WorldWideScience

Sample records for capsaicin-evoked pain flare

  1. Differential effect of intravenous S-ketamine and fentanyl on atypical odontalgia and capsaicin-evoked pain

    DEFF Research Database (Denmark)

    Baad-Hansen, Lene; Juhl, Gitte Irene; Jensen, Troels Staehelin;

    2007-01-01

    AO pain and on an acute intraoral nociceptive input evoked by topical application of capsaicin. The drugs were administered in a randomized, placebo-controlled, cross-over manner. Furthermore, measures of intraoral sensitivity to mechanical and thermal quantitative sensory testing (QST) including...

  2. Incidence of pain flare following palliative radiotherapy for symptomatic bone metastases: multicenter prospective observational study.

    Science.gov (United States)

    Gomez-Iturriaga, Alfonso; Cacicedo, Jon; Navarro, Arturo; Morillo, Virginia; Willisch, Patricia; Carvajal, Claudia; Hortelano, Eduardo; Lopez-Guerra, Jose Luis; Illescas, Ana; Casquero, Francisco; Del Hoyo, Olga; Ciervide, Raquel; Irasarri, Ana; Pijoan, Jose Ignacio; Bilbao, Pedro

    2015-10-01

    Palliative radiotherapy (RT) is an effective treatment for symptomatic bone metastases. Pain flare, a transient worsening of the bone pain after RT, has been described in previous reports with different incidence rates. The aim of the study was to prospectively evaluate the incidence of pain flare following RT for painful bone metastases and evaluate its effects on pain control and functionality of the patients. Between June 2010 and June 2014, 204 patients were enrolled in this study and 135 patients with complete data were evaluable. Pain flare was defined as a 2- point increase in worst pain score as compared with baseline with no decrease in analgesic intake or a 25% increase in analgesic intake as compared with baseline with no decrease in worst pain score. All pain medications and worst pain scores were collected before, daily during, and for 10 days after RT. The Brief Pain Inventory (BPI) was filled out on the pretreatment and at the 4 weeks follow-up visit. There were 90 men (66.7%) and 45 women (33.3%). Mean age was 66 years (SD 9.8). The most common primary cancer site was lung in 42 patients (31.1%), followed by prostate in 27 patients (20.0%). Forty-two patients (31.1%) patients received a single fraction of 8 Gy and 83 (61.5%) received 20 Gy in five fractions. The overall pain flare incidence across all centers was 51/135 (37.7%). The majority of pain flares occurred on days 1-5 (88.2%). The mean duration of the pain flare was 3 days (SD: 3). There were no significant relationships between the occurrence of pain flare and collected variables. All BPI items measured four weeks after end of RT showed significant improvement as compared with pretreatment scores (p < 0.001). No significant differences in BPI time trends were found between patients with and without flare pain. Pain flare is a common event, occurring in nearly 40% of the patients that receive palliative RT for symptomatic bone metastases. This phenomenon is not a predictor for pain

  3. Histaminergic and non-histaminergic elicited itch is attenuated in capsaicin-evoked areas of allodynia and hyperalgesia

    DEFF Research Database (Denmark)

    Andersen, Hjalte Holm; Elberling, J.; Sharma, Neha

    2017-01-01

    .3 cm(10 min) allodynic skin (p responses to the pruritogens were not significantly altered between the areas of allodynia and normal skin (p > 0.1). An additional experiment showed that pinprick hyperalgesia in the absence of allodynia was sufficient to evoke......BACKGROUND: Chronic pain patients with sensitization may exhibit decreased sensitivity to normally pruritogenic sensory stimuli and moreover occasionally perceive these as painful. This study explored the relationship between itch and pain, by evaluating histaminergic and non-histaminergic itch...... were significantly decreased when provoked in allodynic skin (p skin to 10.3 ± 1.8 cm(10 min) in allodynic skin (p skin to 8.8 ± 2...

  4. Anti-hyperalgesic effects of anti-serotonergic compounds on serotonin- and capsaicin-evoked thermal hyperalgesia in the rat.

    Science.gov (United States)

    Loyd, D R; Chen, P B; Hargreaves, K M

    2012-02-17

    The peripheral serotonergic system has been implicated in the modulation of an array of pain states, from migraine to fibromyalgia; however, the mechanism by which serotonin (5HT) induces pain is unclear. Peripherally released 5HT induces thermal hyperalgesia, possibly via modulation of the transient receptor potential V1 (TRPV1) channel, which is gated by various noxious stimuli, including capsaicin. We previously reported in vitro that 5HT increases calcium accumulation in the capsaicin-sensitive population of sensory neurons with a corresponding increase in proinflammatory neuropeptide release, and both are antagonized by pretreatment with 5HT(2A) and 5HT(3) antagonists, as well as the anti-migraine drug sumatriptan. In the current study, we extended these findings in vivo using the rat hind paw thermal assay to test the hypothesis that peripheral 5HT enhances TRPV1-evoked thermal hyperalgesia that can be attenuated with 5HT(2A) and 5HT(3) receptor antagonists, as well as sumatriptan. Thermal hyperalgesia and edema were established by 5HT injection (0.1-10 nmol/100 μl) into the rat hind paw, and the latency to paw withdrawal (PWL) from noxious heat was determined. Rats were then pretreated with either 5HT before capsaicin (3 nmol/10 μl), the 5HT(2A) receptor antagonist ketanserin or the 5HT(3) receptor antagonist granisetron (0.0001-0.1 nmol/100 μl) before 5HT and/or capsaicin, or the 5HT(1B/1D) receptor agonist sumatriptan (0.01-1 nmol/100 μl) before capsaicin, and PWL was determined. We report that 5HT pretreatment enhances TRPV1-evoked thermal hyperalgesia, which is attenuated with local pretreatment with ketanserin, granisetron, or sumatriptan. We also report that peripheral 5HT induced a similar magnitude of thermal hyperalgesia in male and female rats. Overall, our results provide in vivo evidence supporting an enhancing role of 5HT on TRPV1-evoked thermal hyperalgesia, which can be attenuated by peripheral serotonergic intervention.

  5. Dexamethasone for the prevention of a pain flare after palliative radiotherapy for painful bone metastases : a multicenter double-blind placebo-controlled randomized trial

    NARCIS (Netherlands)

    Westhoff, Paulien G.; de Graeff, Alexander; Geerling, Jenske I.; Reyners, Anna K. L.; van der Linden, Yvette M.

    2014-01-01

    Background: Radiotherapy has a good effect in palliation of painful bone metastases, with a pain response rate of more than 60%. However, shortly after treatment, in approximately 40% of patients a temporary pain flare occurs, which is defined as a two-point increase of the worst pain score on an 11

  6. Incidence and Predictive Factors of Pain Flare After Spine Stereotactic Body Radiation Therapy: Secondary Analysis of Phase 1/2 Trials

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hubert Y.; Allen, Pamela K. [Department of Radiation Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Wang, Xin S. [Department of Symptom Research, University of Texas MD Anderson Cancer, Houston, Texas (United States); Chang, Eric L. [Department of Radiation Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Department of Radiation Oncology, USC Norris Cancer Center, Los Angeles, California (United States); Rhines, Laurence D.; Tatsui, Claudio E. [Department of Neurosurgery, University of Texas MD Anderson Cancer, Houston, Texas (United States); Amini, Behrang [Department of Diagnostic Radiology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Wang, Xin A. [Department of Radiation Physics, University of Texas MD Anderson Cancer, Houston, Texas (United States); Tannir, Nizar M. [Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Brown, Paul D. [Department of Radiation Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Ghia, Amol J., E-mail: AJGhia@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States)

    2014-11-15

    Purpose/Objective(s): To perform a secondary analysis of institutional prospective spine stereotactic body radiation therapy (SBRT) trials to investigate posttreatment acute pain flare. Methods and Materials: Medical records for enrolled patients were reviewed. Study protocol included baseline and follow-up surveys with pain assessment by Brief Pain Inventory and documentation of pain medications. Patients were considered evaluable for pain flare if clinical note or follow-up survey was completed within 2 weeks of SBRT. Pain flare was defined as a clinical note indicating increased pain at the treated site or survey showing a 2-point increase in worst pain score, a 25% increase in analgesic intake, or the initiation of steroids. Binary logistic regression was used to determine predictive factors for pain flare occurrence. Results: Of the 210 enrolled patients, 195 (93%) were evaluable for pain flare, including 172 (88%) clinically, 135 (69%) by survey, and 112 (57%) by both methods. Of evaluable patients, 61 (31%) had undergone prior surgery, 57 (29%) had received prior radiation, and 34 (17%) took steroids during treatment, mostly for prior conditions. Pain flare was observed in 44 patients (23%). Median time to pain flare was 5 days (range, 0-20 days) after the start of treatment. On multivariate analysis, the only independent factor associated with pain flare was the number of treatment fractions (odds ratio = 0.66, P=.004). Age, sex, performance status, spine location, number of treated vertebrae, prior radiation, prior surgery, primary tumor histology, baseline pain score, and steroid use were not significant. Conclusions: Acute pain flare after spine SBRT is a relatively common event, for which patients should be counseled. Additional study is needed to determine whether prophylactic or symptomatic intervention is preferred.

  7. Preliminary definitions of 'flare' in axial spondyloarthritis, based on pain, BASDAI and ASDAS-CRP: an ASAS initiative.

    Science.gov (United States)

    Gossec, Laure; Portier, Agnès; Landewé, Robert; Etcheto, Adrien; Navarro-Compán, Victoria; Kroon, Féline; van der Heijde, Désirée; Dougados, Maxime

    2016-06-01

    Flares may be used as outcomes in axial spondyloarthritis (axSpA) trials or observational studies. The objective was to develop a definition for 'flare' (or worsening) in axSpA, based on validated composite indices, to be used in the context of clinical trial design. (1) Systematic literature review of definitions of 'flare' in published randomised controlled trials in axSpA. (2) Vignette exercise: 140 scenarios were constructed for a typical patient with axSpA seen at two consecutive visits. Each scenario included a change in one of the following outcomes: pain, Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), BASDAI plus C-reactive protein (CRP) or Ankylosing Spondylitis Disease Activity Score (ASDAS)-CRP. Each Assessment of Spondyloarthritis (ASAS) expert determined if every scenario from a random sample of 46 scenarios was considered a flare (yes/no). Receiver-operating characteristic (ROC) analyses were applied to derive optimal cut-off values. (3) ASAS consensus was reached. (1) The literature review yielded 38 studies using some definition of 'flare', with 27 different definitions indicating important heterogeneity. The most frequent definitions were based on BASDAI changes or pain changes. (2) 121 ASAS experts completed 4999 flare assessments. The areas under the ROC curves were high (range: 0.88-0.89). Preliminary cut-offs for pain (N=3), BASDAI (N=5) and ASDAS-CRP (N=4) were chosen, with a range of sensitivity 0.60-0.99 and range of specificity 0.40-0.94 against the expert's opinions. This data-driven ASAS consensus process has led to 12 preliminary draft definitions of 'flare' in axSpA, based on widely used indices. These preliminary definitions will need validation in real patient data. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway

    Directory of Open Access Journals (Sweden)

    Roberts-Thomson Sarah J

    2006-07-01

    Full Text Available Abstract Background The vanilloid receptor 1 (TRPV1 is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pain. However, few functional receptor interactions that inhibit PKA-mediated potentiation of TRPV1 responses have been described. Results In the present studies we investigated the hypothesis that the μ opioid receptor (MOP agonist morphine can modulate forskolin-potentiated capsaicin responses through a cAMP-dependent PKA pathway. HEK293 cells were stably transfected with TRPV1 and MOP, and calcium (Ca2+ responses to injection of the TRPV1 agonist capsaicin were monitored in Fluo-3-loaded cells. Pre-treatment with morphine did not inhibit unpotentiated capsaicin-induced Ca2+ responses but significantly altered capsaicin responses potentiated by forskolin. TRPV1-mediated Ca2+ responses potentiated by the direct PKA activator 8-Br-cAMP and the PKC activator Phorbol-12-myristate-13-acetatewere not modulated by morphine. Immunohistochemical studies confirmed that the TRPV1 and MOP are co-expressed on cultured Dorsal Root Ganglion neurones, pointing towards the existence of a functional relationship between the G-protein coupled MOP and nociceptive TRPV1. Conclusion The results presented here indicate that the opioid receptor agonist morphine acts via inhibition of adenylate cyclase to inhibit PKA-potentiated TRPV1 responses. Targeting of peripheral opioid receptors may therefore have therapeutic potential as an intervention to prevent potentiation of TRPV1 responses through the PKA pathway in inflammation.

  9. Pain Flare Is a Common Adverse Event in Steroid-Naïve Patients After Spine Stereotactic Body Radiation Therapy: A Prospective Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Andrew [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, ON (Canada); Zeng, Liang; Zhang, Liying; Lochray, Fiona; Korol, Renee; Loblaw, Andrew; Chow, Edward [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, ON (Canada)

    2013-07-15

    Purpose: To determine the incidence of pain flare after spine stereotactic body radiation therapy (SBRT) in steroid-naïve patients and identify predictive factors. Methods and Materials: Forty-one patients were treated with spine SBRT between February 2010 and April 2012. All patients had their pain assessed at baseline, during, and for 10 days after SBRT using the Brief Pain Inventory. All pain medications were recorded daily and narcotics converted to an oral morphine equivalent dose. Pain flare was defined as a 2-point increase in worst pain score as compared with baseline with no decrease in analgesic intake, a 25% increase in analgesic intake as compared with baseline with no decrease in worst pain score, or if corticosteroids were initiated at any point during or after SBRT because of pain. Results: The median age and Karnofsky performance status were 57.5 years (range, 27-80 years) and 80 (range, 50-100), respectively. Eighteen patients were treated with 20-24 Gy in a single fraction, whereas 23 patients were treated with 24-35 Gy in 2-5 fractions. Pain flare was observed in 68.3% of patients (28 of 41), most commonly on day 1 after SBRT (29%, 8 of 28). Multivariate analysis identified a higher Karnofsky performance status (P=.02) and cervical (P=.049) or lumbar (P=.02) locations as significant predictors of pain flare. In those rescued with dexamethasone, a significant decrease in pain scores over time was subsequently observed (P<.0001). Conclusions: Pain flare is a common adverse event after spine SBRT and occurs most commonly the day after treatment completion. Patients should be appropriately consented for this adverse event.

  10. Pain trajectory and exercise-induced pain flares during 8 weeks of neuromuscular exercise in individuals with knee and hip pain

    DEFF Research Database (Denmark)

    Sandal, L F; Roos, E M; Bøgesvang, S J

    2016-01-01

    OBJECTIVE: Patients considering or engaged in exercise as treatment may expect or experience transient increases in joint pain, causing fear of exercise and influencing compliance. This study investigated the pain trajectory during an 8-week neuromuscular exercise (NEMEX) program together...

  11. Pain, wheal and flare in human forearm skin induced by bradykinin and 5-hydroxytryptamine

    DEFF Research Database (Denmark)

    Jensen, Kai; Tuxen, C; Pedersen-Bjergaard, U

    1990-01-01

    Pain was induced in 19 healthy individuals by double-blind injections into the forearm skin of 0.05 ml of physiological saline with or without active substances added. Bradykinin (0.5 nmol), 5-hydroxytryptamine (0.5 nmol) and a mixture of the two substances in half dosage (0.25 nmol + 0.25 nmol) ...

  12. Efficacy and safety profile of combination of tramadol-diclofenac versus tramadol-paracetamol in patients with acute musculoskeletal conditions, postoperative pain, and acute flare of osteoarthritis and rheumatoid arthritis: a Phase III, 5-day open-label study

    Science.gov (United States)

    Chandanwale, Ajay S; Sundar, Subramanian; Latchoumibady, Kaliaperumal; Biswas, Swati; Gabhane, Mukesh; Naik, Manoj; Patel, Kamlesh

    2014-01-01

    Objective We aimed to evaluate the safety and efficacy of a fixed-dose combination (FDC) of tramadol and diclofenac versus a standard approved FDC of tramadol and paracetamol, in patients with acute moderate to severe pain. Methods A total of 204 patients with moderate to severe pain due to acute musculoskeletal conditions (n=52), acute flare of osteoarthritis (n=52), acute flare of rheumatoid arthritis (n=50), or postoperative pain (n=50) were enrolled in the study at baseline. Each disease category was then randomized to receive either of two treatments for 5 days: group A received an FDC of immediate-release tramadol hydrochloride (50 mg) and sustained-release diclofenac sodium (75 mg) (one tablet, twice daily), and group B received an FDC of tramadol hydrochloride (37.5 mg) and paracetamol (325 mg) (two tablets every 4–6 hours, up to a maximum of eight tablets daily). The primary efficacy end points were reductions in pain intensity from baseline at day 3 and day 5 as assessed by a Visual Analog Scale (VAS) score. Results Group A showed a significant reduction in the VAS score for overall pain from baseline on day 3 (P=0.001) and day 5 (P<0.0001) as compared with group B. The combination of tramadol-diclofenac resulted in few mild to moderate adverse events (nausea, vomiting, epigastric pain, and gastritis), which required minimal management, without any treatment discontinuation. The number of adverse events in group A was nine (8.82%) compared with 22 (21.78%) in group B, after 5 days of treatment. Conclusion An FDC of tramadol-diclofenac showed a significantly greater reduction in pain intensity and was well tolerated compared with tramadol-paracetamol, resulting in better analgesia in patients suffering from moderate to severe pain due to acute musculoskeletal conditions, postoperative pain following orthopedic surgery, or acute flare of osteoarthritis and rheumatoid arthritis. PMID:25152629

  13. Nasal flaring

    Science.gov (United States)

    ... be caused by any of the following: Asthma flare-up Blocked airway (any cause) Swelling and mucus ... Tests that may be done include: Arterial blood gas analysis Complete blood count (CBC) ECG to check ...

  14. Flare Observations

    Directory of Open Access Journals (Sweden)

    Benz Arnold O.

    2008-02-01

    Full Text Available Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays at 100 MeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, and SOHO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections (CMEs, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting reconnection of magnetic field lines as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth’s lower ionosphere. While flare scenarios have slowly converged over the past decades, every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  15. Pancreatic stellate cells contribute pancreatic cancer pain via activation of sHH signaling pathway.

    Science.gov (United States)

    Han, Liang; Ma, Jiguang; Duan, Wanxing; Zhang, Lun; Yu, Shuo; Xu, Qinhong; Lei, Jianjun; Li, Xuqi; Wang, Zheng; Wu, Zheng; Huang, Jason H; Wu, Erxi; Ma, Qingyong; Ma, Zhenhua

    2016-04-05

    Abdominal pain is a critical clinical symptom in pancreatic cancer (PC) that affects the quality of life for PC patients. However, the pathogenesis of PC pain is largely unknown. In this study, we show that PC pain is initiated by the sonic hedgehog (sHH) signaling pathway in pancreatic stellate cells (PSCs), which is activated by sHH secreted from PC cells, and then, neurotrophic factors derived from PSCs mediate the pain. The different culture systems were established in vitro, and the expression of sHH pathway molecules, neurotrophic factors, TRPV1, and pain factors were examined. Capsaicin-evoked TRPV1 currents in dorsal root ganglion (DRG) neurons were examined by the patch-clamp technique. Pain-related behavior was observed in an orthotopic tumor model. sHH and PSCs increased the expression and secretion of TRPV1, SP, and CGRP by inducing NGF and BDNF in a co-culture system, also increasing TRPV1 current. But, suppressing sHH pathway or NGF reduced the expression of TRPV1, SP, and CGRP. In vivo, PSCs and PC cells that expressed high levels of sHH could enhance pain behavior. Furthermore, the blockade of NGF or TRPV1 significantly attenuated the pain response to mechanical stimulation compared with the control. Our results demonstrate that sHH signaling pathway is involved in PC pain, and PSCs play an essential role in the process greatly by inducing NGF.

  16. NGX-4010, a high-concentration capsaicin dermal patch for lasting relief of peripheral neuropathic pain.

    Science.gov (United States)

    Noto, Christopher; Pappagallo, Marco; Szallasi, Arpad

    2009-07-01

    NeurogesX Inc is developing NGX-4010, a rapid-delivery dermal patch application system that contains high-concentration trans-capsaicin, for the treatment of peripheral neuropathic pain. Capsaicin evokes a lasting and reversible refractory state in primary sensory neurons involved in the generation and maintenance of neuropathic pain. NGX-4010 can be applied to the painful skin area up to a total surface area of 1120 cm2. In phase I clinical trials, NGX-4010 increased the threshold for warmth detection, reduced epidermal sensory nerve fiber density and was well tolerated. In phase II trials, NGX-4010 was effective in reducing pain in patients with post-herpetic neuralgia (PHN), HIV-associated distal sensory neuropathy (HIV-DSP) and painful diabetic neuropathy (PDN). Data from phase III trials in patients with PHN demonstrated that significantly more pain relief was achieved by NGX-4010 (30 to 32% reduction from baseline) compared with a low-concentration capsaicin active control (20 to 24% reduction); however, only one of two studies involving patients with HIV-DSP met the primary endpoint. NGX-4010 appears to have the potential to be an effective adjunctive or a stand-alone therapy for PHN, as well as potentially for HIV-DSP and PDN. NGX-4010 has been granted approval by the European Commission and an NDA has been accepted for filing by the FDA.

  17. TRPV1 sensitization mediates postinflammatory visceral pain following acute colitis.

    Science.gov (United States)

    Lapointe, Tamia K; Basso, Lilian; Iftinca, Mircea C; Flynn, Robyn; Chapman, Kevin; Dietrich, Gilles; Vergnolle, Nathalie; Altier, Christophe

    2015-07-15

    Quiescent phases of inflammatory bowel disease (IBD) are often accompanied by chronic abdominal pain. Although the transient receptor potential vanilloid 1 (TRPV1) ion channel has been postulated as an important mediator of visceral hypersensitivity, its functional role in postinflammatory pain remains elusive. This study aimed at establishing the role of TRPV1 in the peripheral sensitization underlying chronic visceral pain in the context of colitis. Wild-type and TRPV1-deficient mice were separated into three groups (control, acute colitis, and recovery), and experimental colitis was induced by oral administration of dextran sulfate sodium (DSS). Recovery mice showed increased chemically and mechanically evoked visceral hypersensitivity 5 wk post-DSS discontinuation, at which point inflammation had completely resolved. Significant changes in nonevoked pain-related behaviors could also be observed in these animals, indicative of persistent discomfort. These behavioral changes correlated with elevated colonic levels of substance P (SP) and TRPV1 in recovery mice, thus leading to the hypothesis that SP could sensitize TRPV1 function. In vitro experiments revealed that prolonged exposure to SP could indeed sensitize capsaicin-evoked currents in both cultured neurons and TRPV1-transfected human embryonic kidney (HEK) cells, a mechanism that involved TRPV1 ubiquitination and subsequent accumulation at the plasma membrane. Importantly, although TRPV1-deficient animals experienced similar disease severity and pain as wild-type mice in the acute phase of colitis, TRPV1 deletion prevented the development of postinflammatory visceral hypersensitivity and pain-associated behaviors. Collectively, our results suggest that chronic exposure of colon-innervating primary afferents to SP could sensitize TRPV1 and thus participate in the establishment of persistent abdominal pain following acute inflammation. Copyright © 2015 the American Physiological Society.

  18. Predictability of Solar Flares

    Science.gov (United States)

    Mares, Peter; Balasubramaniam, K. S.

    2009-05-01

    Solar flares are significant drivers of space weather. With the availability of high cadence solar chromospheric and photospheric data from the USAF's Optical Solar PAtrol Network (OSPAN; photosphere and chromosphere imaging) Telescope and the Global Oscillations Network Group (GONG; photosphere magnetic imaging), at the National Solar Observatory, we have gained insights into potential uses of the data for solar flare prediction. We apply the Principal Component Analysis (PCA) to parameterize the flaring system and extract consistent observables at solar chromospheric and photospheric layers that indicate a viable recognition of flaring activity. Rather than limiting ourselves to a few known indicators of solar activity, PCA helps us to characterize the entire system using several tens of variables for each observed layer. The components of the Eigen vectors derived from PCA help us recognize and quantify innate characteristics of solar flares and compare them. We will present an analysis of these results to explore the viability of PCA to assist in predicting solar flares.

  19. Solar Flares: Magnetohydrodynamic Processes

    Directory of Open Access Journals (Sweden)

    Kazunari Shibata

    2011-12-01

    Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  20. Solar flares. [plasma physics

    Science.gov (United States)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  1. Breakthrough pain characteristics and syndromes in patients with cancer pain. An international survey.

    NARCIS (Netherlands)

    Caraceni, A.; Martini, C.; Zecca, E.; Portenoy, R.K.; Ashby, M.A.; Hawson, G.; Jackson, K.A.; Lickiss, N.; Muirden, N.; Pisasale, M.; Moulin, D.; Schulz, V.N.; Rico Pazo, M.A.; Serrano, J.A.; Andersen, H.S.; Henriksen, H.T.; Mejholm, I.; Sjogren, P.M.; Heiskanen, T.; Kalso, E.; Pere, P.; Poyhia, R.; Vuorinen, E.; Tigerstedt, I.; Ruismaki, P.; Bertolino, M.; Larue, F.; Ranchere, J.Y.; Hege-Scheuing, G.; Bowdler, I.; Helbing, F.; Kostner, E.; Radbruch, L.; Kastrinaki, K.; Shah, S.; Vijayaram, S.; Sharma, K.S.; Devi, P.S.; Jain, P.N.; Ramamani, P.V.; Beny, A.; Brunelli, C.; Maltoni, M.; Mercadante, S.; Plancarte, R.; Schug, S.; Engstrand, P.; Ovalle, A.F.; Wang, X.; Alves, M.F.; Abrunhosa, M.R.; Sun, W.Z.; Zhang, L.; Gazizov, A.; Vaisman, M.; Rudoy, S.; Sancho, M.G.; Vila, P.; Trelis, J.; Chaudakshetrin, P.; Koh, M.L.; Dongen, R.T.M. van; Vielvoye-Kerkmeer, A.; Boswell, M.V.; Elliott, T.; Hargus, E.; Lutz, L.

    2004-01-01

    Breakthrough pain (BKP) is a transitory flare of pain that occurs on a background of relatively well controlled baseline pain. Previous surveys have found that BKP is highly prevalent among patients with cancer pain and predicts more severe pain, pain-related distress and functional impairment, and

  2. Dragon's blood inhibits chronic inflammatory and neuropathic pain responses by blocking the synthesis and release of substance P in rats.

    Science.gov (United States)

    Li, Yu-Sang; Wang, Jun-Xian; Jia, Mei-Mei; Liu, Min; Li, Xiao-Jun; Tang, He-Bin

    2012-01-01

    As a traditional Chinese medicine, dragon's blood (DB) is widely used in treating various pains for thousands of years due to its potent anti-inflammatory and analgesic effects. In the present study, we observed that intragastric administration of DB at dosages of 0.14, 0.56, and 1.12 g/kg potently inhibited paw edema, hyperalgesia, cyclooxygenase-2 (COX-2) protein expression, or preprotachykinin-A mRNA expression in carrageenan-inflamed or sciatic nerve-injured (chronic constriction injury) rats, respectively. A short-term (15 s or 10 min) pre-exposure of cultured rat dorsal root ganglion (DRG) neurons to DB (0.3, 3, and 30 µg/ml) or its component cochinchinenin B (CB; 0.1, 1, and 10 µM) blocked capsaicin-evoked increases in both the intracellular calcium ion concentration and the substance P release. Moreover, a long-term (180 min) exposure of cultured rat DRG neurons to DB or CB significantly attenuated bradykinin-induced substance P release. These findings indicate that DB exerts anti-inflammatory and analgesic effects by blocking the synthesis and release of substance P through inhibition of COX-2 protein induction and intracellular calcium ion concentration. Therefore, DB may serve as a promising potent therapeutic agent for treatment of chronic pain, and its effective component CB might partly contribute to anti-inflammatory and analgesic effects.

  3. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  4. What Causes Lupus Flares?

    Science.gov (United States)

    Fernandez, David; Kirou, Kyriakos A

    2016-03-01

    Systemic lupus erythematosus (SLE), the prototypic systemic autoimmune disease, follows a chronic disease course, punctuated by flares. Disease flares often occur without apparent cause, perhaps from progressive inherent buildup of autoimmunity. However, there is evidence that certain environmental factors may trigger the disease. These include exposure to UV light, infections, certain hormones, and drugs which may activate the innate and adaptive immune system, resulting in inflammation, cytotoxic effects, and clinical symptoms. Uncontrolled disease flares, as well as their treatment, especially with glucocorticoids, can cause significant organ damage. Tight surveillance and timely control of lupus flares with judicial use of effective treatments to adequately suppress the excessive immune system activation are required to bring about long term remission of the disease. We hope that new clinical trials will soon offer additional effective and target-specific biologic treatments for SLE.

  5. Identifying flares in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Bykerk, Vivian P; Bingham, Clifton O; Choy, Ernest H

    2016-01-01

    Set. METHODS: Candidate flare questions and legacy measures were administered at consecutive visits to Canadian Early Arthritis Cohort (CATCH) patients between November 2011 and November 2014. The American College of Rheumatology (ACR) core set indicators were recorded. Concordance to identify flares...... to flare, with escalation planned in 61%. CONCLUSIONS: Flares are common in rheumatoid arthritis (RA) and are often preceded by treatment reductions. Patient/MD/DAS agreement of flare status is highest in patients worsening from R/LDA. OMERACT RA flare questions can discriminate between patients with...

  6. Safe and efficient flare gas recovery; Safety flaring

    Energy Technology Data Exchange (ETDEWEB)

    Gross-Petersen, Joergen; Wills, Martin; Johnston, Ian

    2010-07-01

    Flaring of gas in connection with the production of hydrocarbons represents both an undesirable emission to the atmosphere and a loss of valuable resource. As part of the efforts further to reduce flaring Maersk Oil consider installation of Flare Gas Recovery (FGR) where appropriate, significant efforts have therefor been made by Maersk Oil as operator for Danish Underground Consortium (DUC) to reduce the flaring from the facilities operated in the Danish North Sea. (Author)

  7. Flaring variability of Microquasars

    CERN Document Server

    Trushkin, Sergei A; Nizhelskij, Nikolaj A

    2008-01-01

    We discuss flaring variability of radio emission of microquasars, measured in monitoring programs with the RATAN-600 radio telescope. We carried out a multi-frequency (1-30 GHz) daily monitoring of the radio flux variability of the microquasars SS433, GRS1915+105, and Cyg X-3 during the recent sets in 2005-2007. A lot of bright short-time flares were detected from GRS 1915+105 and they could be associated with active X-ray events. In January 2006 we detected a drop down of the quiescent fluxes from Cyg X-3 (from 100 to $\\sim$20 mJy), then the 1 Jy-flare was detected on 2 February 2006 after 18 days of quenched radio emission. The daily spectra of the flare in the maximum were flat from 2 to 110 GHz, using the quasi-simultaneous observations at 110 GHz with the RT45m telescope and the NMA millimeter array of NRO in Japan. Several bright radio flaring events (1-15 Jy) followed during the continuing state of very variable and intensive 1-12 keV X-ray emission ($\\sim$0.5 Crab), which was monitored in the RXTE ASM...

  8. Flare Plasma Iron Abundance

    Science.gov (United States)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  9. Precursor flares in OJ 287

    OpenAIRE

    Pihajoki, P.; Valtonen, M.; Zola, S.; Liakos, A.; Drozdz, M.; Winiarski, M.; Ogloza, W.; Koziel-Wierzbowska, D.; Provencal, J.; Nilsson, K.; Berdyugin, A.; Lindfors, E.; Reinthal, R.; Sillanpää, A.; Takalo, L.

    2012-01-01

    We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black...

  10. Flare Heating in Stellar Coronae

    CERN Document Server

    Kashyap, V L; Güdel, M; Audard, M; Kashyap, Vinay; Drake, Jeremy; Guedel, Manuel; Audard, Marc

    2002-01-01

    We investigate the contribution of very weak flares to the coronal luminosity of low-mass active stars. We analyze EUVE/DS events data from FK Aqr, V1054 Oph, and AD Leo and conclude that in all these cases the coronal emission is dominated by flares to such an extent that in some cases the entire emission may be ascribed to flare heating. We have developed a new method to directly model for the first time stochastically produced flare emission, including undetectable flares, and their effects on the observed photon arrival times. We find that the index of the power-law distribution of flare energies (dN/dE ~ E^{-alpha}) is 2.6+-0.34, 2.74+-0.35, and 2.03-2.32 for FK Aqr, V1054 Oph, and AD Leo respectively. We also find that the flare component accounts for a large fraction (generally >50 percent) of the total flux.

  11. Gamma-ray Burst Flares: X-ray Flaring. II

    CERN Document Server

    Swenson, C A

    2013-01-01

    We present a catalog of 497 flaring periods found in gamma-ray burst (GRB) light curves taken from the online XRT GRB Catalogue. We analyzed 680 individual light curves using a flare detection method developed and used on our UV/optical GRB Flare Catalog. The method makes use of the Bayesian Information Criterion to analyze the residuals of fitted GRB light curves and statistically determines the optimal fit to the light curve residuals in attempt to identify any additional features. These features, which we classify as flares, are identified by iteratively adding additional `breaks' to the light curve. We find evidence of flaring in 310 of the analyzed light curves. For those light curves with flares, we find an average number of ~1.5 flares per GRB. As with the UV/optical, flaring in our sample is generally confined to the first 1000 s of the afterglow, but can be detected to beyond 10^5 s. Only ~50% of the detected flares follow the `classical' definition of \\Delta t/t << 1, with many of the largest ...

  12. PRECURSOR FLARES IN OJ 287

    Energy Technology Data Exchange (ETDEWEB)

    Pihajoki, P.; Berdyugin, A.; Lindfors, E.; Reinthal, R.; Sillanpaeae, A.; Takalo, L. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-21500 Piikkioe (Finland); Valtonen, M.; Nilsson, K. [Finnish Centre for Astronomy with ESO, University of Turku, FI-21500 Piikkioe (Finland); Zola, S.; Koziel-Wierzbowska, D. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, PL-30-244 Krakow (Poland); Liakos, A. [Department of Astrophysics, Astronomy and Mechanics, University of Athens, GR 157 84 Zografos, Athens, Hellas (Greece); Drozdz, M.; Winiarski, M.; Ogloza, W. [Mount Suhora Observatory, Pedagogical University, ul. Podchorazych 2, PL-30-084 Krakow (Poland); Provencal, J. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Santangelo, M. M. M. [O.A.C. Osservatorio Astronomico di Capannori, Via di Valle, I-55060 Vorno, Capannori (Italy); Salo, H. [Department of Physical Sciences, University of Oulu, P.O. Box 3000, FI-90014 University of Oulu (Finland); Chandra, S.; Ganesh, S.; Baliyan, K. S., E-mail: popiha@utu.fi [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India); and others

    2013-02-10

    We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending toward the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z{sub c} = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.

  13. The flares of August 1972. [solar flare characteristics and spectra

    Science.gov (United States)

    Zirin, H.; Tanaka, K.

    1973-01-01

    Observations of the August, 1972 flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms, and spectra, are analyzed. The region (McMath 11976) showed inverted polarity from its inception on July 11; the great activity was due to extremely high shear and gradients in the magnetic field, as well as a constant invasion of one polarity into the opposite; observations in lambda 3835 show remarkable fast flashes in the impulsive flare of 18:38 UT on Aug. 2 with lifetimes of 5 sec, which may be due to dumping of particles in the lower chromosphere. Flare loops show evolutionary increases of their tilts to the neutral line in the flares of Aug. 4 and 7. Spectroscopic observations show red asymmetry and red shift of the H alpha emission in the flash phase of the Aug. 7 flare, as well as substantial velocity shear in the photosphere during the flare, somewhat like earthquake movement along a fault. Finally the total H alpha emission of the Aug. 7 flare could be measured accurately as about 2.5 x 10 to the 30th power erg, considerably less than coarser previous estimates for great flares.

  14. GRB Flares: UV/Optical Flaring (Paper I)

    CERN Document Server

    Swenson, C A; De Pasquale, M; Oates, S R

    2013-01-01

    We present a new algorithm for the detection of flares in gamma-ray burst (GRB) light curves and use this algorithm to detect flares in the UV/optical. The algorithm makes use of the Bayesian Information Criterion (BIC) to analyze the residuals of the fitted light curve, removing all major features, and to determine the statistically best fit to the data by iteratively adding additional `breaks' to the light curve. These additional breaks represent the individual components of the detected flares: T_start, T_stop, and T_peak. We present the detection of 119 unique flaring periods detected by applying this algorithm to light curves taken from the Second Swift Ultraviolet/Optical Telescope (UVOT) GRB Afterglow Catalog. We analyzed 201 UVOT GRB light curves and found episodes of flaring in 68 of the light curves. For those light curves with flares, we find an average number of ~2 flares per GRB. Flaring is generally restricted to the first 1000 seconds of the afterglow, but can be observed and detected beyond 10...

  15. Transient cold pain has no effect on cutaneous vasodilatation induced by capsaicin: a randomized-control-crossover study in healthy subjects.

    Science.gov (United States)

    Pud, Dorit; Andersen, Ole Kaeseler; Arendt-Nielsen, Lars; Yarnitsky, David

    2006-05-01

    Cooling the skin induces sympathetically driven vasoconstriction, along with some vasoparalytic dilatation at lowermost temperatures. Neurogenic inflammation, on the other hand, entails vasodilatation. In the present study, we examined the dynamic vasomotor balance of capsaicin-induced vasodilatation within the area of the induced neurogenic inflammation, with and without superimposed cooling. In a randomized-control-crossover fashion, a sample of 14 healthy volunteers participated in three experiments: (1) exposure to each 0 degrees C cold pain stimulus and a neutral 30 degrees C stimulus (control) for 30 s to the volar forearms by contact thermal thermode (1.6x1.6 cm(2)), (2) injection of 50 microg intradermal capsaicin without cooling and (3) injection of capsaicin followed by application of 0 degrees C cold pain stimulation for 30 s within the area of the secondary hyperalgesia. Repetitive vascular measurements over skin area of 4.0x4.0 cm(2) of blood flux (BF) were acquired before and during the 5 min after stimulation. A marked increase in BF (i.e. vasodilatation) at the location of the cold stimulus in comparison to control (30 degrees C) (F=11.97, p=0.004) within the first 3 min was demonstrated. Two-way repeated-measures ANOVA indicated no interaction between the experimental conditions (capsaicin with or without cold) and time (F=0.934, p=0.454). The cold pain stimulation was found to be insignificant in its influence on BF evoked by capsaicin (F=0.018, p=0.894). The results of our study indicate that (1) transient cooling causes significant vasodilatation, (2) intradermal injection of capsaicin is dominant in inducing vasodilatation, and (3) the cold-pain-evoked vasodilatation has no modulative effect on the capsaicin-evoked cutaneous vasodilatation.

  16. The COMPTEL solar flare catalog

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.; Varendorff, M.; McConnell, M.; Forrest, D.; Schoenfelder, V.; Lichti, G.; Diehl, R.; Rank, G.; Bennett, K.; Hanlon, L.; Winkler, W.; Swanenburg, B.; Bloemen, H. Hermsen, W.

    1993-01-01

    COMPTEL, the Imaging Compton Telescope on the Compton Gamma Ray Observatory, has registered many solar gamma ray flares during its two years on orbit. It detects and measures gamma rays from flares by two methods: (1) utilizing two independent large NaI gamma ray spectrometers operating from 0.2 to 2 MeV and 0.6 to 10 MeV and (2) using the telescope and imaging capabilities to acquire spectra from 0.75 to 30 MeV. Solar neutrons can also be measured in the telescope mode. The authors report here the solar gamma ray flare list compiled from COMPTEL data in the two modes of operation. They also describe the methods of searching for flares in the COMPTEL data and the qualitative nature of the flares detected.

  17. The Natural History of Flare-Ups in Fibrodysplasia Ossificans Progressiva (FOP): A Comprehensive Global Assessment.

    Science.gov (United States)

    Pignolo, Robert J; Bedford-Gay, Christopher; Liljesthröm, Moira; Durbin-Johnson, Blythe P; Shore, Eileen M; Rocke, David M; Kaplan, Frederick S

    2016-03-01

    Fibrodysplasia ossificans progressiva (FOP) leads to disabling heterotopic ossification (HO) from episodic flare-ups. However, the natural history of FOP flare-ups is poorly understood. A 78-question survey on FOP flare-ups, translated into 15 languages, was sent to 685 classically-affected patients in 45 countries (six continents). Five hundred patients or knowledgeable informants responded (73%; 44% males, 56% females; ages: 1 to 71 years; median: 23 years). The most common presenting symptoms of flare-ups were swelling (93%), pain (86%), or decreased mobility (79%). Seventy-one percent experienced a flare-up within the preceding 12 months (52% spontaneous; 48% trauma-related). Twenty-five percent of those who had received an intramuscular injection reported an immediate flare-up at the injection site, 84% of whom developed HO. Axial flare-ups most frequently involved the back (41.6%), neck (26.4%), or jaw (19.4%). Flare-ups occurred more frequently in the upper limbs before 8 years of age, but more frequently in the lower limbs thereafter. Appendicular flare-ups occurred more frequently at proximal than at distal sites without preferential sidedness. Seventy percent of patients reported functional loss from a flare-up. Thirty-two percent reported complete resolution of at least one flare-up and 12% without any functional loss (mostly in the head or back). The most disabling flare-ups occurred at the shoulders or hips. Surprisingly, 47% reported progression of FOP without obvious flare-ups. Worldwide, 198 treatments were reported; anti-inflammatory agents were most common. Seventy-five percent used short-term glucocorticoids as a treatment for flare-ups at appendicular sites. Fifty-five percent reported that glucocorticoids improved symptoms occasionally whereas 31% reported that they always did. Only 12% reported complete resolution of a flare-up with glucocorticoids. Forty-three percent reported rebound symptoms within 1 to 7 days after completing a course of

  18. Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice.

    Science.gov (United States)

    Millecamps, Magali; Tajerian, Maral; Naso, Lina; Sage, E Helene; Stone, Laura S

    2012-06-01

    Chronic low back pain (LBP) is a complex, multifactorial disorder with unclear underlying mechanisms. In humans and rodents, decreased expression of secreted protein acidic rich in cysteine (SPARC) is associated with intervertebral disc (IVD) degeneration and signs of LBP. The current study investigates the hypothesis that IVD degeneration is a risk factor for chronic LBP. SPARC-null and age-matched control mice ranging from 6 to 78 weeks of age were evaluated in this study. X-ray and histologic analysis revealed reduced IVD height, increased wedging, and signs of degeneration (bulging and herniation). Cutaneous sensitivity to cold, heat, and mechanical stimuli were used as measures of referred (low back and tail) and radiating pain (hind paw). Region specificity was assessed by measuring icilin- and capsaicin-evoked behaviour after subcutaneous injection into the hind paw or upper lip. Axial discomfort was measured by the tail suspension and grip force assays. Motor impairment was determined by the accelerating rotarod. Physical function was evaluated by voluntary activity after axial strain or during ambulation with forced lateral flexion. SPARC-null mice developed (1) region-specific, age-dependent hypersensitivity to cold, icilin, and capsaicin (hind paw only), (2) axial discomfort, (3) motor impairment, and (4) reduced physical function. Morphine (6 mg/kg, i.p.) reduced cutaneous sensitivity and alleviated axial discomfort in SPARC-null mice. Ageing SPARC-null mice mirror many aspects of the complex and challenging nature of LBP in humans and incorporate both anatomic and functional components of the disease. The current study supports the hypothesis that IVD degeneration is a risk factor for chronic LBP.

  19. Comparison between Major Confined and Eruptive Flares

    Science.gov (United States)

    Gopalswamy, N.; Yashiro, S.; Mäkelä, P.; Dennis, B. R.

    2012-05-01

    Statistical studies have shown that a large fraction of major solar flares (42% M-class and 15% X-class) are not associated with coronal mass ejections (CMEs). The CME-less flares are confined flares as opposed to the eruptive flares associated with CMEs. Confined flares are certainly good particle accelerators as inferred from intense microwave, hard X-ray, and gamma-ray emissions. Note that a single acceleration mechanism operates in confined flares, whereas eruptive flares can have both flare-resident and shock accelerations (the shock acceleration is due to energetic CMEs). In this paper, we report on a statistical study of more than two dozen confined flares with soft X-ray flare size exceeding M5 in comparison with a control sample of eruptive flares with similar soft X-ray flare size. We compare the microwave and X-ray emission characteristics in the two populations; these emissions correspond to sunward energy flow. For a given X-ray flare size, the microwave flux is scattered over a wider range for the eruptive flares when compared to the confined flares. We also compare the metric and longer wavelength radio bursts between the two populations; these emissions correspond to the flow of nonthermal electrons away from the Sun. We find that almost all the confined flares lack metric radio bursts, suggesting that there is very little flow of energy into the interplanetary medium. On the other hand, there is high degree of association between eruptive flares and metric radio bursts. This suggests that in confined flares the accelerated electrons have no access to open magnetic field lines. Finally, we examined the association of EUV waves with the two flare populations. While we find EUV waves in most of the eruptive flares, there was no confined flare with EUV waves. This suggests that CMEs is a necessary condition for the generation of global waves.

  20. Flare physics at high energies

    Science.gov (United States)

    Ramaty, R.

    1990-01-01

    High-energy processes, involving a rich variety of accelerated particle phenomena, lie at the core of the solar flare problem. The most direct manifestation of these processes are high-energy radiations, gamma rays, hard X-rays and neutrons, as well as the accelerated particles themselves, which can be detected in interplanetary space. In the study of astrophysics from the moon, the understanding of these processes should have great importance. The inner solar system environment is strongly influenced by activity on the sun; the physics of solar flares is of great intrinsic interest; and much high-energy astrophysics can be learned from investigations of flare physics at high energies.

  1. Use of simulation in flare countermeasure development

    CSIR Research Space (South Africa)

    Delport, JP

    2008-11-01

    Full Text Available ● Assume enough flare energy ● Questions addressed ● Timing ● Geometry ● Dispense logic ● Obscuration ● Physics based, spectrally correct ● Question addressed ● Flare spectrum ● Environmental influences © CSIR 2008 AOC Conference – 12 November... November 2008 Slide 12 Engagement Scenarios & Simulations ● Aircraft with flares versus missile ● Flight conditions ● Flare dispense logic ● Flare pod placement, angles ● Multitude of simulated launches ● Visualisation...

  2. Building Big Flares: Constraining Generating Processes of Solar Flare Distributions

    Science.gov (United States)

    Wyse Jackson, T.; Kashyap, V.; McKillop, S.

    2015-12-01

    We address mechanisms which seek to explain the observed solar flare distribution, dN/dE ~ E1.8. We have compiled a comprehensive database, from GOES, NOAA, XRT, and AIA data, of solar flares and their characteristics, covering the year 2013. These datasets allow us to probe how stored magnetic energy is released over the course of an active region's evolution. We fit power-laws to flare distributions over various attribute groupings. For instance, we compare flares that occur before and after an active region reaches its maximum area, and show that the corresponding flare distributions are indistinguishable; thus, the processes that lead to magnetic reconnection are similar in both cases. A turnover in the distribution is not detectable at the energies accessible to our study, suggesting that a self-organized critical (SOC) process is a valid mechanism. However, we find changes in the distributions that suggest that the simple picture of an SOC where flares draw energy from an inexhaustible reservoir of stored magnetic energy is incomplete. Following the evolution of the flare distribution over the lifetimes of active regions, we find that the distribution flattens with time, and for larger active regions, and that a single power-law model is insufficient. This implies that flares that occur later in the lifetime of the active region tend towards higher energies. We conclude that the SOC process must have an upper bound. Increasing the scope of the study to include data from other years and more instruments will increase the robustness of these results. This work was supported by the NSF-REU Solar Physics Program at SAO, grant number AGS 1263241, NASA Contract NAS8-03060 to the Chandra X-ray Center and by NASA Hinode/XRT contract NNM07AB07C to SAO

  3. Solar Features - Solar Flares - Patrol

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The H-alpha Flare Patrol identifies time periods each day when the sun is being continuously monitored by select ground-based solar observatories.

  4. Canakinumab: a guide to its use in acute gouty arthritis flares.

    Science.gov (United States)

    Lyseng-Williamson, Katherine A

    2013-08-01

    Canakinumab (Ilaris®), an anti-interleukin-1β monoclonal antibody, is a novel approach to treat acute gouty arthritis flares in a targeted population of patients in whom treatment options are limited. Relative to on-demand treatment with intramuscular triamcinolone acetonide 40 mg, on-demand treatment with subcutaneous canakinumab 150 mg significantly relieved the pain and inflammation of a new gout flare, and reduced the risk of new flares in patients with acute gouty arthritis flares in whom standard treatment with non-steroidal anti-inflammatories and/or colchicine was inappropriate. Canakinumab has an acceptable tolerability profile in this difficult-to-treat population. The increased risk of infections and neutropenia associated with canakinumab treatment can be minimized by following the recommended precautions.

  5. IMPULSIVITY PARAMETER FOR SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo-Mendieta, W. G.; Alvarado-Gómez, J. D.; Calvo-Mozo, B. [Observatorio Astronómico Nacional, Universidad Nacional de Colombia, Bogotá (Colombia); Martinez-Oliveros, J. C., E-mail: wgfajardom@unal.edu.co, E-mail: bcalvom@unal.edu.co, E-mail: oliveros@ssl.berkeley.edu, E-mail: jalvarad@eso.org [Space Sciences Laboratory, UC Berkeley, Berkeley, CA 94720 (United States)

    2016-02-10

    Three phases are typically observed during solar flares: the preflare, impulsive, and decay phases. During the impulsive phase, it is believed that the electrons and other particles are accelerated after the stored energy in the magnetic field is released by reconnection. The impulsivity of a solar flare is a quantifiable property that shows how quickly this initial energy release occurs. It is measured via the impulsivity parameter, which we define as the inverse of the overall duration of the impulsive phase. We take the latter as the raw width of the most prominent nonthermal emission of the flare. We computed this observable over a work sample of 48 M-class events that occurred during the current Solar Cycle 24 by using three different methods. The first method takes into account all of the nonthermal flare emission and gives very accurate results, while the other two just cover fixed energy intervals (30–40 keV and 25–50 keV) and are useful for fast calculations. We propose an alternative way to classify solar flares according to their impulsivity parameter values, defining three different types of impulsivity, namely, high, medium, and low. This system of classification is independent of the manner used to calculated the impulsivity parameter. Lastly, we show the relevance of this tool as a discriminator of different HXR generation processes.

  6. Global Properties of Solar Flares

    CERN Document Server

    Hudson, Hugh S

    2011-01-01

    This article broadly reviews our knowledge of solar flares. There is a particular focus on their global properties, as opposed to the microphysics such as that needed for magnetic reconnection or particle acceleration as such. Indeed solar flares will always remain in the domain of remote sensing, so we cannot observe the microscales directly and must understand the basic physics entirely via the global properties plus theoretical inference. The global observables include the general energetics -radiation in flares and mass loss in coronal mass ejections (CMEs) - and the formation of different kinds of ejection and global wave disturbance: the type II radio-burst exciter, the Moreton wave, the EIT "wave," and the "sunquake" acoustic waves in the solar interior. Flare radiation and CME kinetic energy can have comparable magnitudes, of order 10^32 erg each for an X-class event, with the bulk of the radiant energy in the visible-UV continuum. We argue that the impulsive phase of the flare dominates the energetic...

  7. Pre-flare coronal dimmings

    CERN Document Server

    Zhang, Q M; Ji, H S

    2016-01-01

    In this paper, we focus on the pre-flare coronal dimmings. We report our multiwavelength observations of the GOES X1.6 solar flare and the accompanying halo CME produced by the eruption of a sigmoidal magnetic flux rope (MFR) in NOAA active region (AR) 12158 on 2014 September 10. The eruption was observed by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamic Observatory (SDO). The photospheric line-of-sight magnetograms were observed by the Helioseismic and Magnetic Imager (HMI) aboard SDO. The soft X-ray (SXR) fluxes were recorded by the GOES spacecraft. The halo CME was observed by the white light coronagraphs of the Large Angle Spectroscopic Coronagraph (LASCO) aboard SOHO.} {About 96 minutes before the onset of flare/CME, narrow pre-flare coronal dimmings appeared at the two ends of the twisted MFR. They extended very slowly with their intensities decreasing with time, while their apparent widths (8$-$9 Mm) nearly kept constant. During the impulsive and decay phases of flare, typical fanlike ...

  8. What's an Asthma Flare-Up?

    Science.gov (United States)

    ... Your 1- to 2-Year-Old What's an Asthma Flare-Up? KidsHealth > For Parents > What's an Asthma ... of a straw that's being pinched. Causes of Asthma Flare-Ups People with asthma have airways that ...

  9. Cycle 23 Variation in Solar Flare Productivity

    CERN Document Server

    Hudson, Hugh; McTiernan, Jim

    2014-01-01

    The NOAA listings of solar flares in cycles 21-24, including the GOES soft X-ray magnitudes, enable a simple determination of the number of flares each flaring active region produces over its lifetime. We have studied this measure of flare productivity over the interval 1975-2012. The annual averages of flare productivity remained approximately constant during cycles 21 and 22, at about two reported M or X flares per region, but then increased significantly in the declining phase of cycle 23 (the years 2004-2005). We have confirmed this by using the independent RHESSI flare catalog to check the NOAA events listings where possible. We note that this measure of solar activity does not correlate with the solar cycle. The anomalous peak in flare productivity immediately preceded the long solar minimum between cycles 23 and 24.

