SiO2 addition amount, solution acidity (pH) and ultrasonic irradiation power on the damage of BSA molecules in aqueous solution were also detected. For BSA solution of 1.0 x 10(-5) mol x L(-1) at (37.0+/-0.2) degrees C, the UV-Vis spectra of BSA solutions showed that the absorption peaks of BSA displayed obvious hyperchromic effect with the increase in some influence factors such as ultrasonic irradiation time, nano-sized SiO2 addition amount, pH value and ultrasonic irradiation power. However, the fluorescence spectra of BSA solutions showed the phenomenon of fluorescence quenching with the increase in ultrasonic irradiation time, nano-sized SiO2 addition amount, pH value and ultrasonic irradiation power. Moreover, the possible mechanism behind the damage of BSA molecule in the presence of nano-sized SiO2 powders under ultrasonic irradiation was discussed. It was considered that the damage of BSA molecules was attributed to the formation of *OH radicals resulting from the sonoluminescence and high-heat excitation of ultrasonic cavitation. The research results could be of great significance to using sonocatalytic method to treat tumour in clinic application and for developing nano-sized drug in the future.

  18. Thermal conductivity enhancement and sedimentation reduction of magnetorheological fluids with nano-sized Cu and Al additives

    Science.gov (United States)

    Rahim, M. S. A.; Ismail, I.; Choi, S. B.; Azmi, W. H.; Aqida, S. N.

    2017-11-01

    This work presents enhanced material characteristics of smart magnetorheological (MR) fluids by utilizing nano-sized metal particles. Especially, enhancement of thermal conductivity and reduction of sedimentation rate of MR fluids those are crucial properties for applications of MR fluids are focussed. In order to achieve this goal, a series of MR fluid samples are prepared using carbonyl iron particles (CIP) and hydraulic oil, and adding nano-sized particles of copper (Cu), aluminium (Al), and fumed silica (SiO2). Subsequently, the thermal conductivity is measured by the thermal property analyser and the sedimentation of MR fluids is measured using glass tubes without any excitation for a long time. The measured thermal conductivity is then compared with theoretical models such as Maxwell model at various CIP concentrations. In addition, in order to show the effectiveness of MR fluids synthesized in this work, the thermal conductivity of MRF-132DG which is commercially available is measured and compared with those of the prepared samples. It is observed that the thermal conductivity of the samples is much better than MRF-132DG showing the 148% increment with 40 vol% of the magnetic particles. It is also observed that the sedimentation rate of the prepared MR fluid samples is less than that of MRF-132DG showing 9% reduction with 40 vol% of the magnetic particles. The mixture optimized sample with high conductivity and low sedimentation was also obtained. The magnetization of the sample recorded an enhancement of 70.5% when compared to MRF-132DG. Furthermore, the shear yield stress of the sample were also increased with and without the influence of magnetic field.

  19. Coordination polymer-derived nano-sized zinc ferrite with excellent performance in nitro-explosive detection.

    Science.gov (United States)

    Singha, Debal Kanti; Mahata, Partha

    2017-08-29

    Herein, a mixed metal coordination polymer, {(H 2 pip)[Zn 1/3 Fe 2/3 (pydc-2,5) 2 (H 2 O)]·2H 2 O} 1 {where H 2 pip = piperazinediium and pydc-2,5 = pyridine-2,5-dicarboxylate}, was successfully synthesized using a hydrothermal technique. To confirm the structure and phase purity of 1, single crystals of an isomorphous pure Fe compound, {(H 2 pip)[Fe(pydc-2,5) 2 (H 2 O)]·2H 2 O} 1a, were synthesized based on similar synthetic conditions. Single crystal X-ray data of 1a confirmed the one-dimensional anionic metal-organic coordination polymer hydrogen bonded with protonated piprazine (piperazinediium) and lattice water molecules. The phase purity of 1 and 1a were confirmed via powder X-ray diffraction. Compound 1 was systematically characterized using IR, TGA, SEM, and EDX elemental mapping analysis. Compound 1 was used as a single source precursor for the preparation of nano-sized ZnFe 2 O 4 via thermal decomposition. The as-obtained ZnFe 2 O 4 was fully characterized using PXRD, SEM, TEM, and EDX elemental mapping analysis. It was found that ZnFe 2 O 4 was formed in its pure form with particle size in the nano-dimension. The aqueous dispersion of nano-sized ZnFe 2 O 4 exhibits a strong emission at 402 nm upon excitation at 310 nm. This emissive property was employed for luminescence-based detection of nitroaromatic explosives in an aqueous medium through luminescence quenching for the first time. Importantly, selective detections have been observed for phenolic nitroaromatics based on differential luminescence quenching behaviour along with a detection limit of 57 ppb for 2,4,6-trinitrophenol (TNP) in water.

  20. Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold

    Science.gov (United States)

    Cao, Lu; Duan, Ping-Guo; Wang, Hui-Ren; Li, Xi-Lei; Yuan, Feng-Lai; Fan, Zhong-Yong; Li, Su-Ming; Dong, Jian

    2012-01-01

    The purpose of this study was to investigate the influence of nano-sized β-tricalcium phosphate (β-TCP) on the biological performance of poly (lactic acid) (PLA) composite scaffolds by using in vitro degradation and an in vivo model of heterotopic bone formation. Nano-sized β-TCP (nβ-TCP) was prepared with a wet grinding method from micro-sized β-TCP (mβ-TCP), and composite scaffolds containing 0, 10, 30, or 50 wt% nβ-TCP or 30 wt% mβ-TCP were generated using a freeze-drying method. Degradation was assessed by monitoring changes in microstructure, pH, weight, and compressive strength over a 26-week period of hydrolysis. Composite scaffolds were processed into blocks, and implanted into muscular pockets of rabbits after loading with recombinant human bone morphogenetic protein-2 (rhBMP-2). New bone formation was evaluated based on histological and immunohistochemical analysis 2, 4, and 8 weeks after implantation. The in vitro results indicated that the buffering effect of nβ-TCP was stronger than mβ-TCP, which was positively correlated with the content of nβ-TCP. The in vivo findings demonstrated that nβ-TCP enhanced the osteoconductivity of the scaffolds. Although composite scaffolds containing 30% nβ-TCP exhibited similar osteoconductivity to 50% nβ-TCP, they had better mechanical properties than the 50% nβ-TCP scaffolds. This study supports the potential application of a composite scaffold containing 30% nβ-TCP as a promising scaffold for bone regeneration. PMID:23226019

  1. Mucoadhesive nano-sized supramolecular assemblies for improved pre-corneal drug residence time.

    Science.gov (United States)

    Fabiano, Angela; Chetoni, Patrizia; Zambito, Ylenia

    2015-01-01

    Mucoadhesive nanoparticles were compared with non-aggregated constituent polymers for effect on pre-corneal residence of dexamethasone phosphate (DP) or met-enkephalin (ME), administered by eye-drops to rabbits. Deepening the knowledge of ophthalmic nanoparticulate systems in terms of ability to prolong pre-corneal residence. Medicated nanoparticles resulted from gelation of quaternary ammonium-chitosan conjugate or its thiolated derivative with hyaluronan in the presence of drug. Particles were analyzed by light scattering. Dialysis removed non-encapsulated drug, dynamic dialysis measured drug-polymer interactions, and lyophilization-stabilized product. Dispersions were regenerated from lyophilized products. Also solutions of non-thiolated or thiolated chitosan derivative were administered. Mean drug residence time (MRT) in tears was determined by collecting samples from lower marginal tear strip of albino rabbits using capillaries. Nanoparticle size of regenerated dispersions was 400-430 nm (DP-systems), 360-370 nm (ME-systems); the drug content was 2.5 mg/mL (DP) or 0.3 mg/mL (ME). The MRT for DP nanoparticles from non-thiolated derivative was higher than that for non-aggregated polymer, due to stronger concurrent interactions of positively charged nanoparticles with ocular surface and drug. Thiolated polymer nanoparticles and non-aggregated parent polymer, both interacting weakly with DP, showed similar MRT values. The MRT of ME could only be enhanced by protecting drug from enzymatic hydrolysis. This was done by nanoparticle systems, whereas non-aggregated polymers were ineffective. Developing a nanoparticle system rather than a solution of mucoadhesive polymer, for prolonging pre-corneal residence, is convenient, provided nanoparticles interact strongly with both ocular surface and drug, or protect drug from metabolic degradation.

  2. Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness

    Directory of Open Access Journals (Sweden)

    W. S. Lau

    2014-02-01

    Full Text Available Previously, Lau (one of the authors pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM and cross-sectional transmission electron microscopy (XTEM were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

  3. A novel copper (II) complex containing a tetradentate Schiff base: Synthesis, spectroscopy, crystal structure, DFT study, biological activity and preparation of its nano-sized metal oxide

    Science.gov (United States)

    Tohidiyan, Zeinab; Sheikhshoaie, Iran; Khaleghi, Mouj; Mague, Joel T.

    2017-04-01

    A new nano-sized copper (II) complex, [Cu(L)] with a tetra dentate Schiff base ligand, 2-((E)-(2-(E-5- bromo-2-hydroxybezenylideneamino) methyl)-4-bromophenol [H2L] was prepared by the reaction between of Cu (CH3COO)2·2H2O and (H2L) ligand with the ratio of 1:1, at the present of triethylamine by sonochemical method. The structure of [Cu (L)] complex was determined by FT-IR, UV-Vis, FESEM and molar conductivity. The structure of [Cu (L)] complex was characterized by single crystal X-ray diffraction. The geometry of [Cu (L)] complex was optimized using density functional theory (DFT) method with the B3LYP/6-31(d) level of theory. The calculated bond lengths and bond angles are in good agreement with the X-ray data. This complex was used as a novel precursor for preparing of CuO nano particles by the thermal decomposition method. The antibacterial activities of [H2L] ligand, nano-sized [Cu (L)] complex and nano-sized CuO have been screened against various strains of bacteria. According to the results, nano-sized CuO can be considered as an appropriate antibiotic agent.

  4. Surface Modification, Characterization and Photocatalytic Performance of Nano-Sized Titania Modified with Silver and Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Neetu Divya

    2009-12-01

    Full Text Available In many textile industries dyes are used as coloring agents. Advanced oxidation processes are used for degrading or removing color from dye baths. Catalysts play a key role in these industries for the treatment of water. Solid catalysts are usually composed of metals that form supports onto the surface and create metal particles with high surface areas. TiO2 composites containing transition metal ions (silver and/or bentonite clay were prepared. Photocatalytic efficiencies have been investigated for the degradation of Orange G an azo dye. Various analytical techniques were used to characterize the surface properties of nano-sized titania modified using silver and/or bentonite clay. Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, X-ray diffraction (XRD and FTIR analyses showed that TiO2 (10 ± 2 nm and Ag (2 to 3 nm particles were supported on the surface of the bentonite clay and the size was in the range of 100 ± 2 nm. The modified catalysts P-25 TiO2/Bentonite/Ag and P-25 TiO2/Ag were found to be very active for the photocatalytic decomposition of Orange G. The percent decolorization in 60 min was 98% with both P-25 TiO2/Ag and P-25 TiO2/Bentonite/Ag modified catalysts. Whereas mineralization achieved in 9 hr were 68% and 71% with P-25 TiO2/Bentonite/Ag and P-25 TiO2/Ag catalyst respectively. © 2009 BCREC UNDIP. All rights reserved[Received: 30 October 2009, Revised: 20 November 2009, Accepted: 21 November 2009][How to Cite: N. Divya, A. Bansal, A. K. Jana. (2009. Surface Modification, Characterization and Photocatalytic Performance of Nano-Sized Titania Modified with Silver and Bentonite Clay. Bulletin of Chemical Reaction Engineering and Catalysis, 4(2: 43-53.  doi:10.9767/bcrec.4.2.1249.43-53][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.2.1249.43-53 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/1249

  5. Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media

    International Nuclear Information System (INIS)

    Chen, J.; Zhang, P.

    2017-01-01

    Highlights: • The nano-sized phase change emulsions are prepared by using D-phase method. • The thermo-physical and transport properties are experimentally investigated. • The influence of surfactant on the melting temperature and latent heat of water is clarified. • The phase change emulsion can be used as the heat transfer fluid in a thermal energy storage system. - Abstract: Phase change emulsion (PCE) is a kind of two-phase heat transfer fluid with phase change material (PCM) dispersed in carrier fluid. It has received intensive attractions in recent years due to the fact that it can be used as both the thermal energy storage material and transport medium simultaneously in a thermal energy storage system. In the present study, nano-sized PCEs are prepared by the D-phase method with n-hexadecane and n-octadecane as PCMs. The thermo-physical and transport properties are characterized to facilitate the applications. The droplet size distribution of the PCE is measured by a Photon Correlation Spectroscopy, and the results show that the droplet size distributions are similar at different mass fractions. The rheological behavior and viscosity of the PCE are measured by a rheometer, which shows that the PCEs at mass fractions below 30.0 wt% are Newtonian fluids, and the viscosities are dependent on both the mass fraction and temperature. The differential scanning calorimetry (DSC) is employed to analyze the phase change characteristics of the PCE, and the results indicate large supercooling degree of water and PCM in the PCE. The melting temperature and latent heat of water in the PCE are much smaller than those of pure water. The thermal conductivities of the PCE with different mass fractions at different temperatures are measured by the transient hot-wire method. Furthermore, the energy transport characteristics of the PCEs are evaluated on the basis of the measured thermo-physical and transport properties. The results suggest that the PCEs show a drastic

  6. Degradation and osteogenic potential of a novel poly(lactic acid/nano-sized β-tricalcium phosphate scaffold

    Directory of Open Access Journals (Sweden)

    Cao L

    2012-11-01

    Full Text Available Lu Cao,1,2 Ping-Guo Duan,1,2 Hui-Ren Wang,1,2 Xi-Lei Li,1,2 Feng-Lai Yuan,3 Zhong-Yong Fan,4 Su-Ming Li,5 Jian Dong1,21Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; 2State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China; 3Affiliated Third Hospital of Nantong University, Wuxi, Jiangsu, China; 4Department of Materials Science, Fudan University, Shanghai, China; 5Max Mousseron Institute on Biomolecules, Montpellier I University, Montpellier, FranceAbstract: The purpose of this study was to investigate the influence of nano-sized β-tricalcium phosphate (β-TCP on the biological performance of poly (lactic acid (PLA composite scaffolds by using in vitro degradation and an in vivo model of heterotopic bone formation. Nano-sized βTCP (nβ-TCP was prepared with a wet grinding method from micro-sized β-TCP (mβ-TCP, and composite scaffolds containing 0, 10, 30, or 50 wt% nβ-TCP or 30 wt% mβ -TCP were generated using a freeze-drying method. Degradation was assessed by monitoring changes in microstructure, pH, weight, and compressive strength over a 26-week period of hydrolysis. Composite scaffolds were processed into blocks, and implanted into muscular pockets of rabbits after loading with recombinant human bone morphogenetic protein-2 (rhBMP-2. New bone formation was evaluated based on histological and immunohistochemical analysis 2, 4, and 8 weeks after implantation. The in vitro results indicated that the buffering effect of nβ-TCP was stronger than mβ-TCP, which was positively correlated with the content of nβ-TCP. The in vivo findings demonstrated that nβ-TCP enhanced the osteoconductivity of the scaffolds. Although composite scaffolds containing 30% nβ-TCP exhibited similar osteoconductivity to 50% nβ-TCP, they had better mechanical properties than the 50% nβ-TCP scaffolds. This study supports the potential application of a composite scaffold containing 30

  7. Preparation of Nano-sized Bismuth-Doped Fe3O4 as an Excellent Magnetic Material for Supercapacitor Electrodes

    Science.gov (United States)

    Aghazadeh, Mustafa; Karimzadeh, Isa; Ganjali, Mohammad Reza

    2018-03-01

    Nano-sized Bi3+-doped iron oxide (n-Bi-IO) particles were prepared through a one-pot electrochemical procedure, and the product was evaluated using x-ray diffraction, field-emission scanning electron microscopy and energy-dispersive x-ray spectroscopy. Based on the analyses, the average size of the n-Bi-IO was determined to be 10 nm. Galvanostatic charge-discharge (GCD) evaluations revealed that the specific capacitance of the material reached 235 F g-1 at a discharge condition of 0.2 A g-1. n-Bi-IO had a 94.2% capacity retention after 2000 GCD cycles. Further vibrating sample magnetometery analyses showed that the product has enhanced superparamagnetic qualities (i.e. M r = 0.15 emu g-1 and H Ci = 2.71 G) in comparison to iron oxide nanoparticles (i.e. M r = 0.95 emu g-1 and H Ci = 14.62 G). Given the results, the product is considered to be a promising material for developing high performance supercapacitor electrodes.

  8. Design and formulation of nano-sized spray dried efavirenz-part I: influence of formulation parameters

    International Nuclear Information System (INIS)

    Katata, Lebogang; Tshweu, Lesego; Naidoo, Saloshnee; Kalombo, Lonji; Swai, Hulda

    2012-01-01

    Efavirenz (EFV) is one of the first-line antiretroviral drugs recommended by the World Health Organisation for treating HIV. It is a hydrophobic drug that suffers from low aqueous solubility (4 μg/mL), which leads to a limited oral absorption and low bioavailability. In order to improve its oral bioavailability, nano-sized polymeric delivery systems are suggested. Spray dried polycaprolactone-efavirenz (PCL-EFV) nanoparticles were prepared by the double emulsion method. The Taguchi method, a statistical design with an L 8 orthogonal array, was implemented to optimise the formulation parameters of PCL-EFV nanoparticles. The types of sugar (lactose or trehalose), surfactant concentration and solvent (dichloromethane and ethyl acetate) were chosen as significant parameters affecting the particle size and polydispersity index (PDI). Small nanoparticles with an average particle size of less than 254 ± 0.95 nm in the case of ethyl acetate as organic solvent were obtained as compared to more than 360 ± 19.96 nm for dichloromethane. In this study, the type of solvent and sugar were the most influencing parameters of the particle size and PDI. Taguchi method proved to be a quick, valuable tool in optimising the particle size and PDI of PCL-EFV nanoparticles. The optimised experimental values for the nanoparticle size and PDI were 217 ± 2.48 nm and 0.093 ± 0.02.

  9. Design and formulation of nano-sized spray dried efavirenz-part I: influence of formulation parameters

    Energy Technology Data Exchange (ETDEWEB)

    Katata, Lebogang, E-mail: lebzakate@yahoo.com; Tshweu, Lesego; Naidoo, Saloshnee; Kalombo, Lonji; Swai, Hulda [Materials Science and Manufacturing, Centre of Polymers and Composites, Council for Scientific and Industrial Research (South Africa)

    2012-11-15

    Efavirenz (EFV) is one of the first-line antiretroviral drugs recommended by the World Health Organisation for treating HIV. It is a hydrophobic drug that suffers from low aqueous solubility (4 {mu}g/mL), which leads to a limited oral absorption and low bioavailability. In order to improve its oral bioavailability, nano-sized polymeric delivery systems are suggested. Spray dried polycaprolactone-efavirenz (PCL-EFV) nanoparticles were prepared by the double emulsion method. The Taguchi method, a statistical design with an L{sub 8} orthogonal array, was implemented to optimise the formulation parameters of PCL-EFV nanoparticles. The types of sugar (lactose or trehalose), surfactant concentration and solvent (dichloromethane and ethyl acetate) were chosen as significant parameters affecting the particle size and polydispersity index (PDI). Small nanoparticles with an average particle size of less than 254 {+-} 0.95 nm in the case of ethyl acetate as organic solvent were obtained as compared to more than 360 {+-} 19.96 nm for dichloromethane. In this study, the type of solvent and sugar were the most influencing parameters of the particle size and PDI. Taguchi method proved to be a quick, valuable tool in optimising the particle size and PDI of PCL-EFV nanoparticles. The optimised experimental values for the nanoparticle size and PDI were 217 {+-} 2.48 nm and 0.093 {+-} 0.02.

  10. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Chen-Chen Kuo

    2015-08-01

    Full Text Available We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  11. Highly sensitive and selective electrochemical detection of sub-ppb level chromium(VI) using nano-sized gold particle.

    Science.gov (United States)

    Jena, Bikash Kumar; Raj, C Retna

    2008-06-30

    Gold nanoparticle based nanostructured electrode has been developed for the amperometric detection of ultratrace amount of toxic Cr(VI). The nano-sized Au particles have been grown on a conducting substrate modified with sol-gel-derived thiol functionalized silicate network and used for the electroanalysis of Cr(VI). The nanostructured interface show well-defined voltammetric peak for the reduction of Cr(VI) at approximately 0.4 V. The voltammetric behavior of Cr(VI) strongly depends on the coverage of nanoparticle on the electrode surface. Constant potential amperometry has been used for the detection of Cr(VI) at well below the guideline value set by World Health Organization (WHO). This electrode is highly sensitive (30+/-0.2 nA/ppb) and the detection limit (S/N=9) was 0.1 ppb. Cr(III) and coexisting other metal ions and surface active agent present in water do not interfere with the amperometric measurement of Cr(VI). This nanostructured electrode is highly stable and it can be used for continuous measurement of Cr(VI) without using any pretreatment or activation procedures. The accuracy of the measurement has been validated by measuring the concentration of Cr(VI) in the certified reference material (CRM).

  12. Nano-Sized Cuboid-Shaped Phase in Mg-Nd-Y Alloy and its Behavior During Isothermal Aging.

    Science.gov (United States)

    Zheng, Jingxu; Luo, Zhongyuan; Tan, Lida; Chen, Bin

    2016-12-01

    In the present study, nano-sized cuboid-shaped particles in Mg-Nd-Y are studied by means of Cs-corrected atomic-scale high-angle annular dark-field scanning transmission electron microscopy. The structure of the cuboid-shaped phase is identified to be yttrium (major component) and neodymium atoms in face-centered cubic arrangement without the participation of Mg. The lattice parameter a=5.15 Å. During isothermal aging at 225°C, Mg3(Nd,Y) precipitates adhere to surface (100) planes of the cuboid-shaped particles with the orientation relationship: $[100]_{{{\\rm Mg}_{{\\rm 3}} {\\rm RE}}} \\,/\\,\\,/\\,[100]_{{{\\rm Cuboid}}} $ and $[310]_{{{\\rm Mg}_{{\\rm 3}} {\\rm RE}}} \\,/\\,\\,/\\,[012]_{{{\\rm Cuboid}}} $ . The fully coherent interfaces between the precipitates and the cuboid-shaped phases are reconstructed and categorized into two types: $(400)_{{{\\rm Mg}_{{\\rm 3}} {\\rm RE}}} $ interface and $(200)_{{{\\rm Mg}_{{\\rm 3}} {\\rm RE}}} $ interface.

  13. Characterization of coke deposited on nano-sized Pt-Pd/H-beta spent during long-chain paraffin hydroisomerization

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, F.; Einicke, W.D.; Ficht, K.; Glaeser, R. [Leipzig Univ. (Germany). Inst. of Chemical Technology; Bertmer, M. [Leipzig Univ. (Germany). Inst. of Experimental Physics II; Kuchling, T. [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Energy Process Engineering and Chemical Engineering

    2013-11-01

    The hydroisomerization of long-chain n-paraffins were studied in the temperature range 205- 230 C at p{sub H2}=50 bar using a bench scale trickle-bed continuous-flow reactor. The bimetallic catalysts consisted of mixtures of platinum and palladium supported on commercially available nano-sized zeolites Beta (n{sub Si}/n{sub Al} = 12 and 25) extruded with a binder ({gamma}-alumina). For hexadecane conversion, high yields to isomers (25 and 45 wt.% of mono- and multibranched isomers, respectively) without extensive cracking (>10 wt.%) were obtained at a conversion of 80 %. Long-term tests with C{sub 16}H{sub 34} and blends of solid n-paraffins for 30-60 days on stream clearly indicate that a minor loss in catalyst activity can easily be compensated by increasing the reaction temperature from 230 C to 235 C. The zeolite sample with a 'mild acidity' revealed low hydrocracking at isomerization yield up to 70 wt.% and high stability. Carbonaceous deposits formed during n-paraffin hydroisomerization were investigated by temperature-programmed oxidation, elemental analysis, ATR-FTIR and {sup 13}C MAS NMR spectroscopy showing the formation of low-temperature, hydrogen-rich coke. (orig.)

  14. Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging.

    Science.gov (United States)

    Cozzolino, Carlo A; Nilsson, Fritjof; Iotti, Marco; Sacchi, Benedetta; Piga, Antonio; Farris, Stefano

    2013-10-01

    Microfibrillated cellulose (MFC) was used in this study to prepare films containing an active molecule, lysozyme, which is a natural antimicrobial agent. The main goal of this research was to assess the potential for exploiting the nano-sized dimension of cellulose fibrils to slow the release of the antimicrobial molecule, thus avoiding a too-quick release into the surrounding medium, which is a major disadvantage of most release systems. For this purpose, the release kinetics of lysozyme over a 10-day period in two different media (pure water and water/ethanol 10wt.%) were obtained, and the experimental data was fitted with a solution of Fick's second law to quantify the apparent diffusion coefficient (D). The results indicate that the MFC retained lysozyme, presumably due to electrostatic, hydrogen, and ion-dipole interactions, with the largest release of lysozyme-approximately 14%-occurring from the initial amount loaded on the films. As expected, ethanol as a co-solvent slightly decreased the diffusion of lysozyme from the MFC polymer network. The addition of two potential modulating release agents-glycerol and sodium chloride-was also evaluated. Findings from this work suggest that MFC-based films can be considered a suitable candidate for use in controlled-release packaging systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method.

    Science.gov (United States)

    Fjodorova, Natalja; Novic, Marjana; Gajewicz, Agnieszka; Rasulev, Bakhtiyor

    2017-05-01

    The regulatory agencies should fulfil the data gap in toxicity for new chemicals including nano-sized compounds, like metal oxides nanoparticles (MeO x NPs) according to the registration, evaluation, authorisation and restriction of chemicals (REACH) legislation policy. This study demonstrates the perspective capability of neural network models for prediction of cytotoxicity of MeO x NPs to bacteria Escherichia coli (E. coli) for the widest range of metal oxides extracted from Periodic table. The counter propagation artificial neural network (CP ANN) models for prediction of cytotoxicity of MeO x NPs for data sets of 17, 36 and 72 metal oxides were employed in the study. The cytotoxicity of studied metal oxide NPs was correlated with (i) χ-metal electronegativity (EN) by Pauling scale and composition of metal oxides characterised by (ii) number of metal atoms in oxide, (iii) number of oxygen atoms in oxide and (iv) charge of metal cation in oxide. The paper describes the models in context of five OECD principles of validation models accepted for regulatory use. The recommendations were done for the minimal number of cytotoxicity tests needs for evaluation of the large set of MeO x with different oxidation states. The methodology is expected to be useful for potential hazard assessment of MeO x NPs and prioritisation for further testing and risk assessment.

  16. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    Science.gov (United States)

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  17. Thermal annealing behavior of nano-size metal-oxide particles synthesized by ion implantation in Fe-Cr alloy

    Science.gov (United States)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Descoins, M.; Mangelinck, D.; Dalle, F.; Arnal, B.; Delauche, L.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for the next generation nuclear reactors, as well as fusion facilities. The detailed understanding of the mechanisms involved in the precipitation of nano-oxides during ODS steel production would strongly contribute to the improvement of the mechanical properties and the optimization of manufacturing of ODS steels, with a potentially strong economic impact for their industrialization. A useful tool for the experimental study of nano-oxide precipitation is ion implantation, a technique that is widely used to synthesize precipitate nanostructures in well-controlled conditions. Earlier, we have demonstrated the feasibility of synthesizing aluminum-oxide particles in the high purity Fe-10Cr alloy by consecutive implantation with Al and O ions at room temperature. This paper describes the effects of high-temperature annealing after the ion implantation stage on the development of the aluminum based oxide nanoparticle system. Using transmission electron microscopy and atom probe tomography experiments, we demonstrate that post-implantation heat treatment induces the growth of the nano-sized oxides in the implanted region and nucleation of new oxide precipitates behind the implantation zone as a result of the diffusion driven broadening of implant profiles. A tentative scenario for the development of metal-oxide nano-particles at both ion implantation and heat treatment stages is suggested based on the experimental observations.

  18. Toxicological evaluation of nano-sized colloidal silver in experiments on mice. behavioral reactions, morphology of internals

    Directory of Open Access Journals (Sweden)

    N.V. Zaitseva

    2015-06-01

    Full Text Available The results of toxicity studies of nano-sized colloidal silver (NCC, the most widely used in medicine, food and life, are given. When evaluating safe doses of silver NP (using commercially available NCC solution stabilized with polyvinylpyrrolidone (PVP, with the size of silver NP at the range of 5-80 nm when orally administered to male mice, BALB/c mice at doses of 0.1; 1.0 and 10 mg/kg of body weight per silver different effects from the motor and orienting-exploratory activity were revealed, for the part of them the dependence on the dose of the NCC was typical. The following peculiarities were found: reduction in motor activity to reduce the frequency of activities requiring physical effort, reduction of the execution time of these actions; increasing anxiety in terms of frequency and duration of attacks of orienting-investigative activity and animals washing. Morphological examination revealed a series of tissue changes of internal organs (especially liver and spleen, to a lesser extent – kidney, heart and colon with increase of the spectrum and severity of structural changes with increasing doses of the NCC. From the combination of the data the conclusion was made that maximal ineffective dose (NOAEL of this nanomaterial at subacute oral administration is no more than 0.1 mg/kg body weight.

  19. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles

    Science.gov (United States)

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-01-01

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:26307983

  20. Polarized DNA Ejection from the Herpesvirus Capsid

    Science.gov (United States)

    Newcomb, William W.; Cockrell, Shelley K.; Homa, Fred L.; Brown, Jay C.

    2009-01-01

    Ejection of DNA from the capsid is an early step in infection by all herpesviruses. Ejection or DNA uncoating occurs after a parental capsid has entered the host cell cytoplasm, migrated to the nucleus and bound to a nuclear pore. DNA exits the capsid through the portal vertex and proceeds by way of the nuclear pore complex into the nucleoplasm where it is transcribed and replicated. Here we describe use of an in vitro uncoating system to determine which genome end exits first from the herpes simplex virus (HSV-1) capsid. Purified DNA-containing capsids were bound to a solid surface and warmed under conditions in which some, but not all, of the DNA was ejected. Restriction endonuclease digestion was then used to identify the genomic origin of the ejected DNA. The results support the view that the S segment end exits the capsid first. Preferential release at the S end demonstrates that herpesvirus DNA uncoating conforms to the paradigm in dsDNA bacteriophage where the last end packaged is the first to be ejected. Release of HSV-1 DNA beginning at the S end causes the first gene to enter the host cell nucleus to be α4, a transcription factor required for expression of early genes. PMID:19631662

  1. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  2. Stabilising the Herpes Simplex Virus capsid by DNA packaging

    Science.gov (United States)

    Wuite, Gijs; Radtke, Kerstin; Sodeik, Beate; Roos, Wouter

    2009-03-01

    Three different types of Herpes Simplex Virus type 1 (HSV-1) nuclear capsids can be distinguished, A, B and C capsids. These capsids types are, respectively, empty, contain scaffold proteins, or hold DNA. We investigate the physical properties of these three capsids by combining biochemical and nanoindentation techniques. Atomic Force Microscopy (AFM) experiments show that A and C capsids are mechanically indistinguishable whereas B capsids already break at much lower forces. By extracting the pentamers with 2.0 M GuHCl or 6.0 M Urea we demonstrate an increased flexibility of all three capsid types. Remarkably, the breaking force of the B capsids without pentamers does not change, while the modified A and C capsids show a large drop in their breaking force to approximately the value of the B capsids. This result indicates that upon DNA packaging a structural change at or near the pentamers occurs which mechanically reinforces the capsids structure. The reported binding of proteins UL17/UL25 to the pentamers of the A and C capsids seems the most likely candidate for such capsids strengthening. Finally, the data supports the view that initiation of DNA packaging triggers the maturation of HSV-1 capsids.

  3. Photodegradation of organic matter in fresh garbage leachate using immobilized nano-sized TiO2 as catalysts.

    Science.gov (United States)

    Chen, C; Xie, Q; Hu, B Q; Zhao, X L

    2014-01-01

    Two immobilized nano-sized TiO2 catalysts, TiO2/activated carbon (TiO2/AC) and TiO2/silica gel (SG) (TiO2/SG), were prepared by the sol-gel method, and their use in the photocatalytic degradation of organic matter in fresh garbage leachate under UV irradiation was investigated. The influences of the catalyst dosage, the initial solution pH, H2O2 addition and the reuse of the catalysts were evaluated. The degradation of organic matter was assessed based on the decrease of the chemical oxygen demand (COD) in the leachate. The results indicated that the degradation of the COD obeyed first-order kinetics in the presence of both photocatalysts. The degradation rate of COD was found to increase with increasing catalyst dosage up to 9 g/L for TiO2/AC and 6 g/L for TiO2/SG, above which the degradation began to attenuate. Furthermore, the degradation rate first increased and then decreased as the solution pH increased from 2 to 14, and the degradation rate increased as the amount of H2O2 increased to 2.93 mM, after which it remained constant. No obvious decrease in the rate of COD degradation was observed during the first four repeated uses of the photocatalysts, indicating that the catalysts could be recovered and reused. Compared with TiO2/AC, TiO2/SG exhibited higher efficiency in photocatalyzing the degradation of COD in garbage leachate.

  4. Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles.

    Science.gov (United States)

    Formentini, Thiago Augusto; Legros, Samuel; Fernandes, Cristovão Vicente Scapulatempo; Pinheiro, Adilson; Le Bars, Maureen; Levard, Clément; Mallmann, Fábio Joel Kochem; da Veiga, Milton; Doelsch, Emmanuel

    2017-03-01

    Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-μm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Uptake and intracellular localization of submicron and nano-sized SiO₂ particles in HeLa cells.

    Science.gov (United States)

    Al-Rawi, Marco; Diabaté, Silvia; Weiss, Carsten

    2011-07-01

    Engineered amorphous silica nanoparticles (SiO(2)-NPs) are widely used in dyes, varnishes, plastics and glue, as well as in pharmaceuticals, cosmetics and food. Novel composite SiO(2)-NPs are promising multifunctional devices and combine labels for subsequent tracking and are functionalized e.g. to specifically target cells to deliver their cargo. However, biological and potential toxic effects of SiO(2)-NPs are insufficiently understood. The aim of this study was to determine the uptake and fate of SiO(2)-NPs in mammalian cells. Also, silica submicron particles (SiO(2)-SMPs) were included in the studies in order to identify effects, which are only observed for nano-sized SiO(2) particles. Fluorescently labelled SiO(2)-NPs (nominal size 70 nm) and SiO(2)-SMPs (nominal size 200 and 500 nm) were used to examine cytotoxicity, cellular uptake and localization in human cervical carcinoma cells (HeLa). Particle uptake and intracellular localization in mitochondria, endosomes, lysosomes and nuclei were studied by wide field and confocal laser scanning fluorescence microscopy. Physicochemical characterization of SiO(2)-NPs by transmission electron microscopy and dynamic light scattering revealed a spherical morphology and a monodisperse size distribution. In the presence of serum, all SiO(2) particles are non-toxic. However, in the absence of serum SiO(2)-NPs but not SiO(2)-SMPs are highly toxic. SiO(2) particles, irrespective of size, were detected in the cytosol and accumulated in endosomal compartments of HeLa cells. No accumulation of SiO(2) particles in nuclei or mitochondria of HeLa cells could be observed. In contrast to SiO(2)-SMPs, SiO(2)-NPs are preferentially localized in lysosomes.

  6. Metal load assessment in patient pulmonary lavages: towards a comprehensive mineralogical analysis including the nano-sized fraction.

    Science.gov (United States)

    Forest, Valérie; Vergnon, Jean-Michel; Guibert, Cyril; Bitounis, Dimitrios; Leclerc, Lara; Sarry, Gwendoline; Pourchez, Jérémie

    Mineralogical analyses of clinical samples have been proved useful to identify causal relationship between exposure to airborne particles and pulmonary diseases. The most striking example is asbestosis where the assessment of asbestos bodies in patient lung samples has allowed defining values specific of pathologies. However, this type of analyses only considers the micro-sized fraction of the particles, neglecting the specific impact of nano-sized particles which have been otherwise shown to be reactive and able to induce biological effects. Similarly, in nanotoxicology, the mineralogical analysis of pulmonary fluids could be used as an indicator of exposure to inhaled nanoparticles and could help investigations on the relationship between exposure to these nanoparticles and lung diseases. We designed this study first to demonstrate the technical feasibility of this approach, then to get a clear picture of the metals present, and in what form, in patient lungs and finally to determine if indeed it is worth investigating separately the micro, sub-micro and nano fractions. Broncho-alveolar lavages were recovered from 100 patients suffering from interstitial lung diseases. A protocol was specifically developed to isolate three fractions containing respectively microparticles, sub-microparticles and nanoparticles with ions. The metal content in each fraction was qualitatively and quantitatively characterized. Results showed significant differences between the three fractions in terms of metal load confirming that the separate analysis of the fractions is relevant. It also means that the assessment of the micro-sized fraction alone, as commonly done in clinical practice, only gives a partial view of the mineralogical analysis.

  7. Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors.

    Science.gov (United States)

    Huang, Haijian; Wang, Xing; Tervoort, Elena; Zeng, Guobo; Liu, Tian; Chen, Xi; Sologubenko, Alla; Niederberger, Markus

    2018-03-27

    A general method for preparing nano-sized metal oxide nanoparticles with highly disordered crystal structure and their processing into stable aqueous dispersions is presented. With these nanoparticles as building blocks, a series of nanoparticles@reduced graphene oxide (rGO) composite aerogels are fabricated and directly used as high-power anodes for lithium-ion hybrid supercapacitors (Li-HSCs). To clarify the effect of the degree of disorder, control samples of crystalline nanoparticles with similar particle size are prepared. The results indicate that the structurally disordered samples show a significantly enhanced electrochemical performance compared to the crystalline counterparts. In particular, structurally disordered Ni x Fe y O z @rGO delivers a capacity of 388 mAh g -1 at 5 A g -1 , which is 6 times that of the crystalline sample. Disordered Ni x Fe y O z @rGO is taken as an example to study the reasons for the enhanced performance. Compared with the crystalline sample, density functional theory calculations reveal a smaller volume expansion during Li + insertion for the structurally disordered Ni x Fe y O z nanoparticles, and they are found to exhibit larger pseudocapacitive effects. Combined with an activated carbon (AC) cathode, full-cell tests of the lithium-ion hybrid supercapacitors are performed, demonstrating that the structurally disordered metal oxide nanoparticles@rGO||AC hybrid systems deliver high energy and power densities within the voltage range of 1.0-4.0 V. These results indicate that structurally disordered nanomaterials might be interesting candidates for exploring high-power anodes for Li-HSCs.

  8. Synthesis, characterization, nano-sized binuclear nickel complexes, DFT calculations and antibacterial evaluation of new macrocyclic Schiff base compounds

    Science.gov (United States)

    Parsaee, Zohreh; Mohammadi, Khosro

    2017-06-01

    Some new macrocyclic bridged dianilines tetradentate with N4coordination sphere Schiff base ligands and their nickel(II)complexes with general formula [{Ni2LCl4} where L = (C20H14N2X)2, X = SO2, O, CH2] have been synthesized. The compounds have been characterized by FT-IR, 1H and 13C NMR, mass spectroscopy, TGA, elemental analysis, molar conductivity and magnetic moment techniques. Scanning electron microscopy (SEM) shows nano-sized structures under 100 nm for nickel (II) complexes. NiO nanoparticle was achieved via the thermal decomposition method and analyzed by FT-IR, SEM and X-ray powder diffraction which indicates closeaccordance to standard pattern of NiO nanoparticle. All the Schiff bases and their complexes have been detected in vitro both for antibacterial activity against two gram-negative and two gram-positive bacteria. The nickel(II) complexes were found to be more active than the free macrocycle Schiff bases. In addition, computational studies of three ligands have been carried out at the DFT-B3LYP/6-31G+(d,p) level of theory on the spectroscopic properties, including IR, 1HNMR and 13CNMR spectroscopy. The correlation between the theoretical and the experimental vibrational frequencies, 1H NMR and 13C NMR of the ligands were 0.999, 0.930-0.973 and 0.917-0.995, respectively. Also, the energy gap was determined and by using HOMO and LUMO energy values, chemical hardness-softness, electronegativity and electrophilic index were calculated.

  9. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2.

    Science.gov (United States)

    Ozmen, Murat; Güngördü, Abbas; Erdemoglu, Sema; Ozmen, Nesrin; Asilturk, Meltem

    2015-08-01

    The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Bactericidal Effect of Lauric Acid-Loaded PCL-PEG-PCL Nano-Sized Micelles on Skin Commensal Propionibacterium acnes

    Directory of Open Access Journals (Sweden)

    Thi-Quynh-Mai Tran

    2016-08-01

    Full Text Available Acne is the over growth of the commensal bacteria Propionibacterium acnes (P. acnes on human skin. Lauric acid (LA has been investigated as an effective candidate to suppress the activity of P. acnes. Although LA is nearly insoluble in water, dimethyl sulfoxide (DMSO has been reported to effectively solubilize LA. However, the toxicity of DMSO can limit the use of LA on the skin. In this study, LA-loaded poly(ɛ-caprolactone-poly(ethylene glycol-poly(ɛ-caprolactone micelles (PCL-PEG-PCL were developed to improve the bactericidal effect of free LA on P. acnes. The block copolymers mPEG-PCL and PCL-PEG-PCL with different molecular weights were synthesized and characterized using 1H Nuclear Magnetic Resonance spectroscopy (1H NMR, Fourier-transform infrared spectroscopy (FT-IR, Gel Permeation Chromatography (GPC, and Differential Scanning Calorimetry (DSC. In the presence of LA, mPEG-PCL diblock copolymers did not self-assemble into nano-sized micelles. On the contrary, the average particle sizes of the PCL-PEG-PCL micelles ranged from 50–198 nm for blank micelles and 27–89 nm for LA-loaded micelles. The drug loading content increased as the molecular weight of PCL-PEG-PCL polymer increased. Additionally, the minimum inhibitory concentration (MIC and the minimum bactericidal concentration (MBC of free LA were 20 and 80 μg/mL, respectively. The MICs and MBCs of the micelles decreased to 10 and 40 μg/mL, respectively. This study demonstrated that the LA-loaded micelles are a potential treatment for acne.

  11. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study.

    Science.gov (United States)

    Singh, P; Nanda, A

    2014-06-01

    A systematic and detailed study has been designed and conducted, taking into account some of the proposed benefits such as increased efficiency, transparency, unique texture, protection of active ingredient and higher consumer compliance of cosmetics containing nano-sized metal oxides. This study also presents an in vitro method to determine sun protection factor of the investigational sunscreen cream samples containing zinc oxide and titanium dioxide with a varied range of particle size. Finally, a comparative study has been conducted between metal oxide particles, conventional as well as nanoparticles. All the skin cosmetics formulated were thermally stable with a pH ranging from 7.9 to 8.2. Moreover, the fatty acid substance content and residue were found to be analogous to the standard values in each skin cosmetic. The skin cosmetics containing the titanium or zinc oxide nanoparticles were found to have improved spreadability as compared to skin cosmetics containing conventional titanium or zinc oxide particles, respectively. All skin cosmetics were found to have uniform distribution of the particles. The sunscreen creams containing zinc oxide nanoparticles and titanium dioxide nanoparticles were found to have higher in vitro sun protection factor (SPF of 3.65 for ZnO nanoparticles and 4.93 for TiO2 nanoparticles) as compared to that of sunscreen creams containing conventional zinc oxide particles (SPF = 2.90) and conventional titanium dioxide (SPF = 1.29), clearly indicating the effect of reduction in particles size, from micro to nano, on the sun protection factor. Good texture, better spreadability and enhanced in vitro SPF proved the advantageous role of nanoparticles in cosmetics. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Effect of a nano-sized TiC particle addition on the flow-assisted corrosion resistance of SA 106B carbon steel

    Science.gov (United States)

    Park, Jin-Ju; Park, Eun-Kwang; Lee, Gyoung-Ja; Rhee, Chang-Kyu; Lee, Min-Ku

    2017-09-01

    Carbon steel with dispersed nano-sized TiC ceramic particles was fabricated by the ex-situ introduction of the particles into the melt, with the flow-assisted corrosion (FAC) resistance then investigated in the presence and absence of TiC nanoparticles using a once-through type of FAC loop test. From the potentiodynamic polarization curves, the current density at any given anodic potential was decreased and the open-circuit potential was increased by the addition of TiC nanoparticles. In addition, when the nano-sized TiC particles were added, the FAC rate was 1.38 times lower than that of carbon steel without TiC nanoparticles, indicating an improvement of the FAC resistance due to the homogeneous distribution of the TiC reinforcing nanoparticles.

  13. Microstructure and properties of SA 106B carbon steel after treatment of the melt with nano-sized TiC particles

    International Nuclear Information System (INIS)

    Park, Jin-Ju; Hong, Sung-Mo; Park, Eun-Kwang; Kim, Kyeong-Yeol; Lee, Min-Ku; Rhee, Chang-Kyu

    2014-01-01

    Carbon steel dispersed with nano-sized TiC ceramic particles was fabricated using the liquid metal casting process by means of their ex-situ introduction. For this purpose, the nano-sized TiC powders with an initial average size of 40 nm were first mechanically activated with two metal powders (Fe, Ni) and then introduced externally into the molten carbon steel during the casting process. According to the chemical composition analysis, 90% of the initial TiC nanoparticles were discovered within the cast carbon steel. Compared to cast carbon steel without TiC nanoparticles, the grain size refinement and mechanical property enhancement were achieved. Atom probe tomographic analysis revealed that the TiC nanoparticles were approximately 30 nm in size in the carbon steel matrix with a number density of 1.49×10 21 m −3

  14. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret

    2015-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution...... to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMWPAHs was highest in the Particulate fractions (particles N 0.7 μm). The highest concentration of PAHs in the Colloidal...... fraction was found in the sample with occurrence of small nano-sized particles (b10 nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. © 2015 Elsevier B.V. All...

  15. Effect of nano-size oxide particle dispersion and δ-ferrite proportion on creep strength of 9Cr-ODS steel

    International Nuclear Information System (INIS)

    Ohtsuka, Satoshi; Kaito, Takeji; Kim, Sawoong; Inoue, Masaki; Asayama, Tai; Ohnuma, Masato; Suzuki, Junichi

    2009-01-01

    The effects of chemical compositions on the microstructure and high-temperature creep strength of 9Cr-ODS steel was discussed in the light of quantitative data of δ-ferrite proportion and nano-size oxide particle dispersion, which were evaluated by dilatometric analysis and small angle neutron/X-ray scattering analysis, respectively. These quantitative data are well consistent with the conventional data obtained by transmission electron microscope. Both data indicate that the important microstructural feature for creep strength improvement of the 9Cr-ODS steel is the number density of nano-size oxide particles, and ferrite/martensite (F/M) duplex structure is favorable for high population nano-size oxide particle dispersion. Both optimization of excess oxygen concentration and control of the F/M duplex structure are promising technique for nano-structure control of 9Cr-ODS steel. Tungsten solid solution strengthening appears to be small compared with oxide dispersion strengthening enhanced by duplex microstructure formation. (author)

  16. The use of nano-sized eggshell powder for calcium fortification of cow?s and buffalo?s milk yogurts.

    Science.gov (United States)

    El-Shibiny, Safinaze; El-Gawad, Mona Abd El-Kader Mohamed Abd; Assem, Fayza Mohamed; El-Sayed, Samah Mosbah

    2018-01-01

    Calcium is an essential element for the growth, activity, and maintenance of the human body. Eggshells are a waste product which has received growing interest as a cheap and effective source of dietary calcium. Yogurt is a food which can be fortified with functional additives, including calcium. The aim of this study was to produce yogurt with a high calcium content by fortification with nano-sized eggshell powder (nano-ESP). Nano-sized ESP was prepared from pre-boiled and dried eggshell, using a ball mill. Yogurt was prepared from cow’s milk supplemented with 3% skimmed milk powder, and from buffalo’s milk fortified with 0.1, 0.2 and 0.3% and 0.1, 0.3 and 0.5% nano-ESP respectively. Electron microscopic transmission showed that the powder consisted of nano-sized crystalline struc- tures (~10 nm). Laser scattering showed that particles followed a normal distribution pattern with z-average of 590.5 nm, and had negative zeta-potential of –9.33 ±4.2 mV. Results regarding changes in yogurt composi- tion, acid development, calcium distribution, biochemical changes, textural parameters and sensory attributes have been presented and discussed. The addition of up to 0.3% nano-ESP made cow and buffalo high-calcium yogurts with an acceptable composition and quality. High-calcium yogurt may offer better health benefits, such as combating osteoporosis.

  17. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Stochastic modeling of virus capsid assembly pathways

    Science.gov (United States)

    Schwartz, Russell

    2009-03-01

    Virus capsids have become a key model system for understanding self-assembly due to their high complexity, robust and efficient assembly processes, and experimental tractability. Our ability to directly examine and manipulate capsid assembly kinetics in detail nonetheless remains limited, creating a need for computer models that can infer experimentally inaccessible features of the assembly process and explore the effects of hypothetical manipulations on assembly trajectories. We have developed novel algorithms for stochastic simulation of capsid assembly [1,2] that allow us to model capsid assembly over broad parameter spaces [3]. We apply these methods to study the nature of assembly pathway control in virus capsids as well as their sensitivity to assembly conditions and possible experimental interventions. [4pt] [1] F. Jamalyaria, R. Rohlfs, and R. Schwartz. J Comp Phys 204, 100 (2005). [0pt] [2] N. Misra and R. Schwartz. J Chem Phys 129, in press (2008). [0pt] [3] B. Sweeney, T. Zhang, and R. Schwartz. Biophys J 94, 772 (2008).

  19. The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron- and nano-sized capsules.

    Science.gov (United States)

    Meredith, Alicea N; Harper, Bryan; Harper, Stacey L

    2016-01-01

    Encapsulation technology involves entrapping a chemical active ingredient (a.i.) inside a hollow polymeric shell and has been applied to commercial pesticide manufacturing for years to produce capsule suspension (CS) formulations with average particle sizes in the micron-scale. The few literature sources that investigate the environmental fate and toxicity to non-target organisms of encapsulated commercially available pesticide products with regard to capsule size report on average sizes between 20 and 50 μm. Here, we have identified a CS formulation with an average capsule size of approximately 2 μm with some capsules extending into the nanometer scale (~200 nm). Determining how carrier size influences toxicity is important to understanding if current pesticide risk assessments are sufficient to protect against products that incorporate encapsulation technology. Here, a commercial pyrethroid CS pesticide with lambda-cyhalothrin (λ-Cy) as the a.i. was separated into two suspensions, a fraction consisting of nano-sized capsules (~250 nm) and a fraction of micron-sized capsules (~2200 nm) in order to investigate the influence of capsule size on toxicity to embryonic zebrafish, Danio rerio. Toxicity was evaluated 24h after exposure to equivalent amounts of a.i. by the presence and severity of pyrethroid-specific tremors, 14 sublethal developmental impacts and mortality. Fish exposed to greater than 20 μg a.i. L(-1) technical λ-Cy or formulated product experienced curvature of the body axis, pericardial edema, craniofacial malformations, and mortality. Exposure to the unfractionated formulation, micro fraction, nano fraction and technical a.i. resulted in no significant differences in the occurrence of sublethal impacts or mortality; however, the technical a.i. exposure resulted in significantly less fish experiencing tremors and shorter tremors compared to any of the formulated product exposures. This suggests that the capsule size does not influence the toxic

  20. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Murat, E-mail: murat.ozmen@inonu.edu.tr [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Güngördü, Abbas [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Erdemoglu, Sema [Inonu University, Faculty of Science, Department of Chemistry, Malatya (Turkey); Ozmen, Nesrin [Inonu University, Faculty of Education, Department of Science Teaching Program, Malatya (Turkey); Asilturk, Meltem [Akdeniz University, Department of Materials Science and Engineering, Antalya (Turkey)

    2015-08-15

    Highlights: • Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized and characterized. • The photocatalytic efficiency of the photocatalysts was evaluated for BPA and ATZ. • Toxicity of photocatalysts and photocatalytic by-products were determined. • Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality on X. laevis. • Degradation of BPA caused a significant reduction of lethal effects. - Abstract: The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO{sub 2}. Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV–vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO{sub 2} was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO{sub 2} increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2–4 h of degradation. However, biochemical assays showed that both Mn-doped TiO{sub 2} and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn

  1. Dynamic pathways for viral capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, Michael F.; Chandler, David

    2006-02-09

    We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss the relationship between these mechanisms and experimental evaluations of capsid assembly processes.

  2. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays

    International Nuclear Information System (INIS)

    Noor Azman, N.Z.; Siddiqui, S.A.; Low, I.M.

    2013-01-01

    Characteristics of X-ray transmissions were investigated for epoxy composites filled with 2–10 vol% WO 3 loadings using synchrotron X-ray absorption spectroscopy (XAS) at 10–40 keV. The results obtained were used to determine the equivalent X-ray energies for the operating X-ray tube voltages of mammography and radiology machines. The results confirmed the superior attenuation ability of nano-sized WO 3 -epoxy composites in the energy range of 10–25 keV when compared to their micro-sized counterparts. However, at higher synchrotron radiation energies (i.e., 30–40 keV), the X-ray transmission characteristics were similar with no apparent size effect for both nano-sized and micro-sized WO 3 -epoxy composites. The equivalent X-ray energies for the operating X-ray tube voltages of the mammography unit (25–49 kV) were in the range of 15–25 keV. Similarly, for a radiology unit operating at 40–60 kV, the equivalent energy range was 25–40 keV, and for operating voltages greater than 60 kV (i.e., 70–100 kV), the equivalent energy was in excess of 40 keV. The mechanical properties of epoxy composites increased initially with an increase in the filler loading but a further increase in the WO 3 loading resulted in deterioration of flexural strength, modulus and hardness. - Highlights: • Nano-sized WO 3 -epoxy composites have superior x-ray shielding capability. • No size effect in x-ray attenuation was observed at 30–40 keV. • An optimum filler loading for improving the mechanical properties of WO 3 -epoxy composites

  3. Nuclear entry of hepatitis B virus capsids involves disintegration to protein dimers followed by nuclear reassociation to capsids.

    Directory of Open Access Journals (Sweden)

    Birgit Rabe

    2009-08-01

    Full Text Available Assembly and disassembly of viral capsids are essential steps in the viral life cycle. Studies on their kinetics are mostly performed in vitro, allowing application of biochemical, biophysical and visualizing techniques. In vivo kinetics are poorly understood and the transferability of the in vitro models to the cellular environment remains speculative. We analyzed capsid disassembly of the hepatitis B virus in digitonin-permeabilized cells which support nuclear capsid entry and subsequent genome release. Using gradient centrifugation, size exclusion chromatography and immune fluorescence microscopy of digitonin-permeabilized cells, we showed that capsids open and close reversibly. In the absence of RNA, capsid re-assembly slows down; the capsids remain disintegrated and enter the nucleus as protein dimers or irregular polymers. Upon the presence of cellular RNA, capsids re-assemble in the nucleus. We conclude that reversible genome release from hepatitis B virus capsids is a unique strategy different from that of other viruses, which employs irreversible capsid destruction for genome release. The results allowed us to propose a model of HBV genome release in which the unique environment of the nuclear pore favors HBV capsid disassembly reaction, while both cytoplasm and nucleus favor capsid assembly.

  4. Sonochemical synthesis, characterization, thermal and semiconducting behavior of nano-sized azidopentaamminecobalt(III) complexes containing anion, CrO42-or Cr2O72.

    Science.gov (United States)

    Bala, Ritu; Behal, Jagriti; Shah, Nikesh A; Rathod, K N; Prakash, Vinit; Khunt, Ranjan C

    2018-03-01

    New nano-sized cobalt(III) coordination complexes, [Co(NH 3 ) 5 N 3 ]CrO 4 (1N) and [Co(NH 3 ) 5 N 3 ]Cr 2 O 7 (2N) were synthesized using an innovative sonochemical methodology based on reaction between [Co(NH 3 ) 5 N 3 ]Cl 2 and potassium salt of CrO 4 2- or Cr 2 O 7 2- in aqueous medium. These complexes were also compared with their respective bulks which were synthesized under identical conditions in the absence of sonicaion. All the complexes were characterized by elemental analysis and spectroscopic techniques (UV-visible and IR). Morphology and particle size of nano-sized complexes was determined by SEM and Zeta-sizer respectively. TGA was used for comparative thermal stability and XRD to identify the phase difference between nano structures and bulk complexes. Furthermore, the electrical property was investigated and all complexes were found to be electrical semiconducting materials and 2N shows better result than others. The single crystals X-ray structure study of new [Co(NH 3 ) 5 N 3 ]Cr 2 O 7 revealed the presence of discrete ions, [Co(NH 3 ) 5 N 3 ] 2+ and Cr 2 O 7 2- , crystallizes in monoclinic, space group P c , with R=0.0636 in the solid state. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater--Using humic acid and iron nano-sized colloids as test particles.

    Science.gov (United States)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret; Baun, Anders; Eriksson, Eva

    2015-11-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution of low-molecular weight PAHs (LMW PAHs), middle-molecular weight PAHs (MMW PAHs) and high-molecular weight PAHs (HMW PAHs) among the fractions was also evaluated. The results from the synthetic suspensions showed that the highest concentrations of the PAHs were found in the Filtrated fractions and, surprisingly, high loads were found in the Dissolved fractions. The PAHs identified in stormwater in the Particulate fractions and Dissolved fractions follow their hydrophobic properties. In most samples >50% of the HMW PAHs were found in the Particulate fractions, while the LMW and MMW PAHs were found to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMW PAHs was highest in the Particulate fractions (particles>0.7 μm). The highest concentration of PAHs in the Colloidal fraction was found in the sample with occurrence of small nano-sized particles (<10nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Synthesis, characterization of nano-sized anatase TiO2  and its adsorption behaviour  for environmental contaminant.

    Science.gov (United States)

    Gupta, K; Pandey, A; Singh, R P

    2017-07-31

    TiO2 is one of the most studied material due to its unique properties like chemical stability, non toxicity and cost effectiveness.  Nano-sized TiO2   has been prepared by sol -gel method using titanium butoxide as precursor. X- ray diffraction analysis was used to characterize the phase and crystal size of the synthesized TiO2 particles. It was found that sizes of the particles ranged from 6 to 12 nanometre. FT-IR spectrum was also recorded for the TiO2  particles to detect the remaining organic residue .Heavy metals like Cr, Cu, Fe, Ni etc are considered major environmental contaminant in water due to their non biodegradable nature and adverse health effect in living beings. In this work the adsorption behavior of heavy metals towards nano-sized TiO2 was investigated.

  7. Improved Light Conversion Efficiency Of Dye-Sensitized Solar Cell By Dispersing Submicron-Sized Granules Into The Nano-Sized TiO2 Layer

    Directory of Open Access Journals (Sweden)

    Song S.A.

    2015-06-01

    Full Text Available In this work, TiO2 nanoparticles and submicron-sized granules were synthesized by a hydrothermal method and spray pyrolysis, respectively. Submicron-sized granules were dispersed into the nano-sized TiO2 layer to improve the light conversion efficiency. Granules showed better light scattering, but lower in terms of the dye-loading quantity and recombination resistance compared with nanoparticles. Consequently, the nano-sized TiO2 layer had higher cell efficiency than the granulized TiO2 layer. When dispersed granules into the nanoparticle layer, the light scattering was enhanced without the loss of dye-loading quantities. The dispersion of granulized TiO2 led to increase the cell efficiency up to 6.51%, which was about 5.2 % higher than that of the electrode consisting of only TiO2 nanoparticles. Finally, the optimal hydrothermal temperature and dispersing quantity of granules were found to be 200°C and 20 wt%, respectively.

  8. The Effect of Nano sized Carbon Black on the Physical and Thermomechanical Properties of Al2O3-SiC-SiO2-C Composite

    International Nuclear Information System (INIS)

    Amin, M.H.; Ebrahimabadi, M.A.; Rahimipour, M.R.

    2009-01-01

    The effects of using nano sized carbon black in the range of 010 weight percentages on the physical and thermomechanical properties of Al 2 O 3 -Si C-SiO 2 graphite refractory composites were investigated. Nano sized carbon black addition improved the relative heat resistance and oxidation resistance of composites. The bulk density of the composites is reduced with increasing carbon black (CB) content. Increase in CB content first causes an increase in the apparent porosity, but at more than 3 wt % amount of CB, a decrease of apparent porosity was observed. The cold crushing strength (CCS) increased with increasing CB content in samples fired at 800 degree C and in samples fired at 1500 degree C when the content is increased to 3 wt %, but the CCS decreased with increasing CB content in samples fired at 1500 degree C when the CB content was less than 3 wt %. The composite without CB exhibits the highest value of CCS at firing temperature of 1500 degree C.

  9. Small angle neutron scattering study of nano sized microstructure in Fe-Cr ODS steels for gen IV in-core applications.

    Science.gov (United States)

    Han, Young-Soo; Mao, Xiadong; Jang, Jinsung

    2013-11-01

    The nano-sized microstructures in Fe-Cr oxide dispersion strengthened steel for Gen IV in-core applications were studied using small angle neutron scattering. The oxide dispersion strengthened steel was manufactured through hot isostatic pressing with various chemical compositions and fabrication conditions. Small angle neutron scattering experiments were performed using a 40 m small angle neutron scattering instrument at HANARO. Nano sized microstructures, namely, yttrium oxides and Cr-oxides were quantitatively analyzed by small angle neutron scattering. The yttrium oxides and Cr-oxides were also observed by transmission electron microscopy. The microstructural analysis results from small angle neutron scattering were compared with those obtained by transmission electron microscopy. The effects of the chemical compositions and fabrication conditions on the microstructure were investigated in relation to the quantitative microstructural analysis results obtained by small angle neutron scattering. The volume fraction of Y-oxide increases after fabrication, and this result is considered to be due to the formation of non-stochiometric Y-Ti-oxides.

  10. Strengthening Effect of Extruded Mg-8Sn-2Zn-2Al Alloy: Influence of Micro and Nano-Size Mg2Sn Precipitates

    Science.gov (United States)

    Cheng, Weili; Bai, Yang; Wang, Lifei; Wang, Hongxia; Bian, Liping; Yu, Hui

    2017-01-01

    In this study, Mg-8Sn-2Zn-2Al (TZA822) alloys with varying Mg2Sn contents prior to extrusion were obtained by different pre-treatments (without and with T4), and the strengthening response related to micro and nano-size Mg2Sn precipitates in the extruded TZA822 alloys was reported. The results showed that the morphology of nano-size Mg2Sn precipitates exhibits a significant change in basal plane from rod-like to spherical, owing to the decrement in the fraction of micro-size particles before extrusion. Meanwhile, the spherical Mg2Sn precipitates provided a much stronger strengthening effect than did the rod-like ones, which was ascribed to uniform dispersion and refinement of spherical precipitates to effectively hinder basal dislocation slip. As a consequence, the extruded TZA822 alloy with T4 showed a higher tensile yield strength (TYS) of 245 MPa, ultimate tensile strength (UTS) of 320 MPa and elongation (EL) of 26.5%, as well as a lower degree of yield asymmetry than their counterpart without T4. Detailed reasons for the strengthening effect were given and analyzed. PMID:28773180

  11. Conjugal violence

    Directory of Open Access Journals (Sweden)

    Simona Mihaiu

    2015-10-01

    Full Text Available Scientific knowledge of different aspects related to conjugal violence is highly important for people directly involved, such as researchers, practitioners and the entire society. In this respect, globally, specialised studies continue to advance, offer correct definitions, clear descriptions, convincing assessments to certain issues, encouraging thus long-term research, since some specialists have managed to overcome restrictive or ideological methods and explanations. Moreover, in practice, debates reach almost all social, political and legal dimensions regarding appropriate and efficient forms of preventing conjugal violence. Unfortunately, in Romania there are fewer research and prevention approaches of this social problem. In general, attention is directed to domestic violence and conjugal violence is dealt with only implicitly. Considering the given context, the aim of the paper is to outline, by analysing specialised literature, a new research direction and implicitly, social intervention. I specify that this article represents a stage in the ongoing postdoctoral research project, entitled "Conjugal homicide. Aggressors and victims".

  12. Properties and Functions of the Dengue Virus Capsid Protein.

    Science.gov (United States)

    Byk, Laura A; Gamarnik, Andrea V

    2016-09-29

    Dengue virus affects hundreds of millions of people each year around the world, causing a tremendous social and economic impact on affected countries. The aim of this review is to summarize our current knowledge of the functions, structure, and interactions of the viral capsid protein. The primary role of capsid is to package the viral genome. There are two processes linked to this function: the recruitment of the viral RNA during assembly and the release of the genome during infection. Although particle assembly takes place on endoplasmic reticulum membranes, capsid localizes in nucleoli and lipid droplets. Why capsid accumulates in these locations during infection remains unknown. In this review, we describe available data and discuss new ideas on dengue virus capsid functions and interactions. We believe that a deeper understanding of how the capsid protein works during infection will create opportunities for novel antiviral strategies, which are urgently needed to control dengue virus infections.

  13. Classification and Evolutionary Trends of Icosahedral Viral Capsids

    OpenAIRE

    Kerner, Richard

    2008-01-01

    A classification of icosahedral viral capsids is proposed. We show how the self-organization of capsids during their formation implies a definite composition of their elementary building blocks. The exact number of hexamers with three different admissible symmetries is related to capsids' sizes, labelled by their T-numbers. Simple rules determining these numbers for each value of T are deduced and certain consequences concerning the probabilities of mutations and evolution of viruses are disc...

  14. Classification and Evolutionary Trends of Icosahedral Viral Capsids

    Directory of Open Access Journals (Sweden)

    Richard Kerner

    2008-01-01

    Full Text Available A classification of icosahedral viral capsids is proposed. We show how the self-organization of capsids during their formation implies a definite composition of their elementary building blocks. The exact number of hexamers with three different admissible symmetries is related to capsids' sizes, labelled by their T-numbers. Simple rules determining these numbers for each value of T are deduced and certain consequences concerning the probabilities of mutations and evolution of viruses are discussed.

  15. Spectral-optical-electrical-thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex.

    Science.gov (United States)

    Farag, A A M; Haggag, Sawsan M S; Mahmoud, Mohamed E

    2011-11-01

    Spectral-optical-electrical-thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex, Ca[((NO(2))(2)-8HQ)(2)], were explored, studied and evaluated in this work. Thin films of Ca[((NO(2))(2)-8HQ)(2)] were assembled by using a direct, simple and efficient layer-by-layer (LBL) chemical deposition technique. The optical properties of thin films were investigated by using spectrophotometric measurements of transmittance and reflectance at normal incidence in the wavelength range 200-2500 nm. The refractive index, n, and the absorption index, k, of Ca[((NO(2))(2)-8HQ)(2)] films were determined from the measured transmittance and reflectance. The real and imaginary dielectric constants were also determined. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with band gaps of 1.1 eV and 2.4 eV for the optical and transport energy gaps, respectively. The current-voltage characteristics of Ca[((NO(2))(2)-8HQ)(2)] showed a trap-charge limited conduction in determining the current at the intermediate and high bias regimes. Graphical representation of the current-voltage characteristics yields three distinct linear parts indicating the existence of three conduction mechanisms. Structural characterization and identification were confirmed by using Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy (SEM) was also used to image the surface morphology of the deposited nano-sized metal complex and such study revealed a high homogeneity in surface spherical particle distribution with average particles size in the range 20-40 nm. Thermal gravimetric analysis (TGA) was also studied for [(NO(2))(2)-8HQ] and Ca[((NO(2))(2)-8HQ)(2)] to evaluate and confirm the thermal stability characteristics incorporated into the synthesized nano-sized Ca[((NO(2))(2)-8HQ)(2)] complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Large-scale functional purification of recombinant HIV-1 capsid.

    Directory of Open Access Journals (Sweden)

    Magdeleine Hung

    Full Text Available During human immunodeficiency virus type-1 (HIV-1 virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.

  17. Hepatitis B Virus Capsid Completion Occurs through Error Correction.

    Science.gov (United States)

    Lutomski, Corinne A; Lyktey, Nicholas A; Zhao, Zhongchao; Pierson, Elizabeth E; Zlotnick, Adam; Jarrold, Martin F

    2017-11-22

    Understanding capsid assembly is important because of its role in virus lifecycles and in applications to drug discovery and nanomaterial development. Many virus capsids are icosahedral, and assembly is thought to occur by the sequential addition of capsid protein subunits to a nucleus, with the final step completing the icosahedron. Almost nothing is known about the final (completion) step because the techniques usually used to study capsid assembly lack the resolution. In this work, charge detection mass spectrometry (CDMS) has been used to track the assembly of the T = 4 hepatitis B virus (HBV) capsid in real time. The initial assembly reaction occurs rapidly, on the time scale expected from low resolution measurements. However, CDMS shows that many of the particles generated in this process are defective and overgrown, containing more than the 120 capsid protein dimers needed to form a perfect T = 4 icosahedron. The defective and overgrown capsids self-correct over time to the mass expected for a perfect T = 4 capsid. Thus, completion is a distinct phase in the assembly reaction. Capsid completion does not necessarily occur by inserting the last building block into an incomplete, but otherwise perfect icosahedron. The initial assembly reaction can be predominently imperfect, and completion involves the slow correction of the accumulated errors.

  18. Effects of {gamma}-irradiation and ageing on surface and catalytic properties of nano-sized Cu O/Mg O system

    Energy Technology Data Exchange (ETDEWEB)

    El-Molla, S. A. [Ain Shams University, Faculty of Education, Chemistry Deparment, Roxy, Heliopolis, 11757 Cairo (Egypt); Ismail, S. A.; Ibrahim, M. M., E-mail: saharelmolla@yahoo.com [National Center for Radiation Research and Technology, Nasr City, P.O. Box 29, 11731 Cairo (Egypt)

    2011-07-01

    0.2 Cu O/Mg O system prepared by impregnation method was calcined at 350 and 450 C. The effects of {gamma}-rays (0.2-1.6 MGy) on its structure, surface and catalytic properties were investigated by using XRD, N{sub 2}-adsorption at -196 C and catalytic conversion of isopropanol at 150-275 C using a flow technique. The results revealed that the investigated solids consisted of nano-sized Mg O as a major phase besides Cu O and trace amount of Cu{sub 2}O. {gamma}-Irradiation of the solids investigated exerted measurable changes in their surface and catalytic properties dependent on the calcination temperature and dose of irradiation. The catalysts investigated acted as active dehydrogenation solids. The five years-ageing of different solids showed limited changes of their surface and catalytic properties indicating a good catalytic stability of the irradiated prepared solids. (Author)

  19. Effects of γ-irradiation and ageing on surface and catalytic properties of nano-sized Cu O/Mg O system

    International Nuclear Information System (INIS)

    El-Molla, S. A.; Ismail, S. A.; Ibrahim, M. M.

    2011-01-01

    0.2 Cu O/Mg O system prepared by impregnation method was calcined at 350 and 450 C. The effects of γ-rays (0.2-1.6 MGy) on its structure, surface and catalytic properties were investigated by using XRD, N 2 -adsorption at -196 C and catalytic conversion of isopropanol at 150-275 C using a flow technique. The results revealed that the investigated solids consisted of nano-sized Mg O as a major phase besides Cu O and trace amount of Cu 2 O. γ-Irradiation of the solids investigated exerted measurable changes in their surface and catalytic properties dependent on the calcination temperature and dose of irradiation. The catalysts investigated acted as active dehydrogenation solids. The five years-ageing of different solids showed limited changes of their surface and catalytic properties indicating a good catalytic stability of the irradiated prepared solids. (Author)

  20. Application of nano-sized TiO2 as an inhibitor of stress corrosion cracking in the steam generator tube materials.

    Science.gov (United States)

    Kim, Kyung Mo; Lee, Eun Hee; Kim, Uh Chul; Choi, Byung Seon

    2010-01-01

    Several chemicals were studied to suppress the damage due to a stress corrosion cracking (SCC) of the steam generator (SG) tubes in nuclear power plants. SCC tests were carried out to investigate the performance of TiO2 on several types of SG tube materials. The SCC tests were conducted by using an m-RUB specimen in a 10% NaOH solution at a temperature of 315 degrees C. The test with the addition of TiO2 showed a decrease in the SCC rate for the SG tubing materials. In order to improve the inhibition property in a crevice of TiO2, a sonochemical technique was applied to reduce the size of the TiO2 particle. From the SCC tests with the RUB specimen, the SG tube materials showed an enhanced cracking resistance with the addition of nano-sized TiO2 and the surface property was also changed.

  1. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-01-01

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:28773549

  2. Nano-sized fluorescent particles as new tracers for sentinel node detection: experimental model for decision of appropriate size and wavelength.

    Science.gov (United States)

    Nakajima, Morio; Takeda, Motohiro; Kobayashi, Masaki; Suzuki, Satoshi; Ohuchi, Noriaki

    2005-06-01

    The concepts of made-to-order and low-invasiveness medicines are becoming widely accepted. A treatment for cancer, with minimum invasive surgery and without lymph nodes dissection based on sentinel lymph node (SN) navigation surgery, would adhere to these concepts. Dyes and/or radioisotopes are employed for SN detection in standard methods, however, each detection method has advantages and disadvantages. To make up for the disadvantages, we aimed at developing a new non-invasive method using fluorescent beads of uniform nano-size that could efficiently visualize SN from outside the body, and conducted experiments to determine the appropriate size and fluorescent wavelength. We examined various bead sizes and fluorescent wavelengths. The sizes were 20, 40, 100 and 200 nm. The fluorescent peak wavelengths of the beads were yellow-green (515 nm), dark red (680 nm), far red (720 nm) and infrared (755 nm). The beads were subcutaneously injected into the foot pad of the hind leg of a rat, and followed by laser scanning of the inguinal area for fluorescence observation. The beads exhibited different times for the fluorescence detection according to their sizes and wavelength. The 40 nm beads were considered to be the most appropriate size for SN detection in rats. The wavelength of near infrared was effective for avoiding attenuation by the tissue. In conclusion, we confirmed that uniformly nano-sized fluorescent beads have the potential to be an alternative to existing tracers in the detection of the SN in animal experiments if we select the appropriate particle size and wavelength.

  3. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays.

    Science.gov (United States)

    Azman, N Z Noor; Siddiqui, S A; Low, I M

    2013-12-01

    Characteristics of X-ray transmissions were investigated for epoxy composites filled with 2-10 vol% WO3 loadings using synchrotron X-ray absorption spectroscopy (XAS) at 10-40 keV. The results obtained were used to determine the equivalent X-ray energies for the operating X-ray tube voltages of mammography and radiology machines. The results confirmed the superior attenuation ability of nano-sized WO3-epoxy composites in the energy range of 10-25 keV when compared to their micro-sized counterparts. However, at higher synchrotron radiation energies (i.e., 30-40 keV), the X-ray transmission characteristics were similar with no apparent size effect for both nano-sized and micro-sized WO3-epoxy composites. The equivalent X-ray energies for the operating X-ray tube voltages of the mammography unit (25-49 kV) were in the range of 15-25 keV. Similarly, for a radiology unit operating at 40-60 kV, the equivalent energy range was 25-40 keV, and for operating voltages greater than 60 kV (i.e., 70-100 kV), the equivalent energy was in excess of 40 keV. The mechanical properties of epoxy composites increased initially with an increase in the filler loading but a further increase in the WO3 loading resulted in deterioration of flexural strength, modulus and hardness. © 2013.

  4. Effect of zinc-borate glass addition on the thermal properties of the cordierite/Al2O3 composites containing nano-sized spinel crystal.

    Science.gov (United States)

    Jo, Sinae; Kang, Seunggu

    2013-11-01

    Low-melting zinc-borate glass was added to the cordierite/Al2O3 composite in order to improve the sintering facility of Al2O3 and formation of nano-sized spinel crystal of high thermal conductivity. Increasing the ZnO/B2O3 ratio in the zinc-borate glass increased the ZnAl2O4 spinel and decreased the Al4B2O9 crystal peak intensities in X-ray diffraction pattern. The XRD peak intensities of the ZnAl2O4 spinel and Al4B2O9 crystals in the specimen containing 10 wt% zinc-borate glass (10G series) are higher than that of the specimen containing 5 wt% zinc-borate glass (5G series). The microstructures of most 10G series specimens had the flower-shaped crystal which was composed of 50 nm wide and 250 nm long needle-like crystals and identified as ZnAl2O4 spinel phase. The thermal conductivity of the 10G series specimen was higher than that of the 5G series in any ZnO/B2O3 ratio due to the formation of plenty of nano-sized ZnAl2O4 spinel of high thermal conductivity. Particularly, the thermal conductivity of the cordierite/Al2O3 composite containing 10 wt% zinc-borate glass of ZnO/B2O3 weight ratio = 1.5 was 3.8 W/Km which is much higher than that of the published value (3.0 W/Km).

  5. Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages.

    Science.gov (United States)

    Qin, Li; Fokine, Andrei; O'Donnell, Erin; Rao, Venigalla B; Rossmann, Michael G

    2010-01-29

    Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a "glue" between neighboring hexameric capsomers, forming a "cage" that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 A resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc were fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.

  6. Hepatitis Virus Capsid Polymorph Stability Depends on Encapsulated Cargo Size

    NARCIS (Netherlands)

    He, L.; Porterfield, Z.; van der Schoot, P. P. A. M.|info:eu-repo/dai/nl/102140618; Zlotnick, A.; Dragnea, B.

    2013-01-01

    Protein cages providing a controlled environment to encapsulated cargo are a ubiquitous presence in any biological system. Well-known examples are capsids, the regular protein shells of viruses, which protect and deliver the viral genome. Since some virus capsids can be loaded with nongenomic

  7. Glutathione Conjugation

    Science.gov (United States)

    Shimabukuro, R. H.; Frear, D. S.; Swanson, H. R.; Walsh, W. C.

    1971-01-01

    The primary factor for atrazine selectivity in corn (Zea mays) is the activity of a soluble enzyme, glutathione S-transferase, which detoxifies atrazine by catalyzing the formation of an atrazine-glutathione conjugate (GS-atrazine). The nonenzymatic, benzoxazinone-catalyzed hydrolysis of atrazine to hydroxyatrazine contributed to the total resistance of corn to atrazine, but the nonenzymatic detoxication pathway does not seem to be essential for resistance. All corn lines investigated, except for susceptible GT112, rapidly detoxified atrazine by glutathione conjugation. Only GT112 had low glutathione S-transferase activity. Hydroxyatrazine was found in significant quantities only when atrazine was introduced initially into the roots. The amount of hydroxyatrazine formed was nearly equal for susceptible GT112 and most of the resistant corn lines investigated. This investigation indicates that some plants protect themselves against toxic organic halide compounds with a mechanism similar to that known to exist in animals. PMID:5543779

  8. Structural elucidation and magnetic behavior evaluation of rare earth (La, Nd, Gd, Tb, Dy) doped BaCoNi-X hexagonal nano-sized ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Abdul, E-mail: abdulmajeed2276@gmail.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Raheem, Faseeh ur; Hussain, Altaf; Iqbal, F. [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Shakir, Imran [Deanship of Scientific Research, College of Engineering, King Saud University, PO Box 800, Riyadh 11421 (Saudi Arabia); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2016-06-15

    Rare-earth (RE=La{sup 3+}, Nd{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) doped Ba{sub 2}NiCoRE{sub x}Fe{sub 28−x}O{sub 46} (x=0.25) hexagonal ferrites were synthesized for the first time via micro-emulsion route, which is a fast chemistry route for obtaining nano-sized ferrite powders. These nanomaterials were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well as vibrating sample magnetometer (VSM). The XRD analysis exhibited that all the samples crystallized into single X-type hexagonal phase. The crystalline size calculated by Scherrer's formula was found in the range 7–19 nm. The variations in lattice parameters elucidated the incorporation of rare-earth cations in these nanomaterials. FTIR absorption spectra of these X-type ferrites were investigated in the wave number range 500–2400 cm{sup −1.} Each spectrum exhibited absorption bands in the low wave number range, thereby confirming the X-type hexagonal structure. The enhancement in the coercivity was observed with the doping of rare-earth cations. The saturation magnetization was lowered owing to the redistribution of rare-earth cations on the octahedral site (3b{sub VI}). The higher values of coercivity (664–926 Oe) of these nanomaterials suggest their use in longitudinal recording media. - Graphical abstract: Nano-sized rare-earth (RE=La{sup 3+}, Nd{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) doped Ba{sub 2}NiCoRE{sub x}Fe{sub 28−x}O{sub 46} (x=0.25) hexagonal ferrites were synthesized for the first time via micro-emulsion route and the crystallite size was found in the range 7–19 nm. The enhancement in the coercivity was observed with the doping of rare-earth cations. The higher values of coercivity (664–926 Oe) of these nanomaterials suggest their use in longitudinal recording media. - Highlights: • Micro-emulsion route was used to synthesize Ba{sub 2}NiCoRE{sub x}Fe{sub 28−x}O{sub 46} ferrites. • The crystallite size was found

  9. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157:H7

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jianhan, E-mail: jianhan@cau.edu.cn [Ministry of Agriculture Key Laboratory of Agricultural Information Acquisition Technology (Beijing), 17 East Tsinghua Road, China Agricultural University, Mailbox 125, Beijing 100083 (China); Li, Min [College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 (China); Li, Yanbin [College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 (China); Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Chen, Qi [Modern Precision Agriculture System Integration Research Key Laboratory of Ministry of Education, China Agricultural University, Beijing 100083 (China)

    2015-03-15

    Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody–antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 µg/ml and 100 µg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 10{sup 2} to 10{sup 5} cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are

  10. Monte Carlo simulations of polyelectrolytes inside viral capsids

    Science.gov (United States)

    Angelescu, Daniel George; Bruinsma, Robijn; Linse, Per

    2006-04-01

    Structural features of polyelectrolytes as single-stranded RNA or double-stranded DNA confined inside viral capsids and the thermodynamics of the encapsidation of the polyelectrolyte into the viral capsid have been examined for various polyelectrolyte lengths by using a coarse-grained model solved by Monte Carlo simulations. The capsid was modeled as a spherical shell with embedded charges and the genome as a linear jointed chain of oppositely charged beads, and their sizes corresponded to those of a scaled-down T=3 virus. Counterions were explicitly included, but no salt was added. The encapisdated chain was found to be predominantly located at the inner capsid surface, in a disordered manner for flexible chains and in a spool-like structure for stiff chains. The distribution of the small ions was strongly dependent on the polyelectrolyte-capsid charge ratio. The encapsidation enthalpy was negative and its magnitude decreased with increasing polyelectrolyte length, whereas the encapsidation entropy displayed a maximum when the capsid and polyelectrolyte had equal absolute charge. The encapsidation process remained thermodynamically favorable for genome charges ca. 3.5 times the capsid charge. The chain stiffness had only a relatively weak effect on the thermodynamics of the encapsidation.

  11. Review of small synthetic molecules targeting HBV capsid assembly.

    Science.gov (United States)

    Liu, Na; Zhao, Fabao; Zhan, Peng; Liu, Xinyong

    2015-01-01

    Currently, the treatment for HBV infection suffers from adverse side effects and drug resistance. The dramatic development of new HBV inhibitors is focused on discovering diverse non-nucleoside compounds with either novel structures or new mechanisms of action. Capsid assembly is crucial to the completion of the viral life cycle, which makes it an attractive target for antivirus discovery. Inhibitors that block the formation of the HBV capsid have been developed, and several candidates have been proposed. In this review, we focus on the recent advances in several distinct classes of synthetic small molecular non-nucleosides targeting at the capsid assembly.

  12. Structure of the Triatoma virus capsid

    Energy Technology Data Exchange (ETDEWEB)

    Squires, Gaëlle; Pous, Joan [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Agirre, Jon [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rozas-Dennis, Gabriela S. [U.N.S., San Juan 670 (8000) Bahía Blanca (Argentina); U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Costabel, Marcelo D. [U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Marti, Gerardo A. [Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT, La Plata, CONICET-UNLP), Calle 2 No. 584 (1900) La Plata (Argentina); Navaza, Jorge; Bressanelli, Stéphane [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Guérin, Diego M. A., E-mail: diego.guerin@ehu.es [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rey, Felix A., E-mail: diego.guerin@ehu.es [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France)

    2013-06-01

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  13. Nano-sized Fe-metal catalyst on ZnO-SiO2: (photo-assisted deposition and impregnation) Synthesis routes and nanostructure characterization

    International Nuclear Information System (INIS)

    Mohamed, R.M.; Al-Rayyani, M.A.; Baeissa, E.S.; Mkhalid, I.A.

    2011-01-01

    Highlights: → We prepared Fe/ZnO-SiO 2 by two methods. → We tested photocatalytic activity for degradation of methylene blue dye. → We controlled band gap and size. → We found activity of Fe/ZnO-SiO 2 prepared by PAD is hightest photocatalytic activity. - Abstract: A nano-sized Fe metal on ZnO-SiO 2 was synthesized using the photo-assisted deposition (PAD) and impregnation routes. The obtained samples were characterized by a series of techniques including X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy, N 2 adsorption, extended X-ray absorption fine structure (EXAFS), and transmission electron microscopy (TEM). Photocatalytic reactivity using Fe-ZnO-SiO 2 catalysts under visible-light condition on the degradation of methylene blue dye was evaluated. The results of characterization reveal, a notable photocatalytic activity of PAD:Fe-ZnO-SiO 2 which was about 9 and 12 times higher than that of Img:Fe-ZnO-SiO 2 and ZnO-SiO 2 , respectively.

  14. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harzali, Hassen, E-mail: harzali@mines-albi.fr [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Saida, Fairouz; Marzouki, Arij; Megriche, Adel [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Baillon, Fabien; Espitalier, Fabienne [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT cedex 09 (France); Mgaidi, Arbi [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Taibah University, Faculty of Sciences & art, Al Ula (Saudi Arabia)

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P{sub diss}=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  15. Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors

    International Nuclear Information System (INIS)

    Zhang Weiwei; Zhang Junying; Chen Ziyu; Wang Tianmin; Zheng Shukai

    2010-01-01

    Low-temperature photoluminescent spectra of ZnGa 2 O 4 :Cr 3+ nano-sized phosphors calcined at different temperatures were reported. The fine structure of the emission spectra has been designated to Cr 3+ ions in different sites including ideal octahedral, Zn-interstitial, Ga ZN 4 -Zn Ga 6 sites and Ga 2 O 3 impurity. The vibronic sidebands for both Stokes' and anti-Stokes' sides are related to the host lattice vibrations, which were confirmed by IR and Raman spectra. Al 3+ is substituted in Ga 3+ sites to form Zn(Ga 1-y Al y ) 2 O 4 :Cr 0.01 3+ (0≤y≤0.5). The blue shift and luminescent intensity variations of the charge transfer band and 3d-3d transitions in the spectra caused by Al substitution were related to larger band gap and stronger crystal field, respectively. The calculated crystal-field parameters indicated that Al incorporation enhanced the crystal field strength and induced more trigonal distortion due to different radii of Al 3+ and Ga 3+ .

  16. Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri.

    Science.gov (United States)

    Saccà, Maria Ludovica; Fajardo, Carmen; Martinez-Gomariz, Montserrat; Costa, Gonzalo; Nande, Mar; Martin, Margarita

    2014-01-01

    Nanotoxicological studies were performed in vitro using the common soil bacterium Pseudomonas stutzeri to assess the potentially toxic impact of commercial nano-sized zero-valent iron (nZVI) particles, which are currently used for environmental remediation projects. The phenotypic response of P. stutzeri to nZVI toxicity includes an initial insult to the cell wall, as evidenced by TEM micrographs. Transcriptional analyses using genes of particular relevance in cellular activity revealed that no significant changes occurred among the relative expression ratios of narG, nirS, pykA or gyrA following nZVI exposure; however, a significant increase in katB expression was indicative of nZVI-induced oxidative stress in P. stutzeri. A proteomic approach identified two major defence mechanisms that occurred in response to nZVI exposure: a downregulation of membrane proteins and an upregulation of proteins involved in reducing intracellular oxidative stress. These biomarkers served as early indicators of nZVI response in this soil bacterium, and may provide relevant information for environmental hazard assessment.

  17. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent.

    Science.gov (United States)

    Lee, Chi-Hyeon; Truc, Nguyen Thi Thanh; Lee, Byeong-Kyu; Mitoma, Yoshiharu; Mallampati, Srinivasa Reddy

    2015-10-15

    This study was conducted to synthesize and apply a nano-size calcium dispersed reagent as an immobilization material for heavy metal-contaminated automobile shredder residues (ASR) dust/thermal residues in dry condition. Simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR dust/thermal residues (including bottom ash, cavity ash, boiler and bag filter ash). The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. The morphology and elemental composition of the nanometallic Ca/CaO-treated ASR residue were characterized by field emission scanning election microscopy combined with electron dispersive spectroscopy (FE-SEM/EDS). The results indicated that the amounts of heavy metals detectable on the ASR thermal residue surface decreased and the Ca/PO4 mass percent increased. X-ray diffraction (XRD) pattern analysis indicated that the main fraction of enclosed/bound materials on ASR residue included Ca/PO4- associated crystalline complexes, and that immobile Ca/PO4 salts remarkably inhibited the desorption of heavy metals from ASR residues. These results support the potential use of nanometallic Ca/CaO/PO4 as a simple, suitable and highly efficient material for the gentle immobilization of heavy metals in hazardous ASR thermal residue in dry condition. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Chiral resolution of salbutamol in plasma sample by a new chiral ligand-exchange chromatography method after its extraction with nano-sized imprinted polymer.

    Science.gov (United States)

    Alizadeh, Taher; Shamkhali, Amir Naser

    2016-01-15

    A new chromatographic procedure, based upon chiral ligand-exchange principal, was developed for the resolution of salbutamol enantiomers. The separation was carried out on a C18 column. (l)-Alanine and Cu(2+) were applied as chiral resolving agent and complexing ion, respectively. The kind of copper salt had definitive effect on the enantioseparation. Density functional theory (DFT) was used to substantiate the effect of various anions, accompanying Cu(2+), on the formation of ternary complexes, assumed to be created during separation process. The DFT results showed that the anion kind had huge effect on the stability difference between two corresponding diastereomeric complexes and their chemical structures. It was shown that the extent of participation of the chiral selector in the ternary diastereomeric complexes formation was managed by the anion kind, affecting thus the enantioseparation efficiency of the developed method. Water/methanol (70:30) mixture containing (l)-alanine-Cu(2+) (4:1) was found to be the best mobile phase for salbutamol enantioseparation. In order to analyze sulbutamol enantiomers in plasma samples, racemic salbutamol was first extracted from the samples via nano-sized salbutamol-imprinted polymer and then enantioseparated by the developed method. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Adsorption and Desorption Characteristics of Cd2+ and Pb2+ by Micro and Nano-sized Biogenic CaCO3

    Directory of Open Access Journals (Sweden)

    Renlu Liu

    2018-01-01

    Full Text Available The purpose of this study was to elucidate the characteristics and mechanisms of adsorption and desorption for heavy metals by micro and nano-sized biogenic CaCO3 induced by Bacillus subtilis, and the pH effect on adsorption was investigated. The results showed that the adsorption characteristics of Cd2+ and Pb2+ are well described by the Langmuir adsorption isothermal equation, and the maximum adsorption amounts for Cd2+ and Pb2+ were 94.340 and 416.667 mg/g, respectively. The maximum removal efficiencies were 97% for Cd2+, 100% for Pb2+, and the desorption rate was smaller than 3%. Further experiments revealed that the biogenic CaCO3 could maintain its high adsorption capability for heavy metals within wide pH ranges (3–8. The FTIR and XRD results showed that, after the biogenic CaCO3 adsorbed Cd2+ or Pb2+, it did not produce a new phase, which indicated that biogenic CaCO3 and heavy metal ions were governed by a physical adsorption process, and the high adsorptive capacity of biogenic CaCO3 for Cd2+ and Pb2+ were mainly attributed to its large total specific surface area. The findings could improve the state of knowledge about biogenic CaCO3 formation in the environment and its potential roles in the biogeochemical cycles of heavy metals.

  20. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques

    Directory of Open Access Journals (Sweden)

    M. Penchal Reddy

    2017-10-01

    Full Text Available In the present study, nano-sized SiC (0, 0.3, 0.5, 1.0 and 1.5 vol% reinforced aluminum (Al metal matrix composites were fabricated by microwave sintering and hot extrusion techniques. The structural (XRD, SEM, mechanical (nanoindentation, compression, tensile and thermal properties (co-efficient of thermal expansion-CTE of the developed Al-SiC nanocomposites were studied. The SEM/EDS mapping images show a homogeneous distribution of SiC nanoparticles into the Al matrix. A significant increase in the strength (compressive and tensile of the Al-SiC nanocomposites with the addition of SiC content is observed. However, it is noticed that the ductility of Al-SiC nanocomposites decreases with increasing volume fraction of SiC. The thermal analysis indicates that CTE of Al-SiC nanocomposites decreases with the progressive addition of hard SiC nanoparticles. Overall, hot extruded Al 1.5 vol% SiC nanocomposites exhibited the best mechanical and thermal performance as compared to the other developed Al-SiC nanocomposites. Keywords: Al-SiC nanocomposites, Microwave sintering, Hot extrusion, Mechanical properties, Thermal expansion

  1. Synthesis of bis- and tris(indolylmethanes catalyzed by an inorganic nano-sized catalyst followed by dehydrogenation to hyperconjugated products

    Directory of Open Access Journals (Sweden)

    Khorshidi Alireza

    2016-01-01

    Full Text Available A set of bis- and tris(indolylmethanes were prepared and dehydrogenated to their hyperconjugated products in a one-pot fashion. Nano-sized-SO3H functionalized mesoporous KIT-6 coated on magnetite nanoparticles (Fe3O4@SiO2@KIT-6-OSO3H was used as an efficient catalyst in the first step of synthesis, and dehydrogenation was performed by using (NH42S2O8 after removal of the catalyst. The catalyst was fully characterized by Fourier transform infrared spectroscopy (FT-IR, transmission electron microscopy (TEM and X-ray powder diffraction (XRD, as well as nitrogen adsorption-desorption isotherms. The bis- and tris(indolylmethanes were studied by UV-Vis spectroscopy before and after dehydrogenation, and effect of the ambient parameters on their spectra was investigated. It was found that bis- and tris(indolylmethanes have no considerable absorption in the visible range and what makes them colorful is partial dehydrogenation due to exposure to air. Our catalyst as a new combination of known materials, showed superiority in terms of yield, time, and mild reaction conditions in comparison with previous reports.

  2. Short communication: investigating the effect of saffron (Crocus sativus L.) nano-sizing on its colour extraction efficiency: a preliminary study.

    Science.gov (United States)

    Abootalebian, Mehrdad; Karbasi, Maryam; Sadeghi, Maliheh; Abdinian, Mahnaz; Polikarpov, Igor

    2017-10-01

    This study investigated the effect of saffron nano-sizing on its the colour extraction yield. The whole stigma was ball-milled at three different times (10, 20 and 100 h), immediately or with a 24 h delay was submitted to absorption test, and then the colour extraction efficiency was determined. When stigma was milled for 100 h, its particle size was reduced to less than 20 nm, as shown by SEM and TEM images, and its extraction efficiency was considerably increased by 19.8% as compared with the stigma blended for 10 min. However with a 24 h delay between the end of milling and absorption test, the yield of colour extraction significantly decreased. The recommended milling conditions resulting in extraction efficiency of 16.2% (in comparison with stigma blended for 10 min) were determined to be the milling for 10 h with initial tendering prior to milling operation.

  3. Effect of Pre-existing Nano Sized Precipitates on Microstructure and Mechanical Property of Al-0.2wt% Sc Highly Deformed by ARB Process

    Directory of Open Access Journals (Sweden)

    Ehsan Borhani

    2014-06-01

    Full Text Available The effect of pre-existing nano sized precipitates on the mechanisms and rate of grain refinement has been investigated during the severe plastic deformation. A binary Al–0.2Sc alloy, containing coherent Al3Sc particles, of 3.62 nm in diameter has been deformed by accumulative roll bonding up to 10 cycles. The resulting deformed structures were quantitatively analyzed using electron backscattered diffraction and transmission electron microscope techniques, and the results have been compared to those obtained from a solution treated Al–0.2Sc alloy, deformed up to same accumulative roll bonding cycles. The fraction of high-angle grain boundaries and grain size in all materials was increased and decreased gradually with increasing equivalent strain, respectively. However, the Aged-ARB alloy had relatively higher fraction of high-angle grain boundaries and smaller grain size than those of ST-ARB specimens at the same accumulative roll bonding cycles. It was found in an Al-0.2%Sc alloy that starting microstructures significantly affect the formation of ultrafine grains during severe plastic deformation. It was shown that the small Al3Sc precipitates are more effective on microstructural evolution during accumulative roll bonding process. Existence of fine precipitates in the starting material greatly accelerated the microstructure refinement. In this regards some unique phenomena, including softening during severe plastic deformation and dissolution of pre-existing Al3Sc, were observed.