  10. Astrophysics: Unexpected X-ray flares

    Science.gov (United States)

    Campana, Sergio

    2016-10-01

    Two sources of highly energetic flares have been discovered in archival X-ray data of 70 nearby galaxies. These flares have an undetermined origin and might represent previously unknown astrophysical phenomena. See Letter p.356

  11. Chasing White-Light Flares

    Science.gov (United States)

    Hudson, H. S.

    2016-05-01

    In this memoir I describe my life in research, mostly in the area of solar physics. The recurring theme is "white-light flares," and several sections of this paper deal with this and related phenomena; I wind up describing how I see the state of the art in this still-interesting and crucially important (as it has been since 1859) area of flare research. I also describe my participation in two long-lived satellite programs dedicated to solar observations ( Yohkoh and RHESSI) and elaborate on their discoveries. These have both helped with white-light flares both directly and also with closely related X-ray and γ-ray emissions), with the result that this article leans heavily in that direction.

  12. Turbulence, Complexity, and Solar Flares

    CERN Document Server

    McAteer, R T James; Conlon, Paul A

    2009-01-01

    The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.

  13. Acute low back pain is marked by variability: An internet-based pilot study

    Directory of Open Access Journals (Sweden)

    Katz Jeffrey N

    2011-10-01

    Full Text Available Abstract Background Pain variability in acute LBP has received limited study. The objectives of this pilot study were to characterize fluctuations in pain during acute LBP, to determine whether self-reported 'flares' of pain represent discrete periods of increased pain intensity, and to examine whether the frequency of flares was associated with back-related disability outcomes. Methods We conducted a cohort study of acute LBP patients utilizing frequent serial assessments and Internet-based data collection. Adults with acute LBP (lasting ≤3 months completed questionnaires at the time of seeking care, and at both 3-day and 1-week intervals, for 6 weeks. Back pain was measured using a numerical pain rating scale (NPRS, and disability was measured using the Oswestry Disability Index (ODI. A pain flare was defined as 'a period of increased pain lasting at least 2 hours, when your pain intensity is distinctly worse than it has been recently'. We used mixed-effects linear regression to model longitudinal changes in pain intensity, and multivariate linear regression to model associations between flare frequency and disability outcomes. Results 42 of 47 participants (89% reported pain flares, and the average number of discrete flare periods per patient was 3.5 over 6 weeks of follow-up. More than half of flares were less than 4 hours in duration, and about 75% of flares were less than one day in duration. A model with a quadratic trend for time best characterized improvements in pain. Pain decreased rapidly during the first 14 days after seeking care, and leveled off after about 28 days. Patients who reported a pain flare experienced an almost 3-point greater current NPRS than those not reporting a flare (mean difference [SD] 2.70 [0.11]; p ß [SE} 0.28 (0.08; p = 0.002. Conclusions Acute LBP is characterized by variability. Patients with acute LBP report multiple distinct flares of pain, which correspond to discrete increases in pain intensity. A

  14. FLARE FLAME INSTABILITY AND BURNER COMBUSTION CONTROL

    OpenAIRE

    БОНДАРЕНКО А.В.; В. Э. Волков; Максимов, М. В.

    2014-01-01

    Research of the flare instability development and the laminar-to-turbulent transition for the flares was executed. It was proved that the effects of viscosity and compressibility have the stabilizing influence on the gas flame. The study of the individual flare stability makes the theoretical basis of the fuel burning technology in combustion chambers and for the burner combustion control.

  15. On Flare Driven Global Waves

    OpenAIRE

    Karoff, C.

    2008-01-01

    We recently presented evidence of a strong correlation between the energy in the high-frequency part of the acoustic spectrum of the Sun and the solar X-ray flux Karoff & Kjeldsen (2008). The discovery indicates that flares drive global oscillations in the Sun in the same way that the entire Earth is set ringing for several weeks after a major earthquake, such as the 2004 December Sumatra-Andaman one. If this indication turns out to be true we might be able to use the relation between flares ...

  16. Instant CloudFlare starter

    CERN Document Server

    Dickey, Jeff

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. Written as a practical guide, CloudFlare Starter will show you all you need to know in order to effectively improve your online presence in a multitude of different ways. ""Instant CloudFlare Starter"" is a practical yet accessible guide for website owners looking to optimize their site for optimum security and maximum performance.

  17. Inhibition of calcineurin inhibits the desensitization of capsaicin evoked currents in cultured dorsal root ganglion neurones from adult rats

    NARCIS (Netherlands)

    Docherty, RJ; Yeats, JC; Bevan, S; Boddeke, HWGM

    1996-01-01

    Capsaicin activates a non-specific cation conductance in mammalian sensory neurones. If capsaicin is applied continuously or repeatedly then there is a progressive decline in responsiveness. We have studied the mechanism of this desensitization using electrophysiological methods in cultured dorsal r

  18. Inhibition of calcineurin inhibits the desensitization of capsaicin evoked currents in cultured dorsal root ganglion neurones from adult rats

    NARCIS (Netherlands)

    Docherty, RJ; Yeats, JC; Bevan, S; Boddeke, HWGM

    Capsaicin activates a non-specific cation conductance in mammalian sensory neurones. If capsaicin is applied continuously or repeatedly then there is a progressive decline in responsiveness. We have studied the mechanism of this desensitization using electrophysiological methods in cultured dorsal

  19. Reconnection in Solar Flares: Outstanding Questions

    Indian Academy of Sciences (India)

    Hiroaki Isobe; Kazunari Shibata

    2009-06-01

    Space observations of solar flares such as those from Yohkoh, SOHO,TRACE, and RHESSI have revealed a lot of observational evidence of magnetic reconnection in solar flares: cusp-shaped arcades, reconnection inflows, plasmoids, etc. Thus it has been established, at least phenomenologically, that magnetic reconnection does occur in solar flares. However, a number of fundamental questions and puzzles still remain in the physics of reconnection in solar flares. In this paper, we discuss the recent progresses and future prospects in the study of magnetic reconnection in solar flares from both theoretical and observational points of view.

  20. Impulsivity Parameter for Solar Flares

    CERN Document Server

    Fajardo-Mendieta, W G; Alvarado-Gómez, J D; Calvo-Mozo, B

    2016-01-01

    Three phases are typically observed during solar flares: the preflare, impulsive, and decay phases. During the impulsive phase, it is believed that the electrons and other particles are accelerated after the stored energy in the magnetic field is released by reconnection. The impulsivity of a solar flare is a quantifiable property that shows how quickly this initial energy release occurs. It is measured via the impulsivity parameter, which we define as the inverse of the overall duration of the impulsive phase. We take the latter as the raw width of the most prominent nonthermal emission of the flare. We computed this observable over a work sample of 48 M-class events that occurred during the current Solar Cycle 24 by using three different methods. The first method takes into account all of the nonthermal flare emission and gives very accurate results, while the other two just cover fixed energy intervals (30-40 keV and 25-50 keV) and are useful for fast calculations. We propose an alternative way to classify...

  1. Flare emission from Sagittarius A*

    CERN Document Server

    Eckart, A; Vogel, S N; Teuben, P; Morris, M R; Baganoff, F; Dexter, J; Schoedel, R; Witzel, G; Valencia-S., M; Karas, V; Kunneriath, D; Bremer, M; Straubmeier, C; Moser, L; Sabha, N; Buchholz, R; Zamaninasab, M; Muzic, K; Moultaka, J; Zensus, J A

    2012-01-01

    Based on Bremer et al. (2011) and Eckart et al. (2012) we report on simultaneous observations and modeling of the millimeter, near-infrared, and X-ray flare emission of the source Sagittarius A* (SgrA*) associated with the super-massive black hole at the Galactic Center. We study physical processes giving rise to the variable emission of SgrA* from the radio to the X-ray domain. To explain the statistics of the observed variability of the (sub-)mm spectrum of SgrA*, we use a sample of simultaneous NIR/X-ray flare peaks and model the flares using a synchrotron and SSC mechanism. The observations reveal flaring activity in all wavelength bands that can be modeled as the signal from adiabatically expanding synchrotron self-Compton (SSC) components. The model parameters suggest that either the adiabatically expanding source components have a bulk motion larger than v_exp or the expanding material contributes to a corona or disk, confined to the immediate surroundings of SgrA*. For the bulk of the synchrotron and ...

  2. The Crab Nebula flaring activity

    Directory of Open Access Journals (Sweden)

    G. Montani

    2014-12-01

    Full Text Available The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼1015 cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼109, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework.

  3. The Crab Nebula flaring activity

    Energy Technology Data Exchange (ETDEWEB)

    Montani, G., E-mail: giovanni.montani@frascati.enea.it [ENEA – C.R, UTFUS-MAG, via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Dipartimento di Fisica, Università di Roma “Sapienza”, p.le Aldo Moro 5, I-00185 Roma (Italy); Bernardini, M.G. [INAF – Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy)

    2014-12-12

    The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼10{sup 15} cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼10{sup 9}, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework.

  4. Pre-Flare Flows in the Corona

    Science.gov (United States)

    Wallace, A. J.; Harra, L. K.; van Driel-Gesztelyi, L.; Green, L. M.; Matthews, S. A.

    2010-12-01

    Solar flares take place in regions of strong magnetic fields and are generally accepted to be the result of a resistive instability leading to magnetic reconnection. When new flux emerges into a pre-existing active region it can act as a flare and coronal mass ejection trigger. In this study we observed active region 10955 after the emergence of small-scale additional flux at the magnetic inversion line. We found that flaring began when additional positive flux levels exceeded 1.38×1020 Mx (maxwell), approximately 7 h after the initial flux emergence. We focussed on the pre-flare activity of one B-class flare that occurred on the following day. The earliest indication of activity was a rise in the non-thermal velocity one hour before the flare. 40 min before flaring began, brightenings and pre-flare flows were observed along two loop systems in the corona, involving the new flux and the pre-existing active region loops. We discuss the possibility that reconnection between the new flux and pre-existing loops before the flare drives the flows by either generating slow mode magnetoacoustic waves or a pressure gradient between the newly reconnected loops. The subsequent B-class flare originated from fast reconnection of the same loop systems as the pre-flare flows.

  5. Fast electrons in small solar flares

    Science.gov (United States)

    Lin, R. P.

    1975-01-01

    This review summarizes both the direct spacecraft observations of nonrelativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the sun and in the interplanetary medium. These observations bear on the basic astrophysical process of particle acceleration in tenuous plasmas. We find that in many small solar flares, the nearly 5-100 keV electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. These electrons may produce the other flare electromagnetic emissions through their interactions with the solar atmosphere. In large proton flares these electrons may provide the energy to eject material from the sun and to create a shock wave which could accelerate nuclei and electrons to much higher energies.

  6. KEPLER FLARES. II. THE TEMPORAL MORPHOLOGY OF WHITE-LIGHT FLARES ON GJ 1243

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Hawley, Suzanne L.; Johnson, Emily C.; Peraza, Jesus; Jansen, Tiffany C.; Larsen, Daniel M. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Hebb, Leslie [Department of Physics, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, NY 14456 (United States); Wisniewski, John P.; Malatesta, Michael; Keil, Marcus; Silverberg, Steven M.; Scheffler, Matthew S.; Berdis, Jodi R. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks Street, Norman, OK 73019 (United States); Kowalski, Adam F. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Hilton, Eric J., E-mail: jrad@astro.washington.edu [Universe Sandbox, 911 E. Pike Street #333, Seattle, WA 98122 (United States)

    2014-12-20

    We present the largest sample of flares ever compiled for a single M dwarf, the active M4 star GJ 1243. Over 6100 individual flare events, with energies ranging from 10{sup 29} to 10{sup 33} erg, are found in 11 months of 1 minute cadence data from Kepler. This sample is unique for its completeness and dynamic range. We have developed automated tools for finding flares in short-cadence Kepler light curves, and performed extensive validation and classification of the sample by eye. From this pristine sample of flares we generate a median flare template. This template shows that two exponential cooling phases are present during the white-light flare decay, providing fundamental constraints for models of flare physics. The template is also used as a basis function to decompose complex multi-peaked flares, allowing us to study the energy distribution of these events. Only a small number of flare events are not well fit by our template. We find that complex, multi-peaked flares occur in over 80% of flares with a duration of 50 minutes or greater. The underlying distribution of flare durations for events 10 minutes and longer appears to follow a broken power law. Our results support the idea that sympathetic flaring may be responsible for some complex flare events.

  7. The Kepler Catalog of Stellar Flares

    Science.gov (United States)

    Davenport, James R. A.

    2016-09-01

    A homogeneous search for stellar flares has been performed using every available Kepler light curve. An iterative light curve de-trending approach was used to filter out both astrophysical and systematic variability to detect flares. The flare recovery completeness has also been computed throughout each light curve using artificial flare injection tests, and the tools for this work have been made publicly available. The final sample contains 851,168 candidate flare events recovered above the 68% completeness threshold, which were detected from 4041 stars, or 1.9% of the stars in the Kepler database. The average flare energy detected is ˜1035 erg. The net fraction of flare stars increases with g - i color, or decreasing stellar mass. For stars in this sample with previously measured rotation periods, the total relative flare luminosity is compared to the Rossby number. A tentative detection of flare activity saturation for low-mass stars with rapid rotation below a Rossby number of ˜0.03 is found. A power-law decay in flare activity with Rossby number is found with a slope of -1, shallower than typical measurements for X-ray activity decay with Rossby number.

  8. Pre-Flare Dynamics of Sunspot Groups

    CERN Document Server

    Korsos, M B; Ludmany, A

    2014-01-01

    Several papers provide evidences that the most probable sites of flare onset are the regions of high horizontal magnetic field gradients in solar active regions. Besides the localization of flare producing areas the present work intends to reveal the characteristic temporal variations in these regions prior to flares. This study uses sunspot data instead of magnetograms, it follows the behaviour of a suitable defined proxy measure representing the horizontal magnetic field gradient. The source of the data is the SDD (SOHO/MDI-Debrecen Data) sunspot catalogue. The most promising pre-flare signatures are the following properties of the gradient variation: i) steep increase, ii) high maximum, iii) significant fluctuation and iv) a gradual decrease between the maximum and the flare onset which can be related to the "pull mode" of the current layer. These properties may yield a tool for the assessment of flare probability and intensity within the next 8-10 hours.

  9. Pre-flare dynamics of sunspot groups

    Energy Technology Data Exchange (ETDEWEB)

    Korsós, M. B.; Baranyi, T.; Ludmány, A., E-mail: korsos.marianna@csfk.mta.hu, E-mail: baranyi.tunde@csfk.mta.hu, E-mail: ludmany.andras@csfk.mta.hu [Heliophysical Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 4010 Debrecen, P.O. Box 30 (Hungary)

    2014-07-10

    Several papers provide evidence that the most probable sites of flare onset are the regions of high horizontal magnetic field gradients in solar active regions. Besides the localization of flare-producing areas, this work intends to reveal the characteristic temporal variations in these regions prior to flares. This study uses sunspot data instead of magnetograms and follows the behavior of a suitable defined proxy measure representing the horizontal magnetic field gradient. The source of the data is the SDD (SOHO/MDI-Debrecen Data) sunspot catalog. The most promising pre-flare signatures are the following properties of gradient variation: (1) steep increase, (2) high maximum, (3) significant fluctuation, and (4) a gradual decrease between the maximum and the flare onset that can be related to the 'pull mode' of the current layer. These properties may yield a tool for the assessment of flare probability and intensity within the following 8-10 hr.

  10. Monitoring of FR Cnc Flaring Activity

    CERN Document Server

    Golovin, A; Pavlenko, E; Kuznyetsova, Yu; Krushevska, V; Sergeev, A

    2007-01-01

    Being excited by the detection of the first ever-observed optical flare in FR Cnc, we decided to continue photometrical monitoring of this object. The observations were carried out at Crimean Astrophysical Observatory (Crimea, Ukraine; CrAO - hereafter) and at the Terskol Observatory (Russia, Northern Caucasus). The obtained lightcurves are presented and discussed. No distinguishable flares were detected that could imply that flares on FR Cnc are very rare event.

  11. X-ray Studies of Flaring Plasma

    Indian Academy of Sciences (India)

    B. Sylwester; J. Sylwester; K. J. H. Phillips

    2008-03-01

    We present some methods of X-ray data analysis employed in our laboratory for deducing the physical parameters of flaring plasma. For example, we have used a flare well observed with Polish instrument RESIK aboard Russian CORONAS-F satellite. Based on a careful instrument calibration, the absolute fluxes in a number of individual spectral lines have been obtained. The analysis of these lines allows us to follow the evolution of important thermodynamic parameters characterizing the emitting plasma throughout this flare evolution.

  12. The Statistical Analyses of the White-Light Flares: Two Main Results About Flare Behaviours

    CERN Document Server

    Dal, H A

    2012-01-01

    We present two main results, based on the models and the statistical analyses of 1672 U-band flares. We also discuss the behaviours of the white-light flares. In addition, the parameters of the flares detected from two years of observations on CR Dra are presented. By comparing with the flare parameters obtained from other UV Ceti type stars, we examine the behaviour of optical flare processes along the spectral types. Moreover, we aimed, using large white-light flare data,to analyse the flare time-scales in respect to some results obtained from the X-ray observations. Using the SPSS V17.0 and the GraphPad Prism V5.02 software, the flares detected from CR Dra were modelled with the OPEA function and analysed with t-Test method to compare similar flare events in other stars. In addition, using some regression calculations in order to derive the best histograms, the time-scales of the white-light flares were analysed. Firstly, CR Dra flares have revealed that the white-light flares behave in a similar way as th...

  13. Relationship of Non-potentiality and Flaring: Intercomparison for an M-class Flare

    Indian Academy of Sciences (India)

    Ashok Ambastha; Shibu K. Mathew

    2000-09-01

    We have made an attempt to obtain relationship of magnetic shear and vertical currents in NOAA AR7321. Intercomparison of changes observed at several flaring and non-flaring sites associated with an M4/2B flare observed on October 26, 1992 is reported.

  14. The Kepler Catalog of Stellar Flares

    CERN Document Server

    Davenport, James R A

    2016-01-01

    A homogeneous search for stellar flares has been performed using every available Kepler light curve. An iterative light curve de-trending approach was used to filter out both astrophysical and systematic variability to detect flares. The flare recovery completeness has also been computed throughout each light curve using artificial flare injection tests, and the tools for this work have been made publicly available. The final sample contains 851,168 candidate flare events recovered above the 68% completeness threshold, which were detected from 4041 stars, or 1.9% of the stars in the Kepler database. The average flare energy detected is ~$10^{35}$ erg. The net fraction of flare stars increases with $g-i$ color, or decreasing stellar mass. For stars in this sample with previously measured rotation periods, the total relative flare luminosity is compared to the Rossby number. A tentative detection of flare activity saturation for low-mass stars with rapid rotation below a Rossby number of ~0.03 is found. A power...

  15. Validation of OMERACT preliminary rheumatoid arthritis flare domains in the NOR-DMARD study

    DEFF Research Database (Denmark)

    Lie, Elisabeth; Woodworth, Thasia G; Christensen, Robin;

    2014-01-01

    OBJECTIVE: Domains identified as a result of qualitative research and Delphi exercises to assess rheumatoid arthritis (RA) flare include pain, function, swollen and tender joints, patient and physician global, laboratory measures, participation, stiffness, self-management and fatigue. Here we......'. Convergent and divergent construct validity and content validity were assessed by correlation analyses and logistic regression analysis, respectively. RESULTS: Applying the flare working definition based on patient-reported worsening, standardised mean differences (SMDs) were >0.5 for the majority...... examine aspects of construct and content validity of these domains in a longitudinal observational study. METHODS: A total of 1195 patients with RA treated with non-biological disease-modifying antirheumatic drugs (DMARDs) or biologics were eligible for the analyses. Working definitions of 'flare...

  16. Kepler Flares II: The Temporal Morphology of White-Light Flares on GJ 1243

    CERN Document Server

    Davenport, James R A; Hebb, Leslie; Wisniewski, John P; Kowalski, Adam F; Johnson, Emily C; Malatesta, Michael; Peraza, Jesus; Keil, Marcus; Silverberg, Steven M; Jansen, Tiffany C; Scheffler, Matthew S; Berdis, Jodi R; Larsen, Daniel M; Hilton, Eric J

    2014-01-01

    We present the largest sample of flares ever compiled for a single M dwarf, the active M4 star GJ 1243. Over 6100 individual flare events, with energies ranging from $10^{29}$ to $10^{33}$ erg, are found in 11 months of 1-minute cadence data from Kepler. This sample is unique for its completeness and dynamic range. We have developed automated tools for finding flares in short-cadence Kepler light curves, and performed extensive validation and classification of the sample by eye. From this pristine sample of flares we generate a median flare template. This template shows that two exponential cooling phases are present during the white-light flare decay, providing fundamental constraints for models of flare physics. The template is also used as a basis function to decompose complex multi-peaked flares, allowing us to study the energy distribution of these events. Only a small number of flare events are not well fit by our template. We find that complex, multi-peaked flares occur in over 80% of flares with a dur...

  17. Prediction of Solar Flare Size and Time-to-Flare Using Support Vector Machine Regression

    CERN Document Server

    Boucheron, Laura E; McAteer, R T James

    2015-01-01

    We study the prediction of solar flare size and time-to-flare using 38 features describing magnetic complexity of the photospheric magnetic field. This work uses support vector regression to formulate a mapping from the 38-dimensional feature space to a continuous-valued label vector representing flare size or time-to-flare. When we consider flaring regions only, we find an average error in estimating flare size of approximately half a \\emph{geostationary operational environmental satellite} (\\emph{GOES}) class. When we additionally consider non-flaring regions, we find an increased average error of approximately 3/4 a \\emph{GOES} class. We also consider thresholding the regressed flare size for the experiment containing both flaring and non-flaring regions and find a true positive rate of 0.69 and a true negative rate of 0.86 for flare prediction. The results for both of these size regression experiments are consistent across a wide range of predictive time windows, indicating that the magnetic complexity fe...

  18. Groin pain

    Science.gov (United States)

    Pain - groin; Lower abdominal pain; Genital pain; Perineal pain ... Common causes of groin pain include: Pulled muscle, tendon, or ligaments in the leg: This problem often occurs in people who play sports such as ...

  19. Diagnostics of solar flare reconnection

    Directory of Open Access Journals (Sweden)

    M. Karlický

    2004-01-01

    Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally

  20. Offshore production flares: a PETROBRAS review

    Energy Technology Data Exchange (ETDEWEB)

    Pagot, Paulo R.; Burmann, Clovis P.; Araujo, Paulo Bento de; Motomura, Tsukasa [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The purpose of the present work is to briefly present the offshore flare system technological evolution and the main design criteria for flare and its supporting structure. In order to perform the aimed task, this work was divided into two parts: the first part presents the technological evolution of the offshore production flares and the second one discusses the flare system designing criteria. The evolution of the technology associated to the offshore production flares is organized by the authors just dividing the history in four chronological phases. Each phase is defined by the predominant use of the, by the time, most up-to-date technological alternative and it will be described with the help of sketches, drawings, photographs, data and information about the platforms where such technologies were applied. The second part of the present work discusses the dimensional criteria, interesting aspects and flaws of the offshore flare systems in two different fields, which are: definition of the flare system capacity; and flow and thermal design of the flare system. (author)

  1. Excitation of XUV radiation in solar flares

    Science.gov (United States)

    Emslie, A. Gordon

    1992-01-01

    The goal of the proposed research was to understand the means by which XUV radiation in solar flares is excited, and to use this radiation as diagnostics of the energy release and transport processes occurring in the flare. Significant progress in both of these areas, as described, was made.

  2. Flare Ribbon Expansion and Energy Release

    Indian Academy of Sciences (India)

    Ayumi Asai; Takaaki Yokoyama; Masumi Shimojo; Satoshi Masuda; Kazunari Shibata

    2006-06-01

    We report a detailed examination about the relationship between the evolution of the H flare ribbons and the released magnetic energy during the April 10 2001 flare. In the H images, several bright kernels are observed in the flare ribbons. We identified the conjugated footpoints, by analyzing the lightcurves at each H kernels, and showed their connectivities during the flare. Then, based on the magnetic reconnection model, we calculated quantitatively the released energy by using the photospheric magnetic field strengths and separation speeds of the H flare ribbons. Finally, we examined the downward motions which are observed at the H kernels. We found that the stronger the red-asymmetry tends to be associated with the brighter the H kernel.

  3. The local Poisson hypothesis for solar flares

    CERN Document Server

    Wheatland, M S

    2001-01-01

    The question of whether flares occur as a Poisson process has important consequences for flare physics. Recently Lepreti et al. presented evidence for local departure from Poisson statistics in the Geostationary Operational Environmental Satellite (GOES) X-ray flare catalog. Here it is argued that this effect arises from a selection effect inherent in the soft X-ray observations; namely that the slow decay of enhanced flux following a large flare makes detection of subsequent flares less likely. It is also shown that the power-law tail of the GOES waiting-time distribution varies with the solar cycle. This counts against any intrinsic significance to the appearance of a power law, or to the value of its index.

  4. Whether solar flares can trigger earthquakes?

    Science.gov (United States)

    Jain, R.

    2007-05-01

    We present the study of 682 earthquakes of ¡Ý4.0 magnitude observed during January 1991 to January 2007 in the light of solar flares observed by GOES and SOXS missions in order to explore the possibility of any association between solar flares and earthquakes. Our investigation preliminarily shows that each earthquake under study was preceded by a solar flare of GOES importance B to X class by 10-100 hrs. However, each flare was not found followed by earthquake of magnitude ¡Ý4.0. We classified the earthquake events with respect to their magnitude and further attempted to look for their correlation with GOES importance class and delay time. We found that with the increasing importance of flares the delay in the onset of earthquake reduces. The critical X-ray intensity of the flare to be associated with earthquake is found to be ~10-6 Watts/m2. On the other hand no clear evidence could be established that higher importance flares precede high magnitude earthquakes. Our detailed study of 50 earthquakes associated with solar flares observed by SOXS mission and other wavebands revealed many interesting results such as the location of the flare on the Sun and the delay time in the earthquake and its magnitude. We propose a model explaining the charged particles accelerated during the solar flare and released in the space that undergone further acceleration by interplanetary shocks and produce the ring current in the earth's magnetosphere, which may enhance the process of tectonics plates motion abruptly at fault zones. It is further proposed that such sudden enhancement in the process of tectonic motion of plates in fault zones may increase abruptly the heat gradients on spatial (dT/dx) and temporal (dT/dt) scales responsible for earthquakes.

  5. Voriconazole-induced periostitis causing arthralgias mimicking a flare of granulomatosis with polyangiitis.

    Science.gov (United States)

    Gladue, Heather S; Fox, David A

    2013-12-01

    We describe a case of voriconazole-induced periostitis that occurred in a 68-year-old woman with granulomatosis with polyangiitis. Our patient presented with months of severe hip pain limiting her daily activities, which was initially felt to be a flare of her granulomatosis with polyangiitis. However, upon further review, she had an elevated alkaline phosphatase and periostitis on her hip radiograph; voriconazole was held, and within 2 days she had marked improvement in her pain. Although this clinical syndrome is well documented in transplant patients, it is a rare complication in patients with autoimmune disorders. However, it is important because it may cause severe arthralgias that can mimic a flare of rheumatic diseases.

  6. Identifying core domains to assess flare in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Bartlett, Susan J; Hewlett, Sarah; Bingham, Clifton O

    2012-01-01

    For rheumatoid arthritis (RA), there is no consensus on how to define and assess flare. Variability in flare definitions impairs understanding of findings across studies and limits ability to pool results. The OMERACT RA Flare Group sought to identify domains to define RA flares from patient...

  7. Solar flare leaves sun quaking

    Science.gov (United States)

    1998-05-01

    Dr. Alexander G. Kosovichev, a senior research scientist from Stanford University, and Dr. Valentina V. Zharkova from Glasgow (United Kingdom) University found the tell-tale seismic signature in data on the Sun's surface collected by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO) spacecraft immediately following a moderate-sized flare on July 9, 1996. "Although the flare was a moderate one, it still released an immense amount of energy," said Dr. Craig Deforest, a researcher with the SOHO project. "The energy released is equal to completely covering the Earth's continents with a yard of dynamite and detonating it all at once." SOHO is a joint project of the European Space Agency and NASA. The finding is reported in the May 28 issue of the journal Nature, and is the subject of a press conference at the spring meeting of the American Geophysical Union in Boston, Mass., May 27. The solar quake that the science team recorded looks much like ripples spreading from a rock dropped into a pool of water. But over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. "People have looked for evidence of seismic waves from flares before, but they didn't have a theory so they didn't know where to look," says Kosovichev. Several years ago Kosovichev and Zharkova developed a theory that can explain how a flare, which explodes in space above the Sun's surface, can generate a major seismic wave in the Sun's interior. According to the currently accepted model of solar flares, the primary explosion creates high-energy electrons (electrically charged subatomic particles). These are funneled down into a magnetic flux tube, an invisible tube of magnetic

  8. A New Paradigm for Flare Particle Acceleration

    Science.gov (United States)

    Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard

    2017-08-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..

  9. Diurnal Variation of Anterior Chamber Flare

    Directory of Open Access Journals (Sweden)

    Mehmet Adam

    2015-04-01

    Full Text Available Objectives: To investigate the ideal time and reproducibility of anterior chamber flare measurements. Materials and Methods: Anterior chamber flare measurements were performed with laser flaremetre device at 8 am to 45 volunteers and these measurements were repeated on the same day at 12 pm and 4 pm. Results: Twenty-five (55.5% of the volunteers were women and 20 (44.5% were men; mean age was 28.67±7.40 (18-49 years. The mean anterior chamber flare measurements taken following the ophthalmologic examination were 5.94±1.41 foton/msn at 8 am, 5.65±1.45 foton/msn at 12 pm, and 5.79±1.20 foton/msn at 4 pm. No statistical difference was found between the measurements (p=0.08. Subgroup analysis according to eye color, revealed no significant difference between flare measurements in brown, hazel, and green eyes (p=0.21. Correlation analysis demonstrated association between age and all flare measurements within the day (r=0.24, p=0.03; r=0.41, p=0.01, r=0.27, p=0.01. Conclusion: No significant diurnal change was detected in the flare measurements of our study subjects but positive correlation with age was observed. Hence, all flare measurements within a day are reliable and have high repeatability in healthy subjects. (Turk J Ophthalmol 2015; 45: 52-5

  10. Advances In Understanding Solar And Stellar Flares

    Science.gov (United States)

    Kowalski, Adam F.

    2016-07-01

    Flares result from the sudden reconnection and relaxation of magnetic fields in the coronae of stellar atmospheres. The highly dynamic atmospheric response produces radiation across the electromagnetic spectrum, from the radio to X-rays, on a range of timescales, from seconds to days. New high resolution data of solar flares have revealed the intrinsic spatial properties of the flaring chromosphere, which is thought to be where the majority of the flare energy is released as radiation in the optical and near-UV continua and emission lines. New data of stellar flares have revealed the detailed properties of the broadband (white-light) continuum emission, which provides straightforward constraints for models of the transformation of stored magnetic energy in the corona into thermal energy of the lower atmosphere. In this talk, we discuss the physical processes that produce several important spectral phenomena in the near-ultraviolet and optical as revealed from new radiative-hydrodynamic models of flares on the Sun and low mass stars. We present recent progress with high-flux nonthermal electron beams in reproducing the observed optical continuum color temperature of T 10,000 K and the Balmer jump properties in the near-ultraviolet. These beams produce dense, heated chromospheric condensations, which can explain the shape and strength of the continuum emission in M dwarf flares and the red-wing asymmetries in the chromospheric emission lines in recent observations of solar flares from the Interface Region Imaging Spectrograph. Current theoretical challenges and future modeling directions will be discussed, as well as observational synergies between solar and stellar flares.

  11. Flaring down project for Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Bienek, S. [Joh. Heinr. Bornemann GmbH, Obernkirchen (Germany)

    2008-06-15

    Multiphase boosting as a production scenario for lowering wellhead backpressure, avoiding field separation stations, and achieving longer flow distances is widely accepted by major oil companies. Flaring down of gas is no longer necessary and therefore the use of multiphase pumps has a positive impact on a healthy environment. The twin-screw pump plays a major role when selecting the equipment. Due to its volumetric character heavy slugging, varying water content and other typical multiphase operating challenges, this pump type is well suited for this purpose. With its low speed the fluid is treated very sensitively, so as to widely avoid emulsifying oil and water - a definite advantage for the later separation of the phases. (orig.)

  12. Solar flare count periodicities in different X-ray flare classes

    Science.gov (United States)

    Gao, Peng-Xin; Xu, Jing-Chen

    2016-04-01

    Using the Morlet wavelet transform and the Hilbert-Huang transform (HHT), we investigate the periodic behaviours of C, M and X-class flare counts, respectively, recorded by the Geostationary Operational Environmental Satellites (GOES) from 1983 May to 2014 December, which cover the two complete solar cycles (SCs) 22 and 23 as well as the part of declining phase of SC 21 and rise and maximum phases of SC 24. Analyses show that the periodic behaviours of various class flare counts are different. (1) Not all periods of various class flare counts appear dominant during the cycle maxima. For C-class flares, during SC 23, periods appear dominant during the maximum phase, however, compared to those during SC 23, there are more periods during the declining phase of SC 22; for M-class flares, during SCs 22 and 23, periods appear dominant during the cycle maxima; for X-class flares, during SC 22, almost all periods appear during the maximum phase; however, during SC 23, there are more periods during the declining phase compared to those during SC 22. (2) For C-class flares, the appearance of periods do not follow the amplitude of C-class flare cycles; while, for M and X-class flares, the appearance of periods follows the amplitude of the investigated corresponding class flare cycles. (3) From the overall trends, the 10 yr and longer time-scale trends of the monthly numbers of M and X-class flares, we can infer that the maximum values of the monthly M and X-class flare numbers would increase during SC 25.

  13. Abdominal pain

    Science.gov (United States)

    Stomach pain; Pain - abdomen; Belly ache; Abdominal cramps; Bellyache; Stomachache ... Almost everyone has pain in the abdomen at some point. Most of the time, it is not serious. How bad your pain is does not always reflect the seriousness ...

  14. Chronic Pain

    Science.gov (United States)

    ... pain. Psychotherapy, relaxation and medication therapies, biofeedback, and behavior modification may also be employed to treat chronic pain. × ... pain. Psychotherapy, relaxation and medication therapies, biofeedback, and behavior modification may also be employed to treat chronic pain. ...

  15. Pain Management

    Science.gov (United States)

    ... of pain. In the 19th century, physician-scientists discovered that opiates such as morphine could relieve pain ... tissue damage.” TODAY Pain affects more Americans than diabetes, heart disease and cancer combined. Pain is cited ...

  16. Heel pain

    Science.gov (United States)

    Pain - heel ... Heel pain is most often the result of overuse. However, it may be caused by an injury. Your heel ... on the heel Conditions that may cause heel pain include: Swelling and pain in the Achilles tendon ...

  17. Flank pain

    Science.gov (United States)

    Pain - side; Side pain ... Flank pain can be a sign of a kidney problem. But, since many organs are in this area, other causes are possible. If you have flank pain and fever , chills, blood in the urine, or ...

  18. New solar flare evidence may solve mystery

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An international group of scientists led by the Mullard Space Science Laboratory (MSSL), University College London, has discovered important new evidence that points to the cataclysmic events that trigger a solar flare and the mechanisms that drive its subsequent evolution.

  19. Active Longitude and Solar Flare Occurrences

    CERN Document Server

    Gyenge, N; Baranyi, T

    2015-01-01

    The aim of the present work is to specify the spatio-temporal characteristics of flare activity observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Geostationary Operational Environmental Satellite (GOES) satellites in connection with the behaviour of the longitudinal domain of enhanced sunspot activity known as active longitude (AL). By using our method developed for this purpose, we identified the AL in every Carrington Rotation provided by the Debrecen Photoheliographic Data (DPD). The spatial probability of flare occurrence has been estimated depending on the longitudinal distance from AL in the northern and southern hemispheres separately. We have found that more than the 60\\% of the RHESSI and GOES flares is located within $\\pm 36^{\\circ}$ from the active longitude. Hence, the most flare-productive active regions tend to be located in or close to the active longitudinal belt. This observed feature may allow predicting the geo-effective position of the domain of enhanced fla...

  20. Solar Flare Magnetic Fields and Plasmas

    CERN Document Server

    Fisher, George

    2012-01-01

    This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Sun’s atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Sun’s magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield.  Dick has been making profound contributions to these areas of research over a long and pro...

  1. A UNIFIED MODEL FOR SOLAR FLARES

    Institute of Scientific and Technical Information of China (English)

    ChenPengfei; FangCheng; DingMingde; TangYuhua

    1999-01-01

    We performed 2.5 - dimensional numerical simulation for two cases, one with the the reconnection point at a high altitude, the other with the reconnection point at a low altitude, in the high-altitude case, the bright loop appears to rise for a long time, with its two footpoints separating and the field lines below the bright loop shrinking,which are all typical features of two - ribbon flares. In the low- altitude case, the bright loops cease rising only a short time after the impulsive phase of the reconnection and then become rather stable, which shows a large similarity to the compact flares. The results imply that the two types of solar flares, i. e., the two - ribbon flares and the compact ones, might be unified into the same magnetic reconnection model, where the height of the reconnection point leads to the bifurcation.

  2. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    Rajmal Jain; Malini Aggarwal; Raghunandan Sharma

    2008-03-01

    Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors capable of observing the full disk Sun in X-ray energy range of 4–56 keV. The X-ray spectra of solar flares obtained by the Si detector in the 4–25 keV range show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. The evolution of the break energy point that separates the thermal and non-thermal processes reveals increase with increasing flare plasma temperature. Small scale flare activities observed by both the detectors are found to be suitable to heat the active region corona; however their location appears to be in the transition region.

  3. Magnetic Fields in Limb Solar Flares

    Science.gov (United States)

    Lozitsky, V. G.; Lozitska, N. I.; Botygina, O. A.

    2013-02-01

    Two limb solar flares, of 14 July 2005 and 19 July 2012, of importance X1.2 and M7.7, are analyzed at present work. Magnetic field strength in named flares are investigated by Stokes I±V profiles of Hα and D3 HeI lines. There are direct evidences to the magnetic field inhomogeneity in flares, in particular, non-paralelism of bisectors in I+V and I-V profiles. In some flare places, the local maximums of bisectors splitting were found in both lines. If these bisector splittings are interpreted as Zeeman effect manifestation, the following magnetic field strengths reach up to 2200 G in Hα and 1300 G in D3. According to calculations, the observed peculiarities of line profiles may indicate the existence of optically thick emissive small-scale elements with strong magnetic fields and lowered temperature.

  4. 40 CFR 65.147 - Flares.

    Science.gov (United States)

    2010-07-01

    ... submission of the notice specified in § 65.167(a). Upon implementing the change, a flare compliance... standard cubic meter; where the net enthalpy per mole of offgas is based on combustion at 25 °C and 760...

  5. Solar Eruptions: Coronal Mass Ejections and Flares

    Science.gov (United States)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  6. Modelling emissions from natural gas flaring

    OpenAIRE

    G. Ezaina Umukoro; O. Saheed Ismail

    2017-01-01

    The world today recognizes the significance of environmental sustainability to the development of nations. Hence, the role oil and gas industry plays in environmental degrading activities such as gas flaring is of global concern. This study presents material balance equations and predicts results for non-hydrocarbon emissions such as CO2, CO, NO, NO2, and SO2 etc. from flaring (combustion) of 12 natural gas samples representing composition of natural gas of global origin. Gaseous emission est...

  7. Modelling emissions from natural gas flaring

    Directory of Open Access Journals (Sweden)

    G. Ezaina Umukoro

    2017-04-01

    Full Text Available The world today recognizes the significance of environmental sustainability to the development of nations. Hence, the role oil and gas industry plays in environmental degrading activities such as gas flaring is of global concern. This study presents material balance equations and predicts results for non-hydrocarbon emissions such as CO2, CO, NO, NO2, and SO2 etc. from flaring (combustion of 12 natural gas samples representing composition of natural gas of global origin. Gaseous emission estimates and pattern were modelled by coding material balance equations for six reaction types and combustion conditions with a computer program. On the average, anticipated gaseous emissions from flaring natural gas with an average annual global flaring rate 126 bcm per year (between 2000 and 2011 in million metric tonnes (mmt are 560 mmt, 48 mmt, 91 mmt, 93 mmt and 50 mmt for CO2, CO, NO, NO2 and SO2 respectively. This model predicted gaseous emissions based on the possible individual combustion types and conditions anticipated in gas flaring operation. It will assist in the effort by environmental agencies and all concerned to track and measure the extent of environmental pollution caused by gas flaring operations in the oil and gas industry.

  8. Analysis of Chromospheric Evaporation in Solar Flares

    Science.gov (United States)

    Sadykov, Viacheslav M.; Kosovichev, Alexander G.

    2017-08-01

    Chromospheric evaporation is one of the key processes of solar flares. Properties of chromospheric evaporation are thought to be closely connected to the energy release rates and energy transport mechanisms. Previous investigations revealed that in addition to electron-beam heating the chromospheric evaporation can be driven by heat fluxes and, probably, by other mechanisms. In this work, we present a study of flare events simultaneously observed by IRIS, SDO and RHESSI, focusing on spatio-temporal characteristics of the flare dynamics and its relation to the magnetic field topology. Event selection is performed using the Interactive Multi-Instrument Database of Solar Flares (IMIDSF) recently developed by the Center for Computational Heliophysics (CCH) at NJIT. The selection of IRIS observations was restricted to the fast-scanning regimes (coarse-raster or sparse-raster modes with ≥ 4 slit positions, ≥ 6`` spatial coverage, and ≤ 60 sec loop time). We have chosen 14 events, and estimated the spatially-resolved intensities and Doppler shifts of the chromospheric (Mg II), transition region (C II) and hot coronal (Fe XXI) lines reflecting the dynamics of the chromospheric evaporation. The correlations among the derived line profile properties, flare morphology, magnetic topology and hard X-ray characteristics will be presented, and compared with the RADYN flare models and other scenarios of chromospheric evaporations.

  9. Absolute Abundance Measurements in Solar Flares

    Science.gov (United States)

    Warren, Harry

    2014-06-01

    We present measurements of elemental abundances in solar flares with EVE/SDO and EIS/Hinode. EVE observes both high temperature Fe emission lines Fe XV-XXIV and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (F). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is F=1.17+-0.22. Furthermore, we have compared the EVE measurements with corresponding flare observations of intermediate temperature S, Ar, Ca, and Fe emission lines taken with EIS. Our initial calculations also indicate a photospheric composition for these observations. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation in the non-flaring corona occurs.

  10. Multithread Hydrodynamic Modeling of a Solar Flare

    Science.gov (United States)

    Warren, Harry P.

    2006-01-01

    Past hydrodynamic simulations have been able to reproduce the high temperatures and densities characteristic of solar flares. These simulations, however, have not been able to account for the slow decay of the observed flare emission or the absence of blueshifts in high spectral resolution line profiles. Recent work has suggested that modeling a flare as a sequence of independently heated threads instead of as a single loop may resolve the discrepancies between the simulations and observations. In this paper, we present a method for computing multithread, time-dependent hydrodynamic simulations of solar flares and apply it to observations of the Masuda flare of 1992 January 13. We show that it is possible to reproduce the temporal evolution of high temperature thermal flare plasma observed with the instruments on the GOES and Yohkoh satellites. The results from these simulations suggest that the heating timescale for a individual thread is on the order of 200 s. Significantly shorter heating timescales (20 s) lead to very high temperatures and are inconsistent with the emission observed by Yohkoh.

  11. Physics of Transient Seismic Emission from Flares

    Science.gov (United States)

    Lindsey, Charles A.; Donea, A.; Malanushenko, A.

    2012-05-01

    We consider the physics of seismic activity in solar flares, i.e., the release of powerful seismic transients into the solar interior during the impulsive phases of some flares. Recent work by Hudson, Fisher, Welsch and Bercik has attracted a great deal of positive attention to the possible role of Lorentz-force transients in driving seismic transient emission in flares. The implications of direct involvement by magnetic forces in seismic transient emission, if this could be confirmed, would be major, since magnetic fields are thought to hold the energy source of the flares themselves. The energy invested into acoustic transients is a small fraction of the total released by the flare, but requires a massive impulse many times that required to accelerate high-energy electrons into which the energy is initially thought to be invested. What does this say about a flare mechanism that sometimes does both? We discuss some of the outstanding diagnostic questions that confront the recognition of magnetic-field transients associated with Lorentz force transients based on resources HMI, Hinode, AIA and other facilities offer us.

  12. Using Two-Ribbon Flare Observations and MHD Simulations to Constrain Flare Properties

    Science.gov (United States)

    Kazachenko, Maria D.; Lynch, Benjamin J.; Welsch, Brian

    2016-05-01

    Flare ribbons are emission structures that are frequently observed during flares in transition-region and chromospheric radiation. These typically straddle a polarity inversion line (PIL) of the radial magnetic field at the photosphere, and move apart as the flare progresses. The ribbon flux - the amount of unsigned photospheric magnetic flux swept out by flare ribbons - is thought to be related to the amount coronal magnetic reconnection, and hence provides a key diagnostic tool for understanding the physical processes at work in flares and CMEs. Previous measurements of the magnetic flux swept out by flare ribbons required time-consuming co-alignment between magnetograph and intensity data from different instruments, explaining why those studies only analyzed, at most, a few events. The launch of the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA), both aboard the Solar Dynamics Observatory (SDO), presented a rare opportunity to compile a much larger sample of flare-ribbon events than could readily be assembled before. We created a dataset of 363 events of both flare ribbon positions and fluxes, as a function of time, for all C9.-class and greater flares within 45 degrees of disk center observed by SDO from June 2010 till April 2015. For this purpose, we used vector magnetograms (2D magnetic field maps) from HMI and UV images from AIA. A critical problem with using unprocessed AIA data is the existence of spurious intensities in AIA data associated with strong flare emission, most notably "blooming" (spurious smearing of saturated signal into neighboring pixels, often in streaks). To overcome this difficulty, we have developed an algorithmic procedure that effectively excludes artifacts like blooming. We present our database and compare statistical properties of flare ribbons, e.g. evolutions of ribbon reconnection fluxes, reconnection flux rates and vertical currents with the properties from MHD simulations.

  13. Effects of flare definitions on the statistics of derived flare distributions

    Science.gov (United States)

    Ryan, D. F.; Dominique, M.; Seaton, D.; Stegen, K.; White, A.

    2016-08-01

    The statistical examination of solar flares is crucial to revealing their global characteristics and behaviour. Such examinations can tackle large-scale science questions or give context to detailed single-event studies. However, they are often performed using standard but basic flare detection algorithms relying on arbitrary thresholds. This arbitrariness may lead to important scientific conclusions being drawn from results caused by subjective choices in algorithms rather than the true nature of the Sun. In this paper, we explore the effect of the arbitrary thresholds used in the Geostationary Operational Environmental Satellite (GOES) event list and Large Yield RAdiometer (LYRA) Flare Finder algorithms. We find that there is a small but significant relationship between the power law exponent of the GOES flare peak flux frequency distribution and the flare start thresholds of the algorithms. We also find that the power law exponents of these distributions are not stable, but appear to steepen with increasing peak flux. This implies that the observed flare size distribution may not be a power law at all. We show that depending on the true value of the exponent of the flare size distribution, this deviation from a power law may be due to flares missed by the flare detection algorithms. However, it is not possible determine the true exponent from GOES/XRS observations. Additionally we find that the PROBA2/LYRA flare size distributions are artificially steep and clearly non-power law. We show that this is consistent with an insufficient degradation correction. This means that PROBA2/LYRA should not be used for flare statistics or energetics unless degradation is adequately accounted for. However, it can be used to study variations over shorter timescales and for space weather monitoring.

  14. The Shape of M Dwarf Flares in Kepler Light Curves

    CERN Document Server

    Davenport, James R A

    2015-01-01

    Ultra-precise light curves from Kepler provide the best opportunity to determine rates and statistical properties of stellar flares. From 11 months of data on the active M4 dwarf, GJ 1243, we have built the largest catalog of flares for a single star: over 6100 events. Combining 885 of our most pristine flares, we generated an empirical white-light flare template. This high-fidelity template shows a rapid initial rise, and two distinct exponential cooling phases. This template is useful in constraining flare energies and for improved flare detection in many surveys. Complex, multi-peaked events are more common for higher energy flares in this sample. Using our flare template we characterize the structure of complex events. In this contributed talk, I presented results from our boutique study of GJ 1243, and described an expanded investigation of the structure of complex flares and their connection to solar events.

  15. Statistical and theoretical studies of flares from Sagittarius A*

    Science.gov (United States)

    Li, Ya-Ping; Yuan, Qiang; Wang, Q. Daniel; Chen, P. F.; Neilsen, Joseph; Fang, Taotao; Zhang, Shuo; Dexter, Jason

    2017-01-01

    Multi-wavelength flares have routinely been observed from the supermassive black hole, Sagittarius A* (Sgr A*), at our Galactic center. The nature of these flares remains largely unclear, despite many theoretical models. We study the statistical properties of the Sgr A* X-ray flares and find that they are consistent with the theoretical prediction of the self-organized criticality system with the spatial dimension S = 3. We suggest that the X-ray flares represent plasmoid ejections driven by magnetic reconnection (similar to solar flares) in the accretion flow onto the black hole. Motivated by the statistical results, we further develop a time-dependent magnetohydrodynamic (MHD) model for the multi-band flares from Sgr A* by analogy with models of solar flares/coronal mass ejections (CMEs). We calculate the X-ray, infrared flare light curves, and the spectra, and find that our model can explain the main features of the flares.

  16. Feasibility of flare gas reformation to practical energy in Farashband gas refinery: no gas flaring.

    Science.gov (United States)

    Rahimpour, Mohammad Reaza; Jokar, Seyyed Mohammad

    2012-03-30

    A suggested method for controlling the level of hazardous materials in the atmosphere is prevention of combustion in flare. In this work, three methods are proposed to recover flare gas instead of conventional gas-burning in flare at the Farashband gas refinery. These methods aim to minimize environmental and economical disadvantages of burning flare gas. The proposed methods are: (1) gas to liquid (GTL) production, (2) electricity generation with a gas turbine and, (3) compression and injection into the refinery pipelines. To find the most suitable method, the refinery units that send gas to the flare as well as the required equipment for the three aforementioned methods are simulated. These simulations determine the amount of flare gas, the number of GTL barrels, the power generated by the gas turbine and the required compression horsepower. The results of simulation show that 563 barrels/day of valuable GTL products is produced by the first method. The second method provides 25 MW electricity and the third method provides a compressed natural gas with 129 bar pressure for injection to the refinery pipelines. In addition, the economics of flare gas recovery methods are studied and compared. The results show that for the 4.176MMSCFD of gas flared from the Farashband gas refinery, the electricity production gives the highest rate of return (ROR), the lowest payback period, the highest annual profit and mild capital investment. Therefore, the electricity production is the superior method economically. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Flare energetics: analysis of a large flare on YZ Canis Minoris observed simultaneously in the ultraviolet, optical and radio.

    Science.gov (United States)

    van den Oord, G. H. J.; Doyle, J. G.; Rodono, M.; Gary, D. E.; Henry, G. W.; Byrne, P. B.; Linsky, J. L.; Haisch, B. M.; Pagano, I.; Leto, G.

    1996-06-01

    The results of coordinated observations of the dMe star YZ CMi at optical, UV and radio wavelengths during 3-7 February 1983 are presented. YZ CMi showed repeated optical flaring with the largest flare having a magnitude of 3.8 in the U-band. This flare coincided with an IUE exposure which permits a comparison of the emission measure curves of YZ CMi in its flaring and quiescent state. During the flare a downward shift of the transition zone is observed while the radiative losses in the range 10^4^-10^7^K strongly increase. The optical flare is accompanied with a radio flare at 6cm, while at 20cm no emission is detected. The flare is interpreted in terms of optically thick synchrotron emission. We present a combined interpretation of the optical/radio flare and show that the flare can be interpreted within the context of solar two-ribbon/white-light flares. Special attention is paid to the bombardment of dMe atmospheres by particle beams. We show that the characteristic temperature of the heated atmosphere is almost independent of the beam flux and lies within the range of solar white-light flare temperatures. We also show that it is unlikely that stellar flares emit black-body spectra. The fraction of accelerated particles, as follows from our combined optical/radio interpretation is in good agreement with the fraction determined by two-ribbon flare reconnection models.

  18. Effects of flare definitions on the statistics of derived flare distributions

    CERN Document Server

    Ryan, Daniel F; Seaton, Dan; Stegen, Koen; White, Arthur

    2016-01-01

    The statistical examination of solar flares is crucial to revealing their global characteristics and behaviour. Such examinations can tackle large-scale science questions or give context to detailed single-event studies. However, they are often performed using standard but basic flare detection algorithms relying on arbitrary thresholds. This arbitrariness may lead to important scientific conclusions being drawn from results caused by subjective choices in algorithms rather than the true nature of the Sun. In this paper, we explore the effect of the arbitrary thresholds used in the GOES (Geostationary Operational Environmental Satellite) event list and LYRA (Large Yield RAdiometer) Flare Finder algorithms. We find that there is a small but significant relationship between the power law exponent of the GOES flare peak flux frequency distribution and the flare start thresholds of the algorithms. We also find that the power law exponents of these distributions are not stable, but appear to steepen with increasin...

  19. Spectral Hardening and Geoeffectiveness of Solar Flares

    Science.gov (United States)

    Jain, R.; Kumar, S.; Dave, H.; Deshpande, M. R.