  4. Effect of Different Nano-Sized Silica Sols as Supports on the Structure and Properties of Cu/SiO2 for Hydrogenation of Dimethyl Oxalate

    Directory of Open Access Journals (Sweden)

    Chuancai Zhang

    2017-02-01

    Full Text Available Cu/x-SiO2 catalysts with 4, 10, and 20 nm silica sols as supports was produced by ammonia evaporation method and characterized. Different nano-sized silica sols as supports significantly affected the structure and catalytic properties of the copper catalysts for ethylene glycol synthesis from dimethyl oxalate. Compared with Cu/20-SiO2 and Cu/4-SiO2 catalysts, the catalytic performance and stability of Cu/10-SiO2 catalyst were greatly enhanced. The Cu/10-SiO2 catalyst showed 99.9% conversion with 94% EG selectivity and a lifetime of over 3080 h if it is calculated by industrial weight liquid hourly space velocity (WLHSV of 0.5 h−1. The Cu/10-SiO2 catalyst has one of the longest lifetimes among the catalysts and is a good alternative catalyst for this reaction. Improvement in the catalytic performance and stability of Cu/10-SiO2 is attributed to the proper SBET, Dp and larger dispersion of copper. In addition, the supports of Cu/10-SiO2 catalyst have smaller particles than that of Cu/20-SiO2; thus, the migration and growth of copper species in catalysts are restrained during the reaction.

  5. The influence of pH and reaction time on the formation of FeSe{sub 2} upon selenite reduction by nano-sized pyrite-greigite

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mingliang [Sun Yat-sen Univ., Zhuhai (China). Sino-French Institute of Nuclear Engineering and Technology; Bardelli, Fabrizio; Ma, Bin; Charlet, Laurent [Grenoble Univ. (France). Environmental Geochemistry Group; Chen, Fanrong; Yang, Yongqiang [Chinese Academy of Sciences, Guangzhou (China). Key Laboratory of Mineralogy and Metallogeny; Chinese Academy of Sciences, Guangzhou (China). Guangdong Provincial Key Laboratory of Mineral Physics and Materials

    2016-11-01

    The influence of pH and reaction time on the formation of FeSe{sub 2} by reductive precipitation of Se(IV) with nano-sized pyrite-greigite was investigated. Reductive precipitation is an effective method of attenuating the mobility of {sup 79}Se, which is foreseen to be a dangerous radioisotope for the geological disposal of high-level radioactive waste (HLW). The results indicated that Se(0)was formed at pH <4.05, whereas, at pH > 6.07, considerable amount of FeSe{sub 2} was formed along with Se(0). These observations are in agreement with the thermodynamic predictions reported in this work. Furthermore, the formation of FeSe{sub 2} was found to continue by increasing the reaction time, indicating that the Se(0) formed in the early reaction stage is gradually transformed to FeSe{sub 2} upon the depletion of aqueous Se(IV). Since FeSe{sub 2} has a stronger reactivity than pyrite, it was proposed that greigite, rather than pyrite, was responsible for the formation of FeSe{sub 2}. The findings in this study are of interest for key geochemical processes governing the mobility of toxic {sup 79}Se in the environment in presence of iron sulfides.

  6. Nano structural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nano sized Particles of Both Starch and Silver

    International Nuclear Information System (INIS)

    Hebeish, A.; El-Rafie, M.H.; El-Sheikh, M.A.; El-Naggar, M.E.

    2013-01-01

    Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs) in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nano sized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM), particle size analyzer (PS), Polydispersity index (PdI), Zeta potential (ZP), XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm). The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs).

  7. Adsorption and Desorption Characteristics of Cd2+ and Pb2+ by Micro and Nano-sized Biogenic CaCO3

    Science.gov (United States)

    Liu, Renlu; Guan, Yong; Chen, Liang; Lian, Bin

    2018-01-01

    The purpose of this study was to elucidate the characteristics and mechanisms of adsorption and desorption for heavy metals by micro and nano-sized biogenic CaCO3 induced by Bacillus subtilis, and the pH effect on adsorption was investigated. The results showed that the adsorption characteristics of Cd2+ and Pb2+ are well described by the Langmuir adsorption isothermal equation, and the maximum adsorption amounts for Cd2+ and Pb2+ were 94.340 and 416.667 mg/g, respectively. The maximum removal efficiencies were 97% for Cd2+, 100% for Pb2+, and the desorption rate was smaller than 3%. Further experiments revealed that the biogenic CaCO3 could maintain its high adsorption capability for heavy metals within wide pH ranges (3–8). The FTIR and XRD results showed that, after the biogenic CaCO3 adsorbed Cd2+ or Pb2+, it did not produce a new phase, which indicated that biogenic CaCO3 and heavy metal ions were governed by a physical adsorption process, and the high adsorptive capacity of biogenic CaCO3 for Cd2+ and Pb2+ were mainly attributed to its large total specific surface area. The findings could improve the state of knowledge about biogenic CaCO3 formation in the environment and its potential roles in the biogeochemical cycles of heavy metals. PMID:29434577

  8. A theory for viral capsid assembly around electrostatic cores

    Science.gov (United States)

    Hagan, Michael F.

    2009-03-01

    We develop equilibrium and kinetic theories that describe the assembly of viral capsid proteins on a charged central core, as seen in recent experiments in which brome mosaic virus capsids assemble around nanoparticles functionalized with polyelectrolyte. We model interactions between capsid proteins and nanoparticle surfaces as the interaction of polyelectrolyte brushes with opposite charge using the nonlinear Poisson Boltzmann equation. The models predict that there is a threshold density of functionalized charge, above which capsids efficiently assemble around nanoparticles, and that light scatter intensity increases rapidly at early times without the lag phase characteristic of empty capsid assembly. These predictions are consistent with and enable interpretation of preliminary experimental data. However, the models predict a stronger dependence of nanoparticle incorporation efficiency on functionalized charge density than measured in experiments and do not completely capture a logarithmic growth phase seen in experimental light scatter. These discrepancies may suggest the presence of metastable disordered states in the experimental system. In addition to discussing future experiments for nanoparticle-capsid systems, we discuss broader implications for understanding assembly around charged cores such as nucleic acids.

  9. Enhancement of reactivity in Li4SiO4-based sorbents from the nano-sized rice husk ash for high-temperature CO2 capture

    International Nuclear Information System (INIS)

    Wang, Ke; Zhao, Pengfei; Guo, Xin; Li, Yimin; Han, Dongtai; Chao, Yang

    2014-01-01

    Highlights: • The Li 4 SiO 4 sorbent from nano-sized rice husk ash was prepared and characterized. • The Aerosil and Quartz were comparably used for synthesized Li 4 SiO 4 . • The structure of sorbent was depended on the morphology of heated silicon materials. • The pretreatment sorbent showed increase in the CO 2 uptake and kinetic behavior. • This promising sorbent also maintained higher capacities during the multiple cycles. - Abstract: Using the cost-effective, renewable and nano-sized of citric acid pretreatment rice husk ash (CRHA) as silicon source, high efficient Li 4 SiO 4 (lithium orthosilicate)-based sorbents (CRHA-Li 4 SiO 4 ) for high-temperature CO 2 capture were prepared through the solid-state reaction at lower temperature (700 °C). Two typical raw materials (nano-structured Aerosil and crystalline Quartz powders) were used to synthesize Li 4 SiO 4 sorbents (Aerosil-Li 4 SiO 4 and Quartz-Li 4 SiO 4 ) for comparison purposes. The phase composition behavior, surface area, and morphology of the silicon sources, heat treated raw materials and as-received Li 4 SiO 4 sorbents were studied by analytical techniques. The CO 2 adsorption capacity and adsorption–desorption performance were tested by the thermo-gravimetric analyses (CO 2 atmosphere) and a fixed bed reactor, respectively. Compared with the case of its original samples, the morphology of heat treated raw materials had a greater effect on the phase composition, microstructure, special surface area and CO 2 adsorption properties of their resulting sorbents. Although the calcined Quartz sample maintained the structure of micron particles, its reactivity was not enough to react completely with Li 2 CO 3 . Due to the greater reactivity of nanoparticles, Aerosil-Li 4 SiO 4 presented pure of Li 4 SiO 4 whereas it obtained large particles with dense morphology, which was coming from the pronounced fusing of silica nanoparticles during the calcined process. Conversely, CRHA-Li 4 SiO 4

  10. Crystal structure of an antiviral ankyrin targeting the HIV-1 capsid and molecular modeling of the ankyrin-capsid complex

    Science.gov (United States)

    Praditwongwan, Warachai; Chuankhayan, Phimonphan; Saoin, Somphot; Wisitponchai, Tanchanok; Lee, Vannajan Sanghiran; Nangola, Sawitree; Hong, Saw See; Minard, Philippe; Boulanger, Pierre; Chen, Chun-Jung; Tayapiwatana, Chatchai

    2014-08-01

    Ankyrins are cellular repeat proteins, which can be genetically modified to randomize amino-acid residues located at defined positions in each repeat unit, and thus create a potential binding surface adaptable to macromolecular ligands. From a phage-display library of artificial ankyrins, we have isolated AnkGAG1D4, a trimodular ankyrin which binds to the HIV-1 capsid protein N-terminal domain (NTDCA) and has an antiviral effect at the late steps of the virus life cycle. In this study, the determinants of the AnkGAG1D4-NTDCA interaction were analyzed using peptide scanning in competition ELISA, capsid mutagenesis, ankyrin crystallography and molecular modeling. We determined the AnkGAG1D4 structure at 2.2 Å resolution, and used the crystal structure in molecular docking with a homology model of HIV-1 capsid. Our results indicated that NTDCA alpha-helices H1 and H7 could mediate the formation of the capsid-AnkGAG1D4 binary complex, but the interaction involving H7 was predicted to be more stable than with H1. Arginine-18 (R18) in H1, and R132 and R143 in H7 were found to be the key players of the AnkGAG1D4-NTDCA interaction. This was confirmed by R-to-A mutagenesis of NTDCA, and by sequence analysis of trimodular ankyrins negative for capsid binding. In AnkGAG1D4, major interactors common to H1 and H7 were found to be S45, Y56, R89, K122 and K123. Collectively, our ankyrin-capsid binding analysis implied a significant degree of flexibility within the NTDCA domain of the HIV-1 capsid protein, and provided some clues for the design of new antivirals targeting the capsid protein and viral assembly.

  11. The role of stable interface in nano-sized FeNbO4 as anode electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Ting; Shi, Shaojun; Kong, Fanjun; Yang, Gang; Qian, Bin; Yin, Fan

    2016-01-01

    Graphical abstract: After dozens of charge/discharge cycles, the electrode of Nano-FNO remains the homogeneous combination with active material and conductive carbon, but the microcrystals in Micro-FNO electrode are cracked to small particles. The pulverization of Micro-FNO not only blocks the transfer of Li + and electrons due to the separation of the active material and conductive carbon, but also results in the falling of active material from the current collector. Nano-FNO can remain the excellent capacity after dozens of cycles. - Abstract: Nano-sized FeNbO 4 (Nano-FNO) with an average diameter of 120 nm is facilely prepared by co-precipitation method. Bulk FeNbO 4 (Micro-FNO) as a comparison synthesized by conventional solid-state synthesis has an average grain size of 3–10 μm. In the high-resolution transmission electron microscopy (HRTEM) images, Nano-FNO reveals an ordered single crystal structure, but Mirco-FNO is composed of disordered crystallites with different crystal orientation. Nano-FNO as anode material delivers the initial capacity of 475 mAh g −1 which is much higher than Micro-FNO electrode of 250 mAh g −1 .After dozens of charge/discharge cycles, the electrode of Nano-FNO remains the homogeneous combination with active material and conductive carbon, but the microcrystals in Micro-FNO electrode are cracked to small particles. The pulverization of Micro-FNO not only blocks the transfer of Li + and electrons due to the separation between the active material and conductive carbon, but also results in the falling of active material from the current collector. Compared with the weakened electrochemical performances of Micro-FNO, Nano-FNO remains the excellent capacity after dozens of cycles. The charge transfer resistances of Nano-FNO and Micro-FNO after several cycles are further studied by fitting their electrochemical impedance spectra.

  12. Nano-sized iron particles may induce multiple pathways of cell death following generation of mistranscripted RNA in human corneal epithelial cells.

    Science.gov (United States)

    Park, Eun-Jung; Chae, Jae-Byoung; Kang, Seuyoung; Lyu, Jungmook; Jeong, Uiseok; Yeom, Changjoo; Kim, Younghun; Chang, Jaerak

    2017-08-01

    Iron is closely associated with an ambient particulate matters-induced inflammatory response, and the cornea that covers the front of the eye, is among tissues exposed directly to ambient particulate matters. Prior to this study, we confirmed that nano-sized iron particles (FeNPs) can penetrate the cornea. Thus, we identified the toxic mechanism of FeNPs using human corneal epithelial cells. At 24h after exposure, FeNPs located inside autophagosome-like vacuoles or freely within human corneal epithelial cells. Level of inflammatory mediators including nitric oxide, cytokines, and a chemokine was notably elevated accompanied by the increased generation of reactive oxygen species. Additionally, cell proliferation dose-dependently decreased, and level of multiple pathways of cell death-related indicators was clearly altered following exposure to FeNPs. Furthermore, expression of gene encoding DNA binding protein inhibitor (1, 2, and 3), which are correlated to inhibition of the binding of mistranscripted RNA, was significantly down-regulated. More importantly, expression of p-Akt and caspase-3 and conversion to LC3B-II from LC3B-I was enhanced by pretreatment with a caspase-1 inhibitor. Taken together, we suggest that FeNPs may induce multiple pathways of cell death via generation of mistranscripted RNA, and these cell death pathways may influence by cross-talk. Furthermore, we propose the need of further study for the possibility of tumorigenesis following exposure to FeNPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dual mechanochemical immobilization of heavy metals and decomposition of halogenated compounds in automobile shredder residue using a nano-sized metallic calcium reagent.

    Science.gov (United States)

    Mallampati, Srinivasa Reddy; Lee, Byoung Ho; Mitoma, Yoshiharu; Simion, Cristian

    2016-11-01

    Simultaneous immobilization of heavy metals and decomposition of halogenated organic compounds in different fractions of automobile shredder residue (ASR) were achieved with a nano-sized metallic calcium through a 60-min ball milling treatment. Heavy metal (HM) immobilization and chlorinated/brominated compound (CBC) decomposition efficiencies both reached 90-100 %, after ball milling with nanometallic calcium/calcium oxide (Ca/CaO) dispersion, regardless of ASR particle size (1.0, 0.45-1.0, and 0.250 mm). Concentrations of leachable HMs substantially decreased to a level lower than the regulatory standard limits (Co and Cd 0.3 mg L -1 ; Cr 1.5 mg L -1 ; Fe, Pb, and Zn 3.0 mg L -1 ; Mn and Ni 1 mg L -1 ) proposed by the Korean hazardous waste elution standard regulatory threshold. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) element maps/spectra showed that while the amounts of HMs and CBCs detectable in ASR significantly decreased, the calcium mass percentage increased. X-ray powder diffraction (XRD) patterns indicate that the main fraction of enclosed/bound materials on ASR includes Ca-associated crystalline complexes that remarkably inhibit HM desorption and simultaneously transform dangerous CBCs into harmless compounds. The use of a nanometallic Ca/CaO mixture in a mechanochemical process to treat hazardous ASR (dry conditions) is an innovative approach to remediate cross-contaminated residues with heavy metals and halogenated compounds.

  14. Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes.

    Science.gov (United States)

    Jaeger, Alexandra; Weiss, Dieter G; Jonas, Ludwig; Kriehuber, Ralf

    2012-06-14

    Since nano-sized particles (NPs) are increasingly used in various fields of innovative biomedicine and industrial technologies, it is of importance to identify their potential human health risk. We investigated whether ROS-induced mitochondrial DNA damage is the mode of action of titanium dioxide-NPs (TiO2-NPs; ≤20 nm) to induce cytotoxic and genotoxic effects in human HaCaT keratinocytes in vitro. We showed that TiO2-NPs accumulate at the cell surface and are taken up by endocytosis. Micronucleus (MN) formation was found to be significantly maximal increased 24 h after treatment with 10 μg/ml and 48 h after treatment with 5 μg/ml TiO2-NPs about 1.8-fold respectively 2.2-fold of control. Mitochondrial DNA damage measured as "common deletion" was observed to be significantly 14-fold increased 72 h after treatment with 10 μg/ml TiO2-NPs when compared to control. Four hours after treatment with 5 and 50 μg/ml TiO2-NPs the level of ROS in HaCaT cells was found to be significantly increased about 7.5-fold respectively 16.7-fold of control. In conclusion, for the first time we demonstrate the induction of the mitochondrial "common deletion" in HaCaT cells following exposure to TiO2-NPs, which strongly suggests a ROS-mediated cytotoxic and genotoxic potential of NPs. However, the effects of the modification of TiO2-NPs, such as agglomeration, size distribution pattern and exposure time have to be further critically examined. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles.

    Science.gov (United States)

    Sharma, Deepti; Lee, Jongmin; Seo, Junyoung; Shin, Heungjoo

    2017-09-15

    We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005-10 mM) and high sensitivity (~993.91 µA mM -1 cm -2 ; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection.

  16. Nano-Sized Secondary Organic Aerosol of Diesel Engine Exhaust Origin Impairs Olfactory-Based Spatial Learning Performance in Preweaning Mice

    Directory of Open Access Journals (Sweden)

    Tin-Tin Win-Shwe

    2015-06-01

    Full Text Available The aims of our present study were to establish a novel olfactory-based spatial learning test and to examine the effects of exposure to nano-sized diesel exhaust-origin secondary organic aerosol (SOA, a model environmental pollutant, on the learning performance in preweaning mice. Pregnant BALB/c mice were exposed to clean air, diesel exhaust (DE, or DE-origin SOA (DE-SOA from gestational day 14 to postnatal day (PND 10 in exposure chambers. On PND 11, the preweaning mice were examined by the olfactory-based spatial learning test. After completion of the spatial learning test, the hippocampus from each mouse was removed and examined for the expressions of neurological and immunological markers using real-time RT-PCR. In the test phase of the study, the mice exposed to DE or DE-SOA took a longer time to reach the target as compared to the control mice. The expression levels of neurological markers such as the N-methyl-d-aspartate (NMDA receptor subunits NR1 and NR2B, and of immunological markers such as TNF-α, COX2, and Iba1 were significantly increased in the hippocampi of the DE-SOA-exposed preweaning mice as compared to the control mice. Our results indicate that DE-SOA exposure in utero and in the neonatal period may affect the olfactory-based spatial learning behavior in preweaning mice by modulating the expressions of memory function–related pathway genes and inflammatory markers in the hippocampus.

  17. Investigation of the cutaneous penetration behavior of dexamethasone loaded to nano-sized lipid particles by EPR spectroscopy, and confocal Raman and laser scanning microscopy.

    Science.gov (United States)

    Lohan, Silke B; Saeidpour, Siavash; Solik, Agnieszka; Schanzer, Sabine; Richter, Heike; Dong, Pin; Darvin, Maxim E; Bodmeier, Roland; Patzelt, Alexa; Zoubari, Gaith; Unbehauen, Michael; Haag, Rainer; Lademann, Jürgen; Teutloff, Christian; Bittl, Robert; Meinke, Martina C

    2017-07-01

    An improvement of the penetration efficiency combined with the controlled release of actives in the skin can facilitate the medical treatment of skin diseases immensely. Dexamethasone (Dx), a synthetic glucocorticoid, is frequently used for the treatment of inflammatory skin diseases. To investigate the penetration of nano-sized lipid particles (NLP) loaded with Dx in comparison to a commercially available base cream, different techniques were applied. Electron paramagnetic resonance (EPR) spectroscopy was used to monitor the penetration of Dx, which was covalently labeled with the spin probe 3-(Carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA). The penetration into hair follicles was studied using confocal laser scanning microscopy (CLSM) with curcumin-loaded NLP. The penetration of the vehicle was followed by confocal Raman microscopy (CRM). Penetration studies using excised porcine skin revealed a more than twofold higher penetration efficiency for DxPCA into the stratum corneum (SC) after 24h incubation compared to 4h incubation when loaded to the NLP, whereas when applied in the base cream, almost no further penetration was observed beyond 4h. The distribution of DxPCA within the SC was investigated by consecutive tape stripping. The release of DxPCA from the base cream after 24h in deeper SC layers and the viable epidermis was shown by EPR. For NLP, no release from the carrier was observed, although DxPCA was detectable in the skin after the complete SC was removed. This phenomenon can be explained by the penetration of the NLP into the hair follicles. However, penetration profiles measured by CRM indicate that NLP did not penetrate as deeply into the SC as the base cream formulation. In conclusion, NLP can improve the accumulation of Dx in the skin and provide a reservoir within the SC and in the follicular infundibula. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Compression Properties and Electrical Conductivity of In-Situ 20 vol.% Nano-Sized TiCx/Cu Composites with Different Particle Size and Morphology.

    Science.gov (United States)

    Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo

    2017-05-04

    The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiC x /Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiC x /Cu composite had higher ultimate compression strength (σ UCS ), yield strength (σ 0.2 ), and electric conductivity, compared with those of spherical-TiC x /Cu composite. The σ UCS , σ 0.2 , and electrical conductivity of cubic-TiC x /Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiC x /Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiC x /Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiC x /Cu composite with 46 nm in size. The σ UCS , σ 0.2 , and electrical conductivity of spherical-TiC x /Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiC x /Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiC x particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiC x particles with small size led to the compression strength reduction of the composites.

  19. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone

    Directory of Open Access Journals (Sweden)

    Johansson P

    2016-04-01

    Full Text Available Pär Johansson,1 Ryo Jimbo,1 Yoshihito Naito,2 Per Kjellin,3 Fredrik Currie,3 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Oral Implant Center, Tokushima University Hospital, Tokushima, Japan; 3Promimic AB, Stena Center, Göteborg, Sweden Abstract: Polyether ether ketone (PEEK possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test, and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05. The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01. With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential. Keywords: HA, PEEK, osseointegration, histology, orthopedics, in vivo

  20. Nano-Sized Secondary Organic Aerosol of Diesel Engine Exhaust Origin Impairs Olfactory-Based Spatial Learning Performance in Preweaning Mice.

    Science.gov (United States)

    Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Maekawa, Fumihiko; Yanagisawa, Rie; Furuyama, Akiko; Tsukahara, Shinji; Fujitani, Yuji; Hirano, Seishiro

    2015-06-30

    The aims of our present study were to establish a novel olfactory-based spatial learning test and to examine the effects of exposure to nano-sized diesel exhaust-origin secondary organic aerosol (SOA), a model environmental pollutant, on the learning performance in preweaning mice. Pregnant BALB/c mice were exposed to clean air, diesel exhaust (DE), or DE-origin SOA (DE-SOA) from gestational day 14 to postnatal day (PND) 10 in exposure chambers. On PND 11, the preweaning mice were examined by the olfactory-based spatial learning test. After completion of the spatial learning test, the hippocampus from each mouse was removed and examined for the expressions of neurological and immunological markers using real-time RT-PCR. In the test phase of the study, the mice exposed to DE or DE-SOA took a longer time to reach the target as compared to the control mice. The expression levels of neurological markers such as the N -methyl-d-aspartate (NMDA) receptor subunits NR1 and NR2B, and of immunological markers such as TNF-α, COX2, and Iba1 were significantly increased in the hippocampi of the DE-SOA-exposed preweaning mice as compared to the control mice. Our results indicate that DE-SOA exposure in utero and in the neonatal period may affect the olfactory-based spatial learning behavior in preweaning mice by modulating the expressions of memory function-related pathway genes and inflammatory markers in the hippocampus.

  1. Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Alizadeh, Taher; Ganjali, Mohammad Reza; Akhoundian, Maede; Norouzi, Parviz

    2016-01-01

    A carbon paste electrode was modified with a Ce(III)-imprinted polymer (Ce-IP) and used for voltammetric determination of Ce(III) ions in real water samples. Precipitation polymerization was used for synthesis of the nano-sized Ce-IP from vinylpyridine and methacrylic acid (acting as the complexing ligands and functional monomers), divinylbenzene (cross-linker) and AIBN as the radical starter. The Ce-IP was characterized by scanning electron microscopy and zeta potentials. A carbon paste electrode (CPE) was then impregnated with the Ce-IP and used for the extraction and subsequent determination of Ce(III). Oxidative square wave voltammetry showed the electrode to give a significantly better response than an electrode modified with the non-imprinted polymer. The addition of multiwalled carbon nanotubes to the Ce-IP-modified electrode further improves the signal, thereby increasing the sensitivity of the method. The effects of electrode composition, extraction pH value, volume and time were optimized. The electrode, if operated at a voltage of 1.05 V (vs. Ag/AgCl), displays a linear response to Ce(III) in the 1.0 μM to 25 pM concentration range, and the detection limit is 10 pM (at an S/N ratio of 3). The relative standard deviation of 5 separate determinations is 3.1 %. The method was successfully applied to the determination of Ce(III) in the spiked samples of drinking water and sea water. (author)

  2. Using Radiochromic Films to Characterize the Dispersion of ZrO{sub 2} Nano-sized Grain Clusters in Protective Polymer Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, C.C.P.; Nolasco, A.V. [Depto. de Engenharia Nuclear - DEN / UFMG - MG, Av. Antonio Carlos 6627, 31270-970 Belo Horizonte, MG (Brazil); Santos, A.P.; Faria, L.O. [Centro de Desenvolvimento da Tecnologia Nuclear, Av. Antonio Carlos 6627, C.P. 941, 30270-901, Belo Horizonte, MG (Brazil)

    2015-07-01

    . This result is discussed in terms of the high Z halides added to the sensitive layer of EB3 film, once the main components are C (42.3%), H (39.7%) and O (16.0%)1-2. Based on the above results, we have speculated about the abilities of XR-AQ films in the detection of the distribution of nano-sized particles that has high mass-energy attenuation coefficients for low energy x-rays, in polymer composites. In another investigation we tested the ability of XR-QA2 Gafchromic{sup R} films to evaluate the dispersion of ZrO{sub 2} nano-sized grain clusters in protective composites. The P(VDFTrFE)/ ZrO{sub 2} film was sandwiched between two XR-QA2 radiochromic films. In this setup, one radiochromic film is directly exposed to 100 mGy of the x-rays beam and another one measures the attenuated beam. After storage for 24 hours at room temperature under no light conditions, the irradiated radiochromic films were scanned under the same conditions in order to obtain a more reliable result. All films were scanned using the same size ROI in high resolution mode and saved as tagged image file format (TIFF). The untreated scanned image of the XR-AQ2 film directed exposed to the X-ray beam and the correspondent treated image with digital filters are shown. The untreated and treated image of the XR-AQ2 film that was exposed to the attenuated x-ray beam is shown. The image treated with digital filters seems to reproduce the dispersion of ZrO{sub 2} nano-sized grain clusters in the P(VDF-TrFE) copolymer matrix. This result is also discussed in terms of the high Z halides added to the sensitive layer of XR-AQ2 film and compared to the MEV images obtained from the P(VDF-TrFE)/ZrO{sub 2} composites. The results indicate a clear correlation between the 2D radiochromic image and the MEV photography.

  3. Cyclophilin A interacts with diverse lentiviral capsids

    Directory of Open Access Journals (Sweden)

    Emerman Michael

    2006-10-01

    Full Text Available Abstract Background The capsid (CA protein of HIV-1 binds with high affinity to the host protein cyclophilin A (CypA. This binding positively affects some early stage of the viral life-cycle because prevention of binding either by drugs that occupy that active site of cyclophilin A, by mutation in HIV-1 CA, or RNAi that knocks down intracellular CypA level diminishes viral infectivity. The closely related lentivirus, SIVcpz also binds CypA, but it was thought that this interaction was limited to the HIV-1/SIVcpz lineage because other retroviruses failed to interact with CypA in a yeast two-hybrid assay. Results We find that diverse lentiviruses, FIV and SIVagmTAN also bind to CypA. Mutagenesis of FIV CA showed that an amino acid that is in a homologous position to the proline at amino acid 90 of HIV-1 CA is essential for FIV interactions with CypA. Conclusion These results demonstrate that CypA binding to lentiviruses is more widespread than previously thought and suggest that this interaction is evolutionarily important for lentiviral infection.

  4. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157:H7

    Science.gov (United States)

    Lin, Jianhan; Li, Min; Li, Yanbin; Chen, Qi

    2015-03-01

    Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody-antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 μg/ml and 100 μg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 102 to 105 cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are practical for rapid

  5. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent

    International Nuclear Information System (INIS)

    Lee, Chi-Hyeon; Truc, Nguyen Thi Thanh; Lee, Byeong-Kyu; Mitoma, Yoshiharu; Mallampati, Srinivasa Reddy

    2015-01-01

    Graphical abstract: Schematic representation of possible mechanisms determining the heavy metals immobilization efficiencyof ASR dust/thermal residues after treatment with nanometallic Ca/CaO/PO 4 . - Highlights: • Nanometallic Ca/CaO/PO 4 for heavy metals immobilization in ASR residue. • Heavy metals immobilization in dry condition attained about 95–100%. • Remaining heavy metals were lower than the Korean standard regulatory limit. • The amounts of heavy metals detectable on the ASR dust surface decreased. • Nanometallic Ca/CaO/PO 4 has a promising potential for heavy metal remediation. - Abstract: This study was conducted to synthesize and apply a nano-size calcium dispersed reagent as an immobilization material for heavy metal-contaminated automobile shredder residues (ASR) dust/thermal residues in dry condition. Simple mixing with a nanometallic Ca/CaO/PO 4 dispersion mixture immobilized 95–100% of heavy metals in ASR dust/thermal residues (including bottom ash, cavity ash, boiler and bag filter ash). The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO 4 was lower than the Korean standard regulatory limit for hazardous waste landfills. The morphology and elemental composition of the nanometallic Ca/CaO-treated ASR residue were characterized by field emission scanning election microscopy combined with electron dispersive spectroscopy (FE-SEM/EDS). The results indicated that the amounts of heavy metals detectable on the ASR thermal residue surface decreased and the Ca/PO 4 mass percent increased. X-ray diffraction (XRD) pattern analysis indicated that the main fraction of enclosed/bound materials on ASR residue included Ca/PO 4 − associated crystalline complexes, and that immobile Ca/PO 4 salts remarkably inhibited the desorption of heavy metals from ASR residues. These results support the potential use of nanometallic Ca/CaO/PO 4 as a simple, suitable and highly efficient material for the gentle

  6. A study of variability of capsid protein genes of Radish mosaic virus

    OpenAIRE

    HOLÁ, Marcela

    2008-01-01

    The part of RNA2 genome segment of several isolates of Radish mosaic virus (RaMV) including capsid protein genes was sequenced. Variability of capsid protein genes among the isolates of Radish mosaic virus was studied.

  7. Biophysical characterization of the feline immunodeficiency virus p24 capsid protein conformation and in vitro capsid assembly.

    Directory of Open Access Journals (Sweden)

    Jennifer Serrière

    Full Text Available The Feline Immunodeficiency Virus (FIV capsid protein p24 oligomerizes to form a closed capsid that protects the viral genome. Because of its crucial role in the virion, FIV p24 is an interesting target for the development of therapeutic strategies, although little is known about its structure and assembly. We defined and optimized a protocol to overexpress recombinant FIV capsid protein in a bacterial system. Circular dichroism and isothermal titration calorimetry experiments showed that the structure of the purified FIV p24 protein was comprised mainly of α-helices. Dynamic light scattering (DLS and cross-linking experiments demonstrated that p24 was monomeric at low concentration and dimeric at high concentration. We developed a protocol for the in vitro assembly of the FIV capsid. As with HIV, an increased ionic strength resulted in FIV p24 assembly in vitro. Assembly appeared to be dependent on temperature, salt concentration, and protein concentration. The FIV p24 assembly kinetics was monitored by DLS. A limit end-point diameter suggested assembly into objects of definite shapes. This was confirmed by electron microscopy, where FIV p24 assembled into spherical particles. Comparison of FIV p24 with other retroviral capsid proteins showed that FIV assembly is particular and requires further specific study.

  8. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    Science.gov (United States)

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein. © 2014 The Authors.

  9. Modelling the self-assembly of virus capsids

    Science.gov (United States)

    Johnston, Iain G.; Louis, Ard A.; Doye, Jonathan P. K.

    2010-03-01

    We use computer simulations to study a model, first proposed by Wales (2005 Phil. Trans. R. Soc. A 363 357), for the reversible and monodisperse self-assembly of simple icosahedral virus capsid structures. The success and efficiency of assembly as a function of thermodynamic and geometric factors can be qualitatively related to the potential energy landscape structure of the assembling system. Even though the model is strongly coarse-grained, it exhibits a number of features also observed in experiments, such as sigmoidal assembly dynamics, hysteresis in capsid formation and numerous kinetic traps. We also investigate the effect of macromolecular crowding on the assembly dynamics. Crowding agents generally reduce capsid yields at optimal conditions for non-crowded assembly, but may increase yields for parameter regimes away from the optimum. Finally, we generalize the model to a larger triangulation number T = 3, and observe assembly dynamics more complex than that seen for the original T = 1 model.

  10. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    Science.gov (United States)

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  11. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly.

    Science.gov (United States)

    Gil-Ranedo, Jon; Hernando, Eva; Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M

    2015-06-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  12. Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model

    Science.gov (United States)

    Kao, Hao-Wen; Lin, Yi-Yu; Chen, Chao-Cheng; Chi, Kwan-Hwa; Tien, Der-Chi; Hsia, Chien-Chung; Lin, Wuu-Jyh; Chen, Fu-Du; Lin, Ming-Hsien; Wang, Hsin-Ell

    2014-07-01

    Gold nanoparticles (AuNPs) are widely applied to the diagnosis and treatment of cancer and can be modified to contain target-specific ligands via gold-thiolate bonding. This study investigated the pharmacokinetics and microdistribution of antibody-mediated active targeting gold nanoparticles in mice with subcutaneous lung carcinoma. We conjugated AuNPs with cetuximab (C225), an antibody-targeting epidermal growth factor receptor (EGFR), and then labeled with In-111, which created EGFR-targeted AuNPs. In vitro studies showed that after a 2 h incubation, the uptake of C225-conjugated AuNPs in high EGFR-expression A549 cells was 14.9-fold higher than that of PEGylated AuNPs; furthermore, uptake was also higher at 3.8-fold when MCF7 cells with lower EGFR-expression were used. MicroSPECT/CT imaging and a biodistribution study conducted by using a A549 tumor xenograft mouse model provided evidence of elevated uptake of the C225-conjugated AuNPs into the tumor cells as a result of active targeting. Moreover, the microdistribution of PEGylated AuNPs revealed that a large portion of AuNPs remained in the tumor interstitium, whereas the C225-conjugated AuNPs displayed enhanced internalization via antibody-mediated endocytosis. Our findings suggest that the anti-EGFR antibody-conjugated AuNPs are likely to be a plausible nano-sized vehicle for drug delivery to EGFR-expressing tumors.

  13. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Fujimoto, K. [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Nakagawa, A. [Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan); Nomoto, A. [Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021 (Japan)

    2014-10-28

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  14. Molecular characterization of capsid protein gene of potato virus X ...

    African Journals Online (AJOL)

    Molecular characterization of capsid protein gene of potato virus X from Pakistan. Arshad Jamal, Idrees Ahmad Nasir, Bushra Tabassum, Muhammad Tariq, Abdul Munim Farooq, Zahida Qamar, Mohsin Ahmad Khan, Nadeem Ahmad, Muhammad Shafiq, Muhammad Saleem Haider, M. Arshad Javed, Tayyab Husnain ...

  15. Giant capsids from lattice self-assembly of cyclodextrin complexes

    NARCIS (Netherlands)

    Yang, Shenyu; Yan, Yun; Huang, Jianbin; Petukhov, Andrei V.; Kroon - Batenburg, Loes M. J.; Drechsler, Markus; Zhou, Chengcheng; Tu, Mei; Granick, Steve; Jiang, Lingxiang

    2017-01-01

    Proteins can readily assemble into rigid, crystalline and functional structures such as viral capsids and bacterial compartments. Despite ongoing advances, it is still a fundamental challenge to design and synthesize protein-mimetic molecules to form crystalline structures. Here we report the

  16. Human rhinovirus capsid dynamics is controlled by canyon flexibility

    International Nuclear Information System (INIS)

    Reisdorph, Nichole; Thomas, John J.; Katpally, Umesh; Chase, Elaine; Harris, Ken; Siuzdak, Gary; Smith, Thomas J.

    2003-01-01

    Quantitative enzyme accessibility experiments using nano liquid chromatography electrospray mass spectrometry combined with limited proteolysis and isotope-labeling was used to examine the dynamic nature of the human rhinovirus (HRV) capsid in the presence of three antiviral compounds, a neutralizing Fab, and drug binding cavity mutations. Using these methods, it was found that the antivirals WIN 52084 and picovir (pleconaril) stabilized the capsid, while dansylaziridine caused destabilization. Site-directed mutations in the drug-binding cavity were found to stabilize the HRV14 capsid against proteolytic digestion in a manner similar to WIN 52084 and pleconaril. Antibodies that bind to the NIm-IA antigenic site and penetrate the canyon were also observed to protect the virion against proteolytic cleavage. These results demonstrate that quantifying the effects of antiviral ligands on protein 'breathing' can be used to compare their mode of action and efficacy. In this case, it is apparent that hydrophobic antiviral agents, antibodies, or mutations in the canyon region block viral breathing. Therefore, these studies demonstrate that mobility in the canyon region is a major determinant in capsid breathing

  17. Segmented conjugated polymers

    Indian Academy of Sciences (India)

    Segmented conjugated polymers, wherein the conjugation is randomly truncated by varying lengths of non-conjugated segments, form an interesting class of polymers as they not only represent systems of varying stiffness, but also ones where the backbone can be construed as being made up of chromophores of varying ...

  18. Periodic table of virus capsids: implications for natural selection and design.

    Science.gov (United States)

    Mannige, Ranjan V; Brooks, Charles L

    2010-03-04

    For survival, most natural viruses depend upon the existence of spherical capsids: protective shells of various sizes composed of protein subunits. So far, general evolutionary pressures shaping capsid design have remained elusive, even though an understanding of such properties may help in rationally impeding the virus life cycle and designing efficient nano-assemblies. This report uncovers an unprecedented and species-independent evolutionary pressure on virus capsids, based on the the notion that the simplest capsid designs (or those capsids with the lowest "hexamer complexity", C(h)) are the fittest, which was shown to be true for all available virus capsids. The theories result in a physically meaningful periodic table of virus capsids that uncovers strong and overarching evolutionary pressures, while also offering geometric explanations to other capsid properties (rigidity, pleomorphy, auxiliary requirements, etc.) that were previously considered to be unrelatable properties of the individual virus. Apart from describing a universal rule for virus capsid evolution, our work (especially the periodic table) provides a language with which highly diverse virus capsids, unified only by geometry, may be described and related to each other. Finally, the available virus structure databases and other published data reiterate the predicted geometry-derived rules, reinforcing the role of geometry in the natural selection and design of virus capsids.

  19. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations

    Science.gov (United States)

    Perilla, Juan R.; Schulten, Klaus

    2017-07-01

    Human immunodeficiency virus type 1 (HIV-1) infection is highly dependent on its capsid. The capsid is a large container, made of ~1,300 proteins with altogether 4 million atoms. Although the capsid proteins are all identical, they nevertheless arrange themselves into a largely asymmetric structure made of hexamers and pentamers. The large number of degrees of freedom and lack of symmetry pose a challenge to studying the chemical details of the HIV capsid. Simulations of over 64 million atoms for over 1 μs allow us to conduct a comprehensive study of the chemical-physical properties of an empty HIV-1 capsid, including its electrostatics, vibrational and acoustic properties, and the effects of solvent (ions and water) on the capsid. The simulations reveal critical details about the capsid with implications to biological function.

  20. Ultrasound-assisted combined with nano-sized molecularly imprinted polymer for selective extraction and pre-concentration of amitriptyline in human plasma with gas chromatography-flame detection.

    Science.gov (United States)

    Khanahmadzadeh, Salah; Tarigh, Ahmad

    2014-12-01

    A new process was developed for the selective extraction and pre-concentration of amitriptyline (AT) from human plasma using nano-sized molecularly imprinted polymer (MIP) with ultrasound-assisted extraction (UAE). The nano-sized AT imprinted polymer particles were synthesized using suspension polymerization in silicon oil and characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM) methods. With the application of optimized values, linearity values in the ranges of 20-200μgmL(-1) and 35-200μgmL(-1) were obtained for AT with the correlation of determination values (r(2)) 0.998 and 0.995 in water and plasma, respectively. The limits of detections (S/N=3) for AT were found to be 0.7 and 1.2μgmL(-1) in water and plasma, respectively. The enrichment factors of AT in water and plasma were 52 and 40, respectively. The inter-day precisions (%) were in the range of 5.8-9.2%. Relative recovery rates ranged from 82.4% to 92.3%. The method was successfully applied to determine AT in the human plasma samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Thin film assembly of nano-sized Zn(II)-8-hydroxy-5,7-dinitroquinolate by using successive ion layer adsorption and reaction (SILAR) technique: characterization and optical-electrical-photovoltaic properties.

    Science.gov (United States)

    Farag, A A M; Haggag, Sawsan M S; Mahmoud, Mohamed E

    2012-07-01

    A method is described for thin film assembly of nano-sized Zn(II)-8-hydroxy-5,7-dinitroquinolate complex, Zn[((NO(2))(2)-8HQ)(2)] by using successive ion layer adsorption and reaction (SILAR) technique. Highly homogeneous assembled nano-sized metal complex thin films with particle size distribution in the range 27-47nm was identified by using scanning electron microscopy (SEM). Zn[((NO(2))(2)-8HQ)(2)] and [(NO(2))(2)-8HQ] ligand were studied by thermal gravimetric analysis (TGA). Graphical representation of temperature dependence of the dark electrical conductivity produced two distinct linear parts for two activation energies at 0.377eV and 1.11eV. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with a fundamental band gap of 2.74eV. The dark current density-voltage (J-V) characteristics showed the rectification effect due to the formation of junction barrier of Zn[((NO(2))(2)-8HQ)(2)] complex film/n-Si interface. The photocurrent in the reverse direction is strongly increased by photo-illumination and the photovoltaic characteristics were also determined and evaluated. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Increasing Type 1 Poliovirus Capsid Stability by Thermal Selection

    Science.gov (United States)

    Adeyemi, Oluwapelumi O.; Nicol, Clare

    2016-01-01

    ABSTRACT Poliomyelitis is a highly infectious disease caused by poliovirus (PV). It can result in paralysis and may be fatal. Integrated global immunization programs using live-attenuated oral (OPV) and/or inactivated (IPV) PV vaccines have systematically reduced its spread and paved the way for eradication. Immunization will continue posteradication to ensure against reintroduction of the disease, but there are biosafety concerns for both OPV and IPV. They could be addressed by the production and use of virus-free virus-like particle (VLP) vaccines that mimic the “empty” capsids (ECs) normally produced in viral infection. Although ECs are antigenically indistinguishable from mature virus particles, they are less stable and readily convert into an alternative conformation unsuitable for vaccine purposes. Stabilized ECs, expressed recombinantly as VLPs, could be ideal candidate vaccines for a polio-free world. However, although genome-free PV ECs have been expressed as VLPs in a variety of systems, their inherent antigenic instability has proved a barrier to further development. In this study, we selected thermally stable ECs of type 1 PV (PV-1). The ECs are antigenically stable at temperatures above the conversion temperature of wild-type (wt) virions. We have identified mutations on the capsid surface and in internal networks that are responsible for EC stability. With reference to the capsid structure, we speculate on the roles of these residues in capsid stability and postulate that such stabilized VLPs could be used as novel vaccines. IMPORTANCE Poliomyelitis is a highly infectious disease caused by PV and is on the verge of eradication. There are biosafety concerns about reintroduction of the disease from current vaccines that require live virus for production. Recombinantly expressed virus-like particles (VLPs) could address these inherent problems. However, the genome-free capsids (ECs) of wt PV are unstable and readily change antigenicity to a form not

  3. Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages.

    Science.gov (United States)

    Callaway, Heather M; Feng, Kurtis H; Lee, Donald W; Allison, Andrew B; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan; Parrish, Colin R

    2017-01-15

    Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction

  4. Identification of a nuclear localization sequence in the polyomavirus capsid protein VP2

    Science.gov (United States)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the C-terminal (Glu307-Glu-Asp-Gly-Pro-Gln-Lys-Lys-Lys-Arg-Arg-Leu318) amino acid sequence of the polyomavirus minor capsid protein VP2. The importance of this amino acid sequence for nuclear transport of newly synthesized VP2 was demonstrated by a genetic "subtractive" study using the constructs pSG5VP2 (expressing full-length VP2) and pSG5 delta 3VP2 (expressing truncated VP2, lacking amino acids Glu307-Leu318). These constructs were transfected into COS-7 cells, and the intracellular localization of the VP2 protein was determined by indirect immunofluorescence. These studies revealed that the full-length VP2 was localized in the nucleus, while the truncated VP2 protein was localized in the cytoplasm and not transported to the nucleus. A biochemical "additive" approach was also used to determine whether this sequence could target nonnuclear proteins to the nucleus. A synthetic peptide identical to VP2 amino acids Glu307-Leu318 was cross-linked to the nonnuclear proteins bovine serum albumin (BSA) or immunoglobulin G (IgG). The conjugates were then labeled with fluorescein isothiocyanate and microinjected into the cytoplasm of NIH 3T6 cells. Both conjugates localized in the nucleus of the microinjected cells, whereas unconjugated BSA and IgG remained in the cytoplasm. Taken together, these genetic subtractive and biochemical additive approaches have identified the C-terminal sequence of polyoma-virus VP2 (containing amino acids Glu307-Leu318) as the NLS of this protein.

  5. The structure of avian polyomavirus reveals variably sized capsids, non-conserved inter-capsomere interactions, and a possible location of the minor capsid protein VP4

    International Nuclear Information System (INIS)

    Shen, Peter S.; Enderlein, Dirk; Nelson, Christian D.S.; Carter, Weston S.; Kawano, Masaaki; Xing Li; Swenson, Robert D.; Olson, Norman H.; Baker, Timothy S.; Cheng, R. Holland; Atwood, Walter J.; Johne, Reimar; Belnap, David M.

    2011-01-01

    Avian polyomavirus (APV) causes a fatal, multi-organ disease among several bird species. Using cryogenic electron microscopy and other biochemical techniques, we investigated the structure of APV and compared it to that of mammalian polyomaviruses, particularly JC polyomavirus and simian virus 40. The structure of the pentameric major capsid protein (VP1) is mostly conserved; however, APV VP1 has a unique, truncated C-terminus that eliminates an intercapsomere-connecting β-hairpin observed in other polyomaviruses. We postulate that the terminal β-hairpin locks other polyomavirus capsids in a stable conformation and that absence of the hairpin leads to the observed capsid size variation in APV. Plug-like density features were observed at the base of the VP1 pentamers, consistent with the known location of minor capsid proteins VP2 and VP3. However, the plug density is more prominent in APV and may include VP4, a minor capsid protein unique to bird polyomaviruses.

  6. Determination of viral capsid elastic properties from equilibrium thermal fluctuations.

    Science.gov (United States)

    May, Eric R; Brooks, Charles L

    2011-05-06

    We apply two-dimensional elasticity theory to viral capsids to develop a framework for calculating elastic properties of viruses from equilibrium thermal fluctuations of the capsid surface in molecular dynamics and elastic network model trajectories. We show that the magnitudes of the long wavelength modes of motion available in a simulation with all atomic degrees of freedom are recapitulated by an elastic network model. For the mode spectra to match, the elastic network model must be scaled appropriately by a factor which can be determined from an icosahedrally constrained all-atom simulation. With this method we calculate the two-dimensional Young's modulus Y, bending modulus κ, and Föppl-von Kármán number γ, for the T=1 mutant of the Sesbania mosaic virus. The values determined are in the range of previous theoretical estimates.

  7. The Architecture of Viral Capsids Based on Tiling Theory

    OpenAIRE

    Twarock, R.