    We present the results of a few typical flares that observed by the first space borne solar astronomy experiment of India namely "Solar X-ray Spectrometer (SOXS)" mission, which has completed one year of its successful operation in geostationary orbit. The SOXS mission onboard GSAT-2 Indian spacecraft was launched successfully by GSLV-D2 rocket on 08 May 2003 to study the energy release and particle acceleration in solar flares. The SOXS is composed of two independent payloads viz. SOXS Low Energy Detector (SLD) payload, and SOXS High Energy Detector (SHD) payload. We restrict our presentation to SLD payload that designed, developed and fabricated by Physical Research Laboratory (PRL) in collaboration with Space Application Centre (SAC), Ahmedabad and ISRO Satellite Centre (ISAC), Bangalore of Indian Space Research Organization (ISRO). We briefly present the scientific objectives and instrumentation of the SLD payload. The SLD payload employs the state-of-art solid state detectors viz. Si PIN and CZT detectors, which reveal sub-keV spectral and 100ms temporal resolution characteristics that are necessary to study the spectral response of the flare components. The dynamic range of Si and CZT detectors is 4-25 and 4-56 keV respectively. The SLD has observed more than 140 flares of C and M class since its commissioning in the orbit. We present the X-ray emission characteristics of a few typical flares in view of their spectral hardening and geo-effectiveness. We extend our study of these flares to optical and radio waveband observations in order to improve the relationship of X-ray spectral hardening and geo-effectiveness. The flares with harder spectra and associated with small or large CME, and radio emission at frequencies above 10 GHz are found geo-effective.

  20. Short-term predictions of solar flares.

    Science.gov (United States)

    Burov, V. A.

    1990-02-01

    A review of present-day theoretical investigations of the problem of the accumulation and release of energy in solar flares permits advancing the opinion that only individual flare events are described by a concrete model and that a single model alone does not describe the entire diversity of flares. Consideration of the observational data does not permit claiming the existence of a single universal mechanism known today of flare events. It appears possible to treat the problem of prediction in terms of the algebra of logic (Boolean logic) and to compare the truth table with the often-used contingency table. The introduction of a number of very general assumptions permits forming a general approach to the development of predictive schemes and selection of the individual elements of the models and informative criteria. Experimental results are given on the testing of some prediction procedures. The author's procedure of routine short-term prediction of flares on the basis of the methods of instruction on pattern recognition implemented in the form of a set of programs is outlined. The results of the application of this procedure in 1986 - 1988 are presented.

  1. Radio-flaring Ultracool Dwarf Population Synthesis

    Science.gov (United States)

    Route, Matthew

    2017-08-01

    Over a dozen ultracool dwarfs (UCDs), low-mass objects of spectral types ≥M7, are known to be sources of radio flares. These typically several-minutes-long radio bursts can be up to 100% circularly polarized and have high brightness temperatures, consistent with coherent emission via the electron cyclotron maser operating in approximately kilogauss magnetic fields. Recently, the statistical properties of the bulk physical parameters that describe these UCDs have become described adequately enough to permit synthesis of the population of radio-flaring objects. For the first time, I construct a Monte Carlo simulator to model the population of these radio-flaring UCDs. This simulator is powered by Intel Secure Key (ISK), a new processor technology that uses a local entropy source to improve random number generation that has heretofore been used to improve cryptography. The results from this simulator indicate that only ∼5% of radio-flaring UCDs within the local interstellar neighborhood (radio-flaring fraction and suggest that the observed behavior is likely a result of several factors. The performance of ISK as compared to other pseudorandom number generators is also evaluated, and its potential utility for other astrophysical codes is briefly described.

  2. Deterministically Driven Avalanche Models of Solar Flares

    Science.gov (United States)

    Strugarek, Antoine; Charbonneau, Paul; Joseph, Richard; Pirot, Dorian

    2014-08-01

    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick-slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy-loading process. The model design leads to a systematic deficit of small-scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.

  3. Flare differentially rotates sunspot on Sun's surface

    Science.gov (United States)

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-10-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ~50° h-1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena.

  4. Flare differentially rotates sunspot on Sun's surface

    CERN Document Server

    Liu, Chang; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S; Gary, Dale E; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-01-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to 50 deg per hr) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related p...

  5. On Flare-Driven Global Waves

    Science.gov (United States)

    Karoff, C.

    2009-12-01

    We recently presented evidence of a strong correlation between the energy in the high-frequency part of the acoustic spectrum of the Sun and the solar X-ray flux (Karoff & Kjeldsen 2008). The discovery indicates that flares drive global oscillations in the Sun in the same way that the entire Earth is set ringing for several weeks after a major earthquake, such as the 2004 December Sumatra-Andaman one. If this indication turns out to be true we might be able to use the relation between flares and the energy in the high-frequency part of the acoustic spectrum to detect e.g. flares on the far side of the Sun and flares on other solar-like stars. But, the discovery also opens many new questions such as why is it only the high-frequency part of the acoustic spectrum that is correlated with the X-ray flux? And, is there energy enough in solar flares to drive global oscillations?

  6. Multi-spectral observations of flares

    Science.gov (United States)

    Zuccarello, F.

    2016-11-01

    Observations show that during solar flares radiation can be emitted across the entire electromagnetic spectrum, spanning from gamma rays to radio waves. These emissions, related to the conversion of magnetic energy into other forms of energy (kinetic, thermal, waves) through magnetic reconnection, are due to different physical processes that can occur in different layers of the Sun. This means that flare observations need to be carried out using instruments operating in different wave-bands in order to achieve a complete scenario of the processes going on. Taking into account that most of the radiative energy is emitted at optical and UV wavelengths, observations carried out from space, need to be complemented by observations carried out from ground-based telescopes. Nowadays, the possibility to carry on high temporal, spatial and spectral resolution from ground-based telescopes in coordinated campaigns with space-borne instruments (like, i.e., IRIS and HINODE) gives the opportunity to investigate the details of the flare emission at different wavelengths and can provide useful hints to understand these phenomena and compare observations with models. However, it is undoubted that sometimes the pointing to the flaring region is not an easy task, due to the necessity to provide the target coordinates to satellites with some hours in advance. Some problems arising from this issue will be discussed. Moreover, new projects related to flare catalogues and archives will be presented.

  7. Radiative transfer simulations of magnetar flare beaming

    CERN Document Server

    van Putten, T; Baring, M G; Wijers, R A M J

    2016-01-01

    Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.

  8. Radiative transfer simulations of magnetar flare beaming

    Science.gov (United States)

    van Putten, T.; Watts, A. L.; Baring, M. G.; Wijers, R. A. M. J.

    2016-09-01

    Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.

  9. An MHD model for magnetar giant flares

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Y.; Lin, J.; Zhang, Q. S. [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming, Yunnan 650011 (China); Zhang, L. [Department of Physics, Yunnan University, Kunming, Yunnan 650091 (China); Reeves, K. K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yuan, F., E-mail: mengy@ynao.ac.cn, E-mail: jlin@ynao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2014-04-10

    Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the subsequent magnetic reconnection. By analogy with the coronal mass ejection events on the Sun, we develop a theoretical model via an analytic approach for magnetar giant flares. In this model, the rotation and/or displacement of the crust causes the field to twist and deform, leading to flux rope formation in the magnetosphere and energy accumulation in the related configuration. When the energy and helicity stored in the configuration reach a threshold, the system loses its equilibrium, the flux rope is ejected outward in a catastrophic way, and magnetic reconnection helps the catastrophe develop to a plausible eruption. By taking SGR 1806–20 as an example, we calculate the free magnetic energy released in such an eruptive process and find that it is more than 10{sup 47} erg, which is enough to power a giant flare. The released free magnetic energy is converted into radiative energy, kinetic energy, and gravitational energy of the flux rope. We calculated the light curves of the eruptive processes for the giant flares of SGR 1806–20, SGR 0526–66, and SGR 1900+14, and compared them with the observational data. The calculated light curves are in good agreement with the observed light curves of giant flares.

  10. Flare differentially rotates sunspot on Sun's surface.

    Science.gov (United States)

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S; Gary, Dale E; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-10-10

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ∼50° h(-1)) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena.

  11. Breakthrough pain in patients with controlled or uncontrolled pain: An observational study

    Science.gov (United States)

    Gatti, Antonio; Gentili, Marta; Baciarello, Marco; Lazzari, Marzia; Marzi, Rossella; Palombo, Elisa; Sabato, Alessandro F; Fanelli, Guido

    2014-01-01

    BACKGROUND: Breakthrough pain (BTP) is traditionally defined as a pain exacerbation in patients with chronic controlled pain. However, this definition has recently been challenged. OBJECTIVES: To evaluate the prevalence of unsatisfactory control in patients with chronic cancer pain, and investigate the frequency and intensity of BTP episodes. METHODS: A total of 665 patients with chronic cancer pain attending 21 pain therapy units in Italy were evaluated for baseline pain intensity and number of BTP episodes over a 30-day period. All patients started, continued or modified treatment for BTP at enrollment, according to medical judgment. RESULTS: The number of BTP events was higher in patients with uncontrolled baseline pain, although the intensity and duration of episodes were similar. In patients with uncontrolled baseline pain, the number of events decreased with time and reached values comparable with those reported in patients with controlled pain. Both the intensity of the pain and the duration of the BTP events exhibited similar values in the two groups at all time points, following increased monitoring and the prescription of analgesic medication. CONCLUSION: Patients with uncontrolled baseline pain experienced BTP flares with higher frequency, but similar intensity and duration with respect to patients with controlled pain at baseline. Notably, a close follow-up and adequate management of the BTP episodes led to an improvement of BTP in the observed patients. PMID:24945289

  12. Flare forecasting based on sunspot-groups characteristics

    National Research Council Canada - National Science Library

    Contarino, Lidia; Zuccarello, Francesca; Romano, Paolo; Spadaro, Daniele; Guglielmino, Salvatore L; Battiato, Viviana

    2009-01-01

    ... accurate flare forecasting. In order to give a contribution to this aspect, we focused our attention on the characteristics that must be fulfilled by sunspot-groups in order to be flare-productive...

  13. The Origin of the Solar Flare Waiting-Time Distribution

    CERN Document Server

    Wheatland, M S

    2000-01-01

    It was recently pointed out that the distribution of times between solar flares (the flare waiting-time distribution) follows a power law, for long waiting times. Based on 25 years of soft X-ray flares observed by Geostationary Operational Environmental Satellite (GOES) instruments it is shown that 1. the waiting-time distribution of flares is consistent with a time-dependent Poisson process, and 2. the fraction of time the Sun spends with different flaring rates approximately follows an exponential distribution. The second result is a new phenomenological law for flares. It is shown analytically how the observed power-law behavior of the waiting times originates in the exponential distribution of flaring rates. These results are argued to be consistent with a non-stationary avalanche model for flares.

  14. Chronic Pain

    Science.gov (United States)

    ... a problem you need to take care of. Chronic pain is different. The pain signals go on ... there is no clear cause. Problems that cause chronic pain include Headache Low back strain Cancer Arthritis ...

  15. KEPLER FLARES. I. ACTIVE AND INACTIVE M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Suzanne L.; Davenport, James R. A.; Kowalski, Adam F.; Wisniewski, John P.; Deitrick, Russell; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Hebb, Leslie, E-mail: slhawley@uw.edu [Department of Physics, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, NY 14456 (United States)

    2014-12-20

    We analyzed Kepler short-cadence M dwarf observations. Spectra from the Astrophysical Research Consortium 3.5 m telescope identify magnetically active (Hα in emission) stars. The active stars are of mid-M spectral type, have numerous flares, and have well-defined rotational modulation due to starspots. The inactive stars are of early M type, exhibit less starspot signature, and have fewer flares. A Kepler to U-band energy scaling allows comparison of the Kepler flare frequency distributions with previous ground-based data. M dwarfs span a large range of flare frequency and energy, blurring the distinction between active and inactive stars designated solely by the presence of Hα. We analyzed classical and complex (multiple peak) flares on GJ 1243, finding strong correlations between flare energy, amplitude, duration, and decay time, with only a weak dependence on rise time. Complex flares last longer and have higher energy at the same amplitude, and higher energy flares are more likely to be complex. A power law fits the energy distribution for flares with log E{sub K{sub p}}> 31 erg, but the predicted number of low-energy flares far exceeds the number observed, at energies where flares are still easily detectable, indicating that the power-law distribution may flatten at low energy. There is no correlation of flare occurrence or energy with starspot phase, the flare waiting time distribution is consistent with flares occurring randomly in time, and the energies of consecutive flares are uncorrelated. These observations support a scenario where many independent active regions on the stellar surface are contributing to the observed flare rate.

  16. Analysis of the 9th November 1990 flare

    Indian Academy of Sciences (India)

    Anita Joshi; Wahab Uddin

    2000-09-01

    In this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990 flare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of the flare with SXR and MW radiations were also studied.

  17. Postoperative pain

    DEFF Research Database (Denmark)

    Kehlet, H; Dahl, J B

    1993-01-01

    also modify various aspects of the surgical stress response, and nociceptive blockade by regional anesthetic techniques has been demonstrated to improve various parameters of postoperative outcome. It is therefore stressed that effective control of postoperative pain, combined with a high degree......Treatment of postoperative pain has not received sufficient attention by the surgical profession. Recent developments concerned with acute pain physiology and improved techniques for postoperative pain relief should result in more satisfactory treatment of postoperative pain. Such pain relief may...

  18. Microwave View on Particle Acceleration in Flares

    CERN Document Server

    Fleishman, Gregory D

    2013-01-01

    The thermal-to-nonthermal partition was found to vary greatly from one flare to another resulting in a broad variety of cases from 'heating without acceleration' to 'acceleration without heating'. Recent analysis of microwave data of these differing cases suggests that a similar acceleration mechanism, forming a power-law nonthermal tail up to a few MeV or even higher, operates in all the cases. However, the level of this nonthermal spectrum compared to the original thermal distribution differs significantly from one case to another, implying a highly different thermal-to-nonthermal energy partition in various cases. This further requires a specific mechanism capable of extracting the charged particles from the thermal pool and supplying them to a bulk acceleration process to operate in flares \\textit{in addition} to the bulk acceleration process itself, which, in contrast, efficiently accelerates the seed particles, while cannot accelerate the thermal particles. Within this 'microwave' view on the flare ener...

  19. Remote Oscillatory responses to a solar flare

    CERN Document Server

    Andic, Aleksandra

    2013-01-01

    The processes governing energy storage and release in the Sun are both related to the solar magnetic field. We demonstrate the existence of a magnetic connection between energy released caused by a flare and increased oscillatory power in the lower solar atmosphere. The oscillatory power in active regions tends to increase in response to explosive events at a different location, but not in the region itself. We carry out timing studies and show that this is probably caused by a large scale magnetic connection between the regions, and not a globally propagating wave. We show that oscillations tend to exist in longer lived wave trains at short periods (P< 200s) at the time of a flare. This may be a mechanism by which flare energy can be redistributed throughout the solar atmosphere.

  20. Image watermarking against lens flare effects

    Science.gov (United States)

    Chotikawanid, Piyanart; Amornraksa, Thumrongrat

    2017-02-01

    Lens flare effects in various photo and camera software nowadays can partially or fully damage the watermark information within the watermarked image. We propose in this paper a spatial domain based image watermarking against lens flare effects. The watermark embedding is based on the modification of the saturation color component in HSV color space of a host image. For watermark extraction, a homomorphic filter is used to predict the original embedding component from the watermarked component, and the watermark is blindly recovered by differentiating both components. The watermarked image's quality is evaluated by wPSNR, while the extracted watermark's accuracy is evaluated by NC. The experimental results against various types of lens flare effects from both computer software and mobile application showed that our proposed method outperformed the previous methods.

  1. High Energy Neutrinos from Recent Blazar Flares

    CERN Document Server

    Halzen, Francis

    2016-01-01

    The energy density of cosmic neutrinos measured by IceCube matches the one observed by Fermi in extragalactic photons that predominantly originate in blazars. This has inspired attempts to match Fermi sources with IceCube neutrinos. A spatial association combined with a coincidence in time with a flaring source may represent a smoking gun for the origin of the IceCube flux. In June 2015, the Fermi Large Area Telescope observed an intense flare from blazar 3C 279 that exceeded the steady flux of the source by a factor of forty for the duration of a day. We show that IceCube is likely to observe neutrinos, if indeed hadronic in origin, in data that are still blinded at this time. We also discuss other opportunities for coincident observations that include a recent flare from blazar 1ES 1959+650 that previously produced an intriguing coincidence with AMANDA observations.

  2. Measurements of Absolute Abundances in Solar Flares

    CERN Document Server

    Warren, Harry P

    2013-01-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO). EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias ($f$). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is $...

  3. Magnetic Field Amplification and Blazar Flares

    CERN Document Server

    Chen, Xuhui; Fossati, Giovanni; Pohl, Martin

    2013-01-01

    Recent multiwavelength observations of PKS 0208-512 by SMARTS, Fermi, and Swift revealed that gamma-ray and optical light curves of this flat spectrum radio quasars are highly correlated, but with an exception of one large optical flare having no corresponding gamma-ray activity or even detection. On the other hand, recent advances in SNRs observations and plasma simulations both reveal that magnetic field downstream of astrophysical shocks can be largely amplified beyond simple shock compression. These amplifications, along with their associated particle acceleration, might contribute to blazar flares, including the peculiar flare of PKS 0208-512. Using our time dependent multizone blazar emission code, we evaluate several scenarios that may represent such phenomena. This code combines Monte Carlo method that tracks the radiative processes including inverse Compton scattering, and Fokker-Planck equation that follows the cooling and acceleration of particles. It is a comprehensive time dependent code that ful...

  4. Flare-up of ulcerative colitis after systemic corticosteroids:A strong case for Strongyloides

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Super-imposed infection with intestinal organisms can mimic a flare-up of underlying disease in patients with inflammatory bowel disease (IBD). We report a case of patient with long standing ulcerative colitis (UC), who presented with abdominal pain, diarrhea and low- grade fever after receiving systemic corticosteroids for an unrelated disorder. Despite a negative stool examination, a peripheral eosinophilia reappeared upon tapering down of a corticosteroid dose. Subsequently, duodenal biopsies showed evidence for Strongyloides, presumably acquired 20 years ago when the patient was residing in Brazil. The patient fully recovered following anti-helmintic therapy. This case underscores the importance of considering Strongyloides in the work-up of flaring-up IBD patients, even if a history of residing or traveling to endemic areas is in the distant past.

  5. Active Region Emergence and Remote Flares

    Science.gov (United States)

    Fu, Yixing; Welsch, Brian T.

    2016-02-01

    We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the "interaction energy" between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of "topological" free magnetic energy in the global coronal field that is independent of any "internal" free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA's Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the "breakout" model of coronal mass ejections, might play a significant role in the occurrence of some flares.

  6. The Flare-ona of EK Draconis

    Science.gov (United States)

    Ayres, Thomas R.

    2015-07-01

    EK Draconis (HD 129333: G1.5 V) is a well-known young (50 Myr) solar analog. In 2012, Hubble Space Telescope returned to EK Dra to follow up a far-ultraviolet (FUV) SNAPshot visit by Cosmic Origins Spectrograph (COS) two years earlier. The brief SNAP pointing had found surprisingly redshifted, impulsively variable subcoronal “hot-line” emission of Si iv 1400 Å (T ˜ 8 × 104 K). Serendipitously, the 2012 follow-on program witnessed one of the largest FUV flares ever recorded on a sunlike star, which again displayed strong redshifts (downflows) of 30-40 km s-1, even after compensating for small systematics in the COS velocity scales, uncovered through a cross-calibration by Space Telescope Imaging Spectrograph (STIS). The (now reduced, but still substantial) ˜10 km s-1 hot-line redshifts outside the flaring interval did not vary with rotational phase, so cannot be caused by “Doppler imaging” (bright surface patches near a receding limb). Density diagnostic O iv] 1400 Å multiplet line ratios of EK Dra suggest ne ˜ 1011 cm-3, an order of magnitude larger than in low-activity solar twin α Centauri A, but typical of densities inferred in large stellar soft X-ray events. The self-similar FUV hot-line profiles between the flare decay and the subsequent more quiet periods, and the unchanging but high densities, reinforce a long-standing idea that the coronae of hyperactive dwarfs are flaring all the time, in a scale-free way; a flare-ona if you will. In this picture, the subsonic hot-line downflows probably are a byproduct of the post-flare cooling process, something like “coronal rain” on the Sun. All in all, the new STIS/COS program documents a complex, energetic, dynamic outer atmosphere of the young sunlike star.

  7. Flares in the X-ray source EXO 2030 + 375

    Science.gov (United States)

    Apparao, Krishna M. V.

    1991-01-01

    Six X-ray flares were observed in the source EXO 2030 + 375 with an average time interval of about 4 hr between the flares. It is shown here that the flares can be due to Rayleigh-Taylor instabilities near the magnetospheric boundary of the neutron star when it reaches the equilibrium period.

  8. MWA targeted campaign of nearby, flaring M dwarf stars

    Science.gov (United States)

    Lynch, C.; Murphy, T.; Kaplan, D. L.

    2017-01-01

    Flaring activity is a common characteristic of magnetically active stellar systems. Flare events produce emission throughout the electromagnetic spectrum, implying a range of physical processes. Early 100 - 200 MHz observations of M dwarf flare stars detected bright (>100 mJy) flares with occurrence rates between 0.06 - 0.8 flares per hour. These rates imply that observing 100 - 200 MHz flares from M dwarf stars is fairly easy with many detections expected for modern low-frequency telescopes. However, long observational campaigns using these modern telescopes have not reproduced these early detections. This could be because the rates are over estimated and contaminated by radio frequency interference. Recently Lynch et al. (submitted) detected four flares from UV Ceti at 154 MHz using the Murchison Widefield Array. The flares have flux densities between 10-65 mJy -- a factor of 100 fainter than most flares in the literature at these frequencies -- and are only detected in circular polarization. The flare rates for these newly detected flares are roughly consistent with earlier rates however the uncertainties are large. Building off this result we propose a 102 hour survey of the closet six M dwarf stars with observed magnetic activity traced in X-rays and 100 - 200 MHz emission. The rates measured from this survey would inform the duration required for future blind surveys for flares from M dwarf stars.

  9. Absorption events associated with solar flares

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    During the upward period of solar cycle 23, the imaging riometer at Zhongshan, Antarctica (geomag. lat. 74.5°S) was used to study the solar proton events and the X-ray solar flares which are associated with the absorption events. In our study, the relationship between the absorption intensity and X-ray flux is found in a power form which is consistent with the theoretical result. The imaging riometer absorption data at Ny-?lesund, Svalbard reconfirm the above relationship. We also argue that only M-class flares can generate a significant daytime absorption.

  10. Universality in solar flare and earthquake occurrence.

    Science.gov (United States)

    de Arcangelis, L; Godano, C; Lippiello, E; Nicodemi, M

    2006-02-10

    Earthquakes and solar flares are phenomena involving huge and rapid releases of energy characterized by complex temporal occurrence. By analyzing available experimental catalogs, we show that the stochastic processes underlying these apparently different phenomena have universal properties. Namely, both problems exhibit the same distributions of sizes, interoccurrence times, and the same temporal clustering: We find after flare sequences with power law temporal correlations as the Omori law for seismic sequences. The observed universality suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism.

  11. Thermo-hydraulic modeling of flow in flare systems

    OpenAIRE

    Meindinyo, Remi-Erempagamo T.

    2012-01-01

    Flare systems play a major role in the safety of Oil and Gas installations by serving as outlets for emergency pressure relief in case of process upsets. Accurate and reliable estimation of system thermo-hydraulic parameters, especially system back-pressure is critical to the integrity of a flare design. FlareNet (Aspen Flare System Analyzer Version 7) is a steady state simulation tool tailored for flare system design and has found common use today. But design based on steady state modelin...

  12. Pelvic Pain

    Science.gov (United States)

    Pelvic pain occurs mostly in the lower abdomen area. The pain might be steady, or it might come and go. If the pain is severe, it might get in the way ... re a woman, you might feel a dull pain during your period. It could also happen during ...

  13. A solar tornado triggered by flares?

    CERN Document Server

    Panesar, N K; Tiwari, S K; Low, B C

    2012-01-01

    Solar tornados are dynamical, conspicuously helical magnetic structures mainly observed as a prominence activity. We investigate and propose a triggering mechanism for the solar tornado observed in a prominence cavity by SDO/AIA on September 25, 2011. High-cadence EUV images from the SDO/AIA and the Ahead spacecraft of STEREO/EUVI are used to correlate three flares in the neighbouring active-region (NOAA 11303), and their EUV waves, with the dynamical developments of the tornado. The timings of the flares and EUV waves observed on-disk in 195\\AA\\ are analyzed in relation to the tornado activities observed at the limb in 171\\AA. Each of the three flares and its related EUV wave occurred within 10 hours of the onset of the tornado. They have an observed causal relationship with the commencement of activity in the prominence where the tornado develops. Tornado-like rotations along the side of the prominence start after the second flare. The prominence cavity expands with acceleration of tornado motion after the ...

  14. Do all Flares have White Light Emission?

    CERN Document Server

    Jess, D B; Crockett, P J; Keenan, F P

    2008-01-01

    High-cadence, multiwavelength optical observations of a solar active region (NOAA 10969), obtained with the Swedish Solar Telescope, are presented. Difference imaging of white light continuum data reveals a white light brightening, 2 min in duration, linked to a co-temporal and co-spatial C2.0 flare event. The flare kernel observed in the white light images has a diameter of 300 km, thus rendering it below the resolution limit of most space-based telescopes. Continuum emission is present only during the impulsive stage of the flare, with the effects of chromospheric emission subsequently delayed by approximately 2 min. The localized flare emission peaks at 300% above the quiescent flux. This large, yet tightly confined, increase in emission is only resolvable due to the high spatial resolution of the Swedish Solar Telescope. An investigation of the line-of-sight magnetic field derived from simultaneous MDI data shows that the continuum brightening is located very close to a magnetic polarity inversion line. A...

  15. Measurements of Absolute Abundances in Solar Flares

    Science.gov (United States)

    Warren, Harry P.

    2014-05-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (f). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is f = 1.17 ± 0.22. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation occurs.

  16. The Relation between Solar Eruption Topologies and Observed Flare Features I: Flare Ribbons

    CERN Document Server

    Savcheva, A; McKillop, S; McCauley, P; Hanson, E; Su, Y; Werner, E; DeLuca, E E

    2015-01-01

    In this paper we present a topological magnetic field investigation of seven two-ribbon flares in sigmoidal active regions observed with Hinode, STEREO, and SDO. We first derive the 3D coronal magnetic field structure of all regions using marginally unstable 3D coronal magnetic field models created with the flux rope insertion method. The unstable models have been shown to be a good model of the flaring magnetic field configurations. Regions are selected based on their pre-flare configurations along with the appearance and observational coverage of flare ribbons, and the model is constrained using pre-flare features observed in extreme ultraviolet and X-ray passbands. We perform a topology analysis of the models by computing the squashing factor, Q, in order to determine the locations of prominent quasi-separatrix layers (QSLs). QSLs from these maps are compared to flare ribbons at their full extents. We show that in all cases the straight segments of the two J-shaped ribbons are matched very well by the flux...

  17. Optical flares and flaring oscillations on the M-type eclipsing binary CU Cnc

    CERN Document Server

    -B., Qian S; Zhu, L -Y; Liu, L; Liao, W -P; Zhao, E -G; He, J -J; Li, L -J; Li, K; Dai, Z -B

    2012-01-01

    We report here the discovery of an optical flare observed in R band from the red-dwarf eclipsing binary CU Cnc whose component stars are at the upper boundary of full convection (M1=0.43 and M2=0.4M0, M0 is the solar mass). The amplitude of the flare is the largest among those detected in R band (~0.52mag) and the duration time is about 73 minutes. As those observed on the Sun, quasi-periodic oscillations were seen during and after the flare. Three more R-band flares were found by follow up monitoring. In total, this binary was monitored photometrically by using R filter for 79.9 hours, which reveals a R-band flare rate about 0.05 flares per hour. These detections together with other strong chromospheric and coronal activities, i.e., very strong H_alpha and H_beta emission features and an EUV and X-ray source, indicate that it has very strong magnetic activity. Therefore, the apparent faintness (~1.4 magnitude in V) of CU Cnc compared with other single red dwarfs of the same mass can be plausibly explained by...

  18. GRB Flares: A New Detection Algorithm, Previously Undetected Flares, and Implications on GRB Physics

    CERN Document Server

    Swenson, C A

    2013-01-01

    Flares in GRB light curves have been observed since shortly after the discovery of the first GRB afterglow. However, it was not until the launch of the Swift satellite that it was realized how common flares are, appearing in nearly 50% of all X-ray afterglows as observed by the XRT instrument. The majority of these observed X-ray flares are easily distinguishable by eye and have been measured to have up to as much fluence as the original prompt emission. Through studying large numbers of these X-ray flares it has been determined that they likely result from a distinct emission source different than that powering the GRB afterglow. These findings could be confirmed if similar results were found using flares in other energy ranges. However, until now, the UVOT instrument on Swift seemed to have observed far fewer flares in the UV/optical than were seen in the X-ray. This was primarily due to poor sampling and data being spread across multiple filters, but a new optimal co-addition and normalization of the UVOT ...

  19. Field Measurements of Black Carbon Yields from Gas Flaring.

    Science.gov (United States)

    Conrad, Bradley M; Johnson, Matthew R

    2017-02-07

    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  20. MOST Observations of Our Nearest Neighbor: Flares on Proxima Centauri

    Science.gov (United States)

    Davenport, James R. A.; Kipping, David M.; Sasselov, Dimitar; Matthews, Jaymie M.; Cameron, Chris

    2016-10-01

    We present a study of white-light flares from the active M5.5 dwarf Proxima Centauri using the Canadian microsatellite Microvariability and Oscillations of STars. Using 37.6 days of monitoring data from 2014 to 2015, we have detected 66 individual flare events, the largest number of white-light flares observed to date on Proxima Cen. Flare energies in our sample range from 1029 to 1031.5 erg. The flare rate is lower than that of other classic flare stars of a similar spectral type, such as UV Ceti, which may indicate Proxima Cen had a higher flare rate in its youth. Proxima Cen does have an unusually high flare rate given its slow rotation period, however. Extending the observed power-law occurrence distribution down to 1028 erg, we show that flares with flux amplitudes of 0.5% occur 63 times per day, while superflares with energies of 1033 erg occur ∼8 times per year. Small flares may therefore pose a great difficulty in searches for transits from the recently announced 1.27 M ⊕ Proxima b, while frequent large flares could have significant impact on the planetary atmosphere.

  1. Flare Characteristics from X-ray Light Curves

    Science.gov (United States)

    Gryciuk, M.; Siarkowski, M.; Sylwester, J.; Gburek, S.; Podgorski, P.; Kepa, A.; Sylwester, B.; Mrozek, T.

    2017-06-01

    A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS- Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single ("elementary") flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16 - 1.51 keV, 1.51 - 15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue - the SphinX Flare Catalogue - which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.

  2. Ultraviolet and radio flares from UX Arietis and HR 1099

    Science.gov (United States)

    Lang, Kenneth R.; Willson, Robert F.

    1988-01-01

    Simultaneous observations of the RS CVn systems UX Ari and HR 1099 with the IUE satellite and the VLA are presented. Flaring activity is observed at ultraviolet wavelengths with the IUE when none is detected at radio wavelengths with the VLA. Radio flares with no detectable ultraviolet activity have also been observed. Thus, flares in the two spectral regions are either uncorrelated or weakly correlated. The flaring emission probably originates in different regions at the two wavelengths. Radio flares from RS CVn stars may originate in sources that are larger than, or comparable to, a star in size. This is in sharp contrast to compact, coherent radio flares from dwarf M stars. The ultraviolet flares from RS CVn stars probably originate in sources that are smaller than a component star.

  3. Solar flare prediction using highly stressed longitudinal magnetic field parameters

    Institute of Scientific and Technical Information of China (English)

    Xin Huang; Hua-Ning Wang

    2013-01-01

    Three new longitudinal magnetic field parameters are extracted from SOHO/MDI magnetograms to characterize properties of the stressed magnetic field in active regions,and their flare productivities are calculated for 1055 active regions.We find that the proposed parameters can be used to distinguish flaring samples from non-flaring samples.Using the long-term accumulated MDI data,we build the solar flare prediction model by using a data mining method.Furthermore,the decision boundary,which is used to divide flaring from non-flaring samples,is determined by the decision tree algorithm.Finally,the performance of the prediction model is evaluated by 10-fold cross validation technology.We conclude that an efficient solar flare prediction model can be built by the proposed longitudinal magnetic field parameters with the data mining method.

  4. X-ray Flares of EV Lac: Statistics, Spectra, Diagnostics

    CERN Document Server

    Huenemoerder, David P; Testa, Paola; Drake, Jeremy J; Osten, Rachel A; Reale, Fabio

    2010-01-01

    We study the spectral and temporal behavior of X-ray flares from the active M-dwarf EV Lac in 200 ks of exposure with the Chandra/HETGS. We derive flare parameters by fitting an empirical function which characterizes the amplitude, shape, and scale. The flares range from very short (<1 ks) to long (10 ks) duration events with a range of shapes and amplitudes for all durations. We extract spectra for composite flares to study their mean evolution and to compare flares of different lengths. Evolution of spectral features in the density-temperature plane shows probable sustained heating. The short flares are significantly hotter than the longer flares. We determined an upper limit to the Fe K fluorescent flux, the best fit value being close to what is expected for compact loops.

  5. Study of sunspot group morphological variations leading to flaring events

    CERN Document Server

    Korsos, M B; Ludmany, A

    2014-01-01

    It is widely assumed that the most probable sites of flare occurrences are the locations of high horizontal magnetic field gradients in the active regions. Instead of magnetograms the present work checks this assumption by using sunspot data, the targeted phenomenon is the pre-flare behaviour of the strong horizontal gradients of the magnetic field at the location of the flare. The empirical basis of the work is the SDD (SOHO/MDI-Debrecen sunspot Data) sunspot catalogue. Case studies of two active regions and five X-flares have been carried out to find possible candidates for pre-flare signatures. It has been found that the following properties of the temporal variations of horizontal magnetic field gradient are promising for flare forecast: the speed of its growth, its maximal value, its decrease after the maximum until the flare and the rate of its fluctuation.

  6. The CME - Flare Relationship During The Present Solar Cycle

    Science.gov (United States)

    Shaltout, M.; Mahrous, A.; Youssef, M.; Mawad, R.; El-Naway, M.

    The relation between the Coronal mass Ejection CME and the solar flare is statistically studied More than ten thousand CME events observed by SOHO LASCO during the period 1996-2005 have been analyzed The soft x-ray flux measurements provided by the Geostationary Operational Environmental Satellite GEOS recorded more than twenty thousand flares in the same time period The data have been filtered under certain temporal and spatial conditions to select the CME-flare associated events The results show that the lift-off time of CME-flare associated events having a time interval within the range 0 4 sim 0 6 hour after the occurrence time of associated flares The CME events have been classified into a certain categories according to its energy E CME and the classes of the associated flares In addition we found a good linear correlation between the E CME and the x-ray flux of associated flare events

  7. Five years of gas flaring by country, oil field or flare observed by the Suomi NPP satellite

    Science.gov (United States)

    Zhizhin, M. N.; Elvidge, C.; Baugh, K.; Hsu, F. C.

    2016-12-01

    We will present a new methodology and the resulting interactive map and statistical estimates of flared gas volumes in 2012-2016 using multispectral infrared images from VIIRS radiometer at the Suomi NPP satellite. The high temperature gas flares are detected at the night side of the Earth with the Nightfire algorithm. Gas flares are distinct from biomass burning and industrial heat sources because they have higher temperatures. Sums of the radiative heat from the detected flares are calibrated with country-level flared volumes reported by CEDIGAZ. Statistical analysis of the database with accumulated 5 years of the Nightfire detections makes it possible to estimate instant flow rate for an individual flare, as well as integral flared volumes and long term trends for all the countries or oil and gas fields.

  8. MOST Observations of our Nearest Neighbor: Flares on Proxima Centauri

    CERN Document Server

    Davenport, James R A; Sasselov, Dimitar; Matthews, Jaymie M; Cameron, Chris

    2016-01-01

    We present a study of white light flares from the active M5.5 dwarf Proxima Centauri using the Canadian microsatellite MOST. Using 37.6 days of monitoring data from 2014 and 2015, we have detected 66 individual flare events, the largest number of white light flares observed to date on Proxima Cen. Flare energies in our sample range from $10^{29}$-$10^{31.5}$ erg, with complex, multi-peaked structure found in 22% of these events. The flare rate is lower than that of other classic flare stars of similar spectral type, such as UV Ceti, which may indicate Proxima Cen had a higher flare rate in its youth. Proxima Cen does have an unusually high flare rate given the slow reported rotation period, however. Extending the observed power-law occurrence distribution down to $10^{28}$ erg, we show that flares with flux amplitudes of 0.5% occur 63 times per day, while superflares with energies of $10^{33}$ erg occur ~8 times per year. Small flares may therefore pose a great difficulty in searches for transits from the rec...

  9. Characteristics of the Polarity Inversion Line and Solar Flare Forecasts

    Science.gov (United States)

    Sadykov, Viacheslav M.; Kosovichev, Alexander G.

    2017-08-01

    Studying connection between solar flares and properties of magnetic field in active regions is very important for understanding the flare physics and developing space weather forecasts. In this work, we analyze relationship between the flare X-ray peak flux from the GOES satellite, and characteristics of the line-of-sight (LOS) magnetograms obtained by the SDO/HMI instrument during the period of April, 2010 - June, 2016. We try to answer two questions: 1) What characteristics of the LOS magnetic field are most important for the flare initiation and magnitude? 2) Is it possible to construct a reliable forecast of ≥ M1.0 and ≥ X1.0 class flares based only on the LOS magnetic field characteristics? To answer these questions, we apply a Polarity Inversion Line (PIL) detection algorithm, and derive various properties of the PIL and the corresponding Active Regions (AR). The importance of these properties for flare forecasting is determined by their ability to separate flaring cases from non-flaring, and their Fisher ranking score. It is found that the PIL characteristics are of special importance for the forecasts of both ≥ M1.0 and ≥ X1.0 flares, while the global AR characteristics become comparably discriminative only for ≥ X1.0 flares. We use the Support Vector Machine (SVM) classifier and train it on the six characteristics of the most importance for each case. The obtained True Skill Statistics (TSS) values of 0.70 for ≥ M1.0 flares and 0.64 for ≥ X1.0 flares are better than the currently-known expert-based predictions. Therefore, the results confirm the importance of the LOS magnetic field data and, in particular, the PIL region characteristics for flare forecasts.

  10. Low back pain - acute

    Science.gov (United States)

    Backache; Low back pain; Lumbar pain; Pain - back; Acute back pain; Back pain - new; Back pain - short-term; Back ... lower back supports most of your body's weight. Low back pain is the number two reason that ...

  11. Back Pain

    Science.gov (United States)

    ... Oh, my aching back!", you are not alone. Back pain is one of the most common medical problems, ... 10 people at some point during their lives. Back pain can range from a dull, constant ache to ...

  12. Breast pain

    Science.gov (United States)

    Pain - breast; Mastalgia; Mastodynia; Breast tenderness ... There are many possible causes for breast pain. For example, hormone level changes from menstruation or pregnancy often cause breast tenderness. Some swelling and tenderness just before your period ...

  13. Muscle pain

    African Journals Online (AJOL)

    Causes of muscle pain include stress, physical activity, infections, hyper or .... Acupuncture. It is a traditional Chinese-based therapeutic method which ..... and Spinal Mechanisms of Pain and Dry Needling Mediated Analgesia: A Clinical.

  14. Face pain

    Science.gov (United States)

    ... begin in other places in the body. Abscessed tooth (ongoing throbbing pain on one side of the lower face that ... face, and aggravated by eating. Call a dentist. Pain is persistent, ... by other unexplained symptoms. Call your primary provider.

  15. Pain Assessment

    Science.gov (United States)

    ... acupuncture, chiropractic care, massage or other manual therapies, yoga, herbal and nutritional therapies, or others. This information helps the health care provider understand the nature of the pain or the potential benefits of treatment. The goals of the comprehensive pain ...

  16. Urination Pain

    Science.gov (United States)

    ... Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family Life First Aid & ... decreased appetite or activity irritability nausea or vomiting lower back pain or abdominal (belly) pain wetting accidents (in potty- ...

  17. Period Pain

    Science.gov (United States)

    ... You may also have other symptoms, such as lower back pain, nausea, diarrhea, and headaches. Period pain is not ... Taking a hot bath Doing relaxation techniques, including yoga and meditation You might also try taking over- ...

  18. Neck Pain

    Science.gov (United States)

    ... antidepressants for pain relief. Therapy Physical therapy. A physical therapist can teach you correct posture, alignment and neck- ... therapy, under supervision of a medical professional and physical therapist, may provide relief of some neck pain, especially ...

  19. Slipping magnetic reconnections with multiple flare ribbons during an X-class solar flare

    CERN Document Server

    Zheng, Ruisheng; Wang, Bing

    2016-01-01

    With the observations of the Solar Dynamics Observatory, we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and there appeared three FRs. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edge, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection between the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in 3D standard model for eruptive flares. We suggest that complex structures of the flare is likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least...

  20. Temporal evolution and spatial distribution of white-light flare kernels in a solar flare

    CERN Document Server

    Kawate, Tomoko; Nakatani, Yoshikazu; Ichimoto, Kiyoshi; Asai, Ayumi; Morita, Satoshi; Masuda, Satoshi

    2016-01-01

    On 2011 September 6, we observed an X2.1-class flare in continuum and H$\\alpha$ with a frame rate of about 30~Hz. After processing images of the event by using a speckle-masking image reconstruction, we identified white-light (WL) flare ribbons on opposite sides of the magnetic neutral line. We derive the lightcurve decay times of the WL flare kernels at each resolution element by assuming that the kernels consist of one or two components that decay exponentially, starting from the peak time. As a result, 42% of the pixels have two decay-time components with average decay times of 15.6 and 587 s, whereas the average decay time is 254 s for WL kernels with only one decay-time component. The peak intensities of the shorter decay-time component exhibit good spatial correlation with the WL intensity, whereas the peak intensities of the long decay-time components tend to be larger in the early phase of the flare at the inner part of the flare ribbons, close to the magnetic neutral line. The average intensity of th...

  1. The Power-Law Distribution of Flare Kernels and Fractal Current Sheets in a Solar Flare

    CERN Document Server

    Nishizuka, N; Takasaki, H; Kurokawa, H; Shibata, K; 10.1088/0004-637X/694/1/L74

    2013-01-01

    We report a detailed examination of the fine structure inside flare ribbons and the temporal evolution of this fine structure during the X2.5 solar flare that occurred on 2004 November 10. We examine elementary bursts of the C IV (1550{\\AA}) emission lines seen as local transient brightenings inside the flare ribbons in the ultraviolet (1600{\\AA}) images taken with Transition Region and Coronal Explorer, and we call them C IV kernels. This flare was also observed in Ha with the Sartorius 18 cm Refractor telescope at Kwasan observatory, Kyoto University, and in hard X-rays (HXR) with Reuven Ramaty High Energy Solar Spectroscopic Imager. Many C IV kernels, whose sizes were comparable to or less than 2", were found to brighten successively during the evolution of the flare ribbon. The majority of them were well correlated with the Ha kernels in both space and time, while some of them were associated with the HXR emission. These kernels were thought to be caused by the precipitation of nonthermal particles at the...

  2. Ensemble Forecasting of Major Solar Flares

    CERN Document Server

    Guerra, J A; Uritsky, V M

    2015-01-01

    We present the results from the first ensemble prediction model for major solar flares (M and X classes). Using the probabilistic forecasts from three models hosted at the Community Coordinated Modeling Center (NASA-GSFC) and the NOAA forecasts, we developed an ensemble forecast by linearly combining the flaring probabilities from all four methods. Performance-based combination weights were calculated using a Monte Carlo-type algorithm by applying a decision threshold $P_{th}$ to the combined probabilities and maximizing the Heidke Skill Score (HSS). Using the probabilities and events time series from 13 recent solar active regions (2012 - 2014), we found that a linear combination of probabilities can improve both probabilistic and categorical forecasts. Combination weights vary with the applied threshold and none of the tested individual forecasting models seem to provide more accurate predictions than the others for all values of $P_{th}$. According to the maximum values of HSS, a performance-based weights ...

  3. Gravitational fragmentation of the Carina Flare supershell

    Science.gov (United States)

    Wünsch, Richard

    2015-03-01

    We study the gravitational fragmentation of a thick shell comparing the analytical theory to 3D hydrodynamic simulations and to observations of the Carina Flare supershell. We use both grid-based (AMR) and particle-based (SPH) codes to follow the idealised model of the fragmenting shell and found an excellent agreement between the two codes. Growth rates of fragments at different wavelength are well described by the pressure assisted gravitational instability (PAGI) - a new theory of the thick shell fragmentation. Using the APEX telescope we observe a part of the surface of the Carina Flare supershell (GSH287+04-17) in the 13CO(2-1) line. We apply a new clump-finding algorithm DENDROFIND to identify 50 clumps. We determine the clump mass function and we construct the minimum spanning tree connecting clumps positions to estimate the typical distance among clumps. We conclude that the observed masses and distances correspond well to the prediction of PAGI.

  4. Heavy Ion Acceleration in Impulsive Solar Flares

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2002-01-01

    The abundance enhancements of heavy ions Ne, Mg, Si and Fe in impulsive solar energetic particle (SEP) eventsare explained by a plasma acceleration mechanism. In consideration of the fact that the coronal plasma is mainlycomposed of hydrogen and helium ions, we think that theion-ion hybrid wave and quasi-perpendicular wave can.be excited by the energetic electron beam in impulsive solar flares. These waves may resonantly be absorbed byheavy ions when the frequencies of these waves are close to the second-harmonic gyrofrequencies of these heavyions. This requires the coronal plasma temperature to be located in the range ofT ~ (5 - 9) × 106 K in impulsivesolar flares and makes the average ionic charge state of these heavy ions in impulsive SEP events higher than theaverage ionic charge state of these heavy ions in gradual SEP events. These pre-heated and enhanced heavy ionsin impulsive SEP events.

  5. High energy flare physics group summary

    Science.gov (United States)

    Ryan, J. M.; Kurfess, J. D.

    1989-01-01

    The contributions of the High Energy Flare Physics Special Session in the American Astronomical Society Solar Physics Division Meeting are reviewed. Oral and poster papers were presented on observatories and instruments available for the upcoming solar maximum. Among these are the space-based Gamma Ray Observatory, the Solar Flare and Cosmic Burst Gamma Ray Experiment on the Ulysses spacecraft, the Soft X Ray Telescope on the spacecraft Solar-A, and the balloon-based Gamma Ray Imaging Device. Ground based observatories with new capabilities include the BIMA mm-wave interferometer (Univ. of California, Berkeley; Univ. of Illinois; Univ. of Maryland), Owens Valley Radio Observatory and the Very Large Array. The highlights of the various instrument performances are reported and potential data correlations and collaborations are suggested.

  6. Millimeter Observation of Solar Flares with Polarization

    Science.gov (United States)

    Silva, D. F.; Valio, A. B. M.

    2016-04-01

    We present the investigation of two solar flares on February 17 and May 13, 2013, studied in radio from 5 to 405 GHz (RSTN, POEMAS, SST), and in X-rays up to 300 keV (FERMI and RHESSI). The objective of this work is to study the evolution and energy distribution of the population of accelerated electrons and the magnetic field configuration. For this we constructed and fit the radio spectrum by a gyro synchrotron model. The optically thin spectral indices from radio observations were compared to that of the hard X-rays, showing that the radio spectral index is harder than the latter by 2. These flares also presented 10-15 % circular polarized emission at 45 and 90 GHz that suggests that the sources are located at different legs of an asymmetric loop.

  7. Search for neutrinos from flaring blazars

    Energy Technology Data Exchange (ETDEWEB)

    Kreter, Michael [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Emil-Fischer-Strasse 31, 97074 Wuerzburg (Germany); ECAP, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Eberl, Thomas; James, Clancy [ECAP, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Kadler, Matthias [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Emil-Fischer-Strasse 31, 97074 Wuerzburg (Germany); Collaboration: ANTARES-KM3NeT-Erlangen-Collaboration

    2016-07-01

    Jets from Active Galactic Nuclei (AGN) are among the best candidates for the recently detected extraterrestrial neutrino flux. Hadronic AGN jet-emission models predict a tight correlation between the neutrino flux and the time-variable gamma-ray emission. At the same time, the atmospheric-background (noise) signal, which often dominates in neutrino-astronomical observations, can be substantially reduced by rejecting long-lasting periods of low flux. For these reasons, short high-amplitude gamma-ray flares, as often observed in blazars, can be used to substantially increase the sensitivity of neutrino telescopes in point-source searches. We develop a strategy to search for TeV neutrinos from flaring blazar jets from the TANAMI sample using the ANTARES telescope and Fermi gamma-ray light curves. An unbinned maximum-likelihood method is applied to optimize the probability of a neutrino detection from TANAMI sources.

  8. Nonlocal thermal transport in solar flares

    Science.gov (United States)

    Karpen, Judith T.; Devore, C. Richard

    1987-01-01

    A flaring solar atmosphere is modeled assuming classical thermal transport, locally limited thermal transport, and nonlocal thermal transport. The classical, local, and nonlocal expressions for the heat flux yield significantly different temperature, density, and velocity profiles throughout the rise phase of the flare. Evaporation of chromospheric material begins earlier in the nonlocal case than in the classical or local calculations, but reaches much lower upward velocities. Much higher coronal temperatures are achieved in the nonlocal calculations owing to the combined effects of delocalization and flux limiting. The peak velocity and momentum are roughly the same in all three cases. A more impulsive energy release influences the evolution of the nonlocal model more than the classical and locally limited cases.

  9. Selective Acceleration in Impulsive Solar Flares

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2001-01-01

    A plasma acceleration mechanism is proposed to explain the dramatic enhancement in the ratio of 3 He/4He, (enhancement factor 102 - 103) observed in solar 3He-rich flares. Considering that coronal plasma is mainly composed of hydrogen and helium ions, the hydrogen ion-helium ion hybrid waves and quasi-perpendicular waves can be excited by energetic electron beam during the impulsive solarflares. The frequencies of these waves are close to the 3He++ ion gyrofrequency, but far from the 4He++ ion gyrofrequency. Most of these waves are selectively absorbed by 3He ions. These preheated 3He ions can be successively stochastic accelerated by Alfvén turbulence, when their velocities are larger than the local Alfvén velocity. It makes the ratio of 3He/4He dramatically enhanced and the acceleration energy spectrum of 3He ions forms a power-law distribution during the impulsive solar flares.

  10. Monitoring and modeling radio flares from microquasars

    CERN Document Server

    Trushkin, S A; Bursov, N N

    2000-01-01

    We present results of long-term daily monitoring of a sample of Galactic radio-emitting X-ray binaries showing relativistic jets (RJXRB): SS433, Cyg X-3, and GRS 1915+105, with the RATAN-600 radio telescope in the 0.6-22 GHz range. We carried out the modeling calculations to understand the temporal (1--100 days) and spectral (1-22 GHz) dependence. We tested the finite jet segment models and we found that the geometry of the conical hollow jets is responsible for either a power law or an exponential decay of the flares. SS433 was monitored for 100 days in 1997 and 120 days in 1999. From the quiescent radio light curves, we obtained clear evidence of a 6.04-day 10-15% modulation. Three powerful flares (up to 13 Jy) from Cyg X-3 were detected in April 2000.

  11. Cyclical Variability of Prominences, CMEs and Flares

    Indian Academy of Sciences (India)

    J. L. Ballester

    2000-09-01

    Solar flares, prominences and CMEs are well known manifestations of solar activity. For many years, qualitative studies were made about the cyclical behaviour of such phenomena. Nowadays, more quantitative studies have been undertaken with the aim to understand the solar cycle dependence of such phenomena as well as peculiar behaviour, such as asymmetries and periodicities, occurring within the solar cycle. Here, we plan to review the more recent research concerning all these topics.

  12. Protection of Communication System From Solar Flares

    OpenAIRE

    Karthik, K.(Department of Physics, New York University, New York, NY, United States of America); Shirvram, B.

    2008-01-01

    Solar flares are enormous explosions on the surface of the sun and they release energy of the order of billion megatons of TNThis energy is in the form of electromagnetic radiations such as alpha, gamma, and ultraviolet rays. When exposed to high doses of radiation like 2-15 kilorad (Si), silicon integrated circuits in satellite communication systems fail to operate properly, thus affecting the performance of communication systems. Therefore, the major issue that needs to be addressed is the ...

  13. Universality in solar flare and earthquake occurrence

    OpenAIRE

    de Arcangelis, L.; Godano, C.; Lippiello, E.; Nicodemi, M.

    2006-01-01

    Earthquakes and solar flares are phenomena involving huge and rapid releases of energy characterized by complex temporal occurrence. By analysing available experimental catalogs, we show that the stochastic processes underlying these apparently different phenomena have universal properties. Namely both problems exhibit the same distributions of sizes, inter-occurrence times and the same temporal clustering: we find afterflare sequences with power law temporal correlations as the Omori law for...

  14. The Discriminant Analysis Flare Forecasting System (DAFFS)

    Science.gov (United States)

    Leka, K. D.; Barnes, Graham; Wagner, Eric; Hill, Frank; Marble, Andrew R.

    2016-05-01

    The Discriminant Analysis Flare Forecasting System (DAFFS) has been developed under NOAA/Small Business Innovative Research funds to quantitatively improve upon the NOAA/SWPC flare prediction. In the Phase-I of this project, it was demonstrated that DAFFS could indeed improve by the requested 25% most of the standard flare prediction data products from NOAA/SWPC. In the Phase-II of this project, a prototype has been developed and is presently running autonomously at NWRA.DAFFS uses near-real-time data from NOAA/GOES, SDO/HMI, and the NSO/GONG network to issue both region- and full-disk forecasts of solar flares, based on multi-variable non-parametric Discriminant Analysis. Presently, DAFFS provides forecasts which match those provided by NOAA/SWPC in terms of thresholds and validity periods (including 1-, 2-, and 3- day forecasts), although issued twice daily. Of particular note regarding DAFFS capabilities are the redundant system design, automatically-generated validation statistics and the large range of customizable options available. As part of this poster, a description of the data used, algorithm, performance and customizable options will be presented, as well as a demonstration of the DAFFS prototype.DAFFS development at NWRA is supported by NOAA/SBIR contracts WC-133R-13-CN-0079 and WC-133R-14-CN-0103, with additional support from NASA contract NNH12CG10C, plus acknowledgment to the SDO/HMI and NSO/GONG facilities and NOAA/SWPC personnel for data products, support, and feedback. DAFFS is presently ready for Phase-III development.

  15. Phantom Pain

    NARCIS (Netherlands)

    Wolff, Andre; Vanduynhoven, Eric; van Kleef, Maarten; Huygen, Frank; Pope, Jason E.; Mekhail, Nagy

    2011-01-01

    Phantom pain is pain caused by elimination or interruption of sensory nerve impulses by destroying or injuring the sensory nerve fibers after amputation or deafferentation. The reported incidence of phantom limb pain after trauma, injury or peripheral vascular diseases is 60% to 80%. Over half the p

  16. Sunspot waves and flare energy release

    CERN Document Server

    Sych, R; Altyntsev, A; Dudík, J; Kashapova, L

    2014-01-01

    We address a possibility of the flare process initiation and further maintenance of its energy release due to a transformation of sunspot longitudinal waves into transverse magnetic loop oscillations with initiation of reconnection. This leads to heating maintaining after the energy release peak and formation of a flat stage on the X-ray profile. We applied the time-distance plots and pixel wavelet filtration (PWF) methods to obtain spatio-temporal distribution of wave power variations in SDO/AIA data. To find magnetic waveguides, we used magnetic field extrapolation of SDO/HMI magnetograms. The propagation velocity of wave fronts was measured from their spatial locations at specific times. In correlation curves of the 17 GHz (NoRH) radio emission we found a monotonous energy amplification of 3-min waves in the sunspot umbra before the 2012 June 7 flare. This dynamics agrees with an increase in the wave-train length in coronal loops (SDO/AIA, 171 {\\AA}) reaching the maximum 30 minutes prior to the flare onset...

  17. Modelling repeatedly flaring delta-sunspots

    CERN Document Server

    Chatterjee, Piyali; Carlsson, Mats

    2016-01-01

    Active regions (AR) appearing on the surface of the Sun are classified into $\\alpha$, $\\beta$, $\\gamma$, and $\\delta$ by the rules of the Mount Wilson Observatory, California on the basis of their topological complexity. Amongst these, the $\\delta$-sunspots are known to be super-active and produce the most X-ray flares. Here, we present results from a simulation of the Sun by mimicking the upper layers and the corona, but starting at a more primitive stage than any earlier treatment. We find that this initial state consisting of only a thin sub-photospheric magnetic sheet breaks into multiple flux-tubes which evolve into a colliding-merging system of spots of opposite polarity upon surface emergence, similar to those often seen on the Sun. The simulation goes on to produce many exotic $\\delta$-sunspot associated phenomena: repeated flaring in the range of typical solar flare energy release and ejective helical flux ropes with embedded cool-dense plasma filaments resembling solar coronal mass ejections.

  18. Fine structure of flare ribbons and evolution of electric currents

    CERN Document Server

    Sharykin, I N

    2014-01-01

    Emission of solar flares across the electromagnetic spectrum is often observed in the form of two expanding ribbons. The standard flare model explains the flare ribbons as footpoints of magnetic arcades, emitting due to interaction of energetic particles with the chromospheric plasma. However, the physics of this interaction and properties of the accelerated particles are still unknown. We present results of multiwavelength observations of C2.1 flare of August 15, 2013, observed with New Solar Telescope (NST) of Big Bear Solar Observatory, Solar Dynamics Observatory (SDO), GOES and FERMI spacecraft. The observations reveal previously unresolved sub-arcsecond structure of the flare ribbons in regions of strong magnetic field consisting from numerous small-scale bright knots. We observe red-blue asymmetry of H alpha flare ribbons with a width as small as 100 km. We discuss the relationship between the ribbons and vertical electric currents estimated from vector magnetograms, and show that Joule heating can be r...

  19. Investigation of the Relationship between Solar Flares and Sunspot Groups

    Science.gov (United States)

    Eren, S.; Kilcik, A.

    2017-01-01

    We studied the relationship between X-Ray flare numbers (C, M, and, X class flares) and sunspot counts in four categories (Simple (A + B), Medium (C), Large (D + E + F), and End (H)). All data sets cover the whole Solar Cycle 23 and the ascending and maximum phases of Cycle 24 (1996-2014). Pearson correlation analysis method was used to investigate the degree of relationship between monthly solar flare numbers and sunspot counts observed in different sunspot categories. We found that the C, M, and X class flares have highest correlation with the large group sunspot counts, while the small category does not any meaningful correlation. Obtained correlation coefficients between large groups and C, M, and X class flare numbers are 0.79, 0.74, and 0.4, respectively. Thus, we conclude that the main sources of X-Ray solar flares are the complex/large sunspot groups.

  20. CME-flare association during the 23rd solar cycle

    Science.gov (United States)

    Mahrous, A.; Shaltout, M.; Beheary, M. M.; Mawad, R.; Youssef, M.

    2009-04-01

    The relation between coronal mass ejections (CMEs) and solar flares are statistically studied. More than 10,000 CME events observed by SOHO/LASCO during the period 1996-2005 have been analyzed. The soft X-ray flux measurements provided by the Geostationary Operational Environmental Satellite (GOES), recorded more than 20,000 flares in the same time period. The data is filtered under certain temporal and spatial conditions to select the CME-flare associated events. The results show that CME-flare associated events are triggered with a lift-off time within the range 0.4-1.0 h. We list a set of 41 CME-flare associated events satisfying the temporal and spatial conditions. The listed events show a good correlation between the CME energy and the X-ray flux of the CME-flare associated events with correlation coefficient of 0.76.

  1. Spinal pain

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, R., E-mail: roberto1766@interfree.it [Neuroradiology Department, A. Cardarelli Hospital, Naples (Italy); Popolizio, T., E-mail: t.popolizio1@gmail.com [Radiology Department, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (Fg) (Italy); D’Aprile, P., E-mail: paoladaprile@yahoo.it [Neuroradiology Department, San Paolo Hospital, Bari (Italy); Muto, M., E-mail: mutomar@tiscali.it [Neuroradiology Department, A. Cardarelli Hospital, Napoli (Italy)

    2015-05-15

    Highlights: • Purpose of this review is to address the current concepts on the pathophysiology of discogenic, radicular, facet and dysfunctional spinal pain, focusing on the role of the imaging in the diagnostic setting, to potentially address a correct approach also to minimally invasive interventional techniques. • Special attention will be given to the discogenic pain, actually considered as the most frequent cause of chronic low back pain. • The correct distinction between referred pain and radicular pain contributes to give a more correct approach to spinal pain. • The pathogenesis of chronic pain renders this pain a true pathology requiring a specific management. - Abstract: The spinal pain, and expecially the low back pain (LBP), represents the second cause for a medical consultation in primary care setting and a leading cause of disability worldwide [1]. LBP is more often idiopathic. It has as most frequent cause the internal disc disruption (IDD) and is referred to as discogenic pain. IDD refers to annular fissures, disc collapse and mechanical failure, with no significant modification of external disc shape, with or without endplates changes. IDD is described as a separate clinical entity in respect to disc herniation, segmental instability and degenerative disc desease (DDD). The radicular pain has as most frequent causes a disc herniation and a canal stenosis. Both discogenic and radicular pain also have either a mechanical and an inflammatory genesis. For to be richly innervated, facet joints can be a direct source of pain, while for their degenerative changes cause compression of nerve roots in lateral recesses and in the neural foramina. Degenerative instability is a common and often misdiagnosed cause of axial and radicular pain, being also a frequent indication for surgery. Acute pain tends to extinguish along with its cause, but the setting of complex processes of peripheral and central sensitization may influence its evolution in chronic

  2. X-ray Emission Characteristics of Flares Associated with CMEs

    Indian Academy of Sciences (India)

    Malini Aggarwal; Rajmal Jain; A. P. Mishra; P. G. Kulkarni; Chintan Vyas; R. Sharma; Meera Gupta

    2008-03-01

    We present the study of 20 solar flares observed by ``Solar X-ray Spectrometer (SOXS)” mission during November 2003 to December 2006 and found associated with coronal mass ejections (CMEs) seen by LASCO/SOHO mission. In this investigation, X-ray emission characteristics of solar flares and their relationship with the dynamics of CMEs have been presented.We found that the fast moving CMEs, i.e., positive acceleration are better associated with short rise time (< 150 s) flares. However, the velocity of CMEs increases as a function of duration of the flares in both 4.1–10 and 10–20 keV bands. This indicates that the possibility of association of CMEs with larger speeds exists with long duration flare events. We observed that CMEs decelerate with increasing rise time, decay time and duration of the associated X-ray flares. A total 10 out of 20 CMEs under current investigation showed positive acceleration, and 5 of them whose speed did not exceed 589 km/s were associated with short rise time (< 150 s) and short duration (< 1300 s) flares. The other 5 CMEs were associated with long duration or large rise time flare events. The unusual feature of all these positive accelerating CMEs was their low linear speed ranging between 176 and 775 km/s. We do not find any significant correlation between X-ray peak intensity of the flares with linear speed as well as acceleration of the associated CMEs. Based on the onset time of flares and associated CMEs within the observing cadence of CMEs by LASCO, we found that in 16 cases CME preceded the flare by 23 to 1786 s, while in 4 cases flare occurred before the CME by 47 to 685 s. We argue that both events are closely associated with each other and are integral parts of one energy release system.

  3. Observing the formation of flare-driven coronal rain

    OpenAIRE

    Scullion, E.; Rouppe van der Voort, L.; Antolin, P.; Wedemeyer, S.; Vissers, G.; E. P. Kontar; Gallagher, P

    2016-01-01

    PA. GV are funded by the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 291058 Flare-driven coronal rain can manifest from rapidly cooled plasma condensations near coronal loop-tops in thermally unstable post-flare arcades. We detect 5 phases that characterise the post-flare decay:heating, evaporation, conductive cooling dominance for ~120 s, radiative/ enthalpy cooling dominance for ~4700 s and finally catastrophic ...

  4. H$\\mathbf{\\alpha}$ Intensity Oscillations in Large Flares

    Indian Academy of Sciences (India)

    Ram Ajor Maurya; Ashok Ambastha

    2008-03-01

    We reinvestigate the problem of Hα intensity oscillations in large flares, particularly those classified as X-class flares. We have used high spatial and temporal resolution digital observations obtained from Udaipur Solar Observatory during the period 1998–2006 and selected several events. Normalized Lomb–Scargle periodogram method for spectral analysis was used to study the oscillatory power in quiet and active chromospheric locations, including the flare ribbons.

  5. The Study of Flare Stars in Byurakan Observatory

    Science.gov (United States)

    Melikian, N. D.

    2016-09-01

    A brief description of the observations and the study of flare stars in Byurakan observatory is presented. In particular it is shown that there is a real dependence between flare activity and the distance between components of UV Ceti. The spectral study of a flare on WX Uma indicated on strong influence of the continuous emission, which is operated from 6000Å and rapidly growing to the short wavelength.

  6. Gas flaring from a rural landowner's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Vasseur, P. [Farmers' Advocate of Alberta, Three Hills, AB (Canada)

    2000-07-01

    The public perception of flaring by the petroleum and natural gas industry was discussed. Flaring has never been embraced by the rural community in Alberta. Flaring is seen as an infringement on health and a contributing source of air pollution. While several studies have been undertaken to determine the effects of flaring, it seems that any conclusive information has not been made available to the public. The author suggested that some rural residents suspect that only favourable information is released or that it has been influenced by the energy sector. They also firmly believe that an increase in animal and health concerns is directly associated with emissions from flaring. Studies have identified about 250 different compounds in flare emissions, including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and other toxic and carcinogenic compounds such as toluene, benzene, and xylene. Some rural residents are sceptical that scientists know the full extent of the effects from the 250 compounds produced by flaring. Also, since emissions from all flares are not the same, this would require an individual study for each flare for a thorough analysis. Studies have also shown that some flares have a combustion efficiency of only 64 per cent. Other studies do not support complaints that health problems stem from nearby wells. Other major perceptions are that flaring adds to the greenhouse effect, it contributes to climatic change and damages soils and vegetation. The author emphasized that the energy sector has to make an effort to reduce the number of flares and most importantly communicate with the rural community more effectively.

  7. Spots and White Light Flares in an L Dwarf

    Science.gov (United States)

    2013-01-01

    Program GN-2012A-Q-37) GMOS spectrograph (Hook et al. 2004) when a series of flares occurred. A spectrum of the most powerful flare in its impulsive...10:14 Hα HeI HeI HeI OI Fig. 4. Gemini-North GMOS spectra of W1906+40 in quiescence (below) and in flare. Note the broad Hα, atomic emission lines

  8. Flare-induced signals in polarization measurements during the X2.6 flare on 2005 January 15

    Science.gov (United States)

    Zhao, Meng; Wang, Jing-Xiu; Matthews, Sarah; Ming-DeDing; Zhao, Hui; Jin, Chun-Lan

    2009-07-01

    Flare-induced signals in polarization measurements which were manifested as apparent polarity reversal in magnetograms have been reported since 1981. We are motivated to further quantify the phenomenon by asking two questions: can we distinguish the flare-induced signals from real magnetic changes during flares, and what we can learn about flare energy release from the flare-induced signals? We select the X2.6 flare that occurred on 2005 January 15, for further study. The flare took place in NOAA active region (AR) 10720 at approximately the central meridian, which makes the interpretation of the vector magnetograms less ambiguous. We have identified that flare-induced signals during this flare appeared in six zones. The zones are located within an average distance of 5 Mm from their weight center to the main magnetic neutral line, have an average size of (0.6±0.4)×1017 cm2, duration of 13±4 min, and flux density change of 181±125 G in the area of reversed polarity. The following new facts have been revealed by this study: (1) the flare-induced signal is also seen in the transverse magnetograms but with smaller magnitude, e.g., about 50 G; (2) the flare-induced signal mainly manifests itself as apparent polarity reversal, but the signal starts and ends as a weakening of flux density; (3) The flare-induced signals appear in phase with the peaks of hard X-ray emission as observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and mostly trace the position of RHESSI hard X-ray footpoint sources. (4) in four zones, it takes place co-temporally with real magnetic changes which persist after the flare. Only for the other two zones does the flux density recover to the pre-flare level immediately after the flare. The physical implications of the flare-induced signal are discussed in view of its relevance to the non-thermal electron precipitation and primary energy release in the flare.

  9. Flare-induced signals in polarization measurements during the X2.6 flare on 2005 January 15

    Institute of Scientific and Technical Information of China (English)

    Meng Zhao; Jing-Xiu Wang; Sarah Matthews; Ming-De Ding; Hui Zhao; Chun-Lan Jin

    2009-01-01

    Flare-induced signals in polarization measurements which were manifested as apparent polarity reversal in magnetograms have been reported since 1981. We are motivated to further quantify the phenomenon by asking two questions: can we distinguish the flare-induced signals from real magnetic changes during flares, and what we can learn about flare energy release from the flare-induced signals? We select the X2.6 flare that occurred on 2005 January 15, for further study. The flare took place in NOAA active re-gion (AR) 10720 at approximately the central meridian, which makes the interpretation of the vector magnetograms less ambiguous. We have identified that flare-induced signals during this flare appeared in six zones. The zones are located within an average distance of 5 Mm from their weight center to the main magnetic neutral line, have an average size of (0.6±0.4)×1017 cm2, duration of 13±4 min, and flux density change of 181±125 G in the area of reversed polarity. The following new facts have been revealed by this study: (1) the flare-induced signal is also seen in the transverse magnetograms but with smaller magnitude, e.g., about 50 G; (2) the flare-induced signal mainly manifests itself as apparent polarity reversal, but the signal starts and ends as a weakening of flux density; (3) The flare-induced signals appear in phase with the peaks of hard X-ray emission as observed by the Ramaty High Energy Solar Spectroscopic lmager (RHESSI), and mostly trace the position of RHESSI hard X-ray footpoint sources. (4) in four zones, it takes place cotemporally with real magnetic changes which persist after the flare. Only for the other two zones does the flux density recover to the pre-flare level immediately after the flare.The physical implications of the flare-induced signal are discussed in view of its relevance to the non-thermal electron precipitation and primary energy release in the flare.

  10. A swirling flare-related EUV jet

    Science.gov (United States)

    Zhang, Q. M.; Ji, H. S.

    2014-01-01

    Aims: We report our observations of a swirling flare-related extreme-ultraviolet (EUV) jet on 2011 October 15 at the edge of NOAA active region 11314. Methods: We used the multiwavelength observations in the EUV passbands from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO). We extracted a wide slit along the jet axis and 12 thin slits across its axis to investigate the longitudinal motion and transverse rotation. We also used data from the Extreme-Ultraviolet Imager (EUVI) aboard the Solar TErrestrial RElations Observatory (STEREO) spacecraft to investigate the three-dimensional (3D) structure of the jet. Ground-based Hα images from the El Teide Observatory, a member of the Global Oscillation Network Group (GONG), provide a good opportunity to explore the relationship between the cool surge and the hot jet. Line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) aboard SDO enable us to study the magnetic evolution of the flare/jet event. We carried out potential-field extrapolation to calculate the magnetic configuration associated with the jet. Results: The onset of jet eruption coincided with the start time of the C1.6 flare impulsive phase. The initial velocity and acceleration of the longitudinal motion were 254 ± 10 km s-1 and -97 ± 5 m s-2, respectively. The jet presented helical structure and transverse swirling motion at the beginning of its eruption. The counter-clockwise rotation slowed down from an average velocity of ~122 km s-1 to ~80 km s-1. The interwinding thick threads of the jet untwisted into multiple thin threads during the rotation that lasted for one cycle with a period of ~7 min and an amplitude that increases from ~3.2 Mm at the bottom to ~11 Mm at the upper part. Afterwards, the curtain-like leading edge of the jet continued rising without rotation, leaving a dimming region behind, before falling back to the solar surface. The appearance/disappearance of dimming corresponded to the

  11. A characterization of solution gas flaring in Alberta.

    Science.gov (United States)

    Johnson, M R; Kostiuk, L W; Spangelo, J L

    2001-08-01

    Information reported here is the result of a detailed analysis of data on flared and vented solution gas in the Province of Alberta in 1999. A goal of characterizing these flares was to aid in the improved management of solution gas flaring. In total, 4499 oil and bitumen batteries reported flaring or venting with a combined gas volume of 1.42 billion m3. There was significant site-to-site variation in volumes of gas flared or vented, gas composition, and flare design. Approximately 5% of physical batteries generate 35.7% of the gas flared and vented from oil and bitumen batteries. Therefore, if one were to attempt to mitigate flaring, significant progress could be made by starting with only the largest sites. The monthly variability of gas volumes was considered because high variability could affect implementation of alternative technologies. It was found that slightly more than 40% of the sites were reasonably steady and had monthly deviations of 100% or less from the average flared volume. The variability in monthly volumes was less for the larger batteries. Data from individual well sites show significant variability in the relative concentrations of each of the major species contained in solution gas.

  12. A statistical study of post-flare-associated CME events

    Science.gov (United States)

    Youssef, M.; Mawad, R.; shaltout, Mosalam

    2013-04-01

    We present a statistical study of post-flare-associated CMEs (PFA-CMEs) during the period from 1996 to 2010. By investigating all CMEs and X-ray flares, respectively, in the LASCO and GOES archives, we found 15875 CMEs of which masses are well measured and 25112 X-ray flares of which positions are determined from their optical counterparts. Under certain temporal and spatial criteria of these CMEs and solar flare events, 291PFA-CMEs events have been selected. Linking the flare fluxes with CME speeds of these paired events, we found that there is a reasonable positive linear relation between the CME linear speed and associated flare flux. The results show also the CME width increases as the flux of its associated solar flare increases. Besides we found that there is a fine positive linear relation between the CME mass and its width. Matching the flare fluxes with CME masses of these paired events, we find the CME mass increases as the flux of its associated solar flare increases. Finally we find the PFA-CME events are in regular more decelerated than the other CMEs.

  13. Nuclear processes and neutrino production in solar flares

    Science.gov (United States)

    Lingenfelter, R. E.; Ramaty, R.; Murphy, R. J.; Kozlovsky, S.

    1985-01-01

    The determination of flare neutrino flux is approached from the standpoint of recent observations and theoretical results on the nuclear processes in solar flares. Attention is given to the energy spectra and total numbers of accelerated particles in flares, as well as their resulting production of beta(+)-emitting radionuclei and pions; these should be the primary sources of neutrinos. The observed 0.511 MeV line flux for the June 21, 1980 flare is compared with the expected from the number and spectrum of accelerated particles.

  14. Global Energetics of Solar Flares. V. Energy Closure in Flares and Coronal Mass Ejections

    Science.gov (United States)

    Aschwanden, Markus J.; Caspi, Amir; Cohen, Christina M. S.; Holman, Gordon; Jing, Ju; Kretzschmar, Matthieu; Kontar, Eduard P.; McTiernan, James M.; Mewaldt, Richard A.; O’Flannagain, Aidan; Richardson, Ian G.; Ryan, Daniel; Warren, Harry P.; Xu, Yan

    2017-02-01

    In this study we synthesize the results of four previous studies on the global energetics of solar flares and associated coronal mass ejections (CMEs), which include magnetic, thermal, nonthermal, and CME energies in 399 solar M- and X-class flare events observed during the first 3.5 yr of the Solar Dynamics Observatory (SDO) mission. Our findings are as follows. (1) The sum of the mean nonthermal energy of flare-accelerated particles ({E}{nt}), the energy of direct heating ({E}{dir}), and the energy in CMEs ({E}{CME}), which are the primary energy dissipation processes in a flare, is found to have a ratio of ({E}{nt}+{E}{dir}+{E}{CME})/{E}{mag}=0.87+/- 0.18, compared with the dissipated magnetic free energy {E}{mag}, which confirms energy closure within the measurement uncertainties and corroborates the magnetic origin of flares and CMEs. (2) The energy partition of the dissipated magnetic free energy is: 0.51 ± 0.17 in nonthermal energy of ≥slant 6 {keV} electrons, 0.17 ± 0.17 in nonthermal ≥slant 1 {MeV} ions, 0.07 ± 0.14 in CMEs, and 0.07 ± 0.17 in direct heating. (3) The thermal energy is almost always less than the nonthermal energy, which is consistent with the thick-target model. (4) The bolometric luminosity in white-light flares is comparable to the thermal energy in soft X-rays (SXR). (5) Solar energetic particle events carry a fraction ≈ 0.03 of the CME energy, which is consistent with CME-driven shock acceleration. (6) The warm-target model predicts a lower limit of the low-energy cutoff at {e}c≈ 6 {keV}, based on the mean peak temperature of the differential emission measure of T e = 8.6 MK during flares. This work represents the first statistical study that establishes energy closure in solar flare/CME events.

  15. Spontaneous pain attacks: neuralgic pain

    NARCIS (Netherlands)

    de Bont, L.G.

    2006-01-01

    Paroxysmal orofacial pains can cause diagnostic problems, especially when different clinical pictures occur simultaneously. Pain due to pulpitis, for example, may show the same characteristics as pain due to trigeminal neuralgia would. Moreover, the trigger point of trigeminal neuralgia can either

  16. Spontaneous pain attacks: neuralgic pain

    NARCIS (Netherlands)

    de Bont, L.G.

    2006-01-01

    Paroxysmal orofacial pains can cause diagnostic problems, especially when different clinical pictures occur simultaneously. Pain due to pulpitis, for example, may show the same characteristics as pain due to trigeminal neuralgia would. Moreover, the trigger point of trigeminal neuralgia can either b

  17. Spontaneous pain attacks: neuralgic pain

    NARCIS (Netherlands)

    de Bont, L.G.

    2006-01-01

    Paroxysmal orofacial pains can cause diagnostic problems, especially when different clinical pictures occur simultaneously. Pain due to pulpitis, for example, may show the same characteristics as pain due to trigeminal neuralgia would. Moreover, the trigger point of trigeminal neuralgia can either b

  18. Extreme Postinjection Flare in Response to Intra-Articular Triamcinolone Acetonide (Kenalog).

    Science.gov (United States)

    Young, Porter; Homlar, Kelly C

    2016-01-01

    As intra-articular corticosteroid injections (CSIs) are a common treatment for osteoarthritis, physicians must well understand their potential side effects. Postinjection flares are an acute side effect of intra-articular CSIs, with symptoms ranging from mild joint effusion to disabling pain. The present case involved a severe postinjection flare that occurred after the patient, a 56-year-old woman with moderate osteoarthritis in the left knee, received 2 mL of 1% lidocaine and 2 mL (40 mg) of triamcinolone acetonide (Kenalog). Two hours after injection, she experienced swelling and intense pain in the knee and was unable to ambulate. The knee was aspirated with a return of 25 mL of "butterscotch"-colored fluid. This case is novel in that its acuity of onset, severity of symptoms, and synovial fluid analysis mimicked septic arthritis, which was ultimately ruled out with negative cultures and confirmation of triamcinolone acetonide crystals in the synovial aspirate, viewed by polarized light microscopy. Thus, the patient's reaction represents an acute crystal-induced inflammatory response. Although reactions to an intra-articular CSI of this severity are rare, it is important for treating physicians to inform patients of this potential side effect.

  19. A comparison between magnetic shear and flare shear in a well-observed M-class flare

    Institute of Scientific and Technical Information of China (English)

    Tuan-Hui Zhou; Hai-Sheng Ji

    2009-01-01

    We give an extensive multi-wavelength analysis of an eruptive M1.0/1N class solar flare, which occurred in the active region NOAA 10044 on 2002 July 26. Our empha-sis is on the relationship between magnetic shear and flare shear. Flare shear is defined as the angle formed between the line connecting the centroids of the two ribbons of the flare and the line perpendicular to the magnetic neutral line. The magnetic shear is computed from vector magnetograms observed at Big Bear Solar Observatory (BBSO), while the flare shear is computed from Transition Region and Coronal Explorer (TRACE) 1700A images. By a detailed comparison, we find that: 1) The magnetic shear and the flare shear of this event are basically consistent, as judged from the directions of the transverse mag-netic field and the line connecting the two ribbons' centroids. 2) During the period of the enhancement of magnetic shear, flare shear had a fast increase followed by a fluctuated decrease. 3) When the magnetic shear stopped its enhancement, the fluctuated decreasing behavior of the flare shear became very smooth. 4) Hard X-ray (HXR) spikes are well correlated with the unshearing peaks on the time profile of the rate of change of the flare shear. We give a discussion of the above phenomena.

  20. Pain genes.

    Directory of Open Access Journals (Sweden)

    Tom Foulkes

    2008-07-01

    Full Text Available Pain, which afflicts up to 20% of the population at any time, provides both a massive therapeutic challenge and a route to understanding mechanisms in the nervous system. Specialised sensory neurons (nociceptors signal the existence of tissue damage to the central nervous system (CNS, where pain is represented in a complex matrix involving many CNS structures. Genetic approaches to investigating pain pathways using model organisms have identified the molecular nature of the transducers, regulatory mechanisms involved in changing neuronal activity, as well as the critical role of immune system cells in driving pain pathways. In man, mapping of human pain mutants as well as twin studies and association studies of altered pain behaviour have identified important regulators of the pain system. In turn, new drug targets for chronic pain treatment have been validated in transgenic mouse studies. Thus, genetic studies of pain pathways have complemented the traditional neuroscience approaches of electrophysiology and pharmacology to give us fresh insights into the molecular basis of pain perception.

  1. Optical flare observed in the flaring gamma-ray blazar S5 1044+71

    Science.gov (United States)

    Pursimo, Tapio; Blay, Pere; Telting, John; Ojha, Roopesh

    2017-01-01

    We report optical photometry of the blazar S5 1044+71, obtained with the 2.56m Nordic Optical Telescope in La Palma, to look for any enhanced optical activity associated with a recent flare in the daily averaged gamma-ray flux (ATel#9928).

  2. Flare Ribbons In The Early Phase Of An SDO Flare: Emission Measure And Energetics

    Science.gov (United States)

    Fletcher, Lyndsay; Hannah, I. G.; Hudson, H. S.; Innes, D. E.

    2012-05-01

    We report on the M1.0 flare of 7th August 2010, which displayed extended early phase chromospheric ribbons, well observed by SDO/AIA and RHESSI. Most large flares saturate rapidly in the high-temperature AIA channels, however this event could be followed in unsaturated AIA images for ten minutes in the build-up to and first few minutes of the impulsive phase. Analysis of GOES, RHESSI and SDO/AIA demonstrates the presence of high temperature ( 10MK), compact plasma volumes in the chromospheric flare ribbons, with a column emission measure of on average 3-7 x 1028 cm-5. We construct a time-resolved energy budget for the ribbon plasma, including also SDO/EVE data, and discuss the implications of the observed ribbon properties for flare energisation. This work was supported by the UK’s Science and Technology Facilities Council (ST/1001801), and by the European Commission through the FP7 HESPE project (FP7-2010-SPACE-263086).

  3. Bone pain

    DEFF Research Database (Denmark)

    Frost, Charlotte Ørsted; Hansen, Rikke Rie; Heegaard, Anne-Marie

    2016-01-01

    Skeletal conditions are common causes of chronic pain and there is an unmet medical need for improved treatment options. Bone pain is currently managed with disease modifying agents and/or analgesics depending on the condition. Disease modifying agents affect the underlying pathophysiology...... of the disease and reduce as a secondary effect bone pain. Antiresorptive and anabolic agents, such as bisphosphonates and intermittent parathyroid hormone (1-34), respectively, have proven effective as pain relieving agents. Cathepsin K inhibitors and anti-sclerostin antibodies hold, due to their disease...... modifying effects, promise of a pain relieving effect. NSAIDs and opioids are widely employed in the treatment of bone pain. However, recent preclinical findings demonstrating a unique neuronal innervation of bone tissue and sprouting of sensory nerve fibers open for new treatment possibilities....

  4. Neuropathic pain

    DEFF Research Database (Denmark)

    Colloca, Luana; Ludman, Taylor; Bouhassira, Didier

    2017-01-01

    Neuropathic pain is caused by a lesion or disease of the somatosensory system, including peripheral fibres (Aβ, Aδ and C fibres) and central neurons, and affects 7-10% of the general population. Multiple causes of neuropathic pain have been described and its incidence is likely to increase owing...... to the ageing global population, increased incidence of diabetes mellitus and improved survival from cancer after chemotherapy. Indeed, imbalances between excitatory and inhibitory somatosensory signalling, alterations in ion channels and variability in the way that pain messages are modulated in the central...... nervous system all have been implicated in neuropathic pain. The burden of chronic neuropathic pain seems to be related to the complexity of neuropathic symptoms, poor outcomes and difficult treatment decisions. Importantly, quality of life is impaired in patients with neuropathic pain owing to increased...

  5. Low back pain - chronic

    Science.gov (United States)

    Nonspecific back pain; Backache - chronic; Lumbar pain - chronic; Pain - back - chronic; Chronic back pain - low ... Low back pain is common. Almost everyone has back pain at some time in their life. Often, the exact cause ...

  6. Employees with Chronic Pain

    Science.gov (United States)

    ... one in five Americans suffer from chronic pain (Sternberg, 2005). What is chronic pain? While acute pain ... nih.gov/disorders/chronic_pain/chronic_pain.htm Sternberg, S. (2005). Chronic pain: The enemy within. Retrieved December ...

  7. Gas flare characterisation with Sentinel-3

    Science.gov (United States)

    Caseiro, Alexandre; Kaiser, Johannes W.; Ruecker, Gernot; Tiemann, Joachim; Leimbach, David

    2017-04-01

    Gas Flaring (GF) is the process of burning waste gases at the tip of a stack. It is widely used in the upstream oil and gas industry. It is a contributor to the imbalance of the greenhouse gases (GHG) concentration in the earth's atmosphere, which prompts global warming. Besides GHG, GF also emits black carbon (BC), a known carcinogen and climate active species. At higher latitudes, GF has been estimated as the main input of atmospheric BC, alongside vegetation fires. The consideration of GF as a source to global budgets has been hindered by technical difficulties of in-situ measurements and the inexistence of a systematic reporting system. Remote sensing offers the possibility of a continuous, global and systematic monitoring of GF over extended periods. Being a high temperature process, GF can be detected from space using measurements at appropriate wavelengths. Considering 1800K as a typical GF temperature and Wien's displacement law, the peak emission will be in the short-wave infrared region. This spectral region is observed by two channels (S5 and S6) of the SLSTR instrument aboard ESA's newly launched Sentinel-3 satellite. Because of solar contamination, only night-time observations are used. In order to characterise the identified gas flares in terms of temperature and area, two Planck curves are fitted to SLSTR radiance observations in five spectral channels (S5 through S9, with F1 and F2). In this work, we present the methodology in detail as well as results for known flaring regions around the world. A comparison with VIIRS on Suomi-NPP and with HSRS on TET-1 over known GF locations is also considered.

  8. Central pain.

    Science.gov (United States)

    Singh, Supreet

    2014-12-01

    Questions from patients about pain conditions and analgesic pharmacotherapy and responses from authors are presented to help educate patients and make them more effective self-advocates. The topic addressed in this issue is central pain, a neuropathic pain syndrome caused by a lesion in the brain or spinal cord that sensitizes one's perception of pain. It is a debilitating condition caused by various diseases such as multiple sclerosis, strokes, spinal cord injuries, or brain tumors. Varied symptoms and the use of pharmacological medicines and nonpharmacological therapies will be addressed.

  9. Searching for Missing Pieces for Solar Flare Forecasting

    Science.gov (United States)

    Leka, K. D.

    2015-12-01

    Knowledge of the state of the solar photospheric magnetic field at a single instant in time does not appear sufficient to uniquely predict the size and timing of impending solar flares. Such knowledge may provide necessary conditions, such as estimates of the magnetic energy needed for a flare to occur. Given the necessary conditions, it is often assumed that the evolution of the field, possibly by only a small amount, may trigger the onset of a flare. We present the results of a study using time series of photospheric vector field data from the Helioseismic and Magnetic Imager (HMI) on NASA's Solar Dynamics Observatory (SDO) to quantitatively parameterize both the state and evolution of solar active regions - their complexity, magnetic topology and energy - as related to solar flare events. We examine both extensive and intensive parameters and their short-term temporal behavior, in the context of predicting flares at various thresholds. Statistical tests based on nonparametric Discriminant Analysis are used to compare pre-flare epochs to a control group of flare-quiet epochs and active regions. Results regarding the type of photospheric signature examined and the efficacy of using the present state vs. temporal evolution to predict solar flares is quantified by standard skill scores. This work is made possible by contracts NASA NNH12CG10C and NOAA/SBIR WC-133R-13-CN-0079.

  10. Exergy analysis of waste emissions from gas flaring

    Directory of Open Access Journals (Sweden)

    Olawale Saheed ISMAIL

    2016-07-01

    Full Text Available Gas flaring produces a stream of waste gases at high temperature and pressure which contains carbon monoxide, Hydrogen Sulphide etc. The resultant effect of which is detrimental to our planet and, consequently, to the life of both the living and the non-living things. It’s well known that gas flaring contributes in no small measure to the global warming. Exergy analysis is applied in this work to analyze waste emissions from gas flaring so as to have a model through which impact of gas flaring can be measured. The study considers both the thermo-mechanical exergy and the chemical exergy of these gases. Relevant data on gas flaring activities in the Niger-Delta region of Nigeria between the periods of fifteen (15 years was obtained from the Nigerian National Petroleum Corporation (NNPC. A computer program (Exergy Calculator was developed based on the equations generated in the Model. Exergy associated with gas flaring activities in Nigeria between the periods of 1998 through 2012 was calculated. The results show that 1 mscf (in thousand cubic feet of flared gases generate 0.000041 MWh of energy leading to a value of 440158.607 MWh of energy for the period under review.The analysis provides important conclusions and recommendations for improving oil platforms operationsin in order to safeguard the environment, health of the populace, and maximize recovered exergy from gas flaring.

  11. Sgr A* flares: tidal disruption of asteroids and planets?

    NARCIS (Netherlands)

    Zubovas, K.; Nayakshin, S.; Markoff, S.

    2012-01-01

    It is theoretically expected that a supermassive black hole (SMBH) in the centre of a typical nearby galaxy disrupts a solar-type star every ∼105 yr, resulting in a bright flare lasting for months. Sgr A*, the resident SMBH of the Milky Way, produces (by comparison) tiny flares that last only hours

  12. Blazar Alerts with the HAWC Online Flare Monitor

    CERN Document Server

    Weisgarber, Thomas

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) Observatory monitors the gamma-ray sky in the 100 GeV to 100 TeV energy range with > 95% uptime and unprecedented sensitivity for a survey instrument. The HAWC Collaboration has implemented an online flare monitor that detects episodes of rapid flaring activity from extragalactic very high energy (VHE) sources in the declination band from -26 to 64 degrees. This allows timely alerts to be sent to multiwavelength instruments without human intervention. The preliminary configuration of the online flare monitor achieves sensitivity to flares of at least 1 hour duration that attain an average flux of 10 times that of the Crab Nebula. While flares of this magnitude are not common, several flares reaching the level of 10 Crab have been observed in the VHE band within the past decade. With its survey capabilities and high duty cycle, HAWC will expand the observational data set on these particularly extreme flares. We characterize the sensitivity of the online flare monitor an...

  13. Kepler Flares I. Active and Inactive M dwarfs

    CERN Document Server

    Hawley, Suzanne L; Kowalski, Adam F; Wisniewski, John P; Hebb, Leslie; Deitrick, Russell; Hilton, Eric J

    2014-01-01

    We analyzed Kepler short-cadence M dwarf observations. Spectra from the ARC 3.5m telescope identify magnetically active (H$\\alpha$ in emission) stars. The active stars are of mid-M spectral type, have numerous flares, and well-defined rotational modulation due to starspots. The inactive stars are of early-M type, exhibit less starspot signature, and have fewer flares. A Kepler to U-band energy scaling allows comparison of the Kepler flare frequency distributions with previous ground-based data. M dwarfs span a large range of flare frequency and energy, blurring the distinction between active and inactive stars designated solely by the presence of H$\\alpha$. We analyzed classical and complex (multiple peak) flares on GJ 1243, finding strong correlations between flare energy, amplitude, duration and decay time, with only a weak dependence on rise time. Complex flares last longer and have higher energy at the same amplitude, and higher energy flares are more likely to be complex. A power law fits the energy dist...

  14. Development and Optimization of Flow-Cast Magnesium Flare Compositions

    Science.gov (United States)

    1972-06-01

    unsaturated olefins. Resins were studied of ethylene glycol (EG) (52 percent oxgyen) and MA (49 percent); hydroxy- ethyl acrylate...CUttification LINK A I Illumination flares Flares Magnesium Sodium Nitrate Binders Epoxy resins Castable pyrotechnics Flow casting Polyester Vinyl ester UNCLASSTFTFn Security Classification ^^^. ...Lane. Major contributions were made by Erwin M. Jankowiak and Keith Roberson. This technical report has been reviewed and is approved.

  15. Hα Line Profile Asymmetries and the Chromospheric Flare Velocity Field

    Science.gov (United States)

    Kuridze, D.; Mathioudakis, M.; Simões, P. J. A.; Rouppe van der Voort, L.; Carlsson, M.; Jafarzadeh, S.; Allred, J. C.; Kowalski, A. F.; Kennedy, M.; Fletcher, L.; Graham, D.; Keenan, F. P.

    2015-11-01

    The asymmetries observed in the line profiles of solar flares can provide important diagnostics of the properties and dynamics of the flaring atmosphere. In this paper the evolution of the Hα and Ca ii λ8542 lines are studied using high spatial, temporal, and spectral resolution ground-based observations of an M1.1 flare obtained with the Swedish 1 m Solar Telescope. The temporal evolution of the Hα line profiles from the flare kernel shows excess emission in the red wing (red asymmetry) before flare maximum and excess in the blue wing (blue asymmetry) after maximum. However, the Ca ii λ8542 line does not follow the same pattern, showing only a weak red asymmetry during the flare. RADYN simulations are used to synthesize spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. We show that the red asymmetry observed in Hα is not necessarily associated with plasma downflows, and the blue asymmetry may not be related to plasma upflows. Indeed, we conclude that the steep velocity gradients in the flaring chromosphere modify the wavelength of the central reversal in the Hα line profile. The shift in the wavelength of maximum opacity to shorter and longer wavelengths generates the red and blue asymmetries, respectively.

  16. Interactive Multi-Instrument Database of Solar Flares (IMIDSF)

    Science.gov (United States)

    Sadykov, Viacheslav M.; Nita, Gelu M.; Oria, Vincent; Kosovichev, Alexander G.

    2017-08-01

    Solar flares represent a complicated physical phenomenon observed in a broad range of the electromagnetic spectrum, from radiowaves to gamma-rays. For a complete understanding of the flares it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For efficient data search, integration of different flare lists and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares (https://solarflare.njit.edu/). The web database is fully functional and allows the user to search for uniquely-identified flare events based on their physical descriptors and availability of observations of a particular set of instruments. Currently, data from three primary flare lists (GOES, RHESSI and HEK) and a variety of other event catalogs (Hinode, Fermi GBM, Konus-Wind, OVSA flare catalogs, CACTus CME catalog, Filament eruption catalog) and observing logs (IRIS and Nobeyama coverage), are integrated. An additional set of physical descriptors (temperature and emission measure) along with observing summary, data links and multi-wavelength light curves is provided for each flare event since January 2002. Results of an initial statistical analysis will be presented.

  17. Type II Shocks Characteristics: Comparison with associated CMEs and Flares

    CERN Document Server

    Pothitakis, G; Preka-Papadema, P; Moussas, X; Caroubalos, C; Alissandrakis, C E; Hillaris, A; Tsitsipis, P; Kontogeorgos, A; Bougeret, J -L; Dumas, G; 10.1063/1.2347985

    2010-01-01

    A number of metric (100-650 MHz) typeII bursts was recorded by the ARTEMIS-IV radiospectrograph in the 1998-2000 period; the sample includes both CME driven shocks and shocks originating from flare blasts. We study their characteristics in comparison with characteristics of associated CMEs and flares.

  18. Relationships of a growing magnetic flux region to flares

    NARCIS (Netherlands)

    Schadee, A.; Martin, S.F.; Bentley, R.D.; Antalova, A.; Kucera, A.; Dezs, L.; Gesztelyi, L.; Harvey, K.L.; Jones, H.; Livi, S.H.B.; Wang, J.

    1984-01-01

    Some sites for solar flares are known to develop where new magnetic flux emerges and becomes abutted against opposite polarity pre-existing magnetic flux (review by Galzauskas/1/). We have identified and analyzed the evolution of such flare sites at the boundaries of a major new and growing magnetic

  19. Flare activity on low-mass eclipsing binary GJ 3236*

    Science.gov (United States)

    Šmelcer, L.; Wolf, M.; Kučáková, H.; Bílek, F.; Dubovský, P.; Hoňková, K.; Vraštil, J.

    2017-04-01

    We report the discovery of optical flares on the very low-mass red-dwarf eclipsing binary GJ 3236 and the results of our 2014-2016 photometric campaign. In total, this binary was monitored photometrically in all filters for about 900 h, which has revealed a flare rate of about 0.06 flares per hour. The amplitude of its flares is the largest among those detected in the V band (∼1.3 mag), R band (∼0.8 mag), I band (∼0.2 mag) and clear band (∼0.5 mag). The light curves of GJ 3236 were analysed and the statistics of detected flare events are presented. The energy released during individual flares was calculated as up to 2.4 × 1027 J and compared with other known active stars. The cumulative distribution of flare energies appears to follow a broken power law. The flare activity of this binary also plays an important role in the precise determination of its physical parameters and evolutionary status.

  20. 46 CFR 117.68 - Distress flares and smoke signals.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Distress flares and smoke signals. 117.68 Section 117.68 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... AND ARRANGEMENTS Emergency Communications § 117.68 Distress flares and smoke signals. (a)...

  1. 46 CFR 180.68 - Distress flares and smoke signals.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Distress flares and smoke signals. 180.68 Section 180.68... signals. (a) Oceans, coastwise, limited coastwise, and Great Lakes routes. A vessel on an oceans, coastwise, limited coastwise, or Great Lakes route must carry— (1) Six hand red flare distress signals...

  2. An Interactive Multi-instrument Database of Solar Flares

    Science.gov (United States)

    Sadykov, Viacheslav M.; Kosovichev, Alexander G.; Oria, Vincent; Nita, Gelu M.

    2017-07-01

    Solar flares are complicated physical phenomena that are observable in a broad range of the electromagnetic spectrum, from radio waves to γ-rays. For a more comprehensive understanding of flares, it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For an efficient data search, integration of different flare lists, and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares (IMIDSF, https://solarflare.njit.edu/). The web-accessible database is fully functional and allows the user to search for uniquely identified flare events based on their physical descriptors and the availability of observations by a particular set of instruments. Currently, the data from three primary flare lists (Geostationary Operational Environmental Satellites, RHESSI, and HEK) and a variety of other event catalogs (Hinode, Fermi GBM, Konus-W IND, the OVSA flare catalogs, the CACTus CME catalog, the Filament eruption catalog) and observing logs (IRIS and Nobeyama coverage) are integrated, and an additional set of physical descriptors (temperature and emission measure) is provided along with an observing summary, data links, and multi-wavelength light curves for each flare event since 2002 January. We envision that this new tool will allow researchers to significantly speed up the search of events of interest for statistical and case studies.

  3. Implications of RHESSI Flare Observations for Magnetic Reconnection Models

    Science.gov (United States)

    Holman, Gordon D.; Sui, Linhui; Dennis, Brian R.

    2004-01-01

    The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of the 2002 April 15 solar flare and related flares provide compelling evidence for the formation of a large-scale, reconnecting current sheet in at least some flares. We describe the observed evolution of the April 15 flare in terms of magnetic reconnection models. We argue that the flare most likely evolved through magnetic geometries associated with super-slow reconnection (early rise phase), fast reconnection (impulsive phase), and slow reconnection (gradual phase). We also provide evidence for X-ray brightenings within the evolving current sheet, possibly induced by the tearing mode instability. This work was supported in part by the RHESSI Program and NASA's Sun-Earth Connection Program. This work would not have been possible without the dedicated efforts of the entire RHESSI team.

  4. EUV Flare Activity in Late-Type Stars

    CERN Document Server

    Audard, M; Drake, J J; Kashyap, V L; Audard, Marc; Guedel, Manuel; Drake, Jeremy J.

    2000-01-01

    \\textit{Extreme Ultraviolet Explorer} Deep Survey observations of cool stars (spectral type F to M) have been used to investigate the distribution of coronal flare rates in energy and its relation to activity indicators and rotation parameters. Cumulative and differential flare rate distributions were constructed and fitted with different methods. Power laws are found to approximately describe the distributions. A trend toward flatter distributions for later-type stars is suggested in our sample. Assuming that the power laws continue below the detection limit, we have estimated that the superposition of flares with radiated energies of about $10^{29}-10^{31}$ergs could explain the observed radiative power loss of these coronae, while the detected flares are contributing only $\\approx 10$%. While the power-law index is not correlated with rotation parameters (rotation period, projected rotational velocity, Rossby number) and only marginally with the X-ray luminosity, the flare occurrence rate is correlated wit...

  5. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  6. COMPLEX FLARE DYNAMICS INITIATED BY A FILAMENT–FILAMENT INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chunming; McAteer, R. T. James [Department of Astronomy, New Mexico State University, NM 88003 (United States); Liu, Rui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Alexander, David [Department of Physics and Astronomy, Rice University, TX 77005 (United States); Sun, Xudong, E-mail: czhu@nmsu.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2015-11-01

    We report on an eruption involving a relatively rare filament–filament interaction on 2013 June 21, observed by SDO and STEREO-B. The two filaments were separated in height with a “double-decker” configuration. The eruption of the lower filament began simultaneously with a descent of the upper filament, resulting in a convergence and direct interaction of the two filaments. The interaction was accompanied by the heating of surrounding plasma and an apparent crossing of a loop-like structure through the upper filament. The subsequent coalescence of the filaments drove a bright front ahead of the erupting structures. The whole process was associated with a C3.0 flare followed immediately by an M2.9 flare. Shrinking loops and descending dark voids were observed during the M2.9 flare at different locations above a C-shaped flare arcade as part of the energy release, giving us unique insight into the flare dynamics.

  7. Modeling High Resolution Flare Spectra Using Hydrodynamic Simulations

    Science.gov (United States)

    Warren, Harry; Doschek, G.

    2006-06-01

    Understanding the hydrodynamic response of the solar atmosphere to the release of energy during a flare has been a long standing problem in solar physics. Early time-dependent hydrodynamic simulations were able to reproduce the high temperatures and densities observed in solar flares, but were not able to model the observations in any detail. For example, these simulations could not account for the relatively slow decay of the observed emission or the absence of blueshifts in high spectral resolution line profiles at flare onset. We have found that by representing the flare as a succession of independently heated filaments it is possible to reproduce both the evolution of line intensity and the shape of the line profile using hydrodynamic simulations. Here we present detailed comparisons between our simulation results and several flares observed with the Yohkoh Bragg Crystal Spectrometer (BCS). Comparisons with 3D MHD simulations will also be discussed.

  8. The investigation of the Neupert effect in two solar flares

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Neupert effect suggests a flare model in which the nonthermal emissions are produced by energetic electrons which heat lower corona and chromosphere to produce the thermal emissions. Based on this concept, we investigate the Neupert effect to test the correlation between the hard X-ray spectral index and the time rate of the UV flare area at 1600 or 171 . Using the T RACE and RHESSI observations, we explore these quantities for two solar flares, one on March 14, 2002 and the other on November 1, 2003. The negative dependence between the spectral index and the time rate of the UV flare area is found, especially during the hard X-ray sub-peaks. This finding indicates that the electron-beam-driven heating plays a prominent role in the UV emission of these two flares.

  9. Pain frequency moderates the relationship between pain catastrophizing and pain

    OpenAIRE

    2014-01-01

    Background: Pain frequency has been shown to influence sensitization, psychological distress, and pain modulation. The present study examined if pain frequency moderates the relationship between pain catastrophizing and pain. Method: A non-clinical (247 students) and a clinical (223 pain patients) sample completed the Danish versions of the Pain Catastrophizing Scale (PCS), Beck Depression Inventory, and the State Trait Anxiety Inventory and rated pain intensity, unpleasantness and frequen...

  10. Pain frequency moderates the relationship between pain catastrophizing and pain

    OpenAIRE

    2014-01-01

    Background Pain frequency has been shown to influence sensitization, psychological distress and pain modulation. The present study examined if pain frequency moderates the relationship between pain catastrophizing and pain. Method A non-clinical (247 students) and a clinical (223 pain patients) sample completed the Danish versions of the Pain Catastrophizing Scale, Beck Depression Inventory and the State Trait Anxiety Inventory and rated pain intensity, unpleasantness and frequency Results In...

  11. Observations and Modelling of the Pre-flare Period of the 29 March 2014 X1 Flare

    Science.gov (United States)

    Woods, M. M.; Harra, L. K.; Matthews, S. A.; Mackay, D. H.; Dacie, S.; Long, D. M.

    2017-02-01

    On 29 March 2014, NOAA Active Region (AR) 12017 produced an X1 flare that was simultaneously observed by an unprecedented number of observatories. We have investigated the pre-flare period of this flare from 14:00 UT until 19:00 UT using joint observations made by the Interface Region Imaging Spectrometer (IRIS) and the Hinode Extreme Ultraviolet Imaging Spectrometer (EIS). Spectral lines providing coverage of the solar atmosphere from the chromosphere to the corona were analysed to investigate pre-flare activity within the AR. The results of the investigation have revealed evidence of strongly blue-shifted plasma flows, with velocities up to 200 km s^{-1}, being observed 40 minutes prior to flaring. These flows are located along the filament present in the active region and are both spatially discrete and transient. In order to constrain the possible explanations for this activity, we undertake non-potential magnetic field modelling of the active region. This modelling indicates the existence of a weakly twisted flux rope along the polarity inversion line in the region where a filament and the strong pre-flare flows are observed. We then discuss how these observations relate to the current models of flare triggering. We conclude that the most likely drivers of the observed activity are internal reconnection in the flux rope, early onset of the flare reconnection, or tether-cutting reconnection along the filament.

  12. Deterministically Driven Avalanche Models of Solar Flares

    CERN Document Server

    Strugarek, Antoine; Joseph, Richard; Pirot, Dorian

    2014-01-01

    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick--slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy loading process. The model design leads to a systematic deficit of small scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global st...

  13. Magnetic Energy Release in Solar Flares

    Science.gov (United States)

    Forbes, Terry G.