    2005-01-01

    A vital constituent of a virus is its protein shell, called the viral capsid, that encapsulates and hence protects the viral genome. The surface structures of a large number of icosahedral viruses can be modelled via Caspar-Klug Theory, which has hence become one of the fundamental concepts in virology. However, growing experimental evidence have shown that a significant fraction of viruses falls out of the remit of this theory. Among them are the Papovaviridae, which are of particular intere...

  8. Nuclear Import of Hepatitis B Virus Capsids and Genome.

    Science.gov (United States)

    Gallucci, Lara; Kann, Michael

    2017-01-21

    Hepatitis B virus (HBV) is an enveloped pararetrovirus with a DNA genome, which is found in an up to 36 nm-measuring capsid. Replication of the genome occurs via an RNA intermediate, which is synthesized in the nucleus. The virus must have thus ways of transporting its DNA genome into this compartment. This review summarizes the data on hepatitis B virus genome transport and correlates the finding to those from other viruses.

  9. RNA folding inside a virus capsid and dimensional reduction.

    Science.gov (United States)

    Ghafouri, Rouzbeh; Bruinsma, Robijn; Rudnick, Joseph

    2006-03-01

    As RNA folds on itself , in certain conditions, it takes the form of a branched polymer. So the problem of RNA folding in a virus capsid is essentially the problem of a branched polymer in a confined environment. In this paper we attack the problem using the technique of dimensional reduction which relates a branched polymer with self interation in D dimension to a hardcore classical gas in (D-2) dimension. We look for phase transitions and intersting physical quantities such as pressure.

  10. Assembly of recombinant Israeli Acute Paralysis Virus capsids.

    Directory of Open Access Journals (Sweden)

    Junyuan Ren

    Full Text Available The dicistrovirus Israeli Acute Paralysis Virus (IAPV has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.

  11. A novelSulfolobusvirus with an exceptional capsid architecture.

    Science.gov (United States)

    Wang, Haina; Guo, Zhenqian; Feng, Hongli; Chen, Yufei; Chen, Xiuqiang; Li, Zhimeng; Hernández-Ascencio, Walter; Dai, Xin; Zhang, Zhenfeng; Zheng, Xiaowei; Mora-López, Marielos; Fu, Yu; Zhang, Chuanlun; Zhu, Ping; Huang, Li

    2017-12-06

    A novel archaeal virus, denoted Sulfolobus ellipsoid virus 1 (SEV1), was isolated from an acidic hot spring in Costa Rica. The morphologically unique virion of SEV1 contains a protein capsid with 16 regularly spaced striations and an 11-nm-thick envelope. The capsid exhibits an unusual architecture in which the viral DNA, probably in the form of a nucleoprotein filament, wraps around the longitudinal axis of the virion in a plane to form a multilayered disk-like structure with a central hole, and 16 of these structures are stacked to generate a spool-like capsid. SEV1 harbors a linear double-stranded DNA genome of ∼23 kb, which encodes 38 predicted open reading frames (ORFs). Among the few ORFs with a putative function is a gene encoding a protein-primed DNA polymerase. Six-fold symmetrical virus-associated pyramids (VAPs) appear on the surface of the SEV1-infected cells, which are ruptured to allow the formation of a hexagonal opening and subsequent release of the progeny virus particles. Notably, the SEV1 virions acquire the lipid membrane in the cytoplasm of the host cell. The lipid composition of the viral envelope correlates with that of the cell membrane. These results suggest the use of a unique mechanism by SEV1 in membrane biogenesis. IMPORTANCE Investigation of archaeal viruses has greatly expanded our knowledge of the virosphere and its role in the evolution of life. Here we show that Sulfolobus ellipsoid virus 1 (SEV1), an archaeal virus isolated from a hot spring in Costa Rica, exhibits a novel viral shape and an unusual capsid architecture. The SEV1 DNA wraps multiple times in a plane around the longitudinal axis of the virion to form a disk-like structure, and 16 of these structures are stacked to generate a spool-like capsid. The virus acquires its envelope intracellularly and exits the host cell by creating a hexagonal hole on the host cell surface. These results shed significant light on the diversity of viral morphogenesis. Copyright © 2017

  12. Sonochemical Synthesis of a New Nano Lead(II Coordination Polymer with 2,5-bis(2-pyridyl-3,4-diaza-2,4- hexadiene ligand: A Precursor to Produce Pure Phase Nano- sized Lead(II Oxide

    Directory of Open Access Journals (Sweden)

    A. Morsali

    2011-04-01

    Full Text Available A new nano-sized lead(II coordination polymer, [Pb(2-bpdh(NO32]n (1; (2-bpdh = 2,5-bis(2-pyridyl-3,4-diaza-2,4-hexadiene}, was synthesized by a sonochemical method. The structure of 1 may be considered coordination polymer of lead(II consist of metallocyclicchains formed by bridging NO3- and 2-bpdh ligands. The thermal stability of compound was studied by thermal gravimetric and differential thermal analyses. The new nano-structure coordination polymer was characterized by scanning electron microscopy, powder X-ray diffraction, elemental analyses and IR spectroscopy. The size of the samples was about 50 nm. Nano-particles of PbO were obtained by thermolysis of compound 1in oleic acid as a surfactant at 180 °C under air atmosphere and the size of this PbO particles were about 50 nm.

  13. Plant virus-resembling optical nano-materials conjugated with anti-EGFR for targeted cancer imaging

    Science.gov (United States)

    Gupta, Sharad; Wilder, Hailey; Rao, A. L. N.; Vullev, V. I.; Anvari, Bahman

    2012-03-01

    We recently reported the construction of a new type of optically active nano-particles composed of genome-depleted plant infecting brome mosaic virus (BMV) doped with indocyanine green (ICG), an FDA-approved chromophore . We refer to these constructs as optical viral ghosts (OVGs) since only the capsid protein (CP) subunits of BMV remain to encapsulate ICG. Herein, we covalently conjugated the surface of OVGs with anti-epidermal growth factor receptors (anti-EGFR) to target cancerous human bronchial epithelial cells (C-HBECs) in-vitro. Our preliminary results demonstrate the utility of conjugated OVGs for targeted imaging of cancer cells.

  14. How to disassemble a virus capsid: a computacional approach

    OpenAIRE

    Piedade, Claudio Alexandre

    2016-01-01

    Tese de mestrado, Bioquímica (Bioquímica) Universidade de Lisboa, Faculdade de Ciências 2016 Viruses are one of the main subjects of study in science due to the amount of diseases and deaths they cause, not only in humans, but also in other organisms, such as plants, other mammals, insects and microorganisms. This raises the need to understand the mechanisms of host infection. Capsids surround the genetic information of viruses and many experimental and theoretical studies have been done t...

  15. Probing the biophysical interplay between a viral genome and its capsid

    NARCIS (Netherlands)

    Snijder, J.; Uetrecht, C.; Rose, R. J.; Sanchez-Eugenia, R.; Marti, G. A.; Agirre, J.; Guerin, D. M. A.; Wuite, G. J. L.; Heck, A. J. R.; Roos, W. H.

    The interaction between a viral capsid and its genome governs crucial steps in the life cycle of a virus, such as assembly and genome uncoating. Tuning cargo-capsid interactions is also essential for successful design and cargo delivery in engineered viral systems. Here we investigate the interplay

  16. Probing the biophysical interplay between a viral genome and its capsid

    NARCIS (Netherlands)

    Snijder, J.; Uetrecht, C.; Rose, R.J.; Sanchez-Eugenia, R.; Marti, G.A.; Agirre, J.; Guérin, D.M.A.; Wuite, G.J.L.; Heck, A.J.R.; Roos, W.H.

    2013-01-01

    The interaction between a viral capsid and its genome governs crucial steps in the life cycle of a virus, such as assembly and genome uncoating. Tuning cargo–capsid interactions is also essential for successful design and cargo delivery in engineered viral systems. Here we investigate the interplay

  17. Probing the biophysical interplay between a viral genome and its capsid

    NARCIS (Netherlands)

    Snijder, J.; Uetrecht, C.; Rose, R.J.; Sanchez-Eugenia, R.; Marti, G.A.; Agirre, J.; Guérin, D.M.A.; Wuite, G.J.L.; Heck, A.J.R.; Roos, W.H.

    2013-01-01

    The interaction between a viral capsid and its genome governs crucial steps in the life cycle of a virus, such as assembly and genome uncoating. Tuning cargo-capsid interactions is also essential for successful design and cargo delivery in engineered viral systems. Here we investigate the interplay

  18. Antigenic structure of the capsid protein of rabbit haemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, Jorge L.; Cortes, Elena; Vela, Carmen

    1998-01-01

    Rabbit haemorrhagic disease virus (RHDV) causes an important disease in rabbits. The virus capsid is composed of a single 60 kDa protein. The capsid protein gene was cloned in Escherichia coli using the pET3 system, and the antigenic structure of RHDV VP60 was dissected using 11 monoclonal...

  19. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, Marielle [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Thelen, Nicolas; Thiry, Marc [University of Liege (ULg), GIGA-Neurosciences, Laboratory of Cellular and Tissular Biology, Liege (Belgium); Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Di Valentin, Emmanuel [University of Liege (ULg), GIGA-Viral Vectors Platform, Liege (Belgium); Bontems, Sébastien [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Sadzot-Delvaux, Catherine, E-mail: csadzot@ulg.ac.be [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium)

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  20. Inner tegument proteins of Herpes Simplex Virus are sufficient for intracellular capsid motility in neurons but not for axonal targeting

    Science.gov (United States)

    Müller, Oliver; Ivanova, Lyudmila; Bialy, Dagmara; Pohlmann, Anja; Binz, Anne; Hegemann, Maike; Viejo-Borbolla, Abel; Rosenhahn, Bodo; Bauerfeind, Rudolf; Sodeik, Beate

    2017-01-01

    Upon reactivation from latency and during lytic infections in neurons, alphaherpesviruses assemble cytosolic capsids, capsids associated with enveloping membranes, and transport vesicles harboring fully enveloped capsids. It is debated whether capsid envelopment of herpes simplex virus (HSV) is completed in the soma prior to axonal targeting or later, and whether the mechanisms are the same in neurons derived from embryos or from adult hosts. We used HSV mutants impaired in capsid envelopment to test whether the inner tegument proteins pUL36 or pUL37 necessary for microtubule-mediated capsid transport were sufficient for axonal capsid targeting in neurons derived from the dorsal root ganglia of adult mice. Such neurons were infected with HSV1-ΔUL20 whose capsids recruited pUL36 and pUL37, with HSV1-ΔUL37 whose capsids associate only with pUL36, or with HSV1-ΔUL36 that assembles capsids lacking both proteins. While capsids of HSV1-ΔUL20 were actively transported along microtubules in epithelial cells and in the somata of neurons, those of HSV1-ΔUL36 and -ΔUL37 could only diffuse in the cytoplasm. Employing a novel image analysis algorithm to quantify capsid targeting to axons, we show that only a few capsids of HSV1-ΔUL20 entered axons, while vesicles transporting gD utilized axonal transport efficiently and independently of pUL36, pUL37, or pUL20. Our data indicate that capsid motility in the somata of neurons mediated by pUL36 and pUL37 does not suffice for targeting capsids to axons, and suggest that capsid envelopment needs to be completed in the soma prior to targeting of herpes simplex virus to the axons, and to spreading from neurons to neighboring cells. PMID:29284065

  1. The smallest capsid protein mediates binding of the essential tegument protein pp150 to stabilize DNA-containing capsids in human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Xinghong Dai

    2013-08-01

    Full Text Available Human cytomegalovirus (HCMV is a ubiquitous herpesvirus that causes birth defects in newborns and life-threatening complications in immunocompromised individuals. Among all human herpesviruses, HCMV contains a much larger dsDNA genome within a similarly-sized capsid compared to the others, and it was proposed to require pp150, a tegument protein only found in cytomegaloviruses, to stabilize its genome-containing capsid. However, little is known about how pp150 interacts with the underlying capsid. Moreover, the smallest capsid protein (SCP, while dispensable in herpes simplex virus type 1, was shown to play essential, yet undefined, role in HCMV infection. Here, by cryo electron microscopy (cryoEM, we determine three-dimensional structures of HCMV capsid (no pp150 and virion (with pp150 at sub-nanometer resolution. Comparison of these two structures reveals that each pp150 tegument density is composed of two helix bundles connected by a long central helix. Correlation between the resolved helices and sequence-based secondary structure prediction maps the tegument density to the N-terminal half of pp150. The structures also show that SCP mediates interactions between the capsid and pp150 at the upper helix bundle of pp150. Consistent with this structural observation, ribozyme inhibition of SCP expression in HCMV-infected cells impairs the formation of DNA-containing viral particles and reduces viral yield by 10,000 fold. By cryoEM reconstruction of the resulting "SCP-deficient" viral particles, we further demonstrate that SCP is required for pp150 functionally binding to the capsid. Together, our structural and biochemical results point to a mechanism whereby SCP recruits pp150 to stabilize genome-containing capsid for the production of infectious HCMV virion.

  2. Interleukin-12 plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers

    Science.gov (United States)

    Dehshahri, Ali; Sadeghpour, Hossein; Kazemi Oskuee, Reza; Fadaei, Mahin; Sabahi, Zahra; Alhashemi, Samira Hossaini; Mohazabieh, Erfaneh

    2014-05-01

    In this study, l-thyroxine was covalently grafted on 25 kDa branched polyethylenimine (PEI), and the ability of the nano-sized polyplexes for transferring plasmid encoding interleukin-12 (IL-12) gene was evaluated. As there are several problems in systemic administration of recombinant IL-12 protein, local expression of the plasmid encoding IL-12 gene inside the tumor tissue has been considered as an effective alternative approach. The l-thyroxine-conjugated PEI polyplexes were prepared using pUMVC3-hIL12 plasmid, and their transfection activity was determined in HepG2 human liver carcinoma and Neuro2A neuroblastoma cell lines. The polyplexes characterized in terms of DNA condensation ability, particle size, zeta potential, and buffering capacity as well as cytotoxicity and resistance to enzyme digestion. The results revealed that l-thyroxine conjugation of PEI increased gene transfer ability by up to two fold relative to unmodified 25 kDa PEI, the gold standard for non-viral gene delivery, with the highest increase occurring at degrees of conjugation around 10 %. pDNA condensation tests and dynamic light scattering measurements exhibited the ability of PEI conjugates to optimally condense the plasmid DNA into polyplexes in the size range around 200 nm. The modified polymers showed remarkable buffering capacity and protection against enzymatic degradation comparable to that of unmodified PEI. These results suggest that l-thyroxine conjugation of PEI is a simple modification strategy for future investigations aimed at developing a targeting gene vehicle.

  3. Qualidade conjugal: mapeando conceitos

    Directory of Open Access Journals (Sweden)

    Clarisse Mosmann

    2006-12-01

    Full Text Available Apesar da ampla utilização do conceito de qualidade conjugal, identifica-se falta de clareza conceitual acerca das variáveis que o compõem. Esse artigo apresenta revisão da literatura na área com o objetivo de mapear o conceito de qualidade conjugal. Foram analisadas sete principais teorias sobre o tema: Troca Social, Comportamental, Apego, Teoria da Crise, Interacionismo Simbólico. Pelos postulados propostos nas diferentes teorias, podem-se identificar três grupos de variáveis fundamentais na definição da qualidade conjugal: recursos pessoais dos cônjuges, contexto de inserção do casal e processos adaptativos. Neste sentido, a qualidade conjugal é resultado do processo dinâmico e interativo do casal, razão deste caráter multidimensional.

  4. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y

    2006-01-01

    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  5. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  6. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    International Nuclear Information System (INIS)

    Kim, Yoon Sik; Seo, Hyun Wook; Jung, Guhung

    2015-01-01

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H 2 O 2 and GSH modulate HBV capsid assembly. • H 2 O 2 facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H 2 O 2 and GSH induce conformation change of Hsp90

  7. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  8. Revised Mimivirus major capsid protein sequence reveals intron-containing gene structure and extra domain

    Directory of Open Access Journals (Sweden)

    Suzan-Monti Marie

    2009-05-01

    Full Text Available Abstract Background Acanthamoebae polyphaga Mimivirus (APM is the largest known dsDNA virus. The viral particle has a nearly icosahedral structure with an internal capsid shell surrounded with a dense layer of fibrils. A Capsid protein sequence, D13L, was deduced from the APM L425 coding gene and was shown to be the most abundant protein found within the viral particle. However this protein remained poorly characterised until now. A revised protein sequence deposited in a database suggested an additional N-terminal stretch of 142 amino acids missing from the original deduced sequence. This result led us to investigate the L425 gene structure and the biochemical properties of the complete APM major Capsid protein. Results This study describes the full length 3430 bp Capsid coding gene and characterises the 593 amino acids long corresponding Capsid protein 1. The recombinant full length protein allowed the production of a specific monoclonal antibody able to detect the Capsid protein 1 within the viral particle. This protein appeared to be post-translationnally modified by glycosylation and phosphorylation. We proposed a secondary structure prediction of APM Capsid protein 1 compared to the Capsid protein structure of Paramecium Bursaria Chlorella Virus 1, another member of the Nucleo-Cytoplasmic Large DNA virus family. Conclusion The characterisation of the full length L425 Capsid coding gene of Acanthamoebae polyphaga Mimivirus provides new insights into the structure of the main Capsid protein. The production of a full length recombinant protein will be useful for further structural studies.

  9. Modeling and simulation of the mechanical response from nanoindentation test of DNA-filled viral capsids.

    Science.gov (United States)

    Ahadi, Aylin; Johansson, Dan; Evilevitch, Alex

    2013-03-01

    Viruses can be described as biological objects composed mainly of two parts: a stiff protein shell called a capsid, and a core inside the capsid containing the nucleic acid and liquid. In many double-stranded DNA bacterial viruses (aka phage), the volume ratio between the liquid and the encapsidated DNA is approximately 1:1. Due to the dominant DNA hydration force, water strongly mediates the interaction between the packaged DNA strands. Therefore, water that hydrates the DNA plays an important role in nanoindentation experiments of DNA-filled viral capsids. Nanoindentation measurements allow us to gain further insight into the nature of the hydration and electrostatic interactions between the DNA strands. With this motivation, a continuum-based numerical model for simulating the nanoindentation response of DNA-filled viral capsids is proposed here. The viral capsid is modeled as large- strain isotropic hyper-elastic material, whereas porous elasticity is adopted to capture the mechanical response of the filled viral capsid. The voids inside the viral capsid are assumed to be filled with liquid, which is modeled as a homogenous incompressible fluid. The motion of a fluid flowing through the porous medium upon capsid indentation is modeled using Darcy's law, describing the flow of fluid through a porous medium. The nanoindentation response is simulated using three-dimensional finite element analysis and the simulations are performed using the finite element code Abaqus. Force-indentation curves for empty, partially and completely DNA-filled capsids are directly compared to the experimental data for bacteriophage λ. Material parameters such as Young's modulus, shear modulus, and bulk modulus are determined by comparing computed force-indentation curves to the data from the atomic force microscopy (AFM) experiments. Predictions are made for pressure distribution inside the capsid, as well as the fluid volume ratio variation during the indentation test.

  10. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    Energy Technology Data Exchange (ETDEWEB)

    Hespenheide, B M [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States); Jacobs, D J [Department of Physics and Astronomy, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8268 (United States); Thorpe, M F [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States)

    2004-11-10

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  11. Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami.

    Science.gov (United States)

    Stephanopoulos, Nicholas; Liu, Minghui; Tong, Gary J; Li, Zhe; Liu, Yan; Yan, Hao; Francis, Matthew B

    2010-07-14

    DNA origami was used as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. To do this, we first modified the interior surface of bacteriophage MS2 capsids with fluorescent dyes as a model cargo. An unnatural amino acid on the external surface was then coupled to DNA strands that were complementary to those extending from origami tiles. Two different geometries of DNA tiles (rectangular and triangular) were used. The capsids associated with tiles of both geometries with virtually 100% efficiency under mild annealing conditions, and the location of capsid immobilization on the tile could be controlled by the position of the probe strands. The rectangular tiles and capsids could then be arranged into one-dimensional arrays by adding DNA strands linking the corners of the tiles. The resulting structures consisted of multiple capsids with even spacing (approximately 100 nm). We also used a second set of tiles that had probe strands at both ends, resulting in a one-dimensional array of alternating capsids and tiles. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multicomponent systems from biological scaffolds using the power of rationally engineered DNA nanostructures.

  12. Structure of the capsid of Kilham rat virus from small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wobbe, C.R.; Mitra, S.; Ramakrishnan, V.

    1984-12-18

    The structure of empty capsids of Kilham rat virus, an autonomous parvovirus with icosahedral symmetry, was investigated by small-angle neutron scattering. From the forward scatter, the molecular weight was determined to be 4.0 x 10(6), and from the Guinier region, the radius of gyration was found to be 105 A in D2O and 104 A in H/sub 2/O. On the basis of the capsid molecular weight and the molecular weights and relative abundances of the capsid proteins, the authors propose that the capsid has a triangulation number of 1. Extended scattering curves and mathematical modeling revealed that the capsid consists of two shells of protein, the inner shell extending from 58 to 91 A in D2O and from 50 to 91 A in H/sub 2/O and containing 11% of the capsid scattering mass, and the outer shell extending to 121 A in H/sub 2/O and D2O. The inner shell appears to have a higher content of basic amino acids than the outer shell, based on its lower scattering density in D2O than in H/sub 2/O. The authors propose that all three capsid proteins contribute to the inner shell and that this basic region serves DNA binding and partial charge neutralization functions.

  13. A molecular breadboard: Removal and replacement of subunits in a hepatitis B virus capsid.

    Science.gov (United States)

    Lee, Lye Siang; Brunk, Nicholas; Haywood, Daniel G; Keifer, David; Pierson, Elizabeth; Kondylis, Panagiotis; Wang, Joseph Che-Yen; Jacobson, Stephen C; Jarrold, Martin F; Zlotnick, Adam

    2017-11-01

    Hepatitis B virus (HBV) core protein is a model system for studying assembly and disassembly of icosahedral structures. Controlling disassembly will allow re-engineering the 120 subunit HBV capsid, making it a molecular breadboard. We examined removal of subunits from partially crosslinked capsids to form stable incomplete particles. To characterize incomplete capsids, we used two single molecule techniques, resistive-pulse sensing and charge detection mass spectrometry. We expected to find a binomial distribution of capsid fragments. Instead, we found a preponderance of 3 MDa complexes (90 subunits) and no fragments smaller than 3 MDa. We also found 90-mers in the disassembly of uncrosslinked HBV capsids. 90-mers seem to be a common pause point in disassembly reactions. Partly explaining this result, graph theory simulations have showed a threshold for capsid stability between 80 and 90 subunits. To test a molecular breadboard concept, we showed that missing subunits could be refilled resulting in chimeric, 120 subunit particles. This result may be a means of assembling unique capsids with functional decorations. © 2017 The Protein Society.

  14. Spectrum designation and effect of Al substitution on the luminescence of Cr{sup 3+} doped ZnGa{sub 2}O{sub 4} nano-sized phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weiwei [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhang Junying, E-mail: zjy@buaa.edu.c [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Chen Ziyu; Wang Tianmin [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zheng Shukai [College of Electronic and Information Engineering, Hebei University, Baoding 071200 (China)

    2010-10-15

    Low-temperature photoluminescent spectra of ZnGa{sub 2}O{sub 4}:Cr{sup 3+} nano-sized phosphors calcined at different temperatures were reported. The fine structure of the emission spectra has been designated to Cr{sup 3+} ions in different sites including ideal octahedral, Zn-interstitial, Ga{sub ZN}{sup 4}-Zn{sub Ga}{sup 6} sites and Ga{sub 2}O{sub 3} impurity. The vibronic sidebands for both Stokes' and anti-Stokes' sides are related to the host lattice vibrations, which were confirmed by IR and Raman spectra. Al{sup 3+} is substituted in Ga{sup 3+} sites to form Zn(Ga{sub 1-y}Al{sub y}){sub 2}O{sub 4}:Cr{sub 0.01}{sup 3+} (0{<=}y{<=}0.5). The blue shift and luminescent intensity variations of the charge transfer band and 3d-3d transitions in the spectra caused by Al substitution were related to larger band gap and stronger crystal field, respectively. The calculated crystal-field parameters indicated that Al incorporation enhanced the crystal field strength and induced more trigonal distortion due to different radii of Al{sup 3+} and Ga{sup 3+}.

  15. Synthesis of nano-sized stereoselective imprinted polymer by copolymerization of (S)-2-(acrylamido) propanoic acid and ethylene glycol dimethacrylate in the presence of racemic propranolol and copper ion.

    Science.gov (United States)

    Alizadeh, Taher; Bagherzadeh, Azam; Shamkhali, Amir Nasser

    2016-06-01

    A new chiral functional monomer of (S)-2-(acrylamido) propanoic acid was obtained by reaction of (l)-alanine with acryloyl chloride. The resulting monomer was characterized by FT-IR and HNMR and then utilized for the preparation of chiral imprinted polymer (CIP). This was carried out by copolymerization of (l)-alanine-derived chiral monomer and ethylene glycol dimethacrylate, in the presence of racemic propranolol and copper nitrate, via precipitation polymerization technique, resulting in nano-sized networked polymer particles. The polymer obtained was characterized by scanning electron microscopy and FT-IR. The non-imprinted polymer was also synthesized and used as blank polymer. Density functional theory (DFT) was also employed to optimize the structures of two diasterometric ternary complexes, suspected to be created in the pre-polymerization step, by reaction of optically active isomers of propranolol, copper ion and (S)-2-(acrylamido) propanoic acid. Relative energies and other characteristics of the described complexes, calculated by the DFT, predicted the higher stability of (S)-propranolol involved complex, compared to (R)-propranolol participated complex. Practical batch extraction test which employed CIP as solid phase adsorbent, indicated that the CIP recognized selectively (S)-propranolol in the racemic mixture of propranolol; whereas, the non-imprinted polymer (NIP) showed no differentiation capability between two optically active isomers of propranolol. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. ATP-Driven Contraction of Phage T3 Capsids with DNA Incompletely Packaged In Vivo

    Directory of Open Access Journals (Sweden)

    Philip Serwer

    2017-05-01

    Full Text Available Adenosine triphosphate (ATP cleavage powers packaging of a double-stranded DNA (dsDNA molecule in a pre-assembled capsid of phages that include T3. Several observations constitute a challenge to the conventional view that the shell of the capsid is energetically inert during packaging. Here, we test this challenge by analyzing the in vitro effects of ATP on the shells of capsids generated by DNA packaging in vivo. These capsids retain incompletely packaged DNA (ipDNA and are called ipDNA-capsids; the ipDNA-capsids are assumed to be products of premature genome maturation-cleavage. They were isolated via preparative Nycodenz buoyant density centrifugation. For some ipDNA-capsids, Nycodenz impermeability increases hydration and generates density so low that shell hyper-expansion must exist to accommodate associated water. Electron microscopy (EM confirmed hyper-expansion and low permeability and revealed that 3.0 mM magnesium ATP (physiological concentration causes contraction of hyper-expanded, lowpermeability ipDNA-capsids to less than mature size; 5.0 mM magnesium ATP (border of supraphysiological concentration or more disrupts them. Additionally, excess sodium ADP reverses 3.0 mM magnesium ATP-induced contraction and re-generates hyper-expansion. The Nycodenz impermeability implies assembly perfection that suggests selection for function in DNA packaging. These findings support the above challenge and can be explained via the assumption that T3 DNA packaging includes a back-up cycle of ATP-driven capsid contraction and hyper-expansion.

  17. Dynamic allostery governs cyclophilin A-HIV capsid interplay.

    Science.gov (United States)

    Lu, Manman; Hou, Guangjin; Zhang, Huilan; Suiter, Christopher L; Ahn, Jinwoo; Byeon, In-Ja L; Perilla, Juan R; Langmead, Christopher J; Hung, Ivan; Gor'kov, Peter L; Gan, Zhehong; Brey, William; Aiken, Christopher; Zhang, Peijun; Schulten, Klaus; Gronenborn, Angela M; Polenova, Tatyana

    2015-11-24

    Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactions with the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of conformational dynamics on the nanosecond to millisecond timescale in HIV-1 CA assemblies in the escape from CypA dependence, by magic-angle spinning (MAS) NMR and molecular dynamics (MD). Through the analysis of backbone (1)H-(15)N and (1)H-(13)C dipolar tensors and peak intensities from 3D MAS NMR spectra of wild-type and the A92E and G94D CypA escape mutants, we demonstrate that assembled CA is dynamic, particularly in loop regions. The CypA loop in assembled wild-type CA from two strains exhibits unprecedented mobility on the nanosecond to microsecond timescales, and the experimental NMR dipolar order parameters are in quantitative agreement with those calculated from MD trajectories. Remarkably, the CypA loop dynamics of wild-type CA HXB2 assembly is significantly attenuated upon CypA binding, and the dynamics profiles of the A92E and G94D CypA escape mutants closely resemble that of wild-type CA assembly in complex with CypA. These results suggest that CypA loop dynamics is a determining factor in HIV-1's escape from CypA dependence.

  18. Dynamic allostery governs cyclophilin A–HIV capsid interplay

    Science.gov (United States)

    Lu, Manman; Hou, Guangjin; Zhang, Huilan; Suiter, Christopher L.; Ahn, Jinwoo; Byeon, In-Ja L.; Langmead, Christopher J.; Hung, Ivan; Gor'kov, Peter L.; Gan, Zhehong; Brey, William; Aiken, Christopher; Zhang, Peijun; Schulten, Klaus; Gronenborn, Angela M.; Polenova, Tatyana

    2015-01-01

    Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactions with the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of conformational dynamics on the nanosecond to millisecond timescale in HIV-1 CA assemblies in the escape from CypA dependence, by magic-angle spinning (MAS) NMR and molecular dynamics (MD). Through the analysis of backbone 1H-15N and 1H-13C dipolar tensors and peak intensities from 3D MAS NMR spectra of wild-type and the A92E and G94D CypA escape mutants, we demonstrate that assembled CA is dynamic, particularly in loop regions. The CypA loop in assembled wild-type CA from two strains exhibits unprecedented mobility on the nanosecond to microsecond timescales, and the experimental NMR dipolar order parameters are in quantitative agreement with those calculated from MD trajectories. Remarkably, the CypA loop dynamics of wild-type CA HXB2 assembly is significantly attenuated upon CypA binding, and the dynamics profiles of the A92E and G94D CypA escape mutants closely resemble that of wild-type CA assembly in complex with CypA. These results suggest that CypA loop dynamics is a determining factor in HIV-1's escape from CypA dependence. PMID:26553990

  19. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  20. Quasicrystalline and crystalline types of local protein order in capsids of small viruses

    Science.gov (United States)

    Konevtsova, O. V.; Pimonov, V. V.; Lorman, V. L.; Rochal, S. B.

    2017-07-01

    Like metal alloys and micellar systems in soft matter, the viral capsid structures can be of crystalline and quasicrystalline types. We reveal the local quasicrystalline order of proteins in small spherical viral capsids using their nets of dodecahedral type. We show that the structure of some of the viral shells is well described in terms of a chiral pentagonal tiling, whose nodes coincide with centers of mass of protein molecules. The chiral protein packing found in these capsids originates from the pentagonal Penrose tiling (PPT), due to a specific phason reconstruction needed to fit the protein order at the adjacent dodecahedron faces. Via examples of small spherical viral shells and geminate capsid of a Maize Streak virus, we discuss the benefits and shortcomings of the usage of a dodecahedral net in comparison to icosahedral one, which is commonly applied for the modeling of viral shells with a crystalline local order.

  1. Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion.

    Science.gov (United States)

    Bosse, Jens B; Hogue, Ian B; Feric, Marina; Thiberge, Stephan Y; Sodeik, Beate; Brangwynne, Clifford P; Enquist, Lynn W

    2015-10-20

    The nuclear chromatin structure confines the movement of large macromolecular complexes to interchromatin corrals. Herpesvirus capsids of approximately 125 nm assemble in the nucleoplasm and must reach the nuclear membranes for egress. Previous studies concluded that nuclear herpesvirus capsid motility is active, directed, and based on nuclear filamentous actin, suggesting that large nuclear complexes need metabolic energy to escape nuclear entrapment. However, this hypothesis has recently been challenged. Commonly used microscopy techniques do not allow the imaging of rapid nuclear particle motility with sufficient spatiotemporal resolution. Here, we use a rotating, oblique light sheet, which we dubbed a ring-sheet, to image and track viral capsids with high temporal and spatial resolution. We do not find any evidence for directed transport. Instead, infection with different herpesviruses induced an enlargement of interchromatin domains and allowed particles to diffuse unrestricted over longer distances, thereby facilitating nuclear egress for a larger fraction of capsids.

  2. Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface

    Science.gov (United States)

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  3. Pt, Co–Pt and Fe–Pt alloy nanoclusters encapsulated in virus capsids

    International Nuclear Information System (INIS)

    Okuda, M; Eloi, J-C; Jones, S E Ward; Schwarzacher, W; Verwegen, M; Cornelissen, J J L M

    2016-01-01

    Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl 4 ] − by NaBH 4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co–Pt and Fe–Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid. (paper)

  4. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  5. Photoluminescence in conjugated polymers

    International Nuclear Information System (INIS)

    Furst, J.E.; Laugesen, R.; Dastoor, P.; McNeill, C.

    2002-01-01

    Full text: Conjugated polymers combine the electronic and optical properties of semiconductors with the processability of polymers. They contain a sequence of alternate single and double carbon bonds so that the overlap of unhybridised p z orbitals creates a delocalised ρ system which gives semiconducting properties with p-bonding (valence) and p* -antibonding (conduction) bands. Photoluminesence (PL) in conjugated polymers results from the radiative decay of singlet excitons confined to a single chain. The present work is the first in a series of studies in our laboratory that will characterize the optical properties of conjugated polymers. The experiment involves the illumination of thin films of conjugated polymer with UV light (I=360 nm) and observing the subsequent fluorescence using a custom-built, fluorescence spectrometer. Photoluminesence spectra provide basic information about the structure of the polymer film. A typical spectrum is shown in the accompanying figure. The position of the first peak is related to the polymer chain length and resolved multiple vibronic peaks are an indication of film structure and morphology. We will also present results related to the optical degradation of these materials when exposed to air and UV light

  6. Ultraviolet phase conjugation

    International Nuclear Information System (INIS)

    Slatkine, M.; Bigio, I.J.; Fisher, R.A.; Maloney, M.L.; Busse, J.R.; Tercovich, R.G.; Feldman, B.J.

    1981-01-01

    Diffraction-limited phase conjugate reflection of an injection-locked high-power (approx. 1 MW) ultraviolet excimer laser beam has been demonstrated via stimulated Brillouin scattering. Reflectivities higher than 70% were attained. Limitations as well as coherence and power requirements for image retention are discussed

  7. Crisis and Conjugal Power

    Science.gov (United States)

    Bahr, Stephen L.; Rollins, Boyd C.

    1971-01-01

    It was hypothesized that the more equalitarian the conjugal power structure in a noncrisis situation, the more likely the relative marital power will change during a crisis. This was tested using an observational experimental method, and the hypothesis was supported. (Author/CG)

  8. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  9. Residues of the UL25 Protein of Herpes Simplex Virus That Are Required for Its Stable Interaction with Capsids

    Science.gov (United States)

    Cockrell, Shelley K.; Huffman, Jamie B.; Toropova, Katerina; Conway, James F.; Homa, Fred L.

    2011-01-01

    The herpes simplex virus 1 (HSV-1) UL25 gene product is a minor capsid component that is required for encapsidation, but not cleavage, of replicated viral DNA. UL25 is located on the capsid surface in a proposed heterodimer with UL17, where five copies of the heterodimer are found at each of the capsid vertices. Previously, we demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids. To further define the UL25 capsid binding domain, we generated recombinant viruses with either small truncations or amino acid substitutions in the UL25 N terminus. Studies of these mutants demonstrated that there are two important regions within the capsid binding domain. The first 27 amino acids are essential for capsid binding of UL25, while residues 26 to 39, which are highly conserved in the UL25 homologues of other alphaherpesviruses, were found to be critical for stable capsid binding. Cryo-electron microscopy reconstructions of capsids containing either a small tag on the N terminus of UL25 or the green fluorescent protein (GFP) fused between amino acids 50 and 51 of UL25 demonstrate that residues 1 to 27 of UL25 contact the hexon adjacent to the penton. A second region, most likely centered on amino acids 26 to 39, contacts the triplex that is one removed from the penton. Importantly, both of these UL25 capsid binding regions are essential for the stable packaging of full-length viral genomes. PMID:21411517

  10. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    Science.gov (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  11. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization.

    Directory of Open Access Journals (Sweden)

    Anna D Koromyslova

    2017-11-01

    Full Text Available Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42 were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14, allosteric interference (Nano-32, and violation of normal capsid morphology (Nano-26 and Nano-85. Finally, we showed that two Nanobodies (Nano-26 and Nano-85 not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great

  12. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization

    Science.gov (United States)

    2017-01-01

    Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs) are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14), allosteric interference (Nano-32), and violation of normal capsid morphology (Nano-26 and Nano-85). Finally, we showed that two Nanobodies (Nano-26 and Nano-85) not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great potential to

  13. Olefin metathesis in nano-sized systems

    OpenAIRE

    Astruc, Didier; Diallo, Abdou K; Gatard, Sylvain; Liang, Liyuan; Ornelas, Cátia; Martinez, Victor; Méry, Denise; Ruiz, Jaime

    2011-01-01

    The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i) The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP) or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM), cross metathesis (CM), enyne metathesis reactions (EYM) – for reactions in w...

  14. Olefin metathesis in nano-sized systems

    Directory of Open Access Journals (Sweden)

    Denise Méry

    2011-01-01

    Full Text Available The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM, cross metathesis (CM, enyne metathesis reactions (EYM – for reactions in water without a co-solvent and (ii construction and functionalization of dendrimers by CM reactions.

  15. Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells.

    Science.gov (United States)

    Stephanopoulos, Nicholas; Tong, Gary J; Hsiao, Sonny C; Francis, Matthew B

    2010-10-26

    Bacteriophage MS2 was used to construct a targeted, multivalent photodynamic therapy vehicle for the treatment of Jurkat leukemia T cells. The self-assembling spherical virus capsid was modified on the interior surface with up to 180 porphyrins capable of generating cytotoxic singlet oxygen upon illumination. The exterior of the capsid was modified with ∼20 copies of a Jurkat-specific aptamer using an oxidative coupling reaction targeting an unnatural amino acid. The capsids were able to target and selectively kill more than 76% of the Jurkat cells after only 20 min of illumination. Capsids modified with a control DNA strand did not target Jurkat cells, and capsids modified with the aptamer were found to be specific for Jurkat cells over U266 cells (a control B cell line). The doubly modified capsids were also able to kill Jurkat cells selectively even when mixed with erythrocytes, suggesting the possibility of using our system to target blood-borne cancers or other pathogens in the blood supply.

  16. How viral capsids adapt to mismatched cargoes—identifying mechanisms of morphology control with simulations

    Science.gov (United States)

    Elrad, Oren

    2009-03-01

    During the replication of many viruses, hundreds to thousands of protein subunits assemble around the viral nucleic acid to form a protein shell called a capsid. Most viruses form one particular structure with astonishing fidelity; yet, recent experiments demonstrate that capsids can assemble with different sizes and morphologies to accommodate nucleic acids or other cargoes such as functionalized nanoparticles. In this talk, we will explore the mechanisms of simultaneous assembly and cargo encapsidation with a computational model that describes the assembly of icosahedral capsids around functionalized nanoparticles. With this model, we find parameter values for which subunits faithfully form empty capsids with a single morphology, but adaptively assemble into different icosahedral morphologies around nanoparticles with different diameters. Analyzing trajectories in which adaptation is or is not successful sheds light on the mechanisms by which capsid morphology may be controlled in vitro and in vivo, and suggests experiments to test these mechanisms. We compare the simulation results to recent experiments in which Brome Mosaic Virus capsid proteins assemble around functionalized nanoparticles, and describe how future experiments can test the model predictions.

  17. Oral Administration of Astrovirus Capsid Protein Is Sufficient To Induce Acute Diarrhea In Vivo

    Directory of Open Access Journals (Sweden)

    Victoria A. Meliopoulos

    2016-11-01

    Full Text Available The disease mechanisms associated with the onset of astrovirus diarrhea are unknown. Unlike other enteric virus infections, astrovirus infection is not associated with an inflammatory response or cellular damage. In vitro studies in differentiated Caco-2 cells demonstrated that human astrovirus serotype 1 (HAstV-1 capsid protein alone disrupts the actin cytoskeleton and tight junction complex, leading to increased epithelial barrier permeability. In this study, we show that oral administration of purified recombinant turkey astrovirus 2 (TAstV-2 capsid protein results in acute diarrhea in a dose- and time-dependent manner in turkey poults. Similarly to that induced by infectious virus, TAstV-2 capsid-induced diarrhea was independent of inflammation or histological changes but was associated with increased intestinal barrier permeability, as well as redistribution of sodium hydrogen exchanger 3 (NHE3 from the membrane to the cytoplasm of the intestinal epithelium. Unlike other viral enterotoxins that have been identified, astrovirus capsid induces diarrhea after oral administration, reproducing the natural route of infection and demonstrating that ingestion of intact noninfectious capsid protein may be sufficient to provoke acute diarrhea. Based on these data, we hypothesize that the astrovirus capsid acts like an enterotoxin and induces intestinal epithelial barrier dysfunction.

  18. Three-dimensional simulation of nanoindentation response of viral capsids. Shape and size effects.

    Science.gov (United States)

    Ahadi, Aylin; Colomo, Josep; Evilevitch, Alex

    2009-03-19

    The nanoindentation response of empty viral capsids is modeled using three-dimensional finite element analysis. Simulation with two different geometries, spherical and icosahedral, is performed using the finite element code Abaqus. The capsids are modeled as nonlinear Hookean elastic, and both small and large deformation analysis is performed. The Young's modulus is determined by calibrating the force-indentation curve to data from atomic force microscopy (AFM) experiments. Force-indentation curves for three different viral capsids are directly compared to experimental data. Predictions are made for two additional viral capsids. The results from the simulation showed a good agreement with AFM data. The paper demonstrates that over the entire range of virus sizes (or Foppl-von Karman numbers) spherical and icosahedral models yield different force responses. In particular, it is shown that capsids with dominantly spherical shape (for low Foppl-von Karman numbers) exhibit nearly linear relationship between force and indentation, which has been experimentally observed on the viral shell studies so far. However, we predict that capsids with significant faceting (for large Foppl-von Karman numbers) and thus more pronounced icosahedral shape will exhibit rather nonlinear deformation behavior.

  19. Synthesis of nano-sized stereoselective imprinted polymer by copolymerization of (S)-2-(acrylamido) propanoic acid and ethylene glycol dimethacrylate in the presence of racemic propranolol and copper ion

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Taher, E-mail: talizadeh@ut.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Bagherzadeh, Azam; Shamkhali, Amir Nasser [Department of Applied Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-06-01

    A new chiral functional monomer of (S)-2-(acrylamido) propanoic acid was obtained by reaction of (L)-alanine with acryloyl chloride. The resulting monomer was characterized by FT-IR and HNMR and then utilized for the preparation of chiral imprinted polymer (CIP). This was carried out by copolymerization of (L)-alanine-derived chiral monomer and ethylene glycol dimethacrylate, in the presence of racemic propranolol and copper nitrate, via precipitation polymerization technique, resulting in nano-sized networked polymer particles. The polymer obtained was characterized by scanning electron microscopy and FT-IR. The non-imprinted polymer was also synthesized and used as blank polymer. Density functional theory (DFT) was also employed to optimize the structures of two diasterometric ternary complexes, suspected to be created in the pre-polymerization step, by reaction of optically active isomers of propranolol, copper ion and (S)-2-(acrylamido) propanoic acid. Relative energies and other characteristics of the described complexes, calculated by the DFT, predicted the higher stability of (S)-propranolol involved complex, compared to (R)-propranolol participated complex. Practical batch extraction test which employed CIP as solid phase adsorbent, indicated that the CIP recognized selectively (S)-propranolol in the racemic mixture of propranolol; whereas, the non-imprinted polymer (NIP) showed no differentiation capability between two optically active isomers of propranolol. - Highlights: • A new chiral functional monomer of (S)-2-(acrylamido) propanoic acid was synthesized. • (S)-propranolol-selective imprinted polymer was synthesized using the chiral monomer. • Racemic propranolol mixed with Cu(II) was used as template in the imprinting. • Density functional theory was employed to clarify the imprinting mechanism. • (S)-propranolol-Cu(II) complex was shown to conduct the imprinting process.

  20. Effect of pulsed and continuous ultrasound on structural and magnetic properties of nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite

    Science.gov (United States)

    Hassen, Harzali; Adel, Megriche; Arbi, Mgaidi

    2018-03-01

    Ultrasound-assisted co-precipitation has been used to prepare nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite. Continuous (C-US) and pulsed (P-US) ultrasound modes are used at constant frequency = 20 kHz, reaction time = 2 h and pulse durations of 10 s on and 10 s off. All experiments were conducted at two temperatures 90 and 100°C. Samples were characterized by X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), N2 adsorption isotherms at 77 k analysis (BET), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. A nanocrystalline single-phase with particle size in the range 12-18 nm is obtained in both modes: continuous and pulsed ultrasound mode. FT-IR measurements show two absorption bands assigned to the tetrahedral and octahedral vibrations (ν1 and ν2) characteristics of cubic spinel ferrite. The specific surface area (S BET) is in the range of 110-140 m2 g-1 and an average pore size between 5.5 and 6.5 nm. The lowest values are obtained in pulsed mode. Finally, this work shows that the magnetic properties are affected by the ultrasound conditions, without affecting the particle shape. The saturation magnetization (Ms) values obtained for all samples are comparable. In P-US mode, the saturation magnetization (Ms) increases as temperature increases. Moreover, P-US mode opens a new avenue for synthesis of NiCuZn ferrites.

  1. Synthesis of nano-sized stereoselective imprinted polymer by copolymerization of (S)-2-(acrylamido) propanoic acid and ethylene glycol dimethacrylate in the presence of racemic propranolol and copper ion

    International Nuclear Information System (INIS)

    Alizadeh, Taher; Bagherzadeh, Azam; Shamkhali, Amir Nasser

    2016-01-01

    A new chiral functional monomer of (S)-2-(acrylamido) propanoic acid was obtained by reaction of (L)-alanine with acryloyl chloride. The resulting monomer was characterized by FT-IR and HNMR and then utilized for the preparation of chiral imprinted polymer (CIP). This was carried out by copolymerization of (L)-alanine-derived chiral monomer and ethylene glycol dimethacrylate, in the presence of racemic propranolol and copper nitrate, via precipitation polymerization technique, resulting in nano-sized networked polymer particles. The polymer obtained was characterized by scanning electron microscopy and FT-IR. The non-imprinted polymer was also synthesized and used as blank polymer. Density functional theory (DFT) was also employed to optimize the structures of two diasterometric ternary complexes, suspected to be created in the pre-polymerization step, by reaction of optically active isomers of propranolol, copper ion and (S)-2-(acrylamido) propanoic acid. Relative energies and other characteristics of the described complexes, calculated by the DFT, predicted the higher stability of (S)-propranolol involved complex, compared to (R)-propranolol participated complex. Practical batch extraction test which employed CIP as solid phase adsorbent, indicated that the CIP recognized selectively (S)-propranolol in the racemic mixture of propranolol; whereas, the non-imprinted polymer (NIP) showed no differentiation capability between two optically active isomers of propranolol. - Highlights: • A new chiral functional monomer of (S)-2-(acrylamido) propanoic acid was synthesized. • (S)-propranolol-selective imprinted polymer was synthesized using the chiral monomer. • Racemic propranolol mixed with Cu(II) was used as template in the imprinting. • Density functional theory was employed to clarify the imprinting mechanism. • (S)-propranolol-Cu(II) complex was shown to conduct the imprinting process.