    2017-01-01

    Solar flares are the result of a rapid release of magnetic energy stored in the solar corona. An ideal-MHD process, such as a loss of magnetic equilibrium, most likely initiates the flare, but the non-ideal process of magnetic reconnection quickly becomes the dominant mechanism by which energy is released. Within the last few years EUV and X-ray instruments have directly observed the kind of plasma flows and heating indicative of magnetic reconnection. Relatively cool plasma is observed moving slowly into the reconnection region where it is transformed into two high-temperature, high-speed outflow jets moving in opposite directions. Observations of the flow in these jets suggest that they are accelerated to the ambient Alfvén speed in a manner that resembles the reconnection process first proposed by H. E. Petschek in 1964. This result is somewhat surprising because Petschek-type reconnection does not occur in most numerical simulations of magnetic reconnection. The apparent contradiction between the observations and the simulations can be understood by the fact that most simulations assume a uniform resistivity model that is unlikely to occur in reality. Recently, we have developed a theory that shows how the type of reconnection is related to the plasma resistivity. The theory is based on a form of the time-dependent, MHD-nozzle equations that incorporate the plasma resistivity. These equations are very similar to the equations used to describe magnetized plasma flow in astrophysical jets.

  14. The Flare-ona of EK Draconis

    CERN Document Server

    Ayres, Thomas R

    2015-01-01

    EK Draconis (HD 129333: G1.5 V) is a well-known young (50 Myr) solar analog. In 2012, Hubble Space Telescope returned to EK Dra to follow up a far-ultraviolet (FUV) SNAPshot visit by Cosmic Origins Spectrograph (COS) two years earlier. The brief SNAP pointing had found surprisingly redshifted, impulsively variable subcoronal "hot-line" emission of Si IV 140 nm (T~ 80,000 K). Serendipitously, the 2012 follow-on program witnessed one of the largest FUV flares ever recorded on a sunlike star, which again displayed strong redshifts (downflows) of 30-40 km/s, even after compensating for small systematics in the COS velocity scales, uncovered through a cross-calibration by Space Telescope Imaging Spectrograph (STIS). The (now reduced, but still substantial) ~10 km/s hot-line redshifts outside the flaring interval did not vary with rotational phase, so cannot be caused by "Doppler Imaging" (bright surface patches near a receding limb). Density diagnostic O IV] 140 nm multiplet line ratios of EK Dra suggest log(Ne)~ ...

  15. [Chest pain].

    Science.gov (United States)

    Horn, Benedikt

    2015-01-01

    Chest pain in ambulatory setting is predominantly not heart-associated. Most patients suffer from muskuloskeletal or functional (psychogenic) chest pain. Differential diagnosis covers aortic dissection, rib-fracture, shingles, GERD, Tietze-Syndrome, pulmonary embolism, pleuritis, pneumothorax, pleurodynia and metastatic disease. In most cases history, symptoms and signs allow a clinical diagnosis of high pretest-probability.

  16. Neuropathic pain

    Directory of Open Access Journals (Sweden)

    Giuseppe Re

    2009-02-01

    Full Text Available Neuropathic pain is the expression of a dysfunction or primary lesion of a nerve in the peripheral or central nervous system, or both, rather than the biological signal transmitted by the nerve following peripheral nociceptor activation. It represents about 20% of all painful syndromes, with an estimated prevalence of 1.5%, however is actual incidence is hard to pinpoint due to the difficulties encountered in distinguishing it from chronic pain, of which it represents a significant percentage, on account of the not infrequent concurrence of conditions. It is crucial to recognise the variety of symptoms with which it can present: these can be negative and positive and, in turn, motor, sensitive and autonomic. In public health terms, it is important to emphasise that the diagnosis of neuropathic pain does not in most cases require sophisticated procedures and does not therefore weigh on health expenditure. In clinical practice, a validated scale (the LANSS is mentioned is useful for identifying patients presenting neuropathic pain symptoms. Therapy is based on three categories of medication: tricyclic antidepressants, anti-epileptics and opioids at high doses: neuropathic pain has a bad reputation for often resisting common therapeutic approaches and responding less well that nociceptor pain to monotherapy. Therapeutic strategies are all the more adequate the more they are based on symptoms and therefore on the pain generation mechanisms, although the recommendations are dictated more by expert opinions that double-blind randomised trials.

  17. Painful shoulder

    Directory of Open Access Journals (Sweden)

    Benno Ejnismann

    2008-03-01

    Full Text Available Many factors can be involved in the painful shoulder. Beyond articularcauses other pathologies such as artrosis, periarticular diseases as rotadorcuff tears, long head of the biceps tendinitis, adhesive capsulitis, calcifyingtendinitis, degenerative arthritis of the acromioclavicular joint, cervicalradiculopathy and nervous injuries can cause pain in the shoulder.

  18. Pain channelopathies

    Science.gov (United States)

    Cregg, Roman; Momin, Aliakmal; Rugiero, Francois; Wood, John N; Zhao, Jing

    2010-01-01

    Pain remains a major clinical challenge, severely afflicting around 6% of the population at any one time. Channelopathies that underlie monogenic human pain syndromes are of great clinical relevance, as cell surface ion channels are tractable drug targets. The recent discovery that loss-of-function mutations in the sodium channel Nav1.7 underlie a recessive pain-free state in otherwise normal people is particularly significant. Deletion of channel-encoding genes in mice has also provided insights into mammalian pain mechanisms. Ion channels expressed by immune system cells (e.g. P2X7) have been shown to play a pivotal role in changing pain thresholds, whilst channels involved in sensory transduction (e.g. TRPV1), the regulation of neuronal excitability (potassium channels), action potential propagation (sodium channels) and neurotransmitter release (calcium channels) have all been shown to be potentially selective analgesic drug targets in some animal pain models. Migraine and visceral pain have also been associated with voltage-gated ion channel mutations. Insights into such channelopathies thus provide us with a number of potential targets to control pain. PMID:20142270

  19. Developing a Construct to Evaluate Flares in Rheumatoid Arthritis: A Conceptual Report of the OMERACT RA Flare Definition Working Group

    DEFF Research Database (Denmark)

    Alten, Rieke; Choy, Ernest H; Christensen, Robin

    2011-01-01

    Rheumatoid arthritis (RA) patients and healthcare professionals (HCP) recognize that episodic worsening disease activity, often described as a "flare," is a common feature of RA that can contribute to impaired function and disability. However, there is no standard definition to enable measurement...... of its intensity and impact. The conceptual framework of the Outcome Measures in Rheumatology Clinical Trials (OMERACT) RA Flare Definition Working Group includes an anchoring statement, developed at OMERACT 9 in 2008: "flare in RA" is defined as worsening of signs and symptoms of sufficient intensity...... is intended to enhance patient-HCP communication. This article describes the conceptual framework being used by the OMERACT RA Flare Definition Working Group in developing a standardized method for description and measurement of "flare in RA" to guide individual patient treatment....

  20. Solar and Stellar Flares and Their Effects on Planets

    Science.gov (United States)

    Shibata, Kazunari

    2015-08-01

    Recent space observations of the Sun revealed that the solar atmosphere is full of explosions, such as flares and flare-like phenomena. These flares generate not only strong electromagnetic emissions but also nonthermal particles and bulk plasma ejections, which sometimes lead to geomagnetic storms and affect terrestrial environment and our civilization, damaging satellite, power-grids, radio communication etc. Solar flares are prototype of various explosions in our universe, and hence are important not only for geophysics and environmental science but also for astrophysics. The energy source of solar flares is now established to be magnetic energy stored near sunspots. There is now increasing observational evidence that solar flares are caused by magnetic reconnection, merging of anti-parallel magnetic field lines and associated magneto-plasma dynamics (Shibata and Magara 2011, Living Review). It has also been known that many stars show flares similar to solar flares, and often such stellar flares are much more energetic than solar flares. The total energy of a solar flare is typically 10^29 - 10^32 erg. On the other hand, there are much more energetic flares (10^33 - 10^38 erg) in stars, especially in young stars. These are called superflares. We argue that these superflares on stars can also be understood in a unified way based on the reconnection mechanism. Finally we show evidence of occurrence of superflares on Sun-like stars according to recent stellar observations (Maehara et al. 2012, Nature, Shibayama et al. 2013), which revealed that superflares with energy of 10^34 - 10^35 erg (100 - 1000 times of the largest solar flares) occur with frequency of once in 800 - 5000 years on Sun-like stars which are very similar to our Sun. Against the previous belief, these new observations as well as theory (Shibata et al. 2013) suggest that we cannot deny the possibility of superflares on the present Sun. Finally, we shall discuss possible impacts of these superflares

  1. Study of white-light flares observed by Hinode

    Institute of Scientific and Technical Information of China (English)

    Hai-Min Wang

    2009-01-01

    White-light flares are considered to be the most energetic flaring events that are observable in the optical broad-band continuum of the solar spectrum. They have not been commonly observed. Observations of white-light flares with sub-arcsecond resolution have been very rare. The continuous high resolution observations of Hinode provide a unique opportunity to systematically study the white-light flares with a spatial resolution around 0.2 arcsec. We surveyed all the flares above GOES magnitude C5.0 since the launch of Hinode in 2006 October. 13 of these kinds of flares were covered by the Hinode G-band observations. We analyzed the peak contrasts and equivalent areas (calculated via integrated excess emission contrast) of these flares as a function of the GOES X-ray flux, and found that the cut-off visibility is likely around M1 flares under the observing limit of Hinode. Many other observational and physical factors should affect the visibility of white-light flares; as the observing conditions are improved, smaller flares are likely to have detectable white-light emissions. We are cautious that this limiting visibility is an overestimate, because G-band observations contain emissions from the upper atmosphere.Among the 13 events analyzed, only the M8.7 flare of 2007 June 4 had near-simultaneous observations in both the G-band and the blue continuum. The blue continuum had a peak contrast of 94% vs. 175% in G-band for this event. The equivalent area in the blue continuum is an order of magnitude lower than that in the G-band. Very recently, Jess et al.studied a C2.0 flare with a peak contrast of 300% in the blue continuum. Compared to the events presented in this letter, that event is probably an unusual white-light flare: a very small kernel with a large contrast that can be detected in high resolution observations.

  2. Pain and anxiety control: an online study guide.

    Science.gov (United States)

    2008-05-01

    The Editorial Board of the Journal of Endodontics has developed a literature-based study guide of topical areas related to endodontics. This study guide is intended to give the reader a focused review of the essential endodontic literature and does not cite all possible articles related to each topic. Although citing all articles would be comprehensive, it would defeat the idea of a study guide. This section will cover pain theories and dentin hypersensitivity, referred pain, oral pain not of dental origin, barodontalgia, local anesthetics, long-acting local anesthetics, intrapulpal anesthesia, intraligamentary anesthesia, intraosseous anesthesia, inferior alveolar nerve block anesthesia, Gow-Gates anesthesia technique, Vazirani-Akinosi anesthesia technique, second-division block anesthesia technique, endodontic postoperative pain, effect of occlusal adjustment on endodontic pain, paresthesia associated with periradicular pathosis, analgesics, sedation, and endodontic flare-ups.

  3. Pain Control After Surgery: Pain Medicines

    Science.gov (United States)

    ... receive pain medicine. If you feel pain, you push a button to inject medicine into your vein. ... without abusing pain medicine. There are pain management strategies you can try that do not include medicines. ...

  4. Fetal pain?

    Science.gov (United States)

    Vanhatalo, S; van Nieuwenhuizen, O

    2000-05-01

    During the last few years a vivid debate, both scientifically and emotionally, has risen in the medical literature as to whether a fetus is able to feel pain during abortion or intrauterine surgery. This debate has mainly been inspired by the demonstration of various hormonal or motor reactions to noxious stimuli at very early stages of fetal development. The aims of this paper are to review the literature on development of the pain system in the fetus, and to speculate about the relationship between "sensing" as opposed to "feeling" pain and the number of reactions associated with painful stimuli. While a cortical processing of pain theoretically becomes possible after development of the thalamo-cortical connections in the 26th week of gestation, noxious stimuli may trigger complex reflex reactions much earlier. However, more important than possible painfulness is the fact that the noxious stimuli, by triggering stress responses, most likely affect the development of an individual at very early stages. Hence, it is not reasonable to speculate on the possible emotional experiences of pain in fetuses or premature babies. A clinically relevant aim is rather to avoid and/or treat any possibly noxious stimuli, and thereby prevent their potential adverse effects on the subsequent development.

  5. [Musculoskeletal pain].

    Science.gov (United States)

    Casser, H-R; Schaible, H-G

    2015-10-01

    Among the clinically relevant pain conditions, pain in the musculoskeletal system is most frequent. This article reports extensive epidemiological data on musculoskeletal system pain in Germany and worldwide. Since back pain is most frequent, the diagnostics and therapeutic algorithms of acute, recurring, and chronic lower back pain in Germany will be particularly addressed. The importance of the physiologic-organic, the cognitive-emotional, the behavioral, and the social level to diagnostics and treatment will be discussed. We will also focus on osteoarthritic pain and address its epidemiology, clinical importance, and significance for the health care system. This article will list some reasons why the musculoskeletal system in particular is frequently the site of chronic pain. The authors believe that these reasons are to be sought in the complex structures of the musculoskeletal system; in the particular sensitivity of the deep somatic nociceptive system for long-term sensitization processes, as well as the ensuing nervous system reactions; and in the interactions between the nervous and immune systems. The article will give some insights into the research carried out on this topic in Germany.

  6. Pain Disorder

    Directory of Open Access Journals (Sweden)

    Carlos Capela

    2014-06-01

    Full Text Available Pain disorder is a psychiatric disorder diagnosed when the pain becomes the predominant focus of the clinical presentation and causes significant distress or impairment. Besides the high economic impact, there is a reciprocal relationship with the affective state. Pain is a subjective sensation and its severity and quality of experience in an individual is dependent on a complex mix of factors. In the treatment of acute pain, the primary purpose is pain relief, while chronic pain typically requires a combination of psychotropic drugs. In this context, it is also important to recognize and treat depression. Psychological treatments aimed at providing mechanisms to allow patients to "control and live with the pain" rather than aspire to eliminate it completely. A growing group of researchers proposes the elimination of the chapter of Somatoform Disorders and the modification of the category "psychological factors affecting a medical condition" to "psychological factors affecting an identified or feared medical condition" with clinical entities as ubchapters, largely based upon Diagnostics for Psychosomatic Research criteria.

  7. Modelling combustion reactions for gas flaring and its resulting emissions

    Directory of Open Access Journals (Sweden)

    O. Saheed Ismail

    2016-07-01

    Full Text Available Flaring of associated petroleum gas is an age long environmental concern which remains unabated. Flaring of gas maybe a very efficient combustion process especially steam/air assisted flare and more economical than utilization in some oil fields. However, it has serious implications for the environment. This study considered different reaction types and operating conditions for gas flaring. Six combustion equations were generated using the mass balance concept with varying air and combustion efficiency. These equations were coded with a computer program using 12 natural gas samples of different chemical composition and origin to predict the pattern of emission species from gas flaring. The effect of key parameters on the emission output is also shown. CO2, CO, NO, NO2 and SO2 are the anticipated non-hydrocarbon emissions of environmental concern. Results show that the quantity and pattern of these chemical species depended on percentage excess/deficiency of stoichiometric air, natural gas type, reaction type, carbon mass content, impurities, combustion efficiency of the flare system etc. These emissions degrade the environment and human life, so knowing the emission types, pattern and flaring conditions that this study predicts is of paramount importance to governments, environmental agencies and the oil and gas industry.

  8. Solar Flare Measurements with STIX and MiSolFA

    CERN Document Server

    Casadei, Diego

    2014-01-01

    Solar flares are the most powerful events in the solar system and the brightest sources of X-rays, often associated with emission of particles reaching the Earth and causing geomagnetic storms, giving problems to communication, airplanes and even black-outs. X-rays emitted by accelerated electrons are the most direct probe of solar flare phenomena. The Micro Solar-Flare Apparatus (MiSolFA) is a proposed compact X-ray detector which will address the two biggest issues in solar flare modeling. Dynamic range limitations prevent simultaneous spectroscopy with a single instrument of all X-ray emitting regions of a flare. In addition, most X-ray observations so far are inconsistent with the high anisotropy predicted by the models usually adopted for solar flares. Operated at the same time as the STIX instrument of the ESA Solar Orbiter mission, at the next solar maximum (2020), they will have the unique opportunity to look at the same flare from two different directions: Solar Orbiter gets very close to the Sun wit...

  9. Risk factors of systemic lupus erythematosus flares during pregnancy.

    Science.gov (United States)

    Jara, Luis J; Medina, Gabriela; Cruz-Dominguez, Pilar; Navarro, Carmen; Vera-Lastra, Olga; Saavedra, Miguel A

    2014-12-01

    This review examines the risk factors for the development of systemic lupus erythematosus (SLE) flares during pregnancy. In preconception, anti-DNA, hypocomplementemia, previous thrombosis, triple antiphospholipid (aPL) antibody positivity, active lupus nephritis and discontinuation of medications such as hydroxychloroquine and azathioprine are factors associated with pregnancy failure. During pregnancy, SLE flares are associated with aPL antibodies, synergic changes of pregnancy on Th1 and TH2 cytokines, other cytokines and chemokines that interact with hormones such as estrogen and prolactin that amplify the inflammatory effect. From the clinical point of view, SLE activity at pregnancy onset, thrombocytopenia, lupus nephritis, arterial hypertension, aPL syndromes, preeclampsia is associated with lupus flares and fetal complications. In puerperium, the risk factors of flares are similar to pregnancy. Hyperactivity of immune system, autoantibodies, hyperprolactinemia, active lupus nephritis, decrease in TH2 cytokines with increase in TH1 cytokines probably participate in SLE flare. The SLE flares during pregnancy make the difference between an uncomplicated pregnancy and pregnancy with maternal and fetal complications. Therefore, the knowledge of risk factors leads the best treatment strategies to reduce flares and fetal complications in SLE patients.

  10. Halpha line profile asymmetries and the chromospheric flare velocity field

    CERN Document Server

    Kuridze, D; Simões, P J A; van der Voort, L Rouppe; Carlsson, M; Jafarzadeh, S; Allred, J C; Kowalski, A F; Kennedy, M; Fletcher, L; Graham, D; Keenan, F P

    2015-01-01

    The asymmetries observed in the line profiles of solar flares can provide important diagnostics of the properties and dynamics of the flaring atmosphere. In this paper the evolution of the Halpha and Ca II 8542 {\\AA} lines are studied using high spatial, temporal and spectral resolution ground-based observations of an M1.1 flare obtained with the Swedish 1-m Solar Telescope. The temporal evolution of the Halpha line profiles from the flare kernel shows excess emission in the red wing (red asymmetry) before flare maximum, and excess in the blue wing (blue asymmetry) after maximum. However, the Ca II 8542 {\\AA} line does not follow the same pattern, showing only a weak red asymmetry during the flare. RADYN simulations are used to synthesise spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. We show that the red asymmetry observed in Halpha is not necessarily associated with plasma downflows, and the blue asymmetry may not be related to plasma upflows. Indeed, w...

  11. Size Distributions of Solar Flares and Solar Energetic Particle Events

    Science.gov (United States)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  12. Ending emissions: Industry targets venting, while flaring progress lauded

    Energy Technology Data Exchange (ETDEWEB)

    Lea, N.

    2003-06-01

    The progress achieved by the multi-stakeholder solution gas flaring reduction program in Alberta is discussed. The program was initiated in 1999 by the Alberta Energy and Utilities Board (EUB); within the first three years upstream flaring of solution gas was reduced by 53 per cent. Progress has also been made in reducing volumes of solution gas venting: between 1996 and 2001, there has been a 32 per cent reduction in combined flared and vented volumes of solution gas. Well test flaring has also been reduced by reduced test durations and volumes, to wit: there has been a 3 per cent reduction in flaring volumes while well tests have increased by 23 per cent. At gas plants, the decrease in flaring and venting amounted to 19 per cent, attributed mostly to industry response to the EUB's Guide 60, which incorporates many of the recommendations of the 2002 report and recommendations of the Flaring/Venting Project Team of the Clean Air Strategic Alliance (CASA).

  13. Dual frequency observations of flares with the VLA

    Science.gov (United States)

    Dulk, G. A.; Bastian, T. S.; Hurford, G. J.

    1983-01-01

    Observations are presented of two subflares near the limb on 21 and 22 November 1981 and an M7.7 flare on 8 May 1981 made at 5 and 15 GHz using the VLA. One of the November flares produced no 5 GHz radiation, while the 15 GHz radiation in the other flare emanated from a source which was smaller, lower, and displaced from the 5 GHz source. The flare occurring on 8 May was intense and complex, and contained two or more sources at both 5 and 15 GHz. Prior to the peak of the flare, the sources were found to grow in size, after which time only weak subsources were visible to the VLA. These subsources were found to be located between or at the edge of the H-alpha ribbons and the two hard X-ray sources imaged by the Hinotori satellite. Highly polarized, bursty radiation was observed at 1 and 2 GHz, which indicated that an electron-cyclotron maser operated during the flare. The maximum field strength in flaring loops is estimated to be 360-600 gauss.

  14. Differential rotation, flares and coronae in A to M stars

    Science.gov (United States)

    Balona, L. A.; Švanda, M.; Karlický, M.

    2016-08-01

    Kepler data are used to investigate flares in stars of all spectral types. There is a strong tendency across all spectral types for the most energetic flares to occur among the most rapidly rotating stars. Differential rotation could conceivably play an important role in enhancing flare energies. This idea was investigated, but no correlation could be found between rotational shear and the incidence of flares. Inspection of Kepler light curves shows that rotational modulation is very common over the whole spectral type range. Using the rotational light amplitude, the size distribution of starspots was investigated. Our analysis suggests that stars with detectable flares have spots significantly larger than non-flare stars, indicating that flare energies are correlated with the size of the active region. Further evidence of the existence of spots on A stars is shown by the correlation between the photometric period and the projected rotational velocity. The existence of spots indicates the presence of magnetic fields, but the fact that A stars lack coronae implies that surface convection is a necessary condition for the formation of the corona.

  15. Soft X-ray Pulsations in Solar Flares

    CERN Document Server

    Simões, Paulo J A; Fletcher, Lyndsay

    2014-01-01

    The soft X-ray emissions of solar flares come mainly from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the bulk of the total flare energy goes elsewhere. Recently Dolla et al. (2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES (Geostationary Operational Environmental Satellite) spacecraft. We analyze the suitability of the GOES data for this kind of analysis and find them to be generally valuable after Sept. 2010 (GOES-15). We then extend Dolla et al. results to a list of X-class flares from Cycle 24, and show that most of them display QPP in the impulsive phase. During the impulsive phase the footpoints of the newly-forming flare loops may also contribute to the observed soft X-ray variations. The QPP show up cleanly in both channels of the GOES dat...

  16. Evolution of flare ribbons, electric currents, and quasi-separatrix layers during an X-class flare

    Science.gov (United States)

    Janvier, M.; Savcheva, A.; Pariat, E.; Tassev, S.; Millholland, S.; Bommier, V.; McCauley, P.; McKillop, S.; Dougan, F.

    2016-07-01

    Context. The standard model for eruptive flares has been extended to three dimensions (3D) in the past few years. This model predicts typical J-shaped photospheric footprints of the coronal current layer, forming at similar locations as the quasi-separatrix layers (QSLs). Such a morphology is also found for flare ribbons observed in the extreme ultraviolet (EUV) band, and in nonlinear force-free field (NLFFF) magnetic field extrapolations and models. Aims: We study the evolution of the photospheric traces of the current density and flare ribbons, both obtained with the Solar Dynamics Observatory instruments. We aim to compare their morphology and their time evolution, before and during the flare, with the topological features found in a NLFFF model. Methods: We investigated the photospheric current evolution during the 06 September 2011 X-class flare (SOL2011-09-06T22:20) occurring in NOAA AR 11283 from observational data of the magnetic field obtained with the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory. We compared this evolution with that of the flare ribbons observed in the EUV filters of the Atmospheric Imager Assembly. We also compared the observed electric current density and the flare ribbon morphology with that of the QSLs computed from the flux rope insertion method-NLFFF model. Results: The NLFFF model shows the presence of a fan-spine configuration of overlying field lines, due to the presence of a parasitic polarity, embedding an elongated flux rope that appears in the observations as two parts of a filament. The QSL signatures of the fan configuration appear as a circular flare ribbon that encircles the J-shaped ribbons related to the filament ejection. The QSLs, evolved via a magnetofrictional method, also show similar morphology and evolution as both the current ribbons and the EUV flare ribbons obtained several times during the flare. Conclusions: For the first time, we propose a combined analysis of the photospheric

  17. Blazar flares powered by plasmoids in relativistic reconnection

    Science.gov (United States)

    Petropoulou, Maria; Giannios, Dimitrios; Sironi, Lorenzo

    2016-11-01

    Powerful flares from blazars with short (˜min) variability time-scales are challenging for current models of blazar emission. Here, we present a physically motivated ab initio model for blazar flares based on the results of recent particle-in-cell (PIC) simulations of relativistic magnetic reconnection. PIC simulations demonstrate that quasi-spherical plasmoids filled with high-energy particles and magnetic fields are a self-consistent by-product of the reconnection process. By coupling our PIC-based results (i.e. plasmoid growth, acceleration profile, particle and magnetic content) with a kinetic equation for the evolution of the electron distribution function we demonstrate that relativistic reconnection in blazar jets can produce powerful flares whose temporal and spectral properties are consistent with the observations. In particular, our model predicts correlated synchrotron and synchrotron self-Compton flares of duration of several hours-days powered by the largest and slowest moving plasmoids that form in the reconnection layer. Smaller and faster plasmoids produce flares of sub-hour duration with higher peak luminosities than those powered by the largest plasmoids. Yet, the observed fluence in both types of flares is similar. Multiple flares with a range of flux-doubling time-scales (minutes to several hours) observed over a longer period of flaring activity (days or longer) may be used as a probe of the reconnection layer's orientation and the jet's magnetization. Our model shows that blazar flares are naturally expected as a result of magnetic reconnection in a magnetically dominated jet.

  18. Spatial & Temporal Characteristics of Ha flares during the period 1975-2002 (comparison with SXR flares)

    CERN Document Server

    Gini, E; Hillaris, A; Preka-Papadema, P; Moussas, X; 10.1063/1.2347977

    2010-01-01

    Although the energetic phenomena of the Sun (flares, coronal mass injections etc.) exhibit intermittent stochastic behavior in their rate of occurrence, they are well correlated to the variations of the solar cycle. In this work we study the spatial and temporal characteristics of transient solar activity in an attempt to statistically interpret the evolution of these phenomena through the solar cycle, in terms of the self-organized criticality theory.

  19. What a Pain! Kids and Growing Pains

    Science.gov (United States)

    ... What Happens in the Operating Room? What a Pain! Kids and Growing Pains KidsHealth > For Kids > What a Pain! Kids and ... something doctors call growing pains . What Are Growing Pains? Growing pains aren't a disease. You probably ...

  20. Patient-self assessment of flare in rheumatoid arthritis: translation and reliability of the Flare instrument.

    Science.gov (United States)

    Maribo, Thomas; de Thurah, Annette; Stengaard-Pedersen, Kristian

    2016-04-01

    The Flare instrument (FI) is a French self-administrated questionnaire used to identify flares in disease activity in patients with rheumatoid arthritis. In addition to a total score, the FI has two subscales: one relating to joint symptoms and one relating to general symptoms. The objective of this study was to translate and adapt the French FI into Danish and to determine the reliability of the FI in a consecutive cohort of patients with RA. The FI was translated according to international guidelines, tested among 10 patients and 5 health professionals, and adapted. Test-retest reliability was determined by the standard error of the measurement (SEM) and the intra class correlation coefficients (ICC). The FI was administered to 50 patients with rheumatoid arthritis from an outpatient clinic of a university hospital and re-administered after 10 days. The patients had a mean age of 65.3 years (SD 12.0) and mean disease duration of 18.1 years (range 2-47 years). We found an excellent reliability with ICC higher than 0.95 and SEM between 0.44 and 0.63. Best reliability was found in the total FI score. Thus, the results of the present study show that the FI is a feasible and reliable tool for evaluation of flares in patients with rheumatoid arthritis.

  1. A model for the recurrent flares in EXO 2030 + 375

    Science.gov (United States)

    Taam, Ronald E.; Brown, D. A.; Fryxell, B. A.

    1988-01-01

    It is shown that nonsteady hydrodynamical flows associated with mass and angular momentum capture by a neutron star during a mass ejection phase from a Be star can produce flares with remarkable resemblance to those observed during an outburst from the X-ray transient pulsar EXO 2030 + 375. To reproduce the recurrent time scale of the flares, the velocity of the outflowing matter is estimated to be about 550 km/s. Since the theoretical model requires that a transient disk circulating in one direction is followed by a transient disk circulating in the opposite direction, the time derivative of the pulse period is expected to change sign after each flare event.

  2. Numerical RHD simulations of flaring chromosphere with Flarix

    CERN Document Server

    Heinzel, P; Varady, M; Karlicky, M; Moravec, Z

    2016-01-01

    Flarix is a radiation-hydrodynamical (RHD) code for modeling of the response of the chromosphere to a beam bombardment during solar flares. It solves the set of hydrodynamic conservation equations coupled with non-LTE equations of radiative transfer. The simulations are driven by high energy electron beams. We present results of the Flarix simulations of a flaring loop relevant to the problem of continuum radiation during flares. In particular we focus on properties of the hydrogen Balmer continuum which was recently detected by IRIS.

  3. Automated flare prediction using the AdaBoost algorithm

    Institute of Scientific and Technical Information of China (English)

    Ru-Shi Lan; Yong Jiang; Liu-Guan Ding; Jian-Wei Yang

    2012-01-01

    We propose a flare prediction method based on the AdaBoost algorithm,which constructs a strong prediction model from a combination of several basic models.Three predictors,extracted from the photospheric magnetograms,are applied as features to predict the occurrence of flares with a certain level over 24 hours following the time when the magnetogram is recorded.To demonstrate the effectiveness of the proposed method,comparisons of experimental results with respect to some existing methods are given.The results show that an improvement is achieved in predicting the occurrences of large flares.

  4. Systemic lupus erythematosus flare triggered by a spider bite.

    Science.gov (United States)

    Martín Nares, Eduardo; López Iñiguez, Alvaro; Ontiveros Mercado, Heriberto

    2016-01-01

    Systemic lupus erythematosus is a chronic autoimmune disease with a relapsing and remitting course characterized by disease flares. Flares are a major cause of hospitalization, morbidity and mortality in patients with systemic lupus erythematosus. Some triggers for these exacerbations have been identified, including infections, vaccines, pregnancy, environmental factors such as weather, stress and drugs. We report a patient who presented with a lupus flare with predominantly mucocutaneous, serosal and cardiac involvement after being bitten by a spider and we present the possible mechanisms by which the venom elicited such a reaction. To the best of our knowledge, this is the first such case reported in the literature.

  5. Nonlocal thermal transport in solar flares. II - Spectroscopic diagnostics

    Science.gov (United States)

    Karpen, Judith T.; Cheng, Chung-Chieh; Doschek, George A.; Devore, C. Richard

    1989-01-01

    Physical parameters obtained for a flaring solar atmosphere in an earlier paper are used here to predict time-dependent emission-line profiles and integrated intensities as a function of position for two spectral lines commonly observed during solar flares: the X-ray resonance lines of Ca XIX and Mg XI. Considerations of ionization nonequilibrium during the rise phase of the flare are addressed, and the effects on the predicted spectral-line characteristics are discussed. It is concluded that some spectroscopic diagnostics favor the nonlocal model, but other long-standing discrepancies between the numerical models and the observations remain unresolved.

  6. A Review of Flaring and Venting at UK Offshore Oilfields

    OpenAIRE

    Stewart, Jamie R

    2014-01-01

    This study aims to re-address the issue of flaring and venting of reproduced gases in carbon dioxide enhanced oil recovery (CO2EOR) projects. Whilst a number of studies have not recognised the impact of flaring/venting in CO2EOR developments, a study completed at Scottish Carbon Capture and Storage (SCCS) “Carbon Accounting for Carbon Dioxide Enhanced Oil Recovery” highlighted the significant control that flaring/venting of reproduced gases may have on a projects life cycle greenhouse gas emi...

  7. On the triggering of a spotless double-ribbon flare

    Science.gov (United States)

    Rausaria, R. R.; Aleem, S. M.; Sundara Raman, K.

    1992-11-01

    We have studied the evolution of the double-ribbon, spotless flare of 21 February, 1992, using Kodaikanal H-alpha and Kfl observations. The analysis of the data shows that the H-alpha filament underwent a large change in shear prior to the day of the onset of the flare. We find considerable rotation of the plage region before the emergence of a small magnetic pore. It is concluded that shear plays an important role in the triggering of a spotless flare.

  8. Chronic Pelvic Pain

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Chronic Pelvic Pain Home For Patients Search FAQs Chronic Pelvic Pain ... Pelvic Pain FAQ099, August 2011 PDF Format Chronic Pelvic Pain Gynecologic Problems What is chronic pelvic pain? What ...

  9. Chronic Pelvic Pain

    Science.gov (United States)

    ... Management Education & Events Advocacy For Patients About ACOG Chronic Pelvic Pain Home For Patients Search FAQs Chronic Pelvic Pain ... Chronic Pelvic Pain FAQ099, August 2011 PDF Format Chronic Pelvic Pain Gynecologic Problems What is chronic pelvic pain? What ...

  10. Plasma Astrophysics, part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V

    2007-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  11. On the energy release in solar flares

    CERN Document Server

    Pustil'nik, L A; Beskrovnaya, N G; 10.1063/1.3701351

    2012-01-01

    High-resolution observations show the fine structure of the global equilibrium magnetic field configuration in solar atmosphere to be essentially different from that assumed in the traditional 'potential + force-free' field scenarios. The interacting large-scale structures of fine field elements are separated by numerous non-force-free elements (tangential discontinuities) which are neglected in the traditional field picture. An incorporation of these elements into the model implies a dynamical rather than statical character of equilibrium of the field configuration. A transition of the system into flaring can be triggered by the ballooning mode of flute instability of prominences or/and coronal condensations. Tearing-mode and MHD instabilities as well as the effects of overheating of the turbulent current sheet prevent the field from stationary reconnection as it is adopted in the traditional scenario. We speculate around the assumption that the energy release in active regions is governed by the same scenar...

  12. Modern observations and models of Solar flares

    Science.gov (United States)

    Gritsyk, Pavel; Somov, Boris

    As well known, that fast particles propagating along flare loop generate bremsstrahlung hard x-ray emission and gyro-synchrotron microwave emission. We present the self-consistent kinetic description of propagation accelerated particles. The key point of this approach is taking into account the effect of reverse current. In our two-dimensional model the electric field of reverse current has the strong influence to the beam of accelerated particles. It decelerates part of the electrons in the beam and turns back other part of them without significant energy loss. The exact analytical solution for the appropriate kinetic equation with Landau collision integral was found. Using derived distribution function of electrons we’ve calculated evolution of their energy spectrum and plasma heating, coronal microwave emission and characteristics of hard x-ray emission in the corona and in the chromosphere. All results were compared with modern high precision space observations.

  13. Simultaneous optical and radio observations of flare stars in the Pleiades

    Energy Technology Data Exchange (ETDEWEB)

    Tovmassian, H.M.; Haro, G.; Webber, J.C.; Swenson, G.W. Jr.; Yang, K.S.; Yoss, K.M.; Deming, D.; Green, R.F.

    1974-01-01

    Simultaneous optical (at Tonantzintla, Palomar, and Prairie Observatories) and radio (at the Vermilion River and Owens Valley Radio Observatories) observations of the flare stars in the Pleiades cluster were made from October 1 to 6, 1972. Eleven optical flare-ups were detected. One large flare-up (greater than 8/sup m/ in U) was accompanied by radio flare at 170 MHz. The ratio of optical to radio energy output of this flare is about 6 . 10/sup 2/.

  14. Identifying Preliminary Domains to Detect and Measure Rheumatoid Arthritis Flares: Report of the OMERACT 10 RA Flare Workshop

    DEFF Research Database (Denmark)

    Bingham, Clifton O; Alten, Rieke; Bartlett, Susan J

    2011-01-01

    Background. While disease flares in rheumatoid arthritis (RA) are a recognized aspect of the disease process, there is limited formative research to describe them. METHODS: The Outcome Measures in Rheumatology Clinical Trials (OMERACT) RA Flare Definition Working Group is conducting an internatio......Background. While disease flares in rheumatoid arthritis (RA) are a recognized aspect of the disease process, there is limited formative research to describe them. METHODS: The Outcome Measures in Rheumatology Clinical Trials (OMERACT) RA Flare Definition Working Group is conducting...... an international research project to understand the specific characteristics and impact of episodic disease worsening, or "flare," so that outcome measures can be developed or modified to reflect this uncommonly measured, but very real and sometimes disabling RA disease feature. Patient research partners provided...... was identified as a component of the research agenda needed to establish criterion validity for a flare definition; this can be used in prospective studies to further evaluate the Discrimination and Feasibility components of the OMERACT filter for a flare outcome measure. CONCLUSION: Our work to date has...

  15. The first observed stellar X-ray flare oscillation: Constraints on the flare loop length and the magnetic field

    CERN Document Server

    Mitra-Kraev, U; Williams, D R; Kraev, E

    2005-01-01

    We present the first X-ray observation of an oscillation during a stellar flare. The flare occurred on the active M-type dwarf AT Mic and was observed with XMM-Newton. The soft X-ray light curve (0.2-12 keV) is investigated with wavelet analysis. The flare's extended, flat peak shows clear evidence for a damped oscillation with a period of around 750 s, an exponential damping time of around 2000 s, and an initial, relative peak-to-peak amplitude of around 15%. We suggest that the oscillation is a standing magneto-acoustic wave tied to the flare loop, and find that the most likely interpretation is a longitudinal, slow-mode wave, with a resulting loop length of (2.5 +- 0.2) e10 cm. The local magnetic field strength is found to be (105 +- 50) G. These values are consistent with (oscillation-independent) flare cooling time models and pressure balance scaling laws. Such a flare oscillation provides an excellent opportunity to obtain coronal properties like the size of a flare loop or the local magnetic field stre...

  16. Fetal pain.

    Science.gov (United States)

    Rokyta, Richard

    2008-12-01

    The fetus reacts to nociceptive stimulations through different motor, autonomic, vegetative, hormonal, and metabolic changes relatively early in the gestation period. With respect to the fact that the modulatory system does not yet exist, the first reactions are purely reflexive and without connection to the type of stimulus. While the fetal nervous system is able to react through protective reflexes to potentially harmful stimuli, there is no accurate evidence concerning pain sensations in this early period. Cortical processes occur only after thalamocortical connections and pathways have been completed at the 26th gestational week. Harmful (painful) stimuli, especially in fetuses have an adverse effect on the development of humans regardless of the processes in brain. Moreover, pain activates a number of subcortical mechanisms and a wide spectrum of stress responses influence the maturation of thalamocortical pathways and other cortical activation which are very important in pain processing.

  17. Habituating pain

    DEFF Research Database (Denmark)

    Ajslev, Jeppe Zielinski Nguyen; Lund, Henrik Lambrecht; Møller, Jeppe Lykke

    2013-01-01

    In this article, we investigate the relations between discursive practices within the Danish construction industry and the perceived pain, physical deterioration, and strain affecting the construction workers. Of central importance is the widely accepted hegemonic discourse on physical strain...... and pain as unavoidable conditions in construction work. Based on 32 semi-structured interviews performed in eight case studies within four different construction professions, workers’ descriptions of physical strain and its relation to the organizational and social context are analyzed through concepts...... the industry reproduce physical strain and the habituation of pain as unquestioned conditions in construction work. The understanding of this mutual reinforcement of the necessity of physically straining, painful, high-paced construction work provides fruitful perspectives on the overrepresentation...

  18. Finger pain

    Science.gov (United States)

    ... be a sign of infection or inflammation. Causes Injuries are a common cause of finger pain. Your finger may become injured from: Playing contact sports such as football, baseball, or soccer Doing recreational activities such as ...

  19. Joint pain

    Science.gov (United States)

    ... or conditions. It may be linked to arthritis , bursitis , and muscle pain . No matter what causes it, ... Autoimmune diseases such as rheumatoid arthritis and lupus Bursitis Chondromalacia patellae Crystals in the joint: Gout (especially ...

  20. Shoulder pain

    Science.gov (United States)

    ... This condition is called rotator cuff tendinitis or bursitis. Shoulder pain may also be caused by: Arthritis ... shoulder joint Bone spurs in the shoulder area Bursitis , which is inflammation of a fluid-filled sac ( ...

  1. Heel Pain

    Science.gov (United States)

    ... in the big toe joint; an inflamed bursa (bursitis), a small, irritated sac of fluid; a neuroma ( ... sometimes painful deformity generally is the result of bursitis caused by pressure against the shoe and can ...

  2. Knee pain

    Science.gov (United States)

    ... of home treatment What to Expect at Your Office Visit Your health care provider will perform a ... pain and inflammation. You may need to learn stretching and strengthening exercises. You also may need to ...

  3. Neck pain

    OpenAIRE

    2002-01-01

    Non-specific neck pain has a postural or mechanical basis, and affects about two thirds of people at some stage, especially in middle age. Acute neck pain resolves within days or weeks, but becomes chronic in about 10% of people.Whiplash injuries follow sudden acceleration–deceleration of the neck, such as in road traffic or sporting accidents. Up to 40% of people continue to report symptoms 15 years after the accident.

  4. Neonatal pain.

    Science.gov (United States)

    Walker, Suellen M

    2014-01-01

    Effective management of procedural and postoperative pain in neonates is required to minimize acute physiological and behavioral distress and may also improve acute and long-term outcomes. Painful stimuli activate nociceptive pathways, from the periphery to the cortex, in neonates and behavioral responses form the basis for validated pain assessment tools. However, there is an increasing awareness of the need to not only reduce acute behavioral responses to pain in neonates, but also to protect the developing nervous system from persistent sensitization of pain pathways and potential damaging effects of altered neural activity on central nervous system development. Analgesic requirements are influenced by age-related changes in both pharmacokinetic and pharmacodynamic response, and increasing data are available to guide safe and effective dosing with opioids and paracetamol. Regional analgesic techniques provide effective perioperative analgesia, but higher complication rates in neonates emphasize the importance of monitoring and choice of the most appropriate drug and dose. There have been significant improvements in the understanding and management of neonatal pain, but additional research evidence will further reduce the need to extrapolate data from older age groups. Translation into improved clinical care will continue to depend on an integrated approach to implementation that encompasses assessment and titration against individual response, education and training, and audit and feedback.

  5. Two-Step Coronal Transport of Solar Flare Particles from Magnetic Multipolarity Sources in a Flare Region

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong-Nian; WANG Shi-Jin

    2001-01-01

    The transport of solar flare particles in the corona is studied. Considering the problems in terms of the character istics of a sunspot group producing solar cosmic rays and solar flare processes, we find that formation of the fast propagation process is associated with annihilation of sunspots in the group with magnetic multipolarity. The slower propagation process depends on magnetic irregularities in the corona, and the evolution of the transport is related to the flare processes. Equations for the coronal transport are proposed and their initial and boundary conditions are given. The predicted results agree with the main observational features.

  6. Particle Acceleration by a Solar Flare Termination Shock

    CERN Document Server

    Chen, Bin; Shen, Chengcai; Gary, Dale E; Krucker, Sam; Glesener, Lindsay

    2015-01-01

    Solar flares - the most powerful explosions in the solar system - are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model of solar flares as a possible driver for particle acceleration, yet its existence and role have remained controversial. We present observations of a solar flare termination shock and trace its morphology and dynamics using high-cadence radio imaging spectroscopy. We show that a disruption of the shock coincides with an abrupt reduction of the energetic electron population. The observed properties of the shock are well-reproduced by simulations. These results strongly suggest that a termination shock is responsible, at least in part, for accelerating energetic electrons in solar flares.

  7. Powerful flares from recoiling black holes in quasars

    CERN Document Server

    Shields, G A

    2008-01-01

    Mergers of spinning black holes can give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole in an AGN retains the inner part of its accretion disk. Marginally bound material rejoining the disk around the moving black hole releases a large amount of energy in shocks in a short time, leading to a flare in thermal soft X-rays with a luminosity approaching the Eddington limit. Reprocessing of the X-rays by the infalling material gives strong optical and ultraviolet emission lines with a distinctive spectrum. Despite the short lifetime of the flare (~10^4 yr), as many as 100 flares may be in play at the present time in QSOs at redshifts ~ 1 to 3. These flares provide a means to identify high velocity recoils.

  8. Stellar flares and the dark energy of CMEs

    CERN Document Server

    Drake, Jeremy J; Garraffo, Cecilia; Kashyap, Vinay

    2016-01-01

    Flares we observe on stars in white light, UV or soft X-rays are probably harbingers of coronal mass ejections (CMEs). If we use the Sun as a guide, large stellar flares will dissipate two orders of magnitude less X-ray radiative energy than the kinetic energy in the associated CME. Since coronal emission on active stars appears to be dominated by flare activity, CMEs pose a quandary for understanding the fraction of their energy budget stars can spend on magnetic activity. One answer is magnetic suppression of CMEs, in which the strong large-scale fields of active stars entrap and prevent CMEs unless their free energy exceeds a critical value. The CME-less flaring active region NOAA 2192 presents a possible solar analogue of this. Monster CMEs will still exist, and have the potential to ravage planetary atmospheres.

  9. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  10. Imaging coronal magnetic-field reconnection in a solar flare

    CERN Document Server

    Su, Yang; Holman, Gordon D; Dennis, Brian R; Wang, Tongjiang; Temmer, Manuela; Gan, Weiqun

    2013-01-01

    Magnetic-field reconnection is believed to play a fundamental role in magnetized plasma systems throughout the Universe1, including planetary magnetospheres, magnetars and accretion disks around black holes. This letter present extreme ultraviolet and X-ray observations of a solar flare showing magnetic reconnection with a level of clarity not previously achieved. The multi-wavelength extreme ultraviolet observations from SDO/AIA show inflowing cool loops and newly formed, outflowing hot loops, as predicted. RHESSI X-ray spectra and images simultaneously show the appearance of plasma heated to >10 MK at the expected locations. These two data sets provide solid visual evidence of magnetic reconnection producing a solar flare, validating the basic physical mechanism of popular flare models. However, new features are also observed that need to be included in reconnection and flare studies, such as three-dimensional non-uniform, non-steady and asymmetric evolution.

  11. Obscuration of Flare Emission by an Eruptive Prominence

    CERN Document Server

    Gopalswamy, Nat

    2013-01-01

    We report on the eclipsing of microwave flare emission by an eruptive prominence from a neighboring region as observed by the Nobeyama Radioheliograph at 17 GHz. The obscuration of the flare emission appears as a dimming feature in the microwave flare light curve. We use the dimming feature to derive the temperature of the prominence and the distribution of heating along the length of the filament. We find that the prominence is heated to a temperature above the quiet Sun temperature at 17 GHz. The duration of the dimming is the time taken by the eruptive prominence in passing over the flaring region. We also find evidence for the obscuration in EUV images obtained by the Solar and Heliospheric Observatory (SOHO) mission.

  12. Flares in Gamma Ray Bursts: Disc Fragmentation and Evolution

    CERN Document Server

    Dall'Osso, Simone; Tanaka, Takamitsu L; Margutti, Raffaella

    2016-01-01

    Flaring activity following gamma-ray bursts (GRBs), observed in both long and short GRBs, signals a long-term activity of the central engine. However, its production mechanism has remained elusive. Here we develop a quantitative model of the idea proposed by Perna et al. of a disc whose outer regions fragment due to the onset of gravitational instability. The self-gravitating clumps migrate through the disc and begin to evolve viscously when tidal and shearing torques break them apart. Our model consists of two ingredients: theoretical bolometric flare lightcurves whose shape (width, skewness) is largely insensitive to the model parameters, and a spectral correction to match the bandpass of the available observations, that is calibrated using the observed spectra of the flares. This simple model reproduces, with excellent agreement, the empirical statistical properties of the flares as measured by their width-to-arrival time ratio and skewness (ratio between decay and rise time). We present model fits to the ...

  13. Driving major solar flares and eruptions: a review

    CERN Document Server

    Schrijver, C J

    2008-01-01

    This review focuses on the processes that energize and trigger major solar flares and flux-rope destabilizations. Numerical modeling of specific solar regions is hampered by uncertain coronal-field reconstructions and by poorly understood magnetic re- connection; these limitations result in uncertain estimates of field topology, energy, and helicity. The primary advances in understanding field destabilizations therefore come from the combination of generic numerical experiments with interpretation of sets of observations. These suggest a critical role for the emergence of twisted flux ropes into pre-existing strong field for many, if not all, of the active regions that pro- duce M- or X-class flares. The flux and internal twist of the emerging ropes appear to play as important a role in determining whether an eruption will develop predom- inantly as flare, confined eruption, or CME, as do the properties of the embedding field. Based on reviewed literature, I outline a scenario for major flares and erup- tions...

  14. Relationship between CME dynamics and solar flare plasma

    Institute of Scientific and Technical Information of China (English)

    Rajmal Jain; Malini Aggarwal; Pradeep Kulkarni

    2010-01-01

    The relationship between the velocity of CMEs and the plasma temperature of the associated X-ray solar flares is investigated.The velocity of CMEs increases with plasma temperature(R=0.82)and photon index below the break energy(R=0.60)of X-ray flares.The heating of the coronal plasma appears to be significant with respect to the kinetics of a CME from the reconnection region where the flare also occurs.We propose that the initiation and velocity of CMEs perhaps depend upon the dominant process of conversion of the magnetic field energy of the active region to heating/accelerating the coronal plasma in the reconnected loops.Results show that a flare and the associated CME are two components of one energy release system,perhaps,magnetic field free energy.

  15. Some Properties of Microwave Emission From Flaring Regions

    Institute of Scientific and Technical Information of China (English)

    V. R. Maksimov; V.L. Shchepkina; E.A. Chernova

    2005-01-01

    A study is made of the differences in the polarization distribution and other characteristics of microwave emission for several active regionswith high flare productivity. Conclusions are drawn about the magnetic field structure of these regions at coronal heights.

  16. Evidence That Solar Flares Drive Global Oscillations in the Sun

    Science.gov (United States)

    Karoff, C.; Kjeldsen, H.

    2008-05-01

    Solar flares are large explosions on the Sun's surface caused by a sudden release of magnetic energy. They are known to cause local short-lived oscillations traveling away from the explosion like water rings. Here we show that the energy in the solar acoustic spectrum is correlated with flares. This means that the flares drive global oscillations in the Sun in the same way that the entire Earth is set ringing for several weeks after a major earthquake such as the 2004 December Sumatra-Andaman one. The correlation between flares and energy in the acoustic spectrum of disk-integrated sunlight is stronger for high-frequency waves than for ordinary p-modes which are excited by the turbulence in the near-surface convection zone immediately beneath the photosphere.

  17. Kepler super-flare stars: what are they?

    CERN Document Server

    Wichmann, R; Wolter, U; Nagel, E

    2014-01-01

    The Kepler mission has led to the serendipitous discovery of a significant number of `super flares' - white light flares with energies between 10^33 erg and 10^36 erg - on solar-type stars. It has been speculated that these could be `freak' events that might happen on the Sun, too. We have started a programme to study the nature of the stars on which these super flares have been observed. Here we present high-resolution spectroscopy of 11 of these stars and discuss our results. We find that several of these stars are very young, fast-rotating stars where high levels of stellar activity can be expected, but for some other stars we do not find a straightforward explanation for the occurrence of super flares.

  18. Intralesional triamcinolone for flares of hidradenitis suppurativa (HS)

    DEFF Research Database (Denmark)

    Riis, Peter Theut; Boer, Jurr; Prens, Errol P

    2016-01-01

    BACKGROUND: Hidradenitis suppurativa (HS) is a chronic inflammatory disease of the hair follicle. Standard practice of managing acute flares with corticosteroid injection lacks scientific evidence. OBJECTIVE: We sought to assess the outcomes of routine treatment using intralesional triamcinolone...

  19. Blazar flares powered by plasmoids in relativistic reconnection

    CERN Document Server

    Petropoulou, Maria; Sironi, Lorenzo

    2016-01-01

    Powerful flares from blazars with short ($\\sim$ min) variability timescales are challenging for current models of blazar emission. Here, we present a physically motivated ab initio model for blazar flares based on the results of recent particle-in-cell (PIC) simulations of relativistic magnetic reconnection. PIC simulations demonstrate that quasi-spherical plasmoids filled with high-energy particles and magnetic fields are a self-consistent by-product of the reconnection process. By coupling our PIC-based results (i.e., plasmoid growth, acceleration profile, particle and magnetic content) with a kinetic equation for the evolution of the electron distribution function we demonstrate that relativistic reconnection in blazar jets can produce powerful flares whose temporal and spectral properties are consistent with the observations. In particular, our model predicts correlated synchrotron and synchrotron self-Compton flares of duration of several hours--days powered by the largest and slowest moving plasmoids th...

  20. Gamma-Ray Imager Polarimeter for Solar Flares Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose here to develop the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS), the next-generation instrument for high-energy solar observations. GRIPS will...

  1. Pain relief can be painful

    Directory of Open Access Journals (Sweden)

    Ashish Bindra

    2015-01-01

    Full Text Available Mandibular nerve block is periodically used procedure used to treat neuralgic pain in the distribution of trigeminal nerve. It is a commonly performed block in outpatient settings at our institute. We present a case of an elderly edentulous patient with trigeminal neuralgia who suffered recurrent temporomandibular joint (TMJ dislocation following mandibular nerve block. The patient presented with complaints of severe pain, inability to close mouth, and eat food since 2 days. Anterior closed reduction of TMJ resulted in reduction of joint and immediate pain relief. However, the maneuver failed due to recurrent dislocation of the joint. A Barton dressing was applied to prevent another dislocation. This was followed by autologous blood injection into the joint. This case focuses on the preponderance of clinical evaluation and accentuates the need for additional forethought to be taken during pain procedures, particularly in the geriatric population.