  2. Limited cross-reactivity of mouse monoclonal antibodies against Dengue virus capsid protein among four serotypes

    Directory of Open Access Journals (Sweden)

    Noda M

    2012-11-01

    Full Text Available Megumi Noda,1 Promsin Masrinoul,1 Chaweewan Punkum,1 Chonlatip Pipattanaboon,2,3 Pongrama Ramasoota,2,4 Chayanee Setthapramote,2,3 Tadahiro Sasaki,6 Mikiko Sasayama,1 Akifumi Yamashita,1,5 Takeshi Kurosu,6 Kazuyoshi Ikuta,6 Tamaki Okabayashi11Mahidol-Osaka Center for Infectious Diseases, 2Center of Excellence for Antibody Research, 3Department of Microbiology and Immunology, 4Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; 5Graduate School of Life Science, Tohoku University, Sendai, Miyagi, 6Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, JapanBackground: Dengue illness is one of the important mosquito-borne viral diseases in tropical and subtropical regions. Four serotypes of dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4 are classified in the Flavivirus genus of the family Flaviviridae. We prepared monoclonal antibodies against DENV capsid protein from mice immunized with DENV-2 and determined the cross-reactivity with each serotype of DENV and Japanese encephalitis virus.Methods and results: To clarify the relationship between the cross-reactivity of monoclonal antibodies and the diversity of these viruses, we examined the situations of flaviviruses by analyses of phylogenetic trees. Among a total of 60 prepared monoclonal antibodies specific for DENV, five monoclonal antibodies stained the nuclei of infected cells and were found to be specific to the capsid protein. Three were specific to DENV-2, while the other two were cross-reactive with DENV-2 and DENV-4. No monoclonal antibodies were cross-reactive with all four serotypes. Phylogenetic analysis of DENV amino acid sequences of the capsid protein revealed that DENV-2 and DENV-4 were clustered in the same branch, while DENV-1 and DENV-3 were clustered in the other branch. However, these classifications of the capsid protein were different from those of the

  3. High Mobility Conjugated Polymers

    Science.gov (United States)

    2007-10-20

    blends with poly(3- hexylthiophene) (PHT) could be readily fabricated as uniform nanofibers by co- electrospinning their solutions with another solution...We have demonstrated that nanofibers of conjugated 10 - polymers and their blends could be conveniently fabricated by electrospinning . Furthermore, we...luminance o - - characteristics of an ITO/ PEDOT /TAPC k D r a Vol gt, V, (V) /BPQ-PPO/LiF/A! device are shown in Fig. 30. (A) Current density-voltage

  4. Dengue virus capsid protein usurps lipid droplets for viral particle formation.

    Directory of Open Access Journals (Sweden)

    Marcelo M Samsa

    2009-10-01

    Full Text Available Dengue virus is responsible for the highest rates of disease and mortality among the members of the Flavivirus genus. Dengue epidemics are still occurring around the world, indicating an urgent need of prophylactic vaccines and antivirals. In recent years, a great deal has been learned about the mechanisms of dengue virus genome amplification. However, little is known about the process by which the capsid protein recruits the viral genome during encapsidation. Here, we found that the mature capsid protein in the cytoplasm of dengue virus infected cells accumulates on the surface of ER-derived organelles named lipid droplets. Mutagenesis analysis using infectious dengue virus clones has identified specific hydrophobic amino acids, located in the center of the capsid protein, as key elements for lipid droplet association. Substitutions of amino acid L50 or L54 in the capsid protein disrupted lipid droplet targeting and impaired viral particle formation. We also report that dengue virus infection increases the number of lipid droplets per cell, suggesting a link between lipid droplet metabolism and viral replication. In this regard, we found that pharmacological manipulation of the amount of lipid droplets in the cell can be a means to control dengue virus replication. In addition, we developed a novel genetic system to dissociate cis-acting RNA replication elements from the capsid coding sequence. Using this system, we found that mislocalization of a mutated capsid protein decreased viral RNA amplification. We propose that lipid droplets play multiple roles during the viral life cycle; they could sequester the viral capsid protein early during infection and provide a scaffold for genome encapsidation.

  5. Structural Characterization of H-1 Parvovirus: Comparison of Infectious Virions to Empty Capsids

    Science.gov (United States)

    Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert

    2013-01-01

    The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors. PMID:23449783

  6. Structure of a Human Astrovirus Capsid-Antibody Complex and Mechanistic Insights into Virus Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanoff, Walter A.; Campos, Jocelyn; Perez, Edmundo I.; Yin, Lu; Alexander, David L.; DuBois, Rebecca M. (UCSC)

    2016-11-02

    ABSTRACT

    Human astroviruses (HAstVs) are a leading cause of viral diarrhea in young children, the immunocompromised, and the elderly. There are no vaccines or antiviral therapies against HAstV disease. Several lines of evidence point to the presence of protective antibodies in healthy adults as a mechanism governing protection against reinfection by HAstV. However, development of anti-HAstV therapies is hampered by the gap in knowledge of protective antibody epitopes on the HAstV capsid surface. Here, we report the structure of the HAstV capsid spike domain bound to the neutralizing monoclonal antibody PL-2. The antibody uses all six complementarity-determining regions to bind to a quaternary epitope on each side of the dimeric capsid spike. We provide evidence that the HAstV capsid spike is a receptor-binding domain and that the antibody neutralizes HAstV by blocking virus attachment to cells. We identify patches of conserved amino acids that overlap the antibody epitope and may comprise a receptor-binding site. Our studies provide a foundation for the development of therapies to prevent and treat HAstV diarrheal disease.

    IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies in healthy adults protect them against reinfection. Here, we determined the crystal structure of a complex of the HAstV capsid protein and a virus-neutralizing antibody. We show that the antibody binds to the outermost spike domain of the capsid, and we provide evidence that the antibody blocks virus attachment to human cells. Importantly, our findings suggest that a subunit-based vaccine focusing the immune system on the HAstV capsid spike domain could be effective in protecting children against HAstV disease.

  7. Vapor-phase photo-oxidation of methanol over nano-size titanium dioxide clusters dispersed in MCM-41 host material part 2: catalytic properties and surface transient species.

    Science.gov (United States)

    Bhattacharyya, K; Varma, S; Kumar, D; Tripathi, A K; Gupta, N M

    2005-05-01

    We report in this paper on the ultraviolet-assisted vapor-phase oxidation of methanol at room temperature, with the help of nano-size clusters of titanium dioxide dispersed in an MCM-41 silicate matrix. The surface species formed during the adsorption/oxidation of methanol and the transformation that they undergo as a result of ultraviolet irradiation were monitored using in-situ Fourier transform infrared and thermal desorption spectroscopy techniques. Parallel experiments conducted on TiO2/MCM, bulk titania, and pristine MCM-41 samples helped in identifying the individual role of titanium dioxide and host matrix in these processes. The photo-catalytic oxidation of methanol, at concentrations of 0.1 to 1.1 mol% in air, gave rise to formation of CO2 and H2O as products, for both the TiO2/MCM and bulk TiO2 samples. No such reaction occurred on titania-free MCM. Furthermore, the rate of reaction depended upon the TiO2 content of a sample and also on the concentration of methanol in reaction mixture. Thus, the rate of conversion increased progressively with the increase in TiO2 loading from 5 to 21 wt% in TiO2/MCM samples, particularly for the experiments with high concentration of methanol. For low methanol concentration (0.1 mol%) in air, the effect of titania content in MCM was very small. The specific activity (per g of titania) of a sample, on the other hand, showed an inverse relationship with the loading of titanium dioxide in a sample. Infrared and temperature-programmed desorption results revealed that the mode of CH3OH adsorption and the reactivity of the transient species formed during the oxidation process were independent of the size of dispersed titania particles. Thus, the particles of approximately 2-6 nm size, present in TiO2/MCM, exhibited a chemisorption behavior similar to that of the bulk titania. The results of the present study provide strong evidence that the hydroxyl groups, both on the host matrix and at the titania sites, participate

  8. TRIM5α SPRY/coiled-coil interactions optimize avid retroviral capsid recognition.

    Directory of Open Access Journals (Sweden)

    Marcin D Roganowicz

    2017-10-01

    Full Text Available Restriction factors are important components of intrinsic cellular defense mechanisms against viral pathogens. TRIM5α is a restriction factor that intercepts the incoming capsid cores of retroviruses such as HIV and provides an effective species-specific barrier to retroviral infection. The TRIM5α SPRY domain directly binds the capsid with only very weak, millimolar-level affinity, and productive capsid recognition therefore requires both TRIM5α dimerization and assembly of the dimers into a multivalent hexagonal lattice to promote avid binding. Here, we explore the important unresolved question of whether the SPRY domains are flexibly linked to the TRIM lattice or more precisely positioned to maximize avidity. Biochemical and biophysical experiments indicate that the linker segment connecting the SPRY domain to the coiled-coil domain adopts an α-helical fold, and that this helical portion mediates interactions between the two domains. Targeted mutations were generated to disrupt the putative packing interface without affecting dimerization or higher-order assembly, and we identified mutant proteins that were nevertheless deficient in capsid binding in vitro and restriction activity in cells. Our studies therefore support a model wherein substantial avidity gains during assembly-mediated capsid recognition by TRIM5α come in part from tailored spacing of tethered recognition domains.

  9. X-Ray Structures of the Hexameric Building Block of the HIV Capsid

    Energy Technology Data Exchange (ETDEWEB)

    Pornillos, Owen; Ganser-Pornillos, Barbie K.; Kelly, Brian N.; Hua, Yuanzi; Whitby, Frank G.; Stout, C. David; Sundquist, Wesley I.; Hill, Christopher P.; Yeager, Mark; (Scripps); (Utah)

    2009-09-11

    The mature capsids of HIV and other retroviruses organize and package the viral genome and its associated enzymes for delivery into host cells. The HIV capsid is a fullerene cone: a variably curved, closed shell composed of approximately 250 hexamers and exactly 12 pentamers of the viral CA protein. We devised methods for isolating soluble, assembly-competent CA hexamers and derived four crystallographically independent models that define the structure of this capsid assembly unit at atomic resolution. A ring of six CA N-terminal domains form an apparently rigid core, surrounded by an outer ring of C-terminal domains. Mobility of the outer ring appears to be an underlying mechanism for generating the variably curved lattice in authentic capsids. Hexamer-stabilizing interfaces are highly hydrated, and this property may be key to the formation of quasi-equivalent interactions within hexamers and pentamers. The structures also clarify the molecular basis for capsid assembly inhibition and should facilitate structure-based drug design strategies.

  10. A molecular thermodynamic model for the stability of hepatitis B capsids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jehoon; Wu, Jianzhong, E-mail: jwu@engr.ucr.edu [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States)

    2014-06-21

    Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.

  11. A molecular thermodynamic model for the stability of hepatitis B capsids

    Science.gov (United States)

    Kim, Jehoon; Wu, Jianzhong

    2014-06-01

    Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.

  12. Spectroscopic Studies of Mosquito Iridescent Virus, its Capsid Proteins, Lipids, and DNA

    International Nuclear Information System (INIS)

    Kravchenko, V.M.; Rud, Yu.P.; Buchatski, L.P.; Melnik, V.I.; Mogylchak, K.Yu.; Ladan, S.P.; Yashchuk, V.M.

    2012-01-01

    Mosquito iridescent virus (MIV) is an icosahedric lipid-containing virus which affects mosquitoes of Aedes, Culex, Culizeta genera. Apart from mosquitoes and other insects, iridoviruses cause the mass death of fish and can cause huge losses for industrial fish breedings. The MIV virion consists of a core of the genetic material (double-stranded viral DNA) surrounded by a capsid (icosahedral protein shell) and further encased in a lipid envelope. The aim of the work was to determine the role of MIV virion constituents (lipids, capsid proteins, and viral DNA) in the formation of spectral properties of the whole MIV virions. Measured are UV-Vis absorption, fluorescence, fluorescence excitation, and phosphorescence spectra of MIV virions, their capsid proteins, lipids, and viral DNA dissolved in various buffers. It is shown that the UV absorption of MIV virions is caused by the absorption of all virion constituents such as capsid proteins, lipids, and viral DNA. The fluorescence of MIV virions at room temperature is mainly due to the fluorescence of capsid proteins. The spectra measured at low temperatures make it possible to identify the type of a nucleic acid (DNA or RNA) inside the virion thanks to the fact that the DNA and RNA phosphorescence spectra are radically different.

  13. Human Bocavirus Capsid Messenger RNA Detection in Children With Pneumonia.

    Science.gov (United States)

    Schlaberg, Robert; Ampofo, Krow; Tardif, Keith D; Stockmann, Chris; Simmon, Keith E; Hymas, Weston; Flygare, Steven; Kennedy, Brett; Blaschke, Anne; Eilbeck, Karen; Yandell, Mark; McCullers, Jon A; Williams, Derek J; Edwards, Kathryn; Arnold, Sandra R; Bramley, Anna; Jain, Seema; Pavia, Andrew T

    2017-09-15

    The role of human bocavirus (HBoV) in respiratory illness is uncertain. HBoV genomic DNA is frequently detected in both ill and healthy children. We hypothesized that spliced viral capsid messenger RNA (mRNA) produced during active replication might be a better marker for acute infection. As part of the Etiology of Pneumonia in the Community (EPIC) study, children aged <18 years who were hospitalized with community-acquired pneumonia (CAP) and children asymptomatic at the time of elective outpatient surgery (controls) were enrolled. Nasopharyngeal/oropharyngeal specimens were tested for HBoV mRNA and genomic DNA by quantitative polymerase chain reaction. HBoV DNA was detected in 10.4% of 1295 patients with CAP and 7.5% of 721 controls (odds ratio [OR], 1.4 [95% confidence interval {CI}, 1.0-2.0]); HBoV mRNA was detected in 2.1% and 0.4%, respectively (OR, 5.1 [95% CI, 1.6-26]). When adjusted for age, enrollment month, and detection of other respiratory viruses, HBoV mRNA detection (adjusted OR, 7.6 [95% CI, 1.5-38.4]) but not DNA (adjusted OR, 1.2 [95% CI, .6-2.4]) was associated with CAP. Among children with no other pathogens detected, HBoV mRNA (OR, 9.6 [95% CI, 1.9-82]) was strongly associated with CAP. Detection of HBoV mRNA but not DNA was associated with CAP, supporting a pathogenic role for HBoV in CAP. HBoV mRNA could be a useful target for diagnostic testing. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  14. Crystal Structure of the Capsid Protein from Zika Virus.

    Science.gov (United States)

    Shang, Zifang; Song, Hao; Shi, Yi; Qi, Jianxun; Gao, George F

    2018-03-30

    Recently, Zika virus (ZIKV) emerged as a global public health concern and is distinct from other flaviviruses in many aspects, for example, causing transplacental infection, fetal abnormalities and vector-independent transmission through body fluids in humans. The capsid (C) protein is a multifunctional protein, since it binds to viral RNA in the process of nucleocapsid assembly and plays important roles in virus infection processes by interacting with cellular proteins, modulating cellular metabolism, apoptosis and immune response. Here we solved the crystal structure of ZIKV C protein at a resolution of 1.9Å. The ZIKV C protein structure contains four α helices with a long pre-α1 loop and forms dimers. The unique long pre-α1 loop in ZIKV C contributes to the tighter association of dimeric assembly and renders a divergent hydrophobic feature at the lipid bilayer interface in comparison with the known C structures of West Nile and dengue viruses. We reported the interaction between the ZIKV C protein and lipid droplets through confocal microscopy analysis. Substitutions of key amino acids in the pre-α1 loop of ZIKV C disrupted the interaction with lipid droplets, indicating that the loop is critical for membrane association. We also recognized that ZIKV C protein possesses broad binding capability to different nucleotide types, including single-stranded and double-stranded RNAs or DNAs. Furthermore, the highly positively charged interface, mainly formed by α4 helix, is proposed to be responsible for nucleotide binding. These findings will greatly enhance our understanding of ZIKV C protein, providing information for anti-ZIKV drug design targeting the C protein. Copyright © 2018. Published by Elsevier Ltd.

  15. The Impact of Capsid Proteins on Virus Removal and Inactivation During Water Treatment Processes.

    Science.gov (United States)

    Mayer, Brooke K; Yang, Yu; Gerrity, Daniel W; Abbaszadegan, Morteza

    2015-01-01

    This study examined the effect of the amino acid composition of protein capsids on virus inactivation using ultraviolet (UV) irradiation and titanium dioxide photocatalysis, and physical removal via enhanced coagulation using ferric chloride. Although genomic damage is likely more extensive than protein damage for viruses treated using UV, proteins are still substantially degraded. All amino acids demonstrated significant correlations with UV susceptibility. The hydroxyl radicals produced during photocatalysis are considered nonspecific, but they likely cause greater overall damage to virus capsid proteins relative to the genome. Oxidizing chemicals, including hydroxyl radicals, preferentially degrade amino acids over nucleotides, and the amino acid tyrosine appears to strongly influence virus inactivation. Capsid composition did not correlate strongly to virus removal during physicochemical treatment, nor did virus size. Isoelectric point may play a role in virus removal, but additional factors are likely to contribute.

  16. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97.

    Science.gov (United States)

    Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-13

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  17. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    Science.gov (United States)

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Functional analysis of the highly antigenic outer capsid protein, Hoc, a virus decoration protein from T4-like bacteriophages.

    Science.gov (United States)

    Sathaliyawala, Taheri; Islam, Mohammad Z; Li, Qin; Fokine, Andrei; Rossmann, Michael G; Rao, Venigalla B

    2010-07-01

    Bacteriophage T4 is decorated with 155 copies of the highly antigenic outer capsid protein, Hoc. The Hoc molecule (40 kDa) is present at the centre of each hexameric capsomer and provides a good platform for surface display of pathogen antigens. Biochemical and modelling studies show that Hoc consists of a string of four domains, three immunoglobulin (Ig)-like and one non-Ig domain at the C-terminus. Biochemical data suggest that the Hoc protein has two functional modules, a capsid binding module containing domains 1 and 4 and a solvent-exposed module containing domains 2 and 3. This model is consistent with the dumbbell-shaped cryo-EM density of Hoc observed in the reconstruction of the T4 capsid. Mutagenesis localized the capsid binding site to the C-terminal 25 amino acids, which are predicted to form two beta-strands flanking a capsid binding loop. Mutations in the loop residues, ESRNG, abolished capsid binding, suggesting that these residues might interact with the major capsid protein, gp23*. With the conserved capsid binding module forming a foothold on the virus and the solvent-exposed module able to adapt to bind to a variety of surfaces, Hoc probably provides survival advantages to the phage, such as increasing the virus concentration near the host, efficient dispersion of the virus and exposing the tail for more efficient contact with the host cell surface prior to infection.

  19. Structural Model of the Tubular Assembly of the Rous Sarcoma Virus Capsid Protein.

    Science.gov (United States)

    Jeon, Jaekyun; Qiao, Xin; Hung, Ivan; Mitra, Alok K; Desfosses, Ambroise; Huang, Daniel; Gor'kov, Peter L; Craven, Rebecca C; Kingston, Richard L; Gan, Zhehong; Zhu, Fangqiang; Chen, Bo

    2017-02-08

    The orthoretroviral capsid protein (CA) assembles into polymorphic capsids, whose architecture, assembly, and stability are still being investigated. The N-terminal and C-terminal domains of CA (NTD and CTD, respectively) engage in both homotypic and heterotypic interactions to create the capsid. Hexameric turrets formed by the NTD decorate the majority of the capsid surface. We report nearly complete solid-state NMR (ssNMR) resonance assignments of Rous sarcoma virus (RSV) CA, assembled into hexamer tubes that mimic the authentic capsid. The ssNMR assignments show that, upon assembly, large conformational changes occur in loops connecting helices, as well as the short 3 10 helix initiating the CTD. The interdomain linker becomes statically disordered. Combining constraints from ssNMR and cryo-electron microscopy (cryo-EM), we establish an atomic resolution model of the RSV CA tubular assembly using molecular dynamics flexible fitting (MDFF) simulations. On the basis of comparison of this MDFF model with an earlier-derived crystallographic model for the planar assembly, the induction of curvature into the RSV CA hexamer lattice arises predominantly from reconfiguration of the NTD-CTD and CTD trimer interfaces. The CTD dimer and CTD trimer interfaces are also intrinsically variable. Hence, deformation of the CA hexamer lattice results from the variable displacement of the CTDs that surround each hexameric turret. Pervasive H-bonding is found at all interdomain interfaces, which may contribute to their malleability. Finally, we find helices at the interfaces of HIV and RSV CA assemblies have very different contact angles, which may reflect differences in the capsid assembly pathway for these viruses.

  20. Screening for the Location of RNA using the Chloride Ion Distribution in Simulations of Virus Capsids.

    Science.gov (United States)

    Larsson, Daniel S D; van der Spoel, David

    2012-07-10

    The complete structure of the genomic material inside a virus capsid remains elusive, although a limited amount of symmetric nucleic acid can be resolved in the crystal structure of 17 icosahedral viruses. The negatively charged sugar-phosphate backbone of RNA and DNA as well as the large positive charge of the interior surface of the virus capsids suggest that electrostatic complementarity is an important factor in the packaging of the genomes in these viruses. To test how much packing information is encoded by the electrostatic and steric envelope of the capsid interior, we performed extensive all-atom molecular dynamics (MD) simulations of virus capsids with explicit water molecules and solvent ions. The model systems were two small plant viruses in which significant amounts of RNA has been observed by X-ray crystallography: satellite tobacco mosaic virus (STMV, 62% RNA visible) and satellite tobacco necrosis virus (STNV, 34% RNA visible). Simulations of half-capsids of these viruses with no RNA present revealed that the binding sites of RNA correlated well with regions populated by chloride ions, suggesting that it is possible to screen for the binding sites of nucleic acids by determining the equilibrium distribution of negative ions. By including the crystallographically resolved RNA in addition to ions, we predicted the localization of the unresolved RNA in the viruses. Both viruses showed a hot-spot for RNA binding at the 5-fold symmetry axis. The MD simulations were compared to predictions of the chloride density based on nonlinear Poisson-Boltzmann equation (PBE) calculations with mobile ions. Although the predictions are superficially similar, the PBE calculations overestimate the ion concentration close to the capsid surface and underestimate it far away, mainly because protein dynamics is not taken into account. Density maps from chloride screening can be used to aid in building atomic models of packaged virus genomes. Knowledge of the principles of

  1. Breaking a virus: Identifying molecular level failure modes of a viral capsid by multiscale modeling

    Science.gov (United States)

    Krishnamani, V.; Globisch, C.; Peter, C.; Deserno, M.

    2016-10-01

    We use coarse-grained (CG) simulations to study the deformation of empty Cowpea Chlorotic Mottle Virus (CCMV) capsids under uniaxial compression, from the initial elastic response up to capsid breakage. Our CG model is based on the MARTINI force field and has been amended by a stabilizing elastic network, acting only within individual proteins, that was tuned to capture the fluctuation spectrum of capsid protein dimers, obtained from all atom simulations. We have previously shown that this model predicts force-compression curves that match AFM indentation experiments on empty CCMV capsids. Here we investigate details of the actual breaking events when the CCMV capsid finally fails. We present a symmetry classification of all relevant protein contacts and show that they differ significantly in terms of stability. Specifically, we show that interfaces which break readily are precisely those which are believed to form last during assembly, even though some of them might share the same contacts as other non-breaking interfaces. In particular, the interfaces that form pentamers of dimers never break, while the virtually identical interfaces within hexamers of dimers readily do. Since these units differ in the large-scale geometry and, most noticeably, the cone-angle at the center of the 5- or 6-fold vertex, we propose that the hexameric unit fails because it is pre-stressed. This not only suggests that hexamers of dimers form less frequently during the early stages of assembly; it also offers a natural explanation for the well-known β-barrel motif at the hexameric center as a post-aggregation stabilization mechanism. Finally, we identify those amino acid contacts within all key protein interfaces that are most persistent during compressive deformation of the capsid, thereby providing potential targets for mutation studies aiming to elucidate the key contacts upon which overall stability rests.

  2. The use of additive and subtractive approaches to examine the nuclear localization sequence of the polyomavirus major capsid protein VP1

    Science.gov (United States)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the N-terminal (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) amino acid sequence of the polyomavirus major capsid protein VP1. The importance of this amino acid sequence for nuclear transport of VP1 protein was demonstrated by a genetic "subtractive" study using the constructs pSG5VP1 (full-length VP1) and pSG5 delta 5'VP1 (truncated VP1, lacking amino acids Ala1-Cys11). These constructs were used to transfect COS-7 cells, and expression and intracellular localization of the VP1 protein was visualized by indirect immunofluorescence. These studies revealed that the full-length VP1 was expressed and localized in the nucleus, while the truncated VP1 protein was localized in the cytoplasm and not transported to the nucleus. These findings were substantiated by an "additive" approach using FITC-labeled conjugates of synthetic peptides homologous to the NLS of VP1 cross-linked to bovine serum albumin or immunoglobulin G. Both conjugates localized in the nucleus after microinjection into the cytoplasm of 3T6 cells. The importance of individual amino acids found in the basic sequence (Lys3-Arg-Lys5) of the NLS was also investigated. This was accomplished by synthesizing three additional peptides in which lysine-3 was substituted with threonine, arginine-4 was substituted with threonine, or lysine-5 was substituted with threonine. It was found that lysine-3 was crucial for nuclear transport, since substitution of this amino acid with threonine prevented nuclear localization of the microinjected, FITC-labeled conjugate.

  3. Production and characterization of monoclonal antibodies to budgerigar fledgling disease virus major capsid protein VP

    Science.gov (United States)

    Fattaey, A.; Lenz, L.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Eleven hybridoma cell lines producing monoclonal antibodies (MAbs) against intact budgerigar fledgling disease (BFD) virions were produced and characterized. These antibodies were selected for their ability to react with BFD virions in an enzyme-linked immunosorbent assay. Each of these antibodies was reactive in the immunofluorescent detection of BFD virus-infected cells. These antibodies immunoprecipitated intact virions and specifically recognized the major capsid protein, VP1, of the dissociated virion. The MAbs were found to preferentially recognize native BFD virus capsid protein when compared with denatured virus protein. These MAbs were capable of detecting BFD virus protein in chicken embryonated cell-culture lysates by dot-blot analysis.

  4. Vibrating virus capsids and interactions with short light pulses -- picking up good vibrations

    Science.gov (United States)

    Sankey, Otto; Benson, Daryn

    2009-10-01

    Viruses are the simplest ``life'' form. They reproduce by borrowing the machinery of their host cell. Viruses consist of an outer coat (capsid) that protects its genomic material inside. They are pathogenic to plants, bacteria, animals, and of course humans. Experimental studies at ASU by Tsen et al. have discovered that ultra-short laser pulses are capable of ``inactivating'' viruses. One potential mechanism is the coupling of light to the soft dynamical modes of the capsid. We describe theoretical modeling of this effect.

  5. Characterization of the mode of action of a potent dengue virus capsid inhibitor.

    Science.gov (United States)

    Scaturro, Pietro; Trist, Iuni Margaret Laura; Paul, David; Kumar, Anil; Acosta, Eliana G; Byrd, Chelsea M; Jordan, Robert; Brancale, Andrea; Bartenschlager, Ralf

    2014-10-01

    Dengue viruses (DV) represent a significant global health burden, with up to 400 million infections every year and around 500,000 infected individuals developing life-threatening disease. In spite of attempts to develop vaccine candidates and antiviral drugs, there is a lack of approved therapeutics for the treatment of DV infection. We have previously reported the identification of ST-148, a small-molecule inhibitor exhibiting broad and potent antiviral activity against DV in vitro and in vivo (C. M. Byrd et al., Antimicrob. Agents Chemother. 57:15-25, 2013, doi:10 .1128/AAC.01429-12). In the present study, we investigated the mode of action of this promising compound by using a combination of biochemical, virological, and imaging-based techniques. We confirmed that ST-148 targets the capsid protein and obtained evidence of bimodal antiviral activity affecting both assembly/release and entry of infectious DV particles. Importantly, by using a robust bioluminescence resonance energy transfer-based assay, we observed an ST-148-dependent increase of capsid self-interaction. These results were corroborated by molecular modeling studies that also revealed a plausible model for compound binding to capsid protein and inhibition by a distinct resistance mutation. These results suggest that ST-148-enhanced capsid protein self-interaction perturbs assembly and disassembly of DV nucleocapsids, probably by inducing structural rigidity. Thus, as previously reported for other enveloped viruses, stabilization of capsid protein structure is an attractive therapeutic concept that also is applicable to flaviviruses. Dengue viruses are arthropod-borne viruses representing a significant global health burden. They infect up to 400 million people and are endemic to subtropical and tropical areas of the world. Currently, there are neither vaccines nor approved therapeutics for the prophylaxis or treatment of DV infections, respectively. This study reports the characterization of the

  6. General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins.

    Science.gov (United States)

    Wagner, Jonathan M; Christensen, Devin E; Bhattacharya, Akash; Dawidziak, Daria M; Roganowicz, Marcin D; Wan, Yueping; Pumroy, Ruth A; Demeler, Borries; Ivanov, Dmitri N; Ganser-Pornillos, Barbie K; Sundquist, Wesley I; Pornillos, Owen

    2018-02-15

    Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity ( K D of >1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity ( K D of ∼10 μM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition. IMPORTANCE Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly

  7. Specific Inhibitors of HIV Capsid Assembly Binding to the C-Terminal Domain of the Capsid Protein: Evaluation of 2-Arylquinazolines as Potential Antiviral Compounds

    Czech Academy of Sciences Publication Activity Database

    Machara, A.; Lux, V.; Kožíšek, Milan; Grantz Šašková, Klára; Štěpánek, O.; Kotora, M.; Parkan, Kamil; Pávová, Marcela; Glass, B.; Sehr, P.; Lewis, J.; Müller, B.; Kräusslich, H. G.; Konvalinka, Jan

    2016-01-01

    Roč. 59, č. 2 (2016), s. 545-558 ISSN 0022-2623 R&D Projects: GA ČR GA13-19561S EU Projects: European Commission(XE) 201095 - HIV ACE Institutional support: RVO:61388963 Keywords : HIV-1 assembly * capsid * high-throughput screening * AlphaScreen assay Subject RIV: CE - Biochemistry Impact factor: 6.259, year: 2016

  8. Electrochromic in conjugated polymers

    International Nuclear Information System (INIS)

    Picado Valenzuela, Alfredo

    2007-01-01

    This revision considered object the description of one of the materials with the greatest potential in the field of electrochromic (mainly in the visible region): the conjugated polymers (CP), area of enormous potential both now and in a short time ahead. The CP are insulating materials and organic semiconductors in a state not doped. They can be doped positively or negatively being observed a significant increase in the conductivity and being generated a color change in these materials. The understanding of how optical properties vary based on the chemical structure of the polymer or its mixtures and more precisely of the alternatives that can be entered into the conjugated system or π system to obtain a material that besides to be flexible, environmentally stable, presents the colored states. The revision was centred chiefly in the polypyrrole (Ppy), the polythiophene (PTh) and their derivatives such as poly (3.4-ethylenedioxythiophene) (PEDOT). The advantage of using monomers with variable structure, to adjust the composition of the copolymer, or to blend with the PC, allows to obtain a variety of colored states that can be modulated through the visible spectrum and even with applications to wavelengths outside of this region. Because the PC presented at least two different colored states can be varied continuously as a function of the voltage applied. In some cases, they may submit multicoloured statements, which offers a range of possibilities for their application in flexible electronic devices type screens and windows. Applications include smart windows, camouflage clothing and data screens. This type of material is emerging as one of the substitutes of the traditional inorganic semiconductor, with the advantage of its low cost, high flexibility and the possibility to generate multiple colors through the handling of the monomers in the structure and control of energy of his band gap. (author) [es

  9. Generalized conjugate gradient squared

    Energy Technology Data Exchange (ETDEWEB)

    Fokkema, D.R.; Sleijpen, G.L.G. [Utrecht Univ. (Netherlands)

    1994-12-31

    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  10. Preparation and characterization of kasuga-silica-conjugated nanospheres for sustained antimicrobial activity

    Science.gov (United States)

    Ding, Guanglong; Li, Deguang; Liu, Yao; Guo, Mingcheng; Duan, Yongheng; Li, Jianqiang; Cao, Yongsong

    2014-11-01

    Controlled release formulation of pesticides is highly desirable for attaining the most effective utilization of the pesticide as well as reducing environmental pollution. Nano-sized controlled release formulations can provide better penetration through cuticle and deliver the active ingredients efficiently to the targeted tissue. In this study, a novel strategy for the preparation of a nanoconjugate derived from kasugamycin with amino-modified silica was developed. The kasugamycin was connected with amino-modified silica matrix by an amide bond, which could avoid the initial burst release effectively and prolong the duration remarkably. The results showed the kasuga-silica can protect kasugamycin against photo-degradation effectively and the release rate of the active ingredient of nanoconjugate was related to the temperature, pH value, and the particle size (52.5-315.4 nm). With reduced particle size as well as increased temperature and acidity, the release of the active ingredient was faster. This amide linkage of kasuga-silica could be degraded by amidase effectively. This nanoconjugate displayed a better and a sustained bactericidal efficacy against E. coli than kasugamycin technical, which makes it a potential candidate as a controlled release conjugate for kasugamycin in the future.

  11. Facilitating the use of alternative capsid control methods towards sustainable production of organic cocoa in Ghana

    NARCIS (Netherlands)

    Ayenor, G.K.; Huis, van A.; Obeng-Ofori, D.; Padi, B.; Röling, N.G.

    2007-01-01

    Cocoa (Theobroma cacao L.) is an important foreign exchange earner for Ghana. However, production is constrained by a high incidence of pests and diseases. Based on farmers' needs, this study focused on the control of capsids, mainly Sahlbergella singularis Haglund and Distantiella theobroma

  12. Probing the biophysical interplay between a viral genome and its capsid

    Science.gov (United States)

    Snijder, J.; Uetrecht, C.; Rose, R. J.; Sanchez-Eugenia, R.; Marti, G. A.; Agirre, J.; Guérin, D. M. A.; Wuite, G. J. L.; Heck, A. J. R.; Roos, W. H.

    2013-06-01

    The interaction between a viral capsid and its genome governs crucial steps in the life cycle of a virus, such as assembly and genome uncoating. Tuning cargo-capsid interactions is also essential for successful design and cargo delivery in engineered viral systems. Here we investigate the interplay between cargo and capsid for the picorna-like Triatoma virus using a combined native mass spectrometry and atomic force microscopy approach. We propose a topology and assembly model in which heterotrimeric pentons that consist of five copies of structural proteins VP1, VP2 and VP3 are the free principal units of assembly. The interpenton contacts are established primarily by VP2. The dual role of the genome is first to stabilize the densely packed virion and, second, on an increase in pH to trigger uncoating by relaxing the stabilizing interactions with the capsid. Uncoating occurs through a labile intermediate state of the virion that reversibly disassembles into pentons with the concomitant release of protein VP4.

  13. Production of foot-and-mouth disease virus capsid proteins by the TEV protease.

    Science.gov (United States)

    Puckette, Michael; Smith, Justin D; Gabbert, Lindsay; Schutta, Christopher; Barrera, José; Clark, Benjamin A; Neilan, John G; Rasmussen, Max

    2018-03-23

    Protective immunity to viral pathogens often includes production of neutralizing antibodies to virus capsid proteins. Many viruses produce capsid proteins by expressing a precursor polyprotein and related protease from a single open reading frame. The foot-and-mouth disease virus (FMDV) expresses a 3C protease (3Cpro) that cleaves a P1 polyprotein intermediate into individual capsid proteins, but the FMDV 3Cpro also degrades many host cell proteins and reduces the viability of host cells, including subunit vaccine production cells. To overcome the limitations of using the a wild-type 3Cpro in FMDV subunit vaccine expression systems, we altered the protease restriction sequences within a FMDV P1 polyprotein to enable production of FMDV capsid proteins by the Tobacco Etch Virus NIa protease (TEVpro). Separate TEVpro and modified FMDV P1 proteins were produced from a single open reading frame by an intervening FMDV 2A sequence. The modified FMDV P1 polyprotein was successfully processed by the TEVpro in both mammalian and bacterial cells. More broadly, this method of polyprotein production and processing may be adapted to other recombinant expression systems, especially plant-based expression. Published by Elsevier B.V.

  14. Expression and purification of capsid proteins of Aichi virus and in vitro reassembly of empty virion

    Czech Academy of Sciences Publication Activity Database

    Smola, Miroslav; Dubánková, Anna; Šilhán, Jan; Bouřa, Evžen

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 107 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] R&D Projects: GA ČR GJ15-21030Y; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : Aichi virus * capsid proteins Subject RIV: CE - Biochemistry

  15. Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

    DEFF Research Database (Denmark)

    Harms, Zachary D.; Mogensen, Klaus Bo; Rodrigues de Sousa Nunes, Pedro André

    2011-01-01

    We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching...

  16. Detection of late intermediates in virus capsid assembly by charge detection mass spectrometry.

    Science.gov (United States)

    Pierson, Elizabeth E; Keifer, David Z; Selzer, Lisa; Lee, Lye Siang; Contino, Nathan C; Wang, Joseph C-Y; Zlotnick, Adam; Jarrold, Martin F

    2014-03-05

    The assembly of hundreds of identical proteins into an icosahedral virus capsid is a remarkable feat of molecular engineering. How this occurs is poorly understood. Key intermediates have been anticipated at the end of the assembly reaction, but it has not been possible to detect them. In this work we have used charge detection mass spectrometry to identify trapped intermediates from late in the assembly of the hepatitis B virus T = 4 capsid, a complex of 120 protein dimers. Prominent intermediates are found with 104/105, 110/111, and 117/118 dimers. Cryo-EM observations indicate the intermediates are incomplete capsids and, hence, on the assembly pathway. On the basis of their stability and kinetic accessibility we have proposed plausible structures. The prominent trapped intermediate with 104 dimers is attributed to an icosahedron missing two neighboring facets, the 111-dimer species is assigned to an icosahedron missing a single facet, and the intermediate with 117 dimers is assigned to a capsid missing a ring of three dimers in the center of a facet.

  17. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids

    NARCIS (Netherlands)

    Roos, W.H.; Radtke, K.; Kniesmeijer, E.G.R.; Geertsema, H.J.; Sodeik, B.; Wuite, G.J.L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze

  18. Scaffold expulsion and genome packaging trigger stabilization of Herpes Simplex Virus capsids

    NARCIS (Netherlands)

    Roos, W.H.; Radtke, K.; Kniesmeijer, E.; Geertsema, H.J.; Sodeik, B.; Wuite, G.J.L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze

  19. Exploring the role of genome and structural ions in preventing viral capsid collapse during dehydration

    Science.gov (United States)

    Martín-González, Natalia; Guérin Darvas, Sofía M.; Durana, Aritz; Marti, Gerardo A.; Guérin, Diego M. A.; de Pablo, Pedro J.

    2018-03-01

    Even though viruses evolve mainly in liquid milieu, their horizontal transmission routes often include episodes of dry environment. Along their life cycle, some insect viruses, such as viruses from the Dicistroviridae family, withstand dehydrated conditions with presently unknown consequences to their structural stability. Here, we use atomic force microscopy to monitor the structural changes of viral particles of Triatoma virus (TrV) after desiccation. Our results demonstrate that TrV capsids preserve their genome inside, conserving their height after exposure to dehydrating conditions, which is in stark contrast with other viruses that expel their genome when desiccated. Moreover, empty capsids (without genome) resulted in collapsed particles after desiccation. We also explored the role of structural ions in the dehydration process of the virions (capsid containing genome) by chelating the accessible cations from the external solvent milieu. We observed that ion suppression helps to keep the virus height upon desiccation. Our results show that under drying conditions, the genome of TrV prevents the capsid from collapsing during dehydration, while the structural ions are responsible for promoting solvent exchange through the virion wall.

  20. Reciprocity and conjugation fidelity in double phase conjugate mirrors

    Science.gov (United States)

    Delaye, Philippe; Fotiadi, Andrei A.; Roosen, Gerald

    1999-09-01

    It is well known that the conservation of energy in an optical system can be described by an invariant (intensity of the optical wave) during propagation. We identically show that reciprocity can be described by an invariant. This invariant is the overlap integral of two counterpropagating waves, that stays constant in every place of a reciprocal optical system. Applied to the double phase conjugate mirror (DPCM) this invariant can be rewritten as an equality between the ratio of the conjugation fidelity of the two ports of the DPCM and the ratio of the transmission in intensity of the two beams. If restricted to a plane wave case this relation becomes the well known equality of the diffraction efficiencies in both directions. We have implemented an experimental set-up that allows to show that the double phase conjugate mirror is reciprocal what confirms all the above discussion. We use the same set-up to measure the conjugation fidelity of the DPCM.

  1. Functional Carboxy-Terminal Fluorescent Protein Fusion to Pseudorabies Virus Small Capsid Protein VP26.

    Science.gov (United States)

    Hogue, Ian B; Jean, Jolie; Esteves, Andrew D; Tanneti, Nikhila S; Scherer, Julian; Enquist, Lynn W

    2018-01-01

    Fluorescent protein fusions to herpesvirus capsids have proven to be a valuable method to study virus particle transport in living cells. Fluorescent protein fusions to the amino terminus of small capsid protein VP26 are the most widely used method to visualize pseudorabies virus (PRV) and herpes simplex virus (HSV) particles in living cells. However, these fusion proteins do not incorporate to full occupancy and have modest effects on virus replication and pathogenesis. Recent cryoelectron microscopy studies have revealed that herpesvirus small capsid proteins bind to capsids via their amino terminus, whereas the carboxy terminus is unstructured and therefore may better tolerate fluorescent protein fusions. Here, we describe a new recombinant PRV expressing a carboxy-terminal VP26-mCherry fusion. Compared to previously characterized viruses expressing amino-terminal fusions, this virus expresses more VP26 fusion protein in infected cells and incorporates more VP26 fusion protein into virus particles, and individual virus particles exhibit brighter red fluorescence. We performed single-particle tracking of fluorescent virus particles in primary neurons to measure anterograde and retrograde axonal transport, demonstrating the usefulness of this novel VP26-mCherry fusion for the study of viral intracellular transport. IMPORTANCE Alphaherpesviruses are among the very few viruses that are adapted to invade the mammalian nervous system. Intracellular transport of virus particles in neurons is important, as this process underlies both mild peripheral nervous system infection and severe spread to the central nervous system. VP26, the small capsid protein of HSV and PRV, was one of the first herpesvirus proteins to be fused to a fluorescent protein. Since then, these capsid-tagged virus mutants have become a powerful tool to visualize and track individual virus particles. Improved capsid tags will facilitate fluorescence microscopy studies of virus particle intracellular

  2. Protruding Features of Viral Capsids Are Clustered on Icosahedral Great Circles.

    Directory of Open Access Journals (Sweden)

    David P Wilson

    Full Text Available Spherical viruses are remarkably well characterized by the Triangulation (T number developed by Casper and Klug. The T-number specifies how many viral capsid proteins are required to cover the virus, as well as how they are further subdivided into pentamer and hexamer subunits. The T-number however does not constrain the orientations of these proteins within the subunits or dictate where the proteins should place their protruding features. These protrusions often take the form of loops, spires and helices, and are significant because they aid in stability of the capsid as well as recognition by the host organism. Until now there has be no overall understanding of the placement of protrusions for spherical viruses, other than they have icosahedral symmetry. We constructed a set of gauge points based upon the work affine extensions of Keef and Twarock, which have fixed relative angular locations with which to measure the locations of these features. This work adds a new element to our understanding of the geometric arrangement of spherical viral capsid proteins; chiefly that the locations of protruding features are not found stochastically distributed in an icosahedral manner across the viral surface, but instead these features are found only in specific locations along the 15 icosahedral great circles. We have found that this result holds true as the T number and viral capsids size increases, suggesting an underlying geometric constraint on their locations. This is in spite of the fact that the constraints on the pentamers and hexamer orientations change as a function of T-number, as you need to accommodate more hexamers in the same solid angle between pentamers. The existence of this angular constraint of viral capsids suggests that there is a fitness or energetic benefit to the virus placing its protrusions in this manner. This discovery may have profound impacts on identifying and eliminating viral pathogens, understanding evolutionary

  3. Structural organization of pregenomic RNA and the carboxy-terminal domain of the capsid protein of hepatitis B virus.

    Directory of Open Access Journals (Sweden)

    Joseph C-Y Wang

    2012-09-01

    Full Text Available The Hepatitis B Virus (HBV double-stranded DNA genome is reverse transcribed from its RNA pregenome (pgRNA within the virus core (or capsid. Phosphorylation of the arginine-rich carboxy-terminal domain (CTD of the HBV capsid protein (Cp183 is essential for pgRNA encapsidation and reverse transcription. However, the structure of the CTD remains poorly defined. Here we report sub-nanometer resolution cryo-EM structures of in vitro assembled empty and pgRNA-filled Cp183 capsids in unphosphorylated and phosphorylation-mimic states. In empty capsids, we found unexpected evidence of surface accessible CTD density partially occluding pores in the capsid surface. We also observed that CTD organization changed substantively as a function of phosphorylation. In RNA-filled capsids, unphosphorylated CTDs favored thick ropes of RNA, while the phosphorylation-mimic favored a mesh of thin, high-density strands suggestive of single stranded RNA. These results demonstrate that the CTD can regulate nucleic acid structure, supporting the hypothesis that the HBV capsid has a functional role as a nucleic acid chaperone.

  4. The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion

    Science.gov (United States)

    Chou, Shu-Fan; Tsai, Ming-Lin; Huang, Jyun-Yuan; Chang, Ya-Shu; Shih, Chiaho

    2015-01-01

    The Endosomal Sorting Complex Required for Transport (ESCRT) is an important cellular machinery for the sorting and trafficking of ubiquitinated cargos. It is also known that ESCRT is required for the egress of a number of viruses. To investigate the relationship between ESCRT and hepatitis B virus (HBV), we conducted an siRNA screening of ESCRT components for their potential effect on HBV replication and virion release. We identified a number of ESCRT factors required for HBV replication, and focused our study here on HGS (HRS, hepatocyte growth factor-regulated tyrosine kinase substrate) in the ESCRT-0 complex. Aberrant levels of HGS suppressed HBV transcription, replication and virion secretion. Hydrodynamic delivery of HGS in a mouse model significantly suppressed viral replication in the liver and virion secretion in the serum. Surprisingly, overexpression of HGS stimulated the release of HBV naked capsids, irrespective of their viral RNA, DNA, or empty contents. Mutant core protein (HBc 1–147) containing no arginine-rich domain (ARD) failed to secrete empty virions with or without HGS. In contrast, empty naked capsids of HBc 1–147 could still be promoted for secretion by HGS. HGS exerted a strong positive effect on the secretion of naked capsids, at the expense of a reduced level of virions. The association between HGS and HBc appears to be ubiquitin-independent. Furthermore, HBc is preferentially co-localized with HGS near the cell periphery, instead of near the punctate endosomes in the cytoplasm. In summary, our work demonstrated the importance of an optimum level of HGS in HBV propagation. In addition to an effect on HBV transcription, HGS can diminish the pool size of intracellular nucleocapsids with ongoing genome maturation, probably in part by promoting the secretion of naked capsids. The secretion routes of HBV virions and naked capsids can be clearly distinguished based on the pleiotropic effect of HGS involved in the ESCRT-0 complex. PMID

  5. The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion.

    Directory of Open Access Journals (Sweden)

    Shu-Fan Chou

    2015-10-01

    Full Text Available The Endosomal Sorting Complex Required for Transport (ESCRT is an important cellular machinery for the sorting and trafficking of ubiquitinated cargos. It is also known that ESCRT is required for the egress of a number of viruses. To investigate the relationship between ESCRT and hepatitis B virus (HBV, we conducted an siRNA screening of ESCRT components for their potential effect on HBV replication and virion release. We identified a number of ESCRT factors required for HBV replication, and focused our study here on HGS (HRS, hepatocyte growth factor-regulated tyrosine kinase substrate in the ESCRT-0 complex. Aberrant levels of HGS suppressed HBV transcription, replication and virion secretion. Hydrodynamic delivery of HGS in a mouse model significantly suppressed viral replication in the liver and virion secretion in the serum. Surprisingly, overexpression of HGS stimulated the release of HBV naked capsids, irrespective of their viral RNA, DNA, or empty contents. Mutant core protein (HBc 1-147 containing no arginine-rich domain (ARD failed to secrete empty virions with or without HGS. In contrast, empty naked capsids of HBc 1-147 could still be promoted for secretion by HGS. HGS exerted a strong positive effect on the secretion of naked capsids, at the expense of a reduced level of virions. The association between HGS and HBc appears to be ubiquitin-independent. Furthermore, HBc is preferentially co-localized with HGS near the cell periphery, instead of near the punctate endosomes in the cytoplasm. In summary, our work demonstrated the importance of an optimum level of HGS in HBV propagation. In addition to an effect on HBV transcription, HGS can diminish the pool size of intracellular nucleocapsids with ongoing genome maturation, probably in part by promoting the secretion of naked capsids. The secretion routes of HBV virions and naked capsids can be clearly distinguished based on the pleiotropic effect of HGS involved in the ESCRT-0 complex.

  6. Electrostatic potential of human immunodeficiency virus type 2 and rhesus macaque simian immunodeficiency virus capsid proteins

    Directory of Open Access Journals (Sweden)

    Katarzyna eBozek

    2012-06-01

    Full Text Available Human immunodeficiency virus type 2 (HIV-2 and simian immunodeficiency virus isolated from a macaque monkey (SIVmac are assumed to have originated from simian immunodeficiency virus isolated from sooty mangabey (SIVsm. Despite their close similarity in genome structure, HIV-2 and SIVmac show different sensitivities to TRIM5α, a host restriction factor against retroviruses. The replication of HIV-2 strains is potently restricted by rhesus (Rh monkey TRIM5α, while that of SIVmac strain 239 (SIVmac239 is not. Viral capsid protein is the determinant of this differential sensitivity to TRIM5α, as the HIV-2 mutant carrying SIVmac239 capsid protein evaded Rh TRIM5α-mediated restriction. However, the molecular determinants of this restriction mechanism are unknown. Electrostatic potential on the protein-binding site is one of the properties regulating protein-protein interactions. In this study, we investigated the electrostatic potential on the interaction surface of capsid protein of HIV-2 strain GH123 and SIVmac239. Although HIV-2 GH123 and SIVmac239 capsid proteins share more than 87% amino acid identity, we observed a large difference between the two molecules with the HIV-2 GH123 molecule having predominantly positive and SIVmac239 predominantly negative electrostatic potential on the surface of the loop between α-helices 4 and 5 (L4/5. As L4/5 is one of the major determinants of Rh TRIM5α sensitivity of these viruses, the present results suggest that the binding site of the Rh TRIM5α may show complementarity to the HIV-2 GH123 capsid surface charge distribution.

  7. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons

    Science.gov (United States)

    Anderson, Fenja; Rother, Franziska; Rudolph, Kathrin; Prank, Ute; Binz, Anne; Hügel, Stefanie; Hartmann, Enno; Bader, Michael; Bauerfeind, Rudolf; Sodeik, Beate

    2018-01-01

    Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. PMID:29304174

  8. Baculovirus expression of erythrovirus V9 capsids and screening by ELISA: serologic cross-reactivity with erythrovirus B19

    DEFF Research Database (Denmark)

    Heegaard, Erik D; Qvortrup, Klaus; Christensen, Jesper

    2002-01-01

    to categorize V9 as an acute B19-like infection. Sequencing, combined with PCR studies, have since demonstrated the need for specific and differentiated techniques when examining samples for possible B19 or V9 viremia. The antigenic properties of the V9 capsid proteins have not been characterized previously....... To address this question, V9 VP1 and VP2 open reading frames were cloned and expressed in insect cells using a baculovirus vector. Large quantities of purified recombinant V9 capsid protein were produced and electron micrographs revealed self-assembly of V9 VP1/VP2 and VP2 capsids into empty icosahedral...

  9. Sequential measurements of conjugate observables

    Energy Technology Data Exchange (ETDEWEB)

    Carmeli, Claudio [Dipartimento di Fisica, Universita di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Heinosaari, Teiko [Department of Physics and Astronomy, Turku Centre for Quantum Physics, University of Turku, 20014 Turku (Finland); Toigo, Alessandro, E-mail: claudio.carmeli@gmail.com, E-mail: teiko.heinosaari@utu.fi, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica ' Francesco Brioschi' , Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2011-07-15

    We present a unified treatment of sequential measurements of two conjugate observables. Our approach is to derive a mathematical structure theorem for all the relevant covariant instruments. As a consequence of this result, we show that every Weyl-Heisenberg covariant observable can be implemented as a sequential measurement of two conjugate observables. This method is applicable both in finite- and infinite-dimensional Hilbert spaces, therefore covering sequential spin component measurements as well as position-momentum sequential measurements.

  10. Protein carriers of conjugate vaccines

    Science.gov (United States)

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  11. Human Cytomegalovirus pUL47 Modulates Tegumentation and Capsid Accumulation at the Viral Assembly Complex

    Science.gov (United States)

    Cappadona, Ilaria; Villinger, Clarissa; Schutzius, Gabi; Mertens, Thomas

    2015-01-01

    ABSTRACT Human cytomegalovirus (HCMV) tegument protein pUL47 is an interaction partner of pUL48 and highly conserved among herpesviruses. It is closely associated with the capsid and has an important function early in infection. Here, we report a specific role of pUL47 in the tegumentation of capsids in the cytoplasm. A newly generated mutant virus (TB-47stop), in which expression of pUL47 is blocked, exhibited a severe impairment in cell-to-cell spread and release of infectivity from infected cells. Ultrastructural analysis of TB-47stop-infected cells clearly showed cytoplasmic accumulations of nonenveloped capsids that were only partially tegumented, indicating that these capsids failed to complete tegumentation. Nevertheless, these accumulations were positive for HCMV inner tegument proteins pp150 and pUL48, suggesting that their attachment to capsids occurs independently of pUL47. Despite these morphological alterations, fully enveloped virus particles were found in the extracellular space and at the viral assembly complex (vAC) of TB-47stop-infected cells, indicating that pUL47 is not essential for the generation of virions. We confirmed findings that incorporation of pUL48 into virions is impaired in the absence of pUL47. Interestingly, pUL47 exhibited a strong nuclear localization in transfected cells, whereas it was found exclusively at the vAC in the context of virus infection. Colocalization of pUL47 and pUL48 at the vAC is consistent with their interaction. We also found a shift to a more nuclear localization of pUL47 when the expression of pUL48 was reduced. Summarizing our results, we hypothesize that pUL48 directs pUL47 to the vAC to promote tegumentation and secondary envelopment of capsids. IMPORTANCE Generation of infectious HCMV particles requires an organized and multistep process involving the action of several viral and cellular proteins as well as protein-protein interactions. A better understanding of these processes is important for

  12. Conjugated Fatty Acid Synthesis

    Science.gov (United States)

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  13. Research study of conjugate materials; Conjugate material no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper reported an introductory research on possibilities of new glass `conjugate materials.` The report took up the structure and synthetic process of conjugate materials to be researched/developed, classified them according to structural elements on molecular, nanometer and cluster levels, and introduced the structures and functions. Further, as glasses with new functions to be proposed, the paper introduced transparent and high-strength glass used for houses and vehicles, light modulation glass which realizes energy saving and optical data processing, and environmentally functional glass which realizes environmental cleaning or high performance biosensor. An initial survey was also conducted on rights of intellectual property to be taken notice of in Japan and abroad in the present situation. Reports were summed up and introduced of Osaka National Research Institute, Electrotechnical Laboratory, and National Industrial Research Institute of Nagoya which are all carrying out leading studies of conjugate materials. 235 refs., 135 figs., 6 tabs.

  14. Mechanisms regulating expression of the HPV 31 L1 and L2 capsid proteins and pseudovirion entry

    OpenAIRE

    Hindmarsh, Patrick L; Laimins, Laimonis A

    2007-01-01

    Abstract Human papillomaviruses (HPV) infect stratified epithelia and restrict expression of late capsid genes to highly differentiated cells. In order to begin to understand the processes regulating HPV 31 infection we examined the synthesis of the HPV 31 capsid proteins, L1 and L2, using heterologous expression systems. Similar to studies in HPV 16, expression of wild type HPV 31 L1 and L2 from heterologous promoters resulted in very low levels of synthesis. In contrast, modification of the...

  15. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi

    2017-03-16

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  16. Capsid-Damaging Effects of UV Irradiation as Measured by Quantitative PCR Coupled with Ethidium Monoazide Treatment.

    Science.gov (United States)

    Sangsanont, J; Katayama, H; Kurisu, F; Furumai, H

    2014-12-01

    The damage to a viral capsid after low-pressure (LP) and medium-pressure (MP) UV irradiation was assessed, using the quantitative or quantitative reverse transcription PCR coupled with ethidium monoazide treatment (EMA-PCR). After UV irradiation, adenovirus 5 (Ad5) and poliovirus 1 (PV1) were subjected to a plaque assay, PCR, and EMA-PCR to investigate the effect of UV irradiation on viral infectivity, genome damage, and capsid damage, respectively. The effectiveness of UV wavelengths in a viral genome and capsid damage of both PV1 and Ad5 was also further investigated using a band-pass filter. It was found that an MPUV lamp was more effective than an LPUV lamp in inactivating Ad5, whereas there was no difference in the case of PV1. The results of viral reduction determined by PCR and EMA-PCR indicated that MP UV irradiation damaged Ad5 capsid. The damage to PV1 and Ad5 capsid was also not observed after LP UV irradiation. The investigation of effects of UV wavelengths suggested that UV wavelengths at 230-245 nm have greater effects on adenovirus capsid in addition to viral genome than UV wavelengths beyond 245 nm.

  17. Identification of a Broadly Cross-Reactive Epitope in the Inner Shell of the Norovirus Capsid.

    Directory of Open Access Journals (Sweden)

    Gabriel I Parra

    Full Text Available Noroviruses are major pathogens associated with acute gastroenteritis. They are diverse viruses, with at least six genogroups (GI-GVI and multiple genotypes defined by differences in the major capsid protein, VP1. This diversity has challenged the development of broadly cross-reactive vaccines as well as efficient detection methods. Here, we report the characterization of a broadly cross-reactive monoclonal antibody (MAb raised against the capsid protein of a GII.3 norovirus strain. The MAb reacted with VLPs and denatured VP1 protein from GI, GII, GIV and GV noroviruses, and mapped to a linear epitope located in the inner shell domain. An alignment of all available VP1 sequences showed that the putative epitope (residues 52-56 is highly conserved across the genus Norovirus. This broadly cross-reactive MAb thus constitutes a valuable reagent for the diagnosis and study of these diverse viruses.

  18. Chronic hepatitis B infection and HBV DNA-containing capsids: Modeling and analysis

    Science.gov (United States)

    Manna, Kalyan; Chakrabarty, Siddhartha P.

    2015-05-01

    We analyze the dynamics of chronic HBV infection taking into account both uninfected and infected hepatocytes along with the intracellular HBV DNA-containing capsids and the virions. While previous HBV models have included either the uninfected hepatocytes or the intracellular HBV DNA-containing capsids, our model accounts for both these two populations. We prove the conditions for local and global stability of both the uninfected and infected steady states in terms of the basic reproduction number. Further, we incorporate a time lag in the model to encompass the intracellular delay in the production of the infected hepatocytes and find that this delay does not affect the overall dynamics of the system. The results for the model and the delay model are finally numerically illustrated.

  19. Thermodynamic characterization of the peptide assembly inhibitor binding to HIV-1 capsid protein

    Czech Academy of Sciences Publication Activity Database

    Kožíšek, Milan; Durčák, Jindřich; Konvalinka, Jan

    2013-01-01

    Roč. 10, Suppl. 1 (2013), S37-S37 ISSN 1742-4690. [Frontiers of Retrovirology: Complex retorviruses, retroelements and their hosts. 16.09.2013-18.09.2013, Cambridge] R&D Projects: GA ČR GA13-19561S Institutional support: RVO:61388963 Keywords : HIV -1 capsid protein * CAI Subject RIV: EE - Microbiology, Virology http://www.retrovirology.com/content/10/S1/P108

  20. A new series of polyhedra as blueprints for viral capsids in the family of Papovaviridae

    OpenAIRE

    Keef, T.; Twarock, R.

    2005-01-01

    In a seminal paper Caspar and Klug established a theory that provides a family of polyhedra as blueprints for the structural organisation of viral capsids. In particular, they encode the locations of the proteins in the shells that encapsulate, and hence provide protection for, the viral genome. Despite of its huge success and numerous applications in virology experimental results have provided evidence for the fact that the theory is too restrictive to describe all known viruses. Especially,...

  1. Anti-HERV-K (HML-2) capsid antibody responses in HIV elite controllers.

    Science.gov (United States)

    de Mulder, Miguel; SenGupta, Devi; Deeks, Steven G; Martin, Jeffrey N; Pilcher, Christopher D; Hecht, Frederick M; Sacha, Jonah B; Nixon, Douglas F; Michaud, Henri-Alexandre

    2017-08-22

    Human endogenous retroviruses (HERVs) comprise approximately 8% of the human genome and while the majority are transcriptionally silent, the most recently integrated HERV, HERV-K (HML-2), remains active. During HIV infection, HERV-K (HML-2) specific mRNA transcripts and viral proteins can be detected. In this study, we aimed to understand the antibody response against HERV-K (HML-2) Gag in the context of HIV-1 infection. We developed an ELISA assay using either recombinant protein or 164 redundant "15mer" HERV-K (HML-2) Gag peptides to test sera for antibody reactivity. We identified a total of eight potential HERV-K (HML-2) Gag immunogenic domains: two on the matrix (peptides 16 and 31), one on p15 (peptide 85), three on the capsid (peptides 81, 97 and 117), one on the nucleocapsid (peptide 137) and one on the QP1 protein (peptide 157). Four epitopes (peptides 16, 31, 85 and 137) were highly immunogenic. No significant differences in antibody responses were found between HIV infected participants (n = 40) and uninfected donors (n = 40) for 6 out of the 8 epitopes tested. The antibody response against nucleocapsid (peptide 137) was significantly lower (p K (HML-2) capsid recombinant peptide in gamma interferon (IFN-γ) enzyme immunospot (Elispot) assays. We found that the HERV-K (HML-2) Gag antibody and T cell response by Elispot were significantly correlated. HIV elite controllers had a strong cellular and antibody response against HERV-K (HML-2) Gag directed mainly against the Capsid region. Collectively, these data suggest that anti-HERV-K (HML-2) antibodies targeting capsid could have an immunoprotective effect in HIV infection.

  2. Analysis of mouse polyomavirus mutants with lesions in the minor capsid proteins

    Czech Academy of Sciences Publication Activity Database

    Mannová, P.; Liebl, D.; Krauzewitz, N.; Fejtová, A.; Štokrová, Jitka; Palková, Z.; Griffin, B. E.; Forstová, J.

    2002-01-01

    Roč. 83, - (2002), s. 2309-2319 ISSN 0022-1317 R&D Projects: GA ČR GA204/00/0271 Grant - others:HHMI USA(US) 75195-540501 Institutional research plan: CEZ:AV0Z5052915; CEZ:MSM 113100003 Keywords : polyomavirus * minor capsid proteins * mutation Subject RIV: EE - Microbiology, Virology Impact factor: 3.300, year: 2002

  3. Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation.

    Directory of Open Access Journals (Sweden)

    Nayab Malik

    2017-09-01

    Full Text Available Foot-and-mouth disease virus (FMDV belongs to the Aphthovirus genus of the Picornaviridae, a family of small, icosahedral, non-enveloped, single-stranded RNA viruses. It is a highly infectious pathogen and is one of the biggest hindrances to the international trade of animals and animal products. FMDV capsids (which are unstable below pH6.5 release their genome into the host cell from an acidic compartment, such as that of an endosome, and in the process dissociate into pentamers. Whilst other members of the family (enteroviruses have been visualized to form an expanded intermediate capsid with holes from which inner capsid proteins (VP4, N-termini (VP1 and RNA can be released, there has been no visualization of any such state for an aphthovirus, instead the capsid appears to simply dissociate into pentamers. Here we present the 8-Å resolution structure of isolated dissociated pentamers of FMDV, lacking VP4. We also found these pentamers to re-associate into a rigid, icosahedrally symmetric assembly, which enabled their structure to be solved at higher resolution (5.2 Å. In this assembly, the pentamers unexpectedly associate 'inside out', but still with their exposed hydrophobic edges buried. Stabilizing interactions occur between the HI loop of VP2 and its symmetry related partners at the icosahedral 3-fold axes, and between the BC and EF loops of VP3 with the VP2 βB-strand and the CD loop at the 2-fold axes. A relatively extensive but subtle structural rearrangement towards the periphery of the dissociated pentamer compared to that in the mature virus provides insight into the mechanism of dissociation of FMDV and the marked difference in antigenicity.

  4. The Polerovirus Minor Capsid Protein Determines Vector Specificity and Intestinal Tropism in the Aphid

    OpenAIRE

    Brault, Véronique; Périgon, Sophie; Reinbold, Catherine; Erdinger, Monique; Scheidecker, Danièle; Herrbach, Etienne; Richards, Ken; Ziegler-Graff, Véronique

    2005-01-01

    Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in pl...

  5. Thiophene-based donor–acceptor conjugated polymer as potential ...

    Indian Academy of Sciences (India)

    styrene sulphonate) (PEDOT:PSS) and nano-sized TiO2 powder ... FTIR,. √. (cm. −1): 3311 (-OH), 2915 and 2848. (-C-H), 1500, 1462, 1427, 1364, 1240, 1086, 992. Ele- ment. Anal. Calcd. For C30H56O4S: C, 70.26; H 11.01;. S, 6.24; found: C, ...

  6. Antibody Drug Conjugates: Preclinical Considerations.

    Science.gov (United States)

    Bornstein, Gadi G

    2015-05-01

    The development path for antibody drug conjugates (ADCs) is more complex and challenging than for unmodified antibodies. While many of the preclinical considerations for both unmodified and antibody drug conjugates are shared, special considerations must be taken into account when developing an ADC. Unlike unmodified antibodies, an ADC must preferentially bind to tumor cells, internalize, and traffic to the appropriate intracellular compartment to release the payload. Parameters that can impact the pharmacological properties of this class of therapeutics include the selection of the payload, the type of linker, and the methodology for payload drug conjugation. Despite a plethora of in vitro assays and in vivo models to screen and evaluate ADCs, the challenge remains to develop improved preclinical tools that will be more predictive of clinical outcome. This review will focus on preclinical considerations for clinically validated small molecule ADCs. In addition, the lessons learned from Mylotarg®, the first in class FDA-approved ADC, are highlighted.

  7. Persistence Mechanisms of Conjugative Plasmids

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid......Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting...... the successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable...

  8. Role of heat-shock protein 90 in hepatitis E virus capsid trafficking.

    Science.gov (United States)

    Zheng, Zi-Zheng; Miao, Ji; Zhao, Min; Tang, Ming; Yeo, Anthony E T; Yu, Hai; Zhang, Jun; Xia, Ning-Shao

    2010-07-01

    p239 is a virus-like particle constituted from hepatitis E virus (HEV) recombinant proteins. It can be used as a surrogate for HEV and as an investigative tool to study cellular interactions because of its ability to adsorb to and penetrate HepG2 cellular membranes. Our objective was to use p239 to define the role of HEV capsid proteins during the early stages of infection. Pull-down and MALDI-TOF MS experiments identified three host-cell proteins, Grp 78/Bip, alpha-tubulin and heat-shock protein 90 (HSP90), and the latter was investigated further. Antibodies to p239 alone or HSP90 alone could detect p239 or HSP90, suggesting the formation of a complex between p239 and HSP90. In the HepG2 cell, geldanamycin (GA), an HSP90-specific inhibitor, blocked intracellular transportation of p239, but had no effect on the binding and cellular entry of p239, suggesting that HSP90 was important for HEV capsid intracellular transportation. RT-PCR results showed that the efficiency of wild-type HEV infection was inhibited significantly by GA treatment, suggesting the importance of HSP90 in virus infectivity. It was concluded that HSP90 plays a crucial role in the intracellular transportation of viral capsids in the early stage of HEV infection.

  9. Cryo-Electron Microscopy Structure of the Macrobrachium rosenbergii Nodavirus Capsid at 7 Angstroms Resolution.

    Science.gov (United States)

    Ho, Kok Lian; Kueh, Chare Li; Beh, Poay Ling; Tan, Wen Siang; Bhella, David

    2017-05-18

    White tail disease in the giant freshwater prawn Macrobrachium rosenbergii causes significant economic losses in shrimp farms and hatcheries and poses a threat to food-security in many developing countries. Outbreaks of Macrobrachium rosenbergii nodavirus (MrNV), the causative agent of white tail disease (WTD) are associated with up to 100% mortality rates. There are no interventions available to treat or prevent MrNV disease however. Here we show the structure of MrNV virus-like particles (VLPs) produced by recombinant expression of the capsid protein, using cryogenic electron microscopy. Our data show that MrNV VLPs package nucleic acids in a manner reminiscent of other known nodavirus structures. The structure of the capsid however shows striking differences from insect and fish infecting nodaviruses, which have been shown to assemble trimer-clustered T = 3 icosahedral virus particles. MrNV particles have pronounced dimeric blade-shaped spikes extending up to 6 nm from the outer surface of the capsid shell. Our structural analysis supports the assertion that MrNV may belong to a new genus of the Nodaviridae. Moreover, our study provides the first structural view of an important pathogen affecting aquaculture industries across the world.

  10. Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Albertha R. van Zyl

    2016-03-01

    Full Text Available Bluetongue virus (BTV causes severe disease in domestic and wild ruminants, and has recently caused several outbreaks in Europe. Current vaccines include live-attenuated and inactivated viruses; while these are effective, there is risk of reversion to virulence by mutation or reassortment with wild type viruses. Subunit or virus-like particle (VLP vaccines are safer options: VLP vaccines produced in insect cells by expression of the four BTV capsid proteins are protective against challenge; however, this is a costly production method. We investigated production of BTV VLPs in plants via Agrobacterium-mediated transient expression, an inexpensive production system very well suited to developing country use. Leaves infiltrated with recombinant pEAQ-HT vectors separately encoding the four BTV-8 capsid proteins produced more proteins than recombinant pTRA vectors. Plant expression using the pEAQ-HT vector resulted in both BTV-8 core-like particles (CLPs and VLPs; differentially controlling the concentration of infiltrated bacteria significantly influenced yield of the VLPs. In situ localisation of assembled particles was investigated by using transmission electron microscopy (TEM and it was shown that a mixed population of core-like particles (CLPs, consisting of VP3 and VP7 and VLPs were present as paracrystalline arrays in the cytoplasm of plant cells co-expressing all four capsid proteins.

  11. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes

    Directory of Open Access Journals (Sweden)

    Daniel J Hui

    Full Text Available Adeno-associated virus (AAV has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC class I epitopes for common human leukocyte antigen (HLA types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.

  12. Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection

    Energy Technology Data Exchange (ETDEWEB)

    Sae-Ueng, Udom; Li, Dong; Zuo, Xiaobing; Huffman, Jamie B.; Homa, Fred L.; Rau, Donald; Evilevitch, Alex

    2014-10-01

    DNA in the human Herpes simplex virus type 1 (HSV-1) capsid is packaged to a tight density. This leads to tens of atmospheres of internal pressure responsible for the delivery of the herpes genome into the cell nucleus. In this study we show that, despite its liquid crystalline state inside the capsid, the DNA is fluid-like, which facilitates its ejection into the cell nucleus during infection. We found that the sliding friction between closely packaged DNA strands, caused by interstrand repulsive interactions, is reduced by the ionic environment of epithelial cells and neurons susceptible to herpes infection. However, variations in the ionic conditions corresponding to neuronal activity can restrict DNA mobility in the capsid, making it more solid-like. This can inhibit intranuclear DNA release and interfere with viral replication. In addition, the temperature of the human host (37 °C) induces a disordering transition of the encapsidated herpes genome, which reduces interstrand interactions and provides genome mobility required for infection.

  13. Structure of a Spumaretrovirus Gag Central Domain Reveals an Ancient Retroviral Capsid.

    Science.gov (United States)

    Ball, Neil J; Nicastro, Giuseppe; Dutta, Moumita; Pollard, Dominic J; Goldstone, David C; Sanz-Ramos, Marta; Ramos, Andres; Müllers, Erik; Stirnnagel, Kristin; Stanke, Nicole; Lindemann, Dirk; Stoye, Jonathan P; Taylor, William R; Rosenthal, Peter B; Taylor, Ian A

    2016-11-01

    The Spumaretrovirinae, or foamy viruses (FVs) are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV). The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA) and C-terminal domains (CtDCA) of archetypal orthoretroviral capsid protein (CA). Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN-CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold.

  14. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells.

    Directory of Open Access Journals (Sweden)

    Tonya M Colpitts

    Full Text Available Dengue virus (DENV is a member of the Flaviviridae and a globally (reemerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection.

  15. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells.

    Science.gov (United States)

    Colpitts, Tonya M; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection.

  16. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  17. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    Science.gov (United States)

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  18. Mapping the AAV capsid host antibody response towards the development of second generation gene delivery vectors

    Directory of Open Access Journals (Sweden)

    Yu-Shan eTseng

    2014-01-01

    Full Text Available The recombinant Adeno-associated virus (rAAV gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2. Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from monoclonal antibodies, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed.

  19. Structure of a Spumaretrovirus Gag Central Domain Reveals an Ancient Retroviral Capsid.

    Directory of Open Access Journals (Sweden)

    Neil J Ball

    2016-11-01

    Full Text Available The Spumaretrovirinae, or foamy viruses (FVs are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV. The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA and C-terminal domains (CtDCA of archetypal orthoretroviral capsid protein (CA. Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN-CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold.

  20. The efficacy of viral capsid inhibitors in human enterovirus infection and associated diseases.

    Science.gov (United States)

    Li, Chin; Wang, Hongtao; Shih, Shin-Ru; Chen, Tzu-Chun; Li, Mei-Ling

    2007-01-01

    Enteroviruses are members of picornavirus family which causes diverse and severe diseases in humans and animals. Clinical manifestations of enterovirus infections include fever, hand, foot, and mouth disease, and herpangina. Enteroviruses also cause potentially severe and life-threatening infections such as meningitis, encephalitis, myocarditis, polio-like syndrome, and neonatal sepsis. With the emergence of enterovirus all over the world as the major causative agent of HFMD fatalities in recent years and in the absence of any effective anti-enteroviral therapy, there is clearly a need to find a specific antiviral therapy. Steps such as viral attachment, uncoating, viral RNA replication, and protein synthesis in the replication cycle can serve as potential targets for antiviral agents. Agents targeted at viral protein 1 (VP1), a relatively conserved capsid structure mediating viral adsorption and uncoating process, is of great potential to be anti-enterovirus drugs. Recently, considerable efforts have been made in the development of antiviral compounds targeting the capsid protein of enterovirus. This review summarizes the development of small molecules targeting enteroviral capsid protein as effective antiviral therapy.

  1. Hierarchical Assembly of Plasmonic Nanostructures using Virus Capsid Scaffolds on DNA Origami Tiles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Debin; Capehart, Stacy L.; Pal, Suchetan; Liu, Minghui; Zhang, Lei; Schuck, P. J.; Liu, Yan; Yan, Hao; Francis, Matthew B.; De Yoreo, James J.

    2014-07-07

    Plasmonic nanoarchitectures using biological scaffolds have shown the potential to attain controllable plasmonic fluorescence via precise spatial arrangement of fluorophores and plasmonic antennae. However, previous studies report a predominance of fluorescence quenching for small metal nanoparticles (less than ~60 nm) due to their small scattering cross-sections. In this work, we report the design and performance of fluorescent plasmonic structures composed of fluorophore-modified virus capsids and gold nanoparticles (AuNPs) assembled on DNA origami tiles. The virus capsid creates a scaffold for control over the three dimensional arrangement of the fluorophores, whereas the DNA origami tile provides precise control over the distance between the capsid and the AuNP. Using finite-difference time-domain (FDTD) numerical simulations and multimodal single-particle imaging measurements, we show that the judicial design of these structures places the dye molecules near the hot spot of the AuNP. This effectively increases the fluorescence intensity in the quenching regime of the AuNP, with an enhancement factor that increases with increasing AuNP size. This strategy of using biological scaffolds to control fluorescence paves the way for exploring the parameters that determine plasmonic fluorescence. It may lead to a better understanding of the antenna effects of photon absorption and emission, enabling the construction of multicomponent plasmonic systems.

  2. Phase conjugation of acoustic beams

    Science.gov (United States)

    Bunkin, F. V.; Vlasov, D. V.; Kravtsov, Iu. A.

    The paper presents a classification of methods for the phase conjugation (PC) of wave fields of various physical natures on the basis of such nonliner interactions as stimulated scattering, and three- and four-wave interactions. Among the latter, attention is given to holographic (volume and surface) and parametric PC schemes, permitting PC with amplification. The possibility of developing phase-conjugated devices using acoustic PC devices on the basis of various nonlinear effects is considered. Experimental results pertaining to the PC of sound fields are presented, and possible applications of acoustic PC devices are indicated.

  3. A eukaryotic cytosolic chaperonin is associated with a high molecular weight intermediate in the assembly of hepatitis B virus capsid, a multimeric particle

    OpenAIRE

    1994-01-01

    We have established a system for assembly of hepatitis B virus capsid, a homomultimer of the viral core polypeptide, using cell-free transcription-linked translation. The mature particles that are produced are indistinguishable from authentic viral capsids by four criteria: velocity sedimentation, buoyant density, protease resistance, and electron microscopic appearance. Production of unassembled core polypeptides can be uncoupled from production of capsid particles by decreasing core mRNA co...

  4. High pressure structural studies of conjugated molecules

    DEFF Research Database (Denmark)

    Knaapila, Matti; Torkkeli, Mika; Scherf, Ullrich

    2018-01-01

    This chapter highlights high pressure GPa level structural studies of conjugated polymers and their analogues: conjugated oligomers and molecules, and rigid rod polymers. Attention is placed on our recent studies of polyfluorenes.......This chapter highlights high pressure GPa level structural studies of conjugated polymers and their analogues: conjugated oligomers and molecules, and rigid rod polymers. Attention is placed on our recent studies of polyfluorenes....

  5. Enhanced photophysics of conjugated polymers

    Science.gov (United States)

    Chen, Liaohai [Darien, IL

    2007-06-12

    A particulate fluorescent conjugated polymer surfactant complex and method of making and using same. The particles are between about 15 and about 50 nm and when formed from a lipsome surfactant have a charge density similar to DNA and are strongly absorbed by cancer cells.

  6. Conjugal Pairing in Escherichia Coli

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 8. Conjugal Pairing in Escherichia Coli. Joshua Lederberg. Classics Volume 13 Issue 8 August 2008 pp 793-794. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/013/08/0793-0794 ...

  7. Galois conjugates of topological phases

    Science.gov (United States)

    Freedman, M. H.; Gukelberger, J.; Hastings, M. B.; Trebst, S.; Troyer, M.; Wang, Z.

    2012-01-01

    Galois conjugation relates unitary conformal field theories and topological quantum field theories (TQFTs) to their nonunitary counterparts. Here we investigate Galois conjugates of quantum double models, such as the Levin-Wen model. While these Galois-conjugated Hamiltonians are typically non-Hermitian, we find that their ground-state wave functions still obey a generalized version of the usual code property (local operators do not act on the ground-state manifold) and hence enjoy a generalized topological protection. The key question addressed in this paper is whether such nonunitary topological phases can also appear as the ground states of Hermitian Hamiltonians. Specific attempts at constructing Hermitian Hamiltonians with these ground states lead to a loss of the code property and topological protection of the degenerate ground states. Beyond this, we rigorously prove that no local change of basis can transform the ground states of the Galois-conjugated doubled Fibonacci theory into the ground states of a topological model whose Hermitian Hamiltonian satisfies Lieb-Robinson bounds. These include all gapped local or quasilocal Hamiltonians. A similar statement holds for many other nonunitary TQFTs. One consequence is that these nonunitary TQFTs do not describe physical realizations of topological phases. In particular, this implies that the “Gaffnian” wave function can not be the ground state of a gapped fractional quantum Hall state.

  8. Conjugal Pairing in Escherichia Coli

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 8. Conjugal Pairing in Escherichia Coli. Joshua Lederberg. Classics Volume 13 Issue 8 August 2008 pp 793-794. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/013/08/0793-0794 ...

  9. Bacteriophytochromes control conjugation in Agrobacterium fabrum.

    Science.gov (United States)

    Bai, Yingnan; Rottwinkel, Gregor; Feng, Juan; Liu, Yiyao; Lamparter, Tilman

    2016-08-01

    Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. REVIEW ARTICLE Conjugated Hyperbilirubinaemia in Early Infancy ...

    African Journals Online (AJOL)

    REVIEW ARTICLE Conjugated Hyperbilirubinaemia in Early Infancy. AOK Johnson. Abstract. Conjugated hyperbilirubinaemia exists when the conjugated serum bilirubin level is more than 2 mg/dl or more than 20 per cent of the total serum bilirubin. It is always pathological in early infancy. The causes are many and diverse ...

  11. Preparation and supramolecular properties of unadulterated glycosyl liposomes from a bis(alpha-D-mannopyranosyl)-[60]fullerene conjugate.

    Science.gov (United States)

    Kato, Haruhito; Kaneta, Noboru; Nii, Susumu; Kobayashi, Kazukiyo; Fukui, Nobuyuki; Shinohara, Hisanori; Nishida, Yoshihiro

    2005-09-01

    The bis(alpha-D-mannopyranosyl)-[60]fullerene conjugate 3 was prepared by thermal coupling of C60 and either 2-azidoethyl 2,3,4,6-tetra-O-acetyl- or 2,3;4,6-di-O-isopropylidene-alpha-D-mannopyranoside (Scheme). Compound 3 was found to readily self-assemble. Dynamic-light-scattering (DLS) and atomic-force microscopy (AFM) experiments supported that the amphiphilic compound gives rise to nano-sized supramolecular structures during sugar deprotection (Ac-group removal) performed in MeOH/CH2Cl2 solution. Encapsulation studies with an aqueous suspension of 3 showed that the self-assembling structure envelopes Ba2+ and the fluorescent dye Acridine Red during its formation, which indicates that it resembles a bilayer vesicle or an unadulterated liposome with an inner hollow space. In addition to this notable property, the unique molecular geometry of the spatially arranged mannosyl surface residues of 3 gives rise to strong binding of the carbohydrate-recognizing lectin Con A. Hence, the polar amphiphilic end of 3 mimics the structure of 3,6-branched tri-alpha-D-mannoside (6; Fig. 3), a natural ligand of the Con A protein.

  12. Preparation, characterization, and antitumor activity of paclitaxel-loaded folic acid modified and TAT peptide conjugated PEGylated polymeric liposomes.

    Science.gov (United States)

    Niu, Ruifang; Zhao, Peiqi; Wang, Hanjie; Yu, Man; Cao, Shuzhen; Zhang, Fei; Chang, Jin

    2011-06-01

    Targeting therapy is a promising strategy for enhancing the therapeutic potential of chemotherapeutic agents. In this study, we report the construction of a multifunctional drug delivery system, termed folic acid modified and TAT peptide conjugated PEGylated polymeric liposomes (FA-TATp-PLs), which is originally derived from octadecyl-quaternized lysine modified chitosan and cholesterol. Our data revealed that FA-TATp-PLs have a particle size of about 60 nm with a zeta potential of about 30 mV, a low burst release effect within the first day, a sustained release for the next 14 days in vitro as well as an instant cellular uptake by folate receptor-overexpressing KB human nasopharyngeal carcinoma cells. In vitro cytotoxicity of paclitaxel-loaded FA-TATp-PLs in KB cells was superior to that of Taxol(®). Furthermore, a comparable antitumor efficacy of paclitaxel-loaded FA-TATp-PLs and Taxol(®) was observed at the same doses in murine models bearing nasopharyngeal carcinoma. These results demonstrate that the paclitaxel formulation not only exhibits a higher antitumor activity but also significantly reduces the toxicity and improves the bioavailability as compared to that of free paclitaxel for the treatment of nasopharyngeal carcinoma. Taken together, our findings indicate that paclitaxel-loaded FA-TATp-PLs are a promising nano-sized drug formulation for future cancer therapy.

  13. A physics-explicit model of bacterial conjugation shows the stabilizing role of the conjugative junction

    OpenAIRE

    Pastuszak, Jakub; Waclaw, Bartlomiej

    2017-01-01

    Conjugation is a process in which bacteria exchange DNA through a physical connection (conjugative junction) between mating cells. Despite its significance for processes such as the spread of antibiotic resistance, the role of physical forces in conjugation is poorly understood. Here we use computer models to show that the conjugative junction not only serves as a link to transfer the DNA but it also mechanically stabilises the mating pair which significantly increases the conjugation rate. W...

  14. TAT Peptide and Its Conjugates: Proteolytic Stability

    OpenAIRE

    Grunwald, Jacob; Rejtar, Tomas; Sawant, Rupa; Wang, Zhouxi; Torchilin, Vladimir P.

    2009-01-01

    The proteolytic cleavage of TATp, TATp-PEG1000-PE conjugate (TATp-conjugate), and TATp as TATp-conjugate in mixed micelles made of TATp-conjugate and PEG5000-PE (2.5% mol of TATp-conjugate, TATp-Mic) were studied by HPLC with fluorescent detection using fluorenylmethyl chloroformate (FMOC) labeling and by MALDI-TOF MS analysis. The cleavage kinetics were analyzed in human blood plasma and in trypsin-containing phosphate buffered saline (PBS), pH 7.4, to simulate the proteolytic activity of hu...

  15. Thermodynamic origins of protein folding, allostery, and capsid formation in the human hepatitis B virus core protein.

    Science.gov (United States)

    Alexander, Crispin G; Jürgens, Maike C; Shepherd, Dale A; Freund, Stefan M V; Ashcroft, Alison E; Ferguson, Neil

    2013-07-23

    HBc, the capsid-forming "core protein" of human hepatitis B virus (HBV), is a multidomain, α-helical homodimer that aggressively forms human HBV capsids. Structural plasticity has been proposed to be important to the myriad functions HBc mediates during viral replication. Here, we report detailed thermodynamic analyses of the folding of the dimeric HBc protomer under conditions that prevented capsid formation. Central to our success was the use of ion mobility spectrometry-mass spectrometry and microscale thermophoresis, which allowed folding mechanisms to be characterized using just micrograms of protein. HBc folds in a three-state transition with a stable, dimeric, α-helical intermediate. Extensive protein engineering showed thermodynamic linkage between different structural domains. Unusual effects associated with mutating some residues suggest structural strain, arising from frustrated contacts, is present in the native dimer. We found evidence of structural gatekeepers that, when mutated, alleviated native strain and prevented (or significantly attenuated) capsid formation by tuning the population of alternative native conformations. This strain is likely an evolved feature that helps HBc access the different structures associated with its diverse essential functions. The subtle balance between native and strained contacts may provide the means to tune conformational properties of HBc by molecular interactions or mutations, thereby conferring allosteric regulation of structure and function. The ability to trap HBc conformers thermodynamically by mutation, and thereby ablate HBV capsid formation, provides proof of principle for designing antivirals that elicit similar effects.

  16. Structure of FIV capsid C-terminal domain demonstrates lentiviral evasion of genetic fragility by coevolved substitutions.

    Science.gov (United States)

    Khwaja, Aya; Galilee, Meytal; Marx, Ailie; Alian, Akram

    2016-04-22

    Viruses use a strategy of high mutational rates to adapt to environmental and therapeutic pressures, circumventing the deleterious effects of random single-point mutations by coevolved compensatory mutations, which restore protein fold, function or interactions damaged by initial ones. This mechanism has been identified as contributing to drug resistance in the HIV-1 Gag polyprotein and especially its capsid proteolytic product, which forms the viral capsid core and plays multifaceted roles in the viral life cycle. Here, we determined the X-ray crystal structure of C-terminal domain of the feline immunodeficiency virus (FIV) capsid and through interspecies analysis elucidate the structural basis of co-evolutionarily and spatially correlated substitutions in capsid sequences, which when otherwise uncoupled and individually substituted into HIV-1 capsid impair virion assembly and infectivity. The ability to circumvent the deleterious effects of single amino acid substitutions by cooperative secondary substitutions allows mutational flexibility that may afford viruses an important survival advantage. The potential of such interspecies structural analysis for preempting viral resistance by identifying such alternative but functionally equivalent patterns is discussed.

  17. Foot-and-mouth disease virus capsid proteins; analysis of protein processing, assembly and utility as vaccines

    DEFF Research Database (Denmark)

    Belsham, Graham

    , open reading frame that encodes a polyprotein. The intact polyprotein is never observed as it is processed, both during and after translation, to 15 different mature proteins plus a variety of precursors. The FMDV capsid protein precursor, P1-2A, is cleaved by the virus encoded 3C protease (3Cpro......) to generate VP0, VP3, VP1 and the peptide 2A. Sixty copies of each of the capsid proteins “self-assemble” into empty capsid particles or with the RNA genome into infectious viruses. These particles normally lack 2A but it is possible to construct and isolate mutant FMDVs in which the cleavage of the VP1/2A...... precursor enhances the yield of processed capsid proteins and their assembly into empty capsid particles within mammalian cells. Such particles can potentially form the basis of a vaccine but they may only have the same properties as the current inactivated vaccines. We have expressed the FMDV P1-2A alone...

  18. Labeling and localization of the herpes simplex virus capsid protein UL25 and its interaction with the two triplexes closest to the penton

    Science.gov (United States)

    Conway, James F.; Cockrell, Shelley K.; Copeland, Anna Maria; Newcomb, William W.; Brown, Jay C.; Homa, Fred L.

    2010-01-01

    The herpes simplex virus type 1 (HSV-1) UL25 protein is one of seven viral proteins that are required for DNA cleavage and packaging. Together with UL17, UL25 forms part of an elongated molecule referred to as the C-capsid-specific component or CCSC. Five copies of the CCSC are located at each of the capsid vertices on DNA-containing capsids. To study the conformation of UL25 as it is folded on the capsid surface, we identified the sequence recognized by a UL25-specific monoclonal antibody and localized the epitope on the capsid surface by immunogold electron microscopy. The epitope mapped to amino acids 99-111 adjacent to the region of the protein (amino acids 1-50) that is required for capsid binding. In addition, cryo-EM reconstructions of C-capsids in which the green fluorescent protein (GFP) was fused within the N-terminus of UL25 localized the point of contact between UL25 and GFP. The result confirmed the modeled location of the UL25 protein in the CCSC density as the region that is distal to the penton with the N-terminus of UL25 making contact with the triplex one removed from the penton. Immunofluorescence experiments at early times during infection demonstrated that UL25-GFP was present on capsids located within the cytoplasm and adjacent to the nucleus. These results support the view that UL25 is present on incoming capsids with the capsid binding domain of UL25 located on the surface of the mature DNA-containing capsid. PMID:20109467

  19. PSMA ligand conjugated PCL-PEG polymeric micelles targeted to prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Jian Jin

    Full Text Available In this content, a small molecular ligand of prostate specific membrane antigen (SMLP conjugated poly (caprolactone (PCL-b-poly (ethylene glycol (PEG copolymers with different block lengths were synthesized to construct a satisfactory drug delivery system. Four different docetaxel-loaded polymeric micelles (DTX-PMs were prepared by dialysis with particle sizes less than 60 nm as characterized by dynamic light scattering (DLS and transmission electron microscope (TEM. Optimization of the prepared micelles was conducted based on short-term stability and drug-loading content. The results showed that optimized systems were able to remain stable over 7 days. Compared with Taxotere, DTX-PMs with the same ratio of hydrophilic/hydrophobic chain length displayed similar sustained release behaviors. The cytotoxicity of the optimized targeted DTX-PCL12K-PEG5K-SMLP micelles (DTX-PMs2 and non-targeted DTX-PCL12K-mPEG5K micelles (DTX-PMs1 were evaluated by MTT assays using prostate specific membrane antigen (PSMA positive prostate adenocarcinoma cells (LNCaP. The results showed that the targeted micelles had a much lower IC50 than their non-targeted counterparts (48 h: 0.87 ± 0.27 vs 13.48 ± 1.03 µg/ml; 72 h: 0.02 ± 0.008 vs 1.35 ± 0.54 µg/ml. In vitro cellular uptake of PMs2 showed 5-fold higher fluorescence intensity than that of PMs1 after 4 h incubation. According to these results, the novel nano-sized drug delivery system based on DTX-PCL-PEG-SMLP offers great promise for the treatment of prostatic cancer.

  20. Outer capsid proteins induce the formation of pores in epithelial cells

    International Nuclear Information System (INIS)

    Ruiz, M; Abad M; Michelangely, F; Charpilienne, A; Cohen, J

    1995-01-01

    Two mechanisms of entrance in cell of the rotavirus, during the infection, were proposed: a direct entrance through the plasmatic membrane or by means of endocytosis. In the two cases, a permeabilization mechanism of the membrane (cellular or of the endocytic vesicle, respectively) should occur. It has been shown that the rotavirus induces permeabilization of liposomes and of membrane vesicles. In this work, are studied the changes of intact cells permeability, measuring the entrance of e tide bromides. Viral particles of double capsid of the RF stump produce an increase of the cells membrane MA104 permeability, while the simple capsid ones don't induce effect. This phenomenon requires the particles trypsinization, and occurs in a means where the concentration of free Ca is lower to 1 micromolar. The temporary course of the fluorescence increase is sigmoid. The latency, the speed and the width depend on the relationship of virus / cell, and it can be observed up to 100% of permeabilization in relation to the effect of digitonin. The pores induced in the membrane by the rotavirus are irreversible. The permeabilizer effect of the rotavirus on the membrane was observed in other cellular lines as Hela and HT29, but not in the L929 ones. These results suggest that one or more proteins of the external capsid are responsible s of the effect. These could be involved in the penetration process of the virus towards the cytoplasm and could be one of the restrictive factor of the cell infection by means of the virus [es

  1. Conjugated Polymers for Energy Production

    DEFF Research Database (Denmark)

    Livi, Francesco

    for scalable PSCs fully printed under ambient conditions [Adv. Energy Mater. 2015, 5, 1402186]. PPDTBT resulted to be the conjugated polymer with the best photovoltaic performance within the 104 synthesized macromolecules. Therefore, further studies have been done on such material. The impact of side chain......This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates.......The reactivity of DArP has been further studied and applied to the synthesis of fluorinated copolymers featuring thiophene, which are largely used materials for organic electronics. In particular, by moving the bromine functionality from one monomer to the other, a big impact on the reactivity has been observed...

  2. Organometallic B12-DNA conjugate

    DEFF Research Database (Denmark)

    Hunger, Miriam; Mutti, Elena; Rieder, Alexander

    2014-01-01

    Design, synthesis, and structural characterization of a B12-octadecanucleotide are presented herein, a new organometallic B12-DNA conjugate. In such covalent conjugates, the natural B12 moiety may be a versatile vector for controlled in vivo delivery of oligonucleotides to cellular targets...... with transcobalamin (TC), but not so efficient with the homologous glycoproteins intrinsic factor and haptocorrin. Binding of the B12 octadecanucleotide to TC suggests the capacity of the B12 moiety to serve as a natural vector for specific transport of single stranded, organometallic oligonucleotide loads from...... in humans and animals, through the endogenous B12 transport systems. Binding of the organometallic B12 octadecanucleotide to the three important human proteins of B12 transport was studied, to examine its structural suitability for the task of eventual in vivo oligonucleotide delivery. Binding was efficient...

  3. Phosphorylation of the Brome Mosaic Virus Capsid Regulates the Timing of Viral Infection.

    Science.gov (United States)

    Hoover, Haley S; Wang, Joseph Che-Yen; Middleton, Stefani; Ni, Peng; Zlotnick, Adam; Vaughan, Robert C; Kao, C Cheng

    2016-09-01

    The four brome mosaic virus (BMV) RNAs (RNA1 to RNA4) are encapsidated in three distinct virions that have different disassembly rates in infection. The mechanism for the differential release of BMV RNAs from virions is unknown, since 180 copies of the same coat protein (CP) encapsidate each of the BMV genomic RNAs. Using mass spectrometry, we found that the BMV CP contains a complex pattern of posttranslational modifications. Treatment with phosphatase was found to not significantly affect the stability of the virions containing RNA1 but significantly impacted the stability of the virions that encapsidated BMV RNA2 and RNA3/4. Cryo-electron microscopy reconstruction revealed dramatic structural changes in the capsid and the encapsidated RNA. A phosphomimetic mutation in the flexible N-terminal arm of the CP increased BMV RNA replication and virion production. The degree of phosphorylation modulated the interaction of CP with the encapsidated RNA and the release of three of the BMV RNAs. UV cross-linking and immunoprecipitation methods coupled to high-throughput sequencing experiments showed that phosphorylation of the BMV CP can impact binding to RNAs in the virions, including sequences that contain regulatory motifs for BMV RNA gene expression and replication. Phosphatase-treated virions affected the timing of CP expression and viral RNA replication in plants. The degree of phosphorylation decreased when the plant hosts were grown at an elevated temperature. These results show that phosphorylation of the capsid modulates BMV infection. How icosahedral viruses regulate the release of viral RNA into the host is not well understood. The selective release of viral RNA can regulate the timing of replication and gene expression. Brome mosaic virus (BMV) is an RNA virus, and its three genomic RNAs are encapsidated in separate virions. Through proteomic, structural, and biochemical analyses, this work shows that posttranslational modifications, specifically

  4. A time-resolved immunoassay to measure serum antibodies to the rotavirus VP6 capsid protein

    OpenAIRE

    Kavanagh, Owen; Zeng, Xi-Lei; Ramani, Sasirekha; Mukhopadhya, Indrani; Crawford, Sue E.; Kang, Gagandeep; Estes, Mary K.