  2. Electron and proton kinetics and dynamics in flaring atmospheres

    CERN Document Server

    Zharkova, Valentina

    2012-01-01

    This timely book presents new research results on high-energy particle physics related to solar flares, covering the theory and applications of the reconnection process in a clear and comprehensible way. It investigates particle kinetics and dynamics in flaring atmospheres and their diagnostics from spectral observations, while providing an analysis of the observation data and techniques and comparing various models. Written by an internationally acclaimed expert, this is vital reading for all solar, astro-, and plasma physicists working in the field.

  3. Temporal variations of the Venus ionosphere during solar flares

    Science.gov (United States)

    Uesugi, A.; Fujiwara, H.; Fukunishi, H.

    2006-12-01

    The effects of long-term solar activity changes such as 11-year cycle and 27-day cycle on the Venus ionosphere have been investigated by a number of researchers using data obtained from some spacecrafts. However, the effects of short-term solar activity changes, particularly the effect of solar flares, are still unknown because there are no simultaneous observations of the Venus ionosphere and solar flares. The past observations of the Earth's ionosphere suggest significant and instantaneous changes of the Venus ionosphere during solar flares. Recently, Mars Global Surveyor (MGS) revealed the temporal variations of the Mars ionosphere during solar flares. The electron density of the Mars ionosphere was enhanced by ~10% at the main peak and 200% at the secondary peak at that time. The recent satellite observations of the solar X- rays enable us to model the Earth's and planetary ionospheres more exactly. In order to investigate the temporal variations of the Venus ionosphere during solar flares, we have developed a 1-D photochemical model for estimating vertical profiles of ions and electrons. We have also modeled temporal variations of solar flare using the EUV/X-rays data obtained by TIMED/SEE (0.1-194 nm) and GOES (0.1-0.8 nm) on October 28, 2003. Using the photochemical and solar flare models, we have calculated temporal variations of ion composition in the dayside Venus ionosphere. In addition, time constants for production and loss of ionospheric compositions through the photochemical reactions can be examined. We discuss differences of the response to solar flare among three planets, Venus, Earth and Mars. Then, the characteristics of the Venus ionosphere will be clarified.

  4. "Magnetar Hyper-Flares: Whole Lotta Shakin' Goin' on"

    Science.gov (United States)

    Strohmayer, Tod

    2008-01-01

    The giant flares produced by highly magnetized neutron stars, "magnetars," are the brightest sources of high energy radiation outside our solar system. High frequency oscillations have been discovered during portions of the two most recently observed giant flares which may represent the first detection of global oscillation modes of neutron stars. I will give an observational and theoretical overview of these oscillations and describe how they might allow us to probe neutron star interiors and dense matter physics.

  5. Fast X-Ray Oscillations during Magnetar Flares

    Science.gov (United States)

    Strohmayer Tod E.

    2009-01-01

    The giant flares produced by highly magnetized neutron stars, "magnetars," are the brightest sources of high energy radiation outside our solar system. High frequency oscillations have been discovered during portions of the two most recently observed giant flares which may represent the first detection of global oscillation modes of neutron stars. I will give an observational and theoretical overview of these oscillations and describe how they might allow us to probe neutron star interiors and dense matter physics.

  6. Magnetic Topology of the 29 October 2003 X10 flare

    Science.gov (United States)

    Des Jardins, Angela C.; Canfield, R.; Longcope, D.

    2006-06-01

    In order to improve the understanding of both flare initiation and evolution, we take advantage of powerful new topological methods and the high spatial resolution of RHESSI to examine where magnetic reconnection takes place in flare-producing solar active regions. Up to this time, such studies have been carried out on a very small number of active regions. According to present ideas, reconnection is expected to occur at either a separatrix or separator topological feature. We use the powerful X10 flare on 29 October 2003 (peak: 20:49 UT, location: (80'', 275'')) as a test of the ability to interpret the topological location of reconnection. The 29 October 2003 flare was well observed by RHESSI and MDI, occurred near the sun's central meridian, and thus is thus a prime candidate for a study on the topological location of magnetic reconnection. In this flare study, we use the MPOLE (http://solar.physics.montana.edu/dana/mpole/) software to extrapolate from the photospheric magnetic field, as observed by MDI, to a coronal field. MPOLE is a suite of IDL programs implementing the Minimum Current Corona Model (Longcope 1996) and currently includes a new method that uses a hierarchy of topological features (Beveridge 2006). The extrapolation gives the location of topological features such as poles, nulls, separatricies, separators, and spine lines. We examine the flare emission observed by RHESSI in the context of these topological features. In the case of the 29 October 2003 flare, we find a relationship between the spine lines and the temporal evolution of the HXR flare footpoints. In this poster, we present observations supporting the relationship, explore uncertainties in the consistency between MPOLE and RHESSI data, and survey possible results.This work is supported by NASA.

  7. [Myofascial pain syndrome--fascial muscle pain].

    Science.gov (United States)

    Partanen, Juhani; Ojala, Tuula; Arokoski, Jari P A

    2010-01-01

    Symptoms of myofascial pain syndrome, i.e. fascial muscle pain may occur in several areas of the body, particularly in the neck-shoulder region. The muscle pain symptom in the neck-shoulder region is commonly termed tension neck pain or nonspecific neck pain, but myofascial pain syndrome can also be distinguished into its own diagnosis. This review deals with the clinical picture of myofascial pain syndrome along with pathophysiological hypotheses and treatment options.

  8. Using serum urate as a validated surrogate end point for flares in patients with gout

    DEFF Research Database (Denmark)

    Birger Morillon, Melanie; Stamp, L.; Taylor, E W

    2016-01-01

    by applying the 'OMERACT Filter 2.0'. Methods and analysis: A systematic review described in terms of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines will identify all relevant studies. Standardised data elements will be extracted from each study by 2...... independent reviewers and disagreements are resolved by discussion. The data will be analysed by meta-regression of the between-arm differences in the change in serum urate level (independent variable) from baseline to 3 months (or 6 and 12 months if 3-month values are not available) against flare rate......, tophus size and number and pain at the final study visit (dependent variables). Ethics and dissemination: This study will not require specific ethics approval since it is based on analysis of published (aggregated) data. The intended audience will include healthcare researchers, policymakers...

  9. Rituximab therapy for flare-up of rheumatoid arthritis after total knee replacement surgery.

    Science.gov (United States)

    Mirza, Rabeea; Ishaq, Saliha; Khan, Muhammad Owais; Memon, Adil

    2012-10-01

    A variety of drug types are used alone or in combination to manage Rheumatoid Arthritis along with physiotherapy. We report herein the case of a 51 year old female patient with a history of Rheumatoid Arthritis whose disease remained active despite being on routinely used multiple disease modifying antirheumatic drugs. The patient underwent bilateral total knee arthroplasty with subtotal synovectomy due to the severe pain caused by her concomitant age related osteoarthritis which was only aggravated by her active rheumatoid arthritis disease. Three months following surgery, the patient's knee pain with typical rheumatoid flare and swelling reappeared for which a B cell monoclonal antibody, rituximab, was given. Her number of tender and swollen joints reduced to less than three and her C-reactive protein levels and erythrocyte sedimentation rate reduced significantly along with considerable improvement in her Global Assessment score. Her severity of pain also decreased to 3 from an initial score of 8 on the Visual Analog Scale. Thus, Rituximab helped improve our patient's symptoms from recurrence of synovitis after total knee replacement.

  10. Flares in gamma-ray bursts: disc fragmentation and evolution

    Science.gov (United States)

    Dall'Osso, Simone; Perna, Rosalba; Tanaka, Takamitsu L.; Margutti, Raffaella

    2017-02-01

    Flaring activity following gamma-ray bursts (GRBs), observed in both long and short GRBs, signals a long-term activity of the central engine. However, its production mechanism has remained elusive. Here, we develop a quantitative model of the idea proposed by Perna et al. of a disc whose outer regions fragment due to the onset of gravitational instability. The self-gravitating clumps migrate through the disc and begin to evolve viscously when tidal and shearing torques break them apart. Our model consists of two ingredients: theoretical bolometric flare light curves whose shape (width, skewness) is largely insensitive to the model parameters, and a spectral correction to match the bandpass of the available observations, that is calibrated using the observed spectra of the flares. This simple model reproduces, with excellent agreement, the empirical statistical properties of the flares as measured by their width-to-arrival time ratio and skewness (ratio between decay and rise time). We present model fits to the observed light curves of two well-monitored flares, GRB 060418 and GRB 060904B. To the best of our knowledge, this is the first quantitative model able to reproduce the flare light curves and explain their global statistical properties.

  11. JITTER RADIATION MODEL OF THE CRAB GAMMA-RAY FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Teraki, Yuto; Takahara, Fumio, E-mail: teraki@vega.ess.sci.osaka-u.ac.jp [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan)

    2013-02-15

    The gamma-ray flares of the Crab nebula detected by the Fermi and AGILE satellites challenge our understanding of the physics of pulsars and their nebulae. The central problem is that the peak energy of the flares exceeds the maximum energy E {sub c} determined by synchrotron radiation loss. However, when turbulent magnetic fields exist with scales {lambda}{sub B} smaller than 2{pi}mc {sup 2}/eB, jitter radiation can emit photons with energies higher than E {sub c}. The scale required for the Crab flares is about two orders of magnitude less than the wavelength of the striped wind. We discuss a model in which the flares are triggered by plunging the high-density blobs into the termination shock. The observed hard spectral shape may be explained by the jitter mechanism. We make three observational predictions: first, the polarization degree will become lower in flares; second, no counterpart will be seen in TeV-PeV range; and third, the flare spectrum will not be harder than {nu}F {sub {nu}}{proportional_to}{nu}{sup 1}.

  12. Constraining Solar Flare Differential Emission Measures with EVE and RHESSI

    CERN Document Server

    Caspi, Amir; Warren, Harry P

    2014-01-01

    Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from $\\lesssim$2 to $\\gtrsim$50 MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly-observed solar flares. EVE is sensitive to ~2-25 MK thermal plasma emission, and RHESSI to $\\gtrsim$10 MK; together, the two instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from ...

  13. Multi-Thread Hydrodynamic Modeling of a Solar Flare

    CERN Document Server

    Warren, H P

    2006-01-01

    Past hydrodynamic simulations have been able to reproduce the high temperatures and densities characteristic of solar flares. These simulations, however, have not been able to account for the slow decay of the observed flare emission or the absence of blueshifts in high spectral resolution line profiles. Recent work has suggested that modeling a flare as an sequence of independently heated threads instead of as a single loop may resolve the discrepancies between the simulations and observations. In this paper we present a method for computing multi-thread, time-dependent hydrodynamic simulations of solar flares and apply it to observations of the Masuda flare of 1992 January 13. We show that it is possible to reproduce the temporal evolution of high temperature thermal flare plasma observed with the instruments on the \\textit{GOES} and \\textit{Yohkoh} satellites. The results from these simulations suggest that the heating time-scale for a individual thread is on the order of 200 s. Significantly shorter heati...

  14. Perception on Effect of Gas Flaring on the Environment

    Directory of Open Access Journals (Sweden)

    Ayanlade Ayansina

    2010-10-01

    Full Text Available The study assessed the adverse effect of gas flaring on the environment and the potential benefits of its reduction on the local economy and the environment at large. This was with a view to suggesting an integrated strategy and management plan for sustainable environment in the gas flaring areas. The study used both primary and secondary data. The primary data was obtained through administration of two hundred and ten questionnaires which focused mainly on the impact of gas flaring on farm activities; adaptation to gas flaring effects; farmers perception on gas flaring and climate change and crop performance; etc. coupled with intensive fieldwork. The data w ere presented in form of tables showing frequencies and percentages. Secondary data used were those of monthly rainfall totals between 1992 and 2002, obtained from the meteorological station of the Qua Iboe Terminus (QIT. The method of trend fittings was used in analyzing the data. The result of the study clearly shows that gas flaring has contributed significantly to environmental degradation in the area.

  15. [Forefoot pain].

    Science.gov (United States)

    Damiano, Joël

    2010-03-20

    Forefoot chronic pain is a frequent problem in daily clinical practice. Mechanical pathology of the forefoot, usually called static metatarsalgia, represents the most frequent reason for consultation in pathology of the foot. The cause is a functionnal disorder or anatomic derangement of the forefoot architecture. Metatarsalgia can originate from a wide range of affections. Etiologies of chronic pain are described from medial to lateral with first ray pathologies (hallux valgus, hallux rigidus and sesamoid pathology) and first ray insufficiency, pathologies of the second, third and fourth ray and intermetatarsal spaces (second ray syndrome, Freiberg's disease, Morton neuroma, stress or bone insufficiency metatarsal fractures, intermetatarsal bursitis) and fifth ray pathology (lateral bursitis, quintus varus). Sometimes forefoot pain could also be caused by chronic inflammatory rheumatic diseases (rheumatoid and psoriatic arthritis) with a risk of structural metatarsophalangeal joints alteration. The pathology of the toes can, more rarely, explain a forefoot pain. So, several pathologic conditions can produce forefoot pain and the diagnostic approach must always be based on the anamnesis and clinical examination. In a second time if the cause is difficult to establish based solely on clinical findings, radiography and ultrasonography are today the most usefull auxiliary investigations.

  16. [Visceral pain].

    Science.gov (United States)

    Elsenbruch, S; Häuser, W; Jänig, W

    2015-10-01

    Chronic visceral pain is an unresolved neurobiological, medical and socioeconomic challenge. Up to 20% of the adult population suffer from chronic visceral pain and abdominal complaints constitute a prevalent symptom also in children and adolescents. Existing treatment approaches are often unsuccessful and patients typically suffer from multiple somatic and psychological symptoms. This complex situation requires integrative treatment approaches. This review summarizes current basic and clinical research on acute and chronic visceral pain with a focus on research groups in Germany. Despite significant clinical and scientific advances, a number of questions remain open calling for more funding to support research to elucidate the complex pathophysiology of chronic visceral pain and to develop and test new treatment approaches. Research support should focus on interdisciplinary concepts and methodology using expertise from multiple disciplines. The field would also benefit from a broader integration of visceral pain into teaching curricula in medicine and psychology and should aim to motivate young clinicians and scientists to strive for a career within this important and highly fascinating area.

  17. Models for Flare Statistics and the Waiting-time Distribution of Solar Flare Hard X-ray Bursts

    Science.gov (United States)

    Wheatland, M. S.; Edney, S. D.

    1999-12-01

    In a previous study (Wheatland, Sturrock, McTiernan 1998), a waiting-time distribution was constructed for solar flare hard X-ray bursts observed by the ICE/ISEE-3 spacecraft. A comparison of the observed distribution with that of a time-dependent Poisson process indicated an overabundance of short waiting times (10~s -- 10~min), implying that the hard X-ray bursts are not independent events. Models for flare statistics assume or predict that flares are independent events -- in particular the avalanche model makes this specific prediction. The results of the previous study may be reconciled with the avalanche picture if individual flares produce several distinct bursts of hard X-ray emission. A detailed comparison of the avalanche model and the ICE/ISEE-3 waiting-time distribution is presented here.

  18. X-ray flaring from Sagittarius A*: exploring the Milky Way black hole through its brightest flares

    Science.gov (United States)

    Nynka, Melania; Haggard, Daryl

    2017-08-01

    Sagittarius A* is the supermassive black hole at the center of our own Milky Way galaxy. Ambitious monitoring campaigns have yielded rich multiwavelength, time-resolved data, which have the power to probe the physical processes that underlie Sgr A*'s quiescent and flare emission. In 2013 and 2014 the Chandra X-ray Observatory captured two extremely luminous flares from Sgr A*, the two brightest ever detected in X-ray. I will describe the spectral and temporal properties of these flares, how they compare to previous analysis, and the possible physical processes driving the Sgr A* variability. I will also discuss the power spectral densities of the flares which may contain information about the black hole's ISCO and spin.

  19. Subjective impact of osteoarthritis flare-ups on patients' quality of life

    Directory of Open Access Journals (Sweden)

    Giardini Anna

    2005-03-01

    Full Text Available Abstract Background Clinical trials on osteoarthritis (OA flare-ups treatment usually focus only on objective measures of health status, albeit recent literature suggestions on the importance of patients' subjectivity. Aim of the study was to evaluate the effects of OA and of its different types of medical treatment(s on Health Related Quality of Life (HRQoL in terms of both subjective satisfaction and functional status. Methods An observational study on prospective data collected from the Evaluation of Quality of life in OA (EQuO clinical trial (April 1999-November 2000 was conducted; outpatients from 70 participating centers (Orthopedy or Rheumatology Departments in Italy with a diagnosis of OA of the hip or knee were consecutively enrolled. Patients were observed at OA flare-ups (baseline and at follow up 4 weeks after treatment. Patients' objective and subjective HRQoL were assessed by means of the SF-36 and the Satisfaction Profile (SAT-P, which focuses on subjective satisfaction; Present Pain at baseline and Pain Relief at follow up were also evaluated. Results Among the 1323 patients, 1138 (86% were prescribed one drug/treatment of osteoarthritis, 169 (13% 2 drugs/treatments, and 16 (1% 3 drugs/treatments; most of treatments involved the prescription of NSAIDs; non-coxib, COX2 selective NSAIDs were prescribed in about 50% of patients. Follow-up visits were performed after 29.0 days on average (± 7.69 SD. For all SF-36 domains, all SAT-P items and factors, the differences between baseline and follow up scores resulted statistically significant (p Conclusion Besides the classic health status measures, the assessment of patients' subjective satisfaction provides important clues on treatments efficacy of OA within the patient-centered medicine model. In clinical practice this could lead to a better doctor-patient communication and to higher levels of treatment adherence.

  20. Could Flaring Stars Change Our Views of Their Planets?

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    As the exoplanet count continues to increase, we are making progressively more measurements of exoplanets outer atmospheres through spectroscopy. A new study, however, reveals that these measurements may be influenced by the planets hosts.Spectra From TransitsExoplanet spectra taken as they transit their hosts can tell us about the chemical compositions of their atmospheres. Detailed spectroscopic measurements of planet atmospheres should become even more common with the next generation of missions, such as the James Webb Space Telescope (JWST), or Planetary Transits and Oscillations of Stars (PLATO).But is the spectrum that we measure in the brief moment of a planets transit necessarily representative of its spectrum all of the time? A team of scientists led by Olivia Venot (University of Leuven in Belgium) argue that it might not be, due to the influence of the planets stellar host.Atmospheric composition of a planet before flare impacts (dotted lines), during the steady state reached after a flare impact (dashed lines), and during the steady state reached after a second flare impact (solid lines). [Venot et al. 2016]The team suggests that when a hosts flares impact upon a planets atmosphere (especially likely in the case of active M-dwarfs that commonly harbor planetary systems), this activity may modify the chemical composition of the planets atmosphere. This would in turn alter the spectrum that we measure from the exoplanet.Modeling AtmospheresVenot and collaborators set out to test the effect of stellar flares on exoplanet atmospheres by modeling the atmospheres of two hypothetical planets orbiting the star AD Leo an active and flaring M dwarf located roughly 16 light-years away at two different distances. The team then examined what happened to the atmospheres, and to the resulting spectra that we would observe, when they were hit with a stellar flare typical of AD Leo.The difference in relative absorption between the initial steady-state and the

  1. Feasibility and Domain Validation of Rheumatoid Arthritis (RA) Flare Core Domain Set

    DEFF Research Database (Denmark)

    Bartlett, Susan J; Bykerk, Vivian P; Cooksey, Roxanne

    2015-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Rheumatoid Arthritis (RA) Flare Group was established to develop an approach to identify and measure RA flares. An overview of our OMERACT 2014 plenary is provided. METHODS: Feasibility and validity of flare domains endorsed at OMERACT 11...... (2012) were described based on initial data from 3 international studies collected using a common set of questions specific to RA flare. Mean flare frequency, severity, and duration data were presented, and domain scores were compared by flare status to examine known-groups validity. Breakout groups......, and stiffness scores averaged ≥ 2 times higher (2 of 11 points) in flaring individuals. Correlations between flare domains and corresponding legacy instruments were obtained: r = 0.46 to 0.93. A combined definition (patient report of flare and 28-joint Disease Activity Score increase) was evaluated in 2 other...

  2. Statistical Models for Solar Flare Interval Distribution in Individual Active Regions

    CERN Document Server

    Kubo, Yuki

    2008-01-01

    This article discusses statistical models for solar flare interval distribution in individual active regions. We analyzed solar flare data in 55 active regions that are listed in the GOES soft X-ray flare catalog. We discuss some problems with a conventional procedure to derive probability density functions from any data set and propose a new procedure, which uses the maximum likelihood method and Akaike Information Criterion (AIC) to objectively compare some competing probability density functions. We found that lognormal and inverse Gaussian models are more likely models than the exponential model for solar flare interval distribution in individual active regions. The results suggest that solar flares do not occur randomly in time; rather, solar flare intervals appear to be regulated by solar flare mechanisms. We briefly mention a probabilistic solar flare forecasting method as an application of a solar flare interval distribution analysis.

  3. Multi-wavelength view of an M2.2 Solar Flare on 26 November 2000

    CERN Document Server

    Chandra, R; Rani, S; Maurya, R A

    2016-01-01

    In this paper, we present a study of an M2.2 class solar flare of 26 November 2000 from NOAA AR 9236. The flare was well observed by various ground based observatories (ARIES, Learmonths Solar Observatory) and space borne instruments (SOHO, HXRS, GOES) in time interval between 02:30 UT to 04:00 UT. The flare started with long arc-shape outer flare ribbon. Afterwards the main flare starts with two main ribbons. Initially the outer ribbons start to expand with an average speed ($\\sim$ 20 km s$^{-1}$) and later it shows contraction. The flare was associated with partial halo coronal mass ejection (CMEs) which has average speed of 495 km s$^{-1}$. The SOHO/MDI observations show that the active region was in quadrupolar magnetic configuration. The flux cancellation was observed before the flare onset close to flare site. Our analysis indicate the flare was initiated by the magnetic breakout mechanism.

  4. Multi-wavelength view of an M2.2 solar flare on 26 november 2000

    Science.gov (United States)

    Chandra, R.; Verma, V. K.; Rani, S.; Maurya, R. A.

    2017-02-01

    In this paper, we present a study of an M2.2 class solar flare of 26 November 2000 from NOAA AR 9236. The flare was well observed by various ground based observatories (ARIES, Learmonths Solar Observatory) and space borne instruments (SOHO, HXRS, GOES) in time interval between 02:30 UT to 04:00 UT. The flare started with long arc-shape outer flare ribbon. Afterwards the main flare starts with two main ribbons. Initially the outer ribbons start to expand with an average speed (∼20 km s-1) and later it shows contraction. The flare was associated with partial halo coronal mass ejection (CMEs) which has average speed of 495 km s-1. The SOHO/MDI observations show that the active region was in quadrupolar magnetic configuration. The flux cancellation was observed before the flare onset close to flare site. Our analysis indicate the flare was initiated by the magnetic breakout mechanism.

  5. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas

  6. Prediction and comparison of noise levels from ground and elevated flare systems

    Energy Technology Data Exchange (ETDEWEB)

    Obasi, E. [Stantec Consulting Ltd., Surrey, BC (Canada)

    2009-07-01

    Flaring is a process to dispose of hydrocarbons during clean-up, emergency shut downs or dispose a small volume waste streams of mixed gasses that cannot easily or safely be separated. This presentation discussed flaring as a noise issue. It focused on flaring noise characterization; flare noise modeling; flare sound power levels; and flare sound pressure level comparison at a distance of 1.5 km. The presentation included a photograph of flaring at a gas plant in Nigeria. The presentation listed some of the potential health effects associated with long term exposure to excessive noise, such as hearing loss; headaches; stress; fatigue; sleep disturbance; and high blood pressure. Companies flare gas to dispose waste gases in a safe and reliable manner through combustion and to depressurize gas lines during maintenance and emergencies. This presentation also discussed ground and elevated flares; components of flare noise characterization; and key factors affecting flare noise. A model to predict flaring noise was also presented. It demonstrated that at the same gas mass flow rate, the noise level from elevated flare stacks are significantly higher than ground flares. tabs., figs.

  7. A Database of Flare Ribbon Properties From Solar Dynamics Observatory: Reconnection Flux

    Science.gov (United States)

    Kazachenko, Maria D.; Welsch, Brian; Lynch, Benjamin J.; Sun, Xudong

    2017-08-01

    We present a database of 3137 solar flare ribbon events corresponding to every flare of GOES class C1.0 and greater within 45 degrees from the disk center, from April 2010 until April 2016, observed by the Solar Dynamics Observatory. For every event in the database, we compare the GOES peak X-ray flux with corresponding active-region and flare-ribbon properties. We find that while the peak X-ray flux is not correlated with the AR unsigned magnetic flux, it is strongly correlated with the flare ribbon reconnection flux, flare ribbon area, and the fraction of active region flux that undergoes reconnection. We find the relationship between the peak X-ray flux and the flare ribbon reconnection flux to be I_{X,peak} ~ \\Phi_{ribbon}^{1.3} for flares >M1 and I_{X,peak} ~ \\Phi_{ribbon}^{1.5} over the entire flare set (>C1). This scaling law is consistent with earlier hydrodynamic simulations of impulsively heated flare loops. Using the flare reconnection flux as a proxy for the total released flare energy E, we find that the occurrence frequency of flare energies follows a power-law dependence: dN/dE ~ E^{-1.6} for E within 10^{31} to 10^{33} erg, consistent with earlier studies of solar and stellar flares. This database is available online and can be used for future quantitative studies of flares.

  8. Ultraviolet Spectroscopy of Tidal Disruption Flares

    Science.gov (United States)

    Cenko, Stephen B.

    2017-08-01

    When a star passes within the sphere of disruption of a massive black hole, tidal forces will overcome self-gravity and unbind the star. While approximately half of the stellar debris is ejected at high velocities, the remaining material stays bound to the black hole and accretes, resulting in a luminous, long-lived transient known as a tidal disruption flare (TDF). In addition to serving as unique laboratories for accretion physics,TDFs offer the hope of measuring black hole masses in galaxies much too distant for resolved kinematic studies.In order to realize this potential, we must better understand the detailed processes by which the bound debris circularizes and forms an accretion disk. Spectroscopy is critical to this effort, as emission and absorption line diagnostics provide insight into the location and physical state (velocity, density, composition) of the emitting gas (in analogy with quasars). UV spectra are particularly critical, as most strong atomic features fall in this bandpass, and high-redshift TDF discoveries from LSST will sample rest-frame UV wavelengths.Here I present recent attempts to obtain UV spectra of tidal disruption flares. I describe the UV spectrum of ASASSN-14li, in which we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad (2000-8000 km s-1) emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by 250-400 km s-1. Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will

  9. Abdominal Pain (Stomach Pain), Short-Term

    Science.gov (United States)

    ... in Children and TeensRead MoreBMI Calculator Abdominal Pain (Stomach Pain), Short-termJust about everyone has had a " ... time or another. But sudden severe abdominal pain (stomach pain), also called acute pain, shouldn't be ...

  10. Evolution of Flare Ribbons, Electric Currents and Quasi-separatrix Layers During an X-class Flare

    CERN Document Server

    Janvier, M; Pariat, E; Tassev, S; Millholland, S; Bommier, V; McCauley, P; McKillop, S; Dougan, F

    2016-01-01

    The standard model for eruptive flares has in the past few years been extended to 3D. It predicts typical J-shaped photospheric footprints of the coronal current layer, forming at similar locations as the Quasi-Separatrix Layers (QSLs). Such a morphology is also found for flare ribbons observed in the EUV band, as well as in non-linear force-free field (NLFFF) magnetic field extrapolations and models. We study the evolution of the photospheric traces of the current density and flare ribbons, both obtained with the SDO instruments. We investigate the photospheric current evolution during the 6 September 2011 X-class flare (SOL2011-09-06T22:20) from observational data of the magnetic field obtained with HMI. This evolution is compared with that of the flare ribbons observed in the EUV filters of the AIA. We also compare the observed electric current density and the flare ribbon morphology with that of the QSLs computed from the flux rope insertion method/NLFFF model. The NLFFF model shows the presence of a fan-...

  11. Painful menstrual periods

    Science.gov (United States)

    Menstruation - painful; Dysmenorrhea; Periods - painful; Cramps - menstrual; Menstrual cramps ... related activities for a few days during each menstrual cycle. Painful menstruation is the leading cause of ...

  12. Modeling the Soft X-Ray During Solar Flares

    Science.gov (United States)

    Leaman, C. J.

    2016-12-01

    Solar Radiation can effect our communication and navigation systems here on Earth. In particular, solar X-ray (SXR) and extreme ultraviolet (EUV) radiation is responsible for ionizing (charging) earth's upper atmosphere, and sudden changes in the ionosphere can disrupt high frequency communication systems (e.g. airplane-to-ground) and degrade the location accuracy for GPS navigation. New soft X-ray flare data are needed to study the sources for the SXR radiation and variability of the solar flares and thus help to answer questions if all flares follow the same trend or have different plasma characteristics? In December 2015, the Miniature X-Ray Solar Spectrometer (MinXSS) launched from Cape Canaveral Florida to answer those questions. The MinXSS CubeSat is a miniature satellite that was designed to measure the soft X-ray spectra and study flares in the 1-15 Å wavelength range. So far, the CubeSat has observed more than ten flares. The MinXSS flare data are plotted in energy vs irradiance to display the soft X-ray spectra, and these spectra are compared with different types of CHIANTI models of the soft X-ray radiation. One comparison is for non-flaring spectra using AIA EUV images to identify solar features called active regions, coronal holes, and quiet sun, and then using the fractional area of each feature to calculate a CHIANTI-based spectrum. This comparison reveals how important the active region radiation is for the SXR spectra. A second comparison is for flare spectra to several isothermal models that were created using CHIANTI. The isothermal model comparisons were done with both the raw count spectra from MinXSS and the derived irradiance spectra. This dual comparison helps to validate the irradiance conversion algorithm for MinXSS. Comparisons of the MinXSS data to the models show that flares tend to follow a temperature pattern. Analysis of the MinXSS data can help us understand our sun better, could lead to better forecasts of solar flares, and thus

  13. Flare Prediction Using Photospheric and Coronal Image Data

    Science.gov (United States)

    Jonas, E.; Shankar, V.; Bobra, M.; Recht, B.

    2016-12-01

    We attempt to forecast M-and X-class solar flares using a machine-learning algorithm and five years of image data from both the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) instruments aboard the Solar Dynamics Observatory. HMI is the first instrument to continuously map the full-disk photospheric vector magnetic field from space (Schou et al., 2012). The AIA instrument maps the transition region and corona using various ultraviolet wavelengths (Lemen et al., 2012). HMI and AIA data are taken nearly simultaneously, providing an opportunity to study the entire solar atmosphere at a rapid cadence. Most flare forecasting efforts described in the literature use some parameterization of solar data - typically of the photospheric magnetic field within active regions. These numbers are considered to capture the information in any given image relevant to predicting solar flares. In our approach, we use HMI and AIA images of solar active regions and a deep convolutional kernel network to predict solar flares. This is effectively a series of shallow-but-wide random convolutional neural networks stacked and then trained with a large-scale block-weighted least squares solver. This algorithm automatically determines which patterns in the image data are most correlated with flaring activity and then uses these patterns to predict solar flares. Using the recently-developed KeystoneML machine learning framework, we construct a pipeline to process millions of images in a few hours on commodity cloud computing infrastructure. This is the first time vector magnetic field images have been combined with coronal imagery to forecast solar flares. This is also the first time such a large dataset of solar images, some 8.5 terabytes of images that together capture over 3000 active regions, has been used to forecast solar flares. We evaluate our method using various flare prediction windows defined in the literature (e.g. Ahmed et al., 2013) and a novel per

  14. Automatic prediction of solar flares and super geomagnetic storms

    Science.gov (United States)

    Song, Hui

    Space weather is the response of our space environment to the constantly changing Sun. As the new technology advances, mankind has become more and more dependent on space system, satellite-based services. A geomagnetic storm, a disturbance in Earth's magnetosphere, may produce many harmful effects on Earth. Solar flares and Coronal Mass Ejections (CMEs) are believed to be the major causes of geomagnetic storms. Thus, establishing a real time forecasting method for them is very important in space weather study. The topics covered in this dissertation are: the relationship between magnetic gradient and magnetic shear of solar active regions; the relationship between solar flare index and magnetic features of solar active regions; based on these relationships a statistical ordinal logistic regression model is developed to predict the probability of solar flare occurrences in the next 24 hours; and finally the relationship between magnetic structures of CME source regions and geomagnetic storms, in particular, the super storms when the D st index decreases below -200 nT is studied and proved to be able to predict those super storms. The results are briefly summarized as follows: (1) There is a significant correlation between magnetic gradient and magnetic shear of active region. Furthermore, compared with magnetic shear, magnetic gradient might be a better proxy to locate where a large flare occurs. It appears to be more accurate in identification of sources of X-class flares than M-class flares; (2) Flare index, defined by weighting the SXR flares, is proved to have positive correlation with three magnetic features of active region; (3) A statistical ordinal logistic regression model is proposed for solar flare prediction. The results are much better than those data published in the NASA/SDAC service, and comparable to the data provided by the NOAA/SEC complicated expert system. To our knowledge, this is the first time that logistic regression model has been applied

  15. Chronic Pain

    Science.gov (United States)

    ... therapy – methods that help you relax and decrease stress. They could include meditation, tai chi, or yoga.Almost anything you do to relax or get your mind off your problems may help control pain. Even if you are ... have to use stress-reduction methods for several weeks before you notice ...

  16. Orofacial Pain

    Science.gov (United States)

    ... and neck. Maintaining or correcting your bite ensures optimal health, and proper care will help reduce or eliminate orofacial pain or discomfort. Reviewed: January 2012 ?xml:namespace> Related Articles: Frequent Headaches? Can't Sleep? Check Your Bite What Causes a Toothache? Your ...

  17. Neuropathic Pain

    African Journals Online (AJOL)

    gnac/0@med.u0vs.ac.za. Southern ... dition will respond differently to exactly the same treatment regime. 3. ... When trying to identify the location of the pain, it is important .... triggers central sprouting of myelinated afferents " Nature 7992;.

  18. [Elbow pain].

    Science.gov (United States)

    Viikari-Juntura, Eira; Miintyselkii, Pekka; Havulinna, Jouni

    2010-01-01

    Pain and disability in the elbow are not as common as in the neck, shoulder or wrist, for example. The elbow may, however, present disorders that may in a prolonged state be difficult and cause significant loss of working capacity. These include epicondylitis, osteoarthritis and entrapment of the ulnar nerve.

  19. Achilles Pain.

    Science.gov (United States)

    Connors, G. Patrick

    Five ailments which can cause pain in the achilles tendon area are: (1) muscular strain, involving the stretching or tearing of muscle or tendon fibers; (2) a contusion, inflammation or infection called tenosynovitis; (3) tendonitis, the inflammation of the tendon; (4) calcaneal bursitis, the inflammation of the bursa between the achilles tendon…

  20. Leg pain

    Science.gov (United States)

    ... when you walk or exercise and improves with rest. The leg is black and blue. The leg is cold ... chap 81. Marcussen B, Hogrefe C, Amendola A. Leg pain and exertional compartment syndromes. In: Miller MD, Thompson SR, eds. DeLee & Drez's ...

  1. Flare in spondyloarthritis: Thresholds of disease activity variations.

    Science.gov (United States)

    Godfrin-Valnet, Marie; Puyraveau, Marc; Prati, Clément; Wendling, Daniel

    2015-05-01

    There is no definition of flare in spondyloarthritis (SpA). The aim of this study was to evaluate thresholds of disease activity variations using validated composite indexes. SpA patients (ASAS criteria) prospectively followed with at least two visits, were evaluated. Patients and physician answered at each visit the question: "do you consider your SpA/patient in a state of flare?". Variations of BASDAI and ASDAS between visits were assessed and associated to the change of perception of a flare (yes/no). ROC curves were built to assess thresholds of variation in BASDAI and ASDAS associated with the change flare between visits. The patients were issued from a prospective series of 250 SpA. Ninety-nine cases with at least 2 visits were analysed. They were: 67% men, mean age 45±12 years; disease duration: 16±10 years; 84% HLA-B27 positive; purely axial SpA: 81%; PASS at baseline: 56%; mean CRP: 8.6±13.5mg/l. Mean BASDAI and ASDAS-CRP at baseline were 4.3±2.2 and 2.5±1.1, respectively. The kappa coefficient of agreement between patient and physician for considering a flare was 0.68. The main results of the ROC curves are: a variation ≥2.1 units in BASDAI (sensitivity 59%, specificity 83%), 0.8 units in ASDAS-ESR (sen 56%, spe 91%) or 1.3 units in ASDAS-CRP (sen 47%, spe 100%) is associated to a flare. We propose thresholds of variations of BASDAI, ASDAS-ESR, and ASDAS-CRP associated to (and that may define) a flare, as considered by the patient and the physician. Copyright © 2015 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  2. Prediction of shock arrival times from CME and flare data

    Science.gov (United States)

    Núñez, Marlon; Nieves-Chinchilla, Teresa; Pulkkinen, Antti

    2016-08-01

    This paper presents the Shock Arrival Model (SARM) for predicting shock arrival times for distances from 0.72 AU to 8.7 AU by using coronal mass ejections (CME) and flare data. SARM is an aerodynamic drag model described by a differential equation that has been calibrated with a data set of 120 shocks observed from 1997 to 2010 by minimizing the mean absolute error (MAE), normalized to 1 AU. SARM should be used with CME data (radial, earthward, or plane-of-sky speeds) and flare data (peak flux, duration, and location). In the case of 1 AU, the MAE and the median of absolute errors were 7.0 h and 5.0 h, respectively, using the available CME/flare data. The best results for 1 AU (an MAE of 5.8 h) were obtained using both CME data, either radial or cone model-estimated speeds, and flare data. For the prediction of shock arrivals at distances from 0.72 AU to 8.7 AU, the normalized MAE and the median were 7.1 h and 5.1 h, respectively, using the available CME/flare data. SARM was also calibrated to be used with CME data alone or flare data alone, obtaining normalized MAE errors of 8.9 h and 8.6 h, respectively, for all shock events. The model verification was carried out with an additional data set of 20 shocks observed from 2010 to 2012 with radial CME speeds to compare SARM with the empirical ESA model and the numerical MHD-based ENLIL model. The results show that the ENLIL's MAE was lower than the SARM's MAE, which was lower than the ESA's MAE. The SARM's best results were obtained when both flare and true CME speeds were used.

  3. Orofacial pain

    Directory of Open Access Journals (Sweden)

    Marjolijn Oomens

    2016-06-01

    Full Text Available In the primary care sector, diagnosis and initial management of orofacial pain are often performed by familydoctors and dentists. Knowledge of the different types of orofacial pain and headache disorders is therefor of great importance. The International Classification of Headache Disorders (ICHD-3 provides an overview of the different types of orofacial pain and will be discussed in this lecture. The main focus will be on trigeminal neuralgia and cluster headache and the current research in this field. Trigeminal Neuralgia (TN is defined as a disorder characterized by recurrent, unilateral, brief, electricshock-like pains, abrupt in onset and termination, limited to the distribution of one or more divisions of thetrigeminal nerve and triggered by innocuous stimuli. Unfortunately, most TN is idiopathic, and the aetiology isnot clear. The guidelines on pharmaceutical TN management published by the American Academy of Neurology (AAN and the European Federation of Neurological Societies (EFNS recommend carbamazepine (CBZ; 200–1200 mg/day or oxcarbazepine (OXC; 600–1800 mg/day as first-line therapy. Both are antiepileptics with well known interactions with other drugs and safety problems. An overview of the currently available literature on the pharmaceutical management of TN patients is discussed. Cluster headache (CH is one of the most painful primary headache disorders. It is characterized by daily or almost daily attacks of unilateral excruciating periorbital pain associated with ipsilateral cranial autonomic symptoms, typically lasting between 15 and 180 minutes if untreated. Cluster headache is caused by the relaesement of neurotransmitters and vasodilators from the sphenopalatine ganglion (SPH. The SPG is a large extracranial parasympathetic ganglion located in the pterygopalatine fossa (PPF. The current treatments for CH attacks are injectable sumatriptan and oxygen inhalation. Both treatments have well known side effects and

  4. When Sex Is Painful

    Science.gov (United States)

    ... AQ FREQUENTLY ASKED QUESTIONS GYNECOLOGIC PROBLEMS FAQ020 When Sex Is Painful • How common is painful sex? • What causes pain during sex? • Where is pain during sex felt? • When should ...

  5. Back Pain During Pregnancy

    Science.gov (United States)

    ... Management Education & Events Advocacy For Patients About ACOG Back Pain During Pregnancy Home For Patients Search FAQs Back ... Pain During Pregnancy FAQ115, January 2016 PDF Format Back Pain During Pregnancy Pregnancy What causes back pain during ...

  6. Back Pain During Pregnancy

    Science.gov (United States)

    ... Advocacy For Patients About ACOG Back Pain During Pregnancy Home For Patients Search FAQs Back Pain During ... FAQ115, January 2016 PDF Format Back Pain During Pregnancy Pregnancy What causes back pain during pregnancy? How ...

  7. When Sex Is Painful

    Science.gov (United States)

    ... AQ FREQUENTLY ASKED QUESTIONS GYNECOLOGIC PROBLEMS FAQ020 When Sex Is Painful • How common is painful sex? • What causes pain during sex? • Where is pain during sex felt? • When should ...

  8. Emotional Components of Pain

    Directory of Open Access Journals (Sweden)

    Carla J Hale

    1997-01-01

    Full Text Available BACKGROUND: Current definitions of pain suggest that emotion is an essential component of pain, however, the presumed relationship between emotion and pain, and the specific emotions that are involved in pain experiences have yet to be clarified.

  9. Complex Regional Pain Syndrome

    Science.gov (United States)

    Complex regional pain syndrome (CRPS) is a chronic pain condition. It causes intense pain, usually in the arms, hands, legs, or feet. ... in skin temperature, color, or texture Intense burning pain Extreme skin sensitivity Swelling and stiffness in affected ...

  10. White-light flares on cool stars in the Kepler Quarter 1 Data

    CERN Document Server

    Walkowicz, Lucianne M; Batalha, Natalie; Gilliland, Ronald L; Jenkins, Jon; Borucki, William J; Koch, David; Caldwell, Doug; Dupree, Andrea K; Latham, David W; Meibom, Soeren; Howell, Steve; Brown, Tim; Bryson, Steve

    2010-01-01

    We present the results of a search for white light flares on the ~23,000 cool dwarfs in the Kepler Quarter 1 long cadence data. We have identified 373 flaring stars, some of which flare multiple times during the observation period. We calculate relative flare energies, flare rates and durations, and compare these with the quiescent photometric variability of our sample. We find that M dwarfs tend to flare more frequently but for shorter durations than K dwarfs, and that they emit more energy relative to their quiescent luminosity in a given flare than K dwarfs. Stars that are more photometrically variable in quiescence tend to emit relatively more energy during flares, but variability is only weakly correlated with flare frequency. We estimate distances for our sample of flare stars and find that the flaring fraction agrees well with other observations of flare statistics for stars within 300 pc above the Galactic Plane. These observations provide a more rounded view of stellar flares by sampling stars that h...

  11. Soft X-Ray Pulsations in Solar Flares

    Science.gov (United States)

    Simões, P. J. A.; Hudson, H. S.; Fletcher, L.

    2015-12-01

    The soft X-ray emissions ( hν>1.5 keV) of solar flares mainly come from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the overwhelming bulk of the total flare energy goes elsewhere. Recently Dolla et al. ( Astrophys. J. Lett. 749, L16, 2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES ( Geostationary Operational Environmental Satellite) spacecraft. In this article we analyse the suitability of the GOES data for this type of analysis and find them to be generally valuable after September, 2010 (GOES-15). We then extend the result of Dolla et al. to a complete list of X-class flares from Cycle 24 and show that most of them (80 %) display QPPs in the impulsive phase. The pulsations show up cleanly in both channels of the GOES data, making use of time-series of irradiance differences (the digital time derivative on the 2-s sampling). We deploy different techniques to characterise the periodicity of GOES pulsations, considering the red-noise properties of the flare signals, finding a range of characteristic time scales of the QPPs for each event, but usually with no strong signature of a single period dominating in the power spectrum. The QPP may also appear on somewhat longer time scales during the later gradual phase, possibly with a greater tendency towards coherence, but the sampling noise in GOES difference data for high irradiance values (X-class flares) makes these more uncertain. We show that there is minimal phase difference between the differenced GOES energy channels, or between them and the hard X-ray variations on short time scales. During the impulsive phase, the footpoints of the newly forming flare loops may also contribute to the observed soft X-ray variations.

  12. Electron Acceleration in Contracting Magnetic Islands during Solar Flares

    Science.gov (United States)

    Borovikov, D.; Tenishev, V.; Gombosi, T. I.; Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.; Antiochos, S. K.

    2017-01-01

    Electron acceleration in solar flares is well known to be efficient at generating energetic particles that produce the observed bremsstrahlung X-ray spectra. One mechanism proposed to explain the observations is electron acceleration within contracting magnetic islands formed by magnetic reconnection in the flare current sheet. In a previous study, a numerical magnetohydrodynamic simulation of an eruptive solar flare was analyzed to estimate the associated electron acceleration due to island contraction. That analysis used a simple analytical model for the island structure and assumed conservation of the adiabatic invariants of particle motion. In this paper, we perform the first-ever rigorous integration of the guiding-center orbits of electrons in a modeled flare. An initially isotropic distribution of particles is seeded in a contracting island from the simulated eruption, and the subsequent evolution of these particles is followed using guiding-center theory. We find that the distribution function becomes increasingly anisotropic over time as the electrons’ energy increases by up to a factor of five, in general agreement with the previous study. In addition, we show that the energized particles are concentrated on the Sunward side of the island, adjacent to the reconnection X-point in the flare current sheet. Furthermore, our analysis demonstrates that the electron energy gain is dominated by betatron acceleration in the compressed, strengthened magnetic field of the contracting island. Fermi acceleration by the shortened field lines of the island also contributes to the energy gain, but it is less effective than the betatron process.

  13. Impulsive Heating of Solar Flare Ribbons Above 10 MK

    CERN Document Server

    Simões, Paulo J A; Fletcher, Lyndsay

    2015-01-01

    The chromospheric response to the input of flare energy is marked by extended extreme ultraviolet (EUV) ribbons and hard X-ray (HXR) footpoints. These are usually explained as the result of heating and bremsstrahlung emission from accelerated electrons colliding in the dense chromospheric plasma. We present evidence of impulsive heating of flare ribbons above 10 MK in a two-ribbon flare. We analyse the impulsive phase of SOL2013-11-09T06:38, a C2.6 class event using data from Atmospheric Imaging Assembly (AIA) on board of Solar Dynamics Observatory (SDO) and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to derive the temperature, emission measure and differential emission measure of the flaring regions and investigate the evolution of the plasma in the flaring ribbons. The ribbons were visible at all SDO/AIA EUV/UV wavelengths, in particular, at 94 and 131 \\AA\\ filters, sensitive to temperatures of 8 MK and 12 MK. Time evolution of the emission measure of the plasma above 10 MK at the ribb...

  14. KIC011764567: An evolved object showing substantial flare-activity

    CERN Document Server

    Kitze, M; Hambaryan, V; Torres, G; Neuhäuser, R

    2016-01-01

    We intensively studied the flare activity on the stellar object KIC011764567. The star was thought to be solar type, with a temperature of $T_{eff} = (5640 \\pm 200)\\,$K, $\\log(g) = (4.3 \\pm 0.3)\\,$dex and a rotational period of Prot 22 d (Brown et al. 2011). High resolution spectra turn the target to an evolved object with Teff = (5300 \\pm 150) K, a metalicity of $[m/H] = (-0.5 \\pm 0.2)$, a surface gravity of $log(g) = (3.3 \\pm 0.4)\\,$dex, and a projected rotational velocity of $v sin i = (22 \\pm 1)\\,kms^{-1}$. Within an observing time span of 4 years we detected 150 flares in Kepler data in an energy range of $10^{36} - 10^{37}$ erg. From a dynamical Lomb-Scargle periodogram we have evidence for differential rotation as well as for stellar spot evolution and migration. Analysing the occurrence times of the flares we found hints for a periodic flare frequency cycle of $430 - 460 $d, the significance increases with an increasing threshold of the flares equivalent duration. One explanation is a very short activ...

  15. On the Study of Solar Flares with Neutrino Observatories

    CERN Document Server

    ,

    2016-01-01

    Since the end of the eighties, in response to a reported increase of the total neutrino flux in the Homestake experiment in coincidence with solar flares, neutrino detectors have searched for signals of neutrinos associated with solar flare activity. Protons which are accelerated by the magnetic structures of such flares may collide with the solar atmosphere, producing mesons which subsequently decay, resulting in neutrinos at O(MeV-GeV) energies. The study of such neutrinos would provide a new window on the underlying physics of the acceleration process. The sensitivity to solar flares of the IceCube Neutrino Observatory, located at the geographical South Pole, is currently under study. We introduce a new approach for a time profile analysis. This is based on a stacking method of selected solar flares which are likely to be connected with pion production. An initial approach towards a neutrino search using the current IceCube experiment as well as first efforts to improve the detection efficiency in the futu...

  16. A Unified Computational Model for Solar and Stellar Flares

    Science.gov (United States)

    Allred, Joel C.; Kowalski, Adam F.; Carlsson, Mats

    2015-01-01

    We present a unified computational framework that can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker-Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and dMe stellar atmospheres and perform parameter studies varying the injected particle energy spectra. We find the atmospheric response is strongly dependent on the accelerated particle cutoff energy and spectral index.

  17. Dark Post-Flare Loops Observed by Solar Dynamics Observatory

    CERN Document Server

    Song, Qiao; Feng, Xueshang; Zhang, Xiaoxin

    2016-01-01

    Solar post-flare loops (PFLs) are arcade-like loop systems that appear during the gradual phases of eruptive flares. The extreme ultraviolet (EUV) observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) allow us to investigate the fine structures in PFLs. In this work, we focus on studying the dark post-flare loops (DPFLs) during X-class flares, which are more evident in SDO/AIA data than in previous EUV data. We identify and analyze the DPFLs observed by SDO and find that: (1) the DPFLs of an X5.4 flare have an average lifetime of 10.0 $\\pm$ 5.5 minutes, an average width of 1022 $\\pm$ 339 km, and an average maximum length of 33 $\\pm$ 10 Mm, (2) blob-like falling features with a size close to the resolution of SDO/AIA are identified in the DPFLs and they have an average velocity of 76 $\\pm$ 19 km s$^{-1}$, and (3) the average widths of the DPFLs slightly increase with the characteristic temperatures in AIA 304, 171, 193, and 211 {\\AA} channels. Our investigation ...

  18. Explosive Chromospheric Evaporation in a Circular-ribbon Flare

    CERN Document Server

    Zhang, Q M; Ning, Z J; Su, Y N; Ji, H S; Guo, Y

    2016-01-01

    In this paper, we report our multiwavelength observations of the C4.2 circular-ribbon flare in active region (AR) 12434 on 2015 October 16. The short-lived flare was associated with positive magnetic polarities and a negative polarity inside, as revealed by the photospheric line-of-sight magnetograms. Such magnetic pattern is strongly indicative of a magnetic null point and spine-fan configuration in the corona. The flare was triggered by the eruption of a mini-filament residing in the AR, which produced the inner flare ribbon (IFR) and the southern part of a closed circular flare ribbon (CFR). When the eruptive filament reached the null point, it triggered null point magnetic reconnection with the ambient open field and generated the bright CFR and a blowout jet. Raster observations of the \\textit{Interface Region Imaging Spectrograph} (\\textit{IRIS}) show plasma upflow at speed of 35$-$120 km s$^{-1}$ in the Fe {\\sc xxi} 1354.09 {\\AA} line ($\\log T\\approx7.05$) and downflow at speed of 10$-$60 km s$^{-1}$ i...

  19. A Blazar-Like Radio Flare in Mrk 231

    CERN Document Server

    Reynolds, Cormac; O'Dea, Christopher; Hurley-Walker, Natasha; Wrobel, Joan

    2013-01-01

    Radio monitoring of the broad absorption line quasar (BALQSO) Mrk 231 from 13.9 GHz to 17.6 GHz detected a strong flat spectrum flare. Even though BALQSOs are typically weak radio sources, the 17.6 GHz flux density doubled in ~150 days, from ~135 mJy to ~270 mJy. It is demonstrated that the elapsed rise time in the quasar rest frame and the relative magnitude of the flare is typical of some of the stronger flares in blazars that are associated with the ejection of discrete components on parsec scales. The decay of a similar flare was found in a previous monitoring campaign at 22 GHz. We conclude that these flares are not rare and indicate the likely ejection of a new radio component that can be resolved from the core with Very Long Baseline Interferometry. The implication is that Mrk 231 seems to be a quasar in which the physical mechanism that produces the BAL wind is in tension with the emergence of a fledgling blazar.

  20. A Unified Computational Model for Solar and Stellar Flares

    CERN Document Server

    Allred, Joel C; Carlsson, Mats

    2015-01-01

    We present a unified computational framework which can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker-Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and...

  1. Inferring Flare Loop Parameters with Measurements of Standing Sausage Modes

    Science.gov (United States)

    Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui

    2016-03-01

    Standing fast sausage modes in flare loops were suggested to account for a considerable number of quasi-periodic pulsations (QPPs) in the light curves of solar flares. This study continues our investigation into the possibility of inverting the measured periods P and damping times τ of sausage modes to deduce the transverse Alfvén time R/v_{Ai}, density contrast ρi/ρe, and the steepness of the density distribution transverse to flare loops. A generic dispersion relation governing linear sausage modes is derived for pressureless cylinders where density inhomogeneity of arbitrary form takes place within the cylinder. We show that in general the inversion problem is under-determined for QPP events where only a single sausage mode exists, whether the measurements are spatially resolved or unresolved. While R/v_{Ai} can be inferred to some extent, the range of possible steepness parameters may be too broad to be useful. However, for spatially resolved measurements where an additional mode is present, it is possible to deduce self-consistently ρi/ρe, the profile steepness, and the internal Alfvén speed v_{Ai}. We show that at least for a recent QPP event that involves a fundamental kink mode in addition to a sausage one, flare loop parameters are well constrained even if the specific form of the transverse density distribution remains unknown. We conclude that spatially resolved, multi-mode QPP measurements need to be pursued to infer flare loop parameters.