    2013-01-01

    The rotavirus (RV) inner capsid protein VP6 is widely used to evaluate immune response during natural infection and in vaccine studies. Recombinant VP6 from the most prevalent circulating rotavirus strains in each subgroup (SG) identified in a birth cohort of children in southern India [SGII (G1P[8]) and SGI (G10P[11])] were produced. The purified proteins were used to measure VP6-specific antibodies in a Dissociation-Enhanced Lanthanide Fluorometric Immunoassay (DELFIA). The ability of the a...

  5. TRIM5α selectively binds a restriction-sensitive retroviral capsid

    Directory of Open Access Journals (Sweden)

    Luban Jeremy

    2005-06-01

    Full Text Available Abstract TRIM5 is a potent retrovirus inhibitor that targets viruses bearing particular capsid (CA residues. In most primate species, retroviral restriction requires the C-terminal SPRY domain unique to the α-isoform of TRIM5, but the mechanism by which susceptible viruses are recognized and targeted for restriction is unknown. Here we show that TRIM5α binds retroviral CA from detergent-stripped virions in a SPRY-dependent manner with sufficient discrimination to account for the exquisite specificity of restriction.

  6. Modeling capsid kinetics assembly from the steady state distribution of multi-sizes aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Hozé, Nathanaël; Holcman, David

    2014-01-24

    The kinetics of aggregation for particles of various sizes depends on their diffusive arrival and fusion at a specific nucleation site. We present here a mean-field approximation and a stochastic jump model for aggregates at equilibrium. This approach is an alternative to the classical Smoluchowski equations that do not have a close form and are not solvable in general. We analyze these mean-field equations and obtain the kinetics of a cluster formation. Our approach provides a simplified theoretical framework to study the kinetics of viral capsid formation, such as HIV from the self-assembly of the structural proteins Gag.

  7. Orthogonal labeling of M13 minor capsid proteins with DNA to self-assemble end-to-end multiphage structures.

    Science.gov (United States)

    Hess, Gaelen T; Guimaraes, Carla P; Spooner, Eric; Ploegh, Hidde L; Belcher, Angela M

    2013-09-20

    M13 bacteriophage has been used as a scaffold to organize materials for various applications. Building more complex multiphage devices requires precise control of interactions between the M13 capsid proteins. Toward this end, we engineered a loop structure onto the pIII capsid protein of M13 bacteriophage to enable sortase-mediated labeling reactions for C-terminal display. Combining this with N-terminal sortase-mediated labeling, we thus created a phage scaffold that can be labeled orthogonally on three capsid proteins: the body and both ends. We show that covalent attachment of different DNA oligonucleotides at the ends of the new phage structure enables formation of multiphage particles oriented in a specific order. These have potential as nanoscale scaffolds for multi-material devices.

  8. Silencing herpes simplex virus type 1 capsid protein encoding genes by siRNA: a promising antiviral therapeutic approach.

    Directory of Open Access Journals (Sweden)

    Fujun Jin

    Full Text Available Herpes simplex virus type 1 (HSV-1, a member of the herpesviridae, causes a variety of human viral diseases globally. Although a series of antiviral drugs are available for the treatment of infection and suppression of dissemination, HSV-1 remains highly prevalent worldwide. Therefore, the development of novel antiviral agents with different mechanisms of action is a matter of extreme urgency. During the proliferation of HSV-1, capsid assembly is essential for viral growth, and it is highly conserved in all HSV-1 strains. In this study, small interfering RNAs (siRNAs against the HSV-1 capsid protein were screened to explore the influence of silencing capsid expression on the replication of HSV-1. We designed and chemically synthesized siRNAs for the capsid gene and assessed their inhibitory effects on the expression of target mRNA and the total intracellular viral genome loads by quantitative real-time PCR, as well as on the replication of HSV-1 via plaque reduction assays and electron microscopy. Our results showed that siRNA was an effective approach to inhibit the expression of capsid protein encoding genes including UL18, UL19, UL26, UL26.5, UL35 and UL38 in vitro. Interference of capsid proteins VP23 (UL18 and VP5 (UL19 individually or jointly greatly affected the replication of clinically isolated acyclovir-resistant HSV-1 as well as HSV-1/F and HSV-2/333. Plaque numbers and intracellular virions were significantly reduced by simultaneous knockdown of UL18 and UL19. The total intracellular viral genome loads were also significantly decreased in the UL18 and UL19 knockdown groups compared with the viral control. In conclusion, interfering with UL18 and UL19 gene expression could inhibit HSV-1 replication efficiently in vitro. Our research offers new targets for an RNA interference-based therapeutic strategy against HSV-1.

  9. Silencing herpes simplex virus type 1 capsid protein encoding genes by siRNA: a promising antiviral therapeutic approach.

    Science.gov (United States)

    Jin, Fujun; Li, Shen; Zheng, Kai; Zhuo, Cuiqin; Ma, Kaiqi; Chen, Maoyun; Wang, Qiaoli; Zhang, Peizhuo; Fan, Jianglin; Ren, Zhe; Wang, Yifei

    2014-01-01

    Herpes simplex virus type 1 (HSV-1), a member of the herpesviridae, causes a variety of human viral diseases globally. Although a series of antiviral drugs are available for the treatment of infection and suppression of dissemination, HSV-1 remains highly prevalent worldwide. Therefore, the development of novel antiviral agents with different mechanisms of action is a matter of extreme urgency. During the proliferation of HSV-1, capsid assembly is essential for viral growth, and it is highly conserved in all HSV-1 strains. In this study, small interfering RNAs (siRNAs) against the HSV-1 capsid protein were screened to explore the influence of silencing capsid expression on the replication of HSV-1. We designed and chemically synthesized siRNAs for the capsid gene and assessed their inhibitory effects on the expression of target mRNA and the total intracellular viral genome loads by quantitative real-time PCR, as well as on the replication of HSV-1 via plaque reduction assays and electron microscopy. Our results showed that siRNA was an effective approach to inhibit the expression of capsid protein encoding genes including UL18, UL19, UL26, UL26.5, UL35 and UL38 in vitro. Interference of capsid proteins VP23 (UL18) and VP5 (UL19) individually or jointly greatly affected the replication of clinically isolated acyclovir-resistant HSV-1 as well as HSV-1/F and HSV-2/333. Plaque numbers and intracellular virions were significantly reduced by simultaneous knockdown of UL18 and UL19. The total intracellular viral genome loads were also significantly decreased in the UL18 and UL19 knockdown groups compared with the viral control. In conclusion, interfering with UL18 and UL19 gene expression could inhibit HSV-1 replication efficiently in vitro. Our research offers new targets for an RNA interference-based therapeutic strategy against HSV-1.

  10. Induction of Antiviral Immune Response through Recognition of the Repeating Subunit Pattern of Viral Capsids Is Toll-Like Receptor 2 Dependent.

    Science.gov (United States)

    Shepardson, Kelly M; Schwarz, Benjamin; Larson, Kyle; Morton, Rachelle V; Avera, John; McCoy, Kimberly; Caffrey, Alayna; Harmsen, Ann; Douglas, Trevor; Rynda-Apple, Agnieszka

    2017-11-14

    Although viruses and viral capsids induce rapid immune responses, little is known about viral pathogen-associated molecular patterns (PAMPs) that are exhibited on their surface. Here, we demonstrate that the repeating protein subunit pattern common to most virus capsids is a molecular pattern that induces a Toll-like-receptor-2 (TLR2)-dependent antiviral immune response. This early antiviral immune response regulates the clearance of subsequent bacterial superinfections, which are a primary cause of morbidities associated with influenza virus infections. Utilizing this altered susceptibility to subsequent bacterial challenge as an outcome, we determined that multiple unrelated, empty, and replication-deficient capsids initiated early TLR2-dependent immune responses, similar to intact influenza virus or murine pneumovirus. These TLR2-mediated responses driven by the capsid were not dependent upon the capsid's shape, size, origin, or amino acid sequence. However, they were dependent upon the multisubunit arrangement of the capsid proteins, because unlike intact capsids, individual capsid subunits did not enhance bacterial clearance. Further, we demonstrated that even a linear microfilament protein built from repeating protein subunits (F-actin), but not its monomer (G-actin), induced similar kinetics of subsequent bacterial clearance as did virus capsid. However, although capsids and F-actin induced similar bacterial clearance, in macrophages they required distinct TLR2 heterodimers for this response (TLR2/6 or TLR2/1, respectively) and different phagocyte populations were involved in the execution of these responses in vivo Our results demonstrate that TLR2 responds to invading viral particles that are composed of repeating protein subunits, indicating that this common architecture of virus capsids is a previously unrecognized molecular pattern. IMPORTANCE Rapid and precise pathogen identification is critical for the initiation of pathogen-specific immune responses

  11. Gaussian fluctuation of the diffusion exponent of virus capsid in a living cell nucleus

    Science.gov (United States)

    Itto, Yuichi

    2018-05-01

    In their work [4], Bosse et al. experimentally showed that virus capsid exhibits not only normal diffusion but also anomalous diffusion in nucleus of a living cell. There, it was found that the distribution of fluctuations of the diffusion exponent characterizing them takes the Gaussian form, which is, quite remarkably, the same form for two different types of the virus. This suggests high robustness of such fluctuations. Here, the statistical property of local fluctuations of the diffusion exponent of the virus capsid in the nucleus is studied. A maximum-entropy-principle approach (originally proposed for a different virus in a different cell) is applied for obtaining the fluctuation distribution of the exponent. Largeness of the number of blocks identified with local areas of interchromatin corrals is also examined based on the experimental data. It is shown that the Gaussian distribution of the local fluctuations can be derived, in accordance with the above form. In addition, it is quantified how the fluctuation distribution on a long time scale is different from the Gaussian distribution.

  12. Rapid increase of near atomic resolution virus capsid structures determined by cryo-electron microscopy.

    Science.gov (United States)

    Ho, Phuong T; Reddy, Vijay S

    2018-01-01

    The recent technological advances in electron microscopes, detectors, as well as image processing and reconstruction software have brought single particle cryo-electron microscopy (cryo-EM) into prominence for determining structures of bio-molecules at near atomic resolution. This has been particularly true for virus capsids, ribosomes, and other large assemblies, which have been the ideal specimens for structural studies by cryo-EM approaches. An analysis of time series metadata of virus structures on the methods of structure determination, resolution of the structures, and size of the virus particles revealed a rapid increase in the virus structures determined by cryo-EM at near atomic resolution since 2010. In addition, the data highlight the median resolution (∼3.0 Å) and size (∼310.0 Å in diameter) of the virus particles determined by X-ray crystallography while no such limits exist for cryo-EM structures, which have a median diameter of 508 Å. Notably, cryo-EM virus structures in the last four years have a median resolution of 3.9 Å. Taken together with minimal sample requirements, not needing diffraction quality crystals, and being able to achieve similar resolutions of the crystal structures makes cryo-EM the method of choice for current and future virus capsid structure determinations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope.

    Science.gov (United States)

    Morag, Omry; Sgourakis, Nikolaos G; Baker, David; Goldbourt, Amir

    2015-01-27

    Filamentous phage are elongated semiflexible ssDNA viruses that infect bacteria. The M13 phage, belonging to the family inoviridae, has a length of ∼1 μm and a diameter of ∼7 nm. Here we present a structural model for the capsid of intact M13 bacteriophage using Rosetta model building guided by structure restraints obtained from magic-angle spinning solid-state NMR experimental data. The C5 subunit symmetry observed in fiber diffraction studies was enforced during model building. The structure consists of stacked pentamers with largely alpha helical subunits containing an N-terminal type II β-turn; there is a rise of 16.6-16.7 Å and a tilt of 36.1-36.6° between consecutive pentamers. The packing of the subunits is stabilized by a repeating hydrophobic stacking pocket; each subunit participates in four pockets by contributing different hydrophobic residues, which are spread along the subunit sequence. Our study provides, to our knowledge, the first magic-angle spinning NMR structure of an intact filamentous virus capsid and further demonstrates the strength of this technique as a method of choice to study noncrystalline, high-molecular-weight molecular assemblies.

  14. Cross-serotype immunity induced by immunization with a conserved rhinovirus capsid protein.

    Directory of Open Access Journals (Sweden)

    Nicholas Glanville

    Full Text Available Human rhinovirus (RV infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2 capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine.

  15. Induction of Antiviral Immune Response through Recognition of the Repeating Subunit Pattern of Viral Capsids Is Toll-Like Receptor 2 Dependent

    Directory of Open Access Journals (Sweden)

    Kelly M. Shepardson

    2017-11-01

    Full Text Available Although viruses and viral capsids induce rapid immune responses, little is known about viral pathogen-associated molecular patterns (PAMPs that are exhibited on their surface. Here, we demonstrate that the repeating protein subunit pattern common to most virus capsids is a molecular pattern that induces a Toll-like-receptor-2 (TLR2-dependent antiviral immune response. This early antiviral immune response regulates the clearance of subsequent bacterial superinfections, which are a primary cause of morbidities associated with influenza virus infections. Utilizing this altered susceptibility to subsequent bacterial challenge as an outcome, we determined that multiple unrelated, empty, and replication-deficient capsids initiated early TLR2-dependent immune responses, similar to intact influenza virus or murine pneumovirus. These TLR2-mediated responses driven by the capsid were not dependent upon the capsid’s shape, size, origin, or amino acid sequence. However, they were dependent upon the multisubunit arrangement of the capsid proteins, because unlike intact capsids, individual capsid subunits did not enhance bacterial clearance. Further, we demonstrated that even a linear microfilament protein built from repeating protein subunits (F-actin, but not its monomer (G-actin, induced similar kinetics of subsequent bacterial clearance as did virus capsid. However, although capsids and F-actin induced similar bacterial clearance, in macrophages they required distinct TLR2 heterodimers for this response (TLR2/6 or TLR2/1, respectively and different phagocyte populations were involved in the execution of these responses in vivo. Our results demonstrate that TLR2 responds to invading viral particles that are composed of repeating protein subunits, indicating that this common architecture of virus capsids is a previously unrecognized molecular pattern.

  16. Modelling conjugation with stochastic differential equations.

    Science.gov (United States)

    Philipsen, K R; Christiansen, L E; Hasman, H; Madsen, H

    2010-03-07

    Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared to the model without plate conjugation. The modelling approach described in this article can be applied generally when modelling dynamical systems. 2009 Elsevier Ltd. All rights reserved.

  17. Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment

    Directory of Open Access Journals (Sweden)

    Madani SY

    2013-03-01

    Full Text Available Seyed Yazdan Madani,1 Farzad Shabani,3 Miriam V Dwek,2 Alexander M Seifalian1,3 1UCL Centre for Nanotechnology and Regenerative Medicine, University College, London, UK; 2Department of Molecular and Applied Biosciences, School of Life Sciences, University of Westminster, London, UK; 3Royal Free London NHS Foundation Trust Hospital, London, UK Abstract: Cancer is one of the leading causes of death worldwide and early detection provides the best possible prognosis for cancer patients. Nanotechnology is the branch of engineering that deals with the manipulation of individual atoms and molecules. This area of science has the potential to help identify cancerous cells and to destroy them by various methods such as drug delivery or thermal treatment of cancer. Carbon nanotubes (CNT and quantum dots (QDs are the two nanoparticles, which have received considerable interest in view of their application for diagnosis and treatment of cancer. Fluorescent nanoparticles known as QDs are gaining momentum as imaging molecules with life science and clinical applications. Clinically they can be used for localization of cancer cells due to their nano size and ability to penetrate individual cancer cells and high-resolution imaging derived from their narrow emission bands compared with organic dyes. CNTs are of interest to the medical community due to their unique properties such as the ability to deliver drugs to a site of action or convert optical energy into thermal energy. By attaching antibodies that bind specifically to tumor cells, CNTs can navigate to malignant tumors. Once at the tumor site, the CNTs enter into the cancer cells by penetration or endocytosis, allowing drug release, and resulting in specific cancer cell death. Alternatively, CNTs can be exposed to near-infrared light in order to thermally destroy the cancer cells. The amphiphilic nature of CNTs allows them to penetrate the cell membrane and their large surface area (in the order of 2600 m2

  18. The Tcp conjugation system of Clostridium perfringens.

    Science.gov (United States)

    Wisniewski, Jessica A; Rood, Julian I

    2017-05-01

    The Gram-positive pathogen Clostridium perfringens possesses a family of large conjugative plasmids that is typified by the tetracycline resistance plasmid pCW3. Since these plasmids may carry antibiotic resistance genes or genes encoding extracellular or sporulation-associated toxins, the conjugative transfer of these plasmids appears to be important for the epidemiology of C. perfringens-mediated diseases. Sequence analysis of members of this plasmid family identified a highly conserved 35kb region that encodes proteins with various functions, including plasmid replication and partitioning. The tcp conjugation locus also was identified in this region, initially based on low-level amino acid sequence identity to conjugation proteins from the integrative conjugative element Tn916. Genetic studies confirmed that the tcp locus is required for conjugative transfer and combined with biochemical and structural analyses have led to the development of a functional model of the Tcp conjugation apparatus. This review summarises our current understanding of the Tcp conjugation system, which is now one of the best-characterized conjugation systems in Gram-positive bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Chemistry of Oligonucleotibe-Gold Nanoparticle Conjugates

    National Research Council Canada - National Science Library

    Letsinger, Robert

    2003-01-01

    Conjugates prepared by immobilizing thiol-terminated oligonucleotides onto gold nanoparticles from stable colloidal solutions in aqueous media The oligo nucleotides can serve as linkers to organize...

  20. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...

  1. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 angstrom resolution

    Czech Academy of Sciences Publication Activity Database

    Schur, F. K. M.; Hagen, W. J. H.; Rumlová, Michaela; Ruml, T.; Müller, B.; Kräusslich, H. G.; Briggs, J. A. G.

    2015-01-01

    Roč. 517, č. 7535 (2015), s. 505-508 ISSN 0028-0836 R&D Projects: GA ČR(CZ) GA14-15326S Institutional support: RVO:61388963 Keywords : retrovirus * HIV * M-PMV * capsid protein * CA * assembly * immature particles Subject RIV: CE - Biochemistry Impact factor: 38.138, year: 2015

  2. Herpes Simplex Virus 1 Us3 Deletion Mutant is Infective Despite Impaired Capsid Translocation to the Cytoplasm

    Directory of Open Access Journals (Sweden)

    Peter Wild

    2015-01-01

    Full Text Available Herpes simplex virus 1 (HSV-1 capsids are assembled in the nucleus bud at the inner nuclear membrane into the perinuclear space, acquiring envelope and tegument. In theory, these virions are de-enveloped by fusion of the envelope with the outer nuclear membrane and re-enveloped by Golgi membranes to become infective. Us3 enables the nucleus to cytoplasm capsid translocation. Nevertheless, Us3 is not essential for the production of infective progeny viruses. Determination of phenotype distribution by quantitative electron microscopy, and calculation per mean nuclear or cell volume revealed the following: (i The number of R7041(∆US3 capsids budding at the inner nuclear membrane was significantly higher than that of wild type HSV-1; (ii The mean number of R7041(∆US3 virions per mean cell volume was 2726, that of HSV-1 virions 1460 by 24 h post inoculation; (iii 98% of R7041(∆US3 virions were in the perinuclear space; (iv The number of R7041(∆US3 capsids in the cytoplasm, including those budding at Golgi membranes, was significantly reduced. Cell associated R7041(∆US3 yields were 2.37 × 108 and HSV-1 yields 1.57 × 108 PFU/mL by 24 h post inoculation. We thus conclude that R7041(∆US3 virions, which acquire envelope and tegument by budding at the inner nuclear membrane into the perinuclear space, are infective.

  3. α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome

    Directory of Open Access Journals (Sweden)

    Mayim E. Wiens

    2017-01-01

    Full Text Available α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5 blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses.

  4. Theory of morphological transformation of viral capsid shell during the maturation process in the HK97 bacteriophage and similar viruses

    Science.gov (United States)

    Konevtsova, O. V.; Lorman, V. L.; Rochal, S. B.

    2016-05-01

    We consider the symmetry and physical origin of collective displacement modes playing a crucial role in the morphological transformation during the maturation of the HK97 bacteriophage and similar viruses. It is shown that the experimentally observed hexamer deformation and pentamer twist in the HK97 procapsid correspond to the simplest irreducible shear strain mode of a spherical shell. We also show that the icosahedral faceting of the bacteriophage capsid shell is driven by the simplest irreducible radial displacement field. The shear field has the rotational icosahedral symmetry group I while the radial field has the full icosahedral symmetry Ih. This difference makes their actions independent. The radial field sign discriminates between the icosahedral and the dodecahedral shapes of the faceted capsid shell, thus making the approach relevant not only for the HK97-like viruses but also for the parvovirus family. In the frame of the Landau-Ginzburg formalism we propose a simple phenomenological model valid for the first reversible step of the HK97 maturation process. The calculated phase diagram illustrates the discontinuous character of the virus shape transformation. The characteristics of the virus shell faceting and expansion obtained in the in vitro and in vivo experiments are related to the decrease in the capsid shell thickness and to the increase of the internal capsid pressure.

  5. CapsID: a web-based tool for developing parsimonious sets of CAPS molecular markers for genotyping

    Directory of Open Access Journals (Sweden)

    Provart Nicholas J

    2006-05-01

    Full Text Available Abstract Background Genotyping may be carried out by a number of different methods including direct sequencing and polymorphism analysis. For a number of reasons, PCR-based polymorphism analysis may be desirable, owing to the fact that only small amounts of genetic material are required, and that the costs are low. One popular and cheap method for detecting polymorphisms is by using cleaved amplified polymorphic sequence, or CAPS, molecular markers. These are also known as PCR-RFLP markers. Results We have developed a program, called CapsID, that identifies snip-SNPs (single nucleotide polymorphisms that alter restriction endonuclease cut sites within a set or sets of reference sequences, designs PCR primers around these, and then suggests the most parsimonious combination of markers for genotyping any individual who is not a member of the reference set. The output page includes biologist-friendly features, such as images of virtual gels to assist in genotyping efforts. CapsID is freely available at http://bbc.botany.utoronto.ca/capsid. Conclusion CapsID is a tool that can rapidly provide minimal sets of CAPS markers for molecular identification purposes for any biologist working in genetics, community genetics, plant and animal breeding, forensics and other fields.

  6. Herpes Simplex Virus 1 Us3 Deletion Mutant is Infective Despite Impaired Capsid Translocation to the Cytoplasm

    Science.gov (United States)

    Wild, Peter; Leisinger, Sabine; de Oliveira, Anna Paula; Schraner, Elisabeth M.; Kaech, Andres; Ackermann, Mathias; Tobler, Kurt

    2015-01-01

    Herpes simplex virus 1 (HSV-1) capsids are assembled in the nucleus bud at the inner nuclear membrane into the perinuclear space, acquiring envelope and tegument. In theory, these virions are de-enveloped by fusion of the envelope with the outer nuclear membrane and re-enveloped by Golgi membranes to become infective. Us3 enables the nucleus to cytoplasm capsid translocation. Nevertheless, Us3 is not essential for the production of infective progeny viruses. Determination of phenotype distribution by quantitative electron microscopy, and calculation per mean nuclear or cell volume revealed the following: (i) The number of R7041(∆US3) capsids budding at the inner nuclear membrane was significantly higher than that of wild type HSV-1; (ii) The mean number of R7041(∆US3) virions per mean cell volume was 2726, that of HSV-1 virions 1460 by 24 h post inoculation; (iii) 98% of R7041(∆US3) virions were in the perinuclear space; (iv) The number of R7041(∆US3) capsids in the cytoplasm, including those budding at Golgi membranes, was significantly reduced. Cell associated R7041(∆US3) yields were 2.37 × 108 and HSV-1 yields 1.57 × 108 PFU/mL by 24 h post inoculation. We thus conclude that R7041(∆US3) virions, which acquire envelope and tegument by budding at the inner nuclear membrane into the perinuclear space, are infective. PMID:25588052

  7. Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis

    NARCIS (Netherlands)

    Shakeel, Shabih; Westerhuis, Brenda M.; Domanska, Ausra; Koning, Roman I.; Matadeen, Rishi; Koster, Abraham J.; Bakker, Arjen Q.; Beaumont, Tim; Wolthers, Katja C.; Butcher, Sarah J.

    2016-01-01

    The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-angstrom resolution structure of HPeV3 on its own and at 15 angstrom resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid

  8. Nano-sized Sm0.5Sr0.5CoO3-δ as the cathode for solid oxide fuel cells with proton-conducting electrolytes of BaCe0.8Sm0.2O2.9

    International Nuclear Information System (INIS)

    Wu Tianzhi; Zhao Yingqi; Peng Ranran; Xia, Changrong

    2009-01-01

    Nano-sized Sm 0.5 Sr 0.5 CoO 3-δ (SSC) was fabricated onto the inner face of porous BaCe 0.8 Sm 0.2 O 2.9 (BCS) backbone by ion impregnation technique to form a composite cathode for solid oxide fuel cells (SOFCs) with BCS, a proton conductor, as electrolyte. The electro-performance of the composite cathodes was investigated as function of fabricating conditions, and the lowest polarization resistance, about 0.21 Ω cm 2 at 600 deg. C, was achieved with BCS backbone sintered at 1100 deg. C, SSC layer fired at 800 deg. C, and SSC loading of 55 wt.%. Impedance spectra of the composite cathodes consisted of two depressed arcs with peak frequency of 1 kHz and 30 Hz, respectively, which might correspond to the migration of proton and the dissociative adsorption and diffusion of oxygen, respectively. There was an additional arc peaking at 1 Hz in the Nyquist plots of a single cell, which should correspond to the anode reactions. With electrolyte about 70 μm in thickness, the simulated anode, cathode and bulk resistances of cells were 0.021, 0.055 and 0.68 Ω cm 2 at 700 deg. C, relatively, and the maximum power density was 307 mW cm -2 at 700 deg. C.

  9. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  10. Extracellular conformational changes in the capsid of human papillomaviruses contribute to asynchronous uptake into host cells.

    Science.gov (United States)

    Becker, Miriam; Greune, Lilo; Schmidt, M Alexander; Schelhaas, Mario

    2018-03-28

    The human papillomavirus type 16 (HPV16) is the leading cause of cervical cancer. For initial infection, HPV16 utilizes a novel endocytic pathway for host cell entry. Unique amongst viruses, uptake occurs asynchronously over a protracted period of time with half-times between 9-12 h. To trigger endocytic uptake, the virus particles need to undergo a series of structural modifications after initial binding to heparan sulfate proteoglycans (HSPG). These changes involve proteolytic cleavage of the major capsid protein L1 by kallikrein-8 (KLK8), exposure of the N-terminus of the minor capsid protein L2 by cyclophilins, and cleavage of this N-terminus by furin. Overall, the structural changes are thought to facilitate the engagement of an elusive secondary receptor for internalization. Here, we addressed whether structural changes are the rate-limiting steps during infectious internalization of HPV16 by using structurally-primed HPV16 particles. Our findings indicate that the structural modifications mediated by cyclophilins and furin, which lead to exposure and cleavage of the L2 N-terminus, respectively, contribute to the slow and asynchronous internalization kinetics, whereas conformational changes elicited by HSPG binding and KLK8 cleavage did not. However, these structural modifications only accounted for 30-50% of the delay in internalization. Therefore, we propose that limited internalization receptor availability for engagement of HPV16 causes slow and asynchronous internalization in addition to rate-limiting structural changes in the viral capsid. IMPORTANCE HPVs are the main cause for anogenital cancers. Their unique biology is linked to the differentiation program of skin or mucosa. Here, we analyzed another unique aspect of HPV infections using the prototype HPV16. After initial cell binding, HPVs display an unusually protracted residence time on the plasma membrane prior to asynchronous uptake. As viruses typically do not expose themselves to host immune

  11. Venture from the Interior-Herpesvirus pUL31 Escorts Capsids from Nucleoplasmic Replication Compartments to Sites of Primary Envelopment at the Inner Nuclear Membrane.

    Science.gov (United States)

    Bailer, Susanne M.

    2017-11-25

    Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.

  12. A eukaryotic cytosolic chaperonin is associated with a high molecular weight intermediate in the assembly of hepatitis B virus capsid, a multimeric particle.

    Science.gov (United States)

    Lingappa, J R; Martin, R L; Wong, M L; Ganem, D; Welch, W J; Lingappa, V R

    1994-04-01

    We have established a system for assembly of hepatitis B virus capsid, a homomultimer of the viral core polypeptide, using cell-free transcription-linked translation. The mature particles that are produced are indistinguishable from authentic viral capsids by four criteria: velocity sedimentation, buoyant density, protease resistance, and electron microscopic appearance. Production of unassembled core polypeptides can be uncoupled from production of capsid particles by decreasing core mRNA concentration. Addition of excess unlabeled core polypeptides allows the chase of the unassembled polypeptides into mature capsids. Using this cell-free system, we demonstrate that assembly of capsids proceeds by way of a novel high molecular weight intermediate. Upon isolation, the high molecular weight intermediate is productive of mature capsids when energy substrates are manipulated. A 60-kD protein related to the chaperonin t-complex polypeptide 1 (TCP-1) is found in association with core polypeptides in two different assembly intermediates, but is not associated with either the initial unassembled polypeptides or with the final mature capsid product. These findings implicate TCP-1 or a related chaperonin in viral assembly and raise the possibility that eukaryotic cytosolic chaperonins may play a distinctive role in multimer assembly apart from their involvement in assisting monomer folding.

  13. Retargeting of rat parvovirus H-1PV to cancer cells through genetic engineering of the viral capsid.

    Science.gov (United States)

    Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K; Nettelbeck, Dirk M; Kleinschmidt, Jürgen; Rommelaere, Jean; Marchini, Antonio

    2012-04-01

    The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.

  14. Proton-driven assembly of the Rous Sarcoma virus capsid protein results in the formation of icosahedral particles.

    Science.gov (United States)

    Hyun, Jae-Kyung; Radjainia, Mazdak; Kingston, Richard L; Mitra, Alok K

    2010-05-14

    In a mature and infectious retroviral particle, the capsid protein (CA) forms a shell surrounding the genomic RNA and the replicative machinery of the virus. The irregular nature of this capsid shell precludes direct atomic resolution structural analysis. CA hexamers and pentamers are the fundamental building blocks of the capsid, however the pentameric state, in particular, remains poorly characterized. We have developed an efficient in vitro protocol for studying the assembly of Rous sarcoma virus (RSV) CA that involves mild acidification and produces structures modeling the authentic viral capsid. These structures include regular spherical particles with T = 1 icosahedral symmetry, built from CA pentamers alone. These particles were subject to cryoelectron microscopy (cryo-EM) and image processing, and a pseudo-atomic model of the icosahedron was created by docking atomic structures of the constituent CA domains into the cryo-EM-derived three-dimensional density map. The N-terminal domain (NTD) of CA forms pentameric turrets, which decorate the surface of the icosahedron, while the C-terminal domain (CTD) of CA is positioned underneath, linking the pentamers. Biophysical analysis of the icosahedral particle preparation reveals that CA monomers and icosahedra are the only detectable species and that these exist in reversible equilibrium at pH 5. These same acidic conditions are known to promote formation of a RSV CA CTD dimer, present within the icosahedral particle, which facilitates capsid assembly. The results are consistent with a model in which RSV CA assembly is a nucleation-limited process driven by very weak protein-protein interactions.

  15. Proton-driven Assembly of the Rous Sarcoma Virus Capsid Protein Results in the Formation of Icosahedral Particles*

    Science.gov (United States)

    Hyun, Jae-Kyung; Radjainia, Mazdak; Kingston, Richard L.; Mitra, Alok K.

    2010-01-01

    In a mature and infectious retroviral particle, the capsid protein (CA) forms a shell surrounding the genomic RNA and the replicative machinery of the virus. The irregular nature of this capsid shell precludes direct atomic resolution structural analysis. CA hexamers and pentamers are the fundamental building blocks of the capsid, however the pentameric state, in particular, remains poorly characterized. We have developed an efficient in vitro protocol for studying the assembly of Rous sarcoma virus (RSV) CA that involves mild acidification and produces structures modeling the authentic viral capsid. These structures include regular spherical particles with T = 1 icosahedral symmetry, built from CA pentamers alone. These particles were subject to cryoelectron microscopy (cryo-EM) and image processing, and a pseudo-atomic model of the icosahedron was created by docking atomic structures of the constituent CA domains into the cryo-EM-derived three-dimensional density map. The N-terminal domain (NTD) of CA forms pentameric turrets, which decorate the surface of the icosahedron, while the C-terminal domain (CTD) of CA is positioned underneath, linking the pentamers. Biophysical analysis of the icosahedral particle preparation reveals that CA monomers and icosahedra are the only detectable species and that these exist in reversible equilibrium at pH 5. These same acidic conditions are known to promote formation of a RSV CA CTD dimer, present within the icosahedral particle, which facilitates capsid assembly. The results are consistent with a model in which RSV CA assembly is a nucleation-limited process driven by very weak protein-protein interactions. PMID:20228062

  16. Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses.

    Science.gov (United States)

    Mata, Carlos P; Luque, Daniel; Gómez-Blanco, Josué; Rodríguez, Javier M; González, José M; Suzuki, Nobuhiro; Ghabrial, Said A; Carrascosa, José L; Trus, Benes L; Castón, José R

    2017-12-01

    Unlike their counterparts in bacterial and higher eukaryotic hosts, most fungal viruses are transmitted intracellularly and lack an extracellular phase. Here we determined the cryo-EM structure at 3.7 Å resolution of Rosellinia necatrix quadrivirus 1 (RnQV1), a fungal double-stranded (ds)RNA virus. RnQV1, the type species of the family Quadriviridae, has a multipartite genome consisting of four monocistronic segments. Whereas most dsRNA virus capsids are based on dimers of a single protein, the ~450-Å-diameter, T = 1 RnQV1 capsid is built of P2 and P4 protein heterodimers, each with more than 1000 residues. Despite a lack of sequence similarity between the two proteins, they have a similar α-helical domain, the structural signature shared with the lineage of the dsRNA bluetongue virus-like viruses. Domain insertions in P2 and P4 preferential sites provide additional functions at the capsid outer surface, probably related to enzyme activity. The P2 insertion has a fold similar to that of gelsolin and profilin, two actin-binding proteins with a function in cytoskeleton metabolism, whereas the P4 insertion suggests protease activity involved in cleavage of the P2 383-residue C-terminal region, absent in the mature viral particle. Our results indicate that the intimate virus-fungus partnership has altered the capsid genome-protective and/or receptor-binding functions. Fungal virus evolution has tended to allocate enzyme activities to the virus capsid outer surface.

  17. DENDRIMER CONJUGATES FOR SELECTIVE OF PROTEIN AGGREGATES

    DEFF Research Database (Denmark)

    2004-01-01

    Dendrimer conjugates are presented, which are formed between a dendrimer and a protein solubilising substance. Such dendrimer conjugates are effective in the treatment of protein aggregate-related diseases (e.g. prion-related diseases). The protein solubilising substance and the dendrimer together...

  18. Parallel synthesis and screening of peptide conjugates.

    Science.gov (United States)

    Dirksen, Anouk; Madsen, Mark; Dello Iacono, Giuseppe; Matin, Marla J; Bacica, Michael; Stanković, Nebojša; Callans, Sherri; Bhat, Abhijit

    2014-06-18

    Peptide conjugates represent an emerging class of therapeutics. However, in contrast to that of small molecules and peptides, the discovery and optimization of peptide conjugates is low in throughput, resource intensive, time-consuming, and based on educated decisions rather than screening. A strategy for the parallel synthesis and screening of peptide conjugates is presented that (1) reduces variability in the conjugation steps; (2) provides a new method to rapidly and quantitatively measure conversion in crude conjugation mixtures; (3) introduces a purification step using an immobilized chemical scavenger that does not rely on protein-specific binding; and (4) is supported by robust analytical methods to characterize the large number of end products. Copper-free click chemistry is used as the chemoselective ligation method for conjugation and purification. The productivity in the generation and screening of peptide conjugates is significantly improved by applying this strategy as is demonstrated by the optimization of the anti-Angiopoietin-2 (Ang2) CovX-body, CVX-060, a peptide-antibody scaffold conjugate that has advanced in clinical trials for oncology indications.

  19. Catalytic enantioselective conjugate addition with Grignard reagents

    NARCIS (Netherlands)

    Lopez, Fernando; Minnaard, Adriaan J.; Feringa, Ben L.

    In this Account, recent advances in catalytic asymmetric conjugate addition of Grignard reagents are discussed. Synthetic methodology to perform highly enantioselective Cu-catalyzed conjugate addition of Grignard reagents to cyclic enones with ee's up to 96% was reported in 2004 from our

  20. Tales of conjugation and sex pheromones

    Science.gov (United States)

    2011-01-01

    This review covers highlights of the author's experience becoming and working as a plasmid biologist. The account chronicles a progression from studies of ColE1 DNA in Escherichia coli to Gram-positive bacteria with an emphasis on conjugation in enterococci. It deals with gene amplification, conjugative transposons and sex pheromones in the context of bacterial antibiotic resistance. PMID:22016844

  1. Bio-Conjugates for Nanoscale Applications

    DEFF Research Database (Denmark)

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...

  2. Preconditioning the modified conjugate gradient method ...

    African Journals Online (AJOL)

    In this paper, the convergence analysis of the conventional conjugate Gradient method was reviewed. And the convergence analysis of the modified conjugate Gradient method was analysed with our extension on preconditioning the algorithm. Convergence of the algorithm is a function of the condition number of M-1A.

  3. Singularities and Conjugate Points in FLRW Spacetimes

    NARCIS (Netherlands)

    Lam, Huibert het; Prokopec, Tom

    2017-01-01

    Conjugate points play an important role in the proofs of the singularity theorems of Hawking and Penrose. We examine the relation between singularities and conjugate points in FLRW spacetimes with a singularity. In particular we prove a theorem that when a non-comoving, non-spacelike geodesic in a

  4. CONJUGATED BLOCK-COPOLYMERS FOR ELECTROLUMINESCENT DIODES

    NARCIS (Netherlands)

    Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G

    In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence

  5. The Conjugate Acid-Base Chart.

    Science.gov (United States)

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  6. Approximate error conjugation gradient minimization methods

    Science.gov (United States)

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  7. Capsid Modified Bluetongue Virus 16 (BTV16 as a Virulytic Oncotherapy Agent

    Directory of Open Access Journals (Sweden)

    Taghi Naserpour Farivar

    2017-03-01

    Full Text Available Objective Using potential viruses to destroy cancer cells has a long history, but recent advances in molecular biology raised hopes for successful use of these viruses again. Methods Octreotate sequence was inserted into the neutralization region (R1& R2 in vp2 protein of capsid segment in 10 segmented genome of BTV in 304 - 368 position. T7 BTV RNA transcripts were extracted. Cancerous cultured cells were transfected with wild and modified BTV to recover BTV with cDNA-derived genome segments. Results The results of all the performed experiments revealed that treatment of AGS cell lines with VP2 modified BTV16, which targeted cell surface of cancerous cells, significantly increased apoptosis in cancer infected cells. Conclusions Modified VP2 BTV16 may be used as a potential virulytic oncotherapy agent in AGS cells.

  8. Kinetics of the association of dengue virus capsid protein with the granular component of nucleolus.

    Science.gov (United States)

    Tiwary, Ashish Kumar; Cecilia, D

    2017-02-01

    Dengue virus (DENV) replicates in the cytoplasm but translocation of the capsid protein (C) to the nucleoli of infected cells has been shown to facilitate virus multiplication for DENV-2. This study demonstrates that the nucleolar localization of C occurs with all four serotypes of DENV. The interaction of C with the nucleolus was found to be dynamic with a mobile fraction of 66% by FRAP. That the C shuttled between the nucleus and cytoplasm was suggested by FLIP and translation inhibition experiments. Colocalization with B23 indicated that DENV C targeted the granular component (GC) of the nucleolus. Presence of DENV C in the nucleolus affected the recovery kinetics of B23 in infected and transfected cells. Sub-nucleolar localization of DENV C of all serotypes to the GC, its mobility in and out of the nucleolus and its affect on the dynamics of B23 is being shown for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Identification of immunogenic hot spots within plum pox potyvirus capsid protein for efficient antigen presentation.

    Science.gov (United States)

    Fernández-Fernández, M Rosario; Martínez-Torrecuadrada, Jorge L; Roncal, Fernando; Domínguez, Elvira; García, Juan Antonio

    2002-12-01

    PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-gamma, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence.

  10. A time-resolved immunoassay to measure serum antibodies to the rotavirus VP6 capsid protein.

    Science.gov (United States)

    Kavanagh, Owen; Zeng, Xi-Lei; Ramani, Sasirekha; Mukhopadhya, Indrani; Crawford, Sue E; Kang, Gagandeep; Estes, Mary K

    2013-04-01

    The rotavirus (RV) inner capsid protein VP6 is widely used to evaluate immune response during natural infection and in vaccine studies. Recombinant VP6 from the most prevalent circulating rotavirus strains in each subgroup (SG) identified in a birth cohort of children in southern India [SGII (G1P[8]) and SGI (G10P[11])] were produced. The purified proteins were used to measure VP6-specific antibodies in a Dissociation-Enhanced Lanthanide Fluorometric Immunoassay (DELFIA). The ability of the assay to detect a ≥2 fold rise in IgG level in a panel of serum samples from a longitudinal study was compared to a gold standard virus-capture ELISA. A strong association was observed between the assays (pcorrelate of protection. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    International Nuclear Information System (INIS)

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin; Sun, Ya-Ni; Gao, Ji-Ming; Xie, Zhi-Jing; Wang, Yu; Zhu, Yan-Li; Jiang, Shi-Jin

    2013-01-01

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1–17 and 18–36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.

  12. Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Jackson, Terry; Bøtner, Anette

    2012-01-01

    compared the pathogenicity of different FMDVs in young pigs. In total 32 pigs, 7-weeks-old, were exposed to virus, either by direct inoculation or through contact with inoculated pigs, using cell culture adapted (O1K B64), chimeric (O1K/A-TUR and O1K/O-UKG) or field strain (O-UKG/34/2001) viruses. The O1K...... B64 virus and the two chimeric viruses are identical to each other except for the capsid coding region. Animals exposed to O1K B64 did not exhibit signs of disease, while pigs exposed to each of the other viruses showed typical clinical signs of foot-and-mouth disease (FMD). All pigs infected...... coding sequences are determinants of FMDV pathogenicity in pigs....

  13. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation.

    Science.gov (United States)

    Schur, Florian K M; Obr, Martin; Hagen, Wim J H; Wan, William; Jakobi, Arjen J; Kirkpatrick, Joanna M; Sachse, Carsten; Kräusslich, Hans-Georg; Briggs, John A G

    2016-07-29

    Immature HIV-1 assembles at and buds from the plasma membrane before proteolytic cleavage of the viral Gag polyprotein induces structural maturation. Maturation can be blocked by maturation inhibitors (MIs), thereby abolishing infectivity. The CA (capsid) and SP1 (spacer peptide 1) region of Gag is the key regulator of assembly and maturation and is the target of MIs. We applied optimized cryo-electron tomography and subtomogram averaging to resolve this region within assembled immature HIV-1 particles at 3.9 angstrom resolution and built an atomic model. The structure reveals a network of intra- and intermolecular interactions mediating immature HIV-1 assembly. The proteolytic cleavage site between CA and SP1 is inaccessible to protease. We suggest that MIs prevent CA-SP1 cleavage by stabilizing the structure, and MI resistance develops by destabilizing CA-SP1. Copyright © 2016, American Association for the Advancement of Science.

  14. The polerovirus minor capsid protein determines vector specificity and intestinal tropism in the aphid.

    Science.gov (United States)

    Brault, Véronique; Périgon, Sophie; Reinbold, Catherine; Erdinger, Monique; Scheidecker, Danièle; Herrbach, Etienne; Richards, Ken; Ziegler-Graff, Véronique

    2005-08-01

    Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in plant protoplasts and in whole plants. The hybrid readthrough protein of chimeric viruses was incorporated into virions. Aphid transmission experiments using infected plants or purified virions revealed that vector specificity is driven by the nature of the RTD. BWYV and CABYV have specific intestinal sites in the vectors for endocytosis: the midgut for BWYV and both midgut and hindgut for CABYV. Localization of hybrid virions in aphids by transmission electron microscopy revealed that gut tropism is also determined by the viral origin of the RTD.

  15. Roles of HIV-1 capsid in viral replication and immune evasion.

    Science.gov (United States)

    Le Sage, Valerie; Mouland, Andrew J; Valiente-Echeverría, Fernando

    2014-11-26

    The primary roles of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein are to encapsidate and protect the viral RNA genome. It is becoming increasing apparent that HIV-1 CA is a multifunctional protein that acts early during infection to coordinate uncoating, reverse transcription, nuclear import of the pre-integration complex and integration of double stranded viral DNA into the host genome. Additionally, numerous recent studies indicate that CA is playing a crucial function in HIV-1 immune evasion. Here we summarize the current knowledge on HIV-1 CA and its interactions with the host cell to promote infection. The fact that CA engages in a number of different protein-protein interactions with the host makes it an interesting target for the development of new potent antiviral agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Conserved surface residues on the feline calicivirus (FCV) capsid are essential for interaction with its receptor feline junctional adhesion molecule A (fJAM-A).

    Science.gov (United States)

    Lu, Zhengchun; Ledgerwood, Emily D; Hinchman, Meleana M; Dick, Robert; Parker, John S L

    2018-01-31

    Host cell surface receptors are required for attachment, binding, entry and infection by nonenveloped viruses. Receptor binding can induce conformational changes in the viral capsid and/or the receptor that couple binding with downstream events in the viral life cycle (intracellular signaling, endocytosis and trafficking, and membrane penetration). Virus-receptor interactions also influence viral spread and pathogenicity. The interaction between feline calicivirus (FCV) and its receptor feline Junctional Adhesion Molecule A (fJAM-A) on host cells is required for infection and induces irreversible, inactivating conformational changes in the capsid of some viral strains. Cryo-EM structures of FCV bound to fJAM-A showed several possible virus-receptor interactions. However, the specific residues on the viral capsid required for binding are not known. Capsid residues that may be involved in post-binding events have been implicated by isolation of soluble receptor-resistant (srr) mutants in which changes in the capsid protein sequence change the capacity of such srr mutants to be inactivated upon incubation with soluble fJAM-A. To clarify which residues on the surface of FCV are required for its interaction with fJAM-A, and to potentially identify residues required for post-receptor binding events, we used the existing atomic resolution structures of FCV and the FCV-fJAM-A cryo-EM structures to select 14 capsid residues for mutation and preparation of recombinant viral capsids. Using this approach, we identified residues on the FCV capsid that are required for fJAM-A binding and other residues not required for binding, but required for infection that are likely important for subsequent post-binding events. IMPORTANCE Feline calicivirus (FCV) is a common cause of mild upper respiratory disease in cats. Some FCV isolates can cause virulent systemic disease. The genetic determinants of virulence for FCV are unknown. We previously found that virulent FCV isolates have

  17. Cryphonectria nitschkei virus 1 structure shows that the capsid protein of chrysoviruses is a duplicated helix-rich fold conserved in fungal double-stranded RNA viruses.

    Science.gov (United States)

    Gómez-Blanco, Josué; Luque, Daniel; González, José M; Carrascosa, José L; Alfonso, Carlos; Trus, Benes; Havens, Wendy M; Ghabrial, Said A; Castón, José R

    2012-08-01

    Cryoelectron microscopy reconstruction of Cryphonectria nitschkei virus 1, a double-stranded RNA (dsRNA) virus, shows that the capsid protein (60 copies/particle) is formed by a repeated helical core, indicative of gene duplication. This unusual organization is common to chrysoviruses. The arrangement of many of these putative α-helices is conserved in the totivirus L-A capsid protein, suggesting a shared motif. Our results indicate that a 120-subunit T=1 capsid is a conserved architecture that optimizes dsRNA replication and organization.