  2. Elemental abundances of flaring solar plasma - Enhanced neon and sulfur

    Science.gov (United States)

    Schmelz, J. T.

    1993-01-01

    Elemental abundances of two flares observed with the SMM Flat Crystal Spectrometer are compared and contrasted. The first had a gradual rise and a slow decay, while the second was much more impulsive. Simultaneous spectra of seven bright soft X-ray resonance lines provide information over a broad temperature range and are available throughout both flares, making these events unique in the SMM data base. For the first flare, the plasma seemed to be characterized by coronal abundances but, for the second, the plasma composition could not be coronal, photospheric, or a linear combination of both. A good differential emission measure fit required enhanced neon such that Ne/O = 0.32 +/- 0.02, a value which is inconsistent with the current models of coronal abundances based on the elemental first-ionization potential. Similar values of enhanced neon are found for flaring plasma observed by the SMM gamma-ray spectrometer, in (He-3)-rich solar energetic particle events, and in the decay phase of several long duration soft X-ray events. Sulfur is also enhanced in the impulsive flare, but not as dramatically as neon. These events are compared with two models which attempt to explain the enhanced values of neon and sulfur.

  3. Flare and lens aberration requirements for EUV lithographic tools

    Science.gov (United States)

    Lee, Sang Hun; Shroff, Yashesh; Chandhok, Manish

    2005-05-01

    EUV lithographic tools can support the 32 nm MPU manufacturing node and beyond. In order to meet the stringent requirements on CD control and overlay for such technology generations, wavefront error and flare of the EUV exposure systems have to be well controlled. The cross field variations of wavefront errors and flare need to be in the acceptable range in order to improve the common Depth of Focus (DoF) across the field. The impacts of lens aberration and flare to the aerial image at the system level are studied for the 32nm MPU technology node using Intel's aerial image simulation tool. The focus control budget of the exposure tools has been estimated. Useable Depth of Focus (UDoF) has been defined, and focus margin between UDoF and focus control budget from the exposure tool has been calculated for various cases. Focus margin has been used to determine the flare and lens aberration requirements for the 32nm MPU node. It is found that <10% intrinsic flare and <0.75nm rms lens aberration are required for the 32nm MPU node. Process window as a measure of individual aberration terms for the 32nm node has been also investigated.

  4. Aspen Flare-net在火炬管网设计中的应用%Application of Aspen Flare-net in Design of Flare-net

    Institute of Scientific and Technical Information of China (English)

    匡顺强; 张斌

    2015-01-01

    介绍了Aspen Flare-net软件在火炬管网设计分析中的计算原理和计算步骤,并简要介绍了软件的主要特性、主要功能以及软件的计算选项。通过对一改扩建项目中新增的低压火炬排放气排放至原低压火炬系统进行火炬管网压力降核算分析,核算结果表明,原低压火炬系统无需改造,即可满足改扩建后新增低压火炬排放气的安全排放要求。同时表明Aspen Flare-net软件在火炬管网工程设计中的应用价值。%In this article, the calculating principles and procedures of software Aspen Flare-net were, including its maln characteristics, maln functions and application choices, introduced in the design and analysis of flare-net. With the analysis of pressure drop in lfare-net due to the discharge of gas from newly added low pressure lfare to the original low pressure lfare-net in one expanded project, it was concluded that it is unnecessary to reform the originated lfare-net that the safe discharge requirements for newly added low pressure lfare can be met. At the same times, it was shown that software Aspen Flare-net is quite useful in the design of lfare-net.

  5. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data

    National Research Council Canada - National Science Library

    Christopher D Elvidge; Daniel Ziskin; Kimberly E Baugh; Benjamin T Tuttle; Tilottama Ghosh; Dee W Pack; Edward H Erwin; Mikhail Zhizhin

    2009-01-01

      We have produced annual estimates of national and global gas flaring and gas flaring efficiency from 1994 through 2008 using low light imaging data acquired by the Defense Meteorological Satellite Program (DMSP...

  6. X-class flares released during the decline phase of The SC- 24

    Science.gov (United States)

    Hady, A. A., II; Hassan, M. M., II

    2015-12-01

    During the decline phase of Solar Cycle 24(Sc-24), releases of X-class flare possessing high energetic particles. This flare event was more intense than that occurred during the main peak of this cycle. Additional eruptive X-class flares were later released during the year 2014and 2015. The aim of this work is to forecast the release of eruptive events a few days before taking place, and to follow the changes of the active region recorded before, during, and after the production of X-class flares. The analysis is performed on the solar and geomagnetic data of the most eruptive events in 2014and 2015 during the double peak of solar cycle 24. The effects of the eruptive X -flares clearly appeared in the accumulation curve only on three parameters: X -ray Background Flux, Optical Flares intensity and X-ray Flares intensity. The changes started, at least, one day before the release of X-class flares.

  7. Observations and Modeling of Solar Flare Atmospheric Dynamics

    Science.gov (United States)

    Li, Y.

    2015-09-01

    Solar flares are one of the most energetic events in solar atmosphere, which last minutes to tens of minutes. The eruption of a solar flare involves energy release, plasma heating, particle acceleration, mass flows, waves, etc. A solar flare releases a large amount of energy, and its emission spans a wide wavelength range. Solar flares are usually accompanied by coronal mass ejections (CMEs); therefore they could significantly affect the space environments between the Earth and the Sun. At present, we do not fully understand the whole flare process. There are still many important questions to be resolved, such as when and where is the energy released? How long does the energy release last? What are the main ways of energy release? And how does the solar atmosphere respond to the energy release? To address these questions, we study in detail the flare heating and dynamic evolution. We first give a brief review of previous flare studies (Chapter 1), and introduce the observing instruments (Chapter 2) and the modeling method (Chapter 3) related to this thesis work. Then we use spectral data to investigate the chromospheric evaporation (Chapter 4). Based on the results, we further explore the flare heating problem. With observationally inferred heating functions, we model two flare loops, and compare the results with observations (Chapter 5). A consistency is achieved between modeling and observations. In addition, we model two different sets of flare loop systems with quite different heating profiles and dynamic evolutions (Chapter 6). The details are described as below. Firstly, we investigate the chromospheric evaporation in the flare on 2007 January 16 using line profiles observed by the Extreme-ultraviolet (EUV) Imaging Spectrometer (EIS) on board Hinode. Three points with different magnetic polarities at flare ribbons are analyzed in detail. We find that the three points show different patterns of upflows and downflows in the impulsive phase of the flare. The

  8. The Flare Irradiance Spectral Model (FISM) and its Contributions to Space Weather Research, the Flare Energy Budget, and Instrument Design

    Science.gov (United States)

    Chamberlin, Phillip

    2008-01-01

    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models. The seminar will begin with a brief overview of the FISM model, and also how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM. Some current studies will then be presented that use FISM estimations of the solar VUV irradiance to quantify the contributions of the increased irradiance from flares to Earth's increased thermospheric and ionospheric densites. Initial results will also be presented from a study looking at the electron density increases in the Martian atmosphere during a solar flare. Results will also be shown quantifying the VUV contributions to the total flare energy budget for both the impulsive and gradual phases of solar flares. Lastly, an example of how FISM can be used to simplify the design of future solar VUV irradiance instruments will be discussed, using the future NOAA GOES-R Extreme Ultraviolet and X-Ray Sensors (EXIS) space weather instrument.

  9. M Dwarf Flare Continuum Variations on One-Second Timescales: Calibrating and Modeling of ULTRACAM Flare Color Indices

    CERN Document Server

    Kowalski, Adam F; Hawley, Suzanne L; Wisniewski, John P; Dhillon, Vik S; Marsh, Tom R; Hilton, Eric J; Brown, Benjamin P

    2016-01-01

    We present a large dataset of high cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the NUV and optical continuum spectral evolution on timescales of ~1 second. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously-obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona-fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new "color-color" relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filt...

  10. A Deep-Learning Approach for Operation of an Automated Realtime Flare Forecast

    CERN Document Server

    Hada-Muranushi, Yuko; Asai, Ayumi; Okanohara, Daisuke; Raymond, Rudy; Watanabe, Gentaro; Nemoto, Shigeru; Shibata, Kazunari

    2016-01-01

    Automated forecasts serve important role in space weather science, by providing statistical insights to flare-trigger mechanisms, and by enabling tailor-made forecasts and high-frequency forecasts. Only by realtime forecast we can experimentally measure the performance of flare-forecasting methods while confidently avoiding overlearning. We have been operating unmanned flare forecast service since August, 2015 that provides 24-hour-ahead forecast of solar flares, every 12 minutes. We report the method and prediction results of the system.

  11. Money Talks: Why Nigeria’s Petroleum Industry Bill will Fail to End Gas Flaring

    Science.gov (United States)

    2012-11-02

    Industry Bill ( PIB ) that if enacted would ban gas flaring. However, as currently written the PIB will not end flaring for the same reasons that...previous legislation failed. Loopholes in the PIB combined with corruption, lack of effective enforcement mechanisms and lack of incentives to develop...Bill ( PIB ) that if enacted would ban gas flaring. However, as currently written, the PIB will not end flaring for the same reasons that previous

  12. Giant solar flares in Antarctic ice. [nitrate ions in ice core samples

    Science.gov (United States)

    Stothers, R.

    1980-01-01

    A new hypothesis proposes an explanation for the presence of four prominent spikes in a long time record of the NO3(-) concentration inside the Antarctic ice. This solar flare hypothesis suggests that the ionizing radiation necessary in the spike formation could have come from extremely powerful solar flares. It is proposed that these flares would have occurred during the times of the largest maxima in the solar cycle. The solar flare hypothesis is compared with the supernova hypothesis.

  13. Further observations of protons resulting from the decay of neutrons ejected by solar flares

    Science.gov (United States)

    Evenson, P. A.; Kroeger, R.; Meyer, P.

    1985-01-01

    The solar flare of 1984 April 24 produced a large gamma ray fluence with energy 2MeV. The time profile of the interplanetary flux from this flare indicates the presence of decaying solar neutrons. This makes a total of three neutron flares so far observed by this method. The three flares are used to place constraints on the fluence and spectra of neutrons emitted by the Sun.

  14. Observations of electrons from the decay of solar flare neutrons

    CERN Document Server

    Dröge, W; Klecker, B

    1996-01-01

    We have found evidence for fluxes of energetic electrons in interplanetary space on board the ISEE-3 spacecraft which we interpret as the decay products of neutrons generated in a solar flare on 1980 June 21. The decay electrons arrived at the s/c shortly before the electrons from the flare and can be distinguished from the latter by their distinctive energy spectrum. The time profile of the decay electrons is in good agreement with the results from a simulation based on a scattering mean free path derived from a fit to the flare electron data. The comparison with simultaneously observed decay protons and a published direct measurement of high-energy neutrons places important constraints on the parent neutron spectrum.

  15. Analysis of Enhanced Velocity Signals Observed during Solar Flares

    Indian Academy of Sciences (India)

    Brajesh Kumar; B. Ravindra

    2006-12-01

    Solar flares are known to release a large amount of energy. It is believed that the flares can excite velocity oscillations in active regions. We report here the changes in velocity signals in three active regions which have produced large X-class flares. The enhanced velocity signals appeared during the rise time of the GOES soft X-ray flux. These signals are located close to the vicinity of the hard X-ray source regions as observed with RHESSI. The power maps of the active region show enhancement in the frequency regime 5–6.5 mHz, while there is feeble or no enhancement of these signals in 2–4 mHz frequency band. High energy particles with sufficient momentum seem to be the cause for these observed enhanced velocity signals.

  16. The Flares Associated with the Dynamics of the Sunspots

    Indian Academy of Sciences (India)

    K. M. Hiremath

    2006-06-01

    In the present study, we consider six years data of spot groups that have well developed leading and following spots obtained from the Kodaikanal Observatory white light pictures and occurrence of H flares. From the daily observations, we compute the variations in rotation rates, meridional velocity, the areas and longitudinal separations. We find that among all these variations, the occurrence of abnormal rotation rates (the rotation rates that have greater than 1) and longitudinal minimum separation during the course of their evolution eventually lead to triggering of flares. We also find that the events of abnormal rotation rates, longitudinal minimum separation and the flares occur mainly during the 50–80% of the sunspots’ life span indicating magnetic reconnection probably below (0.935 R⊙) the solar surface. Relevance of these results with the conventional theory of magnetic reconnection is briefly discussed.

  17. Combined Particle Acceleration in Solar Flares and Associated CME Shocks

    Science.gov (United States)

    Petrosian, Vahe

    2016-07-01

    I will review some observations of the characteristics of accelerated electrons seen near Earth (as SEPs) and those producing flare radiation in the low corona and chromosphere. The similarities and differences between the numbers, spectral distribution, etc. of the two population can shed light on the mechanism and sites of the acceleration. I will show that in some events the origin of both population appears to be the flare site while in others, with harder SEP spectra, in addition to acceleration at the flare site, there appears to be a need for a second stage re-acceleration in the associated fast Coronal Mass Ejection (CME) environment. This scenario can also describe a similar dichotomy that exists between the so called impulsive, highly enriched (3He and heavy ions) and softer SEP ion events, and stronger more gradual SEP events with near normal ionic abundances and harder spectra. I will also describe under what conditions such hardening can be achieved.

  18. Flare induced penumbra formation in the sunspot of NOAA 10838

    CERN Document Server

    Padinhatteeri, Sreejith

    2010-01-01

    We have observed formation of penumbrae on a pore in the active region NOAA10838 using Dunn Solar Telescope at NSO,Sunpot,USA. Simultaneous observations using different instruments (DLSP,UBF,Gband and CaK) provide us with vector magnetic field at photosphere, intensity images and Doppler velocity at different heights from photosphere to chromosphere. Results from our analysis of this particular data-set suggests that penumbrae are formed as a result of relaxation of magnetic field due to a flare happening at the same time. Images in \\Halpha\\ show the flare (C 2.9 as per GOES) and vector magnetic fields show a re-orientation and reduction in the global $\\alpha$ value (a measure of twist). We feel such relaxation of loop structures due to reconnections or flare could be one of the way by which field lines fall back to the photosphere to form penumbrae.

  19. Establishing a core domain set to measure rheumatoid arthritis flares

    DEFF Research Database (Denmark)

    Bykerk, Vivian P; Lie, Elisabeth; Bartlett, Susan J;

    2014-01-01

    agenda for OMERACT 12. CONCLUSION: At OMERACT 11, a core domain set to measure RA flare was ratified and endorsed by attendees. Domain validation aligning with Filter 2.0 is ongoing in new randomized controlled clinical trials and longitudinal observational studies using existing and new instruments......OBJECTIVE: The OMERACT Rheumatoid Arthritis (RA) Flare Group (FG) is developing a data-driven, patient-inclusive, consensus-based RA flare definition for use in clinical trials, longterm observational studies, and clinical practice. At OMERACT 11, we sought endorsement of a proposed core domain set....... At OMERACT 11, breakout groups discussed key domains and instruments to measure them, and proposed a research agenda. Patients were active research partners in all focus groups and domain identification activities. Processes for domain selection and patient partner involvement were case studies for OMERACT...

  20. Energy Partitions and Evolution in a Purely Thermal Solar Flare

    CERN Document Server

    Fleishman, Gregory D; Gary, Dale E

    2015-01-01

    This paper presents a solely thermal flare, which we detected in the microwave range from the thermal gyro- and free-free emission it produced. An advantage of analyzing thermal gyro emission is its unique ability to precisely yield the magnetic field in the radiating volume. When combined with observationally-deduced plasma density and temperature, these magnetic field measurements offer a straightforward way of tracking evolution of the magnetic and thermal energies in the flare. For the event described here, the magnetic energy density in the radio-emitting volume declines over the flare rise phase, then stays roughly constant during the extended peak phase, but recovers to the original level over the decay phase. At the stage where the magnetic energy density decreases, the thermal energy density increases; however, this increase is insufficient, by roughly an order of magnitude, to compensate for the magnetic energy decrease. When the magnetic energy release is over, the source parameters come back to ne...

  1. The Nature of CME-Flare Associated Coronal Dimming

    CERN Document Server

    Cheng, J X

    2016-01-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect properties of CMEs in the early phase of its eruption. In this study, we analyze the event of flare, CME, and coronal dimming on December 26, 2011. We use the data from the Atmospheric Imaging Assembly (AIA) on Solar Dynamics Observatories (SDO) for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 onboard the Solar Terrestrial Relations Observatories to obtain the height and velocity of the associated CMEs observed at the limb. We also measure magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons,...

  2. Modelling the influence of photospheric turbulence on solar flare statistics

    Science.gov (United States)

    Mendoza, M.; Kaydul, A.; de Arcangelis, L.; Andrade, J. S., Jr.; Herrmann, H. J.

    2014-09-01

    Solar flares stem from the reconnection of twisted magnetic field lines in the solar photosphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model, we suggest the origin for two important and widely studied properties of solar flare statistics, including the time-energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time-energy correlations appear to arise from the tube-tube interactions. The agreement with satellite measurements is encouraging.

  3. Understanding neutron-star evolution from magnetar flares

    CERN Document Server

    Lander, S K

    2016-01-01

    The giant flares of magnetars are believed to be powered by colossal magnetic energy reservoirs. We sketch an evolutionary picture in which the process of giant flare energy release, from a twisted corona, begins with internal field evolution. Given the ages of magnetars and the energy of their flares, we suggest that their evolution is driven by a novel evolutionary mechanism: magnetic flux transport/decay due to persistent plastic flow in the crust, which would invalidate the common assumption that the crustal lattice is static and evolves only under Hall drift and Ohmic decay. We estimate the field strength required to induce plastic flow as a function of crustal depth, and the viscosity of the plastic phase. Field evolution in the superconducting core may also play a role in magnetar field evolution, depending on the star's spindown history and how rotational vortices and magnetic fluxtubes interact.

  4. Homologous flares and the evolution of NOAA Active Region 2372

    Science.gov (United States)

    Strong, K. T.; Smith, J. B., Jr.; Mccabe, M. K.; Machado, M. E.; Saba, J. L. R.; Simnett, G. M.

    1984-01-01

    A detailed record of the evolution of NOAA Active Region 2372 has been compiled by the FBS Homology Study Group. It was one of the most prolific flare-producing regions observed by SMM. The flares occurred in distinct stages which corresponded to particular evolutionary phases in the development of the active region magnetic field. By comparison with a similar but less productive active region, it is found that the activity seems to be related to the magnetic complexity of the region and the amount of shear in the field. Further, the soft X-ray emission in the quiescent active region is related to its flare rate. Within the broader definition of homology adopted, there was a degree of homology between the events within each stage of evolution of AR2372.

  5. SIGN SINGULARITY AND FLARES IN SOLAR ACTIVE REGION NOAA 11158

    Energy Technology Data Exchange (ETDEWEB)

    Sorriso-Valvo, L.; De Vita, G. [IMIP-CNR, U.O.S. LICRYL di Cosenza, Ponte P. Bucci, Cubo 31C, I-87036 Rende (Italy); Kazachenko, M. D.; Krucker, S.; Welsch, B. T.; Fisher, G. H. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley 94720, California (United States); Primavera, L.; Servidio, S.; Lepreti, F.; Carbone, V. [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Rende (Italy); Vecchio, A., E-mail: sorriso@fis.unical.it [INGV, Sede di Cosenza, Ponte P. Bucci, Cubo 30C, I-87036 Rende (Italy)

    2015-03-01

    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.

  6. Patient with perforation caused by emphysematous cholecystitis who showed flare on the skin of the right dorsal lumbar region and intraperitoneal free gas.

    Science.gov (United States)

    Kanehiro, Tetsuya; Tsumura, Hiroaki; Ichikawa, Toru; Hino, Yuji; Murakami, Yoshiaki; Sueda, Taijiro

    2008-01-01

    We report an 84-year-old man with perforation caused by emphysematous cholecystitis who showed flare on the skin of the right dorsal lumbar region and intraperitoneal free gas. The patient was admitted for abdominal pain, abdominal swelling, and consciousness disorder 18 days after the onset. Abdominal computed tomography (CT) revealed emphysema in the gallbladder and a small amount of intraperitoneal free gas. Intraoperative findings suggested gangrenous cholecystitis. The gallbladder wall was perforated, and an abscess involving the right subphrenic region, the periphery of the liver and gallbladder, and the right paracolonic groove, was detected. The flare on the body surface may have reflected abscess formation in the right abdominal cavity. Emphysematous cholecystitis induces necrosis and perforation in many patients, and immediate strategies such as emergency surgery are important.

  7. Rilonacept for gout flare prevention in patients receiving uric acid-lowering therapy: results of RESURGE, a phase III, international safety study.

    Science.gov (United States)

    Sundy, John S; Schumacher, H Ralph; Kivitz, Alan; Weinstein, Steven P; Wu, Richard; King-Davis, Shirletta; Evans, Robert R

    2014-08-01

    To evaluate the safety and efficacy of once-weekly subcutaneous rilonacept 160 mg for prevention of gout flares in patients initiating or continuing urate-lowering therapy (ULT). This phase III study was conducted in the United States, South Africa, Europe, and Asia. Adults (n = 1315, 18-80 yrs) with gout, who were initiating or continuing ULT, were randomized to treatment with weekly subcutaneous injections of rilonacept 160 mg or placebo for 16 weeks followed by a 4-week safety followup. The primary endpoint was safety, assessed by adverse events (AE) and laboratory values. Efficacy was a secondary endpoint. Demographic and clinical characteristics were similar between treatments; predominantly male (87.8%), mean age 52.7 ± 11.3 years. Patients with ≥ 1 AE were 66.6% with rilonacept versus 59.1% placebo, with slightly more AE-related withdrawals with rilonacept (4.7% vs 3.0%) because of the greater incidence of injection site reactions (15.2% rilonacept, 3.3% placebo). Serious AE were similar in both groups, as were serious infections (0.9% placebo, 0.5% rilonacept); no tuberculosis or opportunistic infections occurred. Most common AE were headache, arthralgia, injection site erythema, accidental overdose, and pain in extremity. Of the 6 deaths, only 1 in the placebo group was considered treatment-related. At Week 16, rilonacept resulted in 70.3% fewer gout flares per patient (p gout flares (p gout flare days (p gout flares. Clinicaltrials.gov identifier NCT00856206; EudraCT No. 2008-007784-16.

  8. Realistic radiative MHD simulation of a solar flare

    Science.gov (United States)

    Rempel, Matthias D.; Cheung, Mark; Chintzoglou, Georgios; Chen, Feng; Testa, Paola; Martinez-Sykora, Juan; Sainz Dalda, Alberto; DeRosa, Marc L.; Viktorovna Malanushenko, Anna; Hansteen, Viggo H.; De Pontieu, Bart; Carlsson, Mats; Gudiksen, Boris; McIntosh, Scott W.

    2017-08-01

    We present a recently developed version of the MURaM radiative MHD code that includes coronal physics in terms of optically thin radiative loss and field aligned heat conduction. The code employs the "Boris correction" (semi-relativistic MHD with a reduced speed of light) and a hyperbolic treatment of heat conduction, which allow for efficient simulations of the photosphere/corona system by avoiding the severe time-step constraints arising from Alfven wave propagation and heat conduction. We demonstrate that this approach can be used even in dynamic phases such as a flare. We consider a setup in which a flare is triggered by flux emergence into a pre-existing bipolar active region. After the coronal energy release, efficient transport of energy along field lines leads to the formation of flare ribbons within seconds. In the flare ribbons we find downflows for temperatures lower than ~5 MK and upflows at higher temperatures. The resulting soft X-ray emission shows a fast rise and slow decay, reaching a peak corresponding to a mid C-class flare. The post reconnection energy release in the corona leads to average particle energies reaching 50 keV (500 MK under the assumption of a thermal plasma). We show that hard X-ray emission from the corona computed under the assumption of thermal bremsstrahlung can produce a power-law spectrum due to the multi-thermal nature of the plasma. The electron energy flux into the flare ribbons (classic heat conduction with free streaming limit) is highly inhomogeneous and reaches peak values of about 3x1011 erg/cm2/s in a small fraction of the ribbons, indicating regions that could potentially produce hard X-ray footpoint sources. We demonstrate that these findings are robust by comparing simulations computed with different values of the saturation heat flux as well as the "reduced speed of light".

  9. 30 CFR 250.1160 - When may I flare or vent gas?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may I flare or vent gas? 250.1160 Section... GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Requirements Flaring, Venting, and Burning Hydrocarbons § 250.1160 When may I flare or vent gas? (a) You must request and...

  10. Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data

    Directory of Open Access Journals (Sweden)

    Christopher D. Elvidge

    2015-12-01

    Full Text Available A set of methods are presented for the global survey of natural gas flaring using data collected by the National Aeronautics and Space Administration/National Oceanic and Atmospheric Administration NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS. The accuracy of the flared gas volume estimates is rated at ±9.5%. VIIRS is particularly well suited for detecting and measuring the radiant emissions from gas flares through the collection of shortwave and near-infrared data at night, recording the peak radiant emissions from flares. In 2012, a total of 7467 individual flare sites were identified. The total flared gas volume is estimated at 143 (±13.6 billion cubic meters (BCM, corresponding to 3.5% of global production. While the USA has the largest number of flares, Russia leads in terms of flared gas volume. Ninety percent of the flared gas volume was found in upstream production areas, 8% at refineries and 2% at liquified natural gas (LNG terminals. The results confirm that the bulk of natural gas flaring occurs in upstream production areas. VIIRS data can provide site-specific tracking of natural gas flaring for use in evaluating efforts to reduce and eliminate routine flaring.

  11. 40 CFR 65.159 - Flare compliance determination and monitoring records.

    Science.gov (United States)

    2010-07-01

    ... Routing to a Fuel Gas System or a Process § 65.159 Flare compliance determination and monitoring records. (a) Conditions of flare compliance determination records. Upon request, the owner or operator shall... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Flare compliance determination...

  12. LAMOST Observations of Flaring M Dwarfs in the Kepler Field

    CERN Document Server

    Chang, H -Y; Luo, A -L; Huang, L -C; Ip, W -H; Fu, J -N; Zhang, Y; Hou, Y -H; Cao, Z -H; Wang, Y -F

    2016-01-01

    A sample of the LAMOST spectra of the early type M0-M3 dwarfs is compared with the Kepler observations. It is found that M dwarfs with strong chromospheric emission in $H_{\\alpha}$ have large flare activity in general. The rotational periods derived from the Kepler measurements have close correlations with the sizes of the flares, the power-law distribution index and the equivalent widths of the $H_{\\alpha}$ emission. A clear trend exists for higher magnetic activities being detected in faster rotating M dwarfs (rotation periods $<$ 20 day).

  13. Observations of Electrons from the Decay of Solar Flare Neutrons

    OpenAIRE

    Dröge, W.; Ruffolo, D.; Klecker, B.

    1996-01-01

    We have found evidence for fluxes of energetic electrons in interplanetary space on board the ISEE-3 spacecraft which we interpret as the decay products of neutrons generated in a solar flare on 1980 June 21. The decay electrons arrived at the s/c shortly before the electrons from the flare and can be distinguished from the latter by their distinctive energy spectrum. The time profile of the decay electrons is in good agreement with the results from a simulation based on a scattering mean fre...

  14. A far-ultraviolet flare on a Pleiades G dwarf

    Science.gov (United States)

    Ayres, T. R.; Stauffer, J. R.; Simon, Theodore; Stern, R. A.; Antiochos, S. K.; Basri, G. S.; Bookbinder, J. A.; Brown, A.; Doschek, G. A.; Linsky, J. L.

    1994-01-01

    The Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) recorded a remarkable transient brightening in the C IV lambda lambda 1548,50 emissions of the rapidly rotating Pleiades G dwarf H II 314. On the one hand the 'flare' might be a rare event luckily observed; on the other hand it might be a bellwether of the coronal heating in very young solar-mass stars. If the latter, flaring provides a natural spin-down mechanism through associated sporadic magnetospheric mass loss.

  15. Fermi LAT View of a Sample of Flaring -Ray AGNs

    Indian Academy of Sciences (India)

    S. Buson; D. Bastieri; F. D’Ammando; G. Tosti

    2014-09-01

    In the first 3.5 years of operations, Fermi detected several sources whose flaring activity brought them to exceed daily fluxes brighter than ( > 100MeV) > 10-6 ph cm-2 s-1. These episodes were promptly reported to the scientific community by the Fermi collaboration by means of astronomer telegrams (ATels). We focus our attention on the sample composed by these flaring sources, most of which are blazars, known to be extremely variable over the whole electromagnetic spectrum, from radio to -ray energies. We study properties of the selected sample and compare them to general characteristics of the Fermi source catalogue.

  16. Ion energy storage for post-flare loops

    Science.gov (United States)

    Hudson, H. S.

    1985-01-01

    Low-energy non-thermal protons may have long lifetimes in coronal loops with low density and high temperature. If energy were stored in such protons in the initial phases of a solar flare, it could be released slowly during the later phases. Within the present observational limits for post-flare loops, this mechanism should be considered in addition to a field-line reconnection theory of the Kopp and Pneuman type. The thin-target gamma ray emission from the trapped protons is below present limits, but more sensitive observations can test the hypothesis.

  17. LAMOST Observations of Flaring M Dwarfs in the Kepler Field

    Science.gov (United States)

    Chang, H.-Y.; Song, Y.-H.; Luo, A.-L.; Huang, L.-C.; Ip, W.-H.; Fu, J.-N.; Zhang, Y.; Hou, Y.-H.; Cao, Z.-H.; Wang, Y.-F.

    2017-01-01

    A sample of the Large Sky Area Multi-Object Fibre Spectroscopic Telescope spectra of early-type M0–M3 dwarfs is compared with Kepler observations. It is found that M dwarfs with strong chromospheric emission in {{{H}}}α have large flare activity in general. The rotational periods derived from the Kepler measurements have close correlations with the sizes of the flares, the power-law distribution index, and the equivalent widths of the {{{H}}}α emission. A clear trend exists for higher magnetic activities being detected in faster-rotating M dwarfs (rotation periods < 20 days).

  18. A Unified Computational Model for Solar and Stellar Flares

    OpenAIRE

    Allred, Joel C.; Kowalski, Adam F.; Carlsson, Mats

    2015-01-01

    We present a unified computational framework which can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into...

  19. Protons from the decay of solar flare neutrons

    Science.gov (United States)

    Evenson, P.; Meyer, P.; Pyle, K. R.

    1983-01-01

    Fluxes of energetic protons in interplanetary space are observed which are interpreted as the decay products of neutrons generated in a solar flare on 1982 June 3 at 11:42 UT. Because of the particular geometry of this event the spectrum of neutrons escaping from the sun can be constructed with great accuracy in the kinetic energy range 10-100 MeV. The resulting spectrum places stringent constraints on the free parameters used in previously published calculations of neutron production in solar flares. An estimate is made of the diffusion mean free path of charged particles in the interplanetary medium in a new way.

  20. Steps towards understanding deep atmospheric heating in flares

    Science.gov (United States)

    Mauas, Pablo J. D.; Machado, Marcos E.

    1986-01-01

    Different aspects of the heating of the deep solar atmosphere during flares, including temperature minimum enhancements and white light emission, are discussed. The proper treatment of H(-) radiative losses is discussed, and compared with previous studies, as well as a quantitative analysis of the ionizing effect of nonthermal particles and ultraviolet radiation. It is concluded that temperature minimum heating may be a natural consequence of the global radiation transport in flares. The implications of these results are discussed within the context of homogeneous and inhomogeneous models of the solar atmosphere.

  1. Detection of the Acceleration Site in a Solar Flare

    Science.gov (United States)

    Fleishman, Gregory D.; Kontar, E. P.; Nita, G. M.; Gary, D. E.

    2011-05-01

    We report the observation of an unusual cold, tenuous solar flare (ApJL, v. 731, p. L19, 2011), which reveals itself via numerous and prominent non-thermal manifestations, while lacking any noticeable thermal emission signature. RHESSI hard X-rays and 0.1-18 GHz radio data from OVSA and Phoenix-2 show copious electron acceleration (1035 electrons per second above 10 keV) typical for GOES M-class flares with electrons energies up to 100 keV, but GOES temperatures not exceeding 6.1 MK. The HXR footpoints and coronal radio sources belong, supposedly, to a single magnetic loop, which departs strongly from the corresponding potential loop (obtained from a photospheric extrapolation) in agreement with the apparent need of a non-potential magnetic field structure to produce a flare. The imaging, temporal, and spectral characteristics of the flare have led us to a firm conclusion that the bulk of the microwave continuum emission from this flare was produced directly in the acceleration region. We found that the electron acceleration efficiency is very high in the flare, so almost all available thermal electrons are eventually accelerated. However, given a relatively small flaring volume and rather low thermal density at the flaring loop, the total energy release turned out to be insufficient for a significant heating of the coronal plasma or for a prominent chromospheric response giving rise to chromospheric evaporation. Some sort of stochastic acceleration process is needed to account for an approximately energy-independent lifetime of about 3 s for the electrons in the acceleration region. This work was supported in part by NSF grants AGS-0961867, AST-0908344, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology. This work was supported by a UK STFC rolling grant, STFC/PPARC Advanced Fellowship, and the Leverhulme Trust, UK. Financial support by the European Commission through the SOLAIRE and HESPE Networks is gratefully acknowledged.

  2. Undertreatment of caner pain.

    Science.gov (United States)

    Wang, Cheng-Hsu; Lee, Shiu-Yu C

    2015-06-01

    Pain is a burdensome symptom that can commonly exist chronically along the cancer trajectory. Uncontrolled pain will impact on cancer patients' quality of life, even further negatively affect cancer survivors' employment. Based on systemic reviews of studies for past 10 years, the paper reported that although there is enormous advancement on the knowledge of cancer pain and pain management, studies still documented undertreatment of cancer pain globally. Additionally, pain distress a significant portion of cancer survivors. The pain in cancer survivors distinct from the pain related with cancer, instead emphasize on pain related with cancer treatment, such as neuropathic pain, muscular syndrome. Evidence-based pain management with common pain problems in cancer survivors is lacking. Further studies are needed to understand the pain in cancer survivors and to develop effective strategies in helping cancer survivors to manage their pain.

  3. Are all flaring Herbig disks transitional?

    Science.gov (United States)

    Maaskant, K. M.; Honda, M.; Waters, L. B. F. M.; Tielens, A. G. G. M.; Dominik, Carsten; Min, M.; Verhoeff, A.; Meeus, G.; Ancker, M. E.

    2013-07-01

    Context: The evolution of young massive protoplanetary disks toward planetary systems is expected to correspond to structural changes in observational appearance, which includes the formation of gaps and the depletion of dust and gas. Aims. A special group of disks around Herbig Ae/Be stars do not show prominent silicate emission features, although they still bear signs of flaring disks, the presence of gas, and small grains. We focus our attention on four key Herbig Ae/Be stars to understand the structural properties responsible for the absence of silicate feature emission. Methods: We investigate Q- and N-band images taken with Subaru/COMICS, Gemini South/T-ReCS, and VLT/VISIR. We perform radiative transfer modeling to examine the radial distribution of dust and polycyclic aromatic hydrocarbons (PAHs). Our solutions require a separation of inner- and outer- disks by a large gap. From this, we characterize the radial density structure of dust and PAHs in the disk. Results: The inner edge of the outer disk has a high surface brightness and a typical temperature between ˜100-150 K and therefore, dominates the emission in the Q-band. All four disks are characterized by large gaps. We derive radii of the inner edge of the outer disk of 34+4 , 23+3 , 30+5 and 63+4 AU for HD 97048, HD 169142, HD 135344 B, and Oph IRS 48, respectively. For HD 97048 this is the first -4 -5 -3 -4 detection of a disk gap. The large gaps deplete the entire population of silicate particles with temperatures suitable for prominent mid- infrared feature emission, while small carbonaceous grains and PAHs can still show prominent emission at mid-infrared wavelengths. The continuum emission in the N-band is not due to emission in the wings of PAHs. This continuum emission can be due to very small grains or to thermal emission from the inner disk. We find that PAH emission is not always dominated by PAHs on the surface of the outer disk. Conclusions: The absence of silicate emission features is

  4. Pain relief with intracameral mepivacaine during phacoemulsification

    Science.gov (United States)

    Malecaze, F.; Deneuville, S.; Julia, B.; Daurin, J.; Chapotot, E.; Grandjean, H.; Arne, J.; Rascol, O.

    2000-01-01

    AIM—To assess the efficacy and safety of an intraoperative intracameral injection of mepivacaine, administered when patients experienced pain during the course of cataract surgery under topical anaesthesia.
METHODS—This is a prospective placebo controlled double masked randomised clinical trial. 50 eyes were included; 25 receiving the active compound and 25 receiving placebo. Mepivacaine (2%, 0.4 ml) or placebo was administered intraoperatively under the iris of the patients who experienced pain during the course of phacoemulsification in spite of previous topical anaesthesia. Efficacy was evaluated by the patients themselves using a five point subjective pain rating scale, the Keele verbal pain chart. Safety was measured by assessing intraocular inflammation (clinical evaluation and laser flare meter), intraocular pressure, and endothelial cell count.
RESULTS—The pain rating score significantly diminished after intracameral injection in the mepivacaine group (mean 3.0 (95% CI 2.6-3.4) v 0.8 (0.3-1.3), p<10−4)) while remaining unchanged in the placebo group (2.9 (2.6-3.2) v 2.9 (2.5-3.3)), the mean reduction in pain score being significantly different between the two groups (p<10−4). There was no indication of increased postoperative ocular inflammation, intraocular pressure change, or endothelial cell loss.
CONCLUSIONS—These results suggest that it may not be necessary to systematically add intracameral anaesthesia with topical anaesthesia for cataract surgery. An intraoperative intracameral injection, performed only in patients who happen to suffer during surgery, is safe and effective.

 PMID:10655193

  5. Chest Pain

    Directory of Open Access Journals (Sweden)

    Samad Shams-Vahdati

    2014-03-01

    Full Text Available Introduction: Acute chest pain is an important and frequently occurring symptom in patients. Chest pain is often a sign of ischemic heart disease. Associated findings of electrocardiograph (ECG are rather heterogeneous, and traditional cardiac biomarkers such as Creatine Kinase-MB (CK-MB suffer from low cardiac specificity and sensitivity. In this study cost effectiveness of cardiac biomarkers single quantitative measurement was examined.Methods: The present descriptive-analytic study conducted on patients who were asked for troponin I and CK-MB. All patients who referred to Emergency unit of Tabriz Imam Reza educational-medical center during January 2012 to July the 2013 were included in study. All patients included in the study were documented in terms of age, sex, working shift of referring, main complaint of patient, symptoms in referring, ECG findings, and results of troponin I and CK-MB tests.Results: In this study, 2900 patients were studied including 1440 (49.7% males and 1460 (50.3% females. Mean age of patients was 62.91 (SD=14.36. Of all patients 1880 (64.8% of patients referred during 8 a.m. to 8 p.m. and 1020 (35.2% patients were referred during 8 p.m. to 8 a.m. The sensitivity of cardiac biomarkers’ test in diagnosing Acute Coronary Syndrome (ACS disease was calculated as 44.8% and its specificity was 86.6%. For diagnosing Acute Myocardial Infarction (AMI, sensitivity of cardiac biomarkers’ test was 72.2% and its specificity was 86%. None of patients who were finally underwent unstable angina diagnosis showed increase in cardiac enzymes.Conclusion: In conclusion, cardiac biomarkers can be used for screening acute chest pains, also cost effectiveness of cardiac biomarkers, appropriate specificity and sensitivity can guarantee their usefulness in emergency room.

  6. MAGNETIC AND DYNAMICAL PHOTOSPHERIC DISTURBANCES OBSERVED DURING AN M3.2 SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Kuckein, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany); Collados, M.; Sainz, R. Manso, E-mail: ckuckein@aip.de [Instituto de Astrofísica de Canarias (IAC), Vía Láctea s/n, E-38205, La Laguna, Tenerife (Spain)

    2015-02-01

    This Letter reports on a set of full-Stokes spectropolarimetric observations in the near-infrared He i 10830 Å spectral region covering the pre-flare, flare, and post-flare phases of an M3.2 class solar flare. The flare originated on 2013 May 17 and belonged to active region NOAA 11748. We detected strong He i 10830 Å emission in the flare. The red component of the He i triplet peaks at an intensity ratio to the continuum of about 1.86. During the flare, He i Stokes V is substantially larger and appears reversed compared to the usually larger Si i Stokes V profile. The photospheric Si i inversions of the four Stokes profiles reveal the following: (1) the magnetic field strength in the photosphere decreases or is even absent during the flare phase, as compared to the pre-flare phase. However, this decrease is not permanent. After the flare, the magnetic field recovers its pre-flare configuration in a short time (i.e., 30 minutes after the flare). (2) In the photosphere, the line of sight velocities show a regular granular up- and downflow pattern before the flare erupts. During the flare, upflows (blueshifts) dominate the area where the flare is produced. Evaporation rates of ∼10{sup −3} and ∼10{sup −4} g cm{sup −2} s{sup −1} have been derived in the deep and high photosphere, respectively, capable of increasing the chromospheric density by a factor of two in about 400 s.

  7. Photospheric Magnetic Field Properties of Flaring vs. Flare-Quiet Active Regions I: Data, General Approach, and Statistical Results

    Science.gov (United States)

    Leka, K. D.; Barnes, G.

    2003-05-01

    Photospheric vector magnetic field data from the U. Hawai`i Imaging Vector Magnetograph are examined for pre-event signatures unique to solar energetic phenomena. Parameters are constructed from B(x,y) to describe (for example) the distributions of the field, spatial gradients of the field, vertical current, current helicity, ''twist'' parameter α and magnetic shear angles. A quantitative statistical approach employing discriminant analysis and Hotelling's T2-test is applied to the magnitude and temporal evolution of parameters from 24 flare-event and flare-quiet epochs from seven active regions. We demonstrate that (1) when requiring a flare-unique signature, numerous candidate parameters are nullified by considering flare-quiet epochs, (2) a more robust method exists for estimating error rates than conventional ''truth tables'', (3) flaring and flare-quiet populations do not necessarily have low error rates for classification even when statistically distinguishable, and that (4) simultaneous consideration of a large number of variables is required to produce acceptable error rates. That is, when the parameters are considered individually, they show little ability to differentiate between the two populations; multi-variable combinations can discriminate the populations and/or result in perfect classification tables. In lieu of constructing a single all-variable discriminant function to quantify the flare-predictive power of the parameters considered, we devise a method whereby all permutations of the four-variable discriminant functions are ranked by Hotelling's T2. We present those parameters (e.g. the temporal increase of the kurtosis of the spatial distribution of the vertical current density) which consistently appear in the best combinations, indicating that they may play an important role in defining a pre-event photospheric state. While no single combination is clearly the best discriminator, we demonstrate here the requisite approach: include flare

  8. M Dwarf Flare Continuum Variations on One-second Timescales: Calibrating and Modeling of ULTRACAM Flare Color Indices

    Science.gov (United States)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes

  9. Central Neuropathic Pain Syndromes.

    Science.gov (United States)

    Watson, James C; Sandroni, Paola

    2016-03-01

    Chronic pain is common in patients with neurologic complications of a central nervous system insult such as stroke. The pain is most commonly musculoskeletal or related to obligatory overuse of neurologically unaffected limbs. However, neuropathic pain can result directly from the central nervous system injury. Impaired sensory discrimination can make it challenging to differentiate central neuropathic pain from other pain types or spasticity. Central neuropathic pain may also begin months to years after the injury, further obscuring recognition of its association with a past neurologic injury. This review focuses on unique clinical features that help distinguish central neuropathic pain. The most common clinical central pain syndromes-central poststroke pain, multiple sclerosis-related pain, and spinal cord injury-related pain-are reviewed in detail. Recent progress in understanding of the pathogenesis of central neuropathic pain is reviewed, and pharmacological, surgical, and neuromodulatory treatments of this notoriously difficult to treat pain syndrome are discussed.

  10. Pain and Nociception

    DEFF Research Database (Denmark)

    Falk, Sarah; Dickenson, Anthony H

    2014-01-01

    Cancer pain, especially pain caused by metastasis to bone, is a severe type of pain, and unless the cause and consequences can be resolved, the pain will become chronic. As detection and survival among patients with cancer have improved, pain has become an increasing challenge, because traditional...... therapies are often only partially effective. Until recently, knowledge of cancer pain mechanisms was poor compared with understanding of neuropathic and inflammatory pain states. We now view cancer-induced bone pain as a complex pain state involving components of both inflammatory and neuropathic pain...... but also exhibiting elements that seem unique to cancer pain. In addition, the pain state is often unpredictable, and the intensity of the pain is highly variable, making it difficult to manage. The establishment of translational animal models has started to reveal some of the molecular components involved...

  11. Pain and the ethics of pain management.

    Science.gov (United States)

    Edwards, R B

    1984-01-01

    In this article I clarify the concepts of 'pain', 'suffering', 'pains of body', 'pains of soul'. I explore the relevance of an ethic to the clinical setting which gives patients a strong prima facie right to freedom from unnecessary and unwanted pain and which places upon medical professionals two concomitant moral obligations to patients. First, there is the duty not to inflict pain and suffering beyond what is necessary for effective diagnosis, treatment and research. Next, there is the duty to do all that can be done to relieve all the pain and suffering which can be alleviated. I develop in some detail that individuality of pain sensitivity must be taken into account in fulfilling these obligations. I explore the issue of the relevance of informed consent and the right to refuse treatment to the matter of pain relief. And I raise the question of what conditions, if any, should override the right to refuse treatment where pain relief is of paramount concern.

  12. Measuring postoperative pain

    NARCIS (Netherlands)

    Dijk, J.F.M. van

    2015-01-01

    Many patients experience pain after surgery. Adequate pain treatment begins with a reliable pain assessment. The Numeric Rating Scale (NRS) is often used for this purpose; patients are asked to score their pain on a scale from 0 to 10, where 0 indicates no pain and 10 indicates the worst imaginable

  13. 30 CFR 250.1161 - When may I flare or vent gas for extended periods of time?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may I flare or vent gas for extended... Production Requirements Flaring, Venting, and Burning Hydrocarbons § 250.1161 When may I flare or vent gas... flare or vent gas for an extended period of time. The Regional Supervisor will specify the approved...

  14. Neuropathic Pain After Lung Surgery

    Science.gov (United States)

    2017-05-30

    Chronic Neuropathic Pain, Postoperative; Chronic Pain, Postoperative; Chronic Chemotherapy-induced Neuropathic Pain; Chronic Chemotherapy-induced Pain; Chronic Chemotherapy-induced Peripheral Neuropathy

  15. Neuropathic Pain After Breast Surgery

    Science.gov (United States)

    2017-07-31

    Chronic Neuropathic Pain, Postoperative; Chronic Pain, Postoperative; Chronic Chemotherapy-induced Neuropathic Pain; Chronic Chemotherapy-induced Pain; Chronic Chemotherapy-induced Peripheral Neuropathy

  16. Long Duration Flare Emission: Impulsive Heating or Gradual Heating?

    Science.gov (United States)

    Qiu, Jiong; Longcope, Dana W.

    2016-03-01

    Flare emissions in X-ray and EUV wavelengths have previously been modeled as the plasma response to impulsive heating from magnetic reconnection. Some flares exhibit gradually evolving X-ray and EUV light curves, which are believed to result from superposition of an extended sequence of impulsive heating events occurring in different adjacent loops or even unresolved threads within each loop. In this paper, we apply this approach to a long duration two-ribbon flare SOL2011-09-13T22 observed by the Atmosphere Imaging Assembly (AIA). We find that to reconcile with observed signatures of flare emission in multiple EUV wavelengths, each thread should be heated in two phases, an intense impulsive heating followed by a gradual, low-rate heating tail that is attenuated over 20-30 minutes. Each AIA resolved single loop may be composed of several such threads. The two-phase heating scenario is supported by modeling with both a zero-dimensional and a 1D hydrodynamic code. We discuss viable physical mechanisms for the two-phase heating in a post-reconnection thread.

  17. The challenges of the models of solar flares

    Science.gov (United States)

    Stepanov, A. V.; Zaitsev, V. V.

    2016-12-01

    The challenges of `standard' model of solar flares motivated by new observations with the spacecrafts and ground-based telescopes are presented. The most important problems are in situ heating of photospheric and chromospheric loop footpoints up to the coronal temperatures without precipitating particle beams accelerated in the corona, and the sunquakes which are unlikely to be explained by the impact of highenergy particles producing hard X-ray emission. There is also the long-standing `number problem' in the physics of solar flares. It is shown that modern observations favored an important role of the electric currents in the energy release processes in the low solar atmosphere. Particle acceleration mechanism in the electric fields driven by the magnetic Rayleigh-Taylor instability in the chromosphere is proposed. The electric current value I ≥ 1010 A, needed for the excitation of super-Dreicer electric fields in the chromosphere is determined. It is shown that both Joule dissipation of the electric currents and the particles accelerated in the chromosphere can be responsible for in situ heating of the low solar atmosphere. Alternative model of the solar flare based on the analogy between the flaring loop and an equivalent electric circuit which is good tool for the electric current diagnostics is presented. Interaction of a current-carrying loop with the partially-ionized plasma of prominence in the context of particle acceleration is considered. The role of plasma radiation mechanism in the sub-THz emission from the chromosphere is discussed.

  18. LONG DURATION FLARE EMISSION: IMPULSIVE HEATING OR GRADUAL HEATING?

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman MT 59717-3840 (United States)

    2016-03-20

    Flare emissions in X-ray and EUV wavelengths have previously been modeled as the plasma response to impulsive heating from magnetic reconnection. Some flares exhibit gradually evolving X-ray and EUV light curves, which are believed to result from superposition of an extended sequence of impulsive heating events occurring in different adjacent loops or even unresolved threads within each loop. In this paper, we apply this approach to a long duration two-ribbon flare SOL2011-09-13T22 observed by the Atmosphere Imaging Assembly (AIA). We find that to reconcile with observed signatures of flare emission in multiple EUV wavelengths, each thread should be heated in two phases, an intense impulsive heating followed by a gradual, low-rate heating tail that is attenuated over 20–30 minutes. Each AIA resolved single loop may be composed of several such threads. The two-phase heating scenario is supported by modeling with both a zero-dimensional and a 1D hydrodynamic code. We discuss viable physical mechanisms for the two-phase heating in a post-reconnection thread.

  19. Igniting flare-up events in Cordilleran arcs

    Science.gov (United States)

    Ducea, Mihai N.; Barton, Mark D.

    2007-11-01

    High-flux pulses of magmatism that make up most of the exposed North American Cordilleran arcs are derived primarily from upper plate lithospheric source materials, and not the mantle wedge as most models would predict, based on a compilation of thousands of previously published Sr, Nd, and O isotopic data. Mass balance calculations show that no more than 50% of that mass can be mantle-derived. Flare-ups must have fundamentally developed simultaneously with crustal/lithospheric thickening, thus implying a connection. Subduction erosion from the trench side, and retroarc shortening from the foreland side are the main tectonic shortening processes that operate in conjunction with high flux magmatism during subduction, and therefore are likely triggers for flare-up events in arc. These arcs represent the sites of crustal differentiation, and thus contribute to net continental growth, only if dense residual lower crust was returned to the convective mantle. Isotopic data shown here suggest that if convective removal of batholithic roots takes place, it must be a consequence and not a cause of episodic flare-ups. The Altiplano-Puna Volcanic Complex in South America may be the most recent continental arc segment in flare-up mode.

  20. Disk--Jet Coupling Following a Stellar Tidal Disruption Flare

    Science.gov (United States)

    Ranga Reddy Pasham, Deeraj; van Velzen, Sjoert

    2017-08-01

    Tidal disruption of stars by supermassive black holes can result in transient radio emission. The electrons producing these synchrotron radio flares could be accelerated inside a relativistic jet or externally by shocks resulting from the interaction of an outflow with the circumnuclear medium. Until now, evidence for internal emission has been lacking and nearly all tidal disruption flare studies have adopted the external shock model to explain the observed properties of radio flares. I will talk about our recent discovery of a correlation between the changes in the x-ray and the radio flux of a tidal disruption flare. The radio lags the x-ray emission by about 13 days. This demonstrates that the x-ray emitting accretion disk regulates the radio emission. This coupling is inconsistent with all previous external models but is naturally explained if the radio emission originates from a freely expanding jet. I will also discuss the importance of similar observations in the future to understand how jets evolve in their earliest stages.

  1. Evidence of Magnetic Helicity in Emerging Flux and Associated Flare

    CERN Document Server

    Chandra, R; Aulanier, G; Malherbe, J M

    2009-01-01

    The aim of this paper is to look at the magnetic helicity structure of an emerging active region and show that both emergence and flaring signatures are consistent with a same sign for magnetic helicity. We present a multi-wavelength analysis of an M1.6 flare occurring in the active region NOAA 10365 on 27 May, 2003, in which a large new bipole emerges in a decaying active region. The diverging flow pattern and the "tongue" shape of the magnetic field in the photosphere with elongated polarities are highly suggestive of the emergence of a twisted flux tube. The orientation of these tongues indicates the emergence of a flux tube with a right hand twist, i.e. positive magnetic helicity. The flare signatures in the chromosphere are ribbons observed in H-alpha by the MSDP spectrograph in the Meudon solar tower and in 1600 A by TRACE. These ribbons have a `J' shape and are shifted along the inversion line. The pattern of these ribbons suggests that the flare was triggered by magnetic reconnection at coronal height...