  18. Tyrosine Mutation in AAV9 Capsid Improves Gene Transfer to the Mouse Lung

    Directory of Open Access Journals (Sweden)

    Sabrina V. Martini

    2016-07-01

    Full Text Available Background/Aims: Adeno-associated virus (AAV vectors are being increasingly used as the vector of choice for in vivo gene delivery and gene therapy for many pulmonary diseases. Recently, it was shown that phosphorylation of surface-exposed tyrosine residues from AAV capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. In this study, we evaluated the pulmonary transgene expression efficacy of AAV9 vectors containing point mutations in surface-exposed capsid tyrosine residues. Methods: Eighteen C57BL/6 mice were randomly assigned into three groups: (1 a control group (CTRL animals underwent intratracheal (i.t. instillation of saline, (2 the wild-type AAV9 group (WT-AAV9, 1010 vg, and (3 the tyrosine-mutant Y731F AAV9 group (M-AAV9, 1010 vg, which received (i.t. self-complementary AAV9 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP. Four weeks after instillation, lung mechanics, morphometry, tissue cellularity, gene expression, inflammatory cytokines, and growth factor expression were analyzed. Results: No significant differences were observed in lung mechanics and morphometry among the experimental groups. However, the number of polymorphonuclear cells was higher in the WT-AAV9 group than in the CTRL and M-AAV9 groups, suggesting that the administration of tyrosine-mutant AAV9 vectors was better tolerated. Tyrosine-mutant AAV9 vectors significantly improved transgene delivery to the lung (30% compared with their wild-type counterparts, without eliciting an inflammatory response. Conclusion: Our results provide the impetus for further studies to exploit the use of AAV9 vectors as a tool for pulmonary gene therapy.

  19. Adaptive mutations in the JC virus protein capsid are associated with progressive multifocal leukoencephalopathy (PML.

    Directory of Open Access Journals (Sweden)

    Shamil R Sunyaev

    2009-02-01

    Full Text Available PML is a progressive and mostly fatal demyelinating disease caused by JC virus infection and destruction of infected oligodendrocytes in multiple brain foci of susceptible individuals. While JC virus is highly prevalent in the human population, PML is a rare disease that exclusively afflicts only a small percentage of immunocompromised individuals including those affected by HIV (AIDS or immunosuppressive drugs. Viral- and/or host-specific factors, and not simply immune status, must be at play to account for the very large discrepancy between viral prevalence and low disease incidence. Here, we show that several amino acids on the surface of the JC virus capsid protein VP1 display accelerated evolution in viral sequences isolated from PML patients but not in sequences isolated from healthy subjects. We provide strong evidence that at least some of these mutations are involved in binding of sialic acid, a known receptor for the JC virus. Using statistical methods of molecular evolution, we performed a comprehensive analysis of JC virus VP1 sequences isolated from 55 PML patients and 253 sequences isolated from the urine of healthy individuals and found that a subset of amino acids found exclusively among PML VP1 sequences is acquired via adaptive evolution. By modeling of the 3-D structure of the JC virus capsid, we showed that these residues are located within the sialic acid binding site, a JC virus receptor for cell infection. Finally, we go on to demonstrate the involvement of some of these sites in receptor binding by demonstrating a profound reduction in hemagglutination properties of viral-like particles made of the VP1 protein carrying these mutations. Collectively, these results suggest that a more virulent PML causing phenotype of JC virus is acquired via adaptive evolution that changes viral specificity for its cellular receptor(s.

  20. The C Terminus of the Herpes Simplex Virus UL25 Protein Is Required for Release of Viral Genomes from Capsids Bound to Nuclear Pores.

    Science.gov (United States)

    Huffman, Jamie B; Daniel, Gina R; Falck-Pedersen, Erik; Huet, Alexis; Smith, Greg A; Conway, James F; Homa, Fred L

    2017-08-01

    The herpes simplex virus (HSV) capsid is released into the cytoplasm after fusion of viral and host membranes, whereupon dynein-dependent trafficking along microtubules targets it to the nuclear envelope. Binding of the capsid to the nuclear pore complex (NPC) is mediated by the capsid protein pUL25 and the capsid-tethered tegument protein pUL36. Temperature-sensitive mutants in both pUL25 and pUL36 dock at the NPC but fail to release DNA. The uncoating reaction has been difficult to study due to the rapid release of the genome once the capsid interacts with the nuclear pore. In this study, we describe the isolation and characterization of a truncation mutant of pUL25. Live-cell imaging and immunofluorescence studies demonstrated that the mutant was not impaired in penetration of the host cell or in trafficking of the capsid to the nuclear membrane. However, expression of viral proteins was absent or significantly delayed in cells infected with the pUL25 mutant virus. Transmission electron microscopy revealed capsids accumulated at nuclear pores that retained the viral genome for at least 4 h postinfection. In addition, cryoelectron microscopy (cryo-EM) reconstructions of virion capsids did not detect any obvious differences in the location or structural organization for the pUL25 or pUL36 proteins on the pUL25 mutant capsids. Further, in contrast to wild-type virus, the antiviral response mediated by the viral DNA-sensing cyclic guanine adenine synthase (cGAS) was severely compromised for the pUL25 mutant. These results demonstrate that the pUL25 capsid protein has a critical role in releasing viral DNA from NPC-bound capsids. IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. Early steps in infection include release of the capsid into the cytoplasm, docking of the capsid at a nuclear pore, and release of the viral genome into the nucleus

  1. TAT peptide and its conjugates: proteolytic stability.

    Science.gov (United States)

    Grunwald, Jacob; Rejtar, Tomas; Sawant, Rupa; Wang, Zhouxi; Torchilin, Vladimir P

    2009-08-19

    The proteolytic cleavage of TATp, TATp-PEG(1000)-PE conjugate (TATp-conjugate), and TATp as TATp-conjugate in mixed micelles made of TATp-conjugate and PEG(5000)-PE (2.5% mol of TATp-conjugate, TATp-Mic) were studied by HPLC with fluorescent detection using fluorenylmethyl chloroformate (FMOC) labeling and by MALDI-TOF MS analysis. The cleavage kinetics were analyzed in human blood plasma and in trypsin-containing phosphate buffered saline (PBS), pH 7.4, to simulate the proteolytic activity of human plasma. The trypsinolysis of free TATp, TATp-conjugate, and TATp-Mic revealed that the main initial fragmentation is an endocleavage at the carboxyl terminus resulting in an Arg-Arg (RR) dimer. The trypsinolysis followed pseudo-first-order kinetics. The cleavage of the free TATp was relatively fast with a half-life of a few minutes (t(1/2) ∼ 3.5 min). The TATp-conjugate showed more stability with about a 3-fold increase in half-life (t(1/2) ∼ 10 min). TATp in TATp-Mic was highly protected against proteolysis with an over 100-fold increase in half-life (t(1/2) ∼ 430 min). The shielding of TATp by PEG moieties in the proposed TATp-Mic is of great importance for its potential use as a cell-penetrating moiety for multifunctional "smart" drug delivery systems with detachable PEG.

  2. Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus

    Directory of Open Access Journals (Sweden)

    Chakrabarti Mrinmay

    2010-08-01

    Full Text Available Abstract Background Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV, a cypovirus of Reoviridae family, infects Indian non-mulberry silkworm, Antheraea mylitta, and contains 11 segmented double stranded RNA (S1-S11 in its genome. Some of its genome segments (S2 and S6-S11 have been previously characterized but genome segments encoding viral capsid have not been characterized. Results In this study genome segments 1 (S1 and 3 (S3 of AmCPV were converted to cDNA, cloned and sequenced. S1 consisted of 3852 nucleotides, with one long ORF of 3735 nucleotides and could encode a protein of 1245 amino acids with molecular mass of ~141 kDa. Similarly, S3 consisted of 3784 nucleotides having a long ORF of 3630 nucleotides and could encode a protein of 1210 amino acids with molecular mass of ~137 kDa. BLAST analysis showed 20-22% homology of S1 and S3 sequence with spike and capsid proteins, respectively, of other closely related cypoviruses like Bombyx mori CPV (BmCPV, Lymantria dispar CPV (LdCPV, and Dendrolimus punctatus CPV (DpCPV. The ORFs of S1 and S3 were expressed as 141 kDa and 137 kDa insoluble His-tagged fusion proteins, respectively, in Escherichia coli M15 cells via pQE-30 vector, purified through Ni-NTA chromatography and polyclonal antibodies were raised. Immunoblot analysis of purified polyhedra, virion particles and virus infected mid-gut cells with the raised anti-p137 and anti-p141 antibodies showed specific immunoreactive bands and suggest that S1 and S3 may code for viral structural proteins. Expression of S1 and S3 ORFs in insect cells via baculovirus recombinants showed to produce viral like particles (VLPs by transmission electron microscopy. Immunogold staining showed that S3 encoded proteins self assembled to form viral outer capsid and VLPs maintained their stability at different pH in presence of S1 encoded protein. Conclusion Our results of cloning, sequencing and functional analysis of AmCPV S1 and S3 indicate that S3

  3. Synthesis of Nano-sized Boehmites for Optimum Phosphate Sorption

    DEFF Research Database (Denmark)

    Watanabe, Yujiro; Kasama, Takeshi; Fukushi, Keisuke

    2011-01-01

    the highest amount of phosphate sorption (1.73 mmol g-1 at pH 3.3) compared with Al-bearing materials. The reaction mechanism during phosphate sorption was described by the anion exchange reaction between phosphate ions in sodium phosphate solution and hydroxide ions on boehmite surfaces. Therefore...

  4. Nano-sized crystalline drug production by milling technology.

    Science.gov (United States)

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  5. Nano-Sized Grain Refinement Using Friction Stir Processing

    Science.gov (United States)

    2013-03-01

    based on plastic deformation have been developed for grain refinement in Mg alloys such as rolling, Equal Channel Angular Processing ( ECAP ) and Equal...Research Laboratory. Introduction Magnesium ( Mg ) alloys have been widely used for structural components in the automotive, aerospace and...electronics industry due to their low density, high strength to stiffness ratio, good damping capacity, diecastability and recycling. However Mg alloys

  6. Conjugated Polymers and Oligomers: Structural and Soft Matter Aspects

    DEFF Research Database (Denmark)

    conjugated polymer backbone, water soluble conjugated polyelectrolytes and surfactants, conjugated molecules and biomolecules and DNA and the advanced use of synchrotron radiation and electron microscopy to find out structural details in conjugated molecule films and devices as well as under ambient...

  7. Dengue Virus Uses a Non-Canonical Function of the Host GBF1-Arf-COPI System for Capsid Protein Accumulation on Lipid Droplets.

    Science.gov (United States)

    Iglesias, Nestor G; Mondotte, Juan A; Byk, Laura A; De Maio, Federico A; Samsa, Marcelo M; Alvarez, Cecilia; Gamarnik, Andrea V

    2015-09-01

    Dengue viruses cause the most important human viral disease transmitted by mosquitoes. In recent years, a great deal has been learned about molecular details of dengue virus genome replication; however, little is known about genome encapsidation and the functions of the viral capsid protein. During infection, dengue virus capsid progressively accumulates around lipid droplets (LDs) by an unknown mechanism. Here, we examined the process by which the viral capsid is transported from the endoplasmic reticulum (ER) membrane, where the protein is synthesized, to LDs. Using different methods of intervention, we found that the GBF1-Arf1/Arf4-COPI pathway is necessary for capsid transport to LDs, while the process is independent of both COPII components and Golgi integrity. The transport was sensitive to Brefeldin A, while a drug resistant form of GBF1 was sufficient to restore capsid subcellular distribution in infected cells. The mechanism by which LDs gain or lose proteins is still an open question. Our results support a model in which the virus uses a non-canonical function of the COPI system for capsid accumulation on LDs, providing new ideas for antiviral strategies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Sequence Analysis of the Capsid Gene during a Genotype II.4 Dominated Norovirus Season in One University Hospital

    DEFF Research Database (Denmark)

    Holzknecht, Barbara Juliane; Franck, Kristina Træholt; Nielsen, Rikke Thoft

    2015-01-01

    Norovirus (NoV) is a leading cause of gastroenteritis and genotype II.4 (GII.4) is responsible for the majority of nosocomial NoV infections. Our objective was to examine whether sequencing of the capsid gene might be a useful tool for the hospital outbreak investigation to define possible....... Sequences of the capsid gene (1412 nucleotides) were obtained from the first available sample from 55 patients. From six immunocompromised patients with persistent infections a second sample was also included. As a control for a point-source outbreak, five samples from a foodborne outbreak caused...... by the same GII.4 variant were analyzed. Forty-seven of the inpatients (85%) were infected with the GII.4 variant Den Haag 2006b. Phylogenetic analysis of the Den Haag 2006b sequences identified four distinct outbreaks in different departments and a fifth outbreak with possible inter-department spread...

  9. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1

    International Nuclear Information System (INIS)

    Diaz-Griffero, Felipe; Vandegraaff, Nick; Li Yuan; McGee-Estrada, Kathleen; Stremlau, Matthew; Welikala, Sohanya; Si Zhihai; Engelman, Alan; Sodroski, Joseph

    2006-01-01

    In owl monkeys, a retrotransposition event replaced the gene encoding the retroviral restriction factor TRIM5α with one encoding TRIMCyp, a fusion between the RING, B-box 2 and coiled-coil domains of TRIM5 and cyclophilin A. TRIMCyp restricts human immunodeficiency virus (HIV-1) infection by a mechanism dependent on the interaction of the cyclophilin A moiety and the HIV-1 capsid protein. Here, we show that infection by retroviruses other than HIV-1 can be restricted by TRIMCyp, providing an explanation for the evolutionary retention of the TRIMCyp gene in owl monkey lineages. The TRIMCyp-mediated block to HIV-1 infection occurs before the earliest step of reverse transcription. TRIMCyp-mediated restriction involves at least two functions: (1) capsid binding, which occurs most efficiently for trimeric TRIMCyp proteins that retain the coiled-coil and cyclophilin A domains, and (2) an effector function that depends upon the B-box 2 domain

  10. Attenuated Streptococcus equi ssp. zooepidemicus as a bacterial vector for expression of porcine circovirus type 2 capsid protein.

    Science.gov (United States)

    Wei, Zigong; Fu, Qiang; Liu, Xiaohong; Chen, Yaosheng

    2012-07-01

    Porcine circovirus type 2 (PCV2) infection and other concurrent factors is associated with post-weaning multisystemic wasting syndrome, which is becoming a major problem for the swine industry worldwide. Coinfection of Streptococcus equi ssp. zooepidemicus (SEZ) and PCV2 in swine has necessitated demand for a recombinant vaccine against these two pathogens. A recombinant SEZ-Cap strain expressing the major immunogenic capsid protein of PCV2 in place of the szp gene of acapsular SEZ C55138 ΔhasB was constructed. Fluorescence-activated cell sorting and immunofluorescence microscopy analyses indicated that the capsid protein is expressed on the surface of the recombinant strain. Experiments in mice demonstrated that strain SEZ-Cap was less virulent than the parental strain and that it induced significant anti-PCV2 antibodies when administered intraperitoneally, which is worthy of further investigation in swine. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Oligonucleotides conjugated to short lysine chains.

    Science.gov (United States)

    Winkler, Johannes; Urban, Ernst; Noe, Christian R

    2005-01-01

    A new method for synthesizing oligonucleotide peptide conjugates by an in-line approach is presented. A phosphorothioate oligonucleotide with the sequence of bcl-2 targeted Oblimersen by employing a modified 2'-amino-2'-desoxy-uridine nucleotide bearing a succinyl linker at the 2' position was prepared. The carboxyl group was protected for solid-phase synthesis as the benzyl ester. Ester cleavage was afforded by a phase transfer reaction using palladium nanoparticles as catalyst and cyclohexadiene as hydrogen donor. Short tails of up to three lysyl residues were conjugated to the oligonucleotide by an inverse stepwise peptide synthesis. The conjugates were characterized by HPLC, mass spectrometry, and circular dichroism. Influence of lysyl tails on CD spectra were minimal. Melting profiles revealed only minimal destabilizing effects on duplexes by conjugation of peptides.

  12. Stochastic differential equations used to model conjugation

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo

    be split into measurement noise and system noise. The system noise is used to compensate for those biological processes not explicitly described by the model. Many authors model conjugation by a simple mass action model first proposed by Levin et al. (1979). Also Michaelis-Menten dependence...... by an experiment conducted with E. faecium. In addition, we suggest that a 3rd order time-delay must be included in the model to account for the delay before a newly conjugated plasmid is expressed. A ML estimate of the parameters based on experimental data is found using the software CTSM. The conjugation rate......Stochastic differential equations (SDEs) are used to model horizontal transfer of antibiotic resis- tance by conjugation. The model describes the concentration of donor, recipient, transconjugants and substrate. The strength of the SDE model over the traditional ODE models is that the noise can...

  13. Deciphering conjugative plasmid permissiveness in wastewater microbiomes

    DEFF Research Database (Denmark)

    Jacquiod, Samuel Jehan Auguste; Brejnrod, Asker Daniel; Milani, Stefan Morberg

    2017-01-01

    Wastewater treatment plants (WWTPs) are designed to robustly treat polluted water. They are characterized by ceaseless flows of organic, chemical and microbial matter, followed by treatment steps before environmental release. WWTPs are hotspots of horizontal gene transfer between bacteria via...... conjugative plasmids, leading to dissemination of potentially hazardous genetic material such as antimicrobial resistance genes (AMRGs). While current focus is on the threat of AMRGs spreading and their environmental maintenance, conjugative plasmid transfer dynamics within and between bacterial communities...... still remains largely uncharted. Furthermore, current in vitro methods used to assess conjugation in complex microbiomes do not include in situ behaviours of recipient cells, resulting in partial understanding of transfers. We investigated the in vitro conjugation capacities of WWTP microbiomes from...

  14. Design and Application of Antimicrobial Peptide Conjugates

    Directory of Open Access Journals (Sweden)

    Andre Reinhardt

    2016-05-01

    Full Text Available Antimicrobial peptides (AMPs are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry.

  15. Mechanisms regulating expression of the HPV 31 L1 and L2 capsid proteins and pseudovirion entry.

    Science.gov (United States)

    Hindmarsh, Patrick L; Laimins, Laimonis A

    2007-02-26

    Human papillomaviruses (HPV) infect stratified epithelia and restrict expression of late capsid genes to highly differentiated cells. In order to begin to understand the processes regulating HPV 31 infection we examined the synthesis of the HPV 31 capsid proteins, L1 and L2, using heterologous expression systems. Similar to studies in HPV 16, expression of wild type HPV 31 L1 and L2 from heterologous promoters resulted in very low levels of synthesis. In contrast, modification of the codons in the capsid genes to ones more commonly used in cellular genes resulted in high-level synthesis. Through the use of chimeric proteins that fused fragments of wild type L1 to Green Fluorescent Protein (GFP) coding sequences, a short region was identified that was sufficient to inhibit high level synthesis and similar elements were detected in L2. One element was localized to the 3' end of the L1 gene while a series of elements were localized at the 3' end of the L2 coding sequences. These observations are most consistent with negative RNA regulatory elements controlling the levels of L1 and L2 synthesis that are distinct from those identified in HPV 16. Expression vectors for the codon modified HPV 31 capsid proteins were then transfected together with GFP reporter plasmids to generate HPV 31 pseudoviruses. Infection of cells with HPV 31 pseudoviruses in the presence of the inhibitors, chlorpromazine, nystatin or methyl-beta-cyclodextrin, demonstrated that HPV 31, like HPV 16, enters human and monkey cells through a clathrin-mediated pathway rather than through caveolae as previously reported. This suggests that high-risk HPV types may enter cells through common mechanisms.

  16. Mechanisms regulating expression of the HPV 31 L1 and L2 capsid proteins and pseudovirion entry

    Directory of Open Access Journals (Sweden)

    Hindmarsh Patrick L

    2007-02-01

    Full Text Available Abstract Human papillomaviruses (HPV infect stratified epithelia and restrict expression of late capsid genes to highly differentiated cells. In order to begin to understand the processes regulating HPV 31 infection we examined the synthesis of the HPV 31 capsid proteins, L1 and L2, using heterologous expression systems. Similar to studies in HPV 16, expression of wild type HPV 31 L1 and L2 from heterologous promoters resulted in very low levels of synthesis. In contrast, modification of the codons in the capsid genes to ones more commonly used in cellular genes resulted in high-level synthesis. Through the use of chimeric proteins that fused fragments of wild type L1 to Green Fluorescent Protein (GFP coding sequences, a short region was identified that was sufficient to inhibit high level synthesis and similar elements were detected in L2. One element was localized to the 3' end of the L1 gene while a series of elements were localized at the 3' end of the L2 coding sequences. These observations are most consistent with negative RNA regulatory elements controlling the levels of L1 and L2 synthesis that are distinct from those identified in HPV 16. Expression vectors for the codon modified HPV 31 capsid proteins were then transfected together with GFP reporter plasmids to generate HPV 31 pseudoviruses. Infection of cells with HPV 31 pseudoviruses in the presence of the inhibitors, chlorpromazine, nystatin or methyl-beta-cyclodextrin, demonstrated that HPV 31, like HPV 16, enters human and monkey cells through a clathrin-mediated pathway rather than through caveolae as previously reported. This suggests that high-risk HPV types may enter cells through common mechanisms.

  17. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    OpenAIRE

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor; Afonine, Pavel V.; Motwani, Tina; Teschke, Carolyn M.; Parent, Kristin N.; Cingolani, Gino

    2017-01-01

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ?procapsid') built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: a...

  18. Viable adenovirus vaccine prototypes: High-level production of a papillomavirus capsid antigen from the major late transcriptional unit

    OpenAIRE

    Berg, Michael; DiFatta, Julie; Hoiczyk, Egbert; Schlegel, Richard; Ketner, Gary

    2005-01-01

    Safe, effective, orally delivered, live adenovirus vaccines have been in use for three decades. Recombinant derivatives of the live adenovirus vaccines may prove an economical alternative to current vaccines for a variety of diseases. To explore that possibility, we constructed a series of recombinants that express the major capsid protein (L1) of canine oral papillomavirus (COPV), a model for mucosal human papillomavirus (HPV) infection. Vaccination with virus-like particles (VLPs) composed ...

  19. Production and Application of Polyclonal Antibodies Against Recombinant Capsid Protein of Extra Small Virus of Macrobrachium rosenbergii

    OpenAIRE

    Neethi, V.; Sivakumar, N.; Kumar, Kundan; Rajendran, K. V.; Makesh, M.

    2012-01-01

    Macrobrachium rosenbergii nodavirus along with a satellite virus, extra small virus (XSV) causes white tail disease (WTD) in the giant freshwater prawn M. rosenbergii. Infected M. rosenbergii postlarvae were collected from a hatchery in Kakinada, Andhra Pradesh. The gene coding the capsid protein of XSV was cloned in a bacterial expression vector pRSET A and the recombinant protein was expressed in Escherichia coli BL21(DE3)pLysS cells. The recombinant protein was purified by Nickel affinity ...

  20. Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions.

    Science.gov (United States)

    Guo, Fei; Liu, Zheng; Fang, Ping-An; Zhang, Qinfen; Wright, Elena T; Wu, Weimin; Zhang, Ci; Vago, Frank; Ren, Yue; Jakana, Joanita; Chiu, Wah; Serwer, Philip; Jiang, Wen

    2014-10-28

    Many dsDNA viruses first assemble a DNA-free procapsid, using a scaffolding protein-dependent process. The procapsid, then, undergoes dramatic conformational maturation while packaging DNA. For bacteriophage T7 we report the following four single-particle cryo-EM 3D reconstructions and the derived atomic models: procapsid (4.6-Å resolution), an early-stage DNA packaging intermediate (3.5 Å), a later-stage packaging intermediate (6.6 Å), and the final infectious phage (3.6 Å). In the procapsid, the N terminus of the major capsid protein, gp10, has a six-turn helix at the inner surface of the shell, where each skewed hexamer of gp10 interacts with two scaffolding proteins. With the exit of scaffolding proteins during maturation the gp10 N-terminal helix unfolds and swings through the capsid shell to the outer surface. The refolded N-terminal region has a hairpin that forms a novel noncovalent, joint-like, intercapsomeric interaction with a pocket formed during shell expansion. These large conformational changes also result in a new noncovalent, intracapsomeric topological linking. Both interactions further stabilize the capsids by interlocking all pentameric and hexameric capsomeres in both DNA packaging intermediate and phage. Although the final phage shell has nearly identical structure to the shell of the DNA-free intermediate, surprisingly we found that the icosahedral faces of the phage are slightly (∼4 Å) contracted relative to the faces of the intermediate, despite the internal pressure from the densely packaged DNA genome. These structures provide a basis for understanding the capsid maturation process during DNA packaging that is essential for large numbers of dsDNA viruses.

  1. Utilizing the Antigen Capsid-Incorporation Strategy for the Development of Adenovirus Serotype 5-Vectored Vaccine Approaches

    OpenAIRE

    Gu, Linlin; Farrow, Anitra L.; Krendelchtchikov, Alexandre; Matthews, Qiana L.

    2015-01-01

    Adenovirus serotype 5 (Ad5) has been extensively modified with traditional transgene methods for the vaccine development. The reduced efficacies of these traditionally modified Ad5 vectors in clinical trials could be primarily correlated with Ad5 pre-existing immunity (PEI) among the majority of the population. To promote Ad5-vectored vaccine development by solving the concern of Ad5 PEI, the innovative Antigen Capsid-Incorporation strategy has been employed. By merit of this strategy, Ad5-ve...

  2. Detention of HPV L1 Capsid Protein and hTERC Gene in Screening of Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Huang Bin

    2013-06-01

    Full Text Available   Objective(s: To investigate the expression of human papilloma virus (HPV L1 capsid protein, and human telomerase RNA component (hTERC in cervical cancer and the role of detection of both genes in screening of cervical cancer.   Materials and Methods: A total of 309 patients were recruited and cervical exfoliated cells were collected. Immunocytochemistry was employed to detect HPV L1 capsid protein, and fluorescent in situ hybridization (FISH was performed to detect the hTERC. Results: The expression of HPV L1 capsid protein reduced with the increase of the histological grade of cervical cells and was negatively related to the grade of cervical lesions. However, the expression of hTERC increased with the increase of the histological grade and positively associated with the grade of cervical lesions. The proportion of patients with L1(-/hTERC(+ was higher in patients with histological grade of CIN2 or higher than that in those with histological grade of CIN1. The L1(+/hTERC(- and L1(-/hTERC(- were negatively related to the grade of cervical lesions. L1(-/hTERC(+ was positively associated with the grade of cervical lesions. The L1/hTERC ratio increased. The negative predictive value of both HPV L1 and hTERC was higher than that of HPV L1 or hTERC, but there was no marked difference in the screening efficacy of cervical cancer among HPV L1, hTERC and HPV L1+hTERC. Conclusion: HPV L1 capsid protein and hTERC gene may serve as markers for the early diagnosis and prediction of cervical lesions. The increase in L1/hTERC ratio reflects the progression of cervical lesions to a certain extent.

  3. Energetic Tuning in Spirocyclic Conjugated Polymers

    OpenAIRE

    Hugo Bronstein; Frank D. King

    2016-01-01

    Precise control of the energy levels in a conjugated polymer is the key to allowing their exploitation in optoelectronic devices. The introduction of spirocycles into conjugated polymers has traditionally been used to enhance their solid state microstructure. Here we present a highly novel method of energetic tuning through the use of electronically active spirocyclic systems. By modifying the size and oxidation state of a heteroatom in an orthogonal spirocycle we demonstrate energetic fine t...

  4. Two-zone double phase conjugate mirror

    Science.gov (United States)

    Belić, M. R.; Vujić, D.; Sandfuchs, O.; Kaiser, F.

    2001-10-01

    An analysis of photorefractive (PR) oscillators consisting of two facing four-wave mixing regions is carried out. The threshold and operation conditions of different phase conjugate mirrors are discussed with the help of the grating action method. In particular, the threshold and the operation of the two-zone double phase conjugate mirror (DPCM) is compared with other related PR oscillators, the interconnected ring, and different connected DPCM.

  5. Rapid modification of retroviruses using lipid conjugates

    International Nuclear Information System (INIS)

    Mukherjee, Nimisha G; Le Doux, Joseph M; Andrew Lyon, L

    2009-01-01

    Methods are needed to manipulate natural nanoparticles. Viruses are particularly interesting because they can act as therapeutic cellular delivery agents. Here we examine a new method for rapidly modifying retroviruses that uses lipid conjugates composed of a lipid anchor (1,2-distearoyl-sn-glycero-3-phosphoethanolamine), a polyethylene glycol chain, and biotin. The conjugates rapidly and stably modified retroviruses and enabled them to bind streptavidin. The implication of this work for modifying viruses for gene therapy and vaccination protocols is discussed.

  6. Syntheses of conjugated polymers for photonics

    Czech Academy of Sciences Publication Activity Database

    Výprachtický, Drahomír; Cimrová, Věra; Kmínek, Ivan; Pavlačková, Petra

    2010-01-01

    Roč. 295, č. 1 (2010), s. 94-99 ISSN 1022-1360. [Prague Meetings on Macromolecules /73./ New Frontiers in Macromolecular Science: From Macromolecular Concepts of Living Matter to Polymers for Better Quality of Life. Prague, 05.07.2009-09.07.2009] R&D Projects: GA MŠk(CZ) 1M06031 Institutional research plan: CEZ:AV0Z40500505 Keywords : cis and trans isomers * conjugated polymer * conjugated polyelectrolyte Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. A Bacteriophage Capsid Protein Is an Inhibitor of a Conserved Transcription Terminator of Various Bacterial Pathogens.

    Science.gov (United States)

    Ghosh, Gairika; Reddy, Jayavardhana; Sambhare, Susmit; Sen, Ranjan

    2018-01-01

    Rho is a hexameric molecular motor that functions as a conserved transcription terminator in the majority of bacterial species and is a potential drug target. Psu is a bacteriophage P4 capsid protein that inhibits Escherichia coli Rho by obstructing its ATPase and translocase activities. In this study, we explored the anti-Rho activity of Psu for Rho proteins from different pathogens. Sequence alignment and homology modeling of Rho proteins from pathogenic bacteria revealed the conserved nature of the Psu-interacting regions in all these proteins. We chose Rho proteins from various pathogens, including Mycobacterium smegmatis , Mycobacterium bovis , Mycobacterium tuberculosis , Xanthomonas campestris , Xanthomonas oryzae , Corynebacterium glutamicum , Vibrio cholerae , Salmonella enterica , and Pseudomonas syringae The purified recombinant Rho proteins of these organisms showed variable rates of ATP hydrolysis on poly(rC) as the substrate and were capable of releasing RNA from the E. coli transcription elongation complexes. Psu was capable of inhibiting these two functions of all these Rho proteins. In vivo pulldown assays revealed direct binding of Psu with many of these Rho proteins. In vivo expression of psu induced killing of M. smegmatis , M. bovis , X. campestris , and E. coli expressing S. enterica Rho indicating Psu-induced inhibition of Rho proteins of these strains under physiological conditions. We propose that the "universal" inhibitory function of the Psu protein against the Rho proteins from both Gram-negative and Gram-positive bacteria could be useful for designing peptides with antimicrobial functions and that these peptides could contribute to synergistic antibiotic treatment of the pathogens by compromising the Rho functions. IMPORTANCE Bacteriophage-derived protein factors modulating different bacterial processes could be converted into unique antimicrobial agents. Bacteriophage P4 capsid protein Psu is an inhibitor of the E. coli transcription

  8. Minor Capsid Protein L2 Polytope Induces Broad Protection against Oncogenic and Mucosal Human Papillomaviruses.

    Science.gov (United States)

    Pouyanfard, Somayeh; Spagnoli, Gloria; Bulli, Lorenzo; Balz, Kathrin; Yang, Fan; Odenwald, Caroline; Seitz, Hanna; Mariz, Filipe C; Bolchi, Angelo; Ottonello, Simone; Müller, Martin

    2018-02-15

    The amino terminus of the human papillomavirus (HPV) minor capsid protein L2 contains a major cross-neutralization epitope which provides the basis for the development of a broadly protecting HPV vaccine. A wide range of protection against different HPV types would eliminate one of the major drawbacks of the commercial, L1-based prophylactic vaccines. Previously, we have reported that insertion of the L2 epitope into a scaffold composed of bacterial thioredoxin protein generates a potent antigen inducing comprehensive protection against different animal and human papillomaviruses. We also reported, however, that although protection is broad, some oncogenic HPV types escape the neutralizing antibody response, if L2 epitopes from single HPV types are used as immunogen. We were able to compensate for this by applying a mix of thioredoxin proteins carrying L2 epitopes from HPV16, -31, and -51. As the development of a cost-efficient HPV prophylactic vaccines is one of our objectives, this approach is not feasible as it requires the development of multiple good manufacturing production processes in combination with a complex vaccine formulation. Here, we report the development of a thermostable thioredoxin-based single-peptide vaccine carrying an L2 polytope of up to 11 different HPV types. The L2 polytope antigens have excellent abilities in respect to broadness of protection and robustness of induced immune responses. To further increase immunogenicity, we fused the thioredoxin L2 polytope antigen with a heptamerization domain. In the final vaccine design, we achieve protective responses against all 14 oncogenic HPV types that we have analyzed plus the low-risk HPVs 6 and 11 and a number of cutaneous HPVs. IMPORTANCE Infections by a large number of human papillomaviruses lead to malignant and nonmalignant disease. Current commercial vaccines based on virus-like particles (VLPs) effectively protect against some HPV types but fail to do so for most others. Further, only

  9. Conjugation in Gram-Positive Bacteria.

    Science.gov (United States)

    Goessweiner-Mohr, Nikolaus; Arends, Karsten; Keller, Walter; Grohmann, Elisabeth

    2014-08-01

    Conjugative transfer is the most important means of spreading antibiotic resistance and virulence factors among bacteria. The key vehicles of this horizontal gene transfer are a group of mobile genetic elements, termed conjugative plasmids. Conjugative plasmids contain as minimum instrumentation an origin of transfer (oriT), DNA-processing factors (a relaxase and accessory proteins), as well as proteins that constitute the trans-envelope transport channel, the so-called mating pair formation (Mpf) proteins. All these protein factors are encoded by one or more transfer (tra) operons that together form the DNA transport machinery, the Gram-positive type IV secretion system. However, multicellular Gram-positive bacteria belonging to the streptomycetes appear to have evolved another mechanism for conjugative plasmid spread reminiscent of the machinery involved in bacterial cell division and sporulation, which transports double-stranded DNA from donor to recipient cells. Here, we focus on the protein key players involved in the plasmid spread through the two different modes and present a new secondary structure homology-based classification system for type IV secretion protein families. Moreover, we discuss the relevance of conjugative plasmid transfer in the environment and summarize novel techniques to visualize and quantify conjugative transfer in situ.

  10. Recombinant AAV serotype and capsid mutant comparison for pulmonary gene transfer of alpha-1-antitrypsin using invasive and noninvasive delivery.

    Science.gov (United States)

    Liqun Wang, Rejean; McLaughlin, Thomas; Cossette, Travis; Tang, Qiushi; Foust, Kevin; Campbell-Thompson, Martha; Martino, Ashley; Cruz, Pedro; Loiler, Scott; Mueller, Christian; Flotte, Terence R

    2009-01-01

    Recombinant adeno-associated viral (rAAV) vectors have been widely used in pulmonary gene therapy research. In this study, we evaluated the transduction and expression efficiencies of several AAV serotypes and AAV2 capsid mutants with specific pulmonary targeting ligands in the mouse lung. The noninvasive intranasal delivery was compared with the traditional intratracheal lung delivery. The rAAV8 was the most efficient serotype at expressing alpha-1-antitrypsin (AAT) in the lung among all the tested serotypes and mutants. A dose of 1 x 10(10) vg of rAAV8-CB-AAT transduced a high percentage of cells in the lung when delivered intratrachealy. The serum and the broncho-alveolar lavage fluid (BALF) levels of human AAT (hAAT) were about 6- and 2.5-fold higher, respectively, than those of rAAV5 group. Among the rAAV2 capsid mutants, the rAAV2 capsid mutants that display a peptide sequence from hAAT ("long serpin") indicated a twofold increase in transgene expression. For most vectors, the serum hAAT levels achieved after intranasal delivery were 1/2 to 1/3 of those with the intratracheal method. Overall, rAAV8 was the most promising vector for the future application in gene therapy of pulmonary diseases such as AAT deficiency-related emphysema.

  11. Recombinant AAV Serotype and Capsid Mutant Comparison for Pulmonary Gene Transfer of α-1-Antitrypsin Using Invasive and Noninvasive Delivery

    Science.gov (United States)

    Liqun Wang, Rejean; McLaughlin, Thomas; Cossette, Travis; Tang, Qiushi; Foust, Kevin; Campbell-Thompson, Martha; Martino, Ashley; Cruz, Pedro; Loiler, Scott; Mueller, Christian; Flotte, Terence R

    2008-01-01

    Recombinant adeno-associated viral (rAAV) vectors have been widely used in pulmonary gene therapy research. In this study, we evaluated the transduction and expression efficiencies of several AAV serotypes and AAV2 capsid mutants with specific pulmonary targeting ligands in the mouse lung. The noninvasive intranasal delivery was compared with the traditional intratracheal lung delivery. The rAAV8 was the most efficient serotype at expressing α-1-antitrypsin (AAT) in the lung among all the tested serotypes and mutants. A dose of 1 × 1010 vg of rAAV8-CB-AAT transduced a high percentage of cells in the lung when delivered intratrachealy. The serum and the broncho-alveolar lavage fluid (BALF) levels of human AAT (hAAT) were about 6- and 2.5-fold higher, respectively, than those of rAAV5 group. Among the rAAV2 capsid mutants, the rAAV2 capsid mutants that display a peptide sequence from hAAT (“long serpin”) indicated a twofold increase in transgene expression. For most vectors, the serum hAAT levels achieved after intranasal delivery were 1/2 to 1/3 of those with the intratracheal method. Overall, rAAV8 was the most promising vector for the future application in gene therapy of pulmonary diseases such as AAT deficiency–related emphysema. PMID:18941444

  12. Single Tyrosine Mutation in AAV8 Vector Capsid Enhances Gene Lung Delivery and Does Not Alter Lung Morphofunction in Mice

    Directory of Open Access Journals (Sweden)

    Sabrina V. Martini

    2014-08-01

    Full Text Available Background/Aims: Vectors derived from adeno-associated viruses (AAVs are important gene delivery tools for treating pulmonary diseases. Phosphorylation of surface-exposed tyrosine residues from AAV2 capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. We evaluated the pulmonary transduction efficiency of AAV8 vectors containing point mutations in surface-exposed capsid tyrosine residues. Methods: Male C57BL/6 mice (20-25 g, n=24 were randomly assigned into three groups: control group animals received intratracheal (i.t. instillation of saline (50 μl, wild-type AAV8 group, and capsid mutant Y733F AAV8 group, which received (i.t. AAV8 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP. Four weeks after instillation, lung mechanics and morphometry, vector transduction (immunohistochemistry and mRNA expression of eGFP, and inflammatory cytokines and growth factor expression were analyzed. Results: Tyrosine-mutant AAV8 vectors displayed significantly increased transduction efficiency in the lung compared with their wild-type counterparts. No significant differences were observed in lung mechanics and morphometry between experimental groups. There was no evidence of inflammatory response in any group. Conclusion: AAV8 vectors may be useful for new therapeutic strategies for the treatment of pulmonary diseases.

  13. Structural determination of importin alpha in complex with beak and feather disease virus capsid nuclear localization signal

    International Nuclear Information System (INIS)

    Patterson, Edward I.; Dombrovski, Andrew K.; Swarbrick, Crystall M.D.; Raidal, Shane R.; Forwood, Jade K.

    2013-01-01

    Highlights: •Circovirus capsid proteins contain large nuclear localization signals (NLS). •A method of nuclear import has not been elucidated. •Beak and feather disease virus (BFDV) capsid NLS was crystallized with importin α. •The structure showed BFDV NLS binding to the major site of importin α. •Result shows implications for mechanism of nuclear transport for all circoviruses. -- Abstract: Circoviruses represent a rapidly increasing genus of viruses that infect a variety of vertebrates. Replication requires shuttling viral molecules into the host cell nucleus, a process facilitated by capsid-associated protein (Cap). Whilst a nuclear localization signal (NLS) has been shown to mediate nuclear translocation, the mode of nuclear transport remains to be elucidated. To better understand this process, beak and feather disease virus (BFDV) Cap NLS was crystallized with nuclear import receptor importin-α (Impα). Diffraction yielded structural data to 2.9 Å resolution, and the binding site on both Impα and BFDV Cap NLS were well resolved. The binding mechanism for the major site is likely conserved across circoviruses as supported by the similarity of NLSs in circovirus Caps. This finding illuminates a crucial step for infection of host cells by this viral family, and provides a platform for rational drug design against the binding interface

  14. Structural determination of importin alpha in complex with beak and feather disease virus capsid nuclear localization signal

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Edward I. [Charles Sturt University, School of Animal and Veterinary Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); Dombrovski, Andrew K. [Charles Sturt University, School of Biomedical Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); Swarbrick, Crystall M.D. [Charles Sturt University, School of Biomedical Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); Raidal, Shane R. [Charles Sturt University, School of Animal and Veterinary Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); Forwood, Jade K., E-mail: jforwood@csu.edu.au [Charles Sturt University, School of Biomedical Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Boorooma St., Wagga Wagga, New South Wales 2678 (Australia)

    2013-09-06

    Highlights: •Circovirus capsid proteins contain large nuclear localization signals (NLS). •A method of nuclear import has not been elucidated. •Beak and feather disease virus (BFDV) capsid NLS was crystallized with importin α. •The structure showed BFDV NLS binding to the major site of importin α. •Result shows implications for mechanism of nuclear transport for all circoviruses. -- Abstract: Circoviruses represent a rapidly increasing genus of viruses that infect a variety of vertebrates. Replication requires shuttling viral molecules into the host cell nucleus, a process facilitated by capsid-associated protein (Cap). Whilst a nuclear localization signal (NLS) has been shown to mediate nuclear translocation, the mode of nuclear transport remains to be elucidated. To better understand this process, beak and feather disease virus (BFDV) Cap NLS was crystallized with nuclear import receptor importin-α (Impα). Diffraction yielded structural data to 2.9 Å resolution, and the binding site on both Impα and BFDV Cap NLS were well resolved. The binding mechanism for the major site is likely conserved across circoviruses as supported by the similarity of NLSs in circovirus Caps. This finding illuminates a crucial step for infection of host cells by this viral family, and provides a platform for rational drug design against the binding interface.

  15. Analogs of LDL Receptor Ligand Motifs in Dengue Envelope and Capsid Proteins as Potential Codes for Cell Entry.

    Science.gov (United States)

    Guevara, Juan; Romo, Jamie; McWhorter, Troy; Guevara, Natalia Valentinova

    It is established that cell entry of low density lipoprotein particles (LLPs) containing Apo B100 and Apo E is mediated by receptors and GAGs. Receptor ligand motifs, X BBB XX B X, X BB X B X, and Ψ B ΨX B , and mono- and bipartite NLS sequences are abundant in Apo E and Apo B100 as well as in envelope and capsid proteins of Dengue viruses 1-4 (DENV1-4). Synthetic, fluorescence-labeled peptides of sequences in DENV2 envelope protein, and DENV3 capsid that include these motifs were used to conduct a qualitative assessment of cell binding and entry capacity using HeLa cells. DENV2 envelope peptide, Dsp2EP, 0564 Gly-Gly 0595 , was shown to bind and remain at the cell surface. In contrast, DENV3 capsid protein peptide, Dsp3CP, 0002 Asn-Gln 0028 , readily enters HeLa cells and accumulates at discrete loci in the nucleus. FITC-labeled dengue synthetic peptides colocalize with Low Density Lipoprotein-CM-DiI and Apo E-CM-DiI to a degree that suggests that Dengue viruses may utilize cell entry pathways used by LLPs.

  16. Identification of the neutralizing epitopes of Merkel cell polyomavirus major capsid protein within the BC and EF surface loops.

    Science.gov (United States)

    Fleury, Maxime J J; Nicol, Jérôme T J; Samimi, Mahtab; Arnold, Françoise; Cazal, Raphael; Ballaire, Raphaelle; Mercey, Olivier; Gonneville, Hélène; Combelas, Nicolas; Vautherot, Jean-Francois; Moreau, Thierry; Lorette, Gérard; Coursaget, Pierre; Touzé, Antoine

    2015-01-01

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus clearly associated with a human cancer, i.e. the Merkel cell carcinoma (MCC). Polyomaviruses are small naked DNA viruses that induce a robust polyclonal antibody response against the major capsid protein (VP1). However, the polyomavirus VP1 capsid protein epitopes have not been identified to date. The aim of this study was to identify the neutralizing epitopes of the MCPyV capsid. For this goal, four VP1 mutants were generated by insertional mutagenesis in the BC, DE, EF and HI loops between amino acids 88-89, 150-151, 189-190, and 296-297, respectively. The reactivity of these mutants and wild-type VLPs was then investigated with anti-VP1 monoclonal antibodies and anti-MCPyV positive human sera. The findings together suggest that immunodominant conformational neutralizing epitopes are present at the surface of the MCPyV VLPs and are clustered within BC and EF loops.

  17. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution

    Science.gov (United States)

    Schur, Florian K. M.; Hagen, Wim J. H.; Rumlová, Michaela; Ruml, Tomáš; Müller, Barbara; Kräusslich, Hans-Georg; Briggs, John A. G.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.

  18. Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis

    Science.gov (United States)

    Shakeel, Shabih; Westerhuis, Brenda M.; Domanska, Ausra; Koning, Roman I.; Matadeen, Rishi; Koster, Abraham J.; Bakker, Arjen Q.; Beaumont, Tim; Wolthers, Katja C.; Butcher, Sarah J.

    2016-07-01

    The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA-protein interactions and dissection of virus assembly on the basis of RNA nucleation.

  19. Biological effect of Muller's Ratchet: distant capsid site can affect picornavirus protein processing.

    Science.gov (United States)

    Escarmís, Cristina; Perales, Celia; Domingo, Esteban

    2009-07-01

    Repeated bottleneck passages of RNA viruses result in accumulation of mutations and fitness decrease. Here, we show that clones of foot-and-mouth disease virus (FMDV) subjected to bottleneck passages, in the form of plaque-to-plaque transfers in BHK-21 cells, increased the thermosensitivity of the viral clones. By constructing infectious FMDV clones, we have identified the amino acid substitution M54I in capsid protein VP1 as one of the lesions associated with thermosensitivity. M54I affects processing of precursor P1, as evidenced by decreased production of VP1 and accumulation of VP1 precursor proteins. The defect is enhanced at high temperatures. Residue M54 of VP1 is exposed on the virion surface, and it is close to the B-C loop where an antigenic site of FMDV is located. M54 is not in direct contact with the VP1-VP3 cleavage site, according to the three-dimensional structure of FMDV particles. Models to account for the effect of M54 in processing of the FMDV polyprotein are proposed. In addition to revealing a distance effect in polyprotein processing, these results underline the importance of pursuing at the biochemical level the biological defects that arise when viruses are subjected to multiple bottleneck events.

  20. Identification of the Galactose Binding Domain of the Adeno-Associated Virus Serotype 9 Capsid

    Science.gov (United States)

    Bell, Christie L.; Gurda, Brittney L.; Van Vliet, Kim; Agbandje-McKenna, Mavis

    2012-01-01

    Adeno-associated virus serotype 9 (AAV9) vectors show promise for gene therapy of a variety of diseases due to their ability to transduce multiple tissues, including heart, skeletal muscle, and the alveolar epithelium of the lung. In addition, AAV9 is unique compared to other AAV serotypes in that it is capable of surpassing the blood-brain barrier and transducing neurons in the brain and spinal cord. It has recently been shown that AAV9 uses galactose as a receptor to transduce many different cell types in vitro, as well as cells of the mouse airway in vivo. In this study, we sought to identify the specific amino acids of the AAV9 capsid necessary for binding to galactose. By site-directed mutagenesis and cell binding assays, plus computational ligand docking studies, we discovered five amino acids, including N470, D271, N272, Y446, and W503, which are required for galactose binding that form a pocket at the base of the protrusions around the icosahedral 3-fold axes of symmetry. The importance of these amino acids for tissue tropism was also confirmed by in vivo studies in the mouse lung. Identifying the interactions necessary for AAV9 binding to galactose may lead to advances in vector engineering. PMID:22514350