  2. On the ionospheric effects of 26 June, 1999 solar flare

    Directory of Open Access Journals (Sweden)

    A. Abseim

    2012-12-01

    Full Text Available In this paper we traced the possible influence of the solar flare of June 26, 1999 on the ionosphere throughout the F2-layer parameters. This study concentrated on two parameters, foF2, the critical frequency of the ordinary component of the F2-layer; and hc, the height of the maximum obtained by fitting a theoretical h′F curve for the parabola of best fit to the observed ordinary mode trace near foF2 and correcting for under-lying ionization. The results showed that the relation between the amplitude of averaged sudden enhancements of the perturbations for the critical frequency of the ionospheric F2 region, ΔfoF2 (for data obtained from 8 ionosonde stations, and the duration of the flare is more applicable to the empirical formula given by Youssef (2008. Since we found this relation is linear and has a very strong correlation. In addition, we found that the relation between the average amplitude, of ΔfoF2, for the 8 selected ionosonde stations, and the flare flux is not a linear. For the second parameter, hc, it was found that, the hc amplitude depends on the location of the station on the Earth, and it reaches its maximum value during the decay phase of the studied flare.

  3. NIR Flare of the AGN Candidate PMNJ0107+0333

    Science.gov (United States)

    Carrasco, L.; Miramon, J.; Recillas, E.; Porras, A.; Chavushyan, V.; Mayya, D. Y.

    2016-12-01

    We report on the new NIR flare of the AGN candidate PMNJ0107+0333, cross identified with the X-ray source 1RXS J010729.5+033341. On November 13th,2016 (MJD 2457705.699), we found the source with the following flux in the NIR band: H = 14.657 +/- 0.05.

  4. Optical discovery of probable stellar tidal discruption flares

    NARCIS (Netherlands)

    van Velzen, S.; Farrar, G.R.; Gezari, S.; Morrell, N.; Zaritsky, D.; Ostman, L.; Smith, M.; Gelfand, J.; Drake, A.J.

    2012-01-01

    Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures

  5. Probabilistic forecasting of solar flares from vector magnetogram data

    Science.gov (United States)

    Barnes, G.; Leka, K. D.; Schumer, E. A.; Della-Rose, D. J.

    2007-09-01

    Discriminant analysis is a statistical approach for assigning a measurement to one of several mutually exclusive groups. Presented here is an application of the approach to solar flare forecasting, adapted to provide the probability that a measurement belongs to either group, the groups in this case being solar active regions which produced a flare within 24 hours and those that remained flare quiet. The technique is demonstrated for a large database of vector magnetic field measurements obtained by the University of Hawai'i Imaging Vector Magnetograph. For a large combination of variables characterizing the photospheric magnetic field, the results are compared to a Bayesian approach for solar flare prediction, and to the method employed by the U.S. Space Environment Center (SEC). Although quantitative comparison is difficult as the present application provides active region (rather than whole-Sun) forecasts, and the present database covers only part of one solar cycle, the performance of the method appears comparable to the other approaches.

  6. {omega}-8 Flare fire; {omega}-8 feu torche

    Energy Technology Data Exchange (ETDEWEB)

    Pagej, S.

    2003-06-15

    This document provides propositions and recommendations concerning the physical phenomena of the flare fires. The first part describes the accident analysis and the second part the phenomenon. The third part presents a modelization of the flame, the wind effects and the thermal effects. The last part is devoted to the calculated thresholds for the domino effects on structures. (A.L.B.)

  7. An Unorthodox X-Class Long-Duration Confined Flare

    CERN Document Server

    Liu, Rui; Gou, Tingyu; Wang, Yuming; Liu, Kai; Wang, Haimin

    2014-01-01

    We report the observation of an X-class long-duration flare which is clearly confined. It appears as a compact-loop flare in the traditional EUV passbands (171 and 195 {\\AA}), but in the passbands sensitive to flare plasmas (94 and 131 {\\AA}), it exhibits a cusp-shaped structure above an arcade of loops like other long-duration events. Inspecting images in a running difference approach, we find that the seemingly diffuse, quasi-static cusp-shaped structure consists of multiple nested loops that repeatedly rise upward and disappear approaching the cusp edge. Over the gradual phase, we detect numerous episodes of loop rising, each lasting minutes. A differential emission measure analysis reveals that the temperature is highest at the top of the arcade and becomes cooler at higher altitudes within the cusp-shaped structure, contrary to typical long-duration flares. With a nonlinear force-free model, our analysis shows that the event mainly involves two adjacent sheared arcades separated by a T-type hyperbolic fl...

  8. Ensemble Forecasting of Major Solar Flares -- First Results

    Science.gov (United States)

    Pulkkinen, A. A.; Guerra, J. A.; Uritsky, V. M.

    2015-12-01

    We present the results from the first ensemble prediction model for major solar flares (M and X classes). Using the probabilistic forecasts from three models hosted at the Community Coordinated Modeling Center (NASA-GSFC) and the NOAA forecasts, we developed an ensemble forecast by linearly combining the flaring probabilities from all four methods. Performance-based combination weights were calculated using a Monte-Carlo-type algorithm that applies a decision threshold PthP_{th} to the combined probabilities and maximizing the Heidke Skill Score (HSS). Using the data for 13 recent solar active regions between years 2012 - 2014, we found that linear combination methods can improve the overall probabilistic prediction and improve the categorical prediction for certain values of decision thresholds. Combination weights vary with the applied threshold and none of the tested individual forecasting models seem to provide more accurate predictions than the others for all values of PthP_{th}. According to the maximum values of HSS, a performance-based weights calculated by averaging over the sample, performed similarly to a equally weighted model. The values PthP_{th} for which the ensemble forecast performs the best are 25 % for M-class flares and 15 % for X-class flares. When the human-adjusted probabilities from NOAA are excluded from the ensemble, the ensemble performance in terms of the Heidke score, is reduced.

  9. Energy-Dependent Timing of Thermal Emission in Solar Flares

    CERN Document Server

    Jain, Rajmal; Rajpurohit, Arvind Singh; Aschwanden, Markus J; 10.1007/s11207-011-9754-1

    2011-01-01

    We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We employ high-resolution X-ray spectra observed by the Si detector of the "Solar X-ray Spectrometer" (SOXS). The SOXS onboard the Indian GSAT-2 spacecraft was launched by the GSLV-D2 rocket on 8 May 2003. Firstly we model the spectral evolution of the X-ray line and continuum emission flux F(\\epsilon) from the flare by integrating a series of isothermal plasma flux. We find that multi-temperature integrated flux F(\\epsilon) is a power-law function of \\epsilon with a spectral index (\\gamma) \\approx -4.65. Next, based on spectral-temporal evolution of the flares we find that the emission in the energy range E= 4 - 15 keV is dominated by temperatures of T= 12 - 50 MK, while the multi-thermal power-law DEM index (\\gamma) varies in the range of -4.4 and -5.7. The temporal evolution of the X-ray flux F(\\epsilon,t) assuming a multi-temperature ...

  10. Global Energetics of Solar Flares: II. Thermal Energies

    CERN Document Server

    Aschwanden, M J; Ryan, D; Caspi, A; McTiernan, J M; Warren, H P

    2015-01-01

    We present the second part of a project on the global energetics of solar flares and CMEs that includes about 400 M- and X-class flares observed with AIA/SDO during the first 3.5 years of its mission. In this Paper II we compute the differential emission measure (DEM) distribution functions and associated multi-thermal energies, using a spatially-synthesized Gaussian DEM forward-fitting method. The multi-thermal DEM function yields a significantly higher (by an average factor of $\\approx 14$), but more comprehensive (multi-)thermal energy than an isothermal energy estimate from the same AIA data. We find a statistical energy ratio of $E_{th}/E_{diss} \\approx 2\\%-40\\%$ between the multi-thermal energy $E_{th}$ and the magnetically dissipated energy $E_{diss}$, which is an order of magnitude higher than the estimates of Emslie et al.~2012. For the analyzed set of M and X-class flares we find the following physical parameter ranges: $L=10^{8.2}-10^{9.7}$ cm for the length scale of the flare areas, $T_p=10^{5.7}-...

  11. Soft X-ray emission in flaring coronal loops

    CERN Document Server

    Pinto, R F; Brun, A S

    2014-01-01

    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink unstable twisted flux-ropes provide a source of magnetic energy which can be released impulsively and account for the heating of the plasma in flares. We investigate the temporal, spectral and spatial evolution of the properties of the thermal X-ray emission produced in such kink-unstable magnetic flux-ropes using a series of MHD simulations. We deduce emission diagnostics and their temporal evolution and discuss the results of the simulations with respect to observations. The numerical setup used consists of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, compute the evolution of the plasma properties in the loop (density, temperature) and deduce the X-ray emission properties of the plasma during the whole flaring episode. During the initial phase of the instability plasma heating is mostly ...

  12. High Peak Power Gain Switched Flared Waveguide Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chow, W.W.; Indik, R.; Koch, S.W.; Mar, Alan, Vawter, G. Allen; Moloney, J.

    1999-08-05

    We gain-switch flared waveguide lasers to obtain 14.5 W peak powers and 0.5 nJ pulse energies with laser structures compatible with the generation of diffraction-limited beams. The results are in excellent agreement with a microscopic laser model.

  13. The Problematic High-Energy Flares of 2012 March 7

    Science.gov (United States)

    Ryan, James M.; De Nolfo, Georgia

    2017-08-01

    Two X-class flares occurred on 2012 March 7, an X5.3 and an X1.1. The earlier X5 flare gathered much attention, initiating a powerful and fast CME from the eastern hemisphere. The “forgotten” X1 flare exhibited much smaller CME from the same active region one hour later. However, extended high-energy gamma emission was present for almost the entire day of 2012 March 7. We have resolved the gamma emission into two separate, but overlapping extended occurrences, being from the two sequential X-class flares. We find that the later X1 event was slightly more prolific in gamma emission, mostly due to its duration, despite being much weaker in soft x rays and dynamic coronal activity. We attribute the entirety of the gamma emission from particle precipitation from the footpoints two separate quasi-static large-scale (of order 1 solar radius) coronal loops and not from the associated CMEs. Using constraints from ancillary data, we estimate the bounds in parameter space of the loop sizes and embedded turbulence necessary to accelerate protons and ions to high energies producing the gamma emission.

  14. Theoretical aspects related to plasma flows observed in solar flares

    Science.gov (United States)

    Somov, Boris

    I review the current state of affairs in the magnetohydrodynamic theories and models for large-scale high-speed plasma flows in solar flares. Main attension is payed to the coronal signatures and their relation to the photosphere and the heliosphere.The large-scale structure and dynamics of coronal plasma flows, as seen in EUV and soft X-rays, can be explained in terms of the three-dimensional reconnection at magnetic separators in the corona. More specifically, this reconnection is determined by the large-scale photospheric flows mainly of two types. First, the shear flows, which are parallel to the photospheric neutral line, increase the length of field lines in the corona an excess of magnetic energy. Second, the converging flows, directed to the neutral line, create the preflare slowly-reconnecting current layers in the corona and provide an excess of energy sufficient to produce a large flare. During the flare, both excesses of energy are released mainly as fast flows of coronal plasma as well as powerful heat fluxes and accelerated particles. The impulsive heating of the upper chromosphere creates a fast expansion of high-temperature plasma upwards into the corona, called the chromospheric `evaporation'. Basic properties of such flows are also reviewed together with draining with cooling. Ref.: Somov B.V., Plasma Astrophysics, Part II, Reconnection and Flares. Second Edition. Springer SBM, New York, 2013.

  15. Very fast optical flaring from a possible new Galactic magnetar.

    Science.gov (United States)

    Stefanescu, A; Kanbach, G; Słowikowska, A; Greiner, J; McBreen, S; Sala, G

    2008-09-25

    Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars and black holes. In the high-energy regime of X-rays and gamma-rays, outbursts with variabilities on timescales of seconds or less are routinely observed, for example in gamma-ray bursts or soft gamma-ray repeaters. At optical wavelengths, flaring activity on such timescales has not been observed, other than from the prompt phase of one exceptional gamma-ray burst. This is mostly due to the fact that outbursts with strong, fast flaring are usually discovered in the high-energy regime; most optical follow-up observations of such transients use instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the Galactic transient SWIFT J195509.6+261406. Our optical light curves are phenomenologically similar to high-energy light curves of soft gamma-ray repeaters and anomalous X-ray pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests that similar processes are in operation, but with strong emission in the optical, unlike in the case of other known magnetars.

  16. 3D flare particle model for ShipIR/NTCS

    Science.gov (United States)

    Ramaswamy, Srinivasan; Vaitekunas, David A.

    2016-05-01

    A key component in any soft-kill response to an incoming guided missile is the flare /chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes a new 3D flare particle model in the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR), which provides independent control over the size and radial distribution of its signature. The 3D particles of each flare sub-munition are modelled stochastically and rendered using OpenGL z-buffering, 2D projection, and alpha-blending to produce a unique and time varying signature. A sensitivity analysis on each input parameter provides the data and methods needed to synthesize a model from an IR measurement of a decoy. The new model also eliminated artifacts and deficiencies in our previous model which prevented reliable tracks from the adaptive track gate algorithm already presented by Ramaswamy and Vaitekunas (2015). A sequence of scenarios are used to test and demonstrate the new flare model during a missile engagement.

  17. Long Duration Flare Emission: Impulsive or Gradual Heating?

    CERN Document Server

    Qiu, Jiong

    2016-01-01

    Flare emissions in X-ray and EUV wavelengths have previously been modeled as the plasma response to impulsive heating from magnetic reconnection. Some flares exhibit gradually evolving X-ray and EUV light curves, which are believed to result from superposition of an extended sequence of impulsive heating events occurring in different adjacent loops or even unresolved threads within each loop. In this paper, we apply this approach to a long duration two-ribbon flare SOL2011-09-13T22 observed by the Atmosphere Imaging Assembly (AIA). We find that to reconcile with observed signatures of flare emission in multiple EUV wavelengths, each thread should be heated in two phases, an intense impulsive heating followed by a gradual, low-rate heating tail that is attenuated over 20-30 minutes. Each AIA resolved single loop may be composed of several such threads. The two-phase heating scenario is supported by modeling with both a zero-dimensional and a 1D hydrodynamic code. We discuss viable physical mechanisms for the t...

  18. Expanding CME-flare relations to other stellar systems

    Science.gov (United States)

    Moschou, Sofia P.; Drake, Jeremy J.; Cohen, Ofer

    2017-05-01

    Stellar activity is one of the main parameters in exoplanet habitability studies. While the effects of UV to X-ray emission from extreme flares on exoplanets are beginning to be investigated, the impact of coronal mass ejections is currently highly speculative because CMEs and their properties cannot yet be directly observed on other stars. An extreme superflare was observed in X-rays on the Algol binary system on August 30 1997, emitting a total of energy 1.4x 10^{37} erg and making it a great candidate for studying the upper energy limits of stellar superflares in solar-type (GK) stars. A simultaneous increase and subsequent decline in absorption during the flare was also observed and interpretted as being caused by a CME. Here we investigate the dynamic properties of a CME that could explain such time-dependent absorption and appeal to trends revealed from solar flare and CME statistics as a guide. Using the ice-cream cone model that is extensively used in solar physics to describe the three-dimensional CME structure, in combination with the temporal profile of the hydrogen column density evolution, we are able to characterize the CME and estimate its kinetic energy and mass. We examine the mass, kinetic and flare X-ray fluence in the context of solar relations to examine the extent to which such relations can be extrapolated to much more extreme stellar events.

  19. The variation of filament direction in a flaring region

    Science.gov (United States)

    Rausaria, R. R.; Sundara Raman, K.; Aleem, P. S. M.; Singh, Jagdev

    1993-07-01

    We have analyzed the variations in shear angle over a time interval of 30 s during a flare on June 11, 1991, using Kodaikanal Observatory spectroheliogram and photoheliogram data, and assuming H-alpha filaments are a proxy for the neutral lines. The changes in shear angles have been analyzed at two points of the filament. The orientation of the H-alpha filament underwent a considerable change of about 55 deg from June 10, 1991 to prior to the start of the flare on June 11, 1991. The photoheliogram on June 10, 1991 shows considerable twisting of the umbrae (in one common penumbra) and broke into parts before the onset of the flare on June 11, 1991. The twisting of umbrae on June 10, 1991 shows that sunspot proper motion plays an important role in bringing a non-potential character to the field lines. This in turn develops shear and kink and it is argued that changes in filament orientation over a small interval of a half minute triggers the eruption of the flare.

  20. The rate of stellar tidal disruption flares from SDSS data

    Directory of Open Access Journals (Sweden)

    van Velzen S.

    2012-12-01

    Full Text Available We have searched for flares due to the tidal disruption of stars by supermassive black holes in archival Sloan Digital Sky Survey (SDSS multi-epoch imaging data. Our pipeline takes advantage of the excellent astrometry of SDSS to separate nuclear flares from supernovae. The 10 year baseline and the high cadence of the observations facilitate a clear-cut identification of variable active galactic nuclei. We found 186 nuclear flares, of which two are strong stellar tidal disruption flare (TDF candidates. To compute the rate of these events, we simulated our entire pipeline to obtain the efficiency of detection for a given light curve. We compute a model-independent upper limit to the TDF rate of Ṅ < 3 × 10−4 yr−1galaxy−1 (90% CL. Using a simple model to extrapolate the observed light curve forward and backward in time, we find our best-estimate of the rate: Ṅ = 3-3+5 × 10−5 yr−1galaxy−1.

  1. Optical discovery of probable stellar tidal discruption flares

    NARCIS (Netherlands)

    van Velzen, S.; Farrar, G.R.; Gezari, S.; Morrell, N.; Zaritsky, D.; Ostman, L.; Smith, M.; Gelfand, J.; Drake, A.J.

    2012-01-01

    Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures

  2. Properties of the 15 February 2011 Flare Seismic Sources

    CERN Document Server

    Zharkov, S; Matthews, S A; Zharkova, V V

    2012-01-01

    The first near-side X-class flare of the Solar Cycle 24 occurred in February 2011 and produced a very strong seismic response in the photosphere. One sunquake was reported by Kosovichev (2011) followed by the discovery of a second sunquake by Zharkov et al (2011). The flare had a two-ribbon structure and was associated with a flux rope eruption and a halo coronal mass ejection (CME) as reported in the CACTus catalogue. Following the discovery of the second sunquake and the spatial association of both sources with the locations of the feet of the erupting flux rope (Zharkov et al 2011) we present here a more detailed analysis of the observed photospheric changes in and around the seismic sources. These sunquakes are quite unusual, taking place early in the impulsive stage of the flare, with the seismic sources showing little hard X-ray (HXR) emission, and strongest X-ray emission sources located in the flare ribbons. We present a directional time--distance diagram computed for the second source, which clearly ...

  3. Microwave Type III Pair Bursts in Solar Flares

    CERN Document Server

    Tan, Baolin; Karlicky, Marian; Huang, Guangli; Tan, Chengming

    2016-01-01

    Solar microwave type III pair burst is composed of normal and reverse-sloped (RS) burst branches with oppositely fast frequency drifts. It is the most sensitive signature of the primary energy release and electron accelerations in flares. This work reported 11 microwave type III pair events in 9 flares observed by radio spectrometers in China and the Czech Republic at frequency of 0.80 - 7.60 GHz during 1994 - 2014. These type III pairs occurred in flare impulsive and postflare phases with separate frequency in range of 1.08 - 3.42 GHz and frequency gap 10 - 1700 MHz. The frequency drift increases with the separate frequency (f_{x}), the lifetime of each burst is anti-correlated to f_{x}, while the frequency gap is independent to f_{x}. In most events, the normal branches are drifting obviously faster than the RS branches. The type III pairs occurring in flare impulsive phase have lower separate frequency, longer lifetime, wider frequency gap, and slower frequency drift than that occurring in postflare phase....

  4. Luminous Thermal Flares from Quiescent Supermassive Black Holes

    CERN Document Server

    Gezari, Suvi; Cenko, S Bradley; Eracleous, Michael; Forster, Karl; Goncalves, Thiago S; Martin, D Chris; Morrissey, Patrick; Neff, Susan G; Seibert, Mark; Schiminovich, David; Wyder, Ted K

    2009-01-01

    A dormant supermassive black hole lurking in the center of a galaxy will be revealed when a star passes close enough to be torn apart by tidal forces, and a flare of electromagnetic radiation is emitted when the bound fraction of the stellar debris falls back onto the black hole and is accreted. Here we present the third candidate tidal disruption event discovered in the GALEX Deep Imaging Survey: a 1.6x10^{43} erg s^{-1} UV/optical flare from a star-forming galaxy at z=0.1855. The UV/optical SED during the peak of the flare measured by GALEX and Palomar LFC imaging can be modeled as a single temperature blackbody with T_{bb}=1.7x10^{5} K and a bolometric luminosity of 3x10^{45} ergs s^{-1}, assuming an internal extinction with E(B-V)_{gas}=0.3. The Chandra upper limit on the X-ray luminosity during the peak of the flare, L_{X}(2-10 keV) M_{g} > -18.9) to predict the detection capabilities of upcoming optical synoptic surveys. (Abridged)

  5. Hooked flare ribbons and flux-rope related QSL footprints

    CERN Document Server

    Zhao, Jie; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne; Li, Hui

    2016-01-01

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare which begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by SDO/AIA can be well reproduced from a Grad-Rubin non linear force free field extrapolation method. Various inverse-S and -J shaped magnetic field lines, that surround a coronal flux rope, coincide with the sigmoid as observed in different extreme ultraviolet wavelengths, including its multi-threaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and set-up of the Grad-Rubin method. The modeled double inverse-J shaped Quasi-Separatrix Layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latt...

  6. Impact of X-Class Flares on the Polar Ionosphere

    Science.gov (United States)

    Sojka, J. J.; Lewis, M.; David, M.; Schunk, R. W.; Nicolls, M. J.; Woods, T. N.; Eparvier, F.

    2014-12-01

    The ionospheric impact of X-class and large M-class flares has posed severe observational challenges for the ionosonde community. The very strong high frequency (HF) radio absorption associated with the X-class flares creates black-out conditions making ionosonde observations impossible. Similarly incoherent scatter radar (ISR) observations have generated only a few X-class flare impact observations because of limited duty cycle of these radars. With the advent of the NSF Advanced Modular Incoherent Scatter Radar (AMISR) technology it has become possible to operate 24/7 with better than 10 minute cadence. The PFISR, located at Poker Flat, Alaska, has operated in such a mode since March 2007. This has provide a data base that has captured many X-class flares. The irradiance from a subset of these were also observed by the Extreme Ultraviolet Variability Experiment (EVE) on the NASA Solar Dynamics Observatory (SDO) satellite. Hence we are in a position to evaluate modeling approaches that describes E-region ionization via energetic photons as well as the subsequent ionization caused by these photoelectrons. A key issue remains, that associated with the Auger ionization process. This latter topic's relevance will be described from the modeling and future observational needs point of view. The extension of this study into the central polar cap using Resolute Bay, Canada, AMISRs will be discussed.

  7. EvryFlare: Flare rates and intensities for every 10 < g' < 15 solar-type and red dwarf star in the Southern sky

    Science.gov (United States)

    Howard, Ward; Fors, Octavi; Ratzloff, Jeff; Corbett, Hank; del Ser, Daniel; Law, Nicholas

    2017-05-01

    Habitable-zone rocky planets orbit nearly all stars; however, stellar flares make detecting these planets and discovering their actual habitability challenging. Although Kepler measured flare rates for various spectral-types around distant stars, the flare rates and intensities of nearby stars available to planet searches and follow-up remain poorly characterized. High-cadence, long-timescale photometry of such stars will provide the intensity and frequency of flares incident upon nearby HZ planets. At the same time, optical counterparts to CME-exoplanet-magnetosphere searches in the radio, and potentially-reduced flare interference for radial-velocity planet searches are obtained. The EvryFlare project employs the CTIO-based Evryscope, a combination of twenty-four telescopes, together giving instantaneous sky coverage of 8000 square degrees. Solar-type and red dwarf stars are selected by color and searched with an automated flare detector. We are currently sensitive to flares down to about 10 milli-magnitudes at g' 12 and about 0.2 of a magnitude at g' 15. With 2-minute cadence and a projected 5-year timeline with 1.5 years already recorded, we are precisely characterizing the flare rates and intensities of bright, nearby stars. With this information, we provide insight into the frequency and relative insolation incident upon HZ planets discovered orbiting nearby stars, as well as provide optical counterparts for radio planetary magnetosphere searches.

  8. On the average Gamma-Ray Burst X-ray flaring activity

    CERN Document Server

    Margutti, R; Duran, R Barniol; Guidorzi, C; Shen, R F; Chincarini, G

    2010-01-01

    Gamma-ray burst X-ray flares are believed to mark the late time activity of the central engine. We compute the temporal evolution of the average flare luminosity $$ in the common rest frame energy band of 44 GRBs taken from the large \\emph{Swift} 5-years data base. Our work highlights the importance of a proper consideration of the threshold of detection of flares against the contemporaneous continuous X-ray emission. In the time interval $30 \\rm{s}\\propto t^{-2.7\\pm 0.1}$; this implies that the flare isotropic energy scaling is $E_{\\rm{iso,flare}}\\propto t^{-1.7}$. The decay of the continuum underlying the flare emission closely tracks the average flare luminosity evolution, with a typical flare to steep-decay luminosity ratio which is $L_{\\rm{flare}}/L_{\\rm{steep}}=4.7$: this suggests that flares and continuum emission are deeply related to one another. We infer on the progenitor properties considering different models. According to the hyper-accreting black hole scenario, the average flare luminosity scali...

  9. Thermal Structure of Supra-Arcade Plasma in Two Solar Flares

    Science.gov (United States)

    Reeves, Katharine K.; Savage, Sabrina; McKenzie, David E.; Weber, Mark A.

    2012-01-01

    In this work, we use Hinode/XRT and SDO/AIA data to determine the thermal structure of supra-arcade plasma in two solar flares. The first flare is a Ml.2 flare that occurred on November 5, 2010 on the east limb. This flare was one of a series of flares from AR 11121, published in Reeves & Golub (2011). The second flare is an XI.7 flare that occurred on January 27, 2012 on the west limb. This flare exhibits visible supra-arcade downflows (SADs), where the November 2010 flare does not. For these two flares we combine XRT and AlA data to calculate DEMs of each pixel in the supra-arcade plasma, giving insight into the temperature and density structures in the fan of plasma above the post-flare arcade. We find in each case that the supra-arcade plasma is around 10 MK, and there is a marked decrease in the emission measure in the SADs. We also compare the DEMs calculated with the combined AIA/XRT dataset to those calculated using AIA alone.

  10. Magnetic and dynamical photospheric disturbances observed during an M3.2 solar flare

    CERN Document Server

    Kuckein, C; Sainz, R Manso

    2015-01-01

    This letter reports on a set of full-Stokes spectropolarimetric observations in the near infrared He I 10830 A spectral region covering the pre-, flare, and post-flare phases of an M3.2 class solar flare. The flare originated on 2013 May 17 and belonged to active region NOAA 11748. We detected strong He I 10830 A emission in the flare. The red component of the He I triplet peaks at an intensity ratio to the continuum of about 1.86. During the flare, He I Stokes V is substantially larger and appears reversed compared to the usually larger Si I Stokes V profile. The photospheric Si I inversions of the four Stokes profiles reveal the following: (1) the magnetic field strength in the photosphere decreases or is even absent during the flare phase, as compared to the pre-flare phase. However, this decrease is not permanent. After the flare the magnetic field recovers its pre-flare configuration in a short time (i.e., in 30 minutes after the flare). (2) In the photosphere, the line-of-sight velocities show a regular...

  11. Ion Acceleration in Solar Flares Determined by Solar Neutron Observations

    Science.gov (United States)

    Watanabe, K.; Solar Neutron Observation Group

    2013-05-01

    Large amounts of particles can be accelerated to relativistic energy in association with solar flares and/or accompanying phenomena (e.g., CME-driven shocks), and they sometimes reach very near the Earth and penetrate the Earth's atmosphere. These particles are observed by ground-based detectors (e.g., neutron monitors) as Ground Level Enhancements (GLEs). Some of the GLEs originate from high energy solar neutrons which are produced in association with solar flares. These neutrons are also observed by ground-based neutron monitors and solar neutron telescopes. Recently, some of the solar neutron detectors have also been operating in space. By observing these solar neutrons, we can obtain information about ion acceleration in solar flares. Such neutrons were observed in association with some X-class flares in solar cycle 23, and sometimes they were observed by two different types of detectors. For example, on 2005 September 7, large solar neutron signals were observed by the neutron monitor at Mt. Chacaltaya in Bolivia and Mexico City, and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in Mexico in association with an X17.0 flare. The neutron signal continued for more than 20 minutes with high statistical significance. Intense gamma-ray emission was also registered by INTEGRAL, and by RHESSI during the decay phase. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. (2002), and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the gamma-ray line emission and that ions were continuously accelerated at the emission site. In this paper, we introduce some of the solar neutron observations in solar cycle 23, and discuss the tendencies of the physical parameters of solar neutron GLEs, and the energy spectrum and population of the

  12. Poststroke Pain – but Multiple Pain Mechanisms

    Directory of Open Access Journals (Sweden)

    Vinjamuri Chari

    2010-01-01

    Full Text Available A 42-year-old man presented with acute left hemiplegia due to a right frontotemporal hemorrhagic stroke and left-sided pain. While the initial presentation suggested central poststroke pain, subsequent investigations also implicated heterotopic ossification of the left hip and amplification of previous low back pain by the new central pain. While heterotopic ossification has been commonly associated with brain injury, spinal cord injury or osseous injury, it is only rarely associated with stroke. Poststroke pain may be multifactorial, and discovering the pain mechanisms has important implications for treatment.

  13. Observations of the 12.3 micron Mg I emission line during a major solar flare

    Science.gov (United States)

    Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Hewagama, Tilak

    1990-01-01

    The extremely Zeeman-sensitive 12.32 micron Mg I solar emission line was observed during a 3B/X5.7 solar flare on October 24, 1989. When compared to postflare values, Mg I emission-line intensity in the penumbral flare ribbon was 20 percent greater at the peak of the flare in soft X-rays, and the 12 micron continuum intensity was 7 percent greater. The flare also excited the emission line in the umbra where it is normally absent. The umbral flare emission exhibits a Zeeman splitting 200 G less than the adjacent penumbra, suggesting that it is excited at higher altitude. The absolute penumbral magnetic field strength did not change by more than 100 G between the flare peak and postflare period. However, a change in the inclination of the field lines, probably related to the formation and development of the flare loop system, was seen.

  14. Study of the change of surface magnetic field associated with flares

    Science.gov (United States)

    Li, Yixuan; Jing, Ju; Fan, Yuhong; Wang, Haimin

    2011-08-01

    How magnetic field structure changes with eruptive events (e.g., flares and CMEs) has been a long-standing problem in solar physics. Here we present the analysis of eruption-associated changes in the magnetic inclination angle, the transverse component of magnetic field and the Lorentz force. The analysis is based on an observation of the X3.4 flare on Dec.13 2006 and a numerical simulation of a solar eruption made by Yuhong Fan. Both observation and simulation show that (1) the magnetic inclination angle in the decayed peripheral penumbra increases, while that in the central area close to flaring polarity inversion line (PIL) deceases after the flare; (2) the transverse component of magnetic field increases at the lower altitude near flaring PIL after the flare. The result suggests that the field lines at flaring neutral line turn to more horizontal near the surface, that is in agreement with the prediction of Hudson, Fisher & Welsch (2008).

  15. A Yohkoh search for `black-light flares'

    Science.gov (United States)

    Van Driel-Gesztelyi, Lidia; Hudson, Hugh S.; Anwar, Bachtiar; Hiei, Eijiro

    1994-01-01

    Calculations which predict that a phenomenon analogous to stellar negative pre-flares could also exist on the Sun were published by Henoux et al. (1990), and Aboudarham et al., (1990), who showed at the beginning of a solar white-light flare (WLF) event an electron beam can cause a transient darkening before the WLF emission starts, under certain conditions. They named this event a `black light flare' (BLF). Such a BLF event should appear as diffuse dark patches lasting for about 20 seconds preceding the WLF emission, which would coincide with intense and impulsive hard X-ray bursts. The BLF location would be at (or in the vicinity of ) the forthcoming bright patches. Their predicted contrast depends on the position of the flare on the solar disk and on the wavelength band of the observation. The Yohkoh satellite provided white-light data from the aspect camera of the Soft X-ray Telescope (SXT) instrument (Tsuneta et al., 1991), at 431 nm and with a typical image interval of 10 - 12 s. We have studied nine white-light flares observed with this instrument, with X-ray class larger than M6. We have found a few interesting episodes, but no unambiguous example of the predicted BLF event. This study, although the best survey to date, was not ideal from the observational point of view. We therefore encourage further searches. Successful observations of this phenomenon on the Sun would greatly strengthen our knowledge of the lower solar atmosphere and its effects on solar luminosity variations.

  16. Temporomandibular joint pain assessment.

    Science.gov (United States)

    Stegenga, B; de Bont, L G; Boering, G

    1993-01-01

    The aim of this study was to evaluate pain characteristics of patients with temporomandibular joint-related pain and propose a rationale for the assessment of pain and its impact on patients with temporomandibular disorders. Based on anamnestic information, the 88 patients in the sample were classified according to pain grade: (1) acute/subacute nonrecurrent or recurrent pain, n = 41 (46.6%); (2) persistently recurring pain in relatively high frequency, or nonsevere persistent pain, n = 32 (36.4%); (3) persistent and impairing pain, n = 8 (9.1%); (4) persistent and disabling pain, n = 7 (7.9%); and (5) persistent and handicapping pain, n = 0. Regarding TMJ pain provoked during the clinical examination, there was a significant difference among diagnostic subgroups, subgroups with different pain intensity levels, and pain grade subgroups, but no significant differences could be found based on the duration of the pain symptoms. Subgroups also did not significantly differ in scores on the Multi-dimensional Pain Inventory and the General Health Questionnaire. Based on the results of the study, the assessment of nonchronic TMJ pain may generally be limited to an accurate description of the pain complaint and thorough clinical assessment. Multidimensional assessment may be useful when the TMJ pain persists or is persistently recurring. Depending on individual circumstances, additional assessment procedures may prove to be useful. A general strategy for pain assessment in temporomandibular disorders is proposed.

  17. Thermodynamic Spectrum of Solar Flares Based on SDO/EVE Observations: Techniques and First Results

    Science.gov (United States)

    Wang, Yuming; Zhou, Zhenjun; Zhang, Jie; Liu, Kai; Liu, Rui; Shen, Chenglong; Chamberlin, Phillip C.

    2016-01-01

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.

  18. Data Mining Solar X-Ray Flares Triggered by Emerging Magnetic Flux

    Science.gov (United States)

    Loftus, Kaitlyn; Saar, Steven H.; Schanche, Nicole

    2017-01-01

    We investigate the association between emerging magnetic flux and solar X-ray flares to identify, and if possible quantify, distinguishing physical properties of flares triggered by flux emergence versus those triggered by other sources. Our study uses as its basis GOES-classified solar flares from March 2011 through June 2016 that have been identified by the Space Weather Prediction Center’s flare detection algorithm. The basic X-ray flare data is then enriched with data about related EUV-spectrum flares, emerging fluxes, active regions, eruptions, and sigmoids, which are all characterized by event-specific keywords, identified via SDO feature finding tools, and archived in the Heliophysics Events Knowledgebase (HEK). Using appropriate spatial and temporal parameters for each event type to determine association, we create a catalogue of solar events associated with each GOES-classified flare. After accounting for the primitive state of many of these event detection algorithms, we statistically analyze the compiled dataset to determine the effects of an emerging flux trigger on flare properties. A two-sample Kolmogorov-Smirnov test confirms with 99.9% confidence that flares triggered by emerging flux have a different peak flux distribution than non-emerging-flux-associated flares. We observe no linear or logarithmic correlations between flares’ and their associated emerging fluxes’ individual properties and find flares triggered by emerging flux are ~ 10% more likely to cause an eruption inside an active region while outside of an active region, the flare’s association with emerging flux has no effect on its likeliness to cause an eruption. We also compare the morphologies of the flares triggered by emerging flux and flares not via a superposed epoch analysis of lightcurves. Our results will be of interest for predicting flare behavior as a function of magnetic activity (where we can use enhanced rates of emerging flux as a proxy for heightened stellar

  19. Upstream petroleum industry flaring and venting report : Industry performance for year ending December 31, 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-08-01

    Since 1938, the Alberta Energy and Utilities Board (EUB) has made the reduction of routine flaring and venting of solution gas a priority. The EUB has been acknowledged internationally for its achievements in reducing flaring and venting. The EUB's goal is to eliminate the routine flaring and venting of solution gas in order to address energy conservation and public safety. This report describes how the EUB fulfills its information mandate regarding flaring and venting. It is published in response to a commitment made by the EUB to make flaring and venting data more accessible. The EUB and the Clean Air Strategic Alliance have established baselines for flaring and venting. Regulations, enforcement and industry cooperation have resulted in major reductions in the amount of solution gas flared and vented. This report provides a summary of flared and vented volumes for the different oil and gas industry sources, such as well tests, gas plants, gas gathering systems, transmission lines, and batteries. It also contains detailed information on solution gas conserved, flared, and vented during 2003. Ranking of companies was established based on solution gas flared plus vented, solution gas flared, and solution gas vented, from crude oil and bitumen batteries. The data used in the preparation of this report was submitted by companies. The data demonstrates that considerable progress has been made in the reduction of flaring and venting volumes for all upstream oil and gas sources. Solution gas conservation for 2004 was 96.0 per cent, the highest conservation level achieved to date. Solution gas flaring for 2004 was 72.2 per cent less than the 1996 flaring baseline, compared to 70.0 per cent less than the baseline in 2003. tabs., figs.

  20. Upstream petroleum industry flaring and venting report : industry performance for year ending December 31, 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The Energy Resources Conservation Board (ERCB) has developed recommendations for a flaring and venting management framework for the province of Alberta. This report fulfilled the ERCB's information mandate regarding flaring and venting as part of a commitment made in Directive 060 for upstream petroleum industry flaring, incineration, and venting to make flaring and venting data more accessible. It included data on upstream petroleum industry flaring and venting with particular reference to solution gas conserved, flared and vented, from 1996 to 2008; solution gas flaring and venting performance; flaring from all upstream oil and gas sources, from 2000 to 2008; venting from all upstream oil and gas sources, from 2000 to 2008; solution gas flaring and venting maps; and solution gas emissions ranking of operators for 2007. The report also provided a summary of flaring and venting from various oil and gas industry sources, such as well tests, gas plants, gas gathering systems, transmission lines, and batteries. Ranking of companies was established based on solution gas flared plus vented; solution gas flared; and solution gas vented from crude oil and bitumen batteries. The data used in the preparation of this report was submitted by companies. The report revealed that considerable progress has been made in the reduction of flaring and venting volumes for all upstream oil and gas sources. The reduction can be attributed to the decline in new conventional oil production. It can also be correlated to the decline in volumes of solution gas formerly being flared, and now being vented. Solution gas vented in 2008 was 40.7 per cent less than the 2000 venting baseline. However, in 2008, there was a 25.9 per cent increase in venting from crude bitumen batteries which can be correlated to the increase in crude bitumen production. The ERCB is continuing to work with the Clean Air Strategic Alliance to examine options to further address solution gas venting. tabs., figs.

  1. Upstream petroleum industry flaring and venting report : Industry performance for year ending December 31, 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-05-01

    Solution gas is the largest source of flaring and venting in Alberta. The Alberta Energy and Utilities Board (EUB) has been acknowledged internationally for its success in reducing flaring and venting. The EUB's target is to eliminate the routine flaring and venting of solution gas to address conservation and public safety. This report describes how the EUB fulfills its information mandate regarding flaring and venting. It is published in response to a commitment made by the EUB to make flaring and venting data more accessible. The EUB and the Clean Air Strategic Alliance have established baselines for flaring and venting. Regulations, enforcement and industry cooperation have resulted in major reductions in the amount of solution gas flared and vented. This report provides a summary of flared and vented volumes for the different oil and gas industry sources, such as well tests, gas plants, gas gathering systems, transmission lines, and batteries. It also contains detailed information on solution gas conserved, flared, and vented during 2003. Ranking of companies was established based on solution gas flared plus vented, solution gas flared, and solution gas vented, from crude oil and bitumen batteries. The data used in the preparation of this report was submitted by companies. The data demonstrates that considerable progress has been made in the reduction of flaring and venting volumes for all upstream oil and gas sources. Solution gas conservation for 2003 was 95.4 per cent, the highest conservation level achieved to date. Solution gas flaring for 2003 was 70 per cent less than the 1996 flaring baseline. tabs., figs.

  2. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data

    Directory of Open Access Journals (Sweden)

    Mikhail Zhizhin

    2009-08-01

    Full Text Available We have produced annual estimates of national and global gas flaring and gas flaring efficiency from 1994 through 2008 using low light imaging data acquired by the Defense Meteorological Satellite Program (DMSP. Gas flaring is a widely used practice for the disposal of associated gas in oil production and processing facilities where there is insufficient infrastructure for utilization of the gas (primarily methane. Improved utilization of the gas is key to reducing global carbon emissions to the atmosphere. The DMSP estimates of flared gas volume are based on a calibration developed with a pooled set of reported national gas flaring volumes and data from individual flares. Flaring efficiency was calculated as the volume of flared gas per barrel of crude oil produced. Global gas flaring has remained largely stable over the past fifteen years, in the range of 140 to 170 billion cubic meters (BCM. Global flaring efficiency was in the seven to eight cubic meters per barrel from 1994 to 2005 and declined to 5.6 m3 per barrel by 2008. The 2008 gas flaring estimate of 139 BCM represents 21% of the natural gas consumption of the USA with a potential retail market value of $68 billion. The 2008 flaring added more than 278 million metric tons of carbon dioxide equivalent (CO2e into the atmosphere. The DMSP estimated gas flaring volumes indicate that global gas flaring has declined by 19% since 2005, led by gas flaring reductions in Russia and Nigeria, the two countries with the highest gas flaring levels. The flaring efficiency of both Russia and Nigeria improved from 2005 to 2008, suggesting that the reductions in gas flaring are likely the result of either improved utilization of the gas, reinjection, or direct venting of gas into the atmosphere, although the effect of uncertainties in the satellite data cannot be ruled out. It is anticipated that the capability to estimate gas flaring volumes based on satellite data will spur improved utilization of

  3. Predictions of reconnected flux, energy and helicity in eruptive solar flares

    Science.gov (United States)

    Kazachenko, Maria Dmitiyevna

    2010-12-01

    In order to better understand the solar genesis of interplanetary magnetic clouds, I model the magnetic and topological properties of several large eruptive solar flares and relate them to observations. My main hypothesis is that the flux ropes ejected during eruptive solar flares are the result of a sequence of magnetic reconnections. To test this hypothesis, I use the three-dimensional Minimum Current Corona model of flare energy storage (Longcope, 1996) together with pre-flare photospheric magnetic field and flare ribbon observations to predict the basic flare properties: reconnected magnetic flux, free energy, and flux rope helicity. Initially, the MCC model was able to quantify the properties of the flares that occur in active regions with only photospheric shearing motions. Since rotating motions may also play a key role in the flare energetics, I develop a method for including both shearing and rotating motions into the MCC model. I use this modified method to predict the model flare properties and then compare them to the observed quantities. Firstly, for two flares in active regions with fast rotating sunspots, I find that the relative importance of shearing and rotation to those flares depends critically on their location within the parent active region topology. Secondly, for four flares analyzed with the MCC model (three flares described here and one flare described in Longcope et al. (2007)), I find that the modeled flare properties agree with the observed properties within the uncertainties of the methods used. This agreement compels me to believe that the magnetic clouds associated with these four solar flares are formed by low-corona magnetic reconnection during the eruption as modeled by the MCC model, rather than eruption of pre-existing structures in the corona or formation in the upper corona with participation of the global magnetic field. I note that since all four flares occurred in active regions without significant pre-flare flux emergence

  4. Pain and your emotions

    Science.gov (United States)

    ... your body controls pain. Pain itself, and the fear of pain, can cause you to avoid both physical and social activities. ... or staying asleep Decreased or increased appetite that causes major weight ... Thoughts about death, suicide, or hurting yourself

  5. Fighting Chronic Pain

    Science.gov (United States)

    ... leg pain from clogged arteries Stomach/Digestive: Gallstones, intestinal obstruction, diverticulitis, ulcers, severe indigestion, severe gas pain, inflammatory bowel disease, colitis Urinary/Reproductive: Kidney stones, pelvic pain, vulvodynia, ...

  6. Pelvic Pain: Other FAQs

    Science.gov (United States)

    ... NICHD Research Information Clinical Trials Resources and Publications Pelvic Pain: Other FAQs Skip sharing on social media links ... more than one reason for my pain? Can pelvic pain affect my ability to become pregnant? Can alternative ...

  7. Physiotherapists' knowledge of pain

    African Journals Online (AJOL)

    negative attitudes and lack of knowledge about pain.[3]. Pain has been identified as the .... Pain can be reliably measured on a variety of numeric scales. 0.62 continued. ..... administered questionnaires are common measurement tools used to.

  8. Pain: Hope through Research

    Science.gov (United States)

    ... complex regional pain syndrome , which can follow injury; phantom limb and post-amputation pain (see Phantom Pain in ... the lost limb. This phenomenon is known as phantom limb and accounts describing it date back to the ...

  9. Nonulcer Stomach Pain

    Science.gov (United States)

    ... stomach pain is also called functional dyspepsia (dis-PEP-see-uh) or nonulcer dyspepsia. Nonulcer stomach pain ... may help inhibit the activity of neurons that control intestinal pain. Antibiotics. If tests indicate that a ...

  10. American Pain Society

    Science.gov (United States)

    ... and Treated High-dose Opioid Treatment Associated with Mental Health and Medical Comorbidities Inadequate Pain Research Funding Hampers ... Chronic Neck Pain Press Room - Link of Preexisting Mental ... Nervous System Origins Yoga and Chronic Pain Have Opposite Effects on Brain ...

  11. Soul Pain

    Directory of Open Access Journals (Sweden)

    Sarah L. Jirek

    2015-07-01

    Full Text Available This study extends prior research on vicarious traumatization and emotion management by exploring a deeper, more life-altering effect of working with traumatized clients—namely, “soul pain.” Analyses of in-depth interviews with 29 advocates working with survivors of physical and sexual violence reveal that, as a direct consequence of hearing countless stories of human brutality, some staff members experience a profound wounding of their spirit. This finding expands our understanding of the occupational hazards of the helping professions by revealing another dimension of advocates’ lives—that of the soul or spirit—that may be affected by their work with trauma survivors.

  12. Cancer and Pain Management

    OpenAIRE

    2011-01-01

    Pain is the most common problems in cancer patients . Pain may occur due to stage of disease diagnosis, treatment processand treatment received. Today, there are many methods for pain control non-pharmacological and pharmacological. Nurse's responsibility to make a comprehensive assessment of pain, pain control, the individual and with his family to implement the chosen method of pain control, must be applied to evaluate the effectiveness of the method. [TAF Prev Med Bull 2011; 10(6.000): 751...

  13. Pain Management: Post-Amputation Pain

    Science.gov (United States)

    ... of post-op pain or pain in the phantom limb, (which has been removed), early referral to a ... could not), can be experienced in the amputated "phantom" limb. Virtually all amputees who are old enough to ...

  14. High-energy Gamma-Ray Emission from Solar Flares: Summary of Fermi Large Area Telescope Detections and Analysis of Two M-class Flares

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Bonamente, E.; Bottacini, E.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chen, Q.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Desiante, R.; Digel, S. W.; Di Venere, L.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Inoue, Y.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, W. N.; Kamae, T.; Kawano, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Murphy, R.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Ritz, S.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Takahashi, H.; Takeuchi, Y.; Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Troja, E.; Tronconi, V.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Werner, M.; Winer, B. L.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.; Fermi LAT Collaboration

    2014-05-01

    We present the detections of 18 solar flares detected in high-energy γ-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. This work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying γ-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by γ-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the γ-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. This would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of γ-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and γ-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.

  15. Feature Selection, Flaring Size and Time-to-Flare Prediction Using Support Vector Regression, and Automated Prediction of Flaring Behavior Based on Spatio-Temporal Measures Using Hidden Markov Models

    Science.gov (United States)

    Al-Ghraibah, Amani

    Solar flares release stored magnetic energy in the form of radiation and can have significant detrimental effects on earth including damage to technological infrastructure. Recent work has considered methods to predict future flare activity on the basis of quantitative measures of the solar magnetic field. Accurate advanced warning of solar flare occurrence is an area of increasing concern and much research is ongoing in this area. Our previous work 111] utilized standard pattern recognition and classification techniques to determine (classify) whether a region is expected to flare within a predictive time window, using a Relevance Vector Machine (RVM) classification method. We extracted 38 features which describing the complexity of the photospheric magnetic field, the result classification metrics will provide the baseline against which we compare our new work. We find a true positive rate (TPR) of 0.8, true negative rate (TNR) of 0.7, and true skill score (TSS) of 0.49. This dissertation proposes three basic topics; the first topic is an extension to our previous work [111, where we consider a feature selection method to determine an appropriate feature subset with cross validation classification based on a histogram analysis of selected features. Classification using the top five features resulting from this analysis yield better classification accuracies across a large unbalanced dataset. In particular, the feature subsets provide better discrimination of the many regions that flare where we find a TPR of 0.85, a TNR of 0.65 sightly lower than our previous work, and a TSS of 0.5 which has an improvement comparing with our previous work. In the second topic, we study the prediction of solar flare size and time-to-flare using support vector regression (SVR). When we consider flaring regions only, we find an average error in estimating flare size of approximately half a GOES class. When we additionally consider non-flaring regions, we find an increased average

  16. Orofacial pain: a primer.

    Science.gov (United States)

    De Rossi, Scott S

    2013-07-01

    Orofacial pain refers to pain associated with the soft and hard tissues of the head, face, and neck. It is a common experience in the population that has profound sociologic effects and impact on quality of life. New scientific evidence is constantly providing insight into the cause and pathophysiology of orofacial pain including temporomandibular disorders, cranial neuralgias, persistent idiopathic facial pains, headache, and dental pain. An evidence-based approach to the management of orofacial pain is imperative for the general clinician. This article reviews the basics of pain epidemiology and neurophysiology and sets the stage for in-depth discussions of various painful conditions of the head and neck.

  17. Fetal pain perception and pain management.

    Science.gov (United States)

    Van de Velde, Marc; Jani, Jacques; De Buck, Frederik; Deprest, J

    2006-08-01

    This paper gives an overview of current science related to the concept of fetal pain. We have answered three important questions: (1) does fetal pain exist? (2) does management of fetal pain benefit the unborn child? and (3) which techniques are available to provide good fetal analgesia?

  18. Pain and musculoskeletal pain syndromes in adolescents.

    Science.gov (United States)

    Zapata, Aura Ligia; Moraes, Ana Julia Pantoja; Leone, Claudio; Doria-Filho, Ulysses; Silva, Clovis Artur Almeida

    2006-06-01

    The presence of musculoskeletal pain was evaluated in adolescents. Pain was reported by 40% of respondents, benign joint hypermobility syndrome by 10%, myofascial syndrome by 5%, tendonitis by 2%, and fibromialgia by 1%. Logistical regression analysis indicated that sex and age were predictive of pain.

  19. What a Pain! Kids and Growing Pains

    Science.gov (United States)

    ... best news about growing pains is that they go away by morning. What Causes Growing Pains? Growing pains don't hurt around the bones or joints (the flexible parts that connect bones and let them move) — only in the muscles . For this ...

  20. Observations of solar flares with IRIS and SDO

    Science.gov (United States)

    Li, D.; Innes, D. E.; Ning, Z. J.

    2016-03-01

    Flare kernels brighten simultaneously in all Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) channels making it difficult to determine their temperature structure. The Interface Region Imaging Spectrograph (IRIS) is able to spectrally resolve Fe xxi emission from cold chromospheric brightenings, so it can be used to infer the amount of Fe xxi emission in the 131 Å AIA channel. We use observations of two small solar flares seen by IRIS and SDO to compare the emission measures (EMs) deduced from the IRIS Fe xxi line and the AIA 131 Å channel to determine the fraction of Fe xxi emission in flare kernels in the 131 Å channel of AIA. Cotemporal and cospatial pseudo-raster AIA images are compared with the IRIS results. We use multi-Gaussian line fitting to separate the blending chromospheric emission so as to derive Fe xxi intensities and Doppler shifts in IRIS spectra. We define loop and kernel regions based on the brightness of the 131 Å and 1600 Å intensities. In the loop regions the Fe xxi EMs are typically 80% of the 131 Å values, and range from 67% to 92%. Much of the scatter is due to small misalignments, but the largest site with low Fe xxi contributions was probably affected by a recent injection of cool plasma into the loop. In flare kernels the contribution of Fe xxi increases from less than 10% at the low-intensity 131 Å sites to 40-80% in the brighter kernels. Here the Fe xxi is superimposed on bright chromospheric emission and the Fe xxi line shows blueshifts, sometimes extending up to the edge of the spectral window, 200 km s-1. The AIA 131 Å emission in flare loops is due to Fe xxi emission with a 10-20% contribution from continuum, Fe xxiii, and cooler background plasma emission. In bright flare kernels up to 52% of the 131 Å is from cooler plasma. The wide range seen in the kernels is caused by significant structure in the kernels, which is seen as sharp gradients in Fe xxi EM at sites of molecular and transition